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RESUMO 
 

O adenocarcinoma gástrico é uma neoplasia altamente heterogênea, classificada 

em subtipos moleculares pelo The Cancer Genome Atlas (TCGA): instabilidade 

cromossômica CIN, instabilidade de microssatélites MSI, genômica estável GS e 

associado ao vírus Epstein-Barr EBV. Esses subtipos influenciam prognóstico e 

terapia, mas ainda não há métodos diagnósticos de rotina convencionados. A 

presente tese desenvolveu comitês de sistemas preditivos para os subtipos 

moleculares por meio de inteligência artificial, concatenou modelos de visão 

computacional em imagens histopatológicas e modelos de aprendizado de máquina 

em dados genômicos, demonstrando resultados melhores que a literatura. 

Organizada em quatro capítulos, a tese utiliza dados do TCGA-STAD para 

treinamento e validação. No primeiro capítulo, comitês de redes neurais 

convolucionais CNN treinados em recortes de imagens de lâminas inteiras  

alcançaram precisão macro de 0,79-0,81 e precisão de 1,00 para EBV e MSI, 

superando abordagens anteriores em classes minoritárias. O segundo capítulo testa 

se CNN capturam padrões histopatológicos novos para CIN em dataset controlado 

por morfologia (apenas adenocarcinomas tubulares, OMS-2019), com 

NASNet-Mobile obtendo AUC-ROC médio >0,70, confirmando predição 

independente de tipologias conhecidas. O terceiro capítulo identifica painéis 

genéticos com Florestas Aleatórias (Random Forest) e avaliação de influência 

cooperativa dos genes para predição. Identifica genes não previamente associados 

ao câncer gástrico e organiza dois painéis com 18 e 9 genes. O quarto capítulo 

propõe comitê multimodal G.SUBTGENOVISION concatenando MobileNetV2 com 

Random Forest em painel de genes influentes. O modelo apresentou média macro 

AUC-ROC de 0.95, obtendo AUC-ROC CIN (0,91), EBV (0,98), GS (0,90), MSI 

(0,99) superior à literatura. A presente tese contribuiu ao demonstrar que modelos 

de aprendizado profundo revelam padrões histológicos subjacentes a genótipos e 

portanto denominados fenótipos profundos que podem ser concatenados com dados 

genômicos em comitês multimodais eficientes. Contribui ainda com a prática médica 

ao desenvolver em paralelo sistema de inovação e comitê multimodal demonstrando 

a superioridade dessa abordagem na predição de subtipos moleculares. 

Palavras-chaves: adenocarcinoma gástrico; classificação molecular; redes neurais 

convolucionais; ensemble multimodal; variações genéticas somáticas. 

 



 
ABSTRACT 

Gastric adenocarcinoma is a highly heterogeneous neoplasm classified into 

molecular subtypes by The Cancer Genome Atlas (TCGA): chromosomal instability 

(CIN), microsatellite instability (MSI), genomically stable (GS), and Epstein–Barr 

virus-associated (EBV). These subtypes influence prognosis and therapy, but no 

standardized diagnostic methods are yet available in clinical practice. This thesis 

developed predictive system ensembles for molecular subtypes through artificial 

intelligence, integrating computer vision models on histopathological images with 

machine learning models on genomic data, achieving results superior to those 

reported in the literature. Organized into four chapters, the thesis uses TCGA-STAD 

data for training and validation. In the first chapter, convolutional neural network 

(CNN) ensembles were trained on whole-slide image tiles, achieving macro accuracy 

between 0.79 and 0.81 and perfect accuracy (1.00) for EBV and MSI, surpassing 

previous approaches for minority classes. The second chapter tests whether CNNs 

capture novel histopathological patterns for CIN in a morphology-controlled dataset 

(only tubular adenocarcinomas, WHO-2019), with NASNet-Mobile obtaining a mean 

AUC-ROC > 0.70, confirming prediction independent of known histological types. The 

third chapter identifies genetic panels using Random Forests and evaluates 

cooperative gene influence for prediction. It identifies genes not previously 

associated with gastric cancer and organizes two panels with 18 and 9 genes. The 

fourth chapter proposes the multimodal ensemble G.SUBTGENOVISION, integrating 

MobileNetV2 with Random Forests trained on influential gene panels. The model 

achieved a mean macro AUC of 0.95, with AUC-ROC values for CIN (0.91), EBV 

(0.98), GS (0.90), and MSI (0.99), all higher than those reported in the literature. This 

thesis contributes by demonstrating that deep learning models can reveal histological 

patterns underlying genotypes—thus termed deep phenotypes—that can be 

integrated with genomic data in efficient multimodal ensembles. It also contributes to 

medical practice by developing, in parallel, an innovation system and multimodal 

ensemble demonstrating the superiority of this approach in predicting molecular 

subtypes. 

Keywords: gastric adenocarcinoma; molecular classification; convolutional neural 

networks; multimodal ensemble; somatic genetic variations. 
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1 INTRODUÇÃO

A Patologia é o tronco central da árvore da medicina moderna e estuda os 

processos de adoecimento. Ela revela as transformações estruturais e funcionais 

patogênicas, sendo o elo entre as ciências básicas e os variados ramos da 

medicina, tendo destaque particular no diagnóstico do câncer. A presente tese foca 

particularmente no câncer gástrico CG. A escolha do objeto de estudo se deu pela 

vivência do autor dirigindo o laboratório Ampliar Patologia, principalmente pela 

quantidade de casos desse tipo de câncer e pelo frequente envio de materiais 

resultantes de gastrectomias radicais ao laboratório. Tradicionalmente, a 

classificação dos tipos de câncer gástrico foi baseada em características 

morfológicas e histopatológicas, o que, embora útil, limita a capacidade de identificar 

de maneira precisa as nuances moleculares que podem impactar diretamente nas 

opções terapêuticas e no prognóstico dos pacientes. O diagnóstico do CG é 

realizado por médicos especialistas em anatomopatologia através de microscopia 

ótica em campo claro de lâminas histopatológicas de biópsias extraídas do paciente. 

Os médicos patologistas correlacionam as suas observações nas lâminas com 

dados clínicos. 

Com o avanço das técnicas de sequenciamento molecular e da 

bioinformática, surgiram novas abordagens para compreender melhor a biologia 

subjacente dos diferentes tipos de câncer gástrico. Entre elas, destaca-se o trabalho 

do projeto STAD (stomach adenocarcinoma) do The Cancer Genome Atlas (TCGA) 

que estabeleceu uma classificação molecular para o CG baseada em dados 

multiômicos, como genômicos e transcriptômicos.  

Essa classificação tem o potencial de revolucionar a prática clínica ao permitir 

tratamentos personalizados e direcionados, mas enfrenta um obstáculo importante: 

as tecnologias de sequenciamento multiômicas empregadas na classificação. Essas 

têm acesso restrito na maioria dos serviços de saúde e apresentam custos elevados. 

Esse cenário reforça a necessidade de desenvolver métodos alternativos que 

permitam predizer os perfis moleculares do CG de forma precisa e acessível. Um 

primeiro método é o estabelecimento de painéis de imuno-histoquímica como em 

(KIM et al., 2016). Essa abordagem, embora clássica para outros tipos de câncer, na 

classificação molecular do CG ainda está em desenvolvimento inicial. 
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Outro método investigado são as Redes Neurais Convolucionais 

(convolutional neuroneworks CNN´s) treinadas por supervisão molecular (WANG et 

al., 2022; FLINNER et al., 2022). Isso porque com o desenvolvimento recente da 

patologia digital, as lâminas passaram a poder serem digitalizadas inteiras. Esse fato 

oportunizou o uso de redes neurais para a identificação de padrões nas imagens 

que auxiliem no diagnóstico. As CNN 's vem demonstrando resultados com grande 

acurácia com treinamento supervisionado por rótulos atribuídos por médicos 

especialistas em uma quantidade crescente de problemas. Permitindo análises 

quantitativas onde antes só era possível análises qualitativas. Esse sucesso, no 

entanto, tem o viés de tomar os rótulos manualmente atribuídos como verdade de 

base. 

A ideia de supervisão molecular no treinamento de redes neurais foi proposta 

como solução disruptiva. Ou seja, do ponto de vista computacional é um treinamento 

supervisionado, porém, os rótulos são advindos diretamente de dados moleculares, 

portanto sem viés humano (MONJO et al., 2022). Essa abordagem, utilizada na 

presente tese, propicia o uso de algoritmos de aprendizado de máquina e redes 

neurais como ferramenta de investigação científica a partir de rótulos moleculares. 

Considerando a natureza interdisciplinar da presente tese, foram incluídos 

três apêndices inéditos destinados a uma breve introdução às três principais áreas 

correlacionadas na tese como apêndices A,B e C. Escritos no estilo de divulgação 

científica e sugere-se que os leitores iniciem a leitura por eles conforme suas 

eventuais necessidades de familiarização dependendo da sua área de origem. O 

apêndice A intitulado "Sistemas preditivos na medicina do século XXI" apresenta a 

necessidade e oportunidade da aplicação de sistemas preditivos computadorizados 

com o aumento exponencial de informação sobre os pacientes. O apêndice B 

intitulado "Breve Apresentação à Multiômica" apresenta os conceitos fundamentais 

dos dados multiômicos para os leitores que não são da área. O apêndice C intitulado 

"Breve Apresentação ao Aprendizado de Máquina e à Visão Computacional" 

apresenta os conceitos fundamentais dos métodos de aprendizado de máquina e 

redes neurais para os leitores que não são da área. Esses três apêndices foram 

escritos para promover o tipo de colaboração interdisciplinar que foi necessária para 

a realização do presente trabalho. São o resultado das explicações dadas pelo autor 

para o alinhamento de sua equipe. Importante notar que nesses textos a fluidez e 

riqueza de metáforas foram preferidas ao rigor acadêmico, assim, embora busquem 
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estar corretos em sua apresentação das ideias principais, foi dada preferência à 

didática da apresentação e da formação do imaginário do leitor. Pretende-se futura 

publicação desses apêndices como divulgação científica. 

A presente tese segue a apresentação por Artigos. Quatro artigos escritos 

para serem publicados como artigos científicos em revista indexada, com foco na 

Bioinformatics. O primeiro artigo intitulado "G.SUBTVISION – SUBTIPAGEM 

MOLECULAR DO CÂNCER GÁSTRICO COM MÉTODOS DE ENSEMBLE DE 

REDES NEURAIS CONVOLUCIONAIS (CNNS)" trata da classificação de imagens 

histopatológicas de câncer gástrico em subtipos moleculares por CNN. Desenvolve 

ensemble de múltiplas arquiteturas demonstrando resultados melhores que a 

literatura. 

O segundo artigo intitulado: "REDES NEURAIS CONVOLUCIONAIS CLASSIFICAM 

SUBTIPO MOLECULAR DO CÂNCER GÁSTRICO EM DATASET TUBULAR- 

CONTROLADO" avalia descoberta de atributos com a organização de novo conjunto 

de dados controlado para a tipo histopatológico. Esse artigo busca avaliar uma 

possível refutação à aplicação de CNN para a classificação de subtipos moleculares 

em imagens histológicas. O terceiro artigo intitulado: "G.SUBTFOREST – 

CLASSIFICADOR DE SUBTIPOS MOLECULARES DO CA GÁSTRICO COM TCGA 

VIA RANDOM FOREST E PAINÉIS OTIMIZADOS" utiliza algoritmo floresta aleatória 

(Random Forest) em variantes genéticas somáticas, identifica genes mais influentes 

e painéis diagnósticos. 

O quarto artigo intitulado: "G.SUBTFOREST – CLASSIFICADOR DE SUBTIPOS 

MOLECULARES DO CA GÁSTRICO COM TCGA VIA RANDOM FOREST E 

PAINÉIS OTIMIZADOS"desenvolve um sistema para a predição do subtipo 

molecular do CG por comitê (Ensemble) multimodal. 

É digno de nota que a tecnologia necessária para levar os resultados da 

presente tese à prática médica foi desenvolvida em paralelo à tese. Isso, pois o 

autor, durante o seu doutorado, escreveu e dirigiu o projeto "Sistema de detecção 

precoce do câncer"aprovado na chamada pública MCTI/FINEP/FNDCT - Tecnologias 

4.0. O sistema decorrente foi chamado Pathoscope e já possibilita o acesso aos 

modelos computacionais em imagens histopatológicas à prática médica com solução 

integrada de escaneamento de lâminas inteiras e visualizador em nuvem. A 

inovação é brevemente apresentada na sessão "Outras Produções durante o vínculo 

com o PPGGBM". 
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1.1 OBJETIVOS

1.1.1 Objetivo geral

Desenvolver modelos de predição diagnóstica para os subtipos moleculares do adeno-

carcinoma gástrico em imagens histopatológica e em dados genômicos.

1.1.2 Objetivos Específicos

• Desenvolver modelos ensemble com múltiplas arquiteturas de redes neurais convolu-

cionais CNN´s para predição dos subtipos moleculares do adenocarcinoma gástrico

em imagens histopatológicas. (Capítulo 1)

• Investigar se redes neurais convolucionais treinadas com imagens histopatológicas

mantêm desempenho preditivo significativo em subtipagem molecular quando apli-

cadas a um conjunto de dados histologicamente controlado, composto apenas por

adenocarcinomas gástricos tubulares, avaliando sua robustez frente à redução da

heterogeneidade morfológica. (Capítulo 2)

• Identificar genes influentes na classificação do subtipo molecular e construir painéis

com alto poder preditivo. (Capítulo 3)

• Desenvolver modelo preditivo por comitê multimodal integrando redes neurais com

imagens histopatológicas e florestas aleatórias com painel de genes. (Capítulo 4)
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2 REVISÃO DA LITERATURA

2.1 O CÂNCER GÁSTRICO

2.1.1 Incidência e mortalidade do Câncer Gástrico

A estimativa para o triênio de 2023 a 2025, a mais atualizada disponível, aponta que

ocorrerão 704 mil casos novos de câncer no Brasil, dos quais 483 mil excluem os casos

de câncer de pele não melanoma. Este último, apesar de ser o mais numeroso, com 220

mil casos novos (31,3% do total bruto), é frequentemente excluído das análises compa-

rativas por apresentar alto índice de cura, baixa letalidade e comportamento clínico menos

agressivo. Assim, as comparações entre os cânceres mais relevantes em termos de mor-

bimortalidade são realizadas com base nos 483 mil casos restantes Tabela 1. (Instituto

Nacional de Câncer José Alencar Gomes da Silva, 2022) Considerando este número como base,

os cânceres mais incidentes no Brasil no período estimado:

Tabela 1 – Cânceres mais incidentes no Brasil (Triênio 2023-2025), exceto pele não melanoma.

Tipo de Câncer Nº de Casos Novos (Estimativa) Incidência Relativa (%)
Mama 74 mil 15,3%

Próstata 72 mil 14,9%

Cólon e reto 46 mil 9,5%

Pulmão 32 mil 6,6%

Estômago 21 mil 4,3%
Base de cálculo: 483 mil casos novos (total exceto câncer de pele não melanoma). Fonte: (Instituto Nacional de

Câncer José Alencar Gomes da Silva, 2022).

Ao se considerar somente os tipos de câncer com maior impacto clínico e epidemiológico,

excluindo o câncer de pele não melanoma, os tipos mais frequentes entre os homens, no

triênio de 2023 a 2025, totalizam aproximadamente 136 mil casos novos Tabela 2. Os

principais tipos e suas proporções relativas são:

A taxa ajustada de incidência, segundo o INCA, é 17% maior em homens (185,61) do

que em mulheres (154,08).

Existe grande variação na incidência entre as diferentes Regiões do Brasil. As Regiões

Nordeste e Norte, possuem os menores IDH e apresentam uma distribuição diferente das

regiões de maior IDH. Em homens, o câncer de próstata é predominante em todas as

Regiões, mas, para as de maior IDH, os de cólon e reto ocupam a segunda ou a terceira
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Tabela 2 – Cânceres mais incidentes em homens no Brasil (Triênio 2023-2025), exceto pele não melanoma.

Tipo de Câncer (Ho-
mens)

Nº de Casos Novos (Estimativa) Incidência Relativa (%)

Próstata 72 mil 52,9%

Cólon e reto 22 mil 16,2%

Pulmão 18 mil 13,2%

Estômago 13 mil 9,6%

Cavidade oral 11 mil 8,1%
Base de cálculo: Aprox. 136 mil casos novos em homens (total exceto câncer de pele não melanoma).

posição, enquanto, para as regiões de menor IDH, o câncer de estômago é o segundo ou

o terceiro mais frequente. (Instituto Nacional de Câncer José Alencar Gomes da Silva, 2022)

Foram estimados 21.480 casos novos de câncer gástrico. Ocupando a quinta posição

entre os tipos de câncer de maior morbidade. Nos homens, o CG é o segundo mais fre-

quente na Região Norte (12,55 por 100 mil). Na Região Nordeste (12,17 por 100 mil),

ocupa o terceiro lugar.

Dentre mulheres, é o quinto mais frequente nas Regiões Sul (8,41 por 100 mil) e Norte

(6,53 por 100 mil). Nas Regiões Nordeste (7,46 por 100 mil) e Centro-oeste (6,68 por 100

mil), ocupa a sexta posição.

Segundo o Observatório Global do Câncer em 2020 o CG foi responsável por mais

de um milhão de novos casos de CA. As taxas são duas vezes mais alta entre homens

que entre mulheres. É o câncer de maior incidência dentre homens em vários países do

sul da Asia Central — como Irã, Afeganistão, Turcomenistão e Quirguistão. Globalmente

representa 5,6% de todos os CA, entre homens representa 7,1% de todos os CA (SUNG et

al., 2021)

No Brasil foram 13.850 óbitos por câncer de estômago em 2020, ocupando a quinta co-

locação entre os CA que mais matam. Dentre essas pessoas que faleceram, 5.078 foram

mulheres. Já entre homens foram 8.772 mortes. (Instituto Nacional de Câncer José Alencar Gomes

da Silva, 2022) No mundo todo em 2020 foram 769.000 mortes, ocupando a quarta coloca-

ção global entre os CA que mais mataram. É, portanto, um tipo de câncer de importante

impacto na população, justificando a atenção científica ao tema.
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2.1.2 Topografias e vulnerabilidades associadas

A primeira maneira de classificar os CA é conforme a localização do tumor primário, ou

em outras palavras, a topografia. Quando alguém se refere a um CA como "gástrico" esse

está fazendo menção ao endereço do tumor, ou seja, que surgiu no estômago. Ao longo

da tese diferentes abordagens serão utilizadas para aprofundar a compreensão dos CA,

já que tumores de uma mesma topografia muitas vezes são diferentes uns dos outros. Por

outro lado, tumores de topografias diferentes podem ser muito semelhantes do ponto de

vista histopatológico e molecular. Podendo responder ao mesmo tratamento.

Ou seja, não é necessariamente a localização do surgimento no corpo a maneira mais

eficaz de classificação. No entanto, ela é importante e muito útil do ponto de vista epidemi-

ológico e de geração de hipóteses, por existirem indubitavelmente associações estatistica-

mente significativas entre topografia e diversos outros fatores.

Do ponto de vista topográfico o CG pode acorrer em qualquer compartimento do estô-

mago (Cárdia, Corpo ou Antro). A cárdia é a região do estômago imediatamente após a

junção esôfago-gástrica. A oitava edição da UICC considera que deve ser considerado CG

o tumor cujo epicentro estiver a mais de 2 cm da junção esôfago-gástrica, mesmo que a

acometa(FUKAYAMA; RUGGE; WASHINGTON, 2019).

Sung e colaboradores (SUNG et al., 2021) reforçam a importância da classificação em

dois sub-sítios principais: cárdia e não-cárdia. Cada um desses é associado a diferen-

tes fatores de risco, epidemiologia e carcinogênese. A infecção pelo Helicobacter pylori

é considerada o principal fator causador do CG não-cárdia. Embora a prevalência da in-

fecção pela bactéria seja muito alta, acometendo até 50% da população, apenas 5% dos

infectados desenvolverão CA, fatores como alimentação, ingestão de álcool, tabagismo,

diferentes cepas e outros diversos fatores que possam ser responsáveis pelas grandes

diferenças regionais.

Com o avanço das condições sanitárias, a ampla disseminação da refrigeração de ali-

mentos e a diminuição da prevalência da infecção por Helicobacter pylori, observou-se uma

redução significativa na incidência dos adenocarcinomas gástricos não-cardia em diversos

países desenvolvidos. Essa tendência tem sido interpretada como um “triunfo não plane-

jado” da modernização e das mudanças alimentares, conforme argumentado por Howson

et al. (HOWSON; HIYAMA; WYNDER, 1986), que associaram a queda global do câncer gástrico

a melhorias ambientais e de higiene, mesmo na ausência de programas de prevenção es-
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pecíficos.

Martel e Parsonnet (MARTEL; PARSONNET, 2018) corroboram essa interpretação ao iden-

tificarem a infecção por H. pylori como o principal fator de risco para os tumores localizados

no corpo e antro gástrico (não-cardia), destacando o impacto da erradicação da bactéria

na redução desses subtipos tumorais.

Contudo, esse processo foi acompanhado por uma elevação proporcional — e, em

determinadas populações, também absoluta — dos adenocarcinomas da cárdia. Powell

e McConkey (POWELL; MCCONKEY, 1990) já haviam descrito esse fenômeno, observando

um aumento na incidência de tumores situados na junção gastroesofágica, enquanto os

tumores distais apresentavam tendência de queda.

Kamangar et al. (KAMANGAR; DAWSEY; BLASER, 2006) demonstraram que a associação

entre infecção pelo H. pylori e risco de câncer gástrico varia de maneira oposta entre os

subtipos cárdico e não-cárdico, reforçando a distinção etiológica entre essas localizações

anatômicas. Assim, as estratégias de prevenção centradas na detecção e erradicação da

infecção bacteriana parecem exercer maior impacto sobre os tumores distais, enquanto os

tumores proximais permanecem menos afetados por essas intervenções.

Dessa forma, o aumento relativo dos tumores da cárdia pode ser interpretado não ape-

nas como um reflexo estatístico da redução dos demais subtipos, mas também como ex-

pressão de uma transição epidemiológica, marcada por etiologias distintas e ainda não

completamente mitigadas pelas atuais políticas de prevenção.

Com o avanço das condições sanitárias, a ampla disseminação da refrigeração de ali-

mentos e a queda na prevalência da infecção por Helicobacter pylori, observou-se uma

redução significativa na incidência dos adenocarcinomas gástricos não-cardia em diversos

países desenvolvidos. Essa tendência vem sendo interpretada como um “triunfo não pla-

nejado” da modernização e das mudanças alimentares, conforme argumentam (HOWSON;

HIYAMA; WYNDER, 1986) que associaram a queda global do câncer gástrico às melhorias

ambientais e de higiene, mesmo na ausência de programas de prevenção específicos.

No entanto, essa mesma transição epidemiológica revelou um aumento proporcional

— e, em algumas populações, absoluto — dos adenocarcinomas da cárdia. (POWELL; MC-

CONKEY, 1990) Foi observada uma elevação na incidência dos tumores situados na junção

gastroesofágica, em contraste com a queda dos demais tumores gástricos.

Esse padrão, longe de ser paradoxal, encontra respaldo biológico. Kamangar e colabo-

radores demonstraram que a infecção por H.pylori está inversamente associada ao risco
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de adenocarcinoma da cárdia (KAMANGAR; DAWSEY; BLASER, 2006).

Portanto, as mudanças de comportamento populacional e as ações preventivas, em-

bora eficazes na prevenção do câncer gástrico distal, não alcançam o mesmo impacto nos

tumores da cárdia, cuja etiologia está estatisticamente associada a obesidade e refluxo

gastroesofágico, muito provavelmente por condições de inflamação. Assim, o aumento re-

lativo dos tumores da cárdia pode ser interpretado não apenas como uma consequência

estatística da queda dos demais subtipos, mas também como reflexo de uma transição

etiológica ainda pouco afetada por políticas de saúde pública (OLEFSON; MOSS, 2015).

2.1.3 Prevenção primária

A International Agency for Research on Cancer -IARC completou uma revisão de 40

anos de suas monografias a respeito de carcinogênicos (COGLIANO et al., 2011). Essas

monografias são centrais na orientação das ações de prevenção primárias. Foram levanta-

dos mais de 100 carcinógenos entre químicos e agentes biológicos, com diferentes níveis

de evidências. Embora esses sejam pesquisados para o perigo carcinogênico em uma

topografia, por exemplo no estômago, podem provocar câncer em múltiplas topografias,

havendo mais concordância com o mecanismo molecular que com a topografia de mani-

festação (BAAN; STEWART; STRAIF, 2019).

A IARC (PEARCE et al., 2015) estabeleceu critérios de evidência com base em estu-

dos epidemiológicos e de mecanismos moleculares organizando as substâncias químicas,

agentes biológicos, comportamentos e predisposições em Grupos (International Agency for

Research on Cancer, 2019).

Entre eles, destacam-se a infecção por Helicobacter pylori, a exposição ocupacional

na indústria de borracha, o tabagismo e a exposição à radiação X e gama. Esses fatores

possuem evidência suficiente para serem reconhecidos como causadores do câncer gás-

trico em humanos (FUKAYAMA; RUGGE; WASHINGTON, 2019).Outros que igualmente tem forte

evidência são o amianto (em todas as formas), a infecção pelo vírus Epstein-Barr (EBV),

compostos inorgânicos de chumbo, ingestão de nitratos ou nitritos sob condições que favo-

reçam a nitrosação endógena, consumo de vegetais em conserva (tradicionalmente asiáti-

cos), peixe salgado à moda chinesa e carnes processadas. Esses fatores devem ser con-

siderados em estratégias de prevenção primária, especialmente em populações de risco

(FUKAYAMA; RUGGE; WASHINGTON, 2019).
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Tabela 3 – Principais características dos carcinógenos descritas por Smith et al. (2016).

# Características-chave de carcinógenos

1 É eletrofílico ou pode ser metabolicamente ativado para formar um eletrofílico.

2 É genotóxico.

3 Altera a reparação do DNA ou causa instabilidade genômica.

4 Induz alterações epigenéticas.

5 Induz estresse oxidativo.

6 Induz inflamação crônica.

7 É imunossupressor.

8 Modula efeitos mediados por receptores.

9 Causa imortalização celular.

10 Altera a proliferação celular, morte celular ou suprimento de nutrientes.

Os principais fatores carcinogênicos conhecidos para o câncer gástrico são a infecção

por Helicobacter pylori, o consumo de alimentos ricos em nitritos e nitratos, o tabagismo, o

consumo excessivo de sal e álcool, e determinadas exposições ocupacionais e ambientais.

A infecção por H. pylori, especialmente por cepas CagA+, leva à ativação de vias inflama-

tórias e desregulação de genes supressores tumorais por hipermetilação, como CDH1,

p16 e MLH1. Tais alterações epigenéticas contribuem para a progressão da inflamação

crônica para metaplasia intestinal e, posteriormente, displasia e adenocarcinoma gástrico

(MITHANY et al., 2024; HE et al., 2025).

Dietas ricas em carnes processadas, alimentos defumados e vegetais em conserva ex-

põem a mucosa gástrica a compostos N-nitrosos, que são potentes agentes alquilantes.

Esses compostos geram adição de grupos etil e metil ao DNA, provocando mutações so-

máticas em genes como TP53, frequentemente mutado nos adenocarcinomas gástricos

(HE et al., 2025; SHAH; BENTREM, 2022). Além disso, níveis elevados de sal exacerbam o

dano à mucosa gástrica e favorecem a colonização por H. pylori, gerando um ciclo pró-

inflamatório que acelera a carcinogênese.

O tabagismo é outro fator de risco estabelecido, associado à liberação de nitrosaminas

e hidrocarbonetos policíclicos aromáticos, que atuam como genotóxicos diretos. O efeito

do fumo está associado ao aumento de mutações pontuais em genes supressores de tu-
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mor, além da hipermetilação de promotores gênicos envolvidos na reparação do DNA. Já o

álcool, particularmente em grandes quantidades, é metabolizado em acetaldeído, um com-

posto com potencial genotóxico que gera radicais livres e favorece instabilidade genômica

(SHAH; BENTREM, 2022; MAZUREK et al., 2024).

Além dos fatores de estilo de vida, exposições ocupacionais (como na indústria de

borracha, mineração e agricultura) e ambientais (como a poluição atmosférica por PM2.5)

também têm sido implicadas na carcinogênese gástrica. Essas exposições induzem es-

tresse oxidativo persistente, promovendo mutações somáticas e alterações no microambi-

ente tumoral, incluindo desregulação da imunidade local. Estudos recentes reforçam que

indivíduos com variantes genéticas em genes como GSTM1, XRCC1 e NAT2 podem apre-

sentar susceptibilidade aumentada frente a esses agentes ambientais, demonstrando a

interação entre predisposição genética e exposições externas (HE et al., 2025; MITHANY et

al., 2024).

2.1.4 Sinais, Sintomas e Diagnóstico

O câncer gástrico apresenta-se como uma neoplasia de curso insidioso, frequente-

mente assintomática nas fases iniciais. Quando o paciente apresenta sintomas, são ines-

pecíficos como dor epigástrica leve e dispepsia. Tal padrão clínico contribui para o diag-

nóstico tardio, sendo um dos principais fatores relacionados à elevada taxa de mortalidade

associada à doença. Apenas com o avanço da doença outros sinais mais evidentes como

perda de peso corporal e sinais de massa abdominal. O clínico responsável precisa estar

atento à epidemiologia do CG na região onde atua. Como demonstrado acima, a incidência

do CG varia conforme a região e ao IDH. Assim, a tomada de decisão de qual paciente com

sintomas inespecíficos enviar para investigação endoscópica não é amplamente padroni-

zada e existem diferentes padrões internacionais com espaço para ajustes individualizados

pelos médicos assistentes. O objetivo é claro e comum, identificar o CG antes de passar

a ser invasivo. A identificação precoce permite a cura endoscópica da doença e constitui,

portanto, a prevenção secundária.

O consenso é o entendimento geral que pacientes mais velhos devem ser encaminha-

dos para investigação endoscópica ao referirem quaisquer sintomas, já os mais jovens

devem ser encaminhados caso apresentem sintomas persistentes à terapia inicial ou se

apresentarem sinais de alerta, como perda de peso, ou fadiga. Também é consenso que
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sinais de alerta são tardios de não se deve esperar até seu aparecimento. A diferença entre

autores e associações de especialistas está no ponto de corte etário para a investigação

precoce. Por exemplo, as diretrizes brasileiras não estabelecem uma faixa etária fixa para

endoscopia em pacientes assintomáticos, recomendando sua indicação com base em sin-

tomas clínicos e fatores de risco individuais. Todos os pacientes com mais de 40 anos com

quaisquer sintomas. Também devem ser submetidos à investigação endoscópica todos os

pacientes até 40 anos que apresentem sintomas sem resposta aos tratamentos iniciais e

claro que tenham sinais de alerta (BARCHI et al., 2020). Em contraste, no Japão, onde há

alta incidência de câncer gástrico, a estratégia populacional de rastreamento populacional

endoscópico em indivíduos assintomáticos é implementada nacionalmente a partir dos 50

anos, com intervalos de 2 a 3 anos, como forma de promover diagnóstico precoce e res-

secção endoscópica curativa (HAMASHIMA, 2018). Nos Estados Unidos, a American Society

for Gastrointestinal Endoscopy recomenda que pacientes com dispepsia e idade superior

a 50 anos sejam encaminhados à investigação endoscópica (SHAUKAT et al., 2015).

2.2 VIGILÂNCIA ENDOSCÓPICA: PROTOCOLOS OLGA E OLGIM

Durante a realização da endoscopia digestiva alta, toda anormalidade da mucosa deve

ser biopsiada. A investigação histopatológica é mandatória nas áreas de metaplasia, atro-

fia, ulcerações, nódulos, erosões elevadas ou depressões, especialmente no antro e in-

cisura angular. Na ausência de sinais identificáveis à endoscopia de lesões precursoras

devem ser realizadas pelo menos duas biópsias, pelo menos uma no corpo e uma no an-

tro. Quando porém há sinais de gastrite atrófica ou metaplasia intestinal outros protocolos

devem ser aplicados.

As lesões precursoras são identificadas pelos médicos patologistas e estão diretamente

associados ao risco de câncer gástrico. As transformações teciduais acontecem devido

processo inflamatório crônico, podendo ser de dois tipos principais: Gastrite Atrófica e Me-

taplasia Intestinal. Na gastrite atrófica os principais achados são atrofia das glândulas na-

tivas da mucosa gástrica e fibrose da lâmina própria (em substituição à perda glandular).

Já na metaplasia intestinal é definida como a substituição do epitélio gástrico nativo por

epitélio de tipo intestinal (FUKAYAMA; RUGGE; WASHINGTON, 2019).

É importante avaliar o risco individual de cada paciente para indicar uma periodicidade

adequada de vigilância endoscópica para diagnosticar o câncer gástrico em estágio pre-
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coce. Para isso o Operative Link on Gastritis Assessment OLGA propôs uma classificação

com estágios que permite classificar os pacientes em conformidade com o grau de atrofia

de mucosa e distinguir os de maior risco dos de menor (RUGGE et al., 2008). O grau da gas-

trite é determinado histologicamente em cinco estágios (0 a IV) com risco progressivo para

o câncer gástrico. A classificação OLGA e sua variante OLGIM (Operative Link on Gastric

Intestinal Metaplasia Assessment) são sistemas de estadiamento com base em achados

de lesões precursoras que estratificam o risco de progressão para CG. A categoria OLGA

utiliza a topografia e extensão da gastrite atrófica, enquanto o OLGIM substitui pela me-

taplasia intestinal como marcador histopatológico (RUGGE et al., 2008; BENITES-GOÑI et al.,

2025).

Para uma avaliação diagnóstica adequada da gastrite atrófica e seus riscos associa-

dos, recomenda-se a adoção sistemática do Protocolo de Sydney Modificado de padroni-

zação de coleta de biopsias, com coleta de cinco fragmentos: dois do antro (menor e maior

curvatura), dois do corpo gástrico (menor e maior curvatura) e um da incisura angular

(PIMENTEL-NUNES et al., 2019).

O Protocolo de Sydney Modificado e o sistema OLGA são abordagens complementares

na avaliação histopatológica da gastrite atrófica. Enquanto o Protocolo de Sydney Modifi-

cado padroniza a amostragem endoscópica e a análise histológica da mucosa gástrica,

com a coleta de cinco fragmentos (antro, incisura angular e corpo), seu foco está na des-

crição qualitativa das alterações inflamatórias, presença de Helicobacter pylori, metaplasia

intestinal e grau de atrofia glandular (STOLTE; MEINING, 2001). Por outro lado, o sistema

OLGA utiliza os achados obtidos segundo o Protocolo de Sydney para estabelecer um es-

tadiamento topográfico da atrofia gástrica, classificando os pacientes em estágios de 0 a IV,

com base na extensão e severidade da atrofia nas diferentes regiões do estômago. Dessa

forma, o sistema OLGA fornece uma estratificação prognóstica do risco e é, portanto, es-

pecialmente útil na definição de estratégias de vigilância endoscópica individualizadas.

A decisão de aplicar esses protocolos em casos cuja atrofia ou metaplasia eram pre-

viamente desconhecidas deve ser tomada mediante alterações endoscópicas sugestivas

de atrofia da mucosa, tais como: visualização acentuada da vasculatura subepitelial, in-

dicando afilamento da mucosa; áreas com descoloração esbranquiçada ou acinzentada,

sugerindo metaplasia intestinal; redução das pregas gástricas, padrão mucoso irregular ou

com brilho anormal.

Com base no estadiamento histológico obtido por meio dos sistemas OLGA ou OL-
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GIM, a conduta clínica deve ser individualizada conforme o grau de risco para neoplasia

gástrica. Para os pacientes classificados nos estágios I e II, que representam baixo risco,

não há necessidade de vigilância endoscópica programada, devendo ser seguido o pro-

tocolo geral, em outras palavras, endoscopia no caso de quaisquer sintomas dispépticos

novos. Em contraste, os estágios III e IV estão associados a um risco significativamente

aumentado de desenvolvimento de adenocarcinoma gástrico e, por isso, recomendam-se

exames endoscópicos periódicos com biópsias em intervalos periódicos. A periodicidade

deve levar em conta o risco epidemiológico e pode variar em conformidade com a decisão

médica podendo variar a cada 1 ou 2 anos no caso de estágios III ou IV (PIMENTEL-NUNES

et al., 2019).

A erradicação do Helicobacter pylori é recomendada em todos os pacientes com alte-

rações precursoras. Essa medida pode interromper ou mesmo reverter a progressão de

lesões atróficas iniciais, embora a metaplasia intestinal avançada possa persistir. Portanto,

o reconhecimento sistemático e o seguimento individualizado das alterações histológicas

da mucosa gástrica são fundamentais na prevenção do adenocarcinoma gástrico intestinal.

(PIMENTEL-NUNES et al., 2019)

2.3 PROCEDIMENTOS PRÉ-ANALÍTICOS

As biópsias são encaminhadas ao laboratório de patologia devendo-se observar os pro-

cedimentos pré-analíticos. O laboratório deve seguir as melhores práticas internacionais ao

controlar as amostras e informações dos pacientes e preparar as lâminas histológicas da

biópsias encaminhadas. Os médicos patologistas então examinam ao microscópio óptico

de campo claro e correlacionam com as informações prestadas pelo médico assistente.

As biópsias devem ser imersas em solução pré-fixadora, formol tamponado a 10%, tão

logo quanto seja possível, minimizando o tempo de isquemia fria (COMPTON et al., 2019).

Isquemia fria é o intervalo de tempo entre a remoção da amostra do paciente (seja por bi-

ópsia ou cirurgia) e sua imersão efetiva no líquido pré-fixador, formalina tamponada a 10%.

Durante esse período, o tecido permanece fora do corpo e ainda não está quimicamente

estabilizado, tornando-se vulnerável à degradação enzimática e alterações moleculares

que podem comprometer a preservação morfológica e molecular. As diretrizes recomen-

dam que o tempo de isquemia fria seja igual ou inferior a 60 minutos, sendo ideal mantê-lo

o mais curto possível. É importante notar que o formol penetra a um ritmo de até 1mm/h
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podendo ser mais lento em tecidos gordurosos. Assim, caso o material a ser analisado for

espesso, mesmo se colocada imediatamente no formol ainda ultrapassaria o tempo de ne-

crose fria no sítio de interesse. Daí a recomendação é que as amostram tenham até 4 mm

de espessura (COMPTON et al., 2019). Do ponto de vista prático, nas biopsias as dimensões

das amostras já permitem a penetração, já em peças cirúrgicas maiores é importante que

o cirurgião realize incisões profundas até a região tumoral, a fim de assegurar a adequada

e rápida penetração do líquido pré-fixador.

Embora seja comum, inclusive na literatura científica, referir-se à solução de formal-

deído tamponado como “fixador”, essa denominação é tecnicamente imprecisa. O formal-

deído exerce uma ação pré-fixadora ao estabilizar parcialmente as estruturas teciduais

por meio de ligações cruzadas covalentes entre cadeias laterais das proteínas, mas a fi-

xação definitiva ocorre apenas após o processamento completo do tecido e sua inclusão

em bloco de parafina. Este processamento envolve etapas sequenciais de desidratação

em banhos de álcool, diafanização em solventes orgânicos (como xilol ou substitutos) e,

por fim, a impregnação em parafina aquecida. Somente após esse ciclo completo o tecido

encontra-se efetivamente fixado de maneira estável, apto para corte histológico e análises

subsequentes.

Após a imersão da amostra na solução de formalina tamponada a 10%, inicia-se a

etapa de pré-fixação. No entanto, a exposição prolongada do tecido à formalina pode ge-

rar artefatos morfológicos e comprometer análises moleculares, especialmente de ácidos

nucleicos e epítopos proteicos. O aldeído do formaldeído reage inicialmente com grupos

amino formando um intermediário instável chamado hidroximetileno, que, com o tempo,

pode reagir com outro grupo amino e formar uma ponte de metileno (-CH2-), estabilizando

a estrutura tridimensional das proteínas e da matriz extracelular.

Esse processo é o que preserva a arquitetura histológica das células e tecidos, impe-

dindo a autólise (degradação enzimática) e a putrefação bacteriana. No entanto, esse tipo

de reticulação dificulta a extração de DNA e proteínas intactas para análises moleculares

subsequentes, já que altera as conformações naturais dos ácidos nucleicos e epítopos

antigênicos.

Apesar da estrutura geral do DNA ser preservada com exposição controlada à for-

malina tamponada 10%, há demonstrada interferência com o aparecimento de mutações

artefatuais.

Segundo as diretrizes do CAP, recomenda-se que o tempo total de permanência do
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tecido em formalina situe-se idealmente entre 6 e 72 horas. Abaixo desse intervalo, há risco

de fixação incompleta; acima, há maior degradação molecular. Assim, tanto a minimização

da isquemia fria quanto o controle rigoroso do tempo de exposição ao formaldeído são

etapas críticas da fase pré-analítica, com impacto direto na qualidade diagnóstica e na

reprodutibilidade de análises histológicas, imunoistoquímicas e moleculares. (COMPTON et

al., 2019)

Importante comentar que os procedimentos citados acima se referem ao diagnóstico

histopatológico de rotina sendo, portanto, suficientes para histopatologia, imunoistoquímica

e hibridização in situ validadas. Para os estudos genômicos e transcriptômicos procedi-

mentos mais rigorosos são necessários. Isso porque a exposição prolongada ao formal-

deído induz assinaturas mutacionais artefatuais específicas no DNA, predominantemente

transições C>T, causadas por desaminação de citosina, e essas alterações podem ser in-

distinguíveis de mutações reais associadas ao tumor. Essas mutações artefatuais ocorrem

mesmo em condições padronizadas de fixação, sugerindo que o material biológico pré-

fixado em formalina e embebido em parafina deve ser utilizado com cautela em estudos

genômicos. Para minimizar erros, recomenda-se o uso de controles negativos, replicação

de amostras e algoritmos de correção de artefatos. Portanto, embora o tecido fixado em

formalina ainda seja uma fonte viável para análise molecular, especialmente em contextos

clínicos onde material fresco é escasso, deve-se ter plena consciência das limitações e cui-

dados técnicos exigidos para garantir a fidelidade dos achados genéticos (WILLIAMS et al.,

1999; GUO, 2022; SRINIVASAN; SEDMAK; JEWELL, 2002). Por outro lado, para a extração de

RNA e, portanto, para a realização de estudos transcriptômicos mencionados na revisão

de literatura e na discussão geral, são necessários procedimentos bem mais rigorosos e

específicos. A preservação adequada do RNA exige a minimização extrema do tempo de

isquemia fria, preferencialmente, o congelamento imediato em nitrogênio líquido.

Cabe destacar ainda que as amostras que participam do banco de dados do TCGA,

cujos dados foram utilizados na presente tese, foram obtidas a partir de tecidos frescos

congelados pareados a tecidos normais do paciente igualmente obtidos frescos congela-

dos(Cancer Genome Atlas Research Network, 2014).
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2.4 CLASSIFICAÇÃO HISTOPATOLÓGICA

Do ponto de vista histopatológico lesões proliferativas epiteliais do estômago podem

ser pólipos não-neplásicos, lesões neoplásicas não-invasivas (displasia e adenoma) e ade-

nocarcinomas (FUKAYAMA; RUGGE; WASHINGTON, 2019). Os adenocarcinomas são mais de

95% dos CG (Cancer Genome Atlas Research Network, 2014), sendo propriamente o tipo que ad-

vêm do epitélio do estômago. Por isso o adenocarcinoma do estômago é frequentemente

referido apenas com câncer de estômago embora outros tipos de neoplasias invasivas

também ocorram mais raramente no estômago, como: linfomas, carcinomas sarcomatói-

des, carcinomas neuroendócrinos, dentre outros (FUKAYAMA; RUGGE; WASHINGTON, 2019).

Sobre as lesões neoplásicas não-invasiva é importante destacar que a Displasia Gás-

trica é definida como uma lesão precursora do CG com três mudanças histológicas que

podem o não estarem todas presentes: Atipia epitelial, diferenciação anormal ou arquite-

tura mucosa desorganizada (FUKAYAMA; RUGGE; WASHINGTON, 2019). Podendo ser catego-

rizadas como de baixo grau ou alto grau. Na displasia de baixo grau as células neoplási-

cas apresentam dentre outras características: aberrações arquiteturais, núcleos hipercro-

máticos alongados e a atividade mitótica é baixa a moderada. Na displasia de alto grau

apresentam mudanças arquiteturais com conformações cuboidais ou colunares, perda da

polaridade do núcleo, com aumento da razão do tamanho do núcleo em relação ao do

citoplasma e mitoses são frequentemente identificadas (FUKAYAMA; RUGGE; WASHINGTON,

2019).

A distinção entre a displasia de alto grau e o carcinoma intraepitelial (in situ) é concei-

tual, isso ocorre pois há diferenças relevantes entre países quanto aos critérios diagnós-

ticos de adenocarcinoma gástrico. Por um lado a maioria dos patologistas na América do

Norte, Europa e Coreia exige a demonstração de invasão estromal — ou seja, penetração

na membrana basal — para diagnosticar carcinoma. Por outro os patologistas japoneses

frequentemente classificam como carcinoma não invasivo lesões com atipia citológica e

arquitetural de alto grau, mesmo na ausência de invasão da membrana basal. Em resumo,

tais lesões são chamadas de carcinoma não invasivo no Japão, mas seriam classificadas

como displasia de alto grau em outras regiões (FUKAYAMA; RUGGE; WASHINGTON, 2019).

O adenocarcinoma origina-se do epitélio glandular ( por isso o prefixo adeno) da mu-

cosa do estômago, apresentando grande diversidade de apresentações histopatológicas.

A classificação histopatológica do câncer gástrico tem evoluído ao longo das décadas,
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refletindo avanços no entendimento da biologia tumoral, da epidemiologia e das carac-

terísticas moleculares. Iniciando com a classificação proposta por Lauren em 1965, que

estabeleceu uma divisão fundamental baseada em padrões morfológicos, o sistema pro-

grediu para abordagens mais detalhadas e integradas, culminando na edição de 2019 da

Organização Mundial da Saúde OMS. Essa evolução não apenas refinou a categorização

dos tumores, mas também incorporou elementos prognósticos e terapêuticos, auxiliando

na personalização do tratamento (LAURÉN, 1965).

2.4.1 Classificação de Lauren (1965)

A classificação de Lauren representa um marco inicial na histopatologia do adenocar-

cinoma gástrico. Proposta pelo patologista finlandês Pekka Lauren, divide os tumores em

dois tipos principais com base em características morfológicas e epidemiológicas:

• Tipo Intestinal: Caracterizado por estruturas glandulares bem diferenciadas, seme-

lhantes ao epitélio intestinal. Associado a fatores ambientais, como infecção por He-

licobacter pylori, e prevalente em regiões de alta incidência de câncer gástrico. Apre-

senta melhor prognóstico em comparação ao tipo difuso.

• Tipo Difuso: Composto por células pouco coesas, frequentemente com morfologia

em anel de sinete, infiltrando o estroma de forma dispersa. Relacionado a fatores

genéticos e hereditários, com pior prognóstico devido à maior agressividade e ten-

dência a metástases precoces.

• Tipo Misto ou Indeterminado: Casos que exibem características de ambos os tipos

ou não se enquadram claramente em um deles.

Essa classificação simples, mas robusta, influenciou estudos subsequentes e continua

sendo utilizada por sua correlação com padrões clínicos e moleculares (LAURÉN, 1965).

2.4.2 Classificação da OMS de 2019

A edição de 2019 da Classificação de Tumores do Sistema Digestivo da OMS (5ª Edi-

ção) é a mais recente, ela refina as categorias e inclui subtipos emergentes:
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Tabela 4 – Principais Subtipos de Adenocarcinoma Gástrico na Classificação OMS 2019.

Subtipo Características Principais

Tubular Estruturas glandulares tubulares.

Papilífero Projeções papilares com eixo fibrovascular.

Mucinoso Acúmulo extracelular de mucina (>50% do tu-
mor).

Pouco Coeso (incluindo em anel de sinete) Células dispersas, pouca adesão, alinhado
ao tipo difuso de Lauren.

Misto Combinação de componentes tubulares e
pouco coesos.

Hepatóide Morfologia semelhante a hepatócitos, com
produção de alfa-fetoproteína.

Com Estroma Linfóide Infiltração linfocítica densa, frequentemente
associado a EBV ou MSI.

Micropapilar Padrões micropapilares invasivos, prognós-
tico pior.

Fonte: Adaptado de (NAGTEGAAL et al., 2020).

Essa edição enfatiza a correlação com perfis moleculares, como tumores EBV-positivos,

MSI-altos, genomicamente estáveis e com instabilidade cromossômica. Além disso, atua-

liza a classificação de lesões precursoras, como displasia de baixo e alto grau, e integra

códigos ICD-O atualizados para melhor padronização global (FUKAYAMA; RUGGE; WASHING-

TON, 2019).

A classificação histopatológica da OMS (WHO) de 2019 (FUKAYAMA; RUGGE; WASHING-

TON, 2019) para o câncer gástrico representa um avanço significativo na estratificação

morfológica desta neoplasia, sendo fundamental para o diagnóstico preciso e orientação

do tratamento adequado. Enquanto a classificação de Lauren permanece útil por sua sim-

plicidade, a OMS 2019 oferece uma visão mais abrangente, facilitando a integração com

terapias direcionadas baseadas em biomarcadores moleculares.

Desenvolvimento da compreensão dos fenótipos histopatológicos
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Tabela 5 – Evolução das Classificações histopatológicas.

Laurén (1965) Nakamura et al.

(1968)

JGCA (2017) OMS (2019)

Intestinal Diferenciado Papilar: pap Papilífero

- - Tubular 1, bem diferenci-

ado: tub1

Tubular, bem diferenci-

ado

Indeterminado - Tubular 2, moderada-

mente diferenciado:

tub2

Tubular, moderadamente

diferenciado

- Indiferenciado Pouco diferenciado 1

(tipo sólido): por1

Tubular (sólido), pouco

diferenciado

difuso em anel de si-

nete

- Pouco coeso, fenótipo de

célula em anel de sinete

- - Pouco diferenciado 2

(tipo não sólido): por2

Pouco coeso, outros tipos

de células

Intestinal

difuso

indeterminado

Diferenciado

indiferenciado

Mucinoso Mucinoso

Misto - Descrição de acordo com

a proporção (ex.: por2 >

sig > tub2)

Misto

Não definido Não definido Tipo especial: Outros subtipos histológi-

cos:

- - Carcinoma adenoesca-

moso

Carcinoma adenoesca-

moso

- - Carcinoma de células es-

camosas

Carcinoma de células es-

camosas

- - Carcinoma indiferenci-

ado

Carcinoma indiferenci-

ado
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Laurén (1965) Nakamura et al.

(1968)

JGCA (2017) OMS (2019)

- - Carcinoma com estroma

linfoide

Carcinoma com estroma

linfoide

- - Adenocarcinoma hepa-

tóide

Adenocarcinoma hepa-

tóide

- - Adenocarcinoma com

diferenciação enteroblás-

tica

Adenocarcinoma com

diferenciação enteroblás-

tica

- - Adenocarcinoma do tipo

glândula fúndica

Adenocarcinoma do tipo

glândula fúndica

- - - Adenocarcinoma micro-

papilar

Fonte: Adaptado de (FUKAYAMA; RUGGE; WASHINGTON, 2019).

• Adenocarcinoma tubular: caracterizado por estruturas glandulares bem formadas,

frequentemente associadas a um estroma desmoplásico. A diferenciação tubular

pode variar de bem a pobremente diferenciada, influenciando o prognóstico.

• Adenocarcinoma papilar: apresenta projeções epiteliais digitiformes com eixo fibro-

vascular. Este subtipo é frequentemente associado a um melhor prognóstico, espe-

cialmente quando bem diferenciado.

• Adenocarcinoma mucinoso: definido pela presença de mais de 50% de mucina ex-

tracelular. A presença de células em anel de sinete flutuando na mucina é comum,

mas não deve exceder 50% das células tumorais.

• Carcinoma pouco coeso: esta categoria inclui o carcinoma de células em anel de

sinete e outras variantes com baixa coesão celular. Caracteriza-se por células tumo-

rais isoladas ou em pequenos grupos, frequentemente com morfologia discohesiva.

Este subtipo está frequentemente associado a mutações no gene CDH1 e tem impli-

cações prognósticas significativas.
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• Carcinoma misto: apresenta uma mistura de pelo menos dois dos subtipos acima

mencionados, cada um compreendendo pelo menos 10% do tumor.

Além destas categorias principais, a classificação da OMS 2019 reconhece variantes

mais raras e subtipos específicos, incluindo:

• Adenocarcinoma hepatoide: morfologicamente semelhante ao carcinoma hepatoce-

lular, frequentemente associado à produção de alfa-fetoproteína.

• Carcinoma com estroma linfoide: caracterizado por um estroma com proeminente

infiltrado linfocítico, frequentemente associado à infecção pelo vírus Epstein-Barr

(EBV).

É crucial notar que esta classificação histopatológica tem associação heterogênea com os

subtipos moleculares. Por exemplo:

2.4.3 Estadiamento TNM de Carcinomas do Estômago

O estadiamento TNM é um sistema padronizado utilizado para classificar a extensão

anatômica dos tumores malignos, permitindo uma avaliação precisa do prognóstico e ori-

entação terapêutica. Em outras palavras, trata-se de uma ferramenta essencial na oncolo-

gia que categoriza o tumor com base em seu tamanho e invasão local (T), envolvimento

de linfonodos regionais (N) e presença de metástases distantes (M), facilitando a com-

paração de casos clínicos e a escolha de tratamentos adequados, como cirurgia, quimi-

oterapia ou radioterapia, de forma prática no dia a dia médico (SOBIN; GOSPODAROWICZ;

WITTEKIND, 2017a). Esse sistema aplica-se exclusivamente a carcinomas confirmados his-

tologicamente, com considerações específicas para tumores na junção esofagogástrica.

Carcinomas cujo epicentro esteja a até 2 cm da junção e sem extensão esofágica são

estadiados como gástricos. Em termos práticos, isso significa que o estadiamento ajuda

a determinar se o tumor é operável ou requer abordagens neoadjuvantes, influenciando

diretamente a sobrevida do paciente (SOBIN; GOSPODAROWICZ; WITTEKIND, 2017b).

As categorias TNM fornecem uma descrição detalhada da progressão tumoral. Em

outras palavras, elas dividem o câncer em componentes mensuráveis, permitindo uma

avaliação objetiva que guia o planejamento terapêutico e o acompanhamento clínico.



40

A categoria T avalia a extensão da invasão do tumor primário nas camadas da parede

gástrica. Em outras palavras, ela indica quão profundamente o tumor penetrou no estô-

mago, o que é crucial para decidir sobre ressecções endoscópicas em estágios iniciais ou

cirurgias mais extensas em casos avançados.

A categoria N quantifica o envolvimento de linfonodos regionais por metástases. Em

outras palavras, ela reflete o quanto o câncer se espalhou para gânglios linfáticos próxi-

mos, um fator chave para prever o risco de recorrência e indicar linfadenectomia durante

a cirurgia. A categoria M indica a presença de metástases em sítios distantes. Em outras

palavras, ela identifica se o câncer já se disseminou para órgãos remotos, como fígado ou

pulmões, o que geralmente altera o foco do tratamento de curativo para paliativo.

Os estágios combinam as categorias TNM para fornecer uma classificação global da

doença. Em outras palavras, eles sintetizam a gravidade do câncer em níveis progressivos,

auxiliando na comunicação entre equipes multidisciplinares e na estimativa de sobrevida,

como a taxa de 5 anos que varia de quase 100% em estágio 0 para menos de 5% em

estágio IV.

O estadiamento TNM apresenta uma abordagem dinâmica, com versões clínicas (cTNM),

baseadas em exames pré-tratamento como endoscopias e imagens, e versões patológicas

(pTNM), definidas após a ressecção cirúrgica do tumor. Em outras palavras, o cTNM atua

como um guia inicial, ajudando médicos a traçar o primeiro plano de tratamento, enquanto

o pTNM oferece uma confirmação mais precisa do estágio da doença, permitindo ajustes

em terapias adjuvantes para maximizar os resultados clínicos (FUKAYAMA; RUGGE; WASHING-

TON, 2019). Compreender o TNM é essencial, pois ele fornece uma estrutura para prever a

progressão tumoral e personalizar intervenções. Esse sistema traz uma dimensão humana

ao oferecer esperança: o diagnóstico precoce, especialmente nos estágios iniciais (como

0 ou IA), está diretamente associado a taxas de sobrevida significativamente mais altas,

que podem ultrapassar 90% em cinco anos, em contraste com menos de 5% nos estágios

IV (AMIN et al., 2017).
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2.5 APRESENTAÇÃO À MULTIÔMICA

2.5.1 Conceitos fundamentais e genômica

O termo “multiômica” se origina da combinação do prefixo “multi-”, derivado do latim

multus (muitos), com o sufixo “-ômica”, uma adaptação de “ômica” (do grego ome, que

significa “todo” ou “conjunto”). Esse sufixo é comumente usado para descrever campos de

estudo que se dedicam a explorar de forma abrangente os componentes integrais de siste-

mas biológicos, como genes, proteínas, e metabólitos. Em um contexto mais amplo, multiô-

mica refere-se à análise integrada de várias dessas camadas biológicas (genômica, trans-

criptômica, proteômica, metabolômica e epigenômica) em um organismo, visando uma

visão mais holística de seus processos moleculares.

O conceito começou a tomar forma nos anos 1990, quando o Projeto Genoma Humano

(PGH) avançava rapidamente e revelava, de maneira inédita, a sequência completa do

DNA humano. Esse projeto foi o marco inicial de uma era em que o prefixo “-ômica” passou

a ser usado com frequência, representando diferentes áreas que analisam coletivamente

os componentes biológicos. Embora o PGH fosse inicialmente focado em genômica, o

vasto volume de dados e a necessidade de compreensão integrada dos sistemas levaram

ao surgimento e popularização da multiômica.

Cronologicamente, a adoção do termo “multiômica” pode ser considerada uma con-

sequência natural do PGH, que impulsionou novas tecnologias e plataformas analíticas

capazes de explorar não apenas o DNA, mas outros componentes, como o RNA e proteí-

nas, de maneira integrada. Esse termo começou a ser amplamente utilizado após o PGH,

quando surgiu a necessidade de uma abordagem mais complexa para a interpretação dos

dados biológicos e suas interações. Esse movimento foi fundamental para o avanço de

áreas como a biologia de sistemas, que utiliza a multiômica para mapear e compreender a

complexidade das redes biológicas.

Além de “multiômica”, outros termos menos conhecidos fora da comunidade de pes-

quisadores emergiram. Termos como “epigenômica”, que se refere ao estudo das modi-

ficações epigenéticas (alterações químicas que regulam a expressão gênica sem alterar

a sequência de DNA), e “interatômica”, que analisa as interações entre proteínas, sur-

giram na esteira desse avanço, representando a especialização e sofisticação crescente

das abordagens ômicas (DURAN, 2023). A epigenômica, por exemplo, “tem permitido o
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entendimento dos processos que controlam o envelhecimento e a diferenciação celular,

fundamentais para doenças degenerativas” (DURAN, 2023)

Recentemente, os avanços nas tecnologias multiômicas têm promovido grandes des-

cobertas no estudo do envelhecimento celular. A integração de dados transcriptômicos e

metabolômicos tem permitido identificar assinaturas moleculares associadas ao envelhe-

cimento celular e à senescência. Esses estudos mostram que “a instabilidade genômica e

a acumulação de mutações, anteriormente vistas apenas como consequência do envelhe-

cimento, podem, na verdade, desempenhar papéis ativos nos mecanismos que promovem

a senescência celular” (LOPES, 2024). Essa integração de dados, que também considera

informações epigenômicas, tem sido crucial para identificar padrões moleculares comple-

xos que delineiam o envelhecimento celular, permitindo uma visão mais detalhada das

alterações bioquímicas que ocorrem ao longo do tempo.

No contexto da patogênese do câncer, a multiômica tem se mostrado igualmente re-

volucionária, especialmente no que diz respeito à compreensão de como diferentes tipos

de câncer se desenvolvem e progridem. A aplicação da multiômica possibilita identificar as

vias e mutações específicas associadas a tipos específicos de câncer, tendo impacto direto

na personalização dos tratamentos. Como observam (PEZZOTTI, 2022), “a multiômica per-

mite uma caracterização mais precisa das células tumorais e facilita o desenvolvimento de

estratégias terapêuticas que atacam vulnerabilidades específicas de cada tipo de tumor”

(PEZZOTTI, 2022). Esses avanços são fundamentais para o desenvolvimento da medicina

de precisão, que visa individualizar o tratamento oncológico com base nas características

biológicas e moleculares de cada paciente.

Em suma, a multiômica representa uma abordagem integrativa e essencial para a biolo-

gia moderna, viabilizando a análise conjunta de diferentes camadas de dados moleculares

e promovendo uma compreensão mais profunda e sistêmica de processos complexos,

como o envelhecimento celular e a patogênese do câncer. Esses estudos, que evoluem

rapidamente com o apoio de novas tecnologias e métodos computacionais, tornam-se cen-

trais para a medicina personalizada e para estratégias terapêuticas cada vez mais eficazes

e direcionadas.
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2.5.2 Compreendendo o genoma como código digital

Podemos pensar no genoma como um vasto “código digital” constituído por quatro le-

tras – as bases nitrogenadas, timina (T) citosina (C), guanina (G) e adenina (A) que, ao

longo de bilhões de pares, codificam todas as informações necessárias para o funciona-

mento celular e o desenvolvimento de um organismo. Essa sequência de bases é equiva-

lente a linguagem digital binária, mas em vez de zeros e uns, opera em quatro nucleotídeos

que se combinam para formar genes, as “instruções” básicas para as funções celulares.

Esse código é composto de DNA e é o ponto de partida da biologia molecular, seu conjunto

é o genoma. Nas células humanas há dois genomas, o nuclear e o mitocondrial, organela

produtora de energia aeróbica que tem seu próprio DNA independente do nuclear. Quando

o termo genoma humano é referido geralmente se refere ao genoma nuclear, caso se faça

referência ao genoma mitocondrial se fará menção específica.

Em cada gene humano (como em todos os eucariontes) há regiões chamadas exons

e outras chamdas introns. Os exons são por definição participarão da codificação das

proteínas, os introns não. Os introns tem muitas vezes funções regulatórias ainda pouco

compreendidas durante o splicing altenartivo, pois um mesmo gene pode levar à sintese

de duas proteínas diferentes dependendo de quais exons são ligados ou alternativamente

cortados. Portanto o conjuto total de todos o material genético que orientará a síntese

proteica é chamado de exoma. O exoma tem grande importância prática por represen-

tar grande quantidade de informação sobre um individuo a um custo de sequenciamento

muito inferior que o genoma e ainda assim representando o código genético de todas as

proteínas de um indivíduo.

A primeira camada de ativação desse código ocorre através da transcrição, um pro-

cesso onde um gene específico no DNA é copiado em uma outras versões da mesma

linguaguem quaternária de nucleotídeos, em diferentes tipos de RNA. O RNA mensageiro

(mRNA), uma cadeia simples de nucleotídeos, leva uma cópia do código para fora do nú-

cleo da célula, direcionando o maquinário celular para produzir proteínas. Esse conjunto

completo dos vários tipos de RNAs expressos em uma célula ou tecido específico é conhe-

cido o transcriptoma. O transcriptoma, portanto, representa a primeira camada dinâmica

de expressão do código genético, refletindo quais genes estão sendo transcritos em deter-

minado momento e ambiente celular.

A etapa seguinte é a tradução, onde o código do RNA é novamente traduzido para
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uma nova linguagem, essa com 20 aminoácidos. Por isso se chama tradução, pois há a

passagem de uma lingua para outra. Cada conjunto de três bases nitrogenadas no RNA

(um códon) corresponde a um aminoácido específico. Essa tradução resulta na produção

de proteínas, que são sequências de aminoácidos que desempenham funções estruturais,

regulatórias e catalíticas essenciais nas células. A sequência final de proteínas expressas

em uma célula ou tecido é chamada de proteoma e representa uma camada funcional do

código, onde os processos celulares de fato ocorrem e são controlados.

Além dessas camadas genômica e transcriptômica, a epigenômica traz uma camada

de regulação adicional ao código. Ela não altera a sequência de DNA em si, mas envolve

mecanismos de modificação química, como a metilação do DNA e a modificação de his-

tonas (proteínas ao redor das quais o DNA se enrola). Esses mecanismos regulam quais

genes serão transcritos, permitindo ou impedindo o acesso do maquinário de transcrição

aos genes. A epigenômica, assim, representa o conjunto das “instruções de uso” que mo-

dulam a ativação e a inibição de genes, adaptando a expressão genética ao ambiente e às

necessidades específicas da célula em diferentes condições.

Retornando à discussão sobre a multiômica e seu impacto na compreensão da pa-

togênese do câncer, esses avanços permitiram uma visão extraordinariamente detalhada

dos mecanismos moleculares subjacentes à transformação celular e à evolução tumoral.

A integração multiômica – combinando dados genômicos, transcriptômicos, proteômicos,

epigenômicos e metabolômicos — permite que cientistas acompanhem, em alta resolução,

como células normais podem se transformar em células malignas. Isso ocorre, em parte,

devido à instabilidade genômica, que gera um acúmulo de mutações e rearranjos cromos-

sômicos, alterando o “código” genético e levando à ativação de oncogenes e à inativação

de genes supressores de tumor (PEZZOTTI, 2022)

O avanço na tecnologia de multiômica possibilitou identificar assinaturas moleculares

específicas de diferentes tipos de câncer, facilitando o desenvolvimento de abordagens

terapêuticas personalizadas. Como destacam (LOPES, 2024), “a multiômica permitiu ma-

pear padrões moleculares e metabólicos que são característicos de subtipos tumorais,

promovendo um direcionamento mais preciso das terapias” (LOPES, 2024). Por exemplo,

no adenocarcinoma gástrico, a análise multiômica revelou diferentes perfis epigenômicos

que modulam a expressão gênica de modo a favorecer a proliferação descontrolada e a

resistência ao tratamento, possibilitando a criação de terapias que atacam especificamente

essas alterações.
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Além disso, a integração de dados multiômicos revelou o papel central da instabilidade

epigenômica e da remodelação do transcriptoma na evolução de células cancerígenas,

tornando-se uma área essencial na pesquisa oncológica atual. Estudos recentes demons-

tram que alterações epigenéticas podem ocorrer precocemente em células pré-malignas,

direcionando-as para estados que favorecem a adaptação clonal e a heterogeneidade ce-

lular — uma característica fundamental do câncer avançado (DURAN, 2023). Isso implica

que terapias que visam reverter ou modular o epigenoma podem ser promissoras, inter-

rompendo o ciclo de progressão tumoral antes que ele atinja estágios mais agressivos.

Portanto, a multiômica, com sua capacidade de integrar diferentes camadas de dados

moleculares, está revolucionando a biologia molecular e a medicina oncológica, promo-

vendo uma compreensão mais profunda e detalhada dos processos que governam a pato-

gênese do câncer. Ao estudar o genoma como um código digital e suas traduções em ní-

veis de expressão gênica, síntese proteica e regulação epigenética, a pesquisa multiômica

nos fornece ferramentas fundamentais para mapear e interferir nos processos celulares

que levam à transformação maligna, promovendo novas possibilidades para a medicina de

precisão.

2.5.3 Cancer e perda da estabilidade do código

A distinção entre SNPs (Single Nucleotide Polymorphisms) e CNVs (Copy Number Va-

riations) é central para entender como o genoma se comporta e como as variações podem

afetar diretamente a estabilidade do material genético ao longo do tempo. Assim como em

um sistema de programação, onde uma linha de código corrompida pode levar a falhas

no software, pequenas alterações no DNA — seja por SNPs ou CNVs — podem afetar o

funcionamento normal das células e, cumulativamente, contribuir para o envelhecimento

celular e a progressão de doenças.

Os SNPs são variações em nucleotídeos individuais ao longo do genoma. Eles repre-

sentam uma substituição pontual de uma “letra” do código genético e são a forma mais

comum de variação genética entre os indivíduos. Em termos de programação, um SNP é

como a troca de um único caractere em uma linha de código. Se bem posicionado, esse

erro pode ser insignificante, alterando apenas um detalhe menor da função celular. Porém,

caso ocorra em uma região crucial — como num trecho que codifica uma proteína ou regula

um gene — pode comprometer a função, predispondo a célula a falhas e desregulações.
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Já as CNVs (Variações no Número de Cópias) são variações mais amplas que en-

volvem a duplicação ou a exclusão de grandes segmentos do DNA. Em analogia com a

programação, uma CNV seria equivalente a copiar e colar um bloco de código ou apagar

uma seção inteira de uma função. Esse tipo de alteração afeta de forma mais profunda o

genoma, pois pode resultar no ganho ou na perda de várias “linhas” de código genético,

alterando a dosagem de genes e gerando um desequilíbrio funcional na célula. Quando

essas variações incluem genes inteiros ou conjuntos de genes, o impacto é significativo:

genes duplicados podem levar à produção excessiva de proteínas, enquanto a ausência

de genes pode comprometer funções essenciais.

A instabilidade cromossômica se manifesta a partir de uma sucessão de alterações

como SNPs e CNVs, contribuindo para a “corrupção” progressiva do código genético de

uma célula. À medida que as células replicam seu DNA, a presença dessas variações pode

gerar erros de leitura ou até impedir que partes do código sejam executadas corretamente,

aumentando a probabilidade de defeitos. Com o passar do tempo, especialmente em or-

ganismos que envelhecem, esses erros acumulam-se, promovendo a desregulação dos

sistemas de controle celular. Esse processo de “envelhecimento molecular” é, assim, um

reflexo de pequenas variações e grandes falhas estruturais que comprometem o funciona-

mento correto do genoma e levam à senescência celular — um estado em que as células

param de se dividir, mas permanecem metabolicamente ativas, muitas vezes contribuindo

para inflamações e outros distúrbios celulares associados ao envelhecimento.

No contexto do câncer, a instabilidade cromossômica amplificada pela acumulação de

SNPs e CNVs gera uma diversidade clonal dentro dos tumores, fornecendo às células ma-

lignas uma “biblioteca” de variações que podem ser exploradas para resistir a tratamentos

e prosperar em diferentes ambientes do organismo. Analogamente, seria como um código

de software com trechos duplicados e corrompidos que, em vez de travar o sistema, o tor-

nam imprevisível e resistente a tentativas de correção. Essa imprevisibilidade, alimentada

pela instabilidade cromossômica, faz com que tumores se tornem geneticamente diversos

e mais agressivos.

Estudos recentes têm o entendimento sobre como essas variações, particularmente as

CNVs, contribuem para o envelhecimento celular e a patogênese do câncer. Como obser-

vado por (DURAN, 2023), “o acúmulo de CNVs ao longo do tempo desempenha um papel

chave na instabilidade genômica associada ao envelhecimento celular e à transformação

maligna” (DURAN, 2023). Esse processo de acúmulo, uma vez iniciado, se torna difícil de
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reverter, pois as células perdem progressivamente a capacidade de corrigir suas próprias

falhas, levando a um ciclo de decadência funcional que se torna ainda mais pronunciado

em tecidos envelhecidos e tumores.

Assim, compreender a distinção entre SNPs e CNVs e seu papel na instabilidade cro-

mossômica é crucial para desvendar os mecanismos que sustentam o envelhecimento

celular e a carcinogênese. A crescente capacidade da biologia molecular de identificar e

monitorar essas variações genômicas nos dá uma visão detalhada dos “códigos corrom-

pidos” que moldam tanto o envelhecimento como a progressão do câncer, permitindo o

desenvolvimento de intervenções mais precisas que busquem estabilizar ou corrigir essas

falhas antes que seus efeitos se tornem irreversíveis.

2.6 APRESENTAÇÃO AO APRENDIZADO DE MÁQUINA E DA VISÃO COMPUTACIO-

NAL

2.6.1 Aprendizado de máquina

O aprendizado de máquina (do inglês machine learning) é uma área ciência da com-

putação que busca desenvolver sistemas capazes de aprender. Para compreender o que

se quer dizer com aprender nesse contexto primeiro é importante destacar que as pes-

soas apresentam um aprendizado muito singular. Os animais em geral podem aprender

por condicionamento e observação, porém a capacidade de adaptação a novas situações

ambientais é extremamente limitada, pois a maior parte dos comportamentos complexos

são instintivos. Um pássaro joão-de-barro Furnarius rufus demonstra a habilidade peculiar

de construir ninhos de barro. Seu ninho é construído com barro e palha e apresenta um

design altamente funcional e robusto. É, no entanto, uma expressão clara de instintos ge-

néticos que não se alteram diante de mudanças no ambiente, esses pássaros constroem

suas casas sempre iguais. A adaptação de padrões instintivos se dá apenas pela seleção

da variabilidade aleatória em cada geração. O organismos vivos tem padrões complexos

epigenéticos que podem afetar esse processo, mas para os objetivos da explicação do

aprendizado de máquina o leitor se beneficiará desse exemplo do joão-de-barro.

A inteligência humana distingue-se pela sua complexidade cognitiva, social e cultural,

que supera amplamente as habilidades observadas em outras espécies. Enquanto os ani-

mais adaptam seus comportamentos principalmente com base em instintos e experiências



48

acumuladas, os seres humanos possuem a capacidade única de transcender essas limi-

tações ao criar ferramentas e sistemas que ampliam suas possibilidades de adaptação.

Nesse contexto, o aprendizado de máquina emerge como uma extensão dessa habilidade

exclusivamente humana, concebido para replicar, de forma controlada, a capacidade de

aprender, formular abstrações e modificar estratégias diante de novas situações.

Inspirado nos processos cognitivos humanos, o aprendizado de máquina busca repro-

duzir, a capacidade de lidar com incertezas e adaptar-se a cenários diversos. A inteligência

de máquina é definida pela habilidade de processar dados e utilizá-los para tomar decisões

informadas, algo que se manifesta na análise de conjuntos de dados, na identificação de

padrões subjacentes e na geração de previsões ou classificações com base nesses pa-

drões. A partir dessas análises, as máquinas aplicam modelos para determinar a melhor

ação em situações variadas, adaptando-se às circunstâncias.

Além disso, o aprendizado de máquina simula aspectos do raciocínio humano, como

a identificação de padrões complexos em dados visuais, sonoros ou textuais, essenciais

para tarefas como reconhecimento de voz ou imagens. Também inclui a capacidade de

resolver problemas e planejar ações por meio de raciocínio lógico estruturado em regras

ou informações disponíveis. Outro componente importante é a habilidade de lidar com

incertezas, avaliando probabilidades e tomando decisões em cenários onde os dados são

incompletos ou ambíguos. Essas características colocam a inteligência de máquina como

uma extensão adaptativa da cognição humana, ampliando as capacidades de análise e

tomada de decisão em contextos cada vez mais diversos e desafiadores.

Em vez de seguir regras pré-definidas, esses sistemas utilizam dados para identificar

padrões, fazer previsões e tomar decisões. Ao contrário dos métodos tradicionais de pro-

gramação, onde um programador fornece instruções detalhadas para cada tarefa, o apren-

dizado de máquina permite que o sistema descubra automaticamente a solução. Isso é

feito treinando um modelo com um grande volume de dados relevantes.

Os dados são o núcleo do aprendizado de máquina. Eles podem ser estruturados,

como tabelas de informações numéricas e categóricas, ou não estruturados, como ima-

gens. Antes de serem utilizados, os dados passam por etapas de pré-processamento, trei-

namento e avaliação. As técnicas de aprendizado podem ser classificadas em supervisio-

nadas, não-supervisionadas e por reforço, diferenciando-se pela forma como os dados são

apresentados ao modelo. Esses tipos de aprendizados serão apresentados adiante.

Do ponto de vista técnico, o aprendizado de máquina baseia-se na construção de mo-
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delos matemáticos que processam dados para realizar previsões ou tomar decisões. Esses

modelos utilizam métodos estatísticos e computacionais para identificar padrões nos da-

dos e generalizar esses padrões para novos exemplos. O objetivo é minimizar o erro, geral-

mente representado por uma função de perda, usada para quantificar a discrepância entre

as previsões feitas por um modelo e os valores reais observados nos dados. Ajustando os

parâmetros ou pesos do modelo durante o treinamento.

Um aspecto técnico importante é a validação do modelo. Para garantir que ele funcione

bem em novos dados, divide-se o conjunto de dados em partes, como treino, validação e

teste. Ou seja, uma parte dos dados é salva apenas para o teste final. Outra parte é usada

para validar os diferentes parâmetros de treinamento, como um teste intermediário. E outra

parte é utilizada no treinamento. Isso é fundamental para evitar o problema do overfitting,

que acontece quando o modelo tem boa acurácia nos dados de treino, mas não generaliza

bem para novos exemplos, ou seja a acurácia caí quando o modelo é testado com novos

dados. Assim, quando se refere à acurácia de um modelo de aprendizado de máquina se

refere a sua acurácia em dados teste, que não devem ter feito parte dos dados usados

para o treinamento. Em outras palavras, dado novos para o modelo.

Todos com formação científica tem conhecimento da estatística analítica, muitos me-

nos conhecida é o aprendizado de máquina. Ambas compartilham os algorítimos mate-

máticos e buscam interpretar dados e produzir insights, mas diferem profundamente em

seus enfoques e aplicações. A estatística analítica concentra-se em compreender relações

entre variáveis, frequentemente buscando identificar associações ou inferir causalidades.

Esse ramo da estatística utiliza métodos como regressões, testes de hipóteses e análise

de variância para explicar fenômenos observados. A ênfase está em interpretar os dados

disponíveis.

O aprendizado de máquina, por sua vez, adota algoritmos frequentemente originados

da estatística analítica, como regressões e árvores de decisão, mas os utiliza de forma

inovadora, com foco no aprendizado contínuo e no poder preditivo. Em vez de se limitar à

análise estática de dados, como na estatística analítica, o aprendizado de máquina aplica

esses mesmos métodos para identificar padrões em grandes volumes de dados e utilizá-los

para realizar previsões com maior eficiência e adaptabilidade. Por exemplo, uma regres-

são linear simples, amplamente usada na estatística analítica para modelar relações entre

variáveis, pode ser incorporada em um sistema de aprendizado de máquina para ajustar

continuamente seus parâmetros à medida que novos dados são recebidos, melhorando
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assim a precisão das previsões.

Dessa forma, o aprendizado de máquina pode ser visto como uma extensão avançada

da estatística analítica, que, ao incorporar a entrada contínua de dados com o poder com-

putacional, apresenta maior flexibilidade e escalabilidade. Ao combinar o rigor analítico da

estatística com a adaptabilidade computacional, o aprendizado de máquina transforma a

maneira como os dados são usados.

2.6.1.1 Aprendizado supervisionado

No aprendizado supervisionado o modelo é treinado utilizando um conjunto de dados

rotulados, onde cada entrada é associada a uma saída esperada (label). Essa aborda-

gem visa construir uma relação mapeada entre as variáveis de entrada e as saídas, sendo

amplamente empregada em tarefas como classificação, onde se deseja prever categorias,

e regressão, onde o objetivo é prever valores contínuos. O aprendizado supervisionado

pode ser compreendido por meio de uma analogia com o processo de ensino de uma cri-

ança a identificar objetos, como uma maçã. Inicialmente, apresenta-se o objeto à criança,

informando-lhe o nome correspondente. Após repetidas exposições a exemplos variados,

ela aprende a associar características como formato e cor ao nome previamente dado (la-

bel). Esse processo permite que a criança diferencie uma maçã de outros objetos, como

uma laranja. De maneira similar, no aprendizado supervisionado, o modelo computacio-

nal é treinado com dados rotulados, isto é, exemplos de entrada acompanhados de suas

respectivas saídas esperadas. Ao observar múltiplos exemplos em diferentes contextos,

o modelo desenvolve a capacidade de realizar associações precisas entre entradas e la-

bels, aprimorando sua habilidade de identificar padrões e realizar predições em cenários

futuros.

2.6.1.2 Aprendizado Não Supervisionado

O aprendizado não supervisionado trabalha com dados não rotulados, permitindo que o

modelo identifique padrões ou estruturas ocultas nos dados sem a necessidade de instru-

ções explícitas. É frequentemente utilizado em tarefas como agrupamento (clustering), que

organiza dados em grupos com características semelhantes, e redução de dimensionali-

dade, onde informações redundantes são eliminadas para simplificar a análise. Esse tipo



51

de aprendizado pode ser ilustrado pelo processo de uma criança explorando objetos des-

conhecidos sem instruções explícitas. Imagine que uma criança tenha acesso a diferentes

frutas, como maçãs e laranjas, mas sem que ninguém lhe diga os nomes ou características

específicas de cada uma. Por conta própria, a criança começa a observar semelhanças e

diferenças entre os objetos, agrupando-os com base em características como cor, formato

ou textura. Apesar de não saber os nomes das frutas, ela pode distinguir que algumas

têm casca lisa e alaranjada, enquanto outras são vermelhas e arredondadas. De forma

análoga, no aprendizado não supervisionado, o modelo não recebe dados rotulados, mas

busca identificar padrões ocultos e agrupar ou organizar as informações com base em

semelhanças entre os dados, permitindo descobrir estruturas subjacentes sem a necessi-

dade de associações explícitas previamente fornecidas.

2.6.2 Floresta Aleatória - Random Forest

O Random Forest foi apresentado por Leo Breiman no início dos anos 2000, especifi-

camente em 2001, como uma evolução das árvores de decisão e do método de bagging

Bootstrap Aggregating, que ele mesmo havia proposto anteriormente. A motivação para

seu desenvolvimento surgiu das limitações inerentes às árvores de decisão individuais,

que, embora sejam modelos intuitivos e poderosos, sofrem com a tendência ao overfit-

ting. Essa limitação as tornava pouco confiáveis em cenários de alta variabilidade ou com

conjuntos de dados ruidosos.

Breiman, com sua abordagem pragmática e engenhosa, combinou a ideia de criar múl-

tiplas árvores de decisão independentes a partir de amostras aleatórias dos dados e in-

troduziu um elemento de aleatoriedade adicional: a seleção aleatória de subconjuntos de

características para cada divisão da árvore. Essa combinação estratégica transformou o

Random Forest em um modelo capaz de capturar padrões robustos e generalizáveis, en-

quanto minimizava os riscos associados às peculiaridades dos dados de treinamento.

A árvore de decisão é uma das estruturas mais intuitivas e amplamente utilizadas no

aprendizado de máquina, possui uma história que remonta a diversos campos de estudo,

incluindo estatística, ciência da computação e psicologia. Essa metodologia foi desenvol-

vida a partir de conceitos teóricos e evoluiu ao longo do tempo para se tornar um dos

pilares da análise de dados, devido à sua simplicidade e capacidade de interpretação.

Para compreender sua história, é necessário observar sua origem multidisciplinar e os
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avanços que transformaram essa técnica em uma ferramenta fundamental. Os primeiros

fundamentos podem ser encontrados em trabalhos de estatísticos como Francis Galton e

Ronald Fisher, que estudaram métodos de classificação e análise de variância. Esses es-

tudos estabeleceram bases matemáticas para dividir dados em grupos com base em suas

características.

O Random Forest é um algoritmo usado no aprendizado de máquina para resolver

problemas de regressão e classificação. Combina múltiplas árvores de decisão, cada uma

criada com diferentes subconjuntos dos dados e características. No final, ele combina os

resultados dessas árvores para gerar uma resposta mais precisa. Uma árvore de decisão

é um modelo simples que organiza as decisões em forma de um diagrama ramificado.

Ela divide os dados em partes menores com base em perguntas "sim/não", criando uma

hierarquia que leva a uma previsão final. Uma árvore de decisão pode ser comparada a

um processo de tomada de decisão lógica.

Figura 5 – Esquemático de uma árvore de decisão

Fonte: Autor

A diferença principal entre uma árvore de decisão e uma floresta aleatória é que uma

árvore de decisão funciona como um único caminho lógico: ela começa calculando qual

característica tabulada divide os casos em dois grupos com base no maior ganho de in-
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formação e na redução da entropia dos dados (outras métricas também eventualmente

participam como o índice de pureza dos dados) é o chamado nó raiz. A escolha do nó raiz

é baseada na avaliação de todas as características disponíveis, buscando a divisão que

mais reduz a incerteza ou aumenta a pureza das classes. Por exemplo, o nó raiz pode ser

representado como uma pergunta "há mutação do P53?"dividindo os casos em sim ou não.

Segue dividindo os dados em dois grupos. Essa abordagem considera todas as caracte-

rísticas disponíveis nos dados e tenta encontrar as divisões mais eficazes para classificar

cada caso.

Por outro lado, a floresta aleatória não depende de apenas uma árvore. Em vez disso,

ela cria várias árvores de decisão, cada uma construída com partes diferentes dos dados

e com perguntas baseadas em subconjuntos aleatórios de características. Por exemplo,

enquanto uma árvore pode começar analisando "Há mutação do P53?", outra árvore pode

começar com "há mutação do MLH1?". Essa aleatoriedade garante que as árvores sejam

independentes e avaliem os dados sob diferentes perspectivas. No final, a floresta combina

as decisões de todas as árvores o que torna o modelo mais robusto, confiável e menos

propenso a erros que poderiam surgir de uma única árvore.

Figura 6 – Esquemático de uma Floresta Aleatória

Fonte: Autor

O Random Forest é frequentemente classificado como um algorítimo clássico porque

combina simplicidade e eficácia de forma exemplar. Ele não exige ajustes complexos e é

naturalmente robusto, funcionando bem em uma ampla variedade de problemas e tipos de

dados, especialmente estruturados. Além disso, sua capacidade de avaliar a importância
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das características o torna uma ferramenta valiosa em contextos onde a interpretabilidade

é essencial, como na medicina e na genética.

Apesar do advento de arquiteturas mais complexas, como redes neurais profundas, o

Random Forest continua sendo amplamente utilizado. Sua relevância se dá não apenas por

sua eficiência computacional em comparação com técnicas mais avançadas, mas também

porque fornece soluções interpretáveis e confiáveis.

2.6.3 Redes Neurais profundas

A descoberta de que o neurônio cerebral humano, assim como o de outros mamíferos,

opera com um mecanismo binário — disparar ou não disparar, transmitir ou não transmitir

informação — foi um marco fundamental para a neurociência e para a inspiração com-

putacional no desenvolvimento de redes neurais artificiais. Cada neurônio, com base em

estímulos recebidos, se passará o impulso elétrico gerado pelas rápidas e ativas trocas de

potássio e sódio pela membrana plasmática ou se o neurônio não disparará e portanto não

passará a descarga elétrica a frente. Caso os neurônios disparem aquela via é fortalecida

por neuroplaticidade, caso contrário é enfraquecida. Em suma o nurônio humano é binário.

Na literatura científica, o termo correto para descrever o "disparo"de um neurônio é "poten-

cial de ação"(action potential). Esse processo descreve a rápida mudança de voltagem na

membrana celular de um neurônio, que ocorre quando ele transmite um sinal elétrico ao

longo de seu axônio. O potencial de ação é um fenômeno "tudo ou nada"(all-or-none), o

que significa que o neurônio ou gera o sinal completamente ou não o faz, dependendo se

o limiar de excitação foi alcançado.

O fenômeno do potencial de ação, amplamente estudado na neurofisiologia, é um pro-

cesso eletroquímico que define a base funcional da comunicação entre neurônios. Ele

ocorre de maneira "tudo ou nada", o que significa que um neurônio ou dispara completa-

mente, transmitindo o sinal, ou não dispara, caso o estímulo recebido não atinja o limiar

necessário. Esse fenômeno inicia-se com a despolarização da membrana celular, quando

canais de sódio se abrem e permitem a entrada rápida desses íons, invertendo tempora-

riamente a polaridade da membrana. Após atingir o pico do potencial de ação, os canais

de sódio se fecham e os canais de potássio se abrem, promovendo a saída desses íons e

restaurando a carga negativa interna no processo conhecido como repolarização. Eventu-

almente, ocorre uma hiperpolarização transitória, onde o potencial da membrana se torna
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ainda mais negativo antes de retornar ao estado de repouso, regulado pela bomba de

sódio-potássio. Esse ciclo assegura a propagação unidirecional do sinal ao longo do axô-

nio e permite que o neurônio retome seu estado inicial para disparar novamente quando

necessário. A simplicidade do mecanismo contrasta com a complexidade das redes neu-

rais formadas, demonstrando como interações precisas entre bilhões de neurônios podem

dar origem a processos cognitivos e comportamentais sofisticados.

Os potenciais graduados são fenômenos regulatórios fundamentais da atividade neu-

ronal, representam pequenas alterações localizadas no potencial de membrana. Esses

resultam da interação com estímulos recebidos na superfície celular. Esses potenciais,

excitatórios ou inibitórios são acumulativos, permitindo ao neurônio integrar informações

provenientes de múltiplas sinapses antes de atingir o limiar necessário para disparar. Essa

modulação sináptica, essencial para a regulação da sensibilidade ao estímulo, permite que

o neurônio ajuste sua resposta a contextos variados, refinando a transmissão da informa-

ção através da rede neural. A inibição, por sua vez, é um mecanismo crucial pelo qual

um neurônio pode ser impedido de disparar, frequentemente devido à ação de outros neu-

rônios que, através de sinapses inibitórias, dificultam a despolarização suficiente para o

início do potencial de ação. Quando o neurônio efetivamente dispara.

Apesar da complexidade das interações que regulam a atividade neuronal a ação final

de cada neurônio é binária. Ele dispara ou não dispara; responde ou permanece inerte;

um ou zero. Esse mecanismo "tudo ou nada", sustentado por uma intrincada teia de co-

nexões e processos regulatórios, revela a beleza e a precisão do sistema nervoso desde

reflexos básicos até os mais altos processos cognitivos. O cérebro humano contém aproxi-

madamente 100 bilhões de neurônios em rede, mais outros 500 milhões espalhados pelo

sistema nervoso periférico, coração e intestino. A rede é densamente conectada pois cada

neurônio é capaz de estabelecer conexões com até 10 mil outros neurônios, formando um

emaranhado de sinapses cuja contagem total é estimada em 100 trilhões de conexões.

Essa vasta rede neural é o que permite a manifestação de propriedades cognitivas com-

plexas, como memória, aprendizado e raciocínio.

No entanto, o que singulariza o cérebro humano em relação ao de outros mamíferos

é a organização dessas conexões, especialmente nas regiões associadas a funções cog-

nitivas de alta ordem. O córtex pré-frontal conta com 20 bilhões de neurônios dedicados

densamente conectados e hierarquizados. Responsável por funções como planejamento,

tomada de decisão, controle de impulsos e raciocínio abstrato, ele ocupa uma proporção
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maior no cérebro humano do que em qualquer outra espécie. Esse córtex, ao integrar infor-

mações provenientes de áreas especializadas em percepção sensorial, memória e emo-

ções, permite associações de alta ordem que constituem a base da linguagem, criatividade

e pensamento crítico.

O conhecimento neurofisiológico dessa estrutura inspirou os cientistas da computação

a imaginar sistemas artificiais que pudessem imitar, ainda que de forma rudimentar, essa

habilidade de conectar, processar e aprender. A invenção do neurônio artificial foi, portanto,

uma tentativa de capturar essa lógica simples, mas potente, de redes interconectadas que

definem tanto o cérebro humano quanto as máquinas que aspiram imitá-lo. A ideia de mo-

delar computacionalmente a capacidade adaptativa do cérebro humano foi, talvez, um dos

mais audaciosos empreendimentos intelectuais do século XX. Inspirados pela complexi-

dade da mente e pela elegância das conexões neurais, cientistas e pensadores deram

início a uma jornada que uniria biologia, matemática e computação em um esforço para

criar máquinas que pudessem aprender.

2.6.3.1 A invenção do neurônio

A invenção do neurônio artificial como parte de uma rede integrada, foi o marco inicial

de uma transformação que moldaria o futuro da inteligência artificial. Foi na década de

1940 que Warren McCulloch, um neurofisiologista, e Walter Pitts, um lógico matemático,

deram o primeiro passo significativo nessa direção. Em seu artigo seminal, eles propuse-

ram um modelo matemático que descrevia um neurônio artificial como uma unidade binária

capaz de processar informações e produzir uma saída com base em entradas recebidas.

Para McCulloch e Pitts, a chave estava na simplicidade: um neurônio artificial deveria se-

guir regras lógicas elementares, mas, quando conectado a outros neurônios, poderia rea-

lizar cálculos complexos, aproximando-se daquilo que entendemos como aprendizado ou

cognição. (MCCULLOCH; PITTS, 1943)

Esse modelo matemático não apenas capturava a essência funcional de um neurônio

biológico, mas também introduzia a ideia de que redes de neurônios poderiam ser projeta-

das para resolver problemas. Essa visão deu origem ao paradigma das redes neurais, onde

o comportamento emergente do sistema depende da interação de seus componentes. En-

tretanto, o impacto desse insight não se restringiu ao campo da neurociência computaci-

onal. Ele abriu portas para reflexões filosóficas profundas sobre o que significa aprender,



57

adaptar-se e tomar decisões. A analogia com o cérebro humano, embora limitada, trouxe

consigo questões sobre a natureza da inteligência: seria a inteligência uma propriedade

emergente de conexões suficientemente complexas? Ou dependeria de algo mais funda-

mental, talvez inatingível por máquinas?

À medida que essa ideia evoluía, novas abordagens começaram a surgir, impulsiona-

das por avanços teóricos e tecnológicos. Em 1958, Frank Rosenblatt introduziu o percep-

tron, um modelo computacional inspirado no neurônio de McCulloch e Pitts, mas com a

capacidade adicional de "aprender"a partir de exemplos. Rosenblatt acreditava que, ao

ajustar os pesos das conexões entre os neurônios, uma máquina poderia melhorar seu de-

sempenho ao longo do tempo, reproduzindo, ainda que de forma rudimentar, a plasticidade

do cérebro humano. (ROSENBLATT, 1958)

Essa concepção inicial foi recebida com entusiasmo, mas também com ceticismo. Du-

rante décadas, as redes neurais enfrentaram limitações matemáticas e tecnológicas que

restringiam sua aplicabilidade. Simplesmente ainda não havia o poder computacional para

demonstrar seu potencial. Ainda assim, a ideia de que sistemas computacionais poderiam,

um dia, reproduzir aspectos da inteligência humana progrediu academicamente, com a rá-

pida introdução de praticamente todos os novos desenvolvimentos no campo da matemá-

tica e com a evolução teórica das arquiteturas. O salto imenso salto recente na capacidade

das inteligências artificiais se deve muito mais ao aumento do poder computacional, pois

as bases científica já foram há décadas bem fudamentadas.

2.6.3.2 Apresentação à Arquiteturas de redes neurais

A invenção do neurônio artificial é um avanço tecnológico relativamente simples. Ima-

gine o leitor que faça uso de um dos muitos algorítimos da estatística analítica para anali-

sar um conjunto de dados e resultar em uma resposta binária. Agora imagine-se fazendo

o mesmo para todos os algorítimos que conheça ou que tenham sido computacionalmente

implementados por colegas com mais habilidade matemática de maneira a que cada um

desses neurônios está em paralelo avaliando os dados e passando ou não seu "disparo"a

frente. Agora imagine-se conectando uma série de neurõnios em camadas subsequen-

tes de dimenções crescentes e ajustando camadas finais para reduzir as dimensões das

camadas ao formato necessário a uma tarefa específica.

Entre os neurônios das diferentes camadas o leitor imagine-se atribuindo variáveis de
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importância que atuam como os potenciais graduados da biologia, facilitando ou dificul-

tando o disparo daquela conexão essas variáveis são os chamados pesos. Esses pesos

são um conceito muito importante a saber. Os pesos vão estabelecer a qual dos neurô-

nios da camada anterior deve ter a informação mais valorizada. Os melhores pesos são os

que valorizam a informação mais relevante para o sucesso. Imagine-se atribuíndo pesos

aleatoriamente a esses muitos algorítimos em múltiplas camadas e automatizando esse

processo de atribuição mais ou menos aleatória de pesos um algorítimo de otimização.

Pronto, o leitor já tem sua arquiteura estabelecida. Ainda mais, essa arquitetura com o

conjunto de pesos é um modelo a ser testado nos dados.

2.6.3.3 Adaptação e Seleção artificial

Na década de 1990, a ideia de otimização evolutiva começou a ganhar popularidade na

inteligência artificial como uma abordagem para resolver problemas complexos por meio

de simulações inspiradas em processos biológicos. Esses métodos utilizam conceitos de-

rivados da evolução natural, como seleção, variação e adaptação. O algoritmo genético,

uma das principais ferramentas desse período, simulava a evolução de populações de "or-

ganismos digitais"— que na verdade são modelos (arquiteruras com conjuntos de pesos)

representando possíveis soluções para um problema. Cada organismo, ou modelo, é ava-

liado com base em sua capacidade de executar uma tarefa, como a maximização de uma

função matemática ou a resolução de um problema específico em um ambiente simulado.

Após cada iteração, os melhores modelos são selecionados, suas características são

reporduzidas ligeiramente alteradas — em um processo análogo à recombinação gené-

tica, é testada. Assim subsequentemente por múltiplas gerações de modelos. Esse é o

processo de treinamento é linhas gerais o processo de treinamento nos dados. Cada uma

das características é um parâmetro que pode ser alterado pelo cientista de dados, como o

número de interações ( gerações) qual o grau de variabilidade dos descendentes, quanto

maior o salto mais rápido o treino é menos computacionalemnte custoso, porém o risco de

alcançar um pico intermédiário de sucesso aumenta.

Essa abordagem, embora rudimentar comparada aos padrões atuais, permitiu gran-

des avanços na época. No contexto das tecnologias disponíveis na década de 1990, o

número de gerações que podia ser simulado dependia da capacidade de processamento

dos computadores, que era significativamente limitada. Um experimento típico envolvendo
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otimização evolutiva poderia levar dias ou semanas para treinar algumas centenas de gera-

ções, dependendo da complexidade do problema e do tamanho da população de modelos

digitais. Em termos de redes neurais, os modelos da época eram relativamente simples,

com apenas algumas centenas ou milhares de parâmetros — valores ajustáveis que deter-

minam o comportamento do modelo. Essa simplicidade era uma consequência direta das

limitações computacionais e da disponibilidade de dados, que restringiam tanto a profun-

didade quanto a largura das redes.

Avançando para 2023, o cenário transformou-se do ponto de vista de aumento geomé-

trico de poder computacional, as arquiteturas possuem bilhões de peso. Esses modelos

não apenas superam em muito as capacidades das redes neurais dos anos 1990, mas

também são treinados em escalas de dados e tempos de computação que seriam impen-

sáveis naquela época.

Além disso, as abordagens atuais frequentemente utilizam treinamento competitivo en-

tre modelos, conhecido como aprendizado adversarial ou aprendizado por competição.

Nesse paradigma, dois ou mais modelos são treinados simultaneamente, competindo en-

tre si para aprimorar seu desempenho. Um exemplo clássico são as Generative Adversarial

Networks (GANs), onde um modelo gerador tenta criar dados convincentes enquanto outro

modelo discriminador tenta identificar falhas nos dados gerados. Esse tipo de abordagem

acelera o aprendizado, ao mesmo tempo em que aumenta a robustez do modelo resultante.

Portanto, a metáfora da otimização evolutiva, na qual cada geração de modelos é apri-

morada com base nos melhores desempenhos, permanece relevante para entender o de-

senvolvimento atual da inteligência artificial. O que começou como um processo lento e

limitado por hardware modesto transformou-se em uma prática altamente sofisticada, que

utiliza recursos computacionais massivos para gerar modelos capazes de resolver proble-

mas com níveis de complexidade impossíveis há poucos anos.

2.6.3.4 Breve histórico das arquiteturas e a introdução das camadas profundas

A primeira aruitetura com diversas aplicações práticas hoje é a perceptron. O percep-

tron pode ser entendido como um algoritmo que recebe várias entradas e retorna uma

saída binária (0 ou 1). Apesar do entusiasmo inicial, a falta de poder computacional e de

dados limitou o progresso. Somente na década de 1980, com a introdução do algoritmo de

retro propagação (backpropagation), foi possível o treinamento de redes neurais multica-
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madas, vário perceptrons aninhados em camadas. Esse avanço permitiu a modelagem de

problemas mais complexos ao mesmo tempo que métodos estatísticos, como máquinas

de vetor de suporte (SVMs) (VAPNIK, 2013) e árvores de decisão (BREIMAN et al., 1984),

começaram a ser amplamente utilizados em tarefas de classificação, como classificar e-

mails como span ou não, e regressão, estimar o preço de uma casa com base em suas

características.

Na década de 2000, dois fatores principais impulsionaram o aprendizado de máquina

para o mainstream: a explosão de dados digitais, impulsionada pela internet e redes so-

ciais, e a disponibilidade de maior poder computacional, principalmente por meio de uni-

dades de processamento gráfico (GPUs). Esses avanços tornaram viável a aplicação de

algoritmos mais sofisticados em problemas reais, como tradução de idiomas, reconheci-

mento de fala e análise de imagens.

O termo “profundo” no contexto da ciência de dados se refere às camadas das arqui-

teturas das redes neurais cujos padrões, ou “pesos”, descobertos durante o treinamento

nos datasets, não são diretamente visíveis ou compreensíveis para o programador. Esses

padrões emergem da interação entre os dados e o modelo, e não de regras explícitas pro-

gramadas. Aqui, utiliza-se o termo “fenótipo profundo” para designar esses padrões iden-

tificados pela rede e refletem características complexas que não são evidentes à primeira

vista.

As redes neurais profundas, ou Deep Neural Networks (DNNs), são um tipo avançado

de modelo computacional inspirado no funcionamento do cérebro humano. Elas são for-

madas por muitas camadas de unidades computacionais chamadas “neurônios artificiais”.

Cada camada processa as informações recebidas, simplificando ou combinando padrões,

até chegar a um resultado, como reconhecer uma imagem ou prever uma tendência. O

“profundo” no nome refere-se à grande quantidade de camadas que essas redes possuem.

Um exemplo simples ajuda a entender: imagine ensinar uma criança a reconhecer fotos

de cães. Primeiramente, ela aprende características básicas, como o formato geral do

corpo ou o focinho. Depois, começa a reconhecer detalhes, como o pelo ou as orelhas.

Da mesma forma, nas redes profundas, as camadas iniciais identificam padrões simples,

como linhas e formas, enquanto as camadas mais profundas combinam esses padrões

para formar algo mais complexo, como a imagem de um cão.

Essas redes são extremamente úteis em situações onde os dados são muito ricos ou

difíceis de interpretar, como fotos, sons ou grandes textos. Por exemplo, em sistemas que
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analisam exames médicos, as redes neurais profundas conseguem identificar sinais de

doenças, como tumores, que podem ser difíceis de perceber até mesmo para especialistas.

Para que uma rede neural profunda funcione, é necessário “treiná-la”. Isso envolve

mostrar muitos exemplos para o modelo e permitir que ele ajuste seus parâmetros, chama-

dos de pesos, para que as respostas sejam cada vez mais precisas. Um processo chamado

retropropagação é usado para corrigir os erros cometidos pela rede durante o treinamento,

ajustando os pesos das conexões entre os neurônios.

Um dos maiores desafios das redes neurais profundas é que elas precisam de muitos

dados e recursos computacionais para funcionar bem. Quanto mais camadas uma rede

possui, mais dados são necessários para ensinar a máquina de forma eficiente. Além disso,

se o modelo for muito complexo e os dados forem insuficientes, ele pode “memorizar”

os exemplos do treinamento sem aprender algo útil para novos casos. Esse problema é

conhecido como overfitting.

Para evitar o overfitting, diversas técnicas são aplicadas. Uma delas é aumentar os

dados disponíveis, o que pode ser feito gerando variações dos exemplos, como rotacionar

imagens ou alterar ligeiramente suas cores. Outra abordagem é chamada de dropout, onde

alguns neurônios são temporariamente desativados durante o treinamento, forçando a rede

a generalizar melhor.

Apesar de seu enorme potencial, as redes neurais profundas também têm limitações.

Uma delas é que as decisões tomadas por esses modelos nem sempre são fáceis de

explicar, já que os padrões aprendidos estão “escondidos” nas camadas internas. Isso cria

um problema chamado de “caixa-preta”, onde os resultados são confiáveis, mas os passos

para chegar até eles podem ser difíceis de entender.

Em resumo, redes neurais profundas são ferramentas revolucionárias que permitem

às máquinas realizar tarefas complexas, como reconhecer imagens, traduzir idiomas e

até diagnosticar doenças. Elas funcionam aprendendo padrões em grandes volumes de

dados, mas exigem cuidado no treinamento e na interpretação de seus resultados. Mesmo

para quem não é da área, é importante entender seu funcionamento básico, pois essas

tecnologias estão cada vez mais presentes em nossa sociedade.



62

2.6.4 Visão Computacional

As Redes Neurais Convolucionais (Convolutional Neural Networks — CNNs) são uma

classe especializada de algoritmos de aprendizado profundo amplamente aplicadas em

tarefas de classificação de imagens, reconhecimento de objetos e outras áreas de visão

computacional.

O termo "convolucional", empregado em redes neurais convolucionais (CNNs), refere-

se à operação matemática de convolução. Isso é o núcleo funcional da extração de carac-

terísitcas das redes neurais convolucionais (CNNs). Essa operação é amplamente utilizada

para processar imagens, e tem como objetivo extrair características relevantes, como bor-

das, texturas ou padrões.

É inspirado no funcionamento do córtex visual primário dos mamíferos, responsável

pelo processamento inicial de estímulos visuais. Neurônios especializados no córtex visual

atuam de forma hierárquica, respondendo a padrões simples, como bordas e texturas, e,

em seguida, combinando essas informações para interpretar formas mais complexas. Esse

modelo de processamento biológico influenciou diretamente o design das CNNs.

Nas redes convolucionais, a operação de convolução simula esse mecanismo biológico

por meio da aplicação de filtros (ou kernels) sobre diferentes regiões da imagem. Cada

filtro, ao sobrepor-se a pequenas áreas do dado visual é capaz de identificar características

locais como bordas ou padrões texturais. Essa abordagem reflete a maneira como o córtex

visual humano processa informações visuais, em que regiões específicas do campo visual

são interpretadas de forma segmentada e integrada.

Além disso, as CNNs utilizam uma hierarquia de camadas convolucionais, onde as pri-

meiras camadas extraem características mais simples, enquanto as camadas posteriores

combinam essas informações em representações mais abstratas e complexas, chamadas

de camadas profundas. Processam informações mais amplas e complexas de alta ordem.

Esse processo assemelha-se à organização funcional do córtex visual, onde informa-

ções simples se integram progressivamente em níveis mais altos de processamento. Essa

abordagem não apenas reforça o vínculo entre sistemas biológicos e computacionais, mas

também demonstra como princípios da neurociência podem inspirar avanços na inteligên-

cia artificial

As CNNs se destacam por sua capacidade de processar dados com estrutura de grade,

como imagens, de forma escalável e eficiente (GOODFELLOW; BENGIO; COURVILLE, 2016). O
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funcionamento das CNNs baseia-se em uma arquitetura composta por camadas interliga-

das, onde cada nó (ou neurônio) realiza cálculos com base em pesos e limites pré-definidos

Figura 7. Quando a saída de um nó excede um valor de limiar especificado, o nó é ati-

vado e os dados são transmitidos para a camada seguinte da rede. Caso contrário, o nó

permanece inativo, e nenhum dado é propagado. Essa característica permite que a rede

selecione automaticamente os padrões mais relevantes, reduzindo o ruído desnecessário

durante o aprendizado. As CNNs são estruturadas em blocos fundamentais:

• Camada Convolucional : É a camada inicial de uma CNN e responsável pela extra-

ção de características locais da entrada. Essa camada utiliza filtros (ou kernels) para

realizar operações de convolução sobre a imagem, capturando elementos básicos,

como bordas, texturas e cores. A operação convolucional reduz a complexidade do

modelo ao focar em regiões específicas da entrada, mantendo as informações espa-

ciais relevantes.

• Camada de Pooling: Essa camada é projetada para reduzir a dimensionalidade dos

dados e consolidar características importantes, diminuindo o número de parâmetros

do modelo e mitigando o risco de overfitting.Os tipos mais comuns de pooling incluem

max pooling, que seleciona o valor máximo em uma região, e average pooling, que

calcula a média dos valores em uma região.

• Camada Totalmente Conectada (Fully Connected — FC): É a camada final da CNN,

onde todos os neurônios estão conectados entre si. Essa camada combina as carac-

terísticas aprendidas nas etapas anteriores para realizar a classificação ou predição.

O objetivo é integrar as informações extraídas em um vetor de saída correspondente

às categorias ou valores previstos.

À medida que os dados percorrem essas camadas, a complexidade da CNN aumenta

progressivamente. As camadas iniciais identificam características simples, como bordas

ou padrões de cores. Em camadas intermediárias e finais, os padrões básicos são com-

binados para identificar formas maiores e detalhes mais específicos do objeto. Por fim, na

camada totalmente conectada, a CNN reconhece o objeto completo, atribuindo-o a uma

classe ou valor numérico específico. Esse design hierárquico permite que as CNNs se-

jam extremamente eficazes em tarefas como reconhecimento facial, análise de imagens



64

Figura 7 – Arquitetura de uma CNN básica

Fonte: extraída do artigo SENA; ROCHA (2021)

médicas e identificação de objetos em vídeos, consolidando seu papel essencial na visão

computacional (KRIZHEVSKY; SUTSKEVER; HINTON, 2012).
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2.7 COMITÊS MULTIMODAIS

Os comitês (Ensemble) multimodais representam uma classe de modelos de apren-

dizado profundo capazes de integrar e processar diferentes tipos de dados, ou “modali-

dades”, simultaneamente. Essas modalidades podem incluir imagens e dados tabulares.

A capacidade de lidar com entradas de diferentes formatos torna essas redes particu-

larmente úteis em problemas complexos, onde a informação relevante é frequentemente

heterogênea (BALTRUŠAITIS; AHUJA; MORENCY, 2018).

O objetivo das redes multimodais é explorar complementaridades entre diferentes tipos

de dados para melhorar a precisão e a robustez das predições. O termo para a interação

de duas ou mais redes é "concatenação". Por exemplo, no diagnóstico médico, imagens de

exames (como imagens histopatológicas) podem ser concatenadas com dados genômicos

para fornecer uma análise mais abrangente. No caso dos Ensemble essa concatenação é

feita por votos de modelos especialistas. O leitor pode imaginar um comitê de médicos es-

pecialistas com diferentes experiências e/ou diferentes focos em suas abordagens. Daí ao

final do comitê cada especialista vota no diagnóstico em cada caso e declara a sua confi-

ança no seu voto, como uma probabilidade. Assim um especialista em histopatologia pode

votar que um dado caso é diagnóstico A e declarar 70% de confiança, outro especialista

também em histopatologia pode votar no mesmo caso pelo diagnóstico B porém declarar

apenas 60% de confiança; outro especialista, esse em genética, ao examinar um painel de

genes pode votar no diagnóstico A e declarar 70% de confiança e finalmente outro especi-

alista em genética pode votar no diagnóstico B e declarar 95% de confiança. No exemplo

simplificado pode-se notar que há duas maneiras de computar os votos, levando em conta

a confiança de cada especialista, chamado votação suave (soft voting, que nesse caso o

resultado seria diagnóstico B ou sem levar em conta a confiança. chamado de voto duro

(hard voting.

Outra opção digna de nota é a rede multimodal. Ela difere de Ensemble por seu método

mais complexo de concatenação que permite diversos vetores de informação serem leva-

dos em conta antes da camada final. A arquitetura de uma rede multimodal é geralmente

composta por três componentes principais:

• Encoders específicos de modalidade: cada tipo de dado é processado inicialmente

por um modelo especializado, como redes neurais convolucionais (CNNs) para ima-
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gens, redes neurais recorrentes (RNNs) ou modelos baseados em transformers para

texto, e redes feedforward para dados tabulares. Esses encoders extraem caracte-

rísticas específicas de cada modalidade.

• Fusão multimodal : após a extração das características de cada modalidade, os veto-

res resultantes são combinados em um espaço comum. A fusão pode ser realizada

de várias formas, como concatenação, adição ou mecanismos mais sofisticados,

como atenção multimodal, que atribui pesos diferentes às modalidades com base

em sua relevância para a tarefa.

• Camadas de decisão: A etapa final utiliza as características combinadas para realizar

a tarefa desejada, como classificação ou regressão. Essa etapa pode ser composta

por camadas totalmente conectadas (fully connected layers) ou outras arquiteturas

específicas, dependendo da natureza do problema.

O treinamento de redes multimodais apresenta desafios únicos. Um dos mais signifi-

cativos é o alinhamento entre modalidades, já que diferentes tipos de dados podem ter

escalas, dimensões e distribuições distintas. Além disso, a ausência de informações com-

pletas em todas as modalidades para alguns exemplos (dados faltantes) exige abordagens

robustas, como a utilização de técnicas de imputação ou redes específicas para lidar com

entradas incompletas. Assim, o Ensemble Multimodal é uma abordagem mais simples de

implementar e com mais explicabilidade final dos modelos já que os votos dos modelos

especilista são conhecidos e podem ser mais facilmente avaliados.

As vantagens principais dos Ensembles e redes multimodais é a capacidade de superar

limitações de dados individuais. Por exemplo, em tarefas onde informações textuais podem

ser ambíguas, as imagens associadas podem fornecer detalhes contextuais essenciais.

Da mesma forma, modalidades redundantes podem atuar como uma verificação cruzada,

aumentando a confiabilidade do sistema.

2.8 CLASSIFICAÇÃO MOLECULAR DO ADENOCARCINOMA GÁSTRICO

A classificação molecular do câncer gástrico representa um avanço significativo na

compreensão da heterogeneidade dessas neoplasias, permitindo uma estratificação mais

precisa dos pacientes e, com isso, abrir caminhos para futuros desenvolvimentos de mais
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precisos prognósticos e terapias. Em outras palavras, trata-se de um sistema que vai além

das características histomorfológicas, incorpora perfis genômicos e epigenômicos para

identificar subtipos distintos, o que é particularmente útil em pesquisas de genética e bi-

ologia molecular. Identificada no estudo do The Cancer Genome Atlas (TCGA) de 2014

(Cancer Genome Atlas Research Network, 2014).

A classificação molecular divide o adenocarcinoma gástrico com base nas característi-

cas subjacentes dos processos moleculares em atuação na gênese do tumor. São quatro

os subtipos principais identificados: positivo para Epstein-Barr virus (EBV), instável em mi-

crossatélites (MSI), genomicamente estável (GS) e com instabilidade cromossômica (CIN)

(Cancer Genome Atlas Research Network, 2014).

Essa classificação surgiu da análise computacional não-supervisionada de dados mul-

tiômicos, incluindo sequenciamento de exoma, análise de cópias somáticas, metilação de

DNA, expressão de mRNA, miRNA e proteínas, aplicada a 295 amostras de adenocar-

cinoma gástrico primário no estudo TCGA-STAD (stomach adenocarcinoma). Em termos

práticos, ela facilita a identificação de alvos terapêuticos específicos, otimizando o desen-

volvimento de modelos computacionais em bioinformática para predição de resposta a

tratamentos.

2.8.1 Subtipo EBV

Os tumores positivos para EBV, representando cerca de 9% dos casos, forsm caracte-

rizados por alta carga viral do Epstein-Barr virus, mutações recorrentes em PIK3CA (80%

dos casos), hipermetilação extrema de DNA (EBV-CIMP) e amplificações em JAK2, PD-

L1 e PD-L2. Em outras palavras, esses tumores exibem um perfil imunogênico pronunci-

ado, com silenciamento epigenético de genes como CDKN2A, mas sem hipermetilação de

MLH1, o que os diferencia dos subtipos MSI e sugere potencial para imunoterapias, como

inibidores de checkpoint imune (Cancer Genome Atlas Research Network, 2014). Clinicamente,

eles são mais comuns em homens e localizados no fundo ou corpo gástrico.

2.8.2 Subtipo MSI (Instabilidade Microssatélite)

Compreendendo 22% dos tumores, o subtipo MSI foi distinguido por altas taxas de

mutação (hipermutados), silenciamento de MLH1 via hipermetilação e mutações em genes
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Figura 8 – Principais características dos subtipos de câncer gástrico

Fonte: extraída do artigo Cancer Genome Atlas Research Network (2014)

como KRAS, ARID1A e PIK3CA. Em outras palavras, essa instabilidade resulta em um

acúmulo de erros no DNA, frequentemente associado a melhor prognóstico e resposta a

imunoterapias devido ao alto carga mutacional, que pode ser quantificada em ferramentas

bioinformáticas para estimar a neoantigenicidade (FUKAYAMA; RUGGE; WASHINGTON, 2019).

Esses tumores são diagnosticados em idades mais avançadas e em mulheres.

2.8.3 Subtipo GS (Genomicamente Estável)

Representando 20% dos casos, os tumores GS foram associados ao tipo histológico

difuso (73%), descritos como asociados a mutações em RHOA ou fusões envolvendo pro-

teínas ativadoras de GTPases da família RHO, além de baixa aneuploidia. Em outras pala-

vras, essa estabilidade genômica reflete um número limitado de mutações, porém afetando

vias fundamentais de agregação celular (como a da caderina). São diagnosticados em pa-

ciente com menos idade.
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2.8.4 Subtipo CIN (Instabilidade Cromossômica)

O subtipo mais comum (50%), CIN foi caracterizado por aberrações cromossômicas,

aneuploidia marcada, amplificações focais em receptores tirosina quinases (como EGFR,

HER2) e mutações em TP53. Em outras palavras, essa instabilidade leva a ganhos e per-

das cromossômicas extensas, associadas a tumores intestinais localizados na junção gas-

troesofágica, com implicações para terapias direcionadas como inibidores de HER2 (FU-

KAYAMA; RUGGE; WASHINGTON, 2019).

Tabela 6 – Subtipos Moleculares do Câncer Gástrico (TCGA 2014).

Subtipo
Frequência

(%) Características Moleculares
Principais

Localização
Preferencial

Idade
Média

EBV 9 Hipermetilação, mutações PIK3CA,
amplificações PD-L1/L2.

Fundo/Corpo 65 anos

MSI 22 Hipermutação, silenciamento
MLH1, mutações KRAS.

Corpo/Antrum 72 anos

GS 20 Mutuções RHOA, tipo difuso, baixa
aneuploidia.

Difuso 59 anos

CIN 50 Aneuploidia, amplificações RTK,
mutações TP53.

Junção GE 68 anos

Fonte: The Cancer Genome Atlas Research Network. (2014). Comprehensive molecular characterization of
gastric adenocarcinoma. Nature, 513, 202–209).

2.8.5 Reconhecimento na 5ª edição da OMS

A classificação da OMS 2019 (FUKAYAMA; RUGGE; WASHINGTON, 2019) apresenta um es-

forço inicial para incorporar os achados moleculares do estudo TCGA 2014 (Cancer Genome

Atlas Research Network, 2014). A classificação molecular é citada no tópico prognóstico com

as seguintes palavras: "Perfil molecular: Os perfis moleculares recentemente identificados

não estão apenas envolvidos na carcinogênese gástrica, mas também podem ajudar a

identificar biomarcadores clinicamente relevantes e novos alvos terapêuticos potenciais no

futuro". Esse comentário é seguido da tabela ?? e ?? para ilustrar as associações entre os

tipos histopatológicos e os subtipos moleculares.
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Tabela 8 – Características dos subtipos moleculares de carcinoma gástrico propostos pelo TCGA.

Característica EBV-
positivo

MSI Genomica-
mente
estável

Cromos-
somicamente
instável

Frequência relativa 9% 22% 20% 50%

Histologia representativa Carcinoma
gástrico com
estroma lin-
foide

Nenhum Tipo difuso* Tipo intesti-
nal*

Ilha (Metilação) CIMP CIMP Raro Raro

MSI-alto (Metilação) Ausente Todos Ausente Ausente

CDKN2A (Metilação) Todos Frequente Raro Raro

MLH1 (Metilação) Ausente Frequente Raro Raro

Aberrações no número de
cópias

Raro Raro Raro Frequente

Mutações/alterações ge-
nômicas

Raro Frequente Raro Frequente

TP53 Raro Presente Raro Frequente

CDH1 Ausente Raro Presente Raro

PIK3CA Frequente Presente Raro Raro

RHOA Raro Raro Presente Raro

Fusão CLDN18-ARHGAP Ausente Raro Presente Raro

ARID1A Frequente Presente Raro Raro

Amplificação de RTK Raro Raro Raro Frequente

Mutação de RTK Raro Frequente Raro Raro

Amplificação de CD274
(PD-L1) e PDCD1LG2
(PD-L2)

Frequente Raro Raro Raro

Fonte: The Cancer Genome Atlas Research Network. (2014). Comprehensive molecular characterization of
gastric adenocarcinoma. Nature, 513, 202–209).

No entanto, embora essa iniciativa deva ser reconhecida como um passo positivo em

direção à integração de dados moleculares na rotina médica, a maneira como foi implemen-

tada peca por simplismo, pois as correlações propostas são frequentemente genéricas e

não capturam a complexidade da heterogeneidade tumoral observada no TCGA.

Por exemplo, o subtipo pouco coeso (incluindo células em anel de sinete) na OMS é

alinhado ao subtipo GS, enquanto o carcinoma, contudo, essa associação é criticamente

limitada pela falta de marcadores moleculares específicos validados que permitam uma

predição robusta no nível individual do paciente. O estudo TCGA de 2014 (Figura 1) ilustra
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claramente a associação entre subtipos moleculares e tipos histopatológicos de Lauren,

revelando uma heterogeneidade evidente: embora o tipo difuso seja o mais frequente no

subtipo GS (73% dos casos), nem todo tumor difuso é GS, e nem todo GS é difuso. Essa

sobreposição incompleta se aplica igualmente a outras características mencionadas, como

a localização anatômica ou o perfil mutacional, destacando que correlações simplistas po-

dem levar a classificações imprecisas e subestimar a variabilidade tumoral (Cancer Genome

Atlas Research Network, 2014). Assim, há uma necessidade urgente de sistemas de predição

mais robustos, incorporando algoritmos de aprendizado de máquina para análise integrada

de múltiplas regras, a fim de refinar essas associações e melhorar a aplicabilidade clínica.

2.9 CARCINOGÊNESE DOS SUBTIPOS MOLECULARES DO ADENOCARCINOMA GÁS-

TRICO

A carcinogênese gástrica é um processo multifatorial de transformação de células epi-

teliais normais em neoplasias invasivas, impulsionado por uma cascata de alterações am-

bientais, epigenéticas e genéticas que culminam em proliferação descontrolada, invasão

tecidual e metástases. Em outras palavras, trata-se de uma progressão gradual onde fato-

res como infecção por Helicobacter pylori, exposição a carcinógenos dietéticos e predispo-

sições genéticas interagem.

Os subtipos moleculares permitem uma compreensão mais individualizada da carcino-

gênese. Posto que dois pacientes com diagnóstico de tumores tubulares que pertençam

a subtipos diferentes passaram por processos de carcinogênese subjacente muito diferen-

tes.

2.9.1 Carcinogênese no Subtipo EBV-Positivo

A carcinogênese nos tumores EBV-positivos inicia-se com a infecção crônica pelo Epstein-

Barr virus, que integra seu genoma nas células epiteliais gástricas, desencadeando hiper-

metilação extrema de promotores de DNA (EBV-CIMP) e silenciamento de genes supres-

sores como CDKN2A (Cancer Genome Atlas Research Network, 2014). Em outras palavras, esse

processo viral promove uma reprogramação epigenética que ativa vias oncogênicas, no-

tadamente PI3K/AKT via mutações recorrentes em PIK3CA (80% dos casos), e amplifica

genes imunomoduladores como PD-L1 e PD-L2, sugerindo um papel central da imunoeva-
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são.

2.9.2 Carcinogênese no Subtipo MSI (Instável em Microssatélites)

Nos tumores MSI, a carcinogênese decorre de defeitos no sistema de reparo de DNA

por desemparelhamento (MMR), frequentemente devido ao silenciamento epigenético de

MLH1, levando a uma alta taxa de mutações somáticas (hipermutação) (Cancer Genome

Atlas Research Network, 2014). Em outras palavras, essa instabilidade acumula erros genéti-

cos em genes como KRAS, ARID1A e PTEN, gerando um ambiente imunogênico rico em

neoantígenos, o que favorece a resposta a imunoterapias.

2.9.3 Carcinogênese no Subtipo GS (Genomicamente Estável)

A carcinogênese no subtipo GS é impulsionada por mutações em genes de adesão ce-

lular, como RHOA, ou fusões envolvendo GTPases, resultando em uma morfologia pouco

coesa (Cancer Genome Atlas Research Network, 2014). Em outras palavras, essas alterações

comprometem a coesão celular, facilitando a invasão tecidual e metástase. Apesar da es-

tabilidade genômica, a heterogeneidade observada no TCGA sugere que outros fatores

epigenéticos ou microambientais ainda precisam ser elucidados, demandando estudos in-

tegrados para capturar a complexidade desse subtipo.

2.9.4 Carcinogênese no Subtipo CIN (Instabilidade Cromossômica)

Nos tumores CIN, a carcinogênese é marcada por aberrações cromossômica, com

ganhos e perdas cromossômicas, frequentemente associadas a mutações em TP53 (FU-

KAYAMA; RUGGE; WASHINGTON, 2019). Em outras palavras, essa desregulação mitótica ace-

lera a progressão tumoral, tornando esses tumores candidatos a terapias direcionadas

como inibidores de HER2. A prevalência desse subtipo (50% dos casos) reforça a ne-

cessidade de ferramentas bioinformáticas avançadas para monitorar a evolução clonal,

especialmente em contextos de resistência terapêutica.

Nos cânceres hematológicos, como leucemias e linfomas, são frequentemente obser-

vadas alterações cromossômicas específicas, como deleções e translocações, que es-

tão associadas a subtipos particulares da doença. Por exemplo, a translocação conhecida
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como cromossomo Filadélfia, é característica da leucemia mieloide crônica. Essas altera-

ções servem como marcadores diagnósticos e podem orientar o tratamento.

Em contraste, os tumores sólidos, como o adenocarcinoma gástrico, geralmente exibem

uma ampla variedade de alterações cromossômicas (heterogeneidade), incluindo aneu-

ploidias e rearranjos complexos, sem padrões específicos que possam ser diretamente

associados a subtipos tumorais. Essa heterogeneidade torna o diagnóstico baseado em

alterações cromossômicas específicas menos preciso em tumores sólidos. Além disso,

a INC em tumores sólidos pode resultar em uma diversidade de alterações genômicas

que contribuem para a progressão tumoral, sem um padrão uniforme. Portanto, enquanto

nos cânceres hematológicos as alterações cromossômicas específicas desempenham um

papel crucial no diagnóstico e na classificação, nos tumores sólidos a diversidade de alte-

rações genômicas torna essa abordagem menos eficaz (RAJAGOPALAN et al., 2003; THOMP-

SON; BAKHOUM; COMPTON, 2010).

2.10 PAINÉIS IMUNO-HISTOQUÍMICOS E SONDAS GENÔMICAS NA ESTRATÉGIA DI-

AGNÓSTICA DOS SUBTIPOS MOLECULARES

Um painel apenas utilizando imuno-histoquímica (IHQ) e hibridização in situ foi pro-

posto para chegar aos subtipos moleculares na prática médica. Enquanto o TCGA utilizou

6 plataformas moleculares incluindo sequenciamento do exoma e do transcriptoma, os au-

tores do painel propuseram uma maneira de classificar as amostras utilizando 10 recortes

histológicos, sendo um para sonda para EBV de hibridização in situ (ISH) e 9 para dife-

rentes anticorpos na IHQ (MLH1, PMS2, MSH2, MSH6, HER2, EGFR, MET, PTEN e P53)

(KIM et al., 2016). Em uma tese de doutorado um painel bem mais enxuto com 7 lâminas

sendo ISIH para EBV e IHQ (MLH1, MSH2, MSH6, PMS2, E-CADERINA e P53)(RAMOS,

2019).

A principal crítica a esses painéis é que os autores não levaram em conta a heteroge-

neidade das categorias propostas no TCGA, eles apenas realizaram seu painel, mas não

o compararam com amostras nas quais foram realizados os sequenciamentos, partiram do

conhecimento da literatura em antígenos presentes nas anormalidades moleculares inferi-

das em outros tipos de câncer e os utilizaram. É, portanto, de grande interesse verificar a

correlação entre esses marcadores e a classificação realizada por multi-ômicas no banco

de dados originais.
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No painel proposto por Ramos, o marcador P53 é de fato o único direcionado especifi-

camente para o subtipo CIN, o que representa uma simplificação significativa em relação

ao painel de Kim. A escolha de P53 como marcador é baseada na sua frequente muta-

ção no subtipo CIN, refletindo a instabilidade genômica característica deste subtipo. No

entanto, utilizar apenas o P53 para identificar tumores CIN pode ser insuficiente para cap-

turar toda a complexidade molecular desse subtipo. A instabilidade cromossômica é um

fenômeno que envolve uma ampla gama de alterações genéticas e epigenéticas, e focar

unicamente no P53 pode deixar de lado outras vias críticas que também contribuem para

o fenótipo CIN, como as amplificações de HER2, EGFR e MET observadas em outras

abordagens mais abrangentes, como a do TCGA.

A limitação de usar apenas P53 como marcador para CIN está na sub-representação

do espectro completo das alterações associadas ao subtipo, o que pode levar a uma sub-

diagnóstico ou até à falta de identificação de certos casos de CIN. Embora a simplificação

do painel seja uma vantagem em termos de custo e acessibilidade, a falta de correlação

direta com os achados multiômicos detalhados do TCGA compromete a precisão diagnós-

tica. Assim, enquanto o painel de Ramos oferece uma abordagem mais enxuta e prática,

ele pode não ser suficiente para capturar a heterogeneidade completa do subtipo CIN,

sugerindo a necessidade de integrar mais marcadores ou validar a eficácia de P53 em

conjunto com outras alterações moleculares em amostras já analisadas pelo TCGA.

Uma maneira relativamente simples de checar se as intuições dos autores dos pai-

néis estão corretas é verificar por métodos de bioinformática se, nas amostras originais

do TCGA cujos dados de mutações somáticas foram disponibilizados, a correlação com

os antígenos propostos. Seguindo esse raciocínio também verificar se há casos que não

apresentam esses antígenos e que outras maneiras haveria de identificá-los por IHQ, ou,

por outro lado, se todos os marcadores são de fato propostos. Embora, por exemplo, no

subtipo instabilidade microssatélite (MSI), que foi verificada na amostra do TCGA pelo

grande aumento de mutações e por hipermetilação, com a mutação nos genes de re-

paro, verificada no painel por MLH1, MSH2, MSH6 e PMS2, no caso do câncer gástrico

essa associação precisa ainda ser provada no caso específico por ser concebível que ou-

tros mecanismos estejam atuando. Essa verificação da significância entre os marcadores

imuno-histoquímicos e a mutação somática necessária à expressão do referido antígeno é

importante para estabelecer a sensibilidade e especificidade dos painéis.
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2.11 GENES ABORDADOS NA TESE

Na presente sessão são citadas as associações conhecidas dos genes tratados na pre-

sente tese. Tanto os que compõe os painéis imuno-histoquímicos propostos na literatura

como os identificados aqui por aprendizado de máquina e apresentados nos Capítulos. A

tabela 9 lista os genes citados em ordem alfabética servindo para consulta sobre associa-

ções conhecidas com carcinogênese e disponibilidade de Anticorpos Ac para diagnóstico

imuno-histoquímico de variantes genéticas no gene em questão.

Tabela 9 – Resumo funcional dos genes abordados e sua relevância

em carcinogênese.

Gene Tipo Funcio-

nal Principal

Associação com Carcinogênese Ac

ARID1A Supressor

Tumoral

Perda de função em câncer gástrico, de ovário e

endométrio. Promove instabilidade epigenética e

progressão tumoral.

Sim

ATM Reparo de DNA Mutações aumentam a suscetibilidade a tumores

(mama, gástrico). Sua perda favorece instabilidade

genômica e metástase.

Sim

BHLHB9 Supressor

Tumoral (Po-

tencial)

Silenciamento associado a neoplasias colorretais,

sugerindo que sua perda contribui para a progres-

são de tumores gastrointestinais.

Raros

BOC Sinalização Ce-

lular

Expressão aberrante associada a meduloblasto-

mas e sarcomas. Pode ativar a via oncogênica

Hedgehog.

Raros

CD14 Resposta

Imune

Pode promover imunoescapismo ou inflamação

crônica que facilita a carcinogênese.

Sim

Continua na próxima página
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Tabela 9 – Resumo funcional dos genes abordados e sua relevância

em carcinogênese. (continuação)

Gene Tipo Funcio-

nal Principal

Associação com Carcinogênese Ac

CDH1 Supressor Tu-

moral / Adesão

Perda de função facilita invasão e metástase. Mu-

tações germinativas causam câncer gástrico difuso

hereditário.

Sim

CHD1 Remodelador

de Cromatina

Deleções são frequentes no câncer de próstata,

associadas a agressividade tumoral e instabilidade

genômica.

Sim

DOCK3 Motilidade Ce-

lular

Expressão aberrante em gliomas pode aumentar a

invasão e motilidade tumoral.

Sim

EGFR Oncogene Mutações de ganho de função e amplificação im-

pulsionam o crescimento de tumores de pulmão,

glioblastoma e outros.

Sim

FAS Apoptose Via frequentemente desativada em tumores sóli-

dos, contribuindo para o escape da morte celular

programada.

Sim

GGNBP2 Supressor

Tumoral (Po-

tencial)

Perda de expressão observada em tumores testi-

culares, sugerindo um papel na supressão tumoral.

Raros

GLIS2 Fator de Trans-

crição

Perda de função pode favorecer a progressão de

tumores renais e outros carcinomas.

Raros

HERC2 E3 Ubiquitina

Ligase

Mutações germinativas associadas à predisposi-

ção a tumores, possivelmente pela modulação da

função do p53.

Sim

Continua na próxima página
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Tabela 9 – Resumo funcional dos genes abordados e sua relevância

em carcinogênese. (continuação)

Gene Tipo Funcio-

nal Principal

Associação com Carcinogênese Ac

HER2 Oncogene Amplificação e superexpressão em câncer de

mama e gástrico conferem crescimento agressivo

e são alvos terapêuticos.

Sim

KDM2B Oncogene (Epi-

genética)

Superexpressão em leucemias e carcinomas, re-

prime genes supressores de tumor e promove pro-

liferação.

Sim

KMT2D Supressor

Tumoral (Epi-

genética)

Frequentemente mutado em linfomas e carcino-

mas; a perda de função facilita a transformação

maligna.

Sim

MEF2C Fator de Trans-

crição

Reordenamentos em leucemias promovem auto-

renovação. Em tumores sólidos, pode contribuir

para angiogênese.

Sim

MET Oncogene Mutações ativadoras e amplificações são drivers

em carcinomas gástricos, renais e de pulmão, esti-

mulando invasão e metástase.

Sim

MLH1 Reparo de DNA

(MMR)

Mutações causam a Síndrome de Lynch. A perda

de função leva à instabilidade de microssatélites

(MSI).

Sim

MSH2 Reparo de DNA

(MMR)

Mutações causam a Síndrome de Lynch, levando

à instabilidade de microssatélites e acelerando a

evolução tumoral.

Sim

MSH6 Reparo de DNA

(MMR)

Mutações associadas à Síndrome de Lynch e a

cânceres de próstata e endométrio.

Sim

Continua na próxima página



78

Tabela 9 – Resumo funcional dos genes abordados e sua relevância

em carcinogênese. (continuação)

Gene Tipo Funcio-

nal Principal

Associação com Carcinogênese Ac

MUC16 Biomarcador /

Mucina

Superexpresso em câncer de ovário, onde pode

promover disseminação peritoneal e evasão

imune. Conhecido como CA125.

Sim

MUC6 Mucina Prote-

tora

Perda de expressão está associada à progressão

para metaplasia intestinal, precursora do câncer

gástrico.

Sim

PIK3CA Oncogene Mutações de ganho de função são drivers em car-

cinomas de mama, cólon e endométrio, ativando

vias de crescimento.

Sim

PMS2 Reparo de DNA

(MMR)

Mutações causam uma forma da Síndrome de

Lynch. Sua perda contribui para a instabilidade de

microssatélites.

Sim

PRCC Fusão Gênica

Oncogênica

Translocações com o gene TFE3 produzem proteí-

nas de fusão oncogênicas no carcinoma de células

renais.

Raros

PTEN Supressor

Tumoral

Perda de função é comum em glioblastomas e cân-

cer de próstata, resultando em ativação da via pró-

sobrevivência PI3K/AKT.

Sim

PTPN14 Supressor

Tumoral (Via

Hippo)

Perda de função promove proliferação tumoral ao

desinibir o oncogene YAP.

Sim

Continua na próxima página
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Tabela 9 – Resumo funcional dos genes abordados e sua relevância

em carcinogênese. (continuação)

Gene Tipo Funcio-

nal Principal

Associação com Carcinogênese Ac

SDR9C7 Biomarcador

(Metabolismo)

Expressão aumentada em carcinomas de cabeça

e pescoço, podendo atuar como biomarcador de

prognóstico.

Raros

SEC31A Fusão Gênica

Oncogênica

Fusões com o gene ALK geram um receptor cons-

titutivamente ativo com potencial oncogênico.

Não

SYNE1 Estabilidade

Genômica

Deleções podem comprometer a integridade nu-

clear, favorecendo a instabilidade do genoma e a

progressão de carcinomas.

Sim

TP53 Supressor

Tumoral

"Guardião do Genoma". Mutado em >50% dos cân-

ceres, abolindo a supressão tumoral. Mutações

germinativas causam a Síndrome de Li-Fraumeni.

Sim

ZBTB41 Fator de Trans-

crição

Mutações identificadas em câncer gastrointestinal,

sugerindo contribuição para a desregulação trans-

cricional.

Raros

MMR: Mismatch Repair (Reparo de Erros de Pareamento). A disponibilidade de anticorpos foi baseada nas

informações do texto de origem.

2.12 REDES NEURAIS CONVOLUCIONAIS NO DIAGNÓSTICO HISTOPATOLÓGICO

DO CÂNCER GÁSTRICO

Outra abordagem de aprimoramento do diagnóstico do câncer em bioinformática é a In-

teligência Artificial IA aplicada a problemas de visão computacional VC como classificação

e reconhecimento de objetos em imagens histopatológicas digitalizadas.

A própria digitalização de imagens de lâminas inteiras (Whole Slide Imaging - WSI) é
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recente. O primeiro sistema de patologia digital aprovado para diagnóstico primário foi o

Philips IntelliSite Pathology Solution, aprovado pela FDA (Food and Drug Administration

dos EUA) em 2017 e publicado em 2018. Isso foi um marco histórico, permitindo o uso

de WSI para diagnósticos primários em patologia cirúrgica, em vez de microscópios tra-

dicionais (EVANS et al., 2018). Embora a fotografia digital de campos específicos seja bem

mais antiga, contemporânea da própria fotografia digital, já que o microscópio óptico é es-

sencialmente lentes de aumento, para produzir WSI confiáveis foi necessário o avanço do

poder computacional para costurar milhares de imagens em uma única imagem digital da

lâmina inteira. Esse é um avanço disruptivo por proporcionar o aumento do diálogo entre

especialistas que podem agora ver a mesma WSI estando em locais diferentes.

Assim, em 2020, quando da escrita do projeto da presente tese e do projeto de inovação

que a acompanha, a patologia digital havia sido publicizada há somente dois anos. Durante

o período do presente trabalho muito aconteceu no campo. Com o desenvolvimento de

modelos de redes neurais treinadas por aprendizado profundo (deep learning) capazes

de auxiliar no diagnóstico patológico. As redes neurais têm o potencial de impulsionar

o desenvolvimento da patologia enquanto área do conhecimento por promover padrões

quantitativos de análise e diagnóstico.

Foram publicados trabalhos demonstrando a eficiência de IA’s no reconhecimento dos

padrões histomorfológicos do câncer gástrico (IIZUKA et al., 2020; HUANG, 2021; JANG; SONG;

LEE, 2021; KANAVATI et al., 2021) utilizando aprendizado supervisionado a partir de imagens

rotuladas por patologistas. Jang et al. (2021) demonstraram que uma CNN Inception-v3 foi

capaz de distinguir adenocarcinomas gástricos diferenciados vs. indiferenciados e mucino-

sos vs. não-mucinosos, alcançando AUCs de 0,932 e 0,979, respectivamente. De forma

semelhante, Kanavati & Tsuneki (2021) avaliaram o desempenho de CNNs na classifica-

ção do adenocarcinoma difuso (tipo Lauren), utilizando mais de 2.900 biópsias de múltiplos

hospitais japoneses. Os modelos atingiram AUCs próximos de 0,95–0,99 em diferentes

coortes, mostrando que a IA pode capturar os padrões histológicos reconhecidos por pa-

tologistas.

Esse avanço foi possibilitado pelo aumento do poder computacional devido à computa-

ção em nuvem. Consistiu no desenvolvimento das técnicas de aprendizado profundo, em

especial das redes neurais convolucionais (Convulotional Neuro Networks — CNN). Do

ponto de vista computacional, as imagens são matrizes matemáticas que podem ser reco-

nhecidas por modelos profundos treinados por métodos de aprendizado supervisionados.
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Para uma introdução à visão computacional vide 2.6.4

CNNs podem identificar câncer em imagens histológicas ao serem treinadas em con-

junto de dados (datasets) rotulados por especialistas utilizando aprendizado supervisio-

nado (IIZUKA et al., 2020; HUANG, 2021). Esses datasets são conjuntos de imagens sele-

cionadas com tamanho padronizado acompanhadas de rótulos, ou seja, de informações

indicando, por exemplo, se é uma imagem de câncer ou não, ou, por exemplo, que tipo de

câncer, etc. Quando são utilizados datasets rotulados por patologistas para o treinamento

supervisionado de CNN apresenta acurácia comparável ao de humanos no reconheci-

mento dos padrões específicos associados ao câncer para os quais foi treinado. As CNN’s

demonstram resultados com grande acurácia em uma quantidade crescente de problemas

de visão computacional, permitindo análises quantitativas onde antes só era possível aná-

lises qualitativas. Além de aplicações práticas, as CNN tem ainda grande potencial como

ferramenta de investigação científica.

2.13 SUPERVISÃO MOLECULAR DE REDES NEURAIS CONVOLUCIONAIS NO CÂN-

CER GÁSTRICO

Do ponto de vista da visão computacional, um grande desafio a ser superado é a limi-

tação à rotulação humana para o desenvolvimento. Ou seja, o modelo desenvolvido estará

limitado ao que os observadores humanos já identificaram e informaram na rotulação do

dataset de treinamento e essa rotulação é feita por anotação humana. A principal estra-

tégia na ciência da computação é a utilização de métodos não-supervisionados. Um bom

exemplo desse tipo de abordagem em imagens histopatológicas é o trabalho de (LEE et

al., 2022) que usou CNN para extrair atributos depois usou métodos de clustering não

supervisionado e finalmente usou florestas aleatórias (random forests) para associar os

agrupamentos (clusters) encontrados com informações clinicamente significativas. Assim,

em diversas aplicações da visão computacional pesquisadores buscam estratégias de trei-

namento não-supervisionado para superar a limitação dos rótulos humanos e potencializar

as CNN como ferramental de investigação científica.

No campo específico do reconhecimento de imagens histológicas foi proposta como so-

lução disruptiva a ideia de supervisão molecular no treinamento de redes neurais (MONJO

et al., 2022). Com o advento das ômicas e da visão computacional surgiu uma oportuni-

dade de usar (deep learning) para descoberta de fenótipos a partir de dados moleculares
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conhecidos. Durante a história do desenvolvimento da genética a ordem dos fatores foi

a partir de um fenótipo conhecido pesquisar quais acontecimentos moleculares estavam

associados ao fenótipo em questão. Esse foi o caminho desde os trabalhos de Mendel até

as recentes investigações multi-ômicas para compreensão do câncer. O que impulsiona

essa busca em uma direção diferente é o fato conhecido que o sequenciamento de nova

geração trouxe abundância de dados com necessidade do desenvolvimento de técnicas

de interpretação. Para uma introdução ao genoma e ao sequenciamento vide 2.5.2.

A supervisão molecular é, assim, a estratégia de pesquisa de oferecer dados mole-

culares como rótulos moleculares em datasets de imagens histopatológicas, sem rótulos

humanos, e a partir de treinamento supervisionado clássico descobrir atributos profundos

(deep features, que devido a sua relação direta com dados genéticos podem ser consi-

derado fenótipos profundos (deep phenotype. (YURKOVICH et al., 2020) Fenótipo profundo

refere à caracterização detalhada e complexa de fenótipos (características identificáveis)

de uma condição, obtida a partir de análises avançadas. Nesse contexto, utiliza-se apren-

dizado profundo (deep learning) para extrair padrões complexos de dados, especialmente

em imagens histopatológicas.

Na supervisão molecular, portanto, embora seja o treinamento supervisionado, não há

o viés da supervisão humana. Muitas vezes os rótulos moleculares são resultantes de

aprendizado não-supervisionado, como é o caso na presente tese. (Cancer Genome Atlas

Research Network, 2014) Monjo e colaboradores (MONJO et al., 2022) demonstraram um mo-

delo capaz de identificar os diferentes tipos celulares em amostras de câncer de mama

utilizando dados de transcriptômica espacial para treinar a CNN. O Slide-seq (RODRIGUES;

SILVA; FONSECA, 2019) é uma técnica que marca com barcodes de localização conhecida

no eixo x e y e depois sequência, permitindo um resultado de transcriptômica espacial. O

que é muito útil para compreender as diferenças entre as linhagens de um mesmo tecido

já que atinge um transcriptoma de single cell. Trata-se de uma técnica nova, de alta tecno-

logia e alto custo mas que aponta para o potencial futuro dessa abordagem de treinamento

de redes neurais.

No tema específico da aplicação da supervisão molecular na classificação de imagens

histopatológicas nos subtipos moleculares do CG dois trabalhos se destacam (WANG et al.,

2022; FLINNER et al., 2022). Wang et al. (2022) introduziram um modelo para predição dos

quatro subtipos do TCGA (CIN, MSI, EBV, GS). Já Flinner et al. (2022) aplicaram deep

learning nos quatro subtipos do TCGA e compararam a testes moleculares independentes
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e imuno-histoquímica. Ambos com resultados signitifcativos.

Wang et al. (WANG et al., 2022) propuseram o Deep Ensemble for Molecular Subtyping,

uma abordagem de ensemble baseada em deep learning que integra múltiplos classifica-

dores de uma mesma rede (EfficientNEt-v2) para prever os subtipos moleculares direta-

mente de imagens histopatológicas coradas com hematoxilina-eosina (H&E) do TCGA. O

modelo foi treinado em um conjunto de dados derivado de 295 amostras de adenocarci-

noma gástrico do TCGA, divididas em tiles (pequenos patches de imagem) para análise

granular. No nível de tile, alcançou áreas sob a curva ROC (AUROC) de 0.785 para o

subtipo CIN (instabilidade cromossômica), 0.668 para MSI (instabilidade de microssatéli-

tes), 0.762 para EBV (positivo para vírus Epstein-Barr) e 0.811 para GS (genomicamente

estável). No nível de paciente, onde as predições de tiles são agregadas para uma classifi-

cação final, os valores de AUROC foram ainda mais elevados: 0.897 para CIN, 0.764 para

MSI, 0.890 para EBV e 0.898 para GS. Esses resultados demonstram uma performance

robusta, especialmente para os subtipos CIN, EBV e GS, com o ensemble superando mo-

delos individuais e reduzindo o overfitting e melhorando a generalização.

Por sua vez, Flinner et al. (FLINNER et al., 2022) desenvolveram uma rede neural con-

volucional (CNN) de ensemble com técnica de bagging para prever os quatro subtipos

moleculares do TCGA diretamente de slides H&E, comparando o desempenho com testes

imuno-histoquímicos (IHC) padrão (para MLH1, PMS2, HER2 e EBER-ISH) e análises mo-

leculares independentes (como sequenciamento para MSI e detecção de EBV). O estudo

utilizou uma coorte de 438 amostras de GC, com validação externa em conjuntos inde-

pendentes. Os resultados mostraram que o modelo de deep learning superou o IHC na

acurácia geral de predição dos subtipos, com uma acurácia média de 85-90% para clas-

sificação binária e AUROC acima de 0.85 para subtipos como EBV e CIN em validação

cruzada. Especificamente, para EBV, o modelo alcançou sensibilidade de 92% e precisão

de 88%, identificando características como linfócitos infiltrantes e padrões glandulares;

para MSI, AUROC de 0.82, destacando heterogeneidade intratumoral em 15-20% dos ca-

sos; para CIN, AUROC de 0.89, correlacionado com amplificações em HER2; e para GS,

AUROC de 0.80, associado a tipos difusos. Em comparação ao IHC, que teve acurácia

de cerca de 75-80% e falhas em casos heterogêneos, o deep learning identificou casos

com predições mistas (intra-tumoral heterogeneity ) em 10-15% das amostras, sugerindo

que o método pode detectar variações não capturadas por marcadores tradicionais. Os

autores enfatizam que o deep learning é superior em cenários de triagem, reduzindo a ne-
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cessidade de testes moleculares caros e permitindo uma abordagem mais personalizada,

embora recomendem validação adicional em coortes maiores para robustez clínica.
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3 CAPÍTULO 1: G.SUBTVISION – SUBTIPAGEM MOLECULAR DO CÂNCER GÁS-

TRICO COM MÉTODOS DE ENSEMBLE DE REDES NEURAIS CONVOLUCIONAIS

(CNNS)

RESUMO

A classificação molecular do adenocarcinoma gástrico em 4 subtipos: Instabilidade

cromossômica (CIN), instabilidade microssatélite (MSI), vírus Epstein-Barr (EBV) e genô-

mica estável (GS) depende de métodos onerosos e de acesso limitado. A classificação

de imagens histopatológicas por redes neurais convolucionais (CNNs) é uma alternativa

promissora. Este estudo propõe o G.Subtvision (gastro subtypes computational vision), en-

semble multiarquitetura de CNNs (MobileNetV2, ShuffleNet e GoogLeNet) treinadas com

rótulos moleculares para predição multiclasse do subtipo do adenocarcinoma gástrico. Me-

todologia: A partir de 263 casos, com 476 lâminas (TCGA-STAD). O treinamento ocorreu

em diversas distribuições de treino e validação k-fold, k=10. Avaliação no nível de tile e

paciente superou a reprodução controle de modelo previamente publicado em precisão

por 4 pontos percentuais na média e 14 pontos no subtipo MSI. O G.Subtvison avança

incrementalmente a subtipagem molecular do câncer gástrico por CNN. Código e material

suplementar disponíveis.
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3.1 INTRODUÇÃO

O consórcio The Cancer Genome Atlas (TCGA) estabeleceu, em 2014, uma classifi-

cação molecular em quatro grupos principais: tumores associados ao vírus Epstein-Barr

(EBV), instabilidade de microssatélites (MSI), instabilidade cromossômica (CIN) e genô-

mica estável (GS). Esta subtipagem tem impacto direto na estratificação prognóstica e na

indicação terapêutica, uma vez que tumores EBV e MSI, por exemplo, demonstram melhor

resposta à imunoterapia, enquanto tumores CIN e GS apresentam comportamento clínico

distinto e resistência a determinados esquemas quimioterápicos (Sohn et al., 2017). Ape-

sar de seu valor clínico, a subtipagem molecular depende de técnicas laboratoriais caras

e pouco acessíveis, como hibridização in situ (ISH), imunohistoquímica (IHC) ampliada e

sequenciamento genômico em larga escala. Estas abordagens não apenas elevam custos,

como demandam infraestrutura tecnológica nem sempre disponível em países em desen-

volvimento, além de prolongarem o tempo para decisão terapêutica. Este cenário motiva

a busca por métodos complementares capazes de aproximar a classificação molecular da

prática clínica diária (FLINNER et al., 2022; WANG et al., 2022).

Nos últimos anos, o avanço da patologia digital e do aprendizado profundo (deep le-

arning) trouxe a possibilidade de extrair assinaturas moleculares latentes diretamente de

imagens histopatológicas coradas em H&E (Hematoxilina e Eosina). Redes neurais con-

volucionais (CNNs) têm sido utilizadas para predizer alterações moleculares e biomarca-

dores de forma supervisionada, explorando a relação entre padrões morfológicos e perfis

genômicos. Trabalhos pioneiros, como os de Coudray et al. (2018) em câncer de pulmão

e Kather et al. (2019) em câncer colorretal, abriram caminho para este campo, posterior-

mente expandido para o adenocarcinoma gástrico. Diversos estudos exploraram a super-

visão molecular em câncer gástrico.

Flinner et al. (2022) mostraram que modelos de deep learning baseados em H&E po-

dem predizer subtipos do TCGA, mas com desempenho limitado em GS e MSI, desta-

cando a dificuldade em classes menos representadas. Jeong et al. (2022) desenvolveram

um classificador para EBV, alcançando AUC-ROC elevado em nível de tiles, embora com

precisão moderada em nível de pacientes, sugerindo utilidade para triagem clínica. Zheng

et al. (2022) propuseram o modelo de aprendizado profundo EBVNet e mostraram que a

fusão humano–máquina supera tanto modelos isolados quanto patologistas, ressaltando a

importância da integração entre Inteligência Artificial (IA) e prática médica.
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Em outra perspectiva, Zhou et al. (2023) aplicaram CNNs para predizer resposta à

quimioterapia neoadjuvante, ampliando o escopo da patologia digital para biomarcadores

terapêuticos. Finalmente, a revisão sistemática de Cifici et al. (2022) consolidou evidências

de que CNNs podem predizer mutações (TP53, KRAS, BRAF), instabilidade de microssa-

télites e EBV diretamente de H&E, mas destacou a falta de validação externa robusta como

limitação central do campo.

Um marco específico para o câncer gástrico foi o estudo de Wang et al. (2022), que in-

troduziu o modelo DEMoS (Deep learning-based Ensemble approach for Molecular Subty-

ping). Utilizando o modelo EfficientNet em abordagem de ensemble, os autores obtiveram

resultados consistentes, mas ainda insuficientes em classes desbalanceadas, sobretudo

EBV e GS. Essa limitação abriu espaço para novas investigações focadas em melhorar

a robustez dos modelos para essas categorias. No presente estudo, optamos por combi-

nar três arquiteturas de redes neurais convolucionais com características complementares:

MobileNetV2, ShuffleNet e GoogLeNet. A MobileNetV2, proposta por Sandler et al. (2018),

introduziu o conceito de inverted residuals e linear bottlenecks, permitindo modelos mais

leves e eficientes sem perda expressiva de acurácia, o que a torna particularmente ade-

quada para grandes volumes de tiles histopatológicos, reduzindo o custo computacional. A

ShuffleNet, desenvolvida por Zhang et al. (2018), utiliza a técnica de channel shuffle para

otimizar a comunicação entre grupos convolucionais, alcançando alta eficiência em dispo-

sitivos de baixo custo computacional, sendo útil para cenários em que a escalabilidade do

processamento de milhares de tiles é um desafio. Já a GoogLeNet (Inception v1), intro-

duzida por Szegedy et al., 2015, marcou a transição para arquiteturas mais profundas e

modulares, com o uso de inception modules que permitem captar padrões em múltiplas

escalas dentro de uma mesma camada.

Essa diversidade arquitetural garante que cada rede explore aspectos distintos da mor-

fologia tumoral, aumentando a chance de identificar padrões histopatológicos associados

a subtipos moleculares. Assim, a combinação dessas arquiteturas em um ensemble multi-

arquitetura tem como objetivo potencializar a robustez do modelo, explorando simultanea-

mente eficiência computacional (MobileNetV2 e ShuffleNet) e capacidade de extração de

características complexas (GoogLeNet).

O presente trabalho insere-se nesse contexto, propondo ensembles multiarquitetura

com o objetivo de aprimorar a predição dos subtipos moleculares do adenocarcinoma gás-

trico a partir de imagens histopatológicas do TCGA-STAD. O diferencial metodológico con-
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siste em combinar arquiteturas distintas usando métodos de votação diferentes, isto é, em

hard e soft voting, visando capturar padrões complementares e reduzir o viés de mode-

los individuais. Além disso, enfatizamos a precisão como métrica prioritária, Em trajetórias

diagnósticas existem dois papéis distintos para testes: (i) testes de triagem/triage (ou de

rastreio), nos quais privilegia-se alta sensibilidade (recall) para reduzir falsos-negativos

e “não perder casos”; e (ii) testes confirmatórios para diagnóstico diferencial, nos quais

privilegia-se alta especificidade e alto valor preditivo positivo (PPV/precisão) para redu-

zir falsos-positivos e “confirmar” com segurança antes de uma decisão terapêutica. Em

contextos de subtipagem molecular do câncer gástrico, o uso pretendido é o diagnóstico

diferencial; portanto, precisão/PPV deve ser enfatizada à frente de recall, pois decisões

errôneas por falso-positivo podem induzir terapias inadequadas e risco direto ao paciente.

Essa priorização está alinhada às recomendações clássicas de avaliação de testes diag-

nósticos (uso de PPV/NPV na prática clínica real, dependência da prevalência e da pro-

babilidade pré-teste) e às diretrizes para estudos de acurácia diagnóstica (BOSSUYT et al.,

2015)

O presente estudo propõe três contribuições principais: Avanço metodológico: ensem-

bles multiarquitetura mostraram ganhos em precisão e F1-score, em especial para EBV

e GS, subtipos minoritários e de difícil classificação. Comparação direta com a literatura:

demonstramos ganhos substanciais em relação a Wang et al. (2022), especialmente em

recall de EBV (+32–34 pontos em nível de tiles), além de aproximações e contrastes com

Flinner, Jeong, Zheng e Zhou. Pensamento clínico: ao priorizar precisão, destaca-se aqui

a importância dos modelos computacionais serem ferramentas de apoio à tomada de de-

cisão confiável, capazes de minimizar danos iatrogênicos de falsos positivos.

3.2 METODOLOGIA

3.2.1 Dataset: Conjunto de Dados

O estudo foi realizado utilizando o projeto Stomach Adenocarcinoma (STAD) da base

pública do The Cancer Genomic Atlas (TCGA) acessível pelo site (National Cancer Institute,

2025).
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3.2.1.1 Imagens de lâminas inteiras

O TCGA disponibiliza imagens de lâminas inteiras (do inglês, Whole Slide Image, WSI)

coradas em hematoxilina e eosina (HE) em formato SVS de alta qualidade produzidas por

patologia digital a 40x, vide Figura 1. Foram utilizadas 476 lâminas inteiras (referentes a

263 casos do STAD) distribuídas associadas aos rótulos dos subtipos da seguinte maneira:

CIN (232 lâminas), seguida por MSI (114 lâminas), GS (73 lâminas) e EBV (57 lâminas).

Figura 1 – Imagem de uma WSI inteira.

Fonte: Extraída de The Cancer Genome Atlas (TCGA), Cancer Genome Atlas Research Network (2014)

3.2.2 Pré-processamento das imagens

O pré-processamento das imagens compreendeu três etapas principais que podem ser

observada da Figura 2: (I) segmentação em tiles de 224×224 px; (II) detecção e exclusão

de imagens borradas; e (III) normalização de cor.
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3.2.2.1 Segmentação de Imagem

O Corte das WSI (Tiling) foi realizado nas 476 imagens de lâminas inteiras, classifica-

das em conjuntos segundo as 4 classes distintas em conformidade com o subtipo molecu-

lar (CIN, MSI, EBV, GS). Foram incluídos nos metadados da WSI os rótulos corresponden-

tes aos casos. Foi então utilizada a função deepzoom da biblioteca open slide na versão

1.3.1 (OpenSlide, 2023) com fator de ampliação de 10x. As WSI foram cortadas em tiles no

formato de 224x224 pixels. Foram removidos aqueles contendo mais de 50% de fundo. Fo-

ram removidas também as imagens borradas utilizando o filtro Laplaciano conforme mostra

esquema 2. Ao final desse processo, foram obtidos na ordem de 1.500.000 tiles, com dis-

tribuição entre os subtipos moleculares CIN (maior proporção, acima de 400.000 tiles), MSI

(cerca de 200.000), GS (aproximadamente 150.000) e EBV (em torno de 150.000).

3.2.2.2 Normalização de cor

Para abordar a variabilidade na coloração das imagens, implementamos a normaliza-

ção de cor baseada no método Macenko, conforme eq 3.1. aplicado com uso de um modelo

de referência para ajustar ao espaço cromático e padronização de luminosidade (MACENKO

et al., 2009).

𝐼norm = 𝐼0 · exp (−decomv(𝑂𝐷fonte, 𝑆fonte) · 𝑆alvo) (3.1)

onde:

• 𝐼norm é a intensidade do pixel na imagem normalizada (em RGB)

• 𝐼0 é a intensidade de luz transmitida (geralmente 255 para imagens de 8 bits)

• 𝑂𝐷fonte = − log10(𝐼fonte/𝐼0) é a Densidade Óptica da imagem original

• 𝑆fonte é a matriz de vetores extraída da imagem original

• decomv é o processo de deconvolução

• 𝑆alvo é a matriz de vetores da imagem de referência
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Figura 2 – Fluxograma do corte e processamento das imagens do TCGA.

Fonte: O autor

3.3 AGRUPAMENTOS: TREINO, VALIDAÇÃO E TESTE

Nesta etapa, foram criados aleatoriamente dois grupos de tiles pré-processados: Um

grupo treino/validação com 380 lâminas (1.350.000) tiles e um grupo teste hold out com

96 lâminas (179.952 tiles), conforme a distribuição da Figura 3.

3.3.1 Grupo Treinamento/Validação

Os grupos de treinamento e validação para cada modelo (explicados no tópico treina-

mento abaixo) foram separados utilizando o método K-fold. Uma utilização parcial do cross

validation com o objetivo apenas de gerar múltiplas separações aleatórias de conjuntos de

treinamento e validação na intenção de reduzir viés em grupos de validação de classes

minoritárias. Na proporção 90/10. Consequentemente, treinando 10 modelos. Foi utilizado

K=10 e, portanto, foram treinados 10 modelos para cada arquitetura (explicadas no tópico

treinamento abaixo) , variando os grupos de teste e validação.
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Figura 3 – Proporção da distribuição dos tiles entre os grupos

Fonte: O autor (2025).

3.3.2 Grupo Teste

96 lâminas foram separadas para uso no teste final (hold out). Medidas foram tomadas

para evitar contaminação das imagens de lâminas inteiras do conjunto teste com os outros

conjuntos. Após análise da distribuição de lâminas no grupo teste, foram acrescentados

aleatoriamente mais casos das classes minoritárias. Totalizando 96 lâminas de 82 casos

(179.952 tiles). Distribuídos CIN: 89.707 tiles, provenientes de 47 lâminas inteiras (WSIs),

correspondentes a 41 pacientes. MSI: 37.973 tiles, de 23 WSIs, representando 18 pacien-

tes. GS: 27.191 tiles, de 15 WSIs, relativos a 13 pacientes. EBV: 25.081 tiles, oriundos de

11 WSIs, correspondentes a 10 pacientes. Essa distribuição fica melhor evidenciada pelas

Figuras [4 - 5 - 6]
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Figura 4 – Distribuição do Grupo Teste (Hold-out)

Fonte: O autor (2025).

Figura 5 – Distribuição de tiles por classe

Fonte: O autor (2025).
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Figura 6 – Distribuição de imagem de lâmina por paciente por classe

Fonte: O autor (2025).

3.4 TREINAMENTO

O treinamento foi desenvolvido utilizando a versão Python 3.8.20, em um ambiente

virtual criado para isolar as dependências e garantir a reprodutibilidade dos resultados.

Foram utilizadas as bibliotecas scikit-learn 1.2.2, Pandas 1.5.3, PyTorch 2.4.1+cu118 com

documentação detalhada e suas dependências. Foram treinadas quatro redes neurais con-

volucionais EfficientNet, MobileNetV2, GoogleNet e ShuffleNet. Todas as redes foram inici-

alizadas com pesos pré-treinados no ImageNet e tiveram suas camadas finais adaptadas

para a classificação dos quatro subtipos moleculares do adenocarcinoma gástrico (EBV,

MSI, GS e CIN), utilizando os tiles do conjunto de treinamento/validação. A otimização

foi realizada com o algoritmo Adam, empregando taxa de aprendizado inicial de 0,001 e

weight decay de 1 × 10−4. A taxa de aprendizado foi ajustada de forma adaptativa pelo

agendador ReduceLROnPlateau, configurado para reduzir a learning rate em um fator de

0,5 sempre que o valor da função de custo no conjunto de validação permanecesse inal-

terado por três épocas consecutivas, considerando um limiar de 1 × 10−8. O treinamento

foi conduzido por até 50 épocas, com mecanismo de Early Stopping e paciência de cinco

épocas, interrompendo automaticamente o processo caso não fosse observada melhoria

na função de custo no conjunto de validação nesse intervalo. Para cada arquitetura, fo-

ram treinados 10 modelos independentes, correspondendo aos 10 folds definidos na etapa
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anterior. Durante o treinamento, a função de custo adotada foi uma composição de duas

funções: a função padrão de entropia cruzada (Cross Entropy Loss, ℒ𝐶𝐸) e a Macro Soft

F1 Loss (ℒ𝐹1). Especificamente, a loss final foi definida como a média aritmética dessas

duas funções:

ℒ =
1

2

(︀
ℒ𝐶𝐸 + ℒ𝐹1

)︀
Essa formulação teve como objetivo combinar a estabilidade da Cross Entropy Loss na

otimização com a capacidade da Macro Soft F1 Loss de promover melhor equilíbrio en-

tre precisão (precision) e sensibilidade (recall) nas diferentes classes, especialmente em

cenários de desbalanceamento.Durante o treinamento, além da função de custo padrão

(Cross Entropy Loss), foi incorporada a função Macro Soft F1 Loss, com o objetivo de apri-

morar o equilíbrio entre precisão (precision) e sensibilidade (recall) nas diferentes classes.

Os valores intermediários, como a função de custo no conjunto de treino e no conjunto de

validação, bem como a taxa de aprendizado, foram monitorados e registrados no Tensor

Board para acompanhamento e análise posterior. Ao término de cada fold, o modelo de

melhor desempenho foi armazenado, e os gráficos de evolução das funções de custo foram

exportados para análise visual.

3.5 METODOLOGIA DE ENSEMBLES

Ensembles uniarquitetura (Single Architecture SA)

Foi formado um comitê de modelos (Ensemble) que contabiliza os votos levando em

conta duas abordagens: (a) o vetor de probabilidade da confiança (soft voting) para chegar

a uma predição ou (b) o vetor das classes preditas, para os 10 modelos de uma única arqui-

tetura, conforme ilustra a Figura 7. Na abordagem soft voting, a soma das probabilidades

de confiança de cada modelo é realizada para definir a classe predita.
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Figura 7 – Ensemble Uniarquitetura (SA)

Fonte: O autor (2025).

3.5.1 Ensembles multiarquiteturas (MA)

Os Ensembles MA foram construídos com três arquiteturas de rede (MobileNet V2,

ShuffleNet e GoogleNet) Figura 8. Os 30 modelos (10 modelos de cada uma das 3 ar-

quiteturas selecionadas) foram consolidados em um comitê de modelos (Ensemble). Os

métodos de ensemble contabilizaram os votos majoritários (hard voting) ou os votos pon-

derados pela confiança (soft voting).

Figura 8 – SubtVision

Fonte: O autor (2025).
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3.6 MÉTRICAS UTILIZADAS

As métricas foram computadas usando a biblioteca scikit-learn, versão 1.2.2, incluindo

médias macro (não ponderadas) e weighted (ponderadas por classe). Para acompanha-

mento mais detalhado dos resultados, foram utilizados relatórios por fold e ensemble, com

curvas ROC visualizadas via TensorBoard. As métricas foram calculadas nos níveis de ti-

les e consolidadas para o nível dos pacientes, incluindo: Precisão (eq 3.2) – Proporção

de predições positivas corretas, ela expressa a confiança no diagnóstico positivo, já que

os falsos positivos vão reduzir essa métrica. A precisão expressa a mesma intenção da

especificidade, porém o faz ao representar a proporção de verdadeiros positivos no total

de positivos indicados pelo modelo. Sensibilidade ou Recall (eq 3.3) – Proporção de po-

sitivos reais corretamente identificados, expressa, portanto, a proporção de verdadeiros

positivos sobre o total de casos positivos, já que o total de casos positivos é a soma dos

verdadeiros positivos com os falsos negativos. F1-Score (eq 3.4) – Média harmônica de

precisão e recall, é uma métrica que combina precisão e recall em uma única medida,

oferecendo um balanço entre a capacidade de identificar corretamente os positivos (sen-

sibilidade - recall) e a confiabilidade dessas predições (precisão). AUC-ROC: Área sob a

curva ROC (one-vs-rest por classe) é uma ferramenta gráfica utilizada para avaliar o de-

sempenho de um modelo de classificação binária, representando o trade-off entre a taxa

de verdadeiros positivos (Recall) (TPR) e a taxa de falsos positivos (FPR) à medida que

a confiança do modelo na predição aumenta. A área abaixo da curva ROC (neste texto

chamada de AUC-ROC) corresponde à medida numérica obtida ao calcular a área sob a

curva ROC. Intuitivamente, ela representa a probabilidade de o modelo atribuir um valor

de score mais alto para uma instância positiva do que para uma negativa escolhida alea-

toriamente. Quanto maior a AUC-ROC (próxima de 1), melhor a capacidade de separação

entre as classes; valores próximos de 0,5 indicam um modelo aleatório, e valores abaixo

disso sugerem um modelo que classifica pior do que o acaso.

Precisão =
𝑉 𝑃

𝑉 𝑃 + 𝐹𝑃
(3.2)

Recall =
VP

VP + FN
(3.3)
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F1-Score = 2× Precisão × Recall
Precisão + Recall

(3.4)

AUC-ROC =

∫︁ 1

0

TPR(FPR)𝑑(FPR) (3.5)

onde:

• VP = Verdadeiros Positivos (True Positives)

• FP = Falsos Positivos (False Positives)

• FN = Falsos Negativos (False Negatives)

• VN = Verdadeiros Negativos (True Negatives)

• TPR = VP
VP+FN (Taxa de Verdadeiros Positivos ou Recall)

• FPR = FP
FP+VN (Taxa de Falsos Positivos)

3.6.1 Teste de Wilcoxon Signed-Rank

O teste de Wilcoxon Signed-Rank foi aplicado para comparar os resultados dos en-

sembles com os modelos individuais ao longo dos folds de validação cruzada. Por ser um

método não paramétrico. Para uma explicação mais detalhada sobre os fundamentos e a

aplicação do teste, consulte a documentação da Statsoft sobre o tema (acessando a seção

"Wilcoxon matched pairs test").

3.7 RESULTADOS E DISCUSSÃO

Este capítulo apresenta resultados e discussões dos experimentos realizados. No pri-

meiro momento, serão apresentados os resultados a nível de tile, em seguida a nível de

paciente, discutindo-se como as métricas de precisão, revocação, F1-Score e AUC-ROC

se comportaram nos modelos individuais e o G.SubtVision, usando a abordagem de votos

soft voting.
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3.7.1 Nível dos TILEs

PRECISION no nível do TILE

No nível dos tiles, os ensembles multiarquitetura (MA) com hard voting e soft voting

(G.SubtVision), alcançaram médias macro de precisão de 0,53 e 0,56, respectivamente,

tendo o segundo superado as arquiteturas individuais MobileNetV2 (0,55), ShuffleNet (0,53)

e GoogLeNet (0,48), como apresentados na Tabela 1. Por classe, os valores para CIN vari-

aram de 0,61 a 0,64 nos modelos individuais e 0,62-0,63 nos ensembles; para EBV, de 0,40

a 0,62 nos individuais e 0,50-0,62 nos ensembles; para MSI, de 0,51 a 0,65 nos individuais

e 0,61-0,65 nos ensembles.

Tabela 1 – Comparação de PRECISION entre modelos (no nível de tiles).

Classe
Wang et al.

(2022)
Reprodução
EfficientNet

Mobile
NetV2

Shuffle
Net

Google
LeNet

Ensemble
MA Hard

G.Subt
Vision

CIN 0,45 0,61 0,62 0,61 0,64 0,63 0,62

EBV 0,14 0,56 0,61 0,62 0,40 0,50 0,62

GS 0,76 0,42 0,31 0,26 0,36 0,36 0,34

MSI 0,56 0,51 0,65 0,62 0,53 0,61 0,65

Macro AVG 0,48 0,52 0,55 0,53 0,48 0,53 0,56

Weighted AVG 0,55 0,55 0,58 0,56 0,54 0,57 0,59

Fonte: O autor (2025).

Comparando com Wang et al. (2022), que reportou média macro de 0,48, observou-se

melhoria de 8 pontos percentuais com o G.SubtVision, mas ao comparar com a reprodução

realizada aqui com EfficientNet, a precisão melhorou apenas 4 pontos percentuais (WANG

et al., 2022).

O único subtipo que apresentou redução de precisão foi GS, de 0,42 na reprodução

de Wang com EficientNet a 0,36 nos individuais e 0,34-0,36 nos ensembles; Em relação

a Flinner et al. (2022), que também analisaram os quatro subtipos em TCGA e UKC, os

valores de precisão relatados foram próximos aos observados aqui (CIN = 0,53; EBV =

0,52; MSI = 0,43; GS = 0,55), confirmando a consistência metodológica e a dificuldade

comum em MSI e GS. O maior aumento de precisão foi encontrado na categoria EBV com

melhora de 48 pontos percentuais em relação a Wang et al. 2022 e 10 pontos percentuais

em relação a Flinner et al (2022); A precisão para MSI aumentou entre 9 pontos percentuais
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em relação à Wang e 22 em relação a Flinner. Na categoria CIN a precisão aumentou

entre 17 pontos em relação à Wang e 9 pontos em relação à Flinner. Ao superar limitações

comuns de abordagens individuais, esta estratégia demonstra robustez metodológica e

relevância clínica, uma vez que a redução de falsos positivos e amplia a confiabilidade

diagnóstica dos modelos e CNN.

3.7.1.1 Recall no nível do TILE

No nível dos tiles, os ensembles MA com hard voting e G.SubtVision com soft voting,

obtiveram médias macro de recall de 0,46 e 0,47, respectivamente,ligeiramente superio-

res às arquiteturas individuais (0,44-0,46), como apresentados na Tabela 2. Por classe,

CIN apresentou recall de 0,74-0,84 nos individuais e 0,80 nos ensembles; EBV, de 0,30-

0,44 nos individuais e 0,39 nos ensembles; GS, de 0,24-0,44 nos individuais e 0,39-0,40

nos ensembles; e MSI, de 0,23-0,33 nos individuais e 0,27-0,28 nos ensembles. A média

ponderada foi de 0,57 nos ensembles. O recall mede a capacidade de detectar instâncias

verdadeiras, crítico para classes minoritárias em contextos de triagem. Os modelos do pre-

sente estudo apresentaram sensibilidade elevada para CIN (até 0,84 nos modelos individu-

ais e 0,80 nos ensembles MA). O que representou um aumento de 32 pontos percentuais

em relação aos resultados do artigo publicado por Wang em 2022, cuja metodologia foi

reproduzida. A sensibilidade na categoria MSI do modelo reprodução da metodologia, ao

contrário, da categoria CIN, foi pior 45 pontos que o artigo previamente publicado. Esse

modelo reprodução mesmo assim foi melhor que os resultados do ensemble MA em 6

ou 7 pontos percentuais. Para as categorias minoritárias, os modelos aqui apresentados

obtiveram resultados significativamente melhores que os anteriormente publicados. Para

o subtipo GS, o modelo G.SubtVision demonstrou resultados 8 pontos percentuais mais

sensíveis que os resultados publicados e 16 pontos mais sensíveis que a reprodução da

metodologia no presente agrupamento aleatório entre o grupo de treinamento e o teste.

No grupo EBV foi identificado o maior avanço de sensibilidade com aumento de 23 a 34

pontos percentuais em relação à metodologia de Wang 2022.
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Tabela 2 – Comparação de RECALL entre modelos (no nível de tiles).

Classe
Wang et al.

(2022)
Reprodução
EfficientNet

Mobile
NetV2

Shuffle
Net

Google
LeNet

Ensemble
MA Hard

G.Subt
Vision

CIN 0,52 0,84 0,78 0,81 0,74 0,80 0,80

EBV 0,07 0,35 0,30 0,40 0,44 0,39 0,39

GS 0,32 0,24 0,44 0,25 0,43 0,39 0,40

MSI 0,78 0,33 0,31 0,32 0,23 0,27 0,28

Macro AVG 0,42 0,44 0,46 0,44 0,46 0,46 0,47

Weighted AVG 0,54 0,57 0,56 0,56 0,54 0,57 0,57

Fonte: O autor (2025).

3.7.1.2 F1 score no nível do TILE

No nível dos tiles, os ensembles MA e G.SubtVision registraram médias macro de F1-

score de 0,47 e 0,48, respectivamente, superando ligeiramente as individuais (0,45-0,47),

como é possível observar na Tabela 3. Por classe, CIN variou de 0,68-0,71 nos individu-

ais e 0,70 nos ensembles; EBV, de 0,40-0,48 nos individuais e 0,44-0,48 nos ensembles;

GS, de 0,25-0,40 nos individuais e 0,36-0,38 nos ensembles; e MSI, de 0,32-0,42 nos in-

dividuais e 0,38-0,39 nos ensembles. A média ponderada foi de 0,55-0,56 nos ensembles.

Comparando com Wang et al. (2022), que apresentou média macro de 0,42, os ensem-

bles melhoraram 5-6 pontos, com ganhos notáveis em EBV (31-39 pontos em relação aos

0,09). Para GS, houve redução em relação aos 0,45 de Wang, mas melhoria de 5-9 pontos

sobre a reprodução com EfficientNet (0,31). Na literatura, F1-scores em ensembles para

histopatologia gástrica, como em Li et al. (2022), variam de 0,44-0,49, enfatizando a robus-

tez dos ensembles em datasets desbalanceados, alinhando-se aos nossos achados onde

o F1 reflete equilíbrio melhorado em classes majoritárias.

F1 score expressa o equilíbrio entre sensibilidade e precisão, sendo aqui utilizado para

análise geral do equilíbrio do desempenho dos modelos. No nível dos tiles, os ensembles

alcançaram média macro F1 de 0,48, superando em 6 pontos os 0,42 de Wang, superando

ainda em 2 pontos os resultados da reprodução com Efficient Net. Apresentou melhorias

notáveis em EBV com 31 a 39 pontos percentuais (0,48 vs. 0,09). No entanto, GS perma-

neceu desafiador (0,36). O ensemble multiarquiterura melhora a robustez geral.
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Tabela 3 – Comparação de F1-score entre modelos (no nível de tiles).

Classe
Wang et al.

(2022)
Reprodução
EfficientNet

Mobile
NetV2

Shuffle
Net

Google
LeNet

Ensemble
MA Hard

G.Subt
Vision

CIN 0,48 0,71 0,69 0,70 0,68 0,70 0,70

EBV 0,09 0,43 0,40 0,48 0,42 0,44 0,48

GS 0,45 0,31 0,36 0,25 0,40 0,38 0,36

MSI 0,66 0,40 0,42 0,42 0,32 0,38 0,39

Macro AVG 0,42 0,46 0,47 0,46 0,45 0,47 0,48

Weighted AVG 0,51 0,54 0,54 0,54 0,53 0,55 0,56

Fonte: O autor (2025).

3.7.1.3 AUC-ROC no nível do TILE

No nível dos tiles, o G.SubtVision obteve AUC-ROC de 0,76 para CIN, 0,83 para EBV,

0,67 para GS e 0,78 para MSI, com média macro implícita de 0,81, como é possível obser-

var na Tabela 4. Comparando com Wang et al. (2022), que reportou AUC-ROC de 0,762

(CIN), 0,668 (EBV), 0,785 (GS) e 0,811 (MSI), observou-se melhoria em EBV (aumento de

0,162) e redução em GS (0,115) e MSI (0,031), possivelmente devido a vieses na confiança

das predições. A área sob a curva ROC foi construída, como é bastante frequente na aná-

lise de resultados de redes neurais, a partir da confiança dos modelos em suas predições.

Aqui se enfatiza, do ponto de vista de estatística médica, essa confiança é “auto-declarada”

pelo modelo. Ao analisar os resultados de Wang para a categoria EBV, percebe-se como

essa métrica pode ser enviesada. O F1 score para o EBV em Wang (encontrado em seu

material suplementar) foi de apenas 0.09 (precisão foi 0.14 e recall 0.07); no entanto, a

área sob a curva ROC para EBV foi 0.67. Uma provável razão para esse aparente viés é

que a confiança do modelo em suas predições teve magnitudes desalinhadas com o acerto

do ground truth pela predição do modelo.
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Figura 9 – AUC-ROC Ensemble Soft Voting 3 arquiteturas (nível do tile)

Fonte: O autor (2025).

Tabela 4 – Comparação da Curva ROC (AUC-ROC) entre modelos (no nível de tiles).

Curva ROC
Wang
et al.

(2022)

Reprod.
EfficientNet

Mobile
NetV2

Shuffle
Net

Google
LeNet

G.Subt
Vision

CIN 0,762 0,75 0,74 0,73 0,74 0,76

EBV 0,668 0,83 0,81 0,81 0,76 0,83

GS 0,785 0,69 0,67 0,62 0,68 0,67

MSI 0,811 0,75 0,79 0,72 0,74 0,78

Macro AVG 0,81 0,80 0,79 0,78 0,81

Fonte: O autor (2025).

3.7.2 Resultados no nível dos pacientes

3.7.2.1 PRECISION dos modelos no nível do paciente

Na Tabela 5 pode-se observar que no nível dos pacientes, os ensembles MA e o

G.SubtVision alcançaram médias macro de precisão de 0,80, com valores por classe: CIN
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0,57-0,58; EBV 1,00; GS 0,62; MSI 1,00. A média ponderada foi de 0,73. Comparando com

Wang et al. (2022), que obteve média macro de 0,77, os ensembles melhoraram 3 pontos,

com perfeição em EBV e MSI (1,00 vs. 1,00 e 0,65 de Wang). Para GS, redução de 21 pon-

tos (0,62 vs. 0,83). A reprodução com EfficientNet obteve o melhor resultado apresentando

um aumento de 17 pontos (1,00 vs 0,83 de Wang). No subtipo CIN pode-se observar que

os resultados entre os ensembles e os dados publicados por Wang foram semelhantes.

Porém ao comparar o nível dos tiles com o nível do paciente observa-se que os resulta-

dos de Wang apresentaram melhora de 13 pontos percentuais ( de 0.45 a 0.58), por outro

lado a reprodução reduziu 3 pontos ( de 0.61 para 0.55). Os Resultados dos ensembles

reduziram 5 pontos ( de 0.63 ou 0.62 no nível do tile para 0.58 ou 0.57).

Para EBV no nível do paciente, Wang publicou precisão de 1.00. Partindo no nível do

Tile de uma precisão de 0,14. A reprodução do artigo partindo de 0.56 de precisão atingiu

também 1.00 de pecisão ao nível do paciente. Ou seja, no nível do tile, a razão (Verdadeiros

Positivos / [Verdadeiros Positivos + Falsos Negativos]) atingiu 0.14, mas a agregação por

maior frequência (nível do paciente) eliminou o falso negativo. Os modelos de ensemble

apresentou precisão de 1,00, ou seja, não houve falsos positivos. O mesmo ocorreu para

o MSI, no qual os ensemble MA atingiram 1,00, ou seja, zeraram os falsos positivos. Para

o subtipo GS, o resultado foi desafiador 0,62, abaixo de 21 pontos do resultado de Wang,

e 38 pontos abaixo da reprodução.

Tabela 5 – PRECISION: Wang et al. (2022) vs. ensemble MA com soft voting em nível de pacientes

Classe
Wang et al.

(2022)
Reprodução
EfficientNet

Mobile
NetV2

Shuffle
Net

Google
LeNet

Ensemble
MA Hard

(PACIENTE)

G.Subt
Vision

(PACIENTE)

CIN 0,58 0,55 0,57 0,61 0,58 0,58 0,57

EBV 1,00 1,00 1,00 0,62 0,57 1,00 1,00

GS 0,83 1,00 0,57 0,26 0,71 0,62 0,62

MSI 0,65 0,60 1,00 0,62 0,50 1,00 1,00

Macro AVG 0,77 0,79 0,78 0,53 0,59 0,80 0,80

Weighted AVG 0,71 0,69 0,71 0,56 0,58 0,73 0,73

Fonte: O autor (2025).

Um achado inesperado em relação aos resultados publicados por Wang foi a irregula-

ridade do aumento ou diminuição das métricas no nível do paciente comparado ao nível

dos Tiles. Em outras palavras, Wang apresentou após a agregação do nível dos tiles para
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o nível do paciente aumento em todas as métricas. Aqui isso não foi verificado, houve au-

mentos e reduções das métricas ao agregar o nível do tile para o nível do Paciente, usando

o mesmo método. Os resultados e discussão do nível do paciente serão apresentados se-

guindo a mesma sequência: primeiro precision seguida de recall, f-1 Scores e Área sob a

curva Roc.

3.7.2.2 RECALL no nível do paciente

No nível dos pacientes, o ensemble MA e o G.SubtVision obtiveram médias macro de

recall de 0,46 e 0,45, respectivamente. Por classe: CIN 0,95; EBV 0,30; GS 0,38; MSI

0,17-0,22. Média ponderada de 0,61-0,62. A Tabela 6 mostra que os resultados de CIN

foram equilibrados tendendo mais à sensibilidade 0,95 que à precisão descrita acima. Na

categoria EBV o contrário acontece, o ensemble é preciso (1.00), mas muito menos sen-

sível (0.30) o que significa que quando indica EBV essa predição é confiável, mas que no

entanto quando o resultado são outras categorias pode estar sendo falso negativo para

EBV. O mesmo acontece para MSI, o G.SubtVision é preciso para MSI (1.00) no entanto

a sensibilidade foi bem baixa para MSI (0,17) sendo a categoria mais desafiadora para o

modelo G.SubtVision aqui proposto.

Comparando com Wang et al. (2022), que reportou média macro de 0,49, houve leve

redução de 3 a 4 pontos, com ganhos em CIN (41 pontos) mas perdas em MSI (72-77

pontos). Ao comparar os resultados do autor com a reprodução de sua metodologia (Effici-

entNet) observa-se que a reprodução foi melhor que os resultados previamente publicados

na categoria CIN (0.98 vs 0.54) e bem inferior na categoria MSI ( 0.60 vs 0.94).

3.7.2.3 F1 Paciente

No nível dos pacientes, os ensembles MA e G.SubtVision alcançaram médias macro

de F1-score de 0,51 e 0,48. Por classe: CIN 0,72; EBV 0,46; GS 0,48; MSI 0,29-0,36.

Média ponderada de 0,55-0,57, como mostrado na Tabela 7. Comparando com Wang et

al. (2022), que obteve 0,52 na média macro, houve variação mínima (-4 a -1 ponto), com

ganhos em CIN (16 pontos) mas reduções em MSI (41-48 pontos). Superior à EfficientNet

(0,42) em 6-9 pontos na média macro. Na literatura, F1 paciente em subtipagem, como em

Wang et al. (2023) extensão, atinge 0,45-0,55, reforçando a agregação como desafio.
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Tabela 6 – RECALL: Wang et al. (2022) vs. MA com soft voting em nível de pacientes

Classe
Wang et al.

(2022)
(PCT_IMG)

Reprodução
EfficientNet

Mobile
NetV2

Shuffle
Net

Google
LeNet

Ensemble
MA Hard

(PACIENTE)

G.Subt
Vision

(PACIENTE)

CIN 0,54 0,98 0,95 0,81 0,93 0,95 0,95

EBV 0,14 0,30 0,30 0,40 0,40 0,30 0,30

GS 0,36 0,15 0,31 0,25 0,38 0,38 0,38

MSI 0,94 0,60 0,17 0,32 0,06 0,22 0,17

Macro AVG 0,49 0,40 0,43 0,44 0,44 0,46 0,45

Weighted AVG 0,66 0,59 0,60 0,56 0,59 0,62 0,61

Fonte: O autor (2025).

Tabela 7 – F1-score: Wang et al. (2022) vs. ensemble MA com soft voting em nível de pacientes

Classe
Wang et al.

(2022)
(PCT_IMG)

Reprodução
EfficientNet

Mobile
NetV2

Shuffle
Net

Google
LeNet

Ensemble
MA Hard

(PACIENTE)

G.Subt
Vision

(PACIENTE)

CIN 0,56 0,71 0,71 0,70 0,71 0,72 0,72

EBV 0,25 0,46 0,46 0,48 0,47 0,46 0,46

GS 0,50 0,27 0,40 0,25 0,50 0,48 0,48

MSI 0,77 0,26 0,29 0,42 0,10 0,36 0,29

Macro AVG 0,52 0,42 0,46 0,46 0,45 0,51 0,48

Weighted AVG 0,62 0,59 0,54 0,54 0,51 0,57 0,55

Fonte: O autor (2025).

3.7.2.4 AUC-ROC paciente

É apresentado No nível dos pacientes, o ensemble MA soft voting registrou AUC-ROC

de 0,82 (CIN), 0,94 (EBV), 0,71 (GS) e 0,86 (MSI), com média macro de 0,85, como é

possível observar na Tabela 8. Comparando com Wang et al. (2022), que reportou 0,890

(CIN), 0,764 (EBV), 0,897 (GS) e 0,898 (MSI), observou-se melhoria em EBV (0,176) e

redução em GS (0,187). Superior à EfficientNet em média (0,73 vs. 0,85). Na literatura,

AUC-ROC paciente em ensembles gástricos, como em Huang et al. (2022), varia de 0,80-

0,90, com ensembles elevando valores em EBV.
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Figura 10 – AUC-ROC G.SubtVision (nível do paciente)

Fonte: O autor (2025).

Tabela 8 – AUC-ROC: Wang et al. (2022) vs. ensemble MA com soft voting em nível de pacientes

Classe
Wang et al.

(2022)
Reprodução
EfficientNet

Mobile
NetV2

Shuffle
Net

Google
LeNet

Ensemble
MA Soft

(PACIENTE)

CIN 0,890 0,80 0,80 0,81 0,79 0,82

EBV 0,764 0,94 0,95 0,89 0,87 0,94

GS 0,897 0,71 0,72 0,70 0,74 0,71

MSI 0,898 0,82 0,86 0,81 0,84 0,86

Macro AVG 0,83 0,85 0,83 0,83 0,85

Fonte: O autor (2025).

Em comparação com Wang et al. (2022), observamos ganhos de +32–34 pontos em

recall para EBV no nível de tiles e melhora substancial em PPV no nível de pacientes, atin-

gindo precisão perfeita (1,00) para EBV e MSI. Esses resultados contrastam com Jeong

et al. (2022), que reportaram recall elevado mas precisão mais baixa, e complementam

Zheng et al. (2022), que demonstraram aumento de robustez ao integrar CNNs e pato-

logistas. Achados semelhantes foram descritos por Flinner et al. (2022) e sintetizados na
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revisão sistemática de Cifici et al. (2022), que destaca a necessidade de validação externa.

Em linha com Zhou et al. (2023), nossos resultados reforçam o potencial translacional da

Inteligência Artificial na patologia digital. Assim, os resultados não apenas confirmam avan-

ços recentes na literatura, mas evidenciam o potencial translacional dos ensembles como

ferramenta de apoio à prática em patologia digital, aproximando a classificação molecular

baseada em imagens da acurácia obtida por métodos genômicos mais custosos.

3.8 CONCLUSÃO

O presente estudo demonstrou que o G.SubtVision, um modelo de ensemble Soft com

MobileNetV2, ShuffleNet e GoogLeNet, melhorou significativamente a predição dos subti-

pos moleculares do adenocarcinoma gástrico (CIN, MSI, EBV e GS) a partir de imagens

histopatológicas. Para uma compreensão mais profunda do desempenho do modelo, inclu-

indo uma discussão sobre suas limitações, a contribuição individual de cada arquitetura no

ensemble e perspectivas futuras, convidamos o leitor a consultar o Material Suplementar.

Assim, este trabalho não apenas confirma avanços recentes na literatura, mas também

aprimora o potencial translacional das CNNs como ferramenta acessível de apoio ao diag-

nóstico.
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4 CAPÍTULO 2: REDES NEURAIS CONVOLUCIONAIS CLASSIFICAM SUBTIPO MO-

LECULAR DO CÂNCER GÁSTRICO EM DATASET TUBULAR-CONTROLADO

RESUMO

Uma abordagem promissora em desenvolvimento para a classificação dos subtipos

moleculares do câncer gástrico é o treinamento de redes neurais convolucionais (CNN)

em imagens histopatológicas supervisionadas por rótulos moleculares. Essa supervisão

molecular pode estar identificando novos atributos por aprendizado profundo (deep lear-

ning). A evidência atual, no entanto, ainda não demonstra de forma conclusiva a desco-

berta de atributos inéditos. Metodologia: O presente estudo utilizou dados TCGA-STAD

(the cancer genomic atlas - stomach adenocarcinoma) e organizou um novo conjunto de

dados (dataset), apenas com tipos histológicos tubulares (WHO-2019), denominado da-

taset tubular-controlado (22 casos de tipo tubular categorizados como CIN ou não-CIN )

e outro conjunto denominado dataset geral (263 casos dos 4 subtipos - CIN, MSI, GS e

EBV). MobilleNet- V2 foi treinada em ambos os datasets e os resultados foram contrasta-

dos. Adicionalmente foram treinadas apenas no dataset tubular-controlado outras 5 redes:

VGG19, DenseNet, ResNet50-v2, Inception-v3 e NASNet-Mobile). Diversas redes obtive-

ram resultados significativos. A NASNet-Mobile apresentou o melhor desempenho global

(AUROC >0,72). O desempenho da MobileNetV2 no dataset tubular controlado para o sub-

tipo CIN teve precisão, recall, F1-score a AUC-ROC respectivamente de 0.62/ 0.73/ 0.66/

0.64 enquanto no dataset geral a mesma rede obteve 0.63/0.69/0.66/0.69. Concluiu-se, ao

contrastar esses resultados, que a predição do subtipo molecular instabilidade cromossô-

mica CIN em adenocarcinomas gástricos por CNN persiste no dataset tubular-controlado,

reforçando o papel das CNN em identificar fenótipos profundos.
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4.1 INTRODUÇÃO

O câncer gástrico permanece como uma das principais causas de mortalidade por cân-

cer em todo o mundo, apresentando elevada heterogeneidade clínica, histológica e mole-

cular. Em 2014, o consórcio The Cancer Genome Atlas (TCGA) propôs uma classifica-

ção molecular que subdivide os adenocarcinomas gástricos em quatro grupos principais:

associado ao vírus Epstein-Barr (EBV), instável por microssatélites (MSI), instabilidade

cromossômica (CIN) e genômica estável (GS). Essa estratificação revela subgrupos com

características genéticas e fenotípicas distintas, com impacto direto no prognóstico e nas

opções terapêuticas. Entre esses subtipos, a instabilidade cromossômica (CIN) destaca-

se como o subgrupo mais prevalente, associado a alterações cromossômicas extensas,

aneuploidia e padrões clínicos específicos (Cancer Genome Atlas Research Network, 2014).

Tradicionalmente, a prática diagnóstica em patologia baseia-se na supervisão de espe-

cialistas, utilizando critérios morfológicos vistos à microscopia óptica, como o sistema de

Lauren (intestinal, difuso, misto) uma classificação clássica de 1965 Correção sugerida:

que diferencia o câncer gástrico em tipos Intestinal, Difuso e Misto (LAURÉN, 1965) ou a

classificação da OMS-2019 (que classifica conforme a morfologia os câncer gástricos em:

Papilífero, Tubular (bem diferenciado, moderadamente diferenciado e mal diferenciado),

Pouco Coeso ( Anel de sinete ou não-anel de sinete), Mucinoso, Misto, Adenoescamoso,

Carcinoma de células escamosas, Carcinoma indiferenciado, Carcinoma de estroma lin-

fóide, Adenocarcinoma hepatóide, com diferenciação enteroblástica, tipo glándula fúndica

e micropapilar. Essas classificações refletem décadas de conhecimento acumulado e au-

mento de sua complexidade buscando categorias mais histomorfológicas cada vez mais

específicas.

Os avanços dos métodos de sequenciamento e da compreensão dos processos carci-

nogênicos com o desenvolvimento de tratamentos específicos têm potencializado o avanço

da classificação de cânceres de diversas topografias, como por exemplo o de mama e da

próstata, com tipos imunofenotípicos bem estabelecidos. No câncer gástrico, a abordagem

molecular ainda não está bem estabelecida. A classificação molecular foi proposta pelo

TCGA em 2014, mas ainda há limitações de acessibilidade aos métodos multiômicos nos

quais ela foi inicialmente identificada com tentativas ainda imaturas de estabelecer painéis

de imuno-histoquímica (KIM et al., 2016; FUKAYAMA; RUGGE; WASHINGTON, 2019).

Recentemente, modelos de aprendizado profundo têm demonstrado a capacidade de
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predizer subtipos moleculares diretamente a partir de imagens histopatológicas coradas

em Hematoxilina e Eosina (H&E). Treinando CNN´s por supervisão de rótulos moleculares.

Estudos pioneiros como Kather et al. (2019) demonstraram a capacidade do deep learning

em predizer MSI diretamente de imagens histológicas. Nesse contexto, trabalhos como os

de Wang et al. (2022), Flinner et al. (2022) mostraram que redes neurais convolucionais

(CNNs) podem alcançar desempenhos robustos na classificação de subtipos do TCGA.

(KATHER et al., 2020; WANG et al., 2022; FLINNER et al., 2022)

O uso de aprendizado profundo em patologia digital pode ser agrupado em duas gran-

des vertentes: a supervisão de especialistas, em que os rótulos são definidos por patolo-

gistas a partir de critérios morfológicos convencionais, e a supervisão molecular, em que os

rótulos derivam de dados genômicos ou biomarcadores independentes da morfologia. Esta

distinção é fundamental para compreender tanto os avanços recentes quanto as lacunas

que ainda persistem.

Na primeira vertente, os modelos buscam replicar ou ampliar classificações já estabe-

lecidas por patologistas. Jang et al. (2021) demonstraram que uma CNN Inception-v3 foi

capaz de distinguir adenocarcinomas gástricos diferenciados vs. indiferenciados e muci-

nosos vs. não-mucinosos, alcançando AUCs-ROC de 0,932 e 0,979, respectivamente, em

nível de patch. O estudo reforça que a inteligência artificial pode reduzir a subjetividade e

acelerar tarefas que já fazem parte da rotina diagnóstica. De forma semelhante, Kanavati &

Tsuneki (2021) avaliaram o desempenho de CNNs na classificação do adenocarcinoma di-

fuso (tipo Lauren), utilizando mais de 2.900 biópsias de múltiplos hospitais japoneses. Os

modelos atingiram AUCs-ROC próximos de 0,95–0,99 em diferentes coortes, mostrando

que a IA pode capturar padrões histológicos que patologistas já reconhecem, mas com

maior rapidez e reprodutibilidade. Em comum, esses trabalhos utilizam abordagem de trei-

namento supervisionado dependente dos rótulos atribuídos por especialistas tomando-os

como verdade de base (ground truth) (JANG; SONG; LEE, 2021)

Na segunda vertente, emergem os estudos que classificam imagens de H&E em sub-

tipos moleculares. Wang et al. (2022) introduziram o método para predição dos quatro

subtipos do TCGA (CIN, MSI, EBV, GS). Já Flinner et al. (2022) aplicaram deep learning

nos quatro subtipos do TCGA e compararam a testes moleculares independentes e imuno-

histoquímica. Essas abordagens têm em comum o treinamento supervisionado tomando

dados moleculares como ground truth. Esses dados moleculares devem ser alcançados

por meios não operador-dependente, através de sequenciamento ou sondas, auxiliadas
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métodos de bioinformática.

A ideia central deste estudo é fazer uso das redes neurais computacionais como instru-

mento de descoberta de fenótipos previamente desconhecidos associados ao genótipo do

rótulo molecular. Por serem descobertos por métodos de aprendizado profundo, podem ser

de maneira geral chamados de atributos profundos (deep features) e, quando especifica-

mente referentes a genótipos de rótulos moleculares, são por definição fenótipos profundos

(deep phenotypes). Apesar dos avanços, a literatura de supervisão molecular ainda sofre

de uma limitação central: a ausência de controles estritos de morfologia. Não está ainda

comprovado se as CNNs estão de fato aprendendo atributos profundos subjacentes de-

correntes de genótipos (fenótipos profundos) ou apenas reproduzindo associações com

tipologias já conhecidas (como tubular vs. papilífero). Até o momento nenhum estudo iso-

lou um único subtipo morfológico e testou se o desempenho se mantém. (FLINNER et al.,

2022; WANG et al., 2022)

No presente trabalho se avalia se esses modelos de fato aprendem atributos não pre-

viamente descritos de genótipos, ou apenas captam associações com tipologias morfoló-

gicas já estabelecidas. Caso a precisão dos modelos possa ser explicada por associações

com tipos histopatológicos, o potencial da supervisão de rótulos moleculares seria apenas

a automatização de classificações já disponíveis. Por outro lado, caso haja identificação

de padrões fenótipos previamente desconhecidos se apoia o potencial das CNN como fer-

ramenta de investigação científica no tema. O presente trabalho busca preencher essa

lacuna, avaliando se a predição por CNNs persiste em um conjunto tubular-controlado, no

qual a tipologia histológica é mantida constante segundo a classificação OMS-2019.

4.2 METODOLOGIA

Essa seção descreve a metodologia adotada nos experimentos realizados. Inicialmente,

foi feita a organização e descrição dos conjuntos de dados utilizados, desde as imagens

de lâminas inteiras até a construção dos datasets específicos (tubular-controlado e ge-

ral), bem como a divisão em grupos de treinamento, validação e teste. Em seguida, são

detalhadas a arquitetura de redes e o processo de treinamento, assim como as métricas

de avaliação aplicadas. Por fim, são discutidos os aspectos relacionados à ética, repro-

dutibilidade e disponibilidade dos dados e modelos. A Figura 1 apresenta um fluxograma

resumindo o pipeline metodológico.
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Figura 1 – Fluxograma das abordagens do dataset tubular controlado e geral

Fonte: O autor (2025).

4.2.1 Dataset: Conjunto de Dados

O estudo foi realizado utilizando o projeto STAD (Stomach Adenocarcinoma) da base

pública do TCGA (The Cancer Genomic Atlas) O conjunto de dados de imagens histopa-

tológicas e rótulos dos subtipos moleculares foi extraído do projeto STAD (Stomach Ade-

nocarcinoma), disponível no banco de dados público TCGA (The Cancer Genomic Atlas)

(The Cancer Genome Atlas Research Network, 2014).

4.2.1.1 Imagens de lâminas inteiras

O TCGA disponibiliza imagens de lâminas inteiras (WSI) coradas em hematoxilina e

eosina (H&E) em formato SVS de alta qualidade produzidas por patologia digital a 40x

associadas aos subtipos moleculares CIN, EBV, MSI e GS.

4.2.1.2 Tipos Histopatológicos

A classificação histopatológica disponível na base do TCGA é a classificação de Lau-

ren, Para os objetivos do presente estudo foi utilizada a classificação da OMS de 2019.
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4.2.1.3 Construção do dataset tubular-controlado

95 casos do TCGA foram examinados por médicos especialistas em patologia com

mais de 10 anos de atuação diagnóstica que classificaram os casos segundo a classifica-

ção da OMS 2019 e descreveram detalhes das características particulares da morfologia.

Foram selecionados apenas casos classificados como Tubulares. Foram incluídos 23 ca-

sos representados por 37 imagens de lâmina inteiras. As imagens foram agrupadas por 3

subtipos de tubulares: bem (2), moderadamente (32) e mal diferenciados (5). Devido ao

relativamente pequeno número de casos e da diminuta presença das classes minoritárias

escolheu-se tratar o problema de maneira binária entre as classes majoritárias. O dataset

foi por isso categorizado para CIN ou não-CIN (MSI) O pré-processamento das imagens

compreendeu duas etapas principais: (I) segmentação das whole slide images (WSIs) em

patches de 224×224 px representando apenas áreas cancerígenas tendo sido orientado

por médicos patologistas experientes; e (II) normalização de cor aplicando o método Ma-

cenko (MACENKO et al., 2009).

4.2.1.4 Grupos treinamento, validação e teste dos experimentos com o dataset tubular-

controlado

Os grupos treinamento, validação e teste foram construídos de maneira a ter uma dis-

tribuição semelhante entre tubulares bem, moderadamente e mal diferenciados em nossos

grupos de treinamento, validação e teste. A separação foi feita por casos, não permitindo

contaminação de patches entre os grupos. Para a classe CIN, as imagens foram distribuí-

das em 12 para treino, 3 para validação e 4 para teste. Para a classe não-CIN as imagens

foram distribuídas em 12 para treino, 4 para validação e 4 para teste Figura 2. Ao se extrair

o patches de cada imagem obteve-se na classe CIN uma distribuição de 5600 patches para

treino, 1487 para validação e 1725 para teste. Enquanto que na classe não-CIN obteve-se

uma distribuição de 5896 patches para treino, 3586 patches para validação e 3908 patches

para teste Figura 3.
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Figura 2 – Distribuição de Imagens por Classe e Conjunto

Fonte: O autor

Figura 3 – Distribuição de Patches por Classe e Conjunto

Fonte: O autor

4.2.1.5 Construção do dataset geral

Foram utilizadas 476 imagens de lâminas inteiras (WSI) coradas com Hematoxilina e

Eosina (H&E), com resolução de 40x. Como o número de imagens é relativamente bem

maior essas imagens foram categorizadas nos quatro subtipos moleculares: CIN (232),

MSI (114), GS (73) e EBV (57). Durante o processo de criação do dataset geral para o



116

modelo de análise foram aplicadas três etapas principais de pré-processamento, a saber:

Segmentação em Tiles - as 476 imagens WSI foram divididas em pequenas imagens qua-

dradas de 224x224 pixels ( tiles). O corte foi realizado com um fator de ampliação de 10x.

Durante este processo, tiles com menos de 50% de presença de tecidos foram removidos.

Ao final, cerca de 1.500.000 tiles foram gerados, distribuídos entre os subtipos molecula-

res. Por fim, aplicou-se uma normalização de cor, um template de referência foi utilizado

para ajustar o espaço de cor e a luminosidade dos tiles, utilizando o método de Macenko

(MACENKO et al., 2009)

4.2.1.6 Grupos treinamento, validação e teste dos experimentos com dataset geral

Nesta etapa, aplicou-se divisão aleatória de dados para treinar, validar e testar os mo-

delos. Primeiro, divisão inicial dos dados para os grupos Treino (241 casos) ( 950.434 tiles)

correspondendo a 72% do dataset, Validação (153 casos) ( 105.603 tiles), 8% do data-

set e grupo Teste Hold-Out com 82 casos (179.952 tiles), 20% do dataset. Medidas foram

tomadas para não permitir contaminação entre os tiles de um mesmo paciente entre os

grupos.

4.2.2 Arquitetura e treinamento

Foram treinadas no dataset tubular-controlado 6 arquiteturas de redes neurais con-

volucionais (CNNs): MobileNet-V2, VGG19, DenseNet, ResNet50-v2, 2, Inception-v3 e

NASNet-Mobile. No dataset geral foi treinada MobileNet-V2. Todas as redes tiveram pe-

sos inicializados a partir do ImageNet (DENG et al., 2009) Os modelos foram treinados com

dois valores distintos de learning rate (1e-4 e 1e-3), a fim de avaliar a estabilidade e sen-

sibilidade ao parâmetro. Utilizou-se o otimizador Adam (KINGMA; BA, 2015), com weight

decay e estratégia de redução do learning rate on plateau. O treinamento foi realizado

em mini-batches de 32 imagens, com early stopping monitorando a perda de validação,

interrompendo o processo quando não havia melhora após 15 épocas consecutivas. (PRE-

CHELT, 1997)
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4.2.3 Métricas utilizadas

As métricas empregadas foram: Precisão (valor preditivo positivo, PPV): métrica priori-

tária, refletindo a proporção de predições positivas corretas. A ênfase no PPV se justifica

pelo contexto clínico de diagnóstico diferencial, no qual falsos positivos podem levar a con-

dutas terapêuticas inadequadas e risco direto ao paciente. Essa escolha está alinhada às

recomendações das diretrizes STARD 2015 para estudos de acurácia diagnóstica. Recall

(sensibilidade): proporção de verdadeiros positivos corretamente identificados, importante

para mensurar a capacidade de detecção de casos. F1-score: média harmônica entre pre-

cisão e recall, avaliando o equilíbrio entre ambas. Área sob a curva ROC (AUROC): métrica

global de discriminação avaliando confiança do modelo nas predições.

4.2.4 Ética, reprodutibilidade e disponibilidade

Os dados utilizados neste estudo são provenientes do The Cancer Genome Atlas –

Stomach Adenocarcinoma (TCGA-STAD), um repositório público e de acesso aberto, dis-

ponível no Genomic Data Commons. Por se tratar de dados previamente coletados, ano-

nimizados e disponibilizados em domínio público, não se faz necessário a submissão ao

comitê de ética local, em conformidade com as diretrizes internacionais para o uso secun-

dário de dados públicos.

4.3 RESULTADOS E DISCUSSÃO

Resultados no Dataset Tubular-Controlado

No conjunto tubular-controlado, composto exclusivamente por adenocarcinomas gás-

tricos tubulares reclassificados de acordo com a OMS-2019 por médicos especialistas em

patologia com mais de 10 anos de atuação., As redes neurais convolucionais (CNNs) de-

monstraram capacidade de predizer o subtipo molecular CIN de forma consistente e esta-

tisticamente superior ao acaso.A Tabela 1 apresenta os resultados para as seis arquiteturas

avaliadas (MobileNetV2, VGG19, DenseNet, ResNet50-v2, Inception-v3 e NASNet-Mobile),

treinadas com dois valores de taxa de aprendizado (learning rate, lr: 1e-4 e 1e-3). As mé-

tricas incluem acurácia (acc), F1-score, precisão (PPV), recall e área sob a curva ROC
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(AUROC). Observa-se que o NASNet-Mobile obteve o melhor desempenho global com lr

= 0,001, alcançando F1 = 0,71, precisão = 0,72, recall = 0,71 e AUROC = 0,73. Essa ar-

quitetura destacou-se pela robustez, com valores médios de AUROC > 0,70, confirmando

sua eficiência em cenários restritos. As demais redes apresentaram F1-scores variando de

0,59 a 0,70 para lr = 0,0001, e de 0,61 a 0,71 para lr = 0,001, com AUROC consistente-

mente acima de 0,60 em todos os casos. A macro-F1 média no dataset tubular-controlado

foi de 0,47–0,49, indicando que, mesmo sob controle morfológico estrito, os modelos man-

têm discriminação molecular para CIN. Notavelmente, a taxa de aprendizado mais alta (lr

= 0,001) tende a melhorar o recall em várias arquiteturas, como na MobileNetV2 (recall =

1,00), embora às custas de uma leve redução na precisão em alguns casos.

Tabela 1 – Resultados CNN´s no dataset tubular controlado.

Arquitetura lr
Acurácia

(%)
F1-Score Precisão Recall AUROC

MobileNetV2
0,0001 0,59 0,66 0,62 0,73 0,64

0,001 0,56 0,71 0,56 1,00 0,56

VGG19
0,0001 0,67 0,70 0,69 0,73 0,69

0,001 0,61 0,66 0,64 0,71 0,64

DenseNet
0,0001 0,65 0,68 0,68 0,69 0,66

0,001 0,54 0,64 0,56 0,77 0,61

ResNet50-v2
0,0001 0,65 0,69 0,67 0,71 0,67

0,001 0,60 0,61 0,67 0,57 0,63

Inception-v3
0,0001 0,60 0,59 0,68 0,53 0,62

0,001 0,64 0,67 0,69 0,66 0,68

NASNet-Mobile
0,0001 0,65 0,67 0,70 0,66 0,67

0,001 0,69 0,71 0,72 0,71 0,73

Resultados no dataset tubular-controlado. As métricas são calculadas em nível de tile, priorizando a precisão
(PPV) conforme o contexto clínico de diagnóstico diferencial. Valores em negrito indicam o melhor desempe-
nho por arquitetura para os valores de learning rate (1e-4 e 1e-3) avaliados.

4.3.1 Resultados no Dataset Geral

Os resultados da MobileNetV2 no dataset geral são visualizados na Tabela 2. Essa

detalha as métricas por subtipo molecular (CIN, EBV, GS, MSI), com precisão, recall, F1-
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score. No subtipo CIN (classe majoritária), a precisão foi de 0,63, recall de 0,69 e F1

de 0,66, com suporte de 89.707 tiles. Para classes minoritárias, os valores foram mais

modestos: EBV (precisão 0,49, recall 0,33, F1 0,39), GS (precisão 0,29, recall 0,44, F1

0,35) e MSI (precisão 0,50, recall 0,32, F1 0,39).

Tabela 2 – Resultados da MobileNetV2 no dataset geral.

Classe Precisão Recall F1-Score AUC-ROC

CIN 0,63 0,69 0,66 0,69

EBV 0,49 0,33 0,39 0,77

GS 0,29 0,44 0,35 0,67

MSI 0,50 0,32 0,39 0,69

Macro AVG 0,48 0,44 0,45

Weighted AVG 0,53 0,52 0,52

Micro AVG 0,76

Métricas calculadas em nível de tile, com ênfase na precisão para o subtipo CIN (0,63). O suporte reflete a
distribuição desbalanceada, com CIN como classe dominante.

Em resumo, o NASNet-Mobile apresentou o melhor desempenho no dataset contro-

lado, destacando-se na identificação de CIN em adenocarcinomas tubulares (F1 médio >

0,70) mas várias redes tiveram um desempenho acima do aleatório. Isso demonstra que

as CNNs capturam padrões histopatológicos não previamente conhecidos, rejeitando a

hipótese nula e confirmando a utilidade da supervisão molecular para revelar fenótipos

profundos.

Os resultados da MobileNet-V2 no dataset tubular-controlado e no dataset geral para

o subtipo CIN foram muito aproximados. Há uma evidente limitação metodológica ao com-

parar datasets diferentes, sendo um deles muito maior e outro categorizado para um pro-

blema binário e, portanto, não é possível afirmar que os resultados foram iguais do ponto

de vista estatístico, pois não é o mesmo grupo de teste. No entanto, não seria necessário

provar que ambos são idênticos para demonstrar que a CNN está identificando um atri-

buto profundo que vai além do tipo tubular, caso o desempenho da CNN fosse acima do

aleatório ambora inferior no dataset tubular-controlado em relação ao grupo controle do

dataset geral já estaria demonstração que há a participação parcial de um atributo pro-

fundo. O contraste de resultados, ainda mais, foi surpreendente por sua proximidade: O

desempenho da MobileNet-V2 no dataset tubular controlado para o subtipo CIN teve pre-

cisão, sensibilidade (Recall), F1-score e AUC-ROC respectivamente de 0.62/ 0.73/ 0.66/
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0.64 enquanto no dataset geral a mesma rede obteve 0.63/ 0.69/ 0.66/ 0.69. A diferença

de precisão foi de 1 ponto percentual, e o F1-Score foi idêntico. Indicando uma diferença

muito pequena de falsos positivos.

Os autores compreendem a limitação metodológica de comparar os resultados de da-

tasets diferentes, essa porém é o núcleo da abordagem que precisará ser metodologi-

camente aprimorada. Defendem, no entanto, o potencial explicativo da abordagem que

permite testar se de fato a CNN está classificando atributos profundos (deep features) ao

organizar um dataset controlado para os atributos conhecidos.

É uma contribuição médica ao campo, já que os especialistas podem desafiar o poder

de predição da CNN ao organizar um dataset específico para testar uma hipótese. Um

próximo passo no desenvolvimento da abordagem é ajustar o treinamento para poder rodar

o modelo treinado no dataset tubular-controlado no grupo teste do dataset geral, assim

podendo comparar estatisticamente os resultados dos modelos já que o grupo teste seria

então o mesmo.

4.4 CONCLUSÃO

Este estudo aponta para que redes neurais convolucionais (CNNs) são capazes de

predizer a instabilidade cromossômica (CIN) em adenocarcinomas gástricos no dataset

tubular-controlado (composto exclusivamente por tumores tubulares). A manutenção de

desempenho acima do acaso e aproximada (por contraste) com o grupo controle do dataset

geral sugere que esses modelos identificam padrões histomorfológicos subjacentes ao

subtipo molecular e não associações com a classificação histopatológica WHO 2019.
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5 CAPÍTULO 3: G.SUBTFOREST – CLASSIFICADOR DE SUBTIPOS MOLECULA-

RES DO CA GÁSTRICO COM TCGA VIA RANDOM FOREST EM PAINÉIS OTIMI-

ZADOS

RESUMO

A aplicação da classificação molecular do adenocarcinoma gástrico permanece um

desafio. Este estudo apresenta os G.SubtForest (Gastro Subtyping Trough Random Forest)

classificadores com base em painéis de mutação para subtipos moleculares. Dois paineis

são aqui propostos com 18 e 9 genes respectivamente. Metodologia: A partir de 18.600

variantes de nucleotídeo (SNV) somáticas não-sinônimas da base TCGA-STAD (The Can-

cer Genomic Atlas - Stomach Adenocarcinoma) foram organizados 10 grupos treinamento

e validação utilizando K-fold (k=10) foram então treinados modelos de Random Forest e

utilizado SHapley Additive exPlanations (SHAP) para identificar os genes de maior influên-

cia colaborativa nas predições. Os resultados dos 10 modelos foram consolidados em dois

painéis otimizados: um com 18 genes, adequado ao sequenciamento de nova geração, e

outro com 9 genes, apropriado para imuno-histoquímica. Novos modelos G.SubtForest 18

e G.SubtForest 9 foram treinados para classificação de casos a partir da informação da

mutação em cada um dos paineis. Os G.subtForest mostraram desempenho consistente

(AUC-ROC avg 0,91 e 0,89, respectivamente). Os resultados evidenciam ganhos relevan-

tes na estratificação de pacientes e oferecem solução reprodutível e escalável para uso

translacional. Código e material suplementar disponíveis.
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5.1 INTRODUÇÃO

O adenocarcinoma gástrico representa uma das principais causas de mortalidade por

câncer no mundo, com heterogeneidade histológica e molecular que complica o diagnós-

tico e tratamento (Cancer Genome Atlas Research Network, 2014). A classificação molecular,

proposta pelo The Cancer Genome Atlas no projeto Stomach Adenocarcinome (TCGA-

STAD), descobriu quatro clusters de dados multiômicos denominados subtipos molecula-

res: positivo para vírus Epstein-Barr (EBV), instabilidade de microssatélites (MSI), geno-

micamente estável (GS) e instabilidade cromossômica (CIN) (Cancer Genome Atlas Research

Network, 2014).

Apesar dos avanços científicos, o avanço do diagnóstico de rotina enfrenta lacunas

significativas que não capturam a heterogeneidade molecular, contribuindo para altas taxas

de recidiva(KIM et al., 2016).

A classificação da Organização Mundial da Saúde (WHO) para o câncer gástrico é ba-

seada em apenas em aspectos histomorfológicos. Depois de descrever toda a classificação

dos tipos histopatológicos cita a classificação molecular apenas no tópico sobre prognós-

tico, descrevendo apenas o que é frequente ou não em cada subtipo molecular. Embora a

classificação da (WHO) represente um marco na padronização do diagnóstico histopatoló-

gico do câncer gástrico, seu escopo permanece centrado em critérios morfológicos e não

incorpora, de forma sistemática, informações moleculares ou genômicas.

Essa lacuna limita a capacidade de correlacionar padrões histológicos com proces-

sos carcinogênicos mais precisos, restringindo o potencial de estratificação prognóstica

e preditiva. A crescente disponibilidade de dados multiômicos e o avanço da bioinformá-

tica, indicam caminhos para futuras revisões das diretrizes, capazes de integrar morfolo-

gia, marcadores imuno-histoquímicos e assinaturas genéticas. Tal abordagem ampliará a

utilidade clínica das classificações, permitindo diagnósticos mais alinhados com a defini-

ção de terapias-alvo e maior alinhamento com a medicina de precisão(FUKAYAMA; RUGGE;

WASHINGTON, 2019) O presente estudo busca contribuir nessa direção.

Trabalhos propuseram painéis imuno-histoquímicos (IHC) para subtipos moleculares do

adenocarcinoma gástrico, como o de Kim et al., que propôs MLH1, PMS2, MSH2, MSH6,

HER2, EGFR, MET, PTEN e P53 e ISH para EBV em 438 pacientes. encontrando ape-

nas 14 EBV,(3,3%); 21 MSI (4,8%); (associando-o a deficiência nas proteínas de reparo

de mismatch mmr - MLH1, PMS2, MSH2, MSH6). 218 (49,8%) sobreexpressão de RTKs
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(HER2,EGFR,MET) e em 258 (59,1%) p53 overexpressed/null foi identificada uma alta

prevalência de mutações ou inativação proteica, associando ambos os fenótipos a CIN. No

entanto, há grandes limitações metodológicas nas associações entre os fenótipos imuno-

histoquímicos e os subtipos moleculares feitos pelos autores. Eles o fazem apenas por

inferência indutiva, argumentando razoabilidade apenas por associações probabilísticas

com o que foi publicado em artigo (The Cancer Genome Atlas Research Network, 2014) sem veri-

ficar nos dados originais suas suposições ou utilizar os mesmos critérios diagnósticos do

artigo original (sequenciamento de exoma e metiloma).

Já Flinner et al (FLINNER et al., 2022) apresentaram um modelo de classificação de sub-

tipos moleculares com IA em imagens histopatológicas do TCGA e compararam os resulta-

dos desse modelo aos dos marcadores imunohistoquímicos propostos por Kin et al em um

grupo com controle externo por análise de variação de número de cópias (copy number va-

riation) encontrando que o modelo de IA em imagens foi melhor que o painel previamente

proposto para subtipo CIN. Por outro lado, Wang et al. (2022) desenvolveram um modelo

de rede neural convolucional usando TCGA como fonte de imagens histopatológicas e ró-

tulos derivados de sequenciamento multiômico, oferecendo uma base molecular robusta

para os subtipos EBV, MSI, GS e CIN.

Paineis genéticos são de suma importância para a classificação de tumores, como

já ocorre em outros tumores como mama e próstata. Esses paineis devem somar infor-

mações significativas aos achados histomorfológicos. Dependendo do tamanho do painel,

métodos variam: IHC para painéis pequenos e sequenciamento de próxima geração (NGS)

para painéis maiores, mas problemas como cobertura inadequada em blocos de parafina

fixados em formalina (FFPE) de painéis grandes e inadequação de acesso e aumento do

custo saúde persistem, limitando a translação para a rotina de painéis grandes (KIN et al.,

2016; FUKAYAMA; RUGGE; WASHINGTON, 2019).

O aprendizado de máquina tem grande potencial na descoberta de mutações chave

para diagnóstico diferencial de câncer, com algoritmos como Random Forest (RF) destacando-

se por sua robustez em dados de alta dimensionalidade, redução de viés em classes

desbalanceadas (ex.: EBV minoritário) e seleção de features via importância Gini, como

demonstrado em estudos recentes para subtipos TCGA (XU et al., 2023). (JANG et al., 2023).

O objetivo deste estudo é desenvolver um sistema preditivo para subtipos moleculares

do câncer gástrico otimizando Paineis Genéticos ao fazer uso de Random Forest em dados

do TCGA-STAD, A importância deste estudo reside no avanço do campo, fornecendo uma
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ferramenta bioinformática reprodutível (com código suplementar) para estratificação de pa-

cientes, facilitando terapias direcionadas e reduzindo mortalidade, alinhado a abordagens

multiômicas integradas (LIU et al., 2024).

5.2 METODOLOGIA

A metodologia desta etapa foi delineada para organizar o processo de aquisição, pre-

paração e análise dos dados do SNV-TCGA STAD. Inicialmente, os dados foram coletados

e estruturados, seguidos pela definição dos agrupamentos em treino, validação e teste.

Na sequência, descreve-se o processo de treinamento dos modelos e a consolidação dos

painéis obtidos. Por fim, são apresentadas as métricas utilizadas para avaliação dos re-

sultados. A Figura 1 ilustra, em formato de fluxograma, o fluxo metodológico, desde a

aquisição dos dados até a avaliação final.

Figura 1 – Fluxograma do pipeline da criação dos paineis genéticos.

Fonte: O autor (2025).
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5.2.1 Aquisição de dados SNV-TCGA STAD

A detecção de mutações somáticas por variação de nucleótidos únicos (SNV) foi ini-

cialmente realizada pelo pipeline do TCGA utilizando o software VarScan2 (v2.4.4), que

compara as amostras tumorais ao DNA germinativo emparelhado para identificar muta-

ções somáticas. Os arquivos de saída (geralmente .maf, .vcf ou .tsv) foram posteriormente

anotados com ferramentas como SnpEff ou ANNOVAR, que classificam o tipo funcional

de cada variante (por exemplo: sinônima, missense, nonsense, splicing, etc.) e atribuem a

cada uma um gene correspondente. Para esta pesquisa, foram utilizadas apenas as vari-

antes com impacto funcional não-sinônimo, com exclusão sistemática das mutações clas-

sificadas como "synonymous_variant", a fim de focar em alterações com consequências

de alterações de tradução proteica. Após o processamento, as mutações foram agrupadas

por gene e por subtipo molecular (EBV, MSI, GS, CIN), com o objetivo de determinar os

genes mais frequentemente mutados em cada categoria.

5.2.2 Agrupamentos: Treino, Validação e Teste.

Nesta etapa, foram criados aleatoriamente dois grupos de casos: Um grupo treino e

validação com (290) casos e um grupo teste hold out com 81 casos oriundos de um dataset

com montante de 443 casos.

5.2.2.1 Grupo Treinamento/Validação

Os grupos de treinamento e validação para cada modelo (explicados no tópico treina-

mento abaixo) foram separados utilizando o método K fold. Uma utilização parcial do k-

fold cross validation com o objetivo, apenas, de gerar múltiplas separações aleatórias de

conjuntos de treinamento e validação. Consequentemente, treinando 10 modelos (K=10),

como pode ser obsevada pela Figura 2. A intenção do uso do método foi reduzir o viés em

grupos de validação de classes minoritárias. As separações treino/validação foram 90/10.
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Figura 2 – Exemplo de Validação Cruzada K-Fold (K=10)

Fonte: O autor

5.2.2.2 Grupo Teste

81 casos foram separados para uso no teste final (hold out) tanto com imagens histopa-

tológicas como com as informações sobre SNV dos 10 genes do painel de genes influen-

tes. Medidas foram tomadas para evitar contaminação das imagens dos casos do conjunto

teste com os outros conjuntos. Após análise da distribuição de casos no grupo teste, foram

acrescentados aleatoriamente mais casos das classes minoritárias. Totalizando 81 casos.

Distribuídos 41 CIN, 18 MS, 12 GS e 10 EBV, vide Figura 3.



127

Figura 3 – Distribuição de Casos no Grupo Teste (Hold-out)

Fonte: O autor

5.2.3 Treinamento

Foi empregado o algoritmo Random Forest (implementação RandomForestClassifier),

configurado com random_state=42, execução paralela (n_jobs=-1) e balanceamento au-

tomático das classes (class_weight=’balanced’). A etapa de ajuste de hiperparâmetros

foi conduzida por meio do RandomizedSearchCV, definido com n_iter=10, validação cru-

zada de três partições (cv=3), processamento paralelo (n_jobs=-1) e random_state=42.

O espaço de busca contemplou os seguintes hiperparâmetros: quantidade de árvores no

ensemble (n_estimators ∈ 100, 200, 300, 400, 500), número máximo de atributos con-

siderados por divisão (max_features ∈ ‘sqrt’, ‘log2’, None), profundidade máxima permi-

tida (max_depth ∈ None, 10, 20, 30), número mínimo de amostras exigido para realizar

uma divisão (min_samples_split ∈ 2, 5, 10), número mínimo de amostras por nó folha

(min_samples_leaf ∈ 1, 2, 4) e uso ou não do método bootstrap para amostragem (boots-

trap ∈ True, False).

10 modelos de Random Forest foram treinados (K-fold, k=10) nos dados tabulados

SNV (Varscan) não-sinônimos contendo 18.600 genes para a tarefa de classificação dos 4

subtipos moleculares (denominada lista todos os genes).

Em cada modelo treinado em um dos 10 folds (explicados em agrupamentos) foi em-

pregado o método SHAP (SHapley Additive exPlanations) para avaliação da influência de

cada gene nas predições dos modelos. Para cada subtipo, foram selecionados os 10 genes



128

com maior magnitude de influência para a predição de cada modelo. 2.4 Consolidação das

listas (SHAPLEY, 1953; CHEN et al., 2025)

As 40 listas de genes (10 para cada um dos 4 subtipos) foram consolidadas por dife-

rentes metodologias explicadas a seguir.

Novos modelos de Random Forest (K-fold=10) foram treinados conforme cada painel

consolidado, mantendo somente as informações relevantes aos genes presentes no painel

em treinamento.

5.2.4 Consolidação dos painéis

Inicialmente, as 40 listas (maiores magnetudes de SHAP) foram consolidadas por vo-

tação simples (Hard Voting), compondo-se assim um painel dos 10 genes mais frequentes

nas listas de influentes dos modelos. Denominado painel de 10 genes mais influentes por

frequência de aparência nas listas.

Um segundo método utilizado para consolidar as listas da maneira a ter mais explicabi-

lidade biológica foi primeiro excluir os genes das listas cujos SHAP eram negativos. O que

significa que a sua influência se dá quando não está presente.

A partir das listas contendo somente SHAP positivo, os painéis foram consolidados por

método de pontuação ponderada que considera a posição nos rankings e a frequência de

aparição entre subtipos para 4 listas (denominadas listas 10 mais por subtipo).

Essas quatro listas foram então consolidadas em uma única lista de 36 genes ordena-

dos por influência na predição dos quatro subtipos por método de pontuação ponderada

(denominada Painel 36 mais influentes).

O Método do Cotovelo foi então utilizado para determinar o número ideal do ponto de

vista de custo-efetividade de genes no painel final, identificando o ponto de corte onde a

variância explicada se estabiliza, 18 genes (75% de variância e até o 5º de cada subtipo).

A dimensão do painel foi também escolhida para ser apropriada à NGS (New Generation

Sequencing) com alta profundidade de cobertura em bloco de parafina, maior que 500X.

Foi também selecionado um painel viável reduzido para ser apropriado à imuno-histoquímica,

com 9 genes (Os 3 primeiros de cada subtipo, excluindo dois genes que não têm ainda an-

ticorpos listados no genecard.org).(STELZER et al., 2016) Foram também treinados modelos

de Random Forest para classificação a partir do painel imuno-histoquímico proposto (KIN

et al., 2016)
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5.2.5 Métricas

As métricas foram computadas com scikit-learn (v1.2.2), incluindo médias macro (não

ponderadas) e ponderadas (ponderadas por classe). Relatórios por fold e ensemble, com

curvas ROC visualizadas via TensorBoard. As métricas foram calculadas nos níveis de

tiles e pacientes, incluindo: Precisão (eq 5.1) – Proporção de predições positivas corretas;

Sensibilidade ou Recall (eq 5.2) – Proporção de positivos reais corretamente identificados;

F1-Score (eq 5.3) –Média harmônica de precisão e recall; AUC-ROC: Área sob a curva

ROC (one-vs-rest por classe)

Precisão =
𝑉 𝑃

𝑉 𝑃 + 𝐹𝑃
(5.1)

Recall =
VP

VP + FN
(5.2)

F1-Score = 2× Precisão × Recall
Precisão + Recall

(5.3)

AUC-ROC =

∫︁ 1

0

TPR(FPR)𝑑(FPR) (5.4)

onde:

• VP = Verdadeiros Positivos (True Positives)

• FP = Falsos Positivos (False Positives)

• FN = Falsos Negativos (False Negatives)

• VN = Verdadeiros Negativos (True Negatives)

• TPR = VP
VP+FN (Taxa de Verdadeiros Positivos ou Recall)

• FPR = FP
FP+VN (Taxa de Falsos Positivos)

A curva ROC é uma ferramenta gráfica utilizada para avaliar o desempenho de um

modelo de classificação binária, representando o trade-off entre a taxa de verdadeiros

positivos (Recall) (TPR) e a taxa de falsos positivos (FPR) à medida que a confiança do

modelo na predição aumenta.
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5.3 RESULTADOS E DISCUSSÃO

Primeiro são apresentados os painéis com os genes mais influentes. Na sequência,

são apresentados os resultados do poder de predição por Random Forest, discutidas as

diferentes métricas de precisão, recall, F1 score e AUC-ROC. Depois é apresentada as

comparações das métricas entre entre os painéis imuno-histoquímico aqui proposto e o

poder de predição do painel imunoistoquímico proposto por Kim et al 2016 na base do

TCGA STAD.

5.3.1 Descrição dos Painéis Genéticos

A análise de frequência e importância resultou na definição dos seguintes painéis ge-

néticos:

• 10 genes mais frequentes: ARID1A, TP53, RNF213, MUC16, PIK3CA, KMT2D,

HERC2, DOCK3, SYNE1, PCDHB13.

• Painel TOP 36: TP53, ARID1A, MUC16, ZBTB41, GGNBP2, PIK3CA, SYT17, MEF2C,

MUC6, RNF213, SEC31A, BOC, CDH18, NFASC, BHLHB9, FAS, HERC2, SYNE1,

ATM, CHD1, GRIP1, PCDHA2, PRCC, GJD4, KMT2D, DOCK3, KDM2B, KIF21A,

SDR9C7, CD14, CTNNBL1, DYSF, XKR6, GLIS2, MYO15A, PTPN14.

Nota: No material suplementar estão disponíveis os pesos ponderados e a influência

na predição de cada subtipo dos 36 genes.

• Painel TOP 18: TP53, ARID1A, MUC16, ZBTB41, GGNBP2, PIK3CA, SYT17, MEF2C,

MUC6, RNF213, SEC31A, BOC, CDH18, NFASC, BHLHB9, FAS, HERC2, SYNE1.

Os pesos ponderados e ordem de importância por subtipo disponíveis na tabela 1

Essa redução prioriza um número de genes que representa mais de 75% da variância

acumulada na pontuação ponderada e é um painel apropriado para sequenciamento de

alta profundidade de cobertura maior que 500X. O que é importante para o diagnóstico em

material emblocado em parafina proveniente de rotinas diagnósticas.

• TOP 9 IHQ com os 9 genes: TP53, ARID1A, MUC16, ZBTB41, GGNBP2, PIK3CA,

MEF2C, MUC6, RNF213
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Esse painel incluiu inicialmente 11 genes até o 3º gene por subtipo. Dois genes foram

excluídos, SYT17 e SEC31A, pois ainda não têm anticorpos listados no Genecard.org.

(GENECARDS, 2025)

Esse painel reduz o custo e aumenta a acessibilidade sobremaneira, pois é apropriado

para estudos imunoistoquímicos.

Tabela 1 – Composição dos Painéis Genéticos Otimizados.

Posição Gene Soma de Pontos Notas de Cálculo (Subtipo e Posi-
ção)

1 TP53 21 CIN (4º = 7) + EBV (7º = 4) + MSI (1º
= 10)

2 ARID1A 19 CIN (1º = 10) + GS (2º = 9)
3 MUC16 10 GS (1º = 10)
4 ZBTB41 10 EBV (1º = 10)
5 GGNBP2 9 MSI (2º = 9)
6 PIK3CA 9 CIN (2º = 9)
7 SYT17 9 EBV (2º = 9)
8 MEF2C 8 EBV (3º = 8)
9 MUC6 8 GS (3º = 8)
10 RNF213 8 CIN (3º = 8)
11 SEC31A 8 MSI (3º = 8)
12 BOC 7 MSI (4º = 7)
13 CDH18 7 GS (4º = 7)
14 NFASC 7 EBV (4º = 7)
15 BHLHB9 6 MSI (5º = 6)
16 FAS 6 GS (5º = 6)
17 HERC2 6 CIN (5º = 6)
18 SYNE1 6 EBV (5º = 6)

Fonte: Genes do painel top 18, em ordem de importância segundo SHAP aplicado em RF com 18.600 genes
com SNV, todos do não-sinônimos encontrados por NGS no STAD TCGA.

A composição dos painéis genéticos otimizados via Random Forest (RF) e SHAP revela

uma hierarquia de genes influentes que reflete a heterogeneidade molecular do adenocar-

cinoma gástrico, conforme delineada pelo TCGA (2014), onde subtipos como EBV, MSI,

GS e CIN são caracterizados por perfis genéticos distintos (??).

No painel TOP 36, genes como TP53 (21 pontos, com contribuições em MSI, CIN e

EBV) emergem como o mais proeminente, alinhando-se à sua mutação em mais de 50%

dos casos de câncer gástrico, frequentemente associados a CIN e MSI e pior prognóstico,
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como destacado em revisões recentes que enfatizam seu papel na regulação do ciclo ce-

lular e na evasão imunológica (WANG et al., 2024). ARID1A (19 pontos, 1º em CIN e 2º em

GS) segue como segundo, corroborando estudos que identificam suas mutações em até

30% dos casos, particularmente em subtipos MSI e GS, onde atua como supressor tumo-

ral via remodelação da cromatina, com implicações prognósticas variadas dependendo do

subtipo molecular (LEE; KIM; LEE, 2023). MUC16 (10 pontos, 1º em GS) completa o TOP

3, um gene codificador de mucina frequentemente mutado em tumores gástricos, associ-

ado à progressão metastática e à imunorresistência, como observado em análises TCGA

onde aparece entre as top mutações (ex.: 3º lugar geral), influenciando a heterogeneidade

tumoral-estromal (CHEN; WANG; LI, 2021).

Debate com a literatura aprofunda essa análise: No TCGA (2014), TP53 é mutado em

50% dos casos de CIN, por isso não surpreende sua pontuação elevada (21 pontos). Kim

et al. (2016) enfatizam RTKs (ex.: HER2 em 13,5%), mas ignoram genes como MUC16,

cuja mutação correlaciona com carga tumoral mutacional (TMB) alta em MSI, como em

análises recentes que propõem MUC16 como biomarcador para inibidores de checkpoint

(LI et al., 2024).

Entre os genes que surpreendem por sua influência discriminativa na predição do

subtipo molecular no Top 18, destacam-se ZBTB41 (10 pontos, 1º em EBV), GGNBP2

(9 pontos, 2º em MSI), SYT17 (9 pontos, 2º em EBV), MEF2C (8 pontos, 3º em EBV),

BOC (7 pontos, 4º em MSI), NFASC (7 pontos, 4º em EBV) e BHLHB9 (6 pontos, 5º em

MSI). Esses genes, menos convencionais na literatura do câncer gástrico, emergem como

discriminantes-chave devido à sua pontuação ponderada, revelando papéis inesperados

na heterogeneidade molecular. Por exemplo, ZBTB41, um regulador de transcrição com

domínio zinc finger, é surpreendente por sua influência em EBV, onde estudos recentes

indicam seu papel na repressão epigenética e na modulação de vias virais, alinhando-se

a análises bioinformáticas que o associam a infecções oncogênicas em subtipos EBV-

positivos, com mutações correlacionadas a pior prognóstico em coortes asiáticas (ZHANG

et al., 2023).

correlacionadas a pior prognóstico em coortes asiáticas (ZHANG et al., 2023).

GGNBP2, envolvido originalmente em gametogênese, destaca-se em MSI pela sua ca-

pacidade de influenciar a instabilidade genômica, como sugerido em pesquisas de 2024

que o ligam ao reparo de DNA mismatch em tumores hipermutados, uma descoberta ines-

perada que expande o repertório de genes não clássicos em GC (WU; XIE, 2024).
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SYT17, da família synaptotagmin envolvida em exocitose vesicular, surpreende em

EBV por sua potencial regulação de secreção de fatores imunossupressores, corroborada

por análises WGCNA que o posicionam em redes de evasão imunológica em subtipos

virais (CHEN; WANG; LI, 2021).

MEF2C, um fator de transcrição muscular, emerge como discriminante em EBV, com

estudos bioinformáticos revelando sua desregulação em vias de remodelação da croma-

tina, uma influência inesperada que sugere cross-talk entre diferenciação celular e infecção

viral, como explorado em coortes TCGA recentes (LEE; KIM; LEE, 2023).

BOC, regulador da via hedgehog, é surpreendente em MSI por sua associação com

migração tumoral, alinhando-se a descobertas de 2023 que o ligam à instabilidade micros-

satélite em tumores hipermutados (PARK; CHOI; KIM, 2023).

NFASC, uma proteína neural, destaca-se em EBV por sua influência em adesão celular,

uma função inesperada em GC que pode mediar interações estroma-tumoral em subtipos

virais, conforme análises funcionais recentes (ZHANG et al., 2023).

Finalmente, BHLHB9, um fator helix-loop-helix, surpreende em MSI por sua regulação

de proliferação, expandindo o entendimento de genes não oncogênicos em hipermutação,

como sugerido em estudos integrativos de 2025 (LI et al., 2024).

Esses genes, ao emergirem no Top 18, desafiam visões comuns, destacando a po-

tência do RF em revelar influências discriminativas inesperadas, com implicações para a

descoberta de biomarcadores emergentes e terapias personalizadas.

Na lista 10 mais frequentes consta um gene que não aparece na top 36, PCDHB13, um

gene associado ao cluster das protocaderinas beta e relacionado a reconhecimento célula

a célula. Foi excluído quando foram retirados os genes com alta magnitude de SHAP, mas

com valor negativo. Em outras palavras, é um gene que frequentemente apareceu nas

listas de influência, porém com valor negativo , o significado biológico desse achado é

desconhecido.

5.3.2 Comparação da precisão dos painéis

Os resultados de precisão revelam uma tendência de manutenção em subtipos majo-

ritários (CIN e MSI) com redução de dimensionalidade, mas degradação em minoritários

(EBV e GS), refletindo o trade-off entre abrangência e custo-efetividade nos painéis otimi-

zados via RF.
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Tabela 2 – Comparativo de Precision entre painéis genéticos (± DP)

PRECISION All 18600 influent 36 P 18 P 9 (IHQ)

CIN 0,76± 0,04 0,84± 0,02 0,92± 0,03 0,90± 0,04

EBV 0,00 0,63± 0,05 0,62± 0,02 0,47± 0,04

GS 0,40± 0,05 0,50± 0,04 0,47± 0,03 0,48

MSI 1,00 1,00 0,87± 0,08 0,83± 0,08

macro avg 0,54± 0,02 0,74± 0,01 0,71± 0,01 0,67± 0,02

Fonte: O autor (2025).

A alta precisão em MSI (1.00 ± 0.00 no TOP 36, caindo para 0.78 ± 0.00 no TOP 3)

alinha-se à hipermutação característica desse subtipo no TCGA (2014), onde elevadas

taxas de mutações facilitam discriminação robusta, mesmo em painéis mínimos (The Cancer

Genome Atlas Research Network, 2014). Em contraste, a queda em EBV (0.63 ± 0.05 a 0.47

± 0.07) sugere sensibilidade ao desbalanceamento, com desvios padrões relativamente

mais elevados indicando instabilidade em classes raras.

5.3.3 Comparação do Recall ( Sensibilidade) dos painéis

Os resultados do recall (sensibilidade), definido como TP / (TP + FN), onde TP são

verdadeiros positivos e FN falsos negativos, foram obtidos a partir dos modelos de Random

Forest treinados com k-fold cross-validation (k=10) e otimizados via SHAP, avaliados no

conjunto de teste hold-out com 81 casos (41 CIN, 18 MSI, 12 GS, 10 EBV). Os valores

representam médias e desvios padrões (±) dos 10 modelos.

Para o painel TOP 36, o recall por subtipo foi: CIN 0.68 ± 0.03, EBV 0.80 ± 0.00, GS

0.75 ± 0.00, MSI 0.92 ± 0.03. A macro average foi 0.79 ± 0.01, e a weighted average foi

0.76 ± 0.02. Para o painel Top 18, o recall por subtipo foi: CIN 0.64 ± 0.03, EBV 0.79 ± 0.03,

GS 0.81 ± 0.04, MSI 0.88 ± 0.03. A macro average foi 0.78 ± 0.01, e a weighted average

foi 0.74 ± 0.01.

Para o painel TOP 9, o recall por subtipo foi: CIN 0.64 ± 0.02, EBV 0.80 ± 0.00, GS 0.83

± 0.00, MSI 0.62 ± 0.04. A macro average foi 0.72 ± 0.01, e a weighted average foi 0.68 ±

0.01.

Os resultados de recall evidenciam a capacidade dos painéis genéticos otimizados via

Random Forest de detectar verdadeiros positivos em subtipos moleculares, com variações
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Tabela 3 – Recall (Sensibilidade) dos Painéis Genéticos (± Desvio Padrão).

RECALL all 18.600 Todos 36 Top 18 Top 9 (IHQ)

CIN 0,75± 0,05 0,68± 0,03 0,64± 0,03 0,64± 0,02

EBV 0,00 0,80 0,79± 0,03 0,80

GS 0,76± 0,13 0,75 0,81± 0,04 0,83

MSI 0,96± 0,03 0,92± 0,03 0,88± 0,03 0,62± 0,04

macro avg 0,62± 0,04 0,79± 0,01 0,78± 0,01 0,72± 0,01

weighted avg 0,71± 0,03 0,76± 0,02 0,74± 0,01 0,68± 0,01

Fonte: O autor (2025).

que refletem o impacto da redução dimensional em amostras desbalanceadas. O painel

TOP 36 apresenta um recall macro average de 0.79 ± 0.01, com destaque para MSI (0.92

± 0.03), indicando alta sensibilidade em tumores hipermutados, e EBV (0.80 ± 0.00), refle-

tindo captura robusta de mutações virais, enquanto CIN (0.68 ± 0.03) e GS (0.75 ± 0.00)

mostram desempenho moderado, condizente com a heterogeneidade aneuploide e difusa

reportada no TCGA (2014) (The Cancer Genome Atlas Research Network, 2014).

A redução para Top 18 mantém macro avg em 0.78 ± 0.01, com ganho em GS (0.81

± 0.04), sugerindo que genes como CDH18 e MUC6 otimizam detecção em subtipos es-

táveis, mas MSI cai para 0.88 ± 0.03, indicando perda de sensibilidade em hipermutação

devido à exclusão de genes secundários. Top 11 reduz macro avg para 0.73 ± 0.02, com

MSI caindo drasticamente (0.66 ± 0.07), refletindo alta variabilidade (±0.07) em classes

dependentes de cobertura ampla, enquanto EBV (0.80 ± 0.00) e GS (0.83 ± 0.00) se man-

têm estáveis. O TOP 9, atinge macro avg de 0.72 ± 0.01, com pico em GS (0.83 ± 0.00), e

mantendo um bom resultado para EBV (0.80 ± 0.00).

5.3.4 Comparação do F-1 score dos painéis

Os resultados do F-1 score, calculado como a média harmônica de precisão e recall

𝐹1 = 2·(precisão·recall)/(precisão+recall), foram obtidos a partir dos modelos de Random

Forest treinados com k-fold cross-validation (k=10) e otimizados via SHAP, avaliados no

conjunto de teste hold-out com 81 casos (41 CIN, 18 MSI, 12 GS, 10 EBV). Os valores

representam médias e desvios padrões (±) dos 10 modelos.

Para o painel TOP 36, o F-1 score por subtipo foi: CIN 0.75 ± 0.02, EBV 0.71 ± 0.03,
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GS 0.60 ± 0.03, MSI 0.96 ± 0.02. A macro average foi 0.75 ± 0.01, e a weighted average

foi 0.77 ± 0.01.

Para o painel Top 18, o F-1 score por subtipo foi: CIN 0.75 ± 0.02, EBV 0.70 ± 0.02, GS

0.59 ± 0.02, MSI 0.87 ± 0.04. A macro average foi 0.73 ± 0.01, e a weighted average foi

0.75 ± 0.02. Para o painel TOP 9, o F-1 score por subtipo foi: CIN 0.74 ± 0.01, EBV 0.59

± 0.03, GS 0.61 ± 0.00, MSI 0.71 ± 0.04. A macro average foi 0.66 ± 0.02, e a weighted

average foi 0.70 ± 0.02.

Tabela 4 – F-1 Score dos Painéis Genéticos (± Desvio Padrão).

F1-SCORE 18.600 Todos 36 Top 18 Top 9 (IHQ)

CIN 0,76± 0,04 0,75± 0,02 0,75± 0,02 0,74± 0,01

EBV 0,00 0,71± 0,03 0,70± 0,02 0,59± 0,03

GS 0,52± 0,07 0,60± 0,03 0,59± 0,02 0,61

MSI 0,98± 0,02 0,96± 0,02 0,87± 0,04 0,71± 0,04

macro avg 0,56± 0,02 0,75± 0,01 0,73± 0,01 0,66± 0,02

weighted avg 0,68± 0,03 0,77± 0,01 0,75± 0,02 0,70± 0,02

Fonte: O autor (2025).

Os resultados do F-1 score demonstram a capacidade dos painéis genéticos otimizados

via Random Forest de equilibrar precisão e recall, com desempenho que varia conforme a

redução dimensional, refletindo o impacto da seleção de genes em subtipos desbalancea-

dos. O painel TOP 36 alcança um macro F-1 de 0.75 ± 0.02, com destaque para MSI (0.96

± 0.02), indicando alta harmonia entre detecção e correção em tumores hipermutados, e

EBV (0.71 ± 0.03), sugerindo robustez em subtipos virais, enquanto CIN (0.75 ± 0.02) e

GS (0.60 ± 0.03) mostram estabilidade moderada, condizente com a aneuploidia e difusão

descritas no TCGA (2014) (??).

A transição para Top 18 reduz macro F-1 para 0.73 ± 0.01, mantendo CIN (0.75 ± 0.02)

e reduzindo EBV (0.70 ± 0.02), mas com queda em MSI (0.87 ± 0.04), refletindo perda de

genes secundários como BOC e SEC31A.

Top 9 apresenta macro F-1 de 0.74 ± 0.01, com estabilidade em CIN (0.74 ± 0.01)

e GS (0.61 ± 0.00), mas declínio em EBV (0.59 ± 0.03) e MSI (0.71 ± 0.04), indicando

sensibilidade ao corte de genes como MEF2C.
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5.3.5 Comparação da AUC-ROC dos painéis

Os resultados da Área Sob a Curva (AUC-ROC) foram obtidos a partir dos modelos

de Random Forest treinados com validação cruzada k-fold (k=10) e otimizados via SHAP,

avaliados em um conjunto de teste hold-out com 81 casos (41 CIN, 18 MSI, 12 GS, 10

EBV). Os valores apresentados na Tabela 5 correspondem às médias e desvios padrões

(±) dos 10 modelos gerados.

Para o painel TOP 36, os valores de AUC-ROC por subtipo foram: CIN 0.83 ± 0.02,

EBV 0.93 ± 0.04, GS 0.83 ± 0.03, MSI 1.00 ± 0.00. A macro average foi 0.89 ± 0.02, e a

weighted average foi 0.88 ± 0.01.

Para o painel TOP 18, os valores de AUC-ROC por subtipo foram: CIN 0.88 ± 0.01,

EBV 0.93 ± 0.02, GS 0.86 ± 0.03, MSI 0.97 ± 0.01. A macro average foi 0.91 ± 0.01, e a

weighted average foi 0.90 ± 0.01.

Para o painel TOP 9, os valores de AUC-ROC por subtipo foram: CIN 0.87 ± 0.02, EBV

0.90 ± 0.01, GS 0.84 ± 0.03, MSI 0.96 ± 0.01. A macro average foi 0.89 ± 0.01, e a weighted

average foi 0.89 ± 0.01.

Os resultados da AUC-ROC demonstram a capacidade discriminatória dos painéis ge-

néticos otimizados por Random Forest, com desempenho variando conforme a redução

dimensional, refletindo o impacto da seleção de genes em subtipos desbalanceados. O

painel TOP 36 alcança uma macro AUC-ROC de 0.89 ± 0.02, com destaque para MSI

(1.00 ± 0.00), indicando discriminação perfeita em tumores hipermutados, e EBV (0.93 ±

0.04), sugerindo alta capacidade de identificação em subtipos virais. CIN (0.83 ± 0.02) e

GS (0.83 ± 0.03) apresentam desempenho robusto, condizente com as características de

aneuploidia e difusão descritas no TCGA (The Cancer Genome Atlas Research Network, 2014).

A transição para o painel TOP 18 eleva a macro AUC-ROC para 0.91 ± 0.01, com me-

lhora em CIN (0.88 ± 0.01) e manutenção de EBV (0.93 ± 0.02), mas com leve redução

em MSI (0.97 ± 0.01), possivelmente devido à exclusão de genes secundários como BOC

e SEC31A. O painel TOP 9 mantém macro AUC-ROC estável em 0.89 ± 0.01, com de-

sempenho consistente em CIN (0.87 ± 0.02) e GS (0.84 ± 0.03), mas com leve declínio em

EBV (0.90 ± 0.01) e MSI (0.96 ± 0.01), sugerindo sensibilidade à remoção de genes como

MEF2C.
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Figura 4 – Ensemble Random Forest Top 9

Fonte: O autor (2025).

Tabela 5 – AUC-ROC dos Painéis Genéticos (± Desvio Padrão).

AUC-ROC 18.600 TOP 36 Top 18 Top 9 (IHQ)

CIN 0,75± 0,05 0,83± 0,02 0,88± 0,01 0,87± 0,02

EBV 0,72± 0,05 0,93± 0,04 0,93± 0,02 0,90± 0,01

GS 0,86± 0,01 0,83± 0,03 0,86± 0,03 0,84± 0,03

MSI 1,00 1,00 0,97± 0,01 0,96± 0,01

macro avg 0,83± 0,02 0,89± 0,02 0,91± 0,01 0,89± 0,01

weighted avg 0,82± 0,03 0,88± 0,01 0,90± 0,01 0,89± 0,01

Fonte: O autor (2025).

5.3.6 Resultados e discussão de poder preditivo por SNV do painel proposto por

Kin 2016

Os resultados do poder preditivo foram obtidos a partir de modelos de Random Forest

treinados em dados de SNV não sinônimos do TCGA-STAD, utilizando o painel de genes
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proposto por Kim et al. (2016): MLH1, PMS2, MSH2, MSH6, HER2, EGFR, MET, PTEN e

TP53. Esses resultados são apresentados ao lado dos obtidos com o painel Top 9 IHQ pro-

posto neste estudo, para facilitar a comparação. As métricas foram calculadas no conjunto

de teste hold-out com 81 casos (41 CIN, 18 MSI, 12 GS, 10 EBV), representando médias

e desvios padrões (±) dos 10 modelos (k-fold cross-validation, k=10).

5.3.6.1 Precision

Como pode ser observado na tabela 6, para o painel os random forest treinados no Top

9 IHQ: CIN 0.90 ± 0.04, EBV 0.47 ± 0.04, GS 0.48 ± 0.00, MSI 0.83 ± 0.08; macro average

0.67 ± 0.02, weighted average 0.77 ± 0.02. Já para o painel IHQ de Kim et al. (2016): CIN

0.84 ± 0.03, EBV 0.04 ± 0.08, GS 0.22 ± 0.12, MSI 0.72 ± 0.02; macro average 0.45 ± 0.02,

weighted average 0.62 ± 0.02.

Tabela 6 – Precisão dos Painéis (± Desvio Padrão).

PRECISION Top 9 (IHQ)
IHQ 9

KIM et al., 2016

CIN 0,90± 0,04 0,84± 0,03

EBV 0,47± 0,04 0,04± 0,08

GS 0,48 0,22± 0,12

MSI 0,83± 0,08 0,72± 0,02

macro avg 0,67± 0,02 0,45± 0,02

weighted avg 0,77± 0,02 0,62± 0,02

Fonte: O autor (2025).

Os resultados de precisão demonstram a superioridade do painel TOP 9 (IHQ) em

relação ao painel IHQ de Kim et al. (2016) em todos os subtipos avaliados. O painel TOP

9 alcança uma macro precisão de 0.67 ± 0.02, significativamente superior à de Kim et al.

(0.45 ± 0.02), refletindo maior capacidade de identificar corretamente os casos positivos

em subtipos desbalanceados. O desempenho em CIN (0.90 ± 0.04 vs. 0.84 ± 0.03) e MSI

(0.83 ± 0.08 vs. 0.72 ± 0.02) indica maior robustez do TOP 9, especialmente em tumores

hipermutados (MSI) e com instabilidade cromossômica (CIN), alinhando-se aos achados

do TCGA (2014) (The Cancer Genome Atlas Research Network, 2014).

A melhora expressiva em EBV (0.47 ± 0.04 vs. 0.04 ± 0.08) sugere que a otimização
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via SHAP no TOP 9 captura melhor as características moleculares virais, superando as

limitações da abordagem imunohistoquímica (IHQ) de Kim et al. (2016), que apresenta

baixa sensibilidade para EBV (3.3% detectados por ISH) (KIN et al., 2016). Para GS, o TOP

9 (0.48 ± 0.00) também supera Kim et al. (0.22 ± 0.12), condizente com a classificação

difusa da OMS (2019) (FUKAYAMA; RUGGE; WASHINGTON, 2019), embora o desempenho

ainda seja limitado devido à heterogeneidade desse subtipo.

5.3.6.2 Sensibilidade - Recall

É possível observar na Tabela 7 que o painel Top 9 IHQ com o Random Forest alcançou:

CIN 0.64 ± 0.02, EBV 0.80 ± 0.00, GS 0.83 ± 0.00, MSI 0.62 ± 0.04; macro average 0.72 ±

0.01, weighted average 0.68 ± 0.01. como pode ser visto na tabela 6. Para o painel IHQ de

Kim et al. (2016) a Random Forest alcançou: CIN 0.59 ± 0.00, EBV 0.14 ± 0.30, GS 0.66 ±

0.35, MSI 0.58 ± 0.05; macro average 0.49 ± 0.02, weighted average 0.54 ± 0.02.

Tabela 7 – Recall (Sensibilidade) dos Painéis (± Desvio Padrão).

RECALL Top 9 (IHQ)
IHQ (9)

KIM et al., 2016

CIN 0,64± 0,02 0,59

EBV 0,80 0,14± 0,30

GS 0,83 0,66± 0,35

MSI 0,62± 0,04 0,58± 0,05

macro avg 0,72± 0,01 0,49± 0,02

weighted avg 0,68± 0,01 0,54± 0,02

Fonte:O autor (2025).

Os resultados de recall demonstram a superioridade do painel TOP 9 (IHQ) em relação

ao painel IHQ de Kim et al. (2016) em todos os subtipos avaliados, refletindo maior ca-

pacidade de identificar casos positivos verdadeiros em subtipos desbalanceados. O painel

TOP 9 alcança uma macro recall de 0.72 ± 0.01, significativamente superior à de Kim et

al. (0.49 ± 0.02), indicando melhor desempenho na detecção de casos em subtipos mo-

lecularmente distintos. O recall em EBV (0.80 ± 0.00 vs. 0.14 ± 0.30) destaca a robustez

do TOP 9 para subtipos virais, superando as limitações da abordagem imunohistoquímica

(IHQ) de Kim et al. (2016), que apresenta baixa sensibilidade para EBV (3.3% detectados
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por ISH) (KIN et al., 2016). Para GS, o TOP 9 (0.83 ± 0.00) também supera Kim et al. (0.66

± 0.35), alinhando-se à classificação difusa (FUKAYAMA; RUGGE; WASHINGTON, 2019), em-

bora a heterogeneidade desse subtipo ainda represente um desafio. Em CIN (0.64 ± 0.02

vs. 0.59 ± 0.00) e MSI (0.62 ± 0.04 vs. 0.58 ± 0.05), o TOP 9 apresenta ganhos modera-

dos, condizentes com as características de aneuploidia e hipermutação descritas no TCGA

(2014) (The Cancer Genome Atlas Research Network, 2014).

5.3.6.3 F1-Score

Para a comparação de F1-score com o painel 9 IHQ os modelos de Random Forest :

CIN 0.74 ± 0.01, EBV 0.59 ± 0.03, GS 0.61 ± 0.00, MSI 0.71 ± 0.04; macro average 0.66

± 0.02, weighted average 0.70 ± 0.02. Já para o painel IHQ de Kim et al. (2016): CIN 0.69

± 0.01, EBV 0.06 ± 0.12, GS 0.34 ± 0.18, MSI 0.64 ± 0.04; macro average 0.43 ± 0.02,

weighted average 0.55 ± 0.02.

Tabela 8 – F1-Score dos Painéis (± Desvio Padrão).

F1-SCORE Top 9 (IHQ)
IHQ (9)

KIM et al., 2016

CIN 0,74± 0,01 0,69± 0,01

EBV 0,59± 0,03 0,06± 0,12

GS 0,61 0,34± 0,18

MSI 0,71± 0,04 0,64± 0,04

macro avg 0,66± 0,02 0,43± 0,02

weighted avg 0,70± 0,02 0,55± 0,02

Fonte: O autor (2025).

Os resultados do F1-score demonstram a superioridade do painel TOP 9 (IHQ) em

relação ao painel IHQ de Kim et al. (2016) em todos os subtipos avaliados, refletindo maior

capacidade de equilibrar precisão e recall em subtipos desbalanceados. O painel TOP

9 alcança uma macro F1-score de 0.66 ± 0.02, significativamente superior à de Kim et al.

(0.43 ± 0.02), indicando melhor desempenho na classificação molecular do câncer gástrico.

O F1-score em EBV (0.59 ± 0.03 vs. 0.06 ± 0.12) destaca a robustez do TOP 9 para

subtipos virais, superando as limitações da abordagem imunohistoquímica (IHQ) de Kim et

al. (2016), que apresenta baixa sensibilidade para EBV (3.3% detectados por ISH) (KIN et
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al., 2016).

Para GS (0.61 ± 0.00 vs. 0.34 ± 0.18), o TOP 9 também mostra desempenho supe-

rior, alinhando-se à classificação difusa da OMS (2019) (FUKAYAMA; RUGGE; WASHINGTON,

2019), embora a heterogeneidade desse subtipo limite ganhos adicionais. Em CIN (0.74

± 0.01 vs. 0.69 ± 0.01) e MSI (0.71 ± 0.04 vs. 0.64 ± 0.04), o TOP 9 apresenta melhorias

moderadas, condizentes com as características de aneuploidia e hipermutação descritas

no TCGA (2014) (The Cancer Genome Atlas Research Network, 2014).

5.3.6.4 AUC-ROC

Na tabela 8 Para o painel Top 9 IHQ: CIN 0.87 ± 0.02, EBV 0.90 ± 0.01, GS 0.84 ± 0.03,

MSI 0.96 ± 0.01; macro average 0.89 ± 0.01, weighted average 0.89 ± 0.01. Para o painel

IHQ (9 genes) de Kim et al. (2016): CIN 0.78 ± 0.02, EBV 0.66 ± 0.03, GS 0.71 ± 0.02, MSI

0.76 ± 0.03; macro average 0.73 ± 0.01, weighted average 0.75 ± 0.01.

Tabela 9 – AUC-ROC dos Painéis (± Desvio Padrão).

AUC-ROC Top 9 (IHQ)
IHQ (9)

KIM et al., 2016

CIN 0,87± 0,02 0,78± 0,02

EBV 0,90± 0,01 0,66± 0,03

GS 0,84± 0,03 0,71± 0,02

MSI 0,96± 0,01 0,76± 0,03

macro avg 0,89± 0,01 0,73± 0,01

weighted avg 0,89± 0,01 0,75± 0,01

Fonte: O autor (2025).

Os resultados demonstram superioridade consistente do painel Top 9 IHQ em todas

as métricas, com ganhos notáveis em médias macro (precisão +0,22, recall +0,23, F1-

score +0,23, AUC-ROC +0,16). Em subtipos majoritários (CIN e MSI), as diferenças são

moderadas (ex.: AUC-ROC CIN +0.09, MSI +0.20), enquanto em minoritários (EBV e GS),

os ganhos são acentuados (ex.: recall EBV +0.66, F1-score GS +0.27), refletindo melhor

captura de heterogeneidade em classes desbalanceadas. Desvios padrões mais elevados

no painel de Kim indicam maior instabilidade, especialmente em EBV (±0.30 no recall) e

GS (±0.35 no recall).
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A comparação revela limitações metodológicas ao avaliar painéis imunohistoquímicos

via SNV por sequenciamento, uma vez que o painel de Kim et al. (2016) foi originalmente

projetado para expressão proteica (IHC e ISH), não para variantes genéticas. Essa discre-

pância pode subestimar o desempenho real do painel de Kim em contextos proteômicos,

mas destaca a robustez do painel proposto, otimizado via SHAP para SNV funcionais, ou-

tro ponto de destaque é que o painel porposto por Kin inclui Hibridização in situ para EBV,

embora no estudo original tenha identificado o tipo EBV por esse método apenas em 3,3%

dos casos (KIM et al., 2016) .

Em debate com a literatura, o painel Top 9 IHQ alinha-se ao TCGA (2014), onde TP53

e ARID1A dominam perfis CIN e MSI, mas incorpora genes emergentes como MUC16

e ZBTB41, ausentes em Kim, melhorando a discriminação em EBV (AUC-ROC 0.90 vs.

0.66). Estudos recentes corroboram: Flinner et al. (2022) reportam AUC-ROC .80 para

CIN via IA em imagens, sugerindo que nosso painel supera IHC tradicional em dados gené-

ticos; críticas incluem viés TCGA (coortes asiáticas/americanas), demandando validação

externa.

O próximo passo do grupo é concatenar o G.SubtForest com modelos de redes neurais

convolucionais. Integrando os dados dos painéis genéticos identificados com dados de

imagens histopatológicas. Essa sinergia tem o potencial de aprimorar a estratificação de

pacientes ao correlacionar mutações genéticas com padrões morfológicos, potencializando

dados já disponíveis sem necessidade de novos testes moleculares.

5.4 CONCLUSÃO

O algoritmo SHapley Additive exPlanations (SHAP) para avaliar a influência colabora-

tiva dos genes na predição Random Forest para os subtipos moleculares do câncer gás-

trico se mostrou uma forma eficiente de identificação de genes previamente não descritos

na literatura do câncer gástrico.

Com esse método, o presente estudo identificou dois painéis de genes para classificar

os pacientes em subtipo molecular, cada um apropriado ao contexto de acessibilidade a

métodos diagnósticos. Desenvolveu sistemas preditivos para classificar os casos em con-

formidade com os painéis de 18 genes e 9 genes. Respectivamente G.SubtForest 18 para

painel apropriado a NGS e G.SubtForest 9 para painel apropriado a imuno-histoquímica.
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6 CAPÍTULO 4 - G.SUBTGENOVISION: SISTEMA ENSEMBLE MULTIMODAL PARA

CLASSIFICAÇÃO DOS SUBTIPOS MOLECULARES DO ADENOCARCINOMA

GÁSTRICO COM IMAGENS HISTOPATOLÓGICAS E PAINEL DE MUTAÇÕES

O adenocarcinoma gástrico (AG) foi classificado pelo TCGA- STAD (The Cancer Ge-

nomic Atlas - Stomach Adenocarcinoma) em 4 subtipos moleculares: Instabilidade cro-

mossômica (CIN), instabilidade microssatélite (MSI), vírus Epstein-Barr (EBV) e genômica

estável (GS). Apresenta-se o G.SubtGenoVison (Gastro Subtyping Through Genes and

Computational Vision). Um modelo de comitê (ensemble) multimodal para predição de sub-

tipos moleculares. Esse concatena MobileNet-V2 em imagens histopatológicas e Florestas

Aleatórias (Random Forest) em variantes genéticas (SNV) somáticas.

Metodologia: Dados do TCGA-STAD (476 lâminas inteiras e SNVs de 18.600 genes

de 290 pacientes). As imagens foram pré-processadas por tiling e normalização de cor. As

SNVs foram tabuladas por caso e por gene. Foi usada Random Forest com aplicação de

SHapley Additive exPlanations (SHAP) para identificar painel de 9 genes. Grupo teste (hold

out) foi separado. Grupos treino/validação foram divididos k-fold k=10. Assim, 10 modelos

de MobileNet-V2 e 10 de Random Forest foram concatenados em ensemble multimodal.

Resultados: O G.SubtGenoVision obteve desempenho medido por AUC-ROC médio de

0.94, sendo para: CIN (0.90), EBV (0.96), GS (0.90) e MSI (0.98). Modelo, portanto, efici-

ente na classificação dos subtipos moleculares do câncer gástrico, superando a literatura.

Código e material suplementar disponíveis.

6.1 INTRODUÇÃO

O adenocarcinoma gástrico (AG) representa uma das neoplasias mais prevalentes e

letais globalmente. Segundo o Observatório Global do Câncer em 2020, o AG foi respon-

sável por mais de um milhão de novos casos de câncer. As taxas são duas vezes mais

altas entre homens que entre mulheres, sendo a quinta causa mais comum de câncer e

a terceira em mortalidade, com 769.000 óbitos em 2020 (SUNG et al., 2021). Sua etiologia

multifatorial, influenciada por fatores ambientais como infecção por Helicobacter pylori, di-

eta rica em sal e tabagismo, resulta em uma progressão frequentemente assintomática até

estágios avançados, comprometendo o prognóstico.

A heterogeneidade molecular do AG, destacada pela classificação do The Cancer Ge-
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nome Atlas (TCGA), divide-o em quatro subtipos principais: cromossomicamente instável

(CIN, 50%), instável em microssatélites (MSI, 22%), genomicamente estável (GS, 19%)

e positivo para o vírus Epstein-Barr (EBV, 9%). Esses subtipos não apenas refletem perfis

genômicos distintos, como amplificações cromossômicas em CIN, hipermutações em MSI,

mutações em genes de adesão celular em GS e hipermetilação em EBV, mas também

guiam decisões terapêuticas, com MSI e EBV respondendo melhor à imunoterapia (ex.:

pembrolizumab) e CIN à quimioterapia adjuvante.

No entanto, o diagnóstico molecular convencional, baseado em sequenciamento genô-

mico ou imuno-histoquímica (IHC), é limitado por altos custos, tempo de processamento

e riscos de erros de amostragem devido à heterogeneidade intratumoral, restringindo sua

aplicação em contextos clínicos de recursos limitados.

O problema central reside na necessidade de métodos diagnósticos acessíveis e preci-

sos para subclassificação molecular do AG, especialmente em cenários onde testes gené-

ticos extensos não são viáveis. Embora avanços em bioinformática e inteligência artificial

(IA) tenham emergido para mitigar essas barreiras, a maioria das abordagens foca em mo-

dalidades isoladas, como imagens histopatológicas ou dados ômicos, falhando em capturar

a complexidade multifacetada da doença. Essa delimitação evidencia a lacuna para siste-

mas integrados que combinam dados visuais e genéticos, melhorando a robustez preditiva

sem demandar infraestrutura avançada.

6.2 MÉTODOS

Esta seção descreve as etapas envolvidas na condução do estudo, desde a aquisição

e pré-processamento dos dados até o treinamento e avaliação dos modelos. Utilizando

dados histopatológicos e genômicos do projeto STAD (Stomach Adenocarcinoma) da base

pública TCGA. Foram exploradas abordagens unimodais e multimodais de aprendizado

de máquina, visando classificar os subtipos moleculares do adenocarcinoma gástrico. O

processo completo está representado no fluxograma da Figura 1 onde a entrada são os

dois tipos de dados, imagem e genes, que são utilizados em dois ensembles unimodais

para gerar um ensemble multimodal e retornar o resultado. As etapas são descritas com

mais detalhes nas subseções a seguir.
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Figura 1 – Ensemble Multimodal MobileNetV2 e RandomForest: O sistema tem duas entradas, uma é a ima-
gem histopatológica da biópsia do paciente e outra é a presença (1) ou ausência (0) de variates
genéticas nos genes do painel avaliado

Fonte: O autor (2025).

6.2.1 Dataset: Conjunto de Dados

O estudo foi realizado utilizando o projeto STAD (Stomach Adenocarcinoma) da base

pública do TCGA (The Cancer Genomic Atlas) acessível pelo site <https://gdc.cancer.gov>.

Foram utilizados imagens histopatológicas e dados SNV do VarScan.

6.2.2 Imagens de lâminas inteiras

O TCGA disponibiliza imagens de lâminas inteiras (WSI) coradas em hematoxilina e

eosina (HE) em formato SVS de alta qualidade produzidas por patologia digital a 40x. Ao

todo, foram selecionadas 476 lâminas do STAD distribuídas associadas aos rótulos dos

subtipos da seguinte maneira: CIN (232 lâminas), MSI (114 lâminas), GS (73 lâminas) e

EBV (57 lâminas).

6.2.3 Pré-processamento das Imagens

O pré-processamento das imagens compreendeu três etapas principais:
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• Segmentação em tiles de 224x224 px;

• Detecção e exclusão de imagens borradas;

• Normalização de cor.

O corte das imagens (Tiling) foi realizado com 263 casos, totalizando 476 imagens,

classificadas em conjuntos segundo os 4 subtipos moleculares (CIN, MSI, EBV, GS). A nor-

malização de cor foi implementada com base no método Macenko (MACENKO et al., 2009).

6.2.4 Aquisição de Dados SNV - TCGA STAD

A detecção de mutações somáticas por variação de nucleótidos únicos (SNV) foi re-

alizada pelo pipeline do TCGA utilizando o software VarScan2, comparando as amostras

tumorais ao DNA germinativo emparelhado para identificar mutações somáticas. Para esta

pesquisa, foram utilizadas apenas as variantes com impacto funcional não-sinônimo.

6.2.5 Agrupamentos: Treino, Validação e Teste

O conjunto de dados foi separado em dois grupos:

• Grupo Treinamento/Validação: 290 casos, com separação utilizando k-fold cross-

validation.

• Grupo Teste: 81 casos, mantidos para avaliação final (hold-out).

6.2.6 Treinamento

Os modelos foram treinados utilizando a versão Python 3.8.20, bibliotecas scikit-learn

1.2.2, Pandas 1.5.3, PyTorch 2.4.1+cu118. O treinamento envolveu MobileNetV2, inicia-

lizado com pesos pré-treinados no ImageNet, e Random Forest, utilizando a biblioteca

SHAP para obter a influência dos genes.
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6.2.7 Métodos de Ensembles

6.2.7.1 Ensembles Unimodais (SM)

Foi formado um comitê de modelos (ensemble) utilizando o método de soft voting e

hard voting para as redes neurais convolucionais MobileNet-V2 e Random Forest.

6.2.7.2 Ensembles Multimodais (MM)

Os ensembles multimodais combinaram MobileNet V2 e Random Forest. Os 20 mode-

los (10 de cada abordagem) foram consolidados em um comitê multimodal.

6.3 MÉTRICAS UTILIZADAS

As métricas foram computadas usando a biblioteca scikit-learn, versão 1.2.2, incluindo

médias macro (não ponderadas) e weighted (ponderadas por classe). Para acompanha-

mento mais detalhado dos resultados, foram utilizados relatórios por fold e ensemble, com

curvas ROC visualizadas via TensorBoard. As métricas foram calculadas nos níveis de ti-

les e consolidadas para o nível dos pacientes, incluindo: Precisão (eq 6.1) – Proporção de

predições positivas corretas, ela expressa a confiança no diagnóstico positivo, já que os

falsos positivos vão reduzir essa métrica.

A precisão expressa a mesma intenção da especificidade, porém o faz ao representar

a proporção de verdadeiros positivos no total de positivos indicados pelo modelo. Sen-

sibilidade ou Recall (eq 6.2) – Proporção de positivos reais corretamente identificados,

expressa, portanto, a proporção de verdadeiros positivos sobre o total de casos positivos,

já que o total de casos positivos é a soma dos verdadeiros positivos com os falsos ne-

gativos. F1-Score (eq 6.3) – Média harmônica de precisão e recall, é uma métrica que

combina precisão e recall em uma única medida, oferecendo um balanço entre a capa-

cidade de identificar corretamente os positivos (sensibilidade - recall) e a confiabilidade

dessas predições (precisão). AUC-ROC: Área sob a curva ROC (one-vs-rest por classe) é

uma ferramenta gráfica utilizada para avaliar o desempenho de um modelo de classificação

binária, representando o trade-off entre a taxa de verdadeiros positivos (Recall) (TPR) e a

taxa de falsos positivos (FPR) à medida que a confiança do modelo na predição aumenta.
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A área abaixo da curva ROC (neste texto chamada de AUC-ROC) corresponde à medida

numérica obtida ao calcular a área sob a curva ROC. Ela representa a probabilidade de o

modelo atribuir um valor de score mais alto para uma instância positiva do que para uma

negativa escolhida aleatoriamente. Quanto maior a AUC-ROC (próxima de 1), melhor a

capacidade de separação entre as classes; valores próximos de 0,5 indicam um modelo

aleatório, e valores abaixo disso sugerem um modelo que classifica pior do que o acaso.

Precisão =
𝑉 𝑃

𝑉 𝑃 + 𝐹𝑃
(6.1)

Recall =
VP

VP + FN
(6.2)

F1-Score = 2× Precisão × Recall
Precisão + Recall

(6.3)

AUC-ROC =

∫︁ 1

0

TPR(FPR)𝑑(FPR) (6.4)

onde:

• VP = Verdadeiros Positivos (True Positives)

• FP = Falsos Positivos (False Positives)

• FN = Falsos Negativos (False Negatives)

• VN = Verdadeiros Negativos (True Negatives)

• TPR = VP
VP+FN (Taxa de Verdadeiros Positivos ou Recall)

• FPR = FP
FP+VN (Taxa de Falsos Positivos)

6.4 RESULTADOS

6.4.1 Resultados MobileNetV2 (Hard e Soft Voting)

A Tabela 1 apresenta os resultados do ensemble de 10 modelos MobileNetV2 utilizando

hard voting no conjunto de teste hold-out (82 pacientes). As métricas macro médias indi-

cam precisão de 0.67, recall de 0.47 e F1-score de 0.50, com acurácia global de 0.61.
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Para o subtipo CIN, observou-se alta recall (0.93), mas precisão moderada (0.59). EBV

apresentou precisão de 0.80 e recall de 0.40, enquanto GS e MSI tiveram recalls baixos

(0.38 e 0.17, respectivamente).

A Tabela 2 mostra os resultados com soft voting, com macro médias de precisão 0.78,

recall 0.43 e F1-score 0.46, e acurácia de 0.60. Houve melhoria na precisão para EBV

(1.00) e MSI (1.00), mas recalls permaneceram baixos para classes minoritárias. Também

é possível ver na Figura 2 uma médica macro com AUC de 0,85 e destacando o subtipo

EBV com AUC de 0,95. O subtipo GS apresenta o valor mais baixo mas ainda significativo

de 0,72 enquanto os subtipos CIN e MSI apresentam AUC de 0,80 e 0,86 respectivamente.

Tabela 1 – Hard Voting 10 folds nível de Paciente - MobileNetV2.

Subtipo Precisão Recall F1-Score Suporte

CIN 0,59 0,93 0,72 41

EBV 0,80 0,40 0,53 10

GS 0,56 0,38 0,45 13

MSI 0,75 0,17 0,27 18

Acurácia 0.61

Macro AVG 0,67 0,47 0,50 82

Weighted AVG 0,65 0,61 0,56 82

Fonte: O autor (2025).

Tabela 2 – Soft Voting 10 folds nível de Paciente - MobileNetV2.

Subtipo Precisão Recall F1-Score Suporte

CIN 0,57 0,95 0,71 41

EBV 1,00 0,30 0,46 10

GS 0,57 0,31 0,40 13

MSI 1,00 0,17 0,29 18

Acurácia 0.60

Macro AVG 0,78 0,43 0,46 82

Weighted AVG 0,71 0,60 0,54 82

Fonte: O autor (2025).
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Figura 2 – AUC-ROC MobileNet-V2

Fonte: O autor (2025).

6.4.2 Resultados Random Forest (Painel 9 Genes IHQ)

A Tabela 3 resume os resultados do ensemble de 10 modelos Random Forest com soft

voting em 81 pacientes, com macro médias de precisão 0.76, recall 0.85 e F1-score 0.78, e

acurácia de 0.78. MSI obteve alto desempenho (precisão 1.00, recall 0.94), enquanto CIN

teve recall moderado (0.63). Por fim, é possível observar através da Figura 3 que o modelo

obteve um auto desempenho nos subtipos EBV e MSI com AUC de 0,94 e 0,97 respecti-

vamente, assim como uma média macro de 0,93. Os subtipos CIN e GS apresentam um

desempenho significativo com AUC de 0,88 para ambos.

É importante notar que este desempenho foi alcançado utilizando um painel selecio-

nado de 9 genes: TP53, ARID1A, MUC16, ZBTB41, GGNBP2, PIK3CA, MEF2C, MUC6

e RNF213. A seleção deste painel genético, que inclui genes com papéis conhecidos na

tumorigênese gástrica como ‘TP53‘ e ‘PIK3CA‘ e todos com marcadores imunohistoquí-

micos, foi crucial para a capacidade preditiva do classificador, permitindo o desempenho

apresentado através das métricas abordadas.

A Tabela 4 apresenta as média das métricas de desempenho do modelo, que alcan-
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Figura 3 – AUC-ROC do Random Forest com painel genético Top 9

Fonte: O autor (2025).

Tabela 3 – Soft Voting 10 folds nível de Paciente - Random Forest Top 9.

Subtipo Precisão Recall F1-Score Suporte

CIN 0,93 0,63 0,75 41

EBV 0,60 0,90 0,72 10

GS 0,52 0,92 0,67 12

MSI 1,00 0,94 0,97 18

Acurácia 0.78 81

Macro AVG 0,76 0,85 0,78 81

Weighted AVG 0,84 0,78 0,78 81

Fonte: O autor (2025).
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çou uma acurácia média de 0.69 ± 0.01 na classificação dos subtipos de câncer gástrico

em 81 pacientes. A média ponderada do F1-score foi de 0.70 ± 0.02, indicando uma boa

capacidade geral de classificação.

Analisando os subtipos individualmente, o modelo demonstrou um desempenho ele-

vado para MSI, com alta precisão (0.83 ± 0.08) e um recall moderado (0.62 ± 0.04), suge-

rindo que suas previsões para esta classe são confiáveis. O subtipo CIN também obteve

alta precisão (0.90 ± 0.04), mas com um recall moderado (0.64 ± 0.02), o que significa

que, embora as classificações CIN fossem geralmente corretas, o modelo não conseguiu

identificar todos os casos dessa classe. Em contrapartida, os subtipos GS e EBV apresen-

taram um padrão inverso, com recall elevado (0.83 e 0.80, respectivamente) e a precisão

mais baixa (0.48 e 0.47, respectivamente), indicando que o modelo identificou a maioria

dos casos dessas classes, mas ao custo de um número maior de falsos positivos.

Tabela 4 – Métricas da média dos classificadores utilizando o painel Top 9.

Subtipo Precisão Recall F1-Score Suporte

CIN 0.90± 0.04 0.64± 0.02 0.74± 0.01 41

EBV 0.47± 0.04 0.80± 0.00 0.59± 0.03 10

GS 0.48± 0.00 0.83± 0.00 0.61± 0.00 12

MSI 0.83± 0.08 0.62± 0.04 0.73± 0.04 18

Acurácia 0.69± 0.01

Macro AVG 0.67± 0.02 0.72± 0.01 0.66± 0.02 81

Weighted AVG 0.77± 0.02 0.68± 0.01 0.70± 0.02 81

Fonte: O autor (2025).

6.4.3 Resultados Random Forest (Painel 18 Genes IHQ)

A Tabela 5 resume os resultados do classificador soft voting com os 18 genes mais in-

fluentes, avaliado em 81 pacientes. O modelo alcançou uma acurácia de 0.79, com médias

macro de precisão de 0.79, recall de 0.75 e F1-score de 0.77. O subtipo MSI demons-

trou um desempenho notável, atingindo precisão máxima (1.00) com um recall de 0.78. A

classe CIN também se destacou com o recall mais alto entre os subtipos (0.85), enquanto

a classe GS apresentou as métricas mais modestas (precisão, recall e F1-score de 0.58).
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Tabela 5 – Métricas do classificador Soft Voting com painel Top 18.

Subtipo Precisão Recall F1-Score Suporte

CIN 0,78 0,85 0,81 41

EBV 0,80 0,80 0,80 10

GS 0,58 0,58 0,58 12

MSI 1,00 0,78 0,88 18

Acurácia 0.79

Macro AVG 0,79 0,75 0,77 81

Weighted AVG 0,80 0,79 0,79 81

Fonte: O autor (2025).

A Tabela 6 apresenta as média das métricas de desempenho do modelo, que alcan-

çou uma acurácia média de 0.74 ± 0.01 na classificação dos subtipos de câncer gástrico

em 81 pacientes. A média ponderada do F1-score foi de 0.75 ± 0.02, indicando uma boa

capacidade geral de classificação.

Tabela 6 – Métricas da média dos classificadores utilizando o painel Top 18.

Subtipo Precisão Recall F1-Score Suporte

CIN 0.92± 0.03 0.64± 0.03 0.75± 0.02 41

EBV 0.62± 0.02 0.79± 0.03 0.70± 0.02 10

GS 0.47± 0.03 0.81± 0.04 0.59± 0.02 12

MSI 0.87± 0.08 0.88± 0.03 0.87± 0.04 18

Acurácia 0.74± 0.01

Macro AVG 0.71± 0.01 0.78± 0.01 0.73± 0.01 81

Weighted AVG 0.80± 0.02 0.74± 0.01 0.75± 0.02 81

Fonte: O autor (2025).

Analisando os subtipos individualmente, o modelo demonstrou um desempenho exce-

lente para MSI, com alta precisão (0.87 ± 0.08) e recall (0.88 ± 0.03), sugerindo que suas

previsões para esta classe são muito confiáveis. O subtipo CIN também obteve alta preci-

são (0.92± 0.03), mas com um recall moderado (0.64± 0.03), o que significa que, embora

as classificações CIN fossem geralmente corretas, o modelo não conseguiu identificar to-

dos os casos dessa classe. Em contrapartida, os subtipos GS e EBV apresentaram um

padrão inverso, com recall elevado (0.81 e 0.79, respectivamente) e a precisão mais baixa



155

(0.47 e 0.62), indicando que o modelo identificou a maioria dos casos dessas classes, mas

ao custo de um número maior de falsos positivos.

Por fim, é possível observar através da Figura 4 que o modelo obteve um auto desem-

penho nos subtipos EBV e MSI com AUC de 0,92 e 0,97 respectivamente, assim como

uma média macro de 0,92. Os subtipos CIN e GS apresentam um desempenho significa-

tivo com AUC de 0,89 e 0,87 respectivamente.

Figura 4 – AUC-ROC do Random Forest com painel genético Top 18

Fonte: O autor (2025).

É importante notar que este desempenho foi alcançado utilizando um painel selecio-

nado de 18 genes: TP53, ARID1A, MUC16, ZBTB41, GGNBP2, PIK3CA, SYT17, MEF2C,

MUC6, RNF213, SEC31A, BOC, CDH18, NFASC, BHLHB9, FAS, HERC2 e SYNE1. A

seleção deste painel genético, que inclui genes com papéis conhecidos na tumorigênese

gástrica como ‘TP53‘ e ‘PIK3CA‘, foi crucial para a capacidade preditiva do classificador,

permitindo que o modelo discernisse entre os subtipos moleculares com a acurácia repor-

tada.
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6.4.4 Resultados Ensemble Multimodal (MobileNet + Random Forest)

Os resultados do ensemble multimodal GSubType-GenoVision, combinando MobileNet

(visão computacional) e Random Forest (RF), foram obtidos a partir de 20 modelos trei-

nados com k-fold cross-validation (k=10). As métricas de precisão, recall e F1-score foram

calculadas para dois métodos de agregação: hard voting (votação majoritária) e soft voting

(média de probabilidades).

Tabela 7 – SubtGenoVision 9

Subtipo Precisão Recall F1-Score Suporte

CIN 0,77 0,83 0,80 41

EBV 0,73 0,80 0,76 10

GS 0,58 0,58 0,58 12

MSI 0,86 0,67 0,75 18

Acurácia 0.75

Macro AVG 0,74 0,72 0,72 81

Weighted AVG 0,76 0,75 0,75 81

Fonte: O autor (2025).

Tabela 8 – AUR-ROC: Wang et al. (2022) Vs. modelos desenvolvidos.

Subtipo
Wang et al.

(2022)
G.Subt
Forest9

G.SubtGeno
Vision9

G.SubtGeno
Vision18

CIN 0,890 0,87 0,90 0,91

EBV 0,764 0,90 0,96 0,98

GS 0,897 0,84 0,90 0,90

MSI 0,898 0,96 0,98 0,99

Macro AVG 0,840 0,89 0,94 0,95

Fonte: O autor (2025).

Note que a Tabela 8 apresenta uma comparação direta da performance AUR-ROC do

modelo G.SubtGenoVision18 com o trabalho de referência de Wang et al. (2022). O modelo

proposto demonstra uma superioridade consistente, alcançando uma média macro (Macro

AVG) de 0,95, um avanço significativo em relação aos 0,84 reportados pelo modelo base.

Já na Tabela 8 comparamos a performance AUR-ROC dos modelos desenvolvidos com

o trabalho de referência de Wang et al. (2022). Observa-se uma melhoria progressiva e
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Figura 5 – AUC-ROC G.SubtGenoVision 9

Fonte: O autor (2025).

substancial em todos os modelos propostos, que superam consistentemente o modelo

base.

O modelo G.SubtForest9 baseado apenas em características genômicas, já demonstra

um avanço significativo, elevando a média macro (Macro AVG) de 0,84 para 0,89. Este

modelo se destaca na classificação dos subtipos EBV (0,90) e MSI (0,96), superando com

folga o trabalho de referência.

A integração de dados histopatológicos e genômicos nos modelos G.SubtGenoVision

resulta em um salto de performance ainda maior. O G.SubtGenoVision9 alcança uma mé-

dia macro de 0,94, mostrando a força da fusão de dados. O desempenho na classificação

de EBV (0,96) e MSI (0,98) é notavelmente alto, indicando uma sinergia eficaz entre as

fontes de informação.

Finalmente, o G.SubtGenoVision18 que utiliza um painel genético expandido, firma-se

como o modelo de melhor desempenho, atingindo uma média macro de 0,95. Ele obtém

resultados quase perfeitos para os subtipos MSI (0,99) e EBV (0,98), e melhora ou iguala a

performance em todas as outras classes. Essa evolução demonstra que a combinação de

dados de visão computacional com um painel genético otimizado é uma estratégia robusta
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e superior para a classificação dos subtipos moleculares do adenocarcinoma gástrico.

O modelo G.SubtGenoVision (Artigo 4) integra visão computacional (MobileNetV2) e

dados genéticos (Random Forest com 9 genes) e alcançou um AUC-ROC médio de 0.94

na classificação dos quatro subtipos moleculares (CIN, MSI, EBV, GS) [6].

Para estabelecer uma comparação rigorosa com a literatura unimodal, utilizamos o

desempenho do modelo DEMoS de Wang et al. (2022), que se baseia exclusivamente em

imagens histopatológicas. Os resultados de DEMoS no nível do paciente são os seguintes

(WANG et al., 2022):

A análise comparativa no nível de paciente demonstra a robustez do sistema multimo-

dal, especialmente na melhoria da discriminação das classes minoritárias:

Comparado com Wang et al. (2022) (WANG et al., 2022), o G.SubtGenoVision 6 melhorou

os valores AUC-ROC no nível do paciente nos seguintes subtipos:

• CIN (Instabilidade Cromossômica): O G.SubtGenoVision obteve um AUC-ROC de

0.90, superando o AUC-ROC de 0.890 de Wang et al. (2022) em 0.010 ponto per-

centual. Embora ambos os modelos demonstrem alta capacidade preditiva para esta

classe majoritária, a integração multimodal fornece um ganho marginal, mas consis-

tente

• EBV (Vírus Epstein-Barr): O G.SubtGenoVision alcançou um AUC-ROC de 0.96, re-

presentando uma melhoria acentuada de 0.196 ponto percentual sobre o AUC-ROC

de 0.764 de Wang et al. (2022). Este ganho substancial é particularmente relevante,

pois EBV é uma classe minoritária (9% dos casos [??]), e o alto desempenho no

AUC-ROC (0.96) sugere que a inclusão do componente genético do Random Forest

(otimizado para SNVs influentes) complementa eficazmente a predição da Mobile-

NetV2, que isoladamente alcançou AUC-ROC de 0.95 para EBV

• GS (Genomicamente Estável): O G.SubtGenoVision atingiu um AUC-ROC de 0.90,

um aumento de apenas 0.003 ponto percentual em relação ao AUC-ROC de 0.897

de Wang et al. (2022). Isso indica que, para o GS, a abordagem unimodal de Wang

já era altamente eficiente, e a integração multimodal manteve esse alto nível de dis-

criminação.

• MSI (Instabilidade Microssatélite): O G.SubtGenoVision obteve um AUC-ROC de

0.98, superando o AUC-ROC de 0.898 de Wang et al. (2022) em 0.082 ponto per-
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centual. Este resultado no MSI (uma classe minoritária) demonstra que a fusão de

dados genéticos, especialmente através do Random Forest otimizado [5], forneceu

a informação essencial para alcançar uma capacidade de discriminação próxima da

perfeição (0.98).

Figura 6 – AUC-ROC MobileNet-V2

Fonte: O autor (2025).

Enquanto a média macro do AUC-ROC de Wang et al. (2022) no nível do paciente

(calculada em ≈ 0.862) já era considerada um desempenho favorável, o G.SubtGenoVision

elevou a métrica global para 0.94.

O aprimoramento do G.SubtGenoVision (0.94) sobre DEMoS (0.862) reside na sua

capacidade de balancear o desempenho: ele mantém a alta precisão alcançada pela Visão

Computacional em classes como CIN e GS, enquanto usa a informação molecular para

amplificar o desempenho nas classes minoritárias MSI e EBV, superando a tendência dos

modelos unimodais em classes desbalanceadas.
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Tabela 9 – Comparação de AUC-ROC por Subtipo Individual.

Subtipo
Molecular

G.SubtGenoVision 18
(Multimodal AUC-ROC [6])

(Wang et al., 2022)
(Unimodal AUC-ROC) Ganho

CIN 0,91 0,890 2,0 %
EBV 0,97 0,764 20,6 %
GS 0,90 0,897 0,3 %
MSI 0,99 0,898 2,0 %

Fonte: O autor (2025).

6.5 CONCLUSÃO

O sistema proposto, G.SubtGenoVision, demonstrou desempenho superior aos mode-

los existentes na literatura e mostrou-se eficiente na classificação dos subtipos moleculares

do adenocarcinoma gástrico. A combinação de imagens histopatológicas e dados genéti-

cos foi eficaz em superar limitações de abordagens unimodais, ampliando a acessibilidade

à classificação molecular e proporcionando avanços significativos para o diagnóstico e tra-

tamento do câncer gástrico.
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7 DISCUSSÃO GERAL

O Artigo 1 “G.SubtVision: Subtipagem Molecular do Câncer Gástrico com Métodos de

Ensemble de Redes Neurais Convolucionais (CNNs)” estabelece uma base teórica robusta

ao reconstruir com inteligência artificial o conhecimento em patologia, transitando de análi-

ses morfológicas baseadas em imagens histopatológicas (Lauren, 1965; OMS, 2019) para

a integração de dados moleculares (TCGA, 2014) e, finalmente, ao ensemble de múltiplas

arquiteturas de redes neurais convolucionais proposto. A implementação do G.SubtVision,

com três arquiteturas de CNNs (MobileNetV2, ShuffleNet e GoogLeNet) é treinada em 263

casos com 476 lâminas, resultou em F1-score macro de 0.48 e precisão macro de 0.56,

superando o HEAL de Wang et al. (2022) em 4% na média e 14% em MSI, com desempe-

nho excepcional em EBV (0.48 vs. 0.09). Esses resultados se alinham com os de Flinner et

al. (2022), que enfrentaram desafios em subtipos minoritários como GS e MSI. A revisão

de Cifici et al. (2022) reforça que a falta de validação externa limita modelos anteriores

(FLINNER et al., 2022; CIFCI; FOERSCH; KATHER, 2022).

Essa abordagem técnica encontra respaldo na hipótese de que a combinação de arqui-

teturas complementares explora a diversidade de features extraídas, superando a depen-

dência de um único modelo, como o EfficientNet em Wang. A superioridade em classes

desbalanceadas, como EBV, pode ser atribuída em parte à capacidade do ensemble de

ponderar predições de forma distribuída, reduzindo o impacto de amostras escassas.

Além disso, o uso de supervisão molecular, em vez de critérios morfológicos humanos,

alinha-se à tendência de Kather et al. (2019) e Coudray et al. (2018) em outras topografias,

sugerindo que o G.SubtVision estabelece um marco inicial para a patologia digital no cân-

cer gástrico. Por outro lado, quando se observam os resultados da reprodução do modelo

de Wang et al. 2022 com EfficientNet, realizado, percebe-se que a distribuição de casos

no grupo teste pode ter sido uma parte importante do melhoramento observado (KATHER et

al., 2020; COUDRAY et al., 2018).

Na prática, o G.SubtVision é uma ferramenta que pode auxiliar na triagem de casos

para exames moleculares específicos que possam fortalecer o poder preditivo dos subti-

pos moleculares. Com a expansão da patologia digital com escâner de lâminas acessíveis

e plataformas online para diagnóstico patológico, o G.SubtVision pode ser extremamente

acessível mesmo em laboratórios com recursos limitados, pois as imagens histopatológi-
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cas já fazem parte da rotina e com o scanner de lâminas inteiras digitalizando a imagem

que pode ser processada em nuvem.

Já o Artigo 2 “Redes neurais convolucionais classificam subtipo molecular do câncer

gástrico em dataset tubular-controlado” aprofunda a investigação ao validar a capacidade

das CNNs de identificar fenótipos profundos, definidos como atributos profundos (deep fe-

atures) diretamente associados a padrões genômicos. O dataset tubular-controlado, com-

posto por 22 casos tubulares do TCGA-STAD categorizados como CIN ou não-CIN, foi pro-

jetado para testar a hipótese de que a classificação seria indireta via distribuição histopato-

lógica. Resultados mostram que NASNet-Mobile alcançou AUROC global >0.72, enquanto

MobileNetV2 apresentou precisão 0.62, recall 0.73, F1 0.66 e AUROC 0.64, comparáveis

ao dataset geral (0.63/0.69/0.66/0.69), rejeitando essa hipótese. Essa consistência alinha-

se a Kather et al. (2019), que identificaram MSI em HE, porém esse teste com um dataset

construído com tipo histopatológico homogêneo para verificar se mesmo diante dessas

condições a CNN continuaria a classificar os subtipos. A persistência da predição em CIN

reforça essa capacidade.

Tecnicamente, as métricas do dataset tubular-controlado indicam que a performance

independe do tipo histológico tubular, mas decorre de padrões moleculares subjacentes. A

comparação com o dataset geral mostra estabilidade (diferença de AUROC <0.05), suge-

rindo robustez em cenários controlados, uma limitação reconhecida por Wang et al. (2022)

em classes desbalanceadas.

Na prática, isso significa que as redes neurais não estão apenas "imitando"o que já

se sabe, mas descobrindo novas pistas no tecido, mesmo em amostras pequenas ou he-

terogêneas. Para um patologista, isso reduz a chance de erros em biópsias desafiadoras

do ponto de vista de categorização histopatológica. Já que o reconhecimento dos padrões

subjacentes aos subtipos moleculares parece ter independência da associação desses

com o tipo histopatológico. (WANG et al., 2022)

A transição para o Artigo 3, “G.SubtForest: Classificador de Subtipos Moleculares do

CA Gástrico com TCGA via Random Forest e Painéis Otimizados”, representa um avanço

na modalidade genômica, complementando as contribuições visuais. Tecnicamente, o ar-

tigo propõe o G.SubtForest, baseado em Random Forest aplicado a 18.600 variantes de

nucleotídeo único (SNV) não sinônimas do TCGA-STAD, com k-fold (k=10) para treina-

mento e SHAP para identificar genes influentes, resultando em painéis otimizados de 18

genes (adequado a NGS) e 9 genes (adequado a IHC), alcançando AUC-ROC média de
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0.91 e 0.89, respectivamente.

Essa abordagem supera painéis IHC propostos por Kim et al. (2016), que atingem AUC-

ROC 0.73, com ganhos de +0.18 macro, alinhando-se ao TCGA (2014) em genes como

TP53 e ARID1A, mas identificando inéditos como ZBTB41 em EBV e GGNBP2 em MSI,

hipotetizando que a teoria dos jogos via SHAP captura interações colaborativas melhor

que inferências indutivas, mitigando desbalanceamentos em subtipos como EBV ( 9% no

TCGA).

A correlação com artigos anteriores é evidente: enquanto o G.SubtVision (Artigo 1)

e o dataset tubular-controlado (Artigo 2) capturam deep features visuais, o G.SubtForest

adiciona dados genéticos, preparando a integração multimodal no Artigo 4, superando li-

mitações de imagens isoladas como em Flinner et al. (2022), onde IA em HE alcança

AUC-ROC 0.80 para CIN, vs. 0.88 aqui (CHEN et al., 2025; LIU et al., 2025; KIM et al., 2016;

Cancer Genome Atlas Research Network, 2014).

Na prática, isso é como criar um "menu genético"acessível: em vez de sequenciar tudo,

caro e lento como nos métodos multiômicos do TCGA, usa-se um painel compacto de

9 genes para IHC em rotinas hospitalares, facilitando estratificação rápida de pacientes

para terapias-alvo, como inibidores de checkpoint em MSI, sem sobrecarregar sistemas

de saúde em países em desenvolvimento. Expandindo nos subitens da Conclusão, o pré-

processamento de dados do TCGA (VARSCAN), mutações não-sinônimas, alinha-se à

necessidade de foco em variantes funcionais, como destacado por Kim et al. (2016) em

IHC, mas a abordagem via SNV aqui supera em precisão (AUC-ROC 0.91 vs. 0.73), hi-

potetizando que a redução de ruído melhora discriminação em MSI hipermutados, onde

hipermutações demandam filtragem robusta.

O treinamento de 10 modelos Random Forest (Tópico 3.2) com k=10 mitiga desba-

lanceamentos, alcançando macro F1 0.75 para TOP 36, superior a Lian et al. (2020) em

metilação ( 0.70), sugerindo que ensembles elevam robustez em GS (F1 0.60), melhor que

Flinner et al. (2022) em IHC ( 0.50) (FLINNER et al., 2022; KIM et al., 2016).

A revisão de importância de variáveis via SHAP e teoria dos jogos, resulta em painéis

com TP53 e ARID1A, alinhados ao TCGA (2014), mas hipotetizando que SHAP supera im-

portância permutada ao capturar colaborações, explicando genes inéditos como ZBTB41

(1º em EBV, ligado a repressão epigenética). A aplicação de SHAP para pontuação ponde-

rada (Tópico 3.4) constrói painéis acessíveis, superando Kim (2016) em AUC-ROC (+0.16),

priorizando MUC16 (ausente em Kim), melhorando acessibilidade em contextos limitados,
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como Röcken (2022) em biomarcadores preditivos. Genes relevantes inéditos (Tópico 3.5),

como GGNBP2 (2º em MSI) e BHLHB9 (5º em MSI), contrastam com foco em TP53 do

TCGA (2014), hipotetizando papéis em instabilidade e proliferação, expandindo repertório

para terapias.

Os sistemas G.SubtForest 18 (NGS) e 9 (IHC) (Tópico 3.8) obtêm AUC-ROC 0.91 e

0.89, superando Flinner (2022) em CIN ( 0.80), hipotetizando que SHAP-RF eleva transla-

ção, como Lian (2020) em metilação, facilitando rotina clínica. Na prática, é como oferecer

"opções econômicas": o painel 9 para IHC em hospitais sem NGS, reduzindo custos vs.

multiômicos (TCGA, 2014), superando inferências probabilísticas de Kim (2016), promo-

vendo medicina de precisão acessível (FLINNER et al., 2022; LIU et al., 2024).

A culminância da tese se dá no Artigo 4, G.SubtGenoVision: Sistema ensemble multi-

modal para classificação dos subtipos moleculares do adenocarcinoma gástrico com Ima-

gens histopatológicas e painel de mutações, que integra as modalidades visuais e genômi-

cas desenvolvidas nos artigos anteriores. Tecnicamente, o G.SubtGenoVision concatena

10 modelos MobileNetV2 (desenvolvidos para o artigo 1) com o G.SubtForest 9 (do Artigo

3), utilizando dados do TCGA-STAD (476 lâminas e SNVs de 18.600 genes em 290 paci-

entes), com pré-processamento de tiling e normalização de cor para imagens, e tabulação

por caso/gene para SNVs (SANDLER et al., 2018; Cancer Genome Atlas Research Network, 2014).

O G.SubtGenoVision alcançou AUC-ROC médio de 0.94, demonstrando superioridade

notável sobre as abordagens unimodais. A comparação no nível de paciente entre as abor-

dagens de Visão Computacional isolada (G.SubtVision/Artigo 1 e Wang et al./DEMoS) e o

G.SubtGenoVision multimodal revela o impacto da integração:

• Comparado com G.SubtVision (CNN ensemble unimodal, AUC-ROC 0.85), o G.SubtGenoVision

melhorou os valores AUROC:

– CIN: (0.82 para 0.90), resultando em uma melhoria de 0.08 ponto percentual.

– EBV: (0.94 para 0.96), um ganho modesto de 0.02 ponto percentual, reforçando

a alta capacidade preditiva da MobileNetV2 isolada para esta classe

– GS: (0.71 para 0.90), um ganho substancial de 0.19 ponto percentual. Este

aumento significativo demonstra que a adição da informação genética (Random

Forest) foi crucial para resgatar a baixa performance da CNN (MobileNetV2) na

classificação do subtipo Genomicamente Estável
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– MSI: (0.86 para 0.98), uma melhoria robusta de 0.12 ponto percentual.

• Comparado com Wang et al. (2022) (DEMoS, AUC-ROC médio ≈ 0.86), o G.SubtGenoVision

melhorou os valores AUROC no nível do paciente:

– CIN: (0.890 para 0.90), com um ganho marginal de 0.010 ponto percentual,

refletindo a eficácia de ambas as abordagens em uma classe majoritária

– (0.764 para 0.96), um ganho substancial de 0.196 ponto percentual. Este ganho

valida a estratégia multimodal, superando a dificuldade do DEMoS em classes

minoritárias

– GS: (0.897 para 0.90), com um ganho mínimo de 0.003 ponto percentual. Em-

bora Wang et al. (2022) já tivessem alcançado alta performance para GS, o

G.SubtGenoVision conseguiu igualar esse patamar robusto

– MSI: (0.898 para 0.98), com um ganho de 0.082 ponto percentual, destacando

a capacidade da fusão de dados genéticos em MSI, um subtipo hipermutado

Na prática, é como montar uma triangulação de modos de conhecimento para o diag-

nóstico: imagens e genes colaboram para dar respostas mais precisas e rápidas, ajudando

a identificar subtipos que guiam tratamentos sem depender de testes caros e demorados.

Por fim, é importante enfatizar que a tecnologia necessária à translação dos resultados

foi desenvolvida em paralelo, com projeto de inovação (descrito no tópico "Outras Produ-

ções Durante o Vínculo com o PPGGBM") que culminou na criação do Pathoscope. Uma

solução nacional integral em patologia digital com escâner de lâminas, plataforma online e

modelos de IA, viabilizando aplicação prática dos avanços já que a infraestrutura acelera

translação clínica, integrando ensembles multimodais em fluxos reais, permitindo o avanço

para estudos clínicos prospectivos.
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Tabela 1 – AUC-ROC: Wang et al. (2022) vs. Modelos desenvolvidos em nível de pacientes

SM
Wang

et al. (2022)
G.SubtVision G.SubtForest9 G.SubtGenoVision9 G.SubtGenoVision18

CIN 0,890 0,82 0,87 0,90 0,91

EBV 0,764 0,94 0,90 0,96 0,98

GS 0,897 0,71 0,84 0,90 0,90

MSI 0,898 0,86 0,96 0,98 0,99

Macro AVG 0,84 0,85 0,89 0,94 0,95

Fonte: O autor (2025).

Tabela 2 – Precisoin: Wang et al. (2022) vs. Modelos desenvolvidos em nível de pacientes

SM
Wang

et al. (2022)
G.SubtVision G.SubtForest9 G.SubtiGenoVision9 G.SubtiGenoVision18

CIN 0,58 0,57 0,90±0,04 0,77 0,78

EBV 1,00 1,00 0,47±0,04 0,73 0,80

GS 0,83 0,62 0,48±0,00 0,58 0,58

MSI 0,65 1,00 0,83±0,08 0,86 1,00

Macro AVG 0,77 0,80 0,67±0,02 0,74 0,79

Fonte: O autor (2025).
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8 CONCLUSÃO

A presente tese:

• Desenvolveu G.SubtVision: sistema preditivo para imagens histopatológicas na iden-

tificação de subtipos moleculares:

– Propôs um novo método, fundamentado em ensemble de três redes neurais

convolucionais: G.SubtVision, demonstrando resultados superiores à literatura

(Artigo 1).

– Demonstrou que as redes neurais foram capazes de classificar o subtipo mole-

cular, mesmo em dataset tubular-controlado, apontando para a identificação de

fenótipo profundo (atributo profundo decorrente de treinamento supervisionado

com dados genéticos) (Artigo 2).

• Desenvolveu G.SubtForest, sistemas preditivos no modo de conhecimento das mu-

tações somáticas de variação de nucleotídeo único (SNV):

– Identificou painéis de mutações para a classificação do subtipo molecular com

18 e 9 genes que podem ser aplicados de acordo com a acessibilidade a méto-

dos diagnósticos.

– Identificou genes relevantes na diferenciação entre subtipos moleculares que

não estavam previamente descritos na literatura sobre câncer gástrico.

– Desenvolveu sistemas preditivos G.SubtForest 18 para painel com NGS e G.SubtForest

9 para painel com imuno-histoquímica (Artigo 3).

• Desenvolveu o G.SubtGenovision, sistema de ensemble multimodal integrando pa-

drões de imagens histopatológicas e mutações somáticas:

– Desenvolveu sistema integrando em ensemble 10 modelos de MobileNetV2 e

G.SubtForest 9, obteendo resultados significativamente superiores aos descri-

tos na literatura. Contribuindo para a ampliação da acessibilidade à classifica-

ção dos subtipos moleculares.

• Desenvolveu sistema aplicável na prática médica já que foi realizado paralelamente

ao projeto de inovação que resultou no Pathoscope, que confere a infraestrutura
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tecnológica necessária para viabilizar, em curto prazo, a aplicação prática dos avan-

ços aqui descritos, por meio de scanner de lâminas, plataforma diagnóstica online e

modelos de inteligência artificial, conforme descrito no tópico "Produção Durante o

Vínculo com o PPGGBM".
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9 PRODUÇÃO DURANTE O VÍNCULO COM O PPGGBM

Nesse capítulo serão encontradas outras produções realizadas durante o processo de

doutoramento que não se relacionam diretamente com o encadeamento lógico dos objeti-

vos principais da presente tese. Destaca-se o projeto de inovação diretamente associado

a acessibilidade dos resultados da presente tese. Outras produções foram capítulo de livro

publicado e experimentos realizados que não entraram na presente tese.

Coordenação de projeto de inovação: Sistema de detecção precoce do câncer por

inteligência artificial.

O autor durante o desenvolvimento da presente tese escreveu e coordenou o projeto

“Sistema de detecção precoce do câncer por inteligência artificial aplicada à patologia di-

gital: prevenção do câncer de colo do útero e de estômago”.

Submeteu o projeto de sua autoria à chamada pública para empresas do setor saúde

desenvolverem tecnologia 4.0. imediatamente antes da seleção ao doutorado no PPGGBM.

Dentre as tecnologias habilitadoras consideradas nessa chamada pública como tecnolo-

gias 4.0 estavam a Inteligência Artificial e a computação em nuvem.

A digitalização da patologia passou a ser possível há menos de uma década. Embora

a fotografia digital de partes pequenas da lâmina uma de cada vez em conformidade com

o aumento do microscópio já existissem desde o surgimento da fotografia digital, foi ape-

nas com o aumento do poder computacional e do avanço nos algorítimos que a costura

automatizada dos pedaços para compor digitalmente a lâmina inteira passou a ser pos-

sível. Por ter menos de uma década a patologia digital está ainda em sua infância, sem

ainda haver em 2020 uma solução nacional. Os custos com scanners de lâminas inteiras

é ainda elevado a ponto de ser proibitivo para pequenos laboratórios. Os aparelhos dis-

poníveis apenas para compra elevam em demasia o custo da imagem em um mercado

de margens pequenas e em tendência de queda por competição acirrada de preços entre

os laboratórios de patologia. Essa tem sido a principal barreira à ampla adoção da tecno-

logia. O acesso a essa tecnologia, portanto, permanece restrito às grandes empresas. O

que é uma limitação à acessibilidade das Inteligências Artificiais (IA) que já demonstraram

eficiência significativa no reconhecimento de imagens como maior probabilidade de pre-
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sença de um tipo específico de tumor e, portanto, com potencial de otimizar o suporte aos

patologistas.

Foi aprovado na linha temática SAÚDE 4.0 propondo o desenvolvimento de uma solu-

ção que integre a captura de imagens de lâminas inteiras com câmeras digitais acopladas

a microscópios automatizados usando processamento interno de costuras das imagens

microscópicas para a exportação da WSI imagem de lâmina inteira. Sistema web de vi-

sualização online com segurança e integração com Sistemas de Informação Laboratorial.

Processamento de imagens em nuvem com modelos de inteligência artificial para a sele-

ção de campos de maior probabilidade de câncer, aumentando a sensibilidade. Um salto

rumo a um futuro mais acessível e eficiente para a patologia digital.

Objetivo Geral Desenvolver uma solução integral de patologia digital ampliada por inte-

ligência artificial.

Objetivos específicos: 1- Desenvolver scanner de lâminas para digitalização de lâminas

histológicas e citológicas 2- Desenvolver sistema web para patologia digital que permita

interface com o usuário patologista e colaboração entre usuários patologistas 3- Treinar in-

teligência computacional para identificar alterações morfológicas em amostras de citologia

oncótica vaginal e histologia de mucosa gástrica; Desenvolver aplicação considerando a

experiência do patologista;

4- Validar a aplicação em grupos de pacientes em estudos retrospectivos e prospectivos

controlados; Validar a aplicação em ambiente operacional; Implantar a aplicação validada

na rotina operacional de laboratórios patologia credenciados.

Da perspectiva de Experiência do Usuário, a construção da plataforma do PATHOS-

COPE foi realizada em conjunto com um time de patologistas do Ampliar o que permitiu

uma melhor compreensão de usabilidade bem como a definição das melhores ferramentas

de manipulação de imagens para a área.

A inovação desenvolvida aqui é disruptiva no âmbito nacional pois altera significativa-

mente a maneira como as análises patológicas são feitas e atende às principais demandas

estratégicas dos laboratórios especializados na área. Ainda hoje a informatização é parcial

nos laboratórios de patologia, sendo usada apenas como ferramenta de gestão e edição

de texto, todo o trabalho de reconhecimento de padrões de imagens é manual, utilizando

microscópio ótico e sem qualquer sistema de apoio ao diagnóstico. O presente projeto

desenvolveu um sistema de apoio diagnóstico ao câncer desenvolvendo a primeira tecno-

logia de patologia digital ampliada por inteligência computacional no país. A proposta do
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projeto redesenha todo o modelo de negócio, aumentando a escalabilidade e atendendo

uma demanda reprimida para diagnóstico de câncer, em um momento que, caso nada seja

feito, se tornará crítica, não havendo número suficiente de patologista para os diagnósticos

necessários. A inteligência artificial aplicada à patologia digital utilizando computação em

nuvem é uma inovação disruptiva no âmbito nacional e internacional, já que está presente

na prática médica, somente em uns poucos centros nos países desenvolvidos.

Níveis de Maturidade Tecnológica (TRLs) abrangidos nível 3 Imagens processada já

validada nível 4 Curadoria das imagens ra ser realizada com banco balanceado e marcado

nível 5 resultados estatísticos favoráveis nível 6 testes em ambiente virtual nível 7 protótipo

em ambiente operacional validado

A capacidade do novo processo alterar o paradigma técnico-econômico vigente está

em que infelizmente o patologista atua na maior parte do tempo como microscopista. O

conhecimento fisiopatológico crescente já há muito tempo é extenso demais para que os

clínicos e cirurgiões os dominem sem auxílio especializado. Por outro lado o médico pa-

tologista frequentemente não recebe as informações completas dos casos e se encontra

sobrecarregado com o rastreamento microscópico manual. O rastreamento pode ser com-

parado a procurar por uma moeda em um gramado. Para poder afirmar a ausência de

moeda é necessário um rastreamento minucioso. Afirmar a ausência de pequenas célu-

las em uma imagem com milhares de quadros é muitas vezes uma atividade, monótona,

delongada e extenuante que exige longos períodos de imobilidade diante do microscópio.

Esse paradigma leva ao aumento de falso-negativo por pequenas alterações passarem

desapercebidas.

Nos laboratórios pequenos e médios, que é o caso de todos do norte-nordeste, o pa-

tologista lauda grande diversidade de topografias, exercendo a chamada patologia geral.

Fazem todo o rastreamento sozinhos com grande consumo de tempo. O que é um in-

centivo à redução do tempo despendido em uma lâminas. Seria de grande interesse dos

patologistas um processo de trabalho que permitisse uma maior especialização dos exa-

mes laudados e o auxílio de IA supervisionada, permitindo mais precisão nos exames e

menor estresse para o patologista. O avanço possibilitará a patologia digital nacional e as-

sim permitirá melhor organização do fluxo na rede de laboratórios credenciados. Permitirá

que os patologistas possam trabalhar a distância, com colaboração técnico-científica entre

serviços de diversas regiões, permitirá assim que os patologistas atuem de maneira mais

especializada, mesmo pertencendo a serviços menores. Promoverá aumento da qualidade
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nos diagnósticos devido ao uso de ferramentas de computação para desenhar, destacar

imagens, medir, contar e cooperar em tempo real com outros patologistas. Padrões que

não são fáceis de serem percebidos por seres humanos, mas que são reconhecidos por

inteligência artificial são um exemplo inequívoco da contribuição das redes neurais para o

diagnóstico.

A patologia digital vai acessibilizar diagnósticos mais rápidos e precisos à milhares de

pessoas, promovendo a colaboração entre médicos patologistas nas regiões e médicos

patologistas hiper especializados em grande variedade de topografias. Rede neural de-

senvolvida para citologia auxiliará no diagnóstico precoce de casos de milhares de casos

de câncer de colo do útero evitando morbidade e mortalidade Rede neural desenvolvida

para histologia auxiliará no diagnóstico precoce de milhares de casos de câncer do estô-

mago. O scanner de Imagens de Lâminas Inteiras devido a computação em nuvem poderá

ser um serviço acessível aos laboratórios do norte-nordeste que continuarão competitivos.

O novos processos organizarão os dados nos arquivos da beneficiária proponente para

deixá-los limpos e preparados para novos desenvolvimentos de redes neurais.

Impacto Tecnológico: 1. Avanço no âmbito do diagnóstico patológico com utilização

da patologia digital com computação em nuvem e assistida por inteligência artificial 2.

Introdução na rotina diagnóstica Sistema inteligente de apoio ao diagnóstico precoce do

câncer de estômago 3. Introdução na rotina diagnóstica Sistema inteligente de apoio ao

diagnóstico precoce do câncer de colo do útero 4. Avanço da Telemedicina no apoio ao

diagnóstico anatomopatológico do câncer. 5. Redução de doenças ocupacionais da coluna

nos médicos patologistas com desenvolvimento de estação de trabalho ergonomicamente

apropriada.

O autor da presente atuou como primeiro autor e coordenador geral do projeto, coorde-

nando o desenvolvimento do scanner de lâminas ( microscópio automatizado), do sistema

web de visualização de WSI imagens de lâminas inteiras, do desenvolvimento dos mode-

los de visão computacional e da coordenação financeira, de contratações e demissões de

desenvolvedores de tecnologia da informação, da prestação de contas.

O resultado desse trabalho foi a criação da primeira empresa especializada em pa-

tologia digital do Brasil. A PATHOSCOPE, comprometida com a ampliação da visão da

patologia por inteligência artificial para o diagnóstico mais precisos e velozes.
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CAPITULO PUBLICADO: SAÚDE, BEM-ESTAR E BUSCA POR SENTIDO: PENSANDO

CRIATIVAMENTE AS INTERRELAÇÕES PARA A PRÁTICA DA SUSTENTABILIDADE

Capítulo de livro indexado e com comitê de avaliação publicada pela editora UFPE na

série livro texto: Objetivos do desenvolvimento sustentável, uma abordagem multidisciplinar

dos desafios e soluções (LINS et al., 2024)

Esse capítulo fala sobre a importância da promoção da saúde no contexto do envelheci-

mento populacional, destacando estratégias para garantir uma longevidade ativa e saudá-

vel. Ele aborda a diferença entre expectativa de vida e tempo de saúde, enfatizando o papel

dos hábitos saudáveis e da prevenção no envelhecimento biológico. Além disso, apresenta

a promoção da saúde como uma abordagem integrada, que vai além do tratamento de

doenças, abrangendo o bem-estar físico, mental, social e comunitário. O capítulo também

incentiva o uso do pensamento criativo e da colaboração interdisciplinar para enfrentar

os desafios de saúde e alcançar as metas de desenvolvimento sustentável, promovendo

empreendimentos transformadores e sustentáveis na sociedade.
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