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RESUMO

O adenocarcinoma gastrico € uma neoplasia altamente heterogénea, classificada
em subtipos moleculares pelo The Cancer Genome Atlas (TCGA): instabilidade
cromossémica CIN, instabilidade de microssatélites MSI, gendmica estavel GS e
associado ao virus Epstein-Barr EBV. Esses subtipos influenciam prognéstico e
terapia, mas ainda ndo ha métodos diagndsticos de rotina convencionados. A
presente tese desenvolveu comités de sistemas preditivos para os subtipos
moleculares por meio de inteligéncia artificial, concatenou modelos de viséo
computacional em imagens histopatoldgicas e modelos de aprendizado de maquina
em dados gendmicos, demonstrando resultados melhores que a literatura.
Organizada em quatro capitulos, a tese utiliza dados do TCGA-STAD para
treinamento e validacdo. No primeiro capitulo, comités de redes neurais
convolucionais CNN treinados em recortes de imagens de laminas inteiras
alcangaram precisao macro de 0,79-0,81 e precisdo de 1,00 para EBV e MSI,
superando abordagens anteriores em classes minoritarias. O segundo capitulo testa
se CNN capturam padrdes histopatolégicos novos para CIN em dataset controlado
por morfologia (apenas adenocarcinomas tubulares, OMS-2019), com
NASNet-Mobile obtendo AUC-ROC médio >0,70, confirmando predigao
independente de tipologias conhecidas. O terceiro capitulo identifica painéis
genéticos com Florestas Aleatérias (Random Forest) e avaliagdo de influéncia
cooperativa dos genes para predi¢cdo. ldentifica genes ndo previamente associados
ao cancer gastrico e organiza dois painéis com 18 e 9 genes. O quarto capitulo
propde comité multimodal G.SUBTGENOVISION concatenando MobileNetV2 com
Random Forest em painel de genes influentes. O modelo apresentou média macro
AUC-ROC de 0.95, obtendo AUC-ROC CIN (0,91), EBV (0,98), GS (0,90), MSI
(0,99) superior a literatura. A presente tese contribuiu ao demonstrar que modelos
de aprendizado profundo revelam padrdes histolégicos subjacentes a gendtipos e
portanto denominados fendtipos profundos que podem ser concatenados com dados
gendbmicos em comités multimodais eficientes. Contribui ainda com a pratica médica
ao desenvolver em paralelo sistema de inovagao e comité multimodal demonstrando
a superioridade dessa abordagem na predicdo de subtipos moleculares.
Palavras-chaves: adenocarcinoma gastrico; classificagdo molecular; redes neurais

convolucionais; ensemble multimodal; variacdes genéticas somaticas.



ABSTRACT

Gastric adenocarcinoma is a highly heterogeneous neoplasm classified into
molecular subtypes by The Cancer Genome Atlas (TCGA): chromosomal instability
(CIN), microsatellite instability (MSI), genomically stable (GS), and Epstein—Barr
virus-associated (EBV). These subtypes influence prognosis and therapy, but no
standardized diagnostic methods are yet available in clinical practice. This thesis
developed predictive system ensembles for molecular subtypes through artificial
intelligence, integrating computer vision models on histopathological images with
machine learning models on genomic data, achieving results superior to those
reported in the literature. Organized into four chapters, the thesis uses TCGA-STAD
data for training and validation. In the first chapter, convolutional neural network
(CNN) ensembles were trained on whole-slide image tiles, achieving macro accuracy
between 0.79 and 0.81 and perfect accuracy (1.00) for EBV and MSI, surpassing
previous approaches for minority classes. The second chapter tests whether CNNs
capture novel histopathological patterns for CIN in a morphology-controlled dataset
(only tubular adenocarcinomas, WHO-2019), with NASNet-Mobile obtaining a mean
AUC-ROC > 0.70, confirming prediction independent of known histological types. The
third chapter identifies genetic panels using Random Forests and evaluates
cooperative gene influence for prediction. It identifies genes not previously
associated with gastric cancer and organizes two panels with 18 and 9 genes. The
fourth chapter proposes the multimodal ensemble G.SUBTGENOVISION, integrating
MobileNetV2 with Random Forests trained on influential gene panels. The model
achieved a mean macro AUC of 0.95, with AUC-ROC values for CIN (0.91), EBV
(0.98), GS (0.90), and MSI (0.99), all higher than those reported in the literature. This
thesis contributes by demonstrating that deep learning models can reveal histological
patterns underlying genotypes—thus termed deep phenotypes—that can be
integrated with genomic data in efficient multimodal ensembles. It also contributes to
medical practice by developing, in parallel, an innovation system and multimodal
ensemble demonstrating the superiority of this approach in predicting molecular
subtypes.

Keywords: gastric adenocarcinoma; molecular classification; convolutional neural

networks; multimodal ensemble; somatic genetic variations.
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1 INTRODUGAO

A Patologia é o tronco central da arvore da medicina moderna e estuda os
processos de adoecimento. Ela revela as transformacgdes estruturais e funcionais
patogénicas, sendo o elo entre as ciéncias basicas e os variados ramos da
medicina, tendo destaque particular no diagndstico do cancer. A presente tese foca
particularmente no cancer gastrico CG. A escolha do objeto de estudo se deu pela
vivéncia do autor dirigindo o laboratorio Ampliar Patologia, principalmente pela
quantidade de casos desse tipo de cancer e pelo frequente envio de materiais
resultantes de gastrectomias radicais ao laboratério. Tradicionalmente, a
classificagdo dos tipos de cancer gastrico foi baseada em caracteristicas
morfologicas e histopatoldgicas, o que, embora util, limita a capacidade de identificar
de maneira precisa as nuances moleculares que podem impactar diretamente nas
opgdes terapéuticas e no prognostico dos pacientes. O diagnéstico do CG é
realizado por médicos especialistas em anatomopatologia através de microscopia
otica em campo claro de laminas histopatologicas de bidpsias extraidas do paciente.
Os médicos patologistas correlacionam as suas observagbes nas laminas com
dados clinicos.

Com o avango das técnicas de sequenciamento molecular e da
bioinformatica, surgiram novas abordagens para compreender melhor a biologia
subjacente dos diferentes tipos de cancer gastrico. Entre elas, destaca-se o trabalho
do projeto STAD (stomach adenocarcinoma) do The Cancer Genome Atlas (TCGA)
que estabeleceu uma classificagdo molecular para o CG baseada em dados
multibmicos, como genémicos e transcriptdmicos.

Essa classificagdo tem o potencial de revolucionar a pratica clinica ao permitir
tratamentos personalizados e direcionados, mas enfrenta um obstaculo importante:
as tecnologias de sequenciamento multibmicas empregadas na classificacdo. Essas
tém acesso restrito na maioria dos servigcos de saude e apresentam custos elevados.
Esse cenario reforga a necessidade de desenvolver métodos alternativos que
permitam predizer os perfis moleculares do CG de forma precisa e acessivel. Um
primeiro método é o estabelecimento de painéis de imuno-histoquimica como em
(KIM et al., 2016). Essa abordagem, embora classica para outros tipos de cancer, na

classificagdo molecular do CG ainda esta em desenvolvimento inicial.
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Outro método investigado sdo as Redes Neurais Convolucionais
(convolutional neuroneworks CNN's) treinadas por supervisdo molecular (WANG et
al., 2022; FLINNER et al., 2022). Isso porque com o desenvolvimento recente da
patologia digital, as laminas passaram a poder serem digitalizadas inteiras. Esse fato
oportunizou o uso de redes neurais para a identificagdo de padrdes nas imagens
que auxiliem no diagnédstico. As CNN 's vem demonstrando resultados com grande
acuracia com treinamento supervisionado por roétulos atribuidos por médicos
especialistas em uma quantidade crescente de problemas. Permitindo analises
quantitativas onde antes sé era possivel analises qualitativas. Esse sucesso, no
entanto, tem o viés de tomar os rétulos manualmente atribuidos como verdade de
base.

A ideia de supervisdao molecular no treinamento de redes neurais foi proposta
como solucgao disruptiva. Ou seja, do ponto de vista computacional € um treinamento
supervisionado, porém, os rotulos sao advindos diretamente de dados moleculares,
portanto sem viés humano (MONJO et al., 2022). Essa abordagem, utilizada na
presente tese, propicia o uso de algoritmos de aprendizado de maquina e redes
neurais como ferramenta de investigagao cientifica a partir de rétulos moleculares.

Considerando a natureza interdisciplinar da presente tese, foram incluidos
trés apéndices inéditos destinados a uma breve introducéo as trés principais areas
correlacionadas na tese como apéndices A,B e C. Escritos no estilo de divulgagao
cientifica e sugere-se que os leitores iniciem a leitura por eles conforme suas
eventuais necessidades de familiarizagdo dependendo da sua area de origem. O
apéndice A intitulado "Sistemas preditivos na medicina do século XXI" apresenta a
necessidade e oportunidade da aplicacdo de sistemas preditivos computadorizados
com o aumento exponencial de informacdo sobre os pacientes. O apéndice B
intitulado "Breve Apresentacdo a Multibmica" apresenta os conceitos fundamentais
dos dados multibmicos para os leitores que ndo sao da area. O apéndice C intitulado
"Breve Apresentacdo ao Aprendizado de Maquina e a Visao Computacional”
apresenta os conceitos fundamentais dos métodos de aprendizado de maquina e
redes neurais para os leitores que nido sdo da area. Esses trés apéndices foram
escritos para promover o tipo de colaboragao interdisciplinar que foi necessaria para
a realizacao do presente trabalho. Sao o resultado das explicagbes dadas pelo autor
para o alinhamento de sua equipe. Importante notar que nesses textos a fluidez e

riqueza de metaforas foram preferidas ao rigor académico, assim, embora busquem
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estar corretos em sua apresentacado das ideias principais, foi dada preferéncia a
didatica da apresentagdo e da formagao do imaginario do leitor. Pretende-se futura
publicacdo desses apéndices como divulgacao cientifica.

A presente tese segue a apresentagdo por Artigos. Quatro artigos escritos
para serem publicados como artigos cientificos em revista indexada, com foco na
Bioinformatics. O primeiro artigo intitulado "G.SUBTVISION - SUBTIPAGEM
MOLECULAR DO CANCER GASTRICO COM METODOS DE ENSEMBLE DE
REDES NEURAIS CONVOLUCIONAIS (CNNS)" trata da classificagcdo de imagens
histopatoldgicas de céancer gastrico em subtipos moleculares por CNN. Desenvolve
ensemble de multiplas arquiteturas demonstrando resultados melhores que a
literatura.

O segundo artigo intitulado: "REDES NEURAIS CONVOLUCIONAIS CLASSIFICAM
SUBTIPO MOLECULAR DO CANCER GASTRICO EM DATASET TUBULAR-
CONTROLADOQ" avalia descoberta de atributos com a organizagao de novo conjunto
de dados controlado para a tipo histopatolégico. Esse artigo busca avaliar uma
possivel refutagao a aplicacdo de CNN para a classificagao de subtipos moleculares
em imagens histologicas. O terceiro artigo intitulado: "G.SUBTFOREST -
CLASSIFICADOR DE SUBTIPOS MOLECULARES DO CA GASTRICO COM TCGA
VIA RANDOM FOREST E PAINEIS OTIMIZADOS" utiliza algoritmo floresta aleatéria
(Random Forest) em variantes genéticas somaticas, identifica genes mais influentes
e painéis diagndsticos.

O quarto artigo intitulado: "G.SUBTFOREST — CLASSIFICADOR DE SUBTIPOS
MOLECULARES DO CA GASTRICO COM TCGA VIA RANDOM FOREST E
PAINEIS OTIMIZADOS"desenvolve um sistema para a predicdo do subtipo
molecular do CG por comité (Ensemble) multimodal.

E digno de nota que a tecnologia necessaria para levar os resultados da
presente tese a pratica médica foi desenvolvida em paralelo a tese. Isso, pois o
autor, durante o seu doutorado, escreveu e dirigiu o projeto "Sistema de deteccao
precoce do cancer"aprovado na chamada publica MCTI/FINEP/FNDCT - Tecnologias
4.0. O sistema decorrente foi chamado Pathoscope e ja possibilita o acesso aos
modelos computacionais em imagens histopatoldgicas a pratica médica com solugéo
integrada de escaneamento de laminas inteiras e visualizador em nuvem. A
inovagao € brevemente apresentada na sessao "Outras Produgdes durante o vinculo
com o PPGGBM".
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1.1 OBJETIVOS

1.1.1  Objetivo geral

Desenvolver modelos de predi¢do diagnostica para os subtipos moleculares do adeno-

carcinoma gastrico em imagens histopatolégica e em dados genémicos.

1.1.2 Objetivos Especificos

» Desenvolver modelos ensemble com multiplas arquiteturas de redes neurais convolu-
cionais CNN “s para predigao dos subtipos moleculares do adenocarcinoma gastrico

em imagens histopatologicas. (Capitulo 1)

* Investigar se redes neurais convolucionais treinadas com imagens histopatolégicas
mantém desempenho preditivo significativo em subtipagem molecular quando apli-
cadas a um conjunto de dados histologicamente controlado, composto apenas por
adenocarcinomas gastricos tubulares, avaliando sua robustez frente a reducdo da

heterogeneidade morfolégica. (Capitulo 2)

* |dentificar genes influentes na classificacdo do subtipo molecular e construir painéis

com alto poder preditivo. (Capitulo 3)

» Desenvolver modelo preditivo por comité multimodal integrando redes neurais com

imagens histopatologicas e florestas aleatérias com painel de genes. (Capitulo 4)
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2 REVISAO DA LITERATURA

2.1 O CANCER GASTRICO

2.1.1 Incidéncia e mortalidade do Cancer Gastrico

A estimativa para o triénio de 2023 a 2025, a mais atualizada disponivel, aponta que
ocorrerdo 704 mil casos novos de cancer no Brasil, dos quais 483 mil excluem os casos
de céancer de pele ndo melanoma. Este ultimo, apesar de ser o mais numeroso, com 220
mil casos novos (31,3% do total bruto), é frequentemente excluido das analises compa-
rativas por apresentar alto indice de cura, baixa letalidade e comportamento clinico menos
agressivo. Assim, as comparacdes entre 0s canceres mais relevantes em termos de mor-
bimortalidade sao realizadas com base nos 483 mil casos restantes Tabela 1. (Instituto
Nacional de Cancer José Alencar Gomes da Silva, 2022) Considerando este nimero como base,

0s canceres mais incidentes no Brasil no periodo estimado:

Tabela 1 — Canceres mais incidentes no Brasil (Triénio 2023-2025), exceto pele ndo melanoma.

Tipo de Cancer N2 de Casos Novos (Estimativa) | Incidéncia Relativa (%)
Mama 74 mil 15,3%
Préstata 72 mil 14,9%
Célon e reto 46 mil 9,5%
Pulmao 32 mil 6,6%
Estdmago 21 mil 4,3%

Base de célculo: 483 mil casos novos (total exceto cancer de pele ndo melanoma). Fonte: (Instituto Nacional de

Cancer José Alencar Gomes da Silva, 2022).

Ao se considerar somente os tipos de cancer com maior impacto clinico e epidemiolégico,
excluindo o céncer de pele ndo melanoma, os tipos mais frequentes entre os homens, no
triénio de 2023 a 2025, totalizam aproximadamente 136 mil casos novos Tabela 2. Os
principais tipos e suas propor¢des relativas sao:

A taxa ajustada de incidéncia, segundo o INCA, é 17% maior em homens (185,61) do
que em mulheres (154,08).

Existe grande variagéao na incidéncia entre as diferentes Regides do Brasil. As Regides
Nordeste e Norte, possuem os menores IDH e apresentam uma distribuicao diferente das
regides de maior IDH. Em homens, o cancer de prostata é predominante em todas as

Regides, mas, para as de maior IDH, os de célon e reto ocupam a segunda ou a terceira
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Tabela 2 — Canceres mais incidentes em homens no Brasil (Triénio 2023-2025), exceto pele ndo melanoma.

Tipo de Cancer (Ho- | N2 de Casos Novos (Estimativa) | Incidéncia Relativa (%)
mens)

Prostata 72 mil 52,9%
Coélon e reto 22 mil 16,2%
Pulmao 18 mil 13,2%
Estébmago 13 mil 9,6%
Cavidade oral 11 mil 8,1%

Base de calculo: Aprox. 136 mil casos novos em homens (total exceto cancer de pele ndao melanoma).

posicao, enquanto, para as regides de menor IDH, o cancer de estbmago é o segundo ou
o terceiro mais frequente. (Instituto Nacional de Cancer José Alencar Gomes da Silva, 2022)

Foram estimados 21.480 casos novos de cancer gastrico. Ocupando a quinta posigao
entre os tipos de cancer de maior morbidade. Nos homens, o CG € o segundo mais fre-
quente na Regidao Norte (12,55 por 100 mil). Na Regido Nordeste (12,17 por 100 mil),
ocupa o terceiro lugar.

Dentre mulheres, é o quinto mais frequente nas Regides Sul (8,41 por 100 mil) e Norte
(6,53 por 100 mil). Nas Regides Nordeste (7,46 por 100 mil) e Centro-oeste (6,68 por 100
mil), ocupa a sexta posicao.

Segundo o Observatorio Global do Cancer em 2020 o CG foi responsavel por mais
de um milhdo de novos casos de CA. As taxas sdo duas vezes mais alta entre homens
que entre mulheres. E o cancer de maior incidéncia dentre homens em varios paises do
sul da Asia Central — como Ira, Afeganistao, Turcomenistdo e Quirguistdo. Globalmente
representa 5,6% de todos os CA, entre homens representa 7,1% de todos os CA (SUNG et
al., 2021)

No Brasil foram 13.850 6bitos por cancer de estbmago em 2020, ocupando a quinta co-
locacao entre os CA que mais matam. Dentre essas pessoas que faleceram, 5.078 foram
mulheres. Ja entre homens foram 8.772 mortes. (Instituto Nacional de Cancer José Alencar Gomes
da Silva, 2022) No mundo todo em 2020 foram 769.000 mortes, ocupando a quarta coloca-
cdo global entre os CA que mais mataram. E, portanto, um tipo de cancer de importante

impacto na populagao, justificando a atengao cientifica ao tema.
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2.1.2 Topografias e vulnerabilidades associadas

A primeira maneira de classificar os CA é conforme a localiza¢do do tumor primario, ou
em outras palavras, a topografia. Quando alguém se refere a um CA como "gastrico" esse
esta fazendo mencao ao endereco do tumor, ou seja, que surgiu no estdmago. Ao longo
da tese diferentes abordagens serao utilizadas para aprofundar a compreensao dos CA,
ja que tumores de uma mesma topografia muitas vezes sao diferentes uns dos outros. Por
outro lado, tumores de topografias diferentes podem ser muito semelhantes do ponto de
vista histopatolégico e molecular. Podendo responder ao mesmo tratamento.

Ou seja, ndo é necessariamente a localizagdo do surgimento no corpo a maneira mais
eficaz de classificagéo. No entanto, ela é importante e muito Gtil do ponto de vista epidemi-
ologico e de geracgao de hipoteses, por existirem indubitavelmente associagdes estatistica-
mente significativas entre topografia e diversos outros fatores.

Do ponto de vista topografico o CG pode acorrer em qualquer compartimento do esté-
mago (Cérdia, Corpo ou Antro). A cardia € a regido do estdbmago imediatamente apés a
juncao esbfago-gastrica. A oitava edicdo da UICC considera que deve ser considerado CG
o tumor cujo epicentro estiver a mais de 2 cm da jungao esbéfago-gastrica, mesmo que a
acometa(FUKAYAMA; RUGGE; WASHINGTON, 2019).

Sung e colaboradores (SUNG et al.,, 2021) reforcam a importancia da classificagdo em
dois sub-sitios principais: cardia e ndo-cardia. Cada um desses € associado a diferen-
tes fatores de risco, epidemiologia e carcinogénese. A infeccao pelo Helicobacter pylori
€ considerada o principal fator causador do CG ndo-cardia. Embora a prevaléncia da in-
feccao pela bactéria seja muito alta, acometendo até 50% da populacao, apenas 5% dos
infectados desenvolverdao CA, fatores como alimentacao, ingestdo de alcool, tabagismo,
diferentes cepas e outros diversos fatores que possam ser responsaveis pelas grandes
diferengas regionais.

Com o avancgo das condigOes sanitérias, a ampla disseminagao da refrigeracao de ali-
mentos e a diminuigao da prevaléncia da infeccao por Helicobacter pylori, observou-se uma
reducdo significativa na incidéncia dos adenocarcinomas gastricos ndo-cardia em diversos
paises desenvolvidos. Essa tendéncia tem sido interpretada como um “triunfo néo plane-
jado” da modernizagao e das mudancas alimentares, conforme argumentado por Howson
et al. (HOWSON; HIYAMA; WYNDER, 1986), que associaram a queda global do cancer gastrico

a melhorias ambientais e de higiene, mesmo na auséncia de programas de prevengao es-
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pecificos.

Martel e Parsonnet (MARTEL; PARSONNET, 2018) corroboram essa interpretacao ao iden-
tificarem a infecg¢é@o por H. pylori como o principal fator de risco para os tumores localizados
no corpo e antro gastrico (ndo-cardia), destacando o impacto da erradicacado da bactéria
na redugao desses subtipos tumorais.

Contudo, esse processo foi acompanhado por uma elevagao proporcional — e, em
determinadas populacdes, também absoluta — dos adenocarcinomas da cardia. Powell
e McConkey (POWELL; MCCONKEY, 1990) ja haviam descrito esse fenGmeno, observando
um aumento na incidéncia de tumores situados na juncao gastroesofagica, enquanto os
tumores distais apresentavam tendéncia de queda.

Kamangar et al. (KAMANGAR; DAWSEY; BLASER, 2006) demonstraram que a associagao
entre infecg@o pelo H. pylori e risco de cancer gastrico varia de maneira oposta entre os
subtipos cérdico e nao-cardico, reforcando a distingédo etioldgica entre essas localizagbes
anatdmicas. Assim, as estratégias de prevencao centradas na deteccao e erradicacao da
infeccdo bacteriana parecem exercer maior impacto sobre os tumores distais, enquanto os
tumores proximais permanecem menos afetados por essas intervencgdes.

Dessa forma, o aumento relativo dos tumores da cardia pode ser interpretado nao ape-
nas como um reflexo estatistico da reducado dos demais subtipos, mas também como ex-
pressdao de uma transicao epidemioldgica, marcada por etiologias distintas e ainda nao
completamente mitigadas pelas atuais politicas de prevencgao.

Com o avanco das condi¢gdes sanitarias, a ampla disseminacao da refrigeracao de ali-
mentos e a queda na prevaléncia da infecgdo por Helicobacter pylori, observou-se uma
reducgao significativa na incidéncia dos adenocarcinomas gastricos nao-cardia em diversos
paises desenvolvidos. Essa tendéncia vem sendo interpretada como um “triunfo néo pla-
nejado” da modernizagdo e das mudancas alimentares, conforme argumentam (HOWSON;
HIYAMA; WYNDER, 1986) que associaram a queda global do cancer gastrico as melhorias
ambientais e de higiene, mesmo na auséncia de programas de prevencgao especificos.

No entanto, essa mesma transicao epidemioldgica revelou um aumento proporcional
— e, em algumas populagées, absoluto — dos adenocarcinomas da cardia. (POWELL; MC-
CONKEY, 1990) Foi observada uma elevagao na incidéncia dos tumores situados na juncao
gastroesofagica, em contraste com a queda dos demais tumores gastricos.

Esse padrao, longe de ser paradoxal, encontra respaldo biolégico. Kamangar e colabo-

radores demonstraram que a infecgao por H.pylori esta inversamente associada ao risco
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de adenocarcinoma da cardia (KAMANGAR; DAWSEY; BLASER, 2006).

Portanto, as mudangas de comportamento populacional e as agbes preventivas, em-
bora eficazes na prevencao do cancer gastrico distal, ndo alcangam o mesmo impacto nos
tumores da cérdia, cuja etiologia esta estatisticamente associada a obesidade e refluxo
gastroesofagico, muito provavelmente por condigées de inflamagéo. Assim, o aumento re-
lativo dos tumores da cardia pode ser interpretado ndo apenas como uma consequéncia
estatistica da queda dos demais subtipos, mas também como reflexo de uma transi¢ao

etioldgica ainda pouco afetada por politicas de saude publica (OLEFSON; MOSS, 2015).

2.1.3 Prevencao primaria

A International Agency for Research on Cancer -IARC completou uma revisdo de 40
anos de suas monografias a respeito de carcinogénicos (COGLIANO et al., 2011). Essas
monografias sdo centrais na orientacao das a¢oes de prevengao primarias. Foram levanta-
dos mais de 100 carcindgenos entre quimicos e agentes biolégicos, com diferentes niveis
de evidéncias. Embora esses sejam pesquisados para o perigo carcinogénico em uma
topografia, por exemplo no estdbmago, podem provocar cancer em multiplas topografias,
havendo mais concordancia com o mecanismo molecular que com a topografia de mani-
festagdo (BAAN; STEWART; STRAIF, 2019).

A IARC (PEARCE et al., 2015) estabeleceu critérios de evidéncia com base em estu-
dos epidemioldgicos e de mecanismos moleculares organizando as substancias quimicas,
agentes biologicos, comportamentos e predisposicoes em Grupos (International Agency for
Research on Cancer, 2019).

Entre eles, destacam-se a infecgdo por Helicobacter pylori, a exposicao ocupacional
na industria de borracha, o tabagismo e a exposi¢ao a radiagdo X e gama. Esses fatores
possuem evidéncia suficiente para serem reconhecidos como causadores do cancer gas-
trico em humanos (FUKAYAMA; RUGGE; WASHINGTON, 2019).0Outros que igualmente tem forte
evidéncia sdao o amianto (em todas as formas), a infeccao pelo virus Epstein-Barr (EBV),
compostos inorganicos de chumbo, ingestao de nitratos ou nitritos sob condi¢cdes que favo-
recam a nitrosacao endogena, consumo de vegetais em conserva (tradicionalmente asiati-
cos), peixe salgado a moda chinesa e carnes processadas. Esses fatores devem ser con-
siderados em estratégias de prevengao primaria, especialmente em populagées de risco

(FUKAYAMA; RUGGE; WASHINGTON, 2019).
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Tabela 3 — Principais caracteristicas dos carcin6genos descritas por Smith et al. (2016).

# Caracteristicas-chave de carcinégenos

1 E eletrofilico ou pode ser metabolicamente ativado para formar um eletrofilico.
E genotéxico.

Altera a reparagdo do DNA ou causa instabilidade genémica.

Induz alteragbes epigenéticas.

Induz estresse oxidativo.

Induz inflamacao crénica.

E imunossupressor.

Modula efeitos mediados por receptores.

Causa imortalizagao celular.

o © 00 N o o B~ WM™

—

Altera a proliferacao celular, morte celular ou suprimento de nutrientes.

Os principais fatores carcinogénicos conhecidos para o cancer gastrico sao a infeccao
por Helicobacter pylori, o consumo de alimentos ricos em nitritos e nitratos, o tabagismo, o
consumo excessivo de sal e alcool, e determinadas exposi¢des ocupacionais e ambientais.
A infeccao por H. pylori, especialmente por cepas CagA+, leva a ativagdo de vias inflama-
torias e desregulagdo de genes supressores tumorais por hipermetilacdo, como CDH1,
p16 e MLH1. Tais alteracdes epigenéticas contribuem para a progressao da inflamacao
cronica para metaplasia intestinal e, posteriormente, displasia e adenocarcinoma gastrico
(MITHANY et al., 2024; HE et al., 2025).

Dietas ricas em carnes processadas, alimentos defumados e vegetais em conserva ex-
pdem a mucosa gastrica a compostos N-nitrosos, que sao potentes agentes alquilantes.
Esses compostos geram adigdo de grupos etil e metil ao DNA, provocando mutagdes so-
maticas em genes como TP53, frequentemente mutado nos adenocarcinomas gastricos
(HE et al., 2025; SHAH; BENTREM, 2022). Além disso, niveis elevados de sal exacerbam o
dano a mucosa gastrica e favorecem a colonizagado por H. pylori, gerando um ciclo pré-
inflamatério que acelera a carcinogénese.

O tabagismo é outro fator de risco estabelecido, associado a liberagao de nitrosaminas
e hidrocarbonetos policiclicos aromaticos, que atuam como genotdxicos diretos. O efeito

do fumo esta associado ao aumento de mutag¢des pontuais em genes supressores de tu-
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mor, além da hipermetilagao de promotores génicos envolvidos na reparagdo do DNA. Ja o
alcool, particularmente em grandes quantidades, € metabolizado em acetaldeido, um com-
posto com potencial genotdxico que gera radicais livres e favorece instabilidade genémica
(SHAH; BENTREM, 2022; MAZUREK et al., 2024).

Além dos fatores de estilo de vida, exposi¢cdes ocupacionais (como na industria de
borracha, mineragao e agricultura) e ambientais (como a poluicdo atmosférica por PM2.5)
também tém sido implicadas na carcinogénese gastrica. Essas exposi¢cées induzem es-
tresse oxidativo persistente, promovendo mutagdes somaticas e alteragées no microambi-
ente tumoral, incluindo desregulacdo da imunidade local. Estudos recentes reforcam que
individuos com variantes genéticas em genes como GSTM1, XRCC1 e NAT2 podem apre-
sentar susceptibilidade aumentada frente a esses agentes ambientais, demonstrando a
interacao entre predisposicao genética e exposigdes externas (HE et al., 2025; MITHANY et

al., 2024).

2.1.4 Sinais, Sintomas e Diagnéstico

O cancer gastrico apresenta-se como uma neoplasia de curso insidioso, frequente-
mente assintomatica nas fases iniciais. Quando o paciente apresenta sintomas, sao ines-
pecificos como dor epigéastrica leve e dispepsia. Tal padrao clinico contribui para o diag-
néstico tardio, sendo um dos principais fatores relacionados a elevada taxa de mortalidade
associada a doencga. Apenas com o avango da doencga outros sinais mais evidentes como
perda de peso corporal e sinais de massa abdominal. O clinico responsavel precisa estar
atento a epidemiologia do CG na regidao onde atua. Como demonstrado acima, a incidéncia
do CG varia conforme a regido e ao IDH. Assim, a tomada de decisdo de qual paciente com
sintomas inespecificos enviar para investigacao endoscopica nao é amplamente padroni-
zada e existem diferentes padrdes internacionais com espaco para ajustes individualizados
pelos médicos assistentes. O objetivo é claro e comum, identificar o CG antes de passar
a ser invasivo. A identificagcao precoce permite a cura endoscopica da doenga e constitui,
portanto, a prevencao secundaria.

O consenso é o entendimento geral que pacientes mais velhos devem ser encaminha-
dos para investigacdo endoscopica ao referirem quaisquer sintomas, ja& 0os mais jovens
devem ser encaminhados caso apresentem sintomas persistentes a terapia inicial ou se

apresentarem sinais de alerta, como perda de peso, ou fadiga. Também é consenso que
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sinais de alerta sdo tardios de ndo se deve esperar até seu aparecimento. A diferenga entre
autores e associagdes de especialistas esta no ponto de corte etario para a investigacao
precoce. Por exemplo, as diretrizes brasileiras ndo estabelecem uma faixa etaria fixa para
endoscopia em pacientes assintomaticos, recomendando sua indicagcdo com base em sin-
tomas clinicos e fatores de risco individuais. Todos os pacientes com mais de 40 anos com
quaisquer sintomas. Também devem ser submetidos a investigagcao endoscopica todos os
pacientes até 40 anos que apresentem sintomas sem resposta aos tratamentos iniciais e
claro que tenham sinais de alerta (BARCHI et al., 2020). Em contraste, no Japao, onde ha
alta incidéncia de cancer gastrico, a estratégia populacional de rastreamento populacional
endoscépico em individuos assintomaticos € implementada nacionalmente a partir dos 50
anos, com intervalos de 2 a 3 anos, como forma de promover diagnéstico precoce e res-
secgao endoscépica curativa (HAMASHIMA, 2018). Nos Estados Unidos, a American Society
for Gastrointestinal Endoscopy recomenda que pacientes com dispepsia e idade superior

a 50 anos sejam encaminhados a investigacdo endoscépica (SHAUKAT et al., 2015).

2.2 VIGILANCIA ENDOSCOPICA: PROTOCOLOS OLGA E OLGIM

Durante a realizagao da endoscopia digestiva alta, toda anormalidade da mucosa deve
ser biopsiada. A investigacao histopatologica é mandatéria nas areas de metaplasia, atro-
fia, ulceracdes, nédulos, erosdes elevadas ou depressodes, especialmente no antro e in-
cisura angular. Na auséncia de sinais identificaveis a endoscopia de lesdes precursoras
devem ser realizadas pelo menos duas biopsias, pelo menos uma no corpo € uma no an-
tro. Quando porém ha sinais de gastrite atréfica ou metaplasia intestinal outros protocolos
devem ser aplicados.

As lesbdes precursoras sao identificadas pelos médicos patologistas e estao diretamente
associados ao risco de cancer gastrico. As transformagdes teciduais acontecem devido
processo inflamatério crénico, podendo ser de dois tipos principais: Gastrite Atrofica e Me-
taplasia Intestinal. Na gastrite atrofica os principais achados sao atrofia das glandulas na-
tivas da mucosa gastrica e fibrose da lamina propria (em substituicdo a perda glandular).
Ja na metaplasia intestinal é definida como a substituicao do epitélio gastrico nativo por
epitélio de tipo intestinal (FUKAYAMA; RUGGE; WASHINGTON, 2019).

E importante avaliar o risco individual de cada paciente para indicar uma periodicidade

adequada de vigilancia endoscopica para diagnosticar o cancer gastrico em estagio pre-
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coce. Para isso o Operative Link on Gastritis Assessment OLGA prop6s uma classificagao
com estagios que permite classificar os pacientes em conformidade com o grau de atrofia
de mucosa e distinguir os de maior risco dos de menor (RUGGE et al., 2008). O grau da gas-
trite € determinado histologicamente em cinco estagios (0 a IV) com risco progressivo para
o cancer gastrico. A classificacao OLGA e sua variante OLGIM (Operative Link on Gastric
Intestinal Metaplasia Assessment) s@o sistemas de estadiamento com base em achados
de lesdes precursoras que estratificam o risco de progressao para CG. A categoria OLGA
utiliza a topografia e extensdo da gastrite atréfica, enquanto o OLGIM substitui pela me-
taplasia intestinal como marcador histopatolégico (RUGGE et al., 2008; BENITES-GONI et al.,
2025).

Para uma avaliacao diagnostica adequada da gastrite atréfica e seus riscos associa-
dos, recomenda-se a adogao sistematica do Protocolo de Sydney Modificado de padroni-
zacao de coleta de biopsias, com coleta de cinco fragmentos: dois do antro (menor e maior
curvatura), dois do corpo gastrico (menor e maior curvatura) e um da incisura angular
(PIMENTEL-NUNES et al., 2019).

O Protocolo de Sydney Modificado e o sistema OLGA séao abordagens complementares
na avaliagao histopatologica da gastrite atréfica. Enquanto o Protocolo de Sydney Modifi-
cado padroniza a amostragem endoscoépica e a analise histolégica da mucosa gastrica,
com a coleta de cinco fragmentos (antro, incisura angular e corpo), seu foco esta na des-
cricao qualitativa das alteragdes inflamatorias, presenca de Helicobacter pylori, metaplasia
intestinal e grau de atrofia glandular (STOLTE; MEINING, 2001). Por outro lado, o sistema
OLGA utiliza os achados obtidos segundo o Protocolo de Sydney para estabelecer um es-
tadiamento topografico da atrofia gastrica, classificando os pacientes em estagiosde 0 a IV,
com base na extensao e severidade da atrofia nas diferentes regides do estdbmago. Dessa
forma, o sistema OLGA fornece uma estratificagdo prognéstica do risco e €, portanto, es-
pecialmente Util na definicdo de estratégias de vigilancia endoscopica individualizadas.

A decisao de aplicar esses protocolos em casos cuja atrofia ou metaplasia eram pre-
viamente desconhecidas deve ser tomada mediante alteracées endoscépicas sugestivas
de atrofia da mucosa, tais como: visualizagdo acentuada da vasculatura subepitelial, in-
dicando afilamento da mucosa; areas com descoloragdo esbranquicada ou acinzentada,
sugerindo metaplasia intestinal; reducao das pregas gastricas, padrao mucoso irregular ou
com brilho anormal.

Com base no estadiamento histolégico obtido por meio dos sistemas OLGA ou OL-
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GIM, a conduta clinica deve ser individualizada conforme o grau de risco para neoplasia
gastrica. Para os pacientes classificados nos estagios | e Il, que representam baixo risco,
ndao ha necessidade de vigilancia endoscépica programada, devendo ser seguido o pro-
tocolo geral, em outras palavras, endoscopia no caso de quaisquer sintomas dispépticos
novos. Em contraste, os estagios lll e IV estdo associados a um risco significativamente
aumentado de desenvolvimento de adenocarcinoma gastrico e, por isso, recomendam-se
exames endoscopicos periddicos com bidpsias em intervalos periddicos. A periodicidade
deve levar em conta o risco epidemiolégico e pode variar em conformidade com a decisdo
médica podendo variar a cada 1 ou 2 anos no caso de estagios Ill ou IV (PIMENTEL-NUNES
etal., 2019).

A erradicacao do Helicobacter pylori é recomendada em todos os pacientes com alte-
ragdes precursoras. Essa medida pode interromper ou mesmo reverter a progressao de
lesbes atroficas iniciais, embora a metaplasia intestinal avangada possa persistir. Portanto,
0 reconhecimento sistematico e o seguimento individualizado das alteracdes histoldgicas
da mucosa gastrica sdo fundamentais na prevencao do adenocarcinoma gastrico intestinal.

(PIMENTEL-NUNES et al., 2019)

2.3 PROCEDIMENTOS PRE-ANALITICOS

As biépsias sdo encaminhadas ao laboratério de patologia devendo-se observar os pro-
cedimentos pré-analiticos. O laboratério deve seguir as melhores praticas internacionais ao
controlar as amostras e informagdes dos pacientes e preparar as laminas histolégicas da
biépsias encaminhadas. Os médicos patologistas entdo examinam ao microscopio optico
de campo claro e correlacionam com as informagdes prestadas pelo médico assistente.

As biopsias devem ser imersas em solugao pré-fixadora, formol tamponado a 10%, tao
logo quanto seja possivel, minimizando o tempo de isquemia fria (COMPTON et al., 2019).
Isquemia fria é o intervalo de tempo entre a remocgcao da amostra do paciente (seja por bi-
Opsia ou cirurgia) e sua imersao efetiva no liquido pré-fixador, formalina tamponada a 10%.
Durante esse periodo, o tecido permanece fora do corpo e ainda ndo esta quimicamente
estabilizado, tornando-se vulneravel a degradacao enzimatica e alteracdes moleculares
que podem comprometer a preservagdo morfolégica e molecular. As diretrizes recomen-
dam que o tempo de isquemia fria seja igual ou inferior a 60 minutos, sendo ideal manté-lo

o mais curto possivel. E importante notar que o formol penetra a um ritmo de até 1mm/h
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podendo ser mais lento em tecidos gordurosos. Assim, caso o material a ser analisado for
espesso, mesmo se colocada imediatamente no formol ainda ultrapassaria o tempo de ne-
crose fria no sitio de interesse. Dai a recomendacgao é que as amostram tenham até 4 mm
de espessura (COMPTON et al., 2019). Do ponto de vista pratico, nas biopsias as dimensodes
das amostras ja permitem a penetragao, ja em pegas cirurgicas maiores é importante que
o cirurgiao realize incisdes profundas até a regidao tumoral, a fim de assegurar a adequada
e rapida penetracao do liquido pré-fixador.

Embora seja comum, inclusive na literatura cientifica, referir-se a solugédo de formal-
deido tamponado como “fixador”, essa denominagao é tecnicamente imprecisa. O formal-
deido exerce uma acao pré-fixadora ao estabilizar parcialmente as estruturas teciduais
por meio de ligagdes cruzadas covalentes entre cadeias laterais das proteinas, mas a fi-
xagao definitiva ocorre apenas apés o processamento completo do tecido e sua incluséo
em bloco de parafina. Este processamento envolve etapas sequenciais de desidratagao
em banhos de alcool, diafanizagdo em solventes organicos (como xilol ou substitutos) e,
por fim, a impregnacao em parafina aquecida. Somente apos esse ciclo completo o tecido
encontra-se efetivamente fixado de maneira estavel, apto para corte histolégico e analises
subsequentes.

Apbs a imersdo da amostra na solugcado de formalina tamponada a 10%, inicia-se a
etapa de pré-fixacdo. No entanto, a exposi¢ao prolongada do tecido a formalina pode ge-
rar artefatos morfolégicos e comprometer andlises moleculares, especialmente de acidos
nucleicos e epitopos proteicos. O aldeido do formaldeido reage inicialmente com grupos
amino formando um intermediério instavel chamado hidroximetileno, que, com o tempo,
pode reagir com outro grupo amino e formar uma ponte de metileno (-CH,-), estabilizando
a estrutura tridimensional das proteinas e da matriz extracelular.

Esse processo é o que preserva a arquitetura histoldgica das células e tecidos, impe-
dindo a autdlise (degradacao enzimatica) e a putrefacao bacteriana. No entanto, esse tipo
de reticulagao dificulta a extracdo de DNA e proteinas intactas para analises moleculares
subsequentes, ja que altera as conformacdes naturais dos acidos nucleicos e epitopos
antigénicos.

Apesar da estrutura geral do DNA ser preservada com exposi¢do controlada a for-
malina tamponada 10%, ha demonstrada interferéncia com o aparecimento de mutacoes
artefatuais.

Segundo as diretrizes do CAP, recomenda-se que o tempo total de permanéncia do
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tecido em formalina situe-se idealmente entre 6 e 72 horas. Abaixo desse intervalo, ha risco
de fixagao incompleta; acima, ha maior degradagéo molecular. Assim, tanto a minimiza¢ao
da isquemia fria quanto o controle rigoroso do tempo de exposicdo ao formaldeido sdo
etapas criticas da fase pré-analitica, com impacto direto na qualidade diagndstica € na
reprodutibilidade de andlises histolégicas, imunoistoquimicas e moleculares. (COMPTON et
al., 2019)

Importante comentar que os procedimentos citados acima se referem ao diagnéstico
histopatoldgico de rotina sendo, portanto, suficientes para histopatologia, imunoistoquimica
e hibridizagcao in situ validadas. Para os estudos genémicos e transcriptomicos procedi-
mentos mais rigorosos sao necessarios. Isso porque a exposi¢cao prolongada ao formal-
deido induz assinaturas mutacionais artefatuais especificas no DNA, predominantemente
transicoes C>T, causadas por desaminagéo de citosina, e essas alteragdes podem ser in-
distinguiveis de mutacdes reais associadas ao tumor. Essas mutagdes artefatuais ocorrem
mesmo em condi¢cdes padronizadas de fixacao, sugerindo que o material biolégico pré-
fixado em formalina e embebido em parafina deve ser utilizado com cautela em estudos
gendmicos. Para minimizar erros, recomenda-se o uso de controles negativos, replicacao
de amostras e algoritmos de correcdo de artefatos. Portanto, embora o tecido fixado em
formalina ainda seja uma fonte viavel para andlise molecular, especialmente em contextos
clinicos onde material fresco é escasso, deve-se ter plena consciéncia das limitagoes e cui-
dados técnicos exigidos para garantir a fidelidade dos achados genéticos (WILLIAMS et al.,
1999; GUO, 2022; SRINIVASAN; SEDMAK; JEWELL, 2002). Por outro lado, para a extragao de
RNA e, portanto, para a realizacao de estudos transcriptdbmicos mencionados na revisao
de literatura e na discussao geral, sdo necessarios procedimentos bem mais rigorosos e
especificos. A preservacado adequada do RNA exige a minimizagcao extrema do tempo de
isquemia fria, preferencialmente, o congelamento imediato em nitrogénio liquido.

Cabe destacar ainda que as amostras que participam do banco de dados do TCGA,
cujos dados foram utilizados na presente tese, foram obtidas a partir de tecidos frescos
congelados pareados a tecidos normais do paciente igualmente obtidos frescos congela-

dos(Cancer Genome Atlas Research Network, 2014).
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2.4 CLASSIFICACAO HISTOPATOLOGICA

Do ponto de vista histopatolégico lesGes proliferativas epiteliais do estdmago podem
ser polipos ndo-neplasicos, lesdes neoplasicas ndo-invasivas (displasia e adenoma) e ade-
nocarcinomas (FUKAYAMA; RUGGE; WASHINGTON, 2019). Os adenocarcinomas s&o mais de
95% dos CG (Cancer Genome Atlas Research Network, 2014), sendo propriamente o tipo que ad-
vém do epitélio do estdmago. Por isso 0 adenocarcinoma do estdmago é frequentemente
referido apenas com céncer de estbmago embora outros tipos de neoplasias invasivas
também ocorram mais raramente no estdmago, como: linfomas, carcinomas sarcomatoi-
des, carcinomas neuroenddcrinos, dentre outros (FUKAYAMA; RUGGE; WASHINGTON, 2019).

Sobre as lesdes neoplasicas nao-invasiva € importante destacar que a Displasia Gas-
trica é definida como uma leséo precursora do CG com trés mudancas histolégicas que
podem 0 ndo estarem todas presentes: Atipia epitelial, diferenciagdo anormal ou arquite-
tura mucosa desorganizada (FUKAYAMA; RUGGE; WASHINGTON, 2019). Podendo ser catego-
rizadas como de baixo grau ou alto grau. Na displasia de baixo grau as células neoplasi-
cas apresentam dentre outras caracteristicas: aberragbes arquiteturais, nucleos hipercro-
maticos alongados e a atividade mit6tica é baixa a moderada. Na displasia de alto grau
apresentam mudancas arquiteturais com conformacgdes cuboidais ou colunares, perda da
polaridade do nucleo, com aumento da razdo do tamanho do nucleo em relagdo ao do
citoplasma e mitoses séo frequentemente identificadas (FUKAYAMA; RUGGE; WASHINGTON,
2019).

A distincao entre a displasia de alto grau e o carcinoma intraepitelial (in situ) é concei-
tual, isso ocorre pois ha diferengas relevantes entre paises quanto aos critérios diagnds-
ticos de adenocarcinoma gastrico. Por um lado a maioria dos patologistas na América do
Norte, Europa e Coreia exige a demonstracao de invasao estromal — ou seja, penetracao
na membrana basal — para diagnosticar carcinoma. Por outro os patologistas japoneses
frequentemente classificam como carcinoma nao invasivo lesées com atipia citologica e
arquitetural de alto grau, mesmo na auséncia de invasao da membrana basal. Em resumo,
tais lesdes sdo chamadas de carcinoma nao invasivo no Japao, mas seriam classificadas
como displasia de alto grau em outras regides (FUKAYAMA; RUGGE; WASHINGTON, 2019).

O adenocarcinoma origina-se do epitélio glandular ( por isso o prefixo adeno) da mu-
cosa do estbmago, apresentando grande diversidade de apresentacdes histopatologicas.

A classificagdo histopatolégica do cancer gastrico tem evoluido ao longo das décadas,
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refletindo avancos no entendimento da biologia tumoral, da epidemiologia e das carac-
teristicas moleculares. Iniciando com a classificacao proposta por Lauren em 1965, que
estabeleceu uma divisdo fundamental baseada em padrées morfolégicos, o sistema pro-
grediu para abordagens mais detalhadas e integradas, culminando na edicao de 2019 da
Organizacao Mundial da Saude OMS. Essa evolugao nao apenas refinou a categorizacao
dos tumores, mas também incorporou elementos prognésticos e terapéuticos, auxiliando

na personalizacdo do tratamento (LAUREN, 1965).

2.4.1 Classificacao de Lauren (1965)

A classificacdo de Lauren representa um marco inicial na histopatologia do adenocar-
cinoma gastrico. Proposta pelo patologista finlandés Pekka Lauren, divide os tumores em

dois tipos principais com base em caracteristicas morfolégicas e epidemioldgicas:

* Tipo Intestinal: Caracterizado por estruturas glandulares bem diferenciadas, seme-
Ihantes ao epitélio intestinal. Associado a fatores ambientais, como infec¢ao por He-
licobacter pylori, e prevalente em regides de alta incidéncia de cancer gastrico. Apre-

senta melhor prognéstico em comparagao ao tipo difuso.

» Tipo Difuso: Composto por células pouco coesas, frequentemente com morfologia
em anel de sinete, infiltrando o estroma de forma dispersa. Relacionado a fatores
genéticos e hereditarios, com pior prognéstico devido a maior agressividade e ten-

déncia a metastases precoces.

» Tipo Misto ou Indeterminado: Casos que exibem caracteristicas de ambos os tipos

ou nao se enquadram claramente em um deles.

Essa classificacao simples, mas robusta, influenciou estudos subsequentes e continua

sendo utilizada por sua correlagdo com padrdes clinicos e moleculares (LAUREN, 1965).

2.4.2 Classificacao da OMS de 2019

A edicao de 2019 da Classificacao de Tumores do Sistema Digestivo da OMS (52 Edi-

¢ao) € a mais recente, ela refina as categorias e inclui subtipos emergentes:
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Tabela 4 — Principais Subtipos de Adenocarcinoma Gastrico na Classificagdo OMS 2019.

Subtipo Caracteristicas Principais

Tubular Estruturas glandulares tubulares.

Papilifero Projecdes papilares com eixo fibrovascular.
Mucinoso Acumulo extracelular de mucina (>50% do tu-

Pouco Coeso (incluindo em anel de sinete)

Misto

Hepatoide

Com Estroma Linféide

Micropapilar

mor).

Células dispersas, pouca adesédo, alinhado
ao tipo difuso de Lauren.

Combinacdo de componentes tubulares e
pOUCO COESOS.

Morfologia semelhante a hepatécitos, com
producéo de alfa-fetoproteina.

Infiltracdo linfocitica densa, frequentemente
associado a EBV ou MSI.

Padrées micropapilares invasivos, prognés-
tico pior.

Fonte: Adaptado de (NAGTEGAAL et al., 2020).

Essa edicéo enfatiza a correlagdo com perfis moleculares, como tumores EBV-positivos,

MSI-altos, genomicamente estaveis e com instabilidade cromossémica. Além disso, atua-

liza a classificacao de lesdes precursoras, como displasia de baixo e alto grau, e integra

codigos ICD-O atualizados para melhor padronizagao global (FUKAYAMA; RUGGE; WASHING-

TON, 2019).

A classificagao histopatolégica da OMS (WHO) de 2019 (FUKAYAMA; RUGGE; WASHING-

TON, 2019) para o cancer gastrico representa um avango significativo na estratificagao

morfoldgica desta neoplasia, sendo fundamental para o diagnéstico preciso e orientagéao

do tratamento adequado. Enquanto a classificacao de Lauren permanece util por sua sim-

plicidade, a OMS 2019 oferece uma visao mais abrangente, facilitando a integragdo com

terapias direcionadas baseadas em biomarcadores moleculares.

Desenvolvimento da compreensao dos fendétipos histopatolégicos
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Tabela 5 — Evolugao das Classificagdes histopatolégicas.

Laurén (1965) Nakamura et al. | JGCA (2017) OMS (2019)
(1968)
Intestinal Diferenciado Papilar: pap Papilifero
- - Tubular 1, bem diferenci- | Tubular, bem diferenci-

ado: tub1

ado

Indeterminado

Tubular 2, moderada-
mente diferenciado:
tub2

Tubular, moderadamente

diferenciado

Indiferenciado

Pouco diferenciado 1

(tipo sdlido): por1

Tubular (s6lido), pouco

diferenciado

difuso em anel de si- - Pouco coeso, fenétipo de
nete célula em anel de sinete
- - Pouco diferenciado 2 | Pouco coeso, outros tipos

(tipo ndo sélido): por2 de células

Intestinal Diferenciado Mucinoso Mucinoso

difuso indiferenciado

indeterminado

Misto - Descricao de acordo com | Misto
a propor¢ao (ex.: por2 >
sig > tub2)

N&o definido N&o definido Tipo especial: Outros subtipos histolégi-

COs:

Carcinoma adenoesca-

moso

Carcinoma adenoesca-

moso

Carcinoma de células es-

Carcinoma de células es-

camosas camosas
- - Carcinoma indiferenci- | Carcinoma indiferenci-
ado ado
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Laurén (1965)

Nakamura et al.
(1968)

JGCA (2017)

OMS (2019)

Carcinoma com estroma

linfoide

Carcinoma com estroma

linfoide

Adenocarcinoma hepa-

toide

Adenocarcinoma hepa-

toide

Adenocarcinoma com
diferenciacdo enteroblas-

tica

Adenocarcinoma com
diferenciacao enteroblas-

tica

Adenocarcinoma do tipo

glandula fundica

Adenocarcinoma do tipo

glandula fundica

Adenocarcinoma micro-

papilar

Fonte: Adaptado de (FUKAYAMA; RUGGE; WASHINGTON, 2019).

Adenocarcinoma tubular: caracterizado por estruturas glandulares bem formadas,
frequentemente associadas a um estroma desmoplasico. A diferenciacao tubular

pode variar de bem a pobremente diferenciada, influenciando o prognéstico.

Adenocarcinoma papilar: apresenta projecoes epiteliais digitiformes com eixo fibro-
vascular. Este subtipo é frequentemente associado a um melhor progndéstico, espe-

cialmente quando bem diferenciado.

Adenocarcinoma mucinoso: definido pela presenca de mais de 50% de mucina ex-
tracelular. A presenca de células em anel de sinete flutuando na mucina € comum,

mas nao deve exceder 50% das células tumorais.

Carcinoma pouco coeso: esta categoria inclui o carcinoma de células em anel de
sinete e outras variantes com baixa coesao celular. Caracteriza-se por células tumo-
rais isoladas ou em pequenos grupos, frequentemente com morfologia discohesiva.
Este subtipo esta frequentemente associado a mutagdes no gene CDH1 e tem impli-

cagodes prognosticas significativas.
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« Carcinoma misto: apresenta uma mistura de pelo menos dois dos subtipos acima

mencionados, cada um compreendendo pelo menos 10% do tumor.

Além destas categorias principais, a classificacdo da OMS 2019 reconhece variantes

mais raras e subtipos especificos, incluindo:

» Adenocarcinoma hepatoide: morfologicamente semelhante ao carcinoma hepatoce-

lular, frequentemente associado a producéao de alfa-fetoproteina.

» Carcinoma com estroma linfoide: caracterizado por um estroma com proeminente
infiltrado linfocitico, frequentemente associado a infeccao pelo virus Epstein-Barr
(EBV).

E crucial notar que esta classificagdo histopatolégica tem associacao heterogénea com os

subtipos moleculares. Por exemplo:

2.4.3 Estadiamento TNM de Carcinomas do Estomago

O estadiamento TNM € um sistema padronizado utilizado para classificar a extensao
anatémica dos tumores malignos, permitindo uma avaliagao precisa do progndstico e ori-
entacao terapéutica. Em outras palavras, trata-se de uma ferramenta essencial na oncolo-
gia que categoriza o tumor com base em seu tamanho e invasao local (T), envolvimento
de linfonodos regionais (N) e presenca de metastases distantes (M), facilitando a com-
paragao de casos clinicos e a escolha de tratamentos adequados, como cirurgia, quimi-
oterapia ou radioterapia, de forma pratica no dia a dia médico (SOBIN; GOSPODAROWICZ;
WITTEKIND, 2017a). Esse sistema aplica-se exclusivamente a carcinomas confirmados his-
tologicamente, com consideracdes especificas para tumores na juncao esofagogastrica.
Carcinomas cujo epicentro esteja a até 2 cm da juncao e sem extensdo esofagica sao
estadiados como gastricos. Em termos préticos, isso significa que o estadiamento ajuda
a determinar se o tumor é operavel ou requer abordagens neoadjuvantes, influenciando
diretamente a sobrevida do paciente (SOBIN; GOSPODAROWICZ; WITTEKIND, 2017b).

As categorias TNM fornecem uma descricdo detalhada da progressao tumoral. Em
outras palavras, elas dividem o cancer em componentes mensuraveis, permitindo uma

avaliacao objetiva que guia o planejamento terapéutico e 0 acompanhamento clinico.
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A categoria T avalia a extensao da invasao do tumor primério nas camadas da parede
gastrica. Em outras palavras, ela indica quao profundamente o tumor penetrou no esté-
mago, o que é crucial para decidir sobre ressec¢des endoscdpicas em estagios iniciais ou
cirurgias mais extensas em casos avangados.

A categoria N quantifica o envolvimento de linfonodos regionais por metéastases. Em
outras palavras, ela reflete 0 quanto o cancer se espalhou para ganglios linfaticos préxi-
mos, um fator chave para prever o risco de recorréncia e indicar linfadenectomia durante
a cirurgia. A categoria M indica a presenga de metastases em sitios distantes. Em outras
palavras, ela identifica se o cancer ja se disseminou para érgaos remotos, como figado ou
pulmdes, o que geralmente altera o foco do tratamento de curativo para paliativo.

Os estagios combinam as categorias TNM para fornecer uma classificacao global da
doenca. Em outras palavras, eles sintetizam a gravidade do cancer em niveis progressivos,
auxiliando na comunicagao entre equipes multidisciplinares e na estimativa de sobrevida,
como a taxa de 5 anos que varia de quase 100% em estagio 0 para menos de 5% em
estagio IV.

O estadiamento TNM apresenta uma abordagem dindmica, com versoes clinicas (CTNM),
baseadas em exames pré-tratamento como endoscopias e imagens, e versdes patoldgicas
(pTNM), definidas ap6s a ressecgao cirurgica do tumor. Em outras palavras, o cTNM atua
como um guia inicial, ajudando médicos a tragar o primeiro plano de tratamento, enquanto
o pTNM oferece uma confirmacao mais precisa do estagio da doenca, permitindo ajustes
em terapias adjuvantes para maximizar os resultados clinicos (FUKAYAMA; RUGGE; WASHING-
TON, 2019). Compreender o TNM € essencial, pois ele fornece uma estrutura para prever a
progressao tumoral e personalizar intervengdes. Esse sistema traz uma dimens&do humana
ao oferecer esperanca: o diagndstico precoce, especialmente nos estagios iniciais (como
0 ou IA), esta diretamente associado a taxas de sobrevida significativamente mais altas,
que podem ultrapassar 90% em cinco anos, em contraste com menos de 5% nos estagios

IV (AMIN et al., 2017).
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2.5 APRESENTACAO A MULTIOMICA

2.5.1 Conceitos fundamentais e genémica

O termo “multidmica” se origina da combinagao do prefixo “multi-”, derivado do latim

“A

multus (muitos), com o sufixo “-6mica”, uma adaptacao de “6mica” (do grego ome, que
significa “todo” ou “conjunto”). Esse sufixo € comumente usado para descrever campos de
estudo que se dedicam a explorar de forma abrangente os componentes integrais de siste-
mas bioldgicos, como genes, proteinas, e metabdlitos. Em um contexto mais amplo, multié-
mica refere-se a andlise integrada de varias dessas camadas bioldgicas (genémica, trans-
criptdmica, proteémica, metabolémica e epigendmica) em um organismo, visando uma
visdo mais holistica de seus processos moleculares.

O conceito comegou a tomar forma nos anos 1990, quando o Projeto Genoma Humano
(PGH) avancgava rapidamente e revelava, de maneira inédita, a sequéncia completa do
DNA humano. Esse projeto foi o marco inicial de uma era em que o prefixo “-6mica” passou
a ser usado com frequéncia, representando diferentes areas que analisam coletivamente
os componentes biolégicos. Embora o PGH fosse inicialmente focado em gendémica, o
vasto volume de dados e a necessidade de compreensao integrada dos sistemas levaram
ao surgimento e popularizagdo da multiémica.

Cronologicamente, a adogao do termo “multibmica” pode ser considerada uma con-
sequéncia natural do PGH, que impulsionou novas tecnologias e plataformas analiticas
capazes de explorar ndo apenas o DNA, mas outros componentes, como o RNA e protei-
nas, de maneira integrada. Esse termo comegou a ser amplamente utilizado apés o PGH,
quando surgiu a necessidade de uma abordagem mais complexa para a interpretagao dos
dados biol6gicos e suas interacdes. Esse movimento foi fundamental para o avanco de
areas como a biologia de sistemas, que utiliza a multidmica para mapear e compreender a
complexidade das redes biologicas.

Além de “multibmica”, outros termos menos conhecidos fora da comunidade de pes-
quisadores emergiram. Termos como “epigendmica”, que se refere ao estudo das modi-
ficacoes epigenéticas (alteragdes quimicas que regulam a expressao génica sem alterar
a sequéncia de DNA), e “interatdmica”, que analisa as interacbes entre proteinas, sur-
giram na esteira desse avanco, representando a especializacao e sofisticacdo crescente

das abordagens dmicas (DURAN, 2023). A epigenOmica, por exemplo, “tem permitido o
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entendimento dos processos que controlam o envelhecimento e a diferenciagéo celular,
fundamentais para doencas degenerativas” (DURAN, 2023)

Recentemente, os avangos nas tecnologias multibmicas tém promovido grandes des-
cobertas no estudo do envelhecimento celular. A integracdo de dados transcriptomicos e
metabolémicos tem permitido identificar assinaturas moleculares associadas ao envelhe-
cimento celular e a senescéncia. Esses estudos mostram que “a instabilidade genémica e
a acumulacao de mutacdes, anteriormente vistas apenas como consequéncia do envelhe-
cimento, podem, na verdade, desempenhar papéis ativos nos mecanismos que promovem
a senescéncia celular” (LOPES, 2024). Essa integracao de dados, que também considera
informacdes epigendmicas, tem sido crucial para identificar padrées moleculares comple-
x0s que delineiam o envelhecimento celular, permitindo uma visdo mais detalhada das
alterac¢des bioguimicas que ocorrem ao longo do tempo.

No contexto da patogénese do cancer, a multibmica tem se mostrado igualmente re-
volucionaria, especialmente no que diz respeito a compreenséo de como diferentes tipos
de cancer se desenvolvem e progridem. A aplicagao da multidmica possibilita identificar as
vias e mutacgoes especificas associadas a tipos especificos de cancer, tendo impacto direto
na personalizacao dos tratamentos. Como observam (PEZzOTTI, 2022), “a multibmica per-
mite uma caracterizagdo mais precisa das células tumorais e facilita o desenvolvimento de
estratégias terapéuticas que atacam vulnerabilidades especificas de cada tipo de tumor”
(PEZZOTTI, 2022). Esses avangos sdo fundamentais para o desenvolvimento da medicina
de precisao, que visa individualizar o tratamento oncolégico com base nas caracteristicas
biolégicas e moleculares de cada paciente.

Em suma, a multibmica representa uma abordagem integrativa e essencial para a biolo-
gia moderna, viabilizando a analise conjunta de diferentes camadas de dados moleculares
e promovendo uma compreensao mais profunda e sistémica de processos complexos,
como o envelhecimento celular e a patogénese do cancer. Esses estudos, que evoluem
rapidamente com o apoio de novas tecnologias e métodos computacionais, tornam-se cen-
trais para a medicina personalizada e para estratégias terapéuticas cada vez mais eficazes

e direcionadas.
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2.5.2 Compreendendo o genoma como codigo digital

Podemos pensar no genoma como um vasto “codigo digital” constituido por quatro le-
tras — as bases nitrogenadas, timina (T) citosina (C), guanina (G) e adenina (A) que, ao
longo de bilhdes de pares, codificam todas as informagdes necessarias para o funciona-
mento celular e o desenvolvimento de um organismo. Essa sequéncia de bases é equiva-
lente a linguagem digital binéria, mas em vez de zeros e uns, opera em quatro nucleotideos
que se combinam para formar genes, as “instru¢cdes” basicas para as fungdes celulares.
Esse cddigo é composto de DNA e € o ponto de partida da biologia molecular, seu conjunto
é o genoma. Nas células humanas ha dois genomas, o nuclear e o mitocondrial, organela
produtora de energia aerdbica que tem seu préprio DNA independente do nuclear. Quando
o termo genoma humano é referido geralmente se refere ao genoma nuclear, caso se faca
referéncia ao genoma mitocondrial se fara mencao especifica.

Em cada gene humano (como em todos os eucariontes) ha regides chamadas exons
e outras chamdas introns. Os exons sao por definicdo participardo da codificagcdo das
proteinas, os introns ndo. Os introns tem muitas vezes fungbes regulatérias ainda pouco
compreendidas durante o splicing altenartivo, pois um mesmo gene pode levar a sintese
de duas proteinas diferentes dependendo de quais exons séo ligados ou alternativamente
cortados. Portanto o conjuto total de todos o material genético que orientara a sintese
proteica é chamado de exoma. O exoma tem grande importéncia prética por represen-
tar grande quantidade de informacao sobre um individuo a um custo de sequenciamento
muito inferior que o genoma e ainda assim representando o c6digo genético de todas as
proteinas de um individuo.

A primeira camada de ativagdo desse codigo ocorre através da transcricdo, um pro-
cesso onde um gene especifico no DNA € copiado em uma outras versdes da mesma
linguaguem quaternaria de nucleotideos, em diferentes tipos de RNA. O RNA mensageiro
(mRNA), uma cadeia simples de nucleotideos, leva uma copia do cédigo para fora do nu-
cleo da célula, direcionando o maquinario celular para produzir proteinas. Esse conjunto
completo dos varios tipos de RNAs expressos em uma célula ou tecido especifico é conhe-
cido o transcriptoma. O transcriptoma, portanto, representa a primeira camada dinamica
de expressao do cddigo genético, refletindo quais genes estdo sendo transcritos em deter-
minado momento e ambiente celular.

A etapa seguinte é a traducao, onde o cddigo do RNA é novamente traduzido para
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uma nova linguagem, essa com 20 aminoacidos. Por isso se chama traducao, pois ha a
passagem de uma lingua para outra. Cada conjunto de trés bases nitrogenadas no RNA
(um cdédon) corresponde a um aminoacido especifico. Essa tradugao resulta na produgao
de proteinas, que sao sequéncias de aminoacidos que desempenham fungdes estruturais,
regulatérias e cataliticas essenciais nas células. A sequéncia final de proteinas expressas
em uma célula ou tecido € chamada de proteoma e representa uma camada funcional do
cédigo, onde os processos celulares de fato ocorrem e sao controlados.

Além dessas camadas gendmica e transcriptémica, a epigenémica traz uma camada
de regulagao adicional ao cédigo. Ela ndo altera a sequéncia de DNA em si, mas envolve
mecanismos de modificacdo quimica, como a metilagdo do DNA e a modificacao de his-
tonas (proteinas ao redor das quais o0 DNA se enrola). Esses mecanismos regulam quais
genes serao transcritos, permitindo ou impedindo o acesso do maquinario de transcricao
aos genes. A epigendmica, assim, representa o conjunto das “instru¢cdes de uso” que mo-
dulam a ativacao e a inibicao de genes, adaptando a expressao genética ao ambiente e as
necessidades especificas da célula em diferentes condic¢oes.

Retornando a discussao sobre a multibmica e seu impacto na compreensao da pa-
togénese do cancer, esses avangos permitiram uma visao extraordinariamente detalhada
dos mecanismos moleculares subjacentes a transformacao celular e a evolugao tumoral.
A integracao multibmica — combinando dados gendémicos, transcriptomicos, protedmicos,
epigenémicos e metaboldbmicos — permite que cientistas acompanhem, em alta resolucgao,
como células normais podem se transformar em células malignas. Isso ocorre, em parte,
devido a instabilidade genémica, que gera um acumulo de mutacgdes e rearranjos cromos-
sOmicos, alterando o “cédigo” genético e levando a ativagdao de oncogenes e a inativagao
de genes supressores de tumor (PEzZzZOTTI, 2022)

O avango na tecnologia de multibmica possibilitou identificar assinaturas moleculares
especificas de diferentes tipos de cancer, facilitando o desenvolvimento de abordagens
terapéuticas personalizadas. Como destacam (LOPES, 2024), “a multibmica permitiu ma-
pear padrdées moleculares e metabdlicos que sao caracteristicos de subtipos tumorais,
promovendo um direcionamento mais preciso das terapias” (LOPES, 2024). Por exemplo,
no adenocarcinoma gastrico, a analise multibmica revelou diferentes perfis epigenémicos
que modulam a expressao génica de modo a favorecer a proliferacdo descontrolada e a
resisténcia ao tratamento, possibilitando a criagdo de terapias que atacam especificamente

essas alteracoes.
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Além disso, a integracao de dados multidmicos revelou o papel central da instabilidade
epigenémica e da remodelagao do transcriptoma na evolugdo de células cancerigenas,
tornando-se uma area essencial na pesquisa oncoldgica atual. Estudos recentes demons-
tram que alteracbes epigenéticas podem ocorrer precocemente em células pré-malignas,
direcionando-as para estados que favorecem a adaptacado clonal e a heterogeneidade ce-
lular — uma caracteristica fundamental do cancer avangado (DURAN, 2023). Isso implica
que terapias que visam reverter ou modular o epigenoma podem ser promissoras, inter-
rompendo o ciclo de progressao tumoral antes que ele atinja estagios mais agressivos.

Portanto, a multibmica, com sua capacidade de integrar diferentes camadas de dados
moleculares, esta revolucionando a biologia molecular e a medicina oncolégica, promo-
vendo uma compreensao mais profunda e detalhada dos processos que governam a pato-
génese do cancer. Ao estudar o genoma como um cédigo digital e suas tradugdes em ni-
veis de expressao génica, sintese proteica e regulagao epigenética, a pesquisa multibmica
nos fornece ferramentas fundamentais para mapear e interferir nos processos celulares
que levam a transformagao maligna, promovendo novas possibilidades para a medicina de

precisao.

2.5.3 Cancer e perda da estabilidade do codigo

A distingdo entre SNPs (Single Nucleotide Polymorphisms) e CNVs (Copy Number Va-
riations) é central para entender como 0 genoma se comporta e como as variagdes podem
afetar diretamente a estabilidade do material genético ao longo do tempo. Assim como em
um sistema de programacgao, onde uma linha de cédigo corrompida pode levar a falhas
no software, pequenas alteragdes no DNA — seja por SNPs ou CNVs — podem afetar o
funcionamento normal das células e, cumulativamente, contribuir para o envelhecimento
celular e a progressao de doencas.

Os SNPs sao variacdes em nucleotideos individuais ao longo do genoma. Eles repre-
sentam uma substituicdo pontual de uma “letra” do cddigo genético e sdo a forma mais
comum de variagao genética entre os individuos. Em termos de programacao, um SNP é
como a troca de um unico caractere em uma linha de cédigo. Se bem posicionado, esse
erro pode ser insignificante, alterando apenas um detalhe menor da funcao celular. Porém,
caso ocorra em uma regiao crucial — como num trecho que codifica uma proteina ou regula

um gene — pode comprometer a funcao, predispondo a célula a falhas e desregulacoes.
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Ja as CNVs (Variagdes no Numero de Cépias) sdo variagbes mais amplas que en-
volvem a duplicagdo ou a exclusao de grandes segmentos do DNA. Em analogia com a
programacao, uma CNV seria equivalente a copiar e colar um bloco de cédigo ou apagar
uma sec¢dao inteira de uma funcao. Esse tipo de alteracao afeta de forma mais profunda o
genoma, pois pode resultar no ganho ou na perda de varias “linhas” de codigo genético,
alterando a dosagem de genes e gerando um desequilibrio funcional na célula. Quando
essas variagoes incluem genes inteiros ou conjuntos de genes, o impacto é significativo:
genes duplicados podem levar a producao excessiva de proteinas, enquanto a auséncia
de genes pode comprometer fungdes essenciais.

A instabilidade cromossémica se manifesta a partir de uma sucessao de alteracoes
como SNPs e CNVs, contribuindo para a “corrupgcao” progressiva do cédigo genético de
uma célula. A medida que as células replicam seu DNA, a presenca dessas variagcdes pode
gerar erros de leitura ou até impedir que partes do cddigo sejam executadas corretamente,
aumentando a probabilidade de defeitos. Com o passar do tempo, especialmente em or-
ganismos que envelhecem, esses erros acumulam-se, promovendo a desregulacdo dos
sistemas de controle celular. Esse processo de “envelhecimento molecular” €, assim, um
reflexo de pequenas variagdes e grandes falhas estruturais que comprometem o funciona-
mento correto do genoma e levam a senescéncia celular — um estado em que as células
param de se dividir, mas permanecem metabolicamente ativas, muitas vezes contribuindo
para inflamagdes e outros disturbios celulares associados ao envelhecimento.

No contexto do céncer, a instabilidade cromoss6mica amplificada pela acumulagéao de
SNPs e CNV's gera uma diversidade clonal dentro dos tumores, fornecendo as células ma-
lignas uma “biblioteca” de variagées que podem ser exploradas para resistir a tratamentos
e prosperar em diferentes ambientes do organismo. Analogamente, seria como um cédigo
de software com trechos duplicados e corrompidos que, em vez de travar o sistema, o tor-
nam imprevisivel e resistente a tentativas de correcdo. Essa imprevisibilidade, alimentada
pela instabilidade cromossdmica, faz com que tumores se tornem geneticamente diversos
€ mais agressivos.

Estudos recentes tém o entendimento sobre como essas variagdes, particularmente as
CNVs, contribuem para o envelhecimento celular e a patogénese do cancer. Como obser-
vado por (DURAN, 2023), “o acumulo de CNVs ao longo do tempo desempenha um papel
chave na instabilidade gendmica associada ao envelhecimento celular e a transformagao

maligna” (DURAN, 2023). Esse processo de acumulo, uma vez iniciado, se torna dificil de
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reverter, pois as células perdem progressivamente a capacidade de corrigir suas préprias
falhas, levando a um ciclo de decadéncia funcional que se torna ainda mais pronunciado
em tecidos envelhecidos e tumores.

Assim, compreender a distincao entre SNPs e CNVs e seu papel na instabilidade cro-
mossdmica é crucial para desvendar os mecanismos que sustentam o envelhecimento
celular e a carcinogénese. A crescente capacidade da biologia molecular de identificar e
monitorar essas variagdes genémicas nos da uma visao detalhada dos “coédigos corrom-
pidos” que moldam tanto o envelhecimento como a progresséo do céncer, permitindo o
desenvolvimento de intervengbes mais precisas que busquem estabilizar ou corrigir essas

falhas antes que seus efeitos se tornem irreversiveis.

2.6 APRESENTACAO AO APRENDIZADO DE MAQUINA E DA VISAO COMPUTACIO-
NAL

2.6.1 Aprendizado de maquina

O aprendizado de maquina (do inglés machine learning) é uma area ciéncia da com-
putacdo que busca desenvolver sistemas capazes de aprender. Para compreender o que
se quer dizer com aprender nesse contexto primeiro € importante destacar que as pes-
soas apresentam um aprendizado muito singular. Os animais em geral podem aprender
por condicionamento e observagao, porém a capacidade de adaptacao a novas situagoes
ambientais é extremamente limitada, pois a maior parte dos comportamentos complexos
sdo instintivos. Um passaro jodo-de-barro Furnarius rufus demonstra a habilidade peculiar
de construir ninhos de barro. Seu ninho é construido com barro e palha e apresenta um
design altamente funcional e robusto. E, no entanto, uma expressao clara de instintos ge-
néticos que nao se alteram diante de mudancas no ambiente, esses passaros constroem
suas casas sempre iguais. A adaptagao de padrdes instintivos se da apenas pela selecao
da variabilidade aleatéria em cada geragdo. O organismos vivos tem padrées complexos
epigenéticos que podem afetar esse processo, mas para os objetivos da explicacdo do
aprendizado de maquina o leitor se beneficiara desse exemplo do jodo-de-barro.

A inteligéncia humana distingue-se pela sua complexidade cognitiva, social e cultural,
que supera amplamente as habilidades observadas em outras espécies. Enquanto os ani-

mais adaptam seus comportamentos principalmente com base em instintos e experiéncias



48

acumuladas, os seres humanos possuem a capacidade Unica de transcender essas limi-
tacoes ao criar ferramentas e sistemas que ampliam suas possibilidades de adaptagéo.
Nesse contexto, 0 aprendizado de maquina emerge como uma extensao dessa habilidade
exclusivamente humana, concebido para replicar, de forma controlada, a capacidade de
aprender, formular abstragcées e modificar estratégias diante de novas situagdes.

Inspirado nos processos cognitivos humanos, o aprendizado de maquina busca repro-
duzir, a capacidade de lidar com incertezas e adaptar-se a cenarios diversos. A inteligéncia
de maquina é definida pela habilidade de processar dados e utiliza-los para tomar decisdes
informadas, algo que se manifesta na andlise de conjuntos de dados, na identificagdo de
padrbées subjacentes e na geracao de previsdes ou classificagdes com base nesses pa-
drdes. A partir dessas analises, as maquinas aplicam modelos para determinar a melhor
acao em situagdes variadas, adaptando-se as circunstancias.

Além disso, o aprendizado de maquina simula aspectos do raciocinio humano, como
a identificacdo de padrées complexos em dados visuais, sonoros ou textuais, essenciais
para tarefas como reconhecimento de voz ou imagens. Também inclui a capacidade de
resolver problemas e planejar agées por meio de raciocinio l6gico estruturado em regras
ou informagdes disponiveis. Outro componente importante é a habilidade de lidar com
incertezas, avaliando probabilidades e tomando decisdes em cenarios onde os dados sao
incompletos ou ambiguos. Essas caracteristicas colocam a inteligéncia de maquina como
uma extensao adaptativa da cognicdo humana, ampliando as capacidades de analise e
tomada de decisdo em contextos cada vez mais diversos e desafiadores.

Em vez de seguir regras pré-definidas, esses sistemas utilizam dados para identificar
padroes, fazer previsdes e tomar decisdées. Ao contrario dos métodos tradicionais de pro-
gramagcao, onde um programador fornece instru¢des detalhadas para cada tarefa, o apren-
dizado de maquina permite que o sistema descubra automaticamente a solucao. Isso é
feito treinando um modelo com um grande volume de dados relevantes.

Os dados sao o nucleo do aprendizado de maquina. Eles podem ser estruturados,
como tabelas de informag¢des numéricas e categoéricas, ou nao estruturados, como ima-
gens. Antes de serem utilizados, os dados passam por etapas de pré-processamento, trei-
namento e avaliagcdo. As técnicas de aprendizado podem ser classificadas em supervisio-
nadas, nao-supervisionadas e por reforco, diferenciando-se pela forma como os dados séo
apresentados ao modelo. Esses tipos de aprendizados serdo apresentados adiante.

Do ponto de vista técnico, o aprendizado de maquina baseia-se na construcao de mo-
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delos matematicos que processam dados para realizar previsées ou tomar decisdes. Esses
modelos utilizam métodos estatisticos e computacionais para identificar padrées nos da-
dos e generalizar esses padrdes para novos exemplos. O objetivo € minimizar o erro, geral-
mente representado por uma funcao de perda, usada para quantificar a discrepancia entre
as previsodes feitas por um modelo e os valores reais observados nos dados. Ajustando os
parametros ou pesos do modelo durante o treinamento.

Um aspecto técnico importante € a validagdo do modelo. Para garantir que ele funcione
bem em novos dados, divide-se o conjunto de dados em partes, como treino, validagao e
teste. Ou seja, uma parte dos dados € salva apenas para o teste final. Outra parte é usada
para validar os diferentes parametros de treinamento, como um teste intermediario. E outra
parte é utilizada no treinamento. Isso é fundamental para evitar o problema do overfitting,
que acontece quando o modelo tem boa acuracia nos dados de treino, mas nao generaliza
bem para novos exemplos, ou seja a acuracia cai quando o modelo é testado com novos
dados. Assim, quando se refere a acuracia de um modelo de aprendizado de maquina se
refere a sua acuracia em dados teste, que ndo devem ter feito parte dos dados usados
para o treinamento. Em outras palavras, dado novos para o modelo.

Todos com formacéo cientifica tem conhecimento da estatistica analitica, muitos me-
nos conhecida € o aprendizado de maquina. Ambas compartilham os algoritimos mate-
maticos e buscam interpretar dados e produzir insights, mas diferem profundamente em
seus enfoques e aplicagdes. A estatistica analitica concentra-se em compreender relagbes
entre variaveis, frequentemente buscando identificar associagées ou inferir causalidades.
Esse ramo da estatistica utiliza métodos como regressoes, testes de hipoteses e anélise
de variancia para explicar fenémenos observados. A énfase esta em interpretar os dados
disponiveis.

O aprendizado de maquina, por sua vez, adota algoritmos frequentemente originados
da estatistica analitica, como regressdes e arvores de decisdo, mas os utiliza de forma
inovadora, com foco no aprendizado continuo e no poder preditivo. Em vez de se limitar a
analise estatica de dados, como na estatistica analitica, o aprendizado de maquina aplica
esses mesmos métodos para identificar padrdes em grandes volumes de dados e utiliza-los
para realizar previsdes com maior eficiéncia e adaptabilidade. Por exemplo, uma regres-
sao linear simples, amplamente usada na estatistica analitica para modelar relagdes entre
variaveis, pode ser incorporada em um sistema de aprendizado de maquina para ajustar

continuamente seus parametros a medida que novos dados sao recebidos, melhorando
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assim a precisao das previsoes.

Dessa forma, o aprendizado de maquina pode ser visto como uma extensao avangada
da estatistica analitica, que, ao incorporar a entrada continua de dados com o poder com-
putacional, apresenta maior flexibilidade e escalabilidade. Ao combinar o rigor analitico da
estatistica com a adaptabilidade computacional, o aprendizado de maquina transforma a

maneira como os dados sao usados.

2.6.1.1 Aprendizado supervisionado

No aprendizado supervisionado o modelo é treinado utilizando um conjunto de dados
rotulados, onde cada entrada é associada a uma saida esperada (/abel). Essa aborda-
gem visa construir uma relagdo mapeada entre as variaveis de entrada e as saidas, sendo
amplamente empregada em tarefas como classificacdo, onde se deseja prever categorias,
e regressao, onde o objetivo é prever valores continuos. O aprendizado supervisionado
pode ser compreendido por meio de uma analogia com o processo de ensino de uma cri-
anca a identificar objetos, como uma maca. Inicialmente, apresenta-se o objeto a criancga,
informando-lhe o nome correspondente. Apds repetidas exposicoes a exemplos variados,
ela aprende a associar caracteristicas como formato e cor ao nome previamente dado (/a-
bel). Esse processo permite que a crianga diferencie uma magéa de outros objetos, como
uma laranja. De maneira similar, no aprendizado supervisionado, 0 modelo computacio-
nal é treinado com dados rotulados, isto é, exemplos de entrada acompanhados de suas
respectivas saidas esperadas. Ao observar multiplos exemplos em diferentes contextos,
o modelo desenvolve a capacidade de realizar associagdes precisas entre entradas e /la-
bels, aprimorando sua habilidade de identificar padrdes e realizar predicdes em cenarios

futuros.

2.6.1.2 Aprendizado Ndo Supervisionado

O aprendizado nao supervisionado trabalha com dados nao rotulados, permitindo que o
modelo identifique padrdées ou estruturas ocultas nos dados sem a necessidade de instru-
coes explicitas. E frequentemente utilizado em tarefas como agrupamento (clustering), que
organiza dados em grupos com caracteristicas semelhantes, e reducado de dimensionali-

dade, onde informagdes redundantes séo eliminadas para simplificar a andlise. Esse tipo
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de aprendizado pode ser ilustrado pelo processo de uma crianga explorando objetos des-
conhecidos sem instrugdes explicitas. Imagine que uma crianga tenha acesso a diferentes
frutas, como macas e laranjas, mas sem que ninguém lhe diga os nhomes ou caracteristicas
especificas de cada uma. Por conta prépria, a criangca comeca a observar semelhancas e
diferengas entre os objetos, agrupando-os com base em caracteristicas como cor, formato
ou textura. Apesar de ndo saber os nomes das frutas, ela pode distinguir que algumas
tém casca lisa e alaranjada, enquanto outras sdo vermelhas e arredondadas. De forma
anéloga, no aprendizado nao supervisionado, 0 modelo ndo recebe dados rotulados, mas
busca identificar padrées ocultos e agrupar ou organizar as informagdes com base em
semelhancgas entre os dados, permitindo descobrir estruturas subjacentes sem a necessi-

dade de associacdes explicitas previamente fornecidas.

2.6.2 Floresta Aleatéria - Random Forest

O Random Forest foi apresentado por Leo Breiman no inicio dos anos 2000, especifi-
camente em 2001, como uma evolucao das arvores de decisdo e do método de bagging
Bootstrap Aggregating, que ele mesmo havia proposto anteriormente. A motivagao para
seu desenvolvimento surgiu das limitagdes inerentes as arvores de decisao individuais,
que, embora sejam modelos intuitivos e poderosos, sofrem com a tendéncia ao overfit-
ting. Essa limitagdo as tornava pouco confiaveis em cendrios de alta variabilidade ou com
conjuntos de dados ruidosos.

Breiman, com sua abordagem pragmatica e engenhosa, combinou a ideia de criar mul-
tiplas arvores de decisdo independentes a partir de amostras aleatérias dos dados e in-
troduziu um elemento de aleatoriedade adicional: a selecao aleatéria de subconjuntos de
caracteristicas para cada divisdo da arvore. Essa combinagéo estratégica transformou o
Random Forest em um modelo capaz de capturar padrdées robustos e generalizaveis, en-
quanto minimizava os riscos associados as peculiaridades dos dados de treinamento.

A éarvore de decisdo é uma das estruturas mais intuitivas e amplamente utilizadas no
aprendizado de maquina, possui uma histéria que remonta a diversos campos de estudo,
incluindo estatistica, ciéncia da computacao e psicologia. Essa metodologia foi desenvol-
vida a partir de conceitos teoricos e evoluiu ao longo do tempo para se tornar um dos
pilares da analise de dados, devido a sua simplicidade e capacidade de interpretagao.

Para compreender sua histéria, € necessario observar sua origem multidisciplinar e os
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avancos que transformaram essa técnica em uma ferramenta fundamental. Os primeiros
fundamentos podem ser encontrados em trabalhos de estatisticos como Francis Galton e
Ronald Fisher, que estudaram métodos de classificacao e analise de variancia. Esses es-
tudos estabeleceram bases matematicas para dividir dados em grupos com base em suas
caracteristicas.

O Random Forest ¢ um algoritmo usado no aprendizado de maquina para resolver
problemas de regresséo e classificagdo. Combina multiplas arvores de decisédo, cada uma
criada com diferentes subconjuntos dos dados e caracteristicas. No final, ele combina os
resultados dessas arvores para gerar uma resposta mais precisa. Uma arvore de decisao
€ um modelo simples que organiza as decisbées em forma de um diagrama ramificado.
Ela divide os dados em partes menores com base em perguntas "sim/nao", criando uma
hierarquia que leva a uma previsao final. Uma arvore de decisdo pode ser comparada a

um processo de tomada de deciséo légica.

Figura 5 — Esquemético de uma arvore de decisao
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A diferenga principal entre uma arvore de decisdo e uma floresta aleatoria € que uma
arvore de decisdo funciona como um unico caminho légico: ela comega calculando qual

caracteristica tabulada divide os casos em dois grupos com base no maior ganho de in-



53

formacéo e na redugéo da entropia dos dados (outras métricas também eventualmente
participam como o indice de pureza dos dados) € o chamado n6 raiz. A escolha do n6 raiz
€ baseada na avaliacdo de todas as caracteristicas disponiveis, buscando a divisdo que
mais reduz a incerteza ou aumenta a pureza das classes. Por exemplo, o né raiz pode ser
representado como uma pergunta "h& mutagao do P53?"dividindo os casos em sim ou néo.
Segue dividindo os dados em dois grupos. Essa abordagem considera todas as caracte-
risticas disponiveis nos dados e tenta encontrar as divisdes mais eficazes para classificar
cada caso.

Por outro lado, a floresta aleatéria ndo depende de apenas uma arvore. Em vez disso,
ela cria varias arvores de decisao, cada uma construida com partes diferentes dos dados
e com perguntas baseadas em subconjuntos aleatérios de caracteristicas. Por exemplo,
enquanto uma arvore pode comegar analisando "Ha mutacao do P537?", outra arvore pode
comecgar com "ha mutagao do MLH1?". Essa aleatoriedade garante que as arvores sejam
independentes e avaliem os dados sob diferentes perspectivas. No final, a floresta combina
as decisbes de todas as arvores o que torna o modelo mais robusto, confidvel e menos

propenso a erros que poderiam surgir de uma Unica arvore.

Figura 6 — Esquemético de uma Floresta Aleatéria
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O Random Forest é frequentemente classificado como um algoritimo classico porque
combina simplicidade e eficacia de forma exemplar. Ele ndo exige ajustes complexos e é
naturalmente robusto, funcionando bem em uma ampla variedade de problemas e tipos de

dados, especialmente estruturados. Além disso, sua capacidade de avaliar a importancia
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das caracteristicas o torna uma ferramenta valiosa em contextos onde a interpretabilidade
é essencial, como na medicina e na genética.

Apesar do advento de arquiteturas mais complexas, como redes neurais profundas, o
Random Forest continua sendo amplamente utilizado. Sua relevancia se da nao apenas por
sua eficiéncia computacional em comparagao com técnicas mais avangadas, mas também

porque fornece solugdes interpretaveis e confiaveis.

2.6.3 Redes Neurais profundas

A descoberta de que o neur6nio cerebral humano, assim como o de outros mamiferos,
opera com um mecanismo binario — disparar ou nao disparar, transmitir ou ndo transmitir
informagdo — foi um marco fundamental para a neurociéncia e para a inspiragcdo com-
putacional no desenvolvimento de redes neurais artificiais. Cada neurbnio, com base em
estimulos recebidos, se passara o impulso elétrico gerado pelas rapidas e ativas trocas de
potassio e sédio pela membrana plasmatica ou se o neur6nio nao disparara e portanto nao
passara a descarga elétrica a frente. Caso os neurdnios disparem aquela via é fortalecida
por neuroplaticidade, caso contrario é enfraquecida. Em suma o nurdénio humano € binério.
Na literatura cientifica, o termo correto para descrever o "disparo"de um neur6nio € "poten-
cial de acao"(action potential). Esse processo descreve a rapida mudancga de voltagem na
membrana celular de um neurénio, que ocorre quando ele transmite um sinal elétrico ao
longo de seu axénio. O potencial de acdo é um fenémeno "tudo ou nada"(all-or-none), o
que significa que o neurénio ou gera o sinal completamente ou ndo o faz, dependendo se
o limiar de excitacao foi alcancado.

O fenémeno do potencial de acao, amplamente estudado na neurofisiologia, € um pro-
cesso eletroquimico que define a base funcional da comunicagédo entre neurénios. Ele
ocorre de maneira "tudo ou nada", o que significa que um neurdnio ou dispara completa-
mente, transmitindo o sinal, ou nao dispara, caso o estimulo recebido ndo atinja o limiar
necessario. Esse fenbmeno inicia-se com a despolarizacao da membrana celular, quando
canais de sodio se abrem e permitem a entrada rapida desses ions, invertendo tempora-
riamente a polaridade da membrana. Apéds atingir o pico do potencial de acéo, os canais
de sodio se fecham e os canais de potassio se abrem, promovendo a saida desses ions e
restaurando a carga negativa interna no processo conhecido como repolarizagao. Eventu-

almente, ocorre uma hiperpolarizagéo transitoria, onde o potencial da membrana se torna
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ainda mais negativo antes de retornar ao estado de repouso, regulado pela bomba de
sodio-potassio. Esse ciclo assegura a propagacgao unidirecional do sinal ao longo do ax6-
nio e permite que o neurdnio retome seu estado inicial para disparar novamente quando
necessario. A simplicidade do mecanismo contrasta com a complexidade das redes neu-
rais formadas, demonstrando como interag¢des precisas entre bilhdes de neurénios podem
dar origem a processos cognitivos e comportamentais sofisticados.

Os potenciais graduados sao fenémenos regulatérios fundamentais da atividade neu-
ronal, representam pequenas alteragbes localizadas no potencial de membrana. Esses
resultam da interacdo com estimulos recebidos na superficie celular. Esses potenciais,
excitatérios ou inibitérios sdo acumulativos, permitindo ao neurdnio integrar informagdes
provenientes de multiplas sinapses antes de atingir o limiar necessario para disparar. Essa
modulagao sinaptica, essencial para a regulagao da sensibilidade ao estimulo, permite que
0 neurdnio ajuste sua resposta a contextos variados, refinando a transmissao da informa-
cao através da rede neural. A inibicdo, por sua vez, € um mecanismo crucial pelo qual
um neurdnio pode ser impedido de disparar, frequentemente devido a agéo de outros neu-
rénios que, através de sinapses inibitérias, dificultam a despolarizagao suficiente para o
inicio do potencial de agdo. Quando o neurénio efetivamente dispara.

Apesar da complexidade das interagdes que regulam a atividade neuronal a acao final
de cada neurbnio € binaria. Ele dispara ou nao dispara; responde ou permanece inerte;
um ou zero. Esse mecanismo "tudo ou nada", sustentado por uma intrincada teia de co-
nexdes e processos regulatérios, revela a beleza e a precisdo do sistema nervoso desde
reflexos basicos até os mais altos processos cognitivos. O cérebro humano contém aproxi-
madamente 100 bilhées de neurbnios em rede, mais outros 500 milhées espalhados pelo
sistema nervoso periférico, coracao e intestino. A rede € densamente conectada pois cada
neurdnio é capaz de estabelecer conexées com até 10 mil outros neurénios, formando um
emaranhado de sinapses cuja contagem total é estimada em 100 trilhdes de conexdes.
Essa vasta rede neural € o que permite a manifestacdo de propriedades cognitivas com-
plexas, como memdria, aprendizado e raciocinio.

No entanto, o que singulariza o cérebro humano em relagdo ao de outros mamiferos
€ a organizagao dessas conexdes, especialmente nas regides associadas a fungdes cog-
nitivas de alta ordem. O cortex pré-frontal conta com 20 bilhdes de neurbnios dedicados
densamente conectados e hierarquizados. Responsavel por fungdes como planejamento,

tomada de decisao, controle de impulsos e raciocinio abstrato, ele ocupa uma proporgao
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maior no cérebro humano do que em qualquer outra espécie. Esse cortex, ao integrar infor-
magoes provenientes de areas especializadas em percepgao sensorial, memoria e emo-
¢coes, permite associagdes de alta ordem que constituem a base da linguagem, criatividade
e pensamento critico.

O conhecimento neurofisiolégico dessa estrutura inspirou os cientistas da computagéao
a imaginar sistemas artificiais que pudessem imitar, ainda que de forma rudimentar, essa
habilidade de conectar, processar e aprender. A invenc¢ao do neurdnio artificial foi, portanto,
uma tentativa de capturar essa légica simples, mas potente, de redes interconectadas que
definem tanto o cérebro humano quanto as maquinas que aspiram imita-lo. A ideia de mo-
delar computacionalmente a capacidade adaptativa do cérebro humano foi, talvez, um dos
mais audaciosos empreendimentos intelectuais do século XX. Inspirados pela complexi-
dade da mente e pela elegancia das conexdes neurais, cientistas e pensadores deram
inicio a uma jornada que uniria biologia, matematica e computacdo em um esforgo para

criar maquinas que pudessem aprender.

2.6.3.1 A invengdo do neurénio

A invencdo do neurbnio artificial como parte de uma rede integrada, foi o marco inicial
de uma transformag¢do que moldaria o futuro da inteligéncia artificial. Foi na década de
1940 que Warren McCulloch, um neurofisiologista, e Walter Pitts, um Iégico matematico,
deram o primeiro passo significativo nessa dire¢cao. Em seu artigo seminal, eles propuse-
ram um modelo matematico que descrevia um neurdnio artificial como uma unidade binaria
capaz de processar informacoes e produzir uma saida com base em entradas recebidas.
Para McCulloch e Pitts, a chave estava na simplicidade: um neurénio artificial deveria se-
guir regras logicas elementares, mas, quando conectado a outros neurénios, poderia rea-
lizar calculos complexos, aproximando-se daquilo que entendemos como aprendizado ou
cognicao. (MCCULLOCH; PITTS, 1943)

Esse modelo matematico ndo apenas capturava a esséncia funcional de um neur6nio
biolégico, mas também introduzia a ideia de que redes de neurdnios poderiam ser projeta-
das para resolver problemas. Essa visao deu origem ao paradigma das redes neurais, onde
o comportamento emergente do sistema depende da interacdo de seus componentes. En-
tretanto, o impacto desse insight ndo se restringiu ao campo da neurociéncia computaci-

onal. Ele abriu portas para reflexdes filoséficas profundas sobre o que significa aprender,
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adaptar-se e tomar decisdes. A analogia com o cérebro humano, embora limitada, trouxe
consigo questdes sobre a natureza da inteligéncia: seria a inteligéncia uma propriedade
emergente de conexdes suficientemente complexas? Ou dependeria de algo mais funda-
mental, talvez inatingivel por maquinas?

A medida que essa ideia evoluia, novas abordagens comegaram a surgir, impulsiona-
das por avancos tedricos e tecnoldgicos. Em 1958, Frank Rosenblatt introduziu o percep-
tron, um modelo computacional inspirado no neurénio de McCulloch e Pitts, mas com a
capacidade adicional de "aprender"a partir de exemplos. Rosenblatt acreditava que, ao
ajustar os pesos das conexdes entre 0s neurbnios, uma maquina poderia melhorar seu de-
sempenho ao longo do tempo, reproduzindo, ainda que de forma rudimentar, a plasticidade
do cérebro humano. (ROSENBLATT, 1958)

Essa concepcao inicial foi recebida com entusiasmo, mas também com ceticismo. Du-
rante décadas, as redes neurais enfrentaram limitacbes matematicas e tecnoldgicas que
restringiam sua aplicabilidade. Simplesmente ainda ndo havia o poder computacional para
demonstrar seu potencial. Ainda assim, a ideia de que sistemas computacionais poderiam,
um dia, reproduzir aspectos da inteligéncia humana progrediu academicamente, com a ra-
pida introduc&o de praticamente todos 0s novos desenvolvimentos no campo da matema-
tica e com a evolucao tedrica das arquiteturas. O salto imenso salto recente na capacidade
das inteligéncias artificiais se deve muito mais ao aumento do poder computacional, pois

as bases cientifica ja foram ha décadas bem fudamentadas.

2.6.3.2 Apresentacao a Arquiteturas de redes neurais

A invengao do neurénio artificial € um avancgo tecnoldgico relativamente simples. Ima-
gine o leitor que faga uso de um dos muitos algoritimos da estatistica analitica para anali-
sar um conjunto de dados e resultar em uma resposta binaria. Agora imagine-se fazendo
0 mesmo para todos os algoritimos que conheca ou que tenham sido computacionalmente
implementados por colegas com mais habilidade matematica de maneira a que cada um
desses neurbnios esta em paralelo avaliando os dados e passando ou nao seu "disparo"a
frente. Agora imagine-se conectando uma série de neurdnios em camadas subsequen-
tes de dimengdes crescentes e ajustando camadas finais para reduzir as dimensdes das
camadas ao formato necessario a uma tarefa especifica.

Entre os neurdnios das diferentes camadas o leitor imagine-se atribuindo variaveis de
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importancia que atuam como os potenciais graduados da biologia, facilitando ou dificul-
tando o disparo daquela conexao essas variaveis sao os chamados pesos. Esses pesos
sdo0 um conceito muito importante a saber. Os pesos vao estabelecer a qual dos neuro-
nios da camada anterior deve ter a informacao mais valorizada. Os melhores pesos sao os
que valorizam a informagdo mais relevante para o sucesso. Imagine-se atribuindo pesos
aleatoriamente a esses muitos algoritimos em mudltiplas camadas e automatizando esse
processo de atribuicAo mais ou menos aleatéria de pesos um algoritimo de otimizacao.
Pronto, o leitor ja tem sua arquiteura estabelecida. Ainda mais, essa arquitetura com o

conjunto de pesos é um modelo a ser testado nos dados.

2.6.3.3 Adaptacéao e Selecao artificial

Na década de 1990, a ideia de otimizagao evolutiva comecou a ganhar popularidade na
inteligéncia artificial como uma abordagem para resolver problemas complexos por meio
de simulagdes inspiradas em processos bioldgicos. Esses métodos utilizam conceitos de-
rivados da evolucao natural, como selecao, variagdo e adaptagédo. O algoritmo genético,
uma das principais ferramentas desse periodo, simulava a evolu¢ao de populagdes de "or-
ganismos digitais"— que na verdade s&do modelos (arquiteruras com conjuntos de pesos)
representando possiveis solugdes para um problema. Cada organismo, ou modelo, é ava-
liado com base em sua capacidade de executar uma tarefa, como a maximizacdo de uma
funcao matematica ou a resolugao de um problema especifico em um ambiente simulado.

Apds cada iteragao, os melhores modelos sdo selecionados, suas caracteristicas sao
reporduzidas ligeiramente alteradas — em um processo analogo a recombinacao gené-
tica, é testada. Assim subsequentemente por multiplas geracdes de modelos. Esse € o
processo de treinamento é linhas gerais o processo de treinamento nos dados. Cada uma
das caracteristicas € um parametro que pode ser alterado pelo cientista de dados, como o
namero de interagdes ( geracdes) qual o grau de variabilidade dos descendentes, quanto
maior o salto mais rapido o treino € menos computacionalemnte custoso, porém o risco de
alcangar um pico intermédiario de sucesso aumenta.

Essa abordagem, embora rudimentar comparada aos padrdes atuais, permitiu gran-
des avancos na época. No contexto das tecnologias disponiveis na década de 1990, o
nuamero de geragdes que podia ser simulado dependia da capacidade de processamento

dos computadores, que era significativamente limitada. Um experimento tipico envolvendo
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otimizac&o evolutiva poderia levar dias ou semanas para treinar algumas centenas de gera-
¢oes, dependendo da complexidade do problema e do tamanho da populagédo de modelos
digitais. Em termos de redes neurais, os modelos da época eram relativamente simples,
com apenas algumas centenas ou milhares de parametros — valores ajustaveis que deter-
minam o comportamento do modelo. Essa simplicidade era uma consequéncia direta das
limitagbes computacionais e da disponibilidade de dados, que restringiam tanto a profun-
didade quanto a largura das redes.

Avancgando para 2023, o cenario transformou-se do ponto de vista de aumento geomeé-
trico de poder computacional, as arquiteturas possuem bilhées de peso. Esses modelos
nao apenas superam em muito as capacidades das redes neurais dos anos 1990, mas
também sao treinados em escalas de dados e tempos de computagdo que seriam impen-
saveis naquela época.

Além disso, as abordagens atuais frequentemente utilizam treinamento competitivo en-
tre modelos, conhecido como aprendizado adversarial ou aprendizado por competigéo.
Nesse paradigma, dois ou mais modelos sao treinados simultaneamente, competindo en-
tre si para aprimorar seu desempenho. Um exemplo classico sao as Generative Adversarial
Networks (GANs), onde um modelo gerador tenta criar dados convincentes enquanto outro
modelo discriminador tenta identificar falhas nos dados gerados. Esse tipo de abordagem
acelera o aprendizado, a0 mesmo tempo em que aumenta a robustez do modelo resultante.

Portanto, a metafora da otimizagcao evolutiva, na qual cada geragao de modelos € apri-
morada com base nos melhores desempenhos, permanece relevante para entender o de-
senvolvimento atual da inteligéncia artificial. O que comegou como um processo lento e
limitado por hardware modesto transformou-se em uma pratica altamente sofisticada, que
utiliza recursos computacionais massivos para gerar modelos capazes de resolver proble-

mas com niveis de complexidade impossiveis ha poucos anos.

2.6.3.4 Breve historico das arquiteturas e a introdu¢do das camadas profundas

A primeira aruitetura com diversas aplicagdes praticas hoje é a perceptron. O percep-
tron pode ser entendido como um algoritmo que recebe vérias entradas e retorna uma
saida binaria (0 ou 1). Apesar do entusiasmo inicial, a falta de poder computacional e de
dados limitou o progresso. Somente na década de 1980, com a introdugao do algoritmo de

retro propagacgao (backpropagation), foi possivel o treinamento de redes neurais multica-
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madas, vario perceptrons aninhados em camadas. Esse avango permitiu a modelagem de
problemas mais complexos ao mesmo tempo que métodos estatisticos, como maquinas
de vetor de suporte (SVMs) (VAPNIK, 2013) e arvores de decisdo (BREIMAN et al., 1984),
comecaram a ser amplamente utilizados em tarefas de classificagdo, como classificar e-
mails como span ou néo, e regressao, estimar o prego de uma casa com base em suas
caracteristicas.

Na década de 2000, dois fatores principais impulsionaram o aprendizado de maquina
para o mainstream: a explosao de dados digitais, impulsionada pela internet e redes so-
ciais, e a disponibilidade de maior poder computacional, principalmente por meio de uni-
dades de processamento grafico (GPUs). Esses avancgos tornaram viavel a aplicacao de
algoritmos mais sofisticados em problemas reais, como traducao de idiomas, reconheci-
mento de fala e analise de imagens.

O termo “profundo” no contexto da ciéncia de dados se refere as camadas das arqui-
teturas das redes neurais cujos padroes, ou “pesos”, descobertos durante o treinamento
nos datasets, nao sao diretamente visiveis ou compreensiveis para o programador. Esses
padroes emergem da interacao entre os dados e o0 modelo, e ndo de regras explicitas pro-
gramadas. Aqui, utiliza-se o termo “fenétipo profundo” para designar esses padrdes iden-
tificados pela rede e refletem caracteristicas complexas que nao sao evidentes a primeira
vista.

As redes neurais profundas, ou Deep Neural Networks (DNNs), sdo um tipo avangado
de modelo computacional inspirado no funcionamento do cérebro humano. Elas séo for-
madas por muitas camadas de unidades computacionais chamadas “neurénios artificiais”.
Cada camada processa as informagdes recebidas, simplificando ou combinando padrées,
até chegar a um resultado, como reconhecer uma imagem ou prever uma tendéncia. O
“profundo” no nome refere-se a grande quantidade de camadas que essas redes possuem.

Um exemplo simples ajuda a entender: imagine ensinar uma crianga a reconhecer fotos
de caes. Primeiramente, ela aprende caracteristicas basicas, como o formato geral do
corpo ou o focinho. Depois, comecga a reconhecer detalhes, como o pelo ou as orelhas.
Da mesma forma, nas redes profundas, as camadas iniciais identificam padrbes simples,
como linhas e formas, enquanto as camadas mais profundas combinam esses padrbes
para formar algo mais complexo, como a imagem de um c&o.

Essas redes sdo extremamente Uteis em situacées onde os dados sdo muito ricos ou

dificeis de interpretar, como fotos, sons ou grandes textos. Por exemplo, em sistemas que
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analisam exames médicos, as redes neurais profundas conseguem identificar sinais de
doencas, como tumores, que podem ser dificeis de perceber até mesmo para especialistas.

Para que uma rede neural profunda funcione, é necessario “treina-la”. Isso envolve
mostrar muitos exemplos para o0 modelo e permitir que ele ajuste seus parametros, chama-
dos de pesos, para que as respostas sejam cada vez mais precisas. Um processo chamado
retropropagacao € usado para corrigir os erros cometidos pela rede durante o treinamento,
ajustando os pesos das conexdes entre 0s neurdnios.

Um dos maiores desafios das redes neurais profundas € que elas precisam de muitos
dados e recursos computacionais para funcionar bem. Quanto mais camadas uma rede
possui, mais dados sdo necessarios para ensinar a maquina de forma eficiente. Além disso,
se 0 modelo for muito complexo e os dados forem insuficientes, ele pode “memorizar”
os exemplos do treinamento sem aprender algo Uutil para novos casos. Esse problema é
conhecido como overfitting.

Para evitar o overfitting, diversas técnicas sao aplicadas. Uma delas é aumentar os
dados disponiveis, o que pode ser feito gerando variagdes dos exemplos, como rotacionar
imagens ou alterar ligeiramente suas cores. Outra abordagem é chamada de dropout, onde
alguns neurénios sao temporariamente desativados durante o treinamento, forcando a rede
a generalizar melhor.

Apesar de seu enorme potencial, as redes neurais profundas também tém limitages.
Uma delas é que as decisbes tomadas por esses modelos nem sempre sdo faceis de
explicar, ja que os padrdes aprendidos estédo “escondidos” nas camadas internas. Isso cria
um problema chamado de “caixa-preta”, onde os resultados sdo confiaveis, mas 0s passos
para chegar até eles podem ser dificeis de entender.

Em resumo, redes neurais profundas sao ferramentas revolucionarias que permitem
as maquinas realizar tarefas complexas, como reconhecer imagens, traduzir idiomas e
até diagnosticar doencgas. Elas funcionam aprendendo padrdes em grandes volumes de
dados, mas exigem cuidado no treinamento e na interpretacao de seus resultados. Mesmo
para quem ndo € da &rea, é importante entender seu funcionamento basico, pois essas

tecnologias estdo cada vez mais presentes em nossa sociedade.
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2.6.4 Visao Computacional

As Redes Neurais Convolucionais (Convolutional Neural Networks — CNNs) sdo uma
classe especializada de algoritmos de aprendizado profundo amplamente aplicadas em
tarefas de classificacdo de imagens, reconhecimento de objetos e outras areas de visao
computacional.

O termo "convolucional”", empregado em redes neurais convolucionais (CNNs), refere-
se a operacao matematica de convolugao. Isso € o nucleo funcional da extracao de carac-
terisitcas das redes neurais convolucionais (CNNs). Essa operagdo é amplamente utilizada
para processar imagens, e tem como objetivo extrair caracteristicas relevantes, como bor-
das, texturas ou padroes.

E inspirado no funcionamento do cértex visual primario dos mamiferos, responsavel
pelo processamento inicial de estimulos visuais. Neurdnios especializados no cértex visual
atuam de forma hierarquica, respondendo a padrdes simples, como bordas e texturas, e,
em seguida, combinando essas informacdes para interpretar formas mais complexas. Esse
modelo de processamento bioldgico influenciou diretamente o design das CNNss.

Nas redes convolucionais, a operac¢ao de convolugao simula esse mecanismo bioldgico
por meio da aplicacao de filtros (ou kernels) sobre diferentes regidées da imagem. Cada
filtro, ao sobrepor-se a pequenas areas do dado visual é capaz de identificar caracteristicas
locais como bordas ou padrdes texturais. Essa abordagem reflete a maneira como o cortex
visual humano processa informagdes visuais, em que regides especificas do campo visual
sao interpretadas de forma segmentada e integrada.

Além disso, as CNNs utilizam uma hierarquia de camadas convolucionais, onde as pri-
meiras camadas extraem caracteristicas mais simples, enquanto as camadas posteriores
combinam essas informagdes em representacdes mais abstratas e complexas, chamadas
de camadas profundas. Processam informacdes mais amplas e complexas de alta ordem.

Esse processo assemelha-se a organizagao funcional do cértex visual, onde informa-
cOes simples se integram progressivamente em niveis mais altos de processamento. Essa
abordagem nao apenas reforca o vinculo entre sistemas biol6gicos e computacionais, mas
também demonstra como principios da neurociéncia podem inspirar avangos na inteligén-
cia artificial

As CNNs se destacam por sua capacidade de processar dados com estrutura de grade,

como imagens, de forma escalavel e eficiente (GOODFELLOW; BENGIO; COURVILLE, 2016). O
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funcionamento das CNNs baseia-se em uma arquitetura composta por camadas interliga-
das, onde cada né (ou neurénio) realiza calculos com base em pesos e limites pré-definidos
Figura 7. Quando a saida de um n6 excede um valor de limiar especificado, 0 n6 é ati-
vado e os dados sdo transmitidos para a camada seguinte da rede. Caso contrario, o n6
permanece inativo, e nenhum dado é propagado. Essa caracteristica permite que a rede
selecione automaticamente os padrdes mais relevantes, reduzindo o ruido desnecessario

durante o aprendizado. As CNNs sao estruturadas em blocos fundamentais:

« Camada Convolucional: E a camada inicial de uma CNN e responsavel pela extra-
¢ao de caracteristicas locais da entrada. Essa camada utiliza filtros (ou kernels) para
realizar operacdes de convolugdo sobre a imagem, capturando elementos basicos,
como bordas, texturas e cores. A operagao convolucional reduz a complexidade do
modelo ao focar em regides especificas da entrada, mantendo as informagdes espa-

ciais relevantes.

» Camada de Pooling: Essa camada € projetada para reduzir a dimensionalidade dos
dados e consolidar caracteristicas importantes, diminuindo o nimero de parametros
do modelo e mitigando o risco de overfitting.Os tipos mais comuns de pooling incluem
max pooling, que seleciona o valor maximo em uma regido, e average pooling, que

calcula a média dos valores em uma regiao.

« Camada Totalmente Conectada (Fully Connected — FC): E a camada final da CNN,
onde todos os neurénios estdo conectados entre si. Essa camada combina as carac-
teristicas aprendidas nas etapas anteriores para realizar a classificagao ou predigao.
O objetivo é integrar as informagdes extraidas em um vetor de saida correspondente

as categorias ou valores previstos.

A medida que os dados percorrem essas camadas, a complexidade da CNN aumenta
progressivamente. As camadas iniciais identificam caracteristicas simples, como bordas
ou padrdes de cores. Em camadas intermediarias e finais, os padrdes basicos sdo com-
binados para identificar formas maiores e detalhes mais especificos do objeto. Por fim, na
camada totalmente conectada, a CNN reconhece o objeto completo, atribuindo-o a uma
classe ou valor numérico especifico. Esse design hierarquico permite que as CNNs se-

jam extremamente eficazes em tarefas como reconhecimento facial, andlise de imagens
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Figura 7 — Arquitetura de uma CNN basica
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Fonte: extraida do artigo SENA; ROCHA (2021)

médicas e identificacdo de objetos em videos, consolidando seu papel essencial na viséao

computacional (KRIZHEVSKY; SUTSKEVER; HINTON, 2012).
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2.7 COMITES MULTIMODAIS

Os comités (Ensemble) multimodais representam uma classe de modelos de apren-
dizado profundo capazes de integrar e processar diferentes tipos de dados, ou “modali-
dades”, simultaneamente. Essas modalidades podem incluir imagens e dados tabulares.
A capacidade de lidar com entradas de diferentes formatos torna essas redes particu-
larmente Uteis em problemas complexos, onde a informacgéao relevante é frequentemente
heterogénea (BALTRUSAITIS; AHUJA; MORENCY, 2018).

O objetivo das redes multimodais é explorar complementaridades entre diferentes tipos
de dados para melhorar a preciséo e a robustez das predigdes. O termo para a interacdo
de duas ou mais redes é "concatenacgao”. Por exemplo, no diagnéstico médico, imagens de
exames (como imagens histopatolégicas) podem ser concatenadas com dados gendémicos
para fornecer uma analise mais abrangente. No caso dos Ensemble essa concatenacao é
feita por votos de modelos especialistas. O leitor pode imaginar um comité de médicos es-
pecialistas com diferentes experiéncias e/ou diferentes focos em suas abordagens. Dai ao
final do comité cada especialista vota no diagndstico em cada caso e declara a sua confi-
anca no seu voto, como uma probabilidade. Assim um especialista em histopatologia pode
votar que um dado caso é diagndéstico A e declarar 70% de confianga, outro especialista
também em histopatologia pode votar no mesmo caso pelo diagnéstico B porém declarar
apenas 60% de confianca; outro especialista, esse em genética, ao examinar um painel de
genes pode votar no diagnoéstico A e declarar 70% de confianga e finalmente outro especi-
alista em genética pode votar no diagnéstico B e declarar 95% de confianga. No exemplo
simplificado pode-se notar que ha duas maneiras de computar os votos, levando em conta
a confianca de cada especialista, chamado votagao suave (soft voting, que nesse caso 0
resultado seria diagnéstico B ou sem levar em conta a confianga. chamado de voto duro
(hard voting.

Outra opgéao digna de nota € a rede multimodal. Ela difere de Ensemble por seu método
mais complexo de concatenacao que permite diversos vetores de informagéo serem leva-
dos em conta antes da camada final. A arquitetura de uma rede multimodal € geralmente

composta por trés componentes principais:

* Encoders especificos de modalidade: cada tipo de dado € processado inicialmente

por um modelo especializado, como redes neurais convolucionais (CNNs) para ima-
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gens, redes neurais recorrentes (RNNs) ou modelos baseados em transformers para
texto, e redes feedforward para dados tabulares. Esses encoders extraem caracte-

risticas especificas de cada modalidade.

» Fusdo multimodal: ap6s a extragao das caracteristicas de cada modalidade, os veto-
res resultantes sdo combinados em um espaco comum. A fusdo pode ser realizada
de varias formas, como concatenagéo, adicdo ou mecanismos mais sofisticados,
como atencao multimodal, que atribui pesos diferentes as modalidades com base

em sua relevancia para a tarefa.

« Camadas de decis&o: A etapa final utiliza as caracteristicas combinadas para realizar
a tarefa desejada, como classificacdo ou regressao. Essa etapa pode ser composta
por camadas totalmente conectadas (fully connected layers) ou outras arquiteturas

especificas, dependendo da natureza do problema.

O treinamento de redes multimodais apresenta desafios Unicos. Um dos mais signifi-
cativos é o alinhamento entre modalidades, ja que diferentes tipos de dados podem ter
escalas, dimensdes e distribui¢cdes distintas. Além disso, a auséncia de informagbes com-
pletas em todas as modalidades para alguns exemplos (dados faltantes) exige abordagens
robustas, como a utilizagao de técnicas de imputacao ou redes especificas para lidar com
entradas incompletas. Assim, o Ensemble Multimodal é uma abordagem mais simples de
implementar e com mais explicabilidade final dos modelos j& que os votos dos modelos
especilista sdo conhecidos e podem ser mais facilmente avaliados.

As vantagens principais dos Ensembles e redes multimodais € a capacidade de superar
limitagbes de dados individuais. Por exemplo, em tarefas onde informagdes textuais podem
ser ambiguas, as imagens associadas podem fornecer detalhes contextuais essenciais.
Da mesma forma, modalidades redundantes podem atuar como uma verificacdo cruzada,

aumentando a confiabilidade do sistema.

2.8 CLASSIFICACAO MOLECULAR DO ADENOCARCINOMA GASTRICO

A classificacdo molecular do cancer gastrico representa um avancgo significativo na
compreensado da heterogeneidade dessas neoplasias, permitindo uma estratificacao mais

precisa dos pacientes e, com isso, abrir caminhos para futuros desenvolvimentos de mais
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precisos progndsticos e terapias. Em outras palavras, trata-se de um sistema que vai além
das caracteristicas histomorfolégicas, incorpora perfis genémicos e epigendmicos para
identificar subtipos distintos, o que € particularmente Gtil em pesquisas de genética e bi-
ologia molecular. Identificada no estudo do The Cancer Genome Atlas (TCGA) de 2014
(Cancer Genome Atlas Research Network, 2014).

A classificacao molecular divide o adenocarcinoma gastrico com base nas caracteristi-
cas subjacentes dos processos moleculares em atuacado na génese do tumor. Sao quatro
0s subtipos principais identificados: positivo para Epstein-Barr virus (EBV), instavel em mi-
crossatélites (MSI), genomicamente estavel (GS) e com instabilidade cromossdmica (CIN)
(Cancer Genome Atlas Research Network, 2014).

Essa classificacao surgiu da analise computacional nao-supervisionada de dados mul-
tibmicos, incluindo sequenciamento de exoma, analise de cépias somaticas, metilagado de
DNA, expressdo de mRNA, miRNA e proteinas, aplicada a 295 amostras de adenocar-
cinoma gastrico primario no estudo TCGA-STAD (stomach adenocarcinoma). Em termos
praticos, ela facilita a identificagdo de alvos terapéuticos especificos, otimizando o desen-
volvimento de modelos computacionais em bioinformatica para predicao de resposta a

tratamentos.

2.8.1 Subtipo EBV

Os tumores positivos para EBV, representando cerca de 9% dos casos, forsm caracte-
rizados por alta carga viral do Epstein-Barr virus, mutacdes recorrentes em PIK3CA (80%
dos casos), hipermetilagdo extrema de DNA (EBV-CIMP) e amplificacbes em JAK2, PD-
L1 e PD-L2. Em outras palavras, esses tumores exibem um perfil imunogénico pronunci-
ado, com silenciamento epigenético de genes como CDKN2A, mas sem hipermetilagao de
MLH1, o que os diferencia dos subtipos MSI e sugere potencial para imunoterapias, como
inibidores de checkpoint imune (Cancer Genome Atlas Research Network, 2014). Clinicamente,

eles sdo mais comuns em homens e localizados no fundo ou corpo gastrico.

2.8.2 Subtipo MSI (Instabilidade Microssatélite)

Compreendendo 22% dos tumores, o subtipo MSI foi distinguido por altas taxas de

mutacgao (hipermutados), silenciamento de MLH1 via hipermetilagao e mutagdes em genes
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Figura 8 — Principais caracteristicas dos subtipos de cancer géstrico
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Fonte: extraida do artigo Cancer Genome Atlas Research Network (2014)

como KRAS, ARID1A e PIKBCA. Em outras palavras, essa instabilidade resulta em um
acumulo de erros no DNA, frequentemente associado a melhor prognéstico e resposta a
imunoterapias devido ao alto carga mutacional, que pode ser quantificada em ferramentas
bioinformaticas para estimar a neoantigenicidade (FUKAYAMA; RUGGE; WASHINGTON, 2019).

Esses tumores sdo diagnosticados em idades mais avancadas e em mulheres.

2.8.3 Subtipo GS (Genomicamente Estavel)

Representando 20% dos casos, os tumores GS foram associados ao tipo histologico
difuso (73%), descritos como asociados a mutagdes em RHOA ou fusdes envolvendo pro-
teinas ativadoras de GTPases da familia RHO, além de baixa aneuploidia. Em outras pala-
vras, essa estabilidade genémica reflete um nimero limitado de mutacdes, porém afetando
vias fundamentais de agregacao celular (como a da caderina). Sdo diagnosticados em pa-

ciente com menos idade.
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2.8.4 Subtipo CIN (Instabilidade Cromossémica)

O subtipo mais comum (50%), CIN foi caracterizado por aberra¢cdes cromossbémicas,
aneuploidia marcada, amplificagdes focais em receptores tirosina quinases (como EGFR,
HER2) e mutacdes em TP53. Em outras palavras, essa instabilidade leva a ganhos e per-
das cromossémicas extensas, associadas a tumores intestinais localizados na jungao gas-
troesofagica, com implicagdes para terapias direcionadas como inibidores de HER2 (Fu-

KAYAMA; RUGGE; WASHINGTON, 2019).

Tabela 6 — Subtipos Moleculares do Cancer Géstrico (TCGA 2014).

Subtipo AL Caracteristicas Moleculares Locallzag_ao Id?d_e
(%) . . Preferencial Média

Principais

EBV 9 Hipermetilagdo, mutagdes PIKBCA, Fundo/Corpo 65 anos
amplificagdes PD-L1/L2.

MSI 22 Hipermutagéo, silenciamento Corpo/Antrum 72 anos
MLH1, mutacées KRAS.

GS 20 Mutucdes RHOA, tipo difuso, baixa Difuso 59 anos
aneuploidia.

CIN 50 Aneuploidia, amplificagdes RTK, Juncédo GE 68 anos
mutagdes TP53.

Fonte: The Cancer Genome Atlas Research Network. (2014). Comprehensive molecular characterization of
gastric adenocarcinoma. Nature, 513, 202-209).

2.8.5 Reconhecimento na 52 edicao da OMS

A classificagdo da OMS 2019 (FUKAYAMA; RUGGE; WASHINGTON, 2019) apresenta um es-
forgo inicial para incorporar os achados moleculares do estudo TCGA 2014 (Cancer Genome
Atlas Research Network, 2014). A classificacdo molecular é citada no tépico progndéstico com
as seguintes palavras: "Perfil molecular: Os perfis moleculares recentemente identificados
nao estdo apenas envolvidos na carcinogénese gastrica, mas também podem ajudar a
identificar biomarcadores clinicamente relevantes e novos alvos terapéuticos potenciais no
futuro". Esse comentario é seguido da tabela ?? e ?? para ilustrar as associacdes entre 0s

tipos histopatoldgicos e os subtipos moleculares.
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Tabela 8 — Caracteristicas dos subtipos moleculares de carcinoma gastrico propostos pelo TCGA.

(PD-L1) e PDCD1LG2

(PD-L2)

Caracteristica EBV- MSI Genomica- Cromos-
positivo mente somicamente
estavel instavel
Frequéncia relativa 9% 22% 20% 50%
Histologia representativa Carcinoma Nenhum Tipo difuso* Tipo  intesti-
gastrico com nal*
estroma lin-
foide
llha (Metilacao) CIMP CIMP Raro Raro
MSI-alto (Metilagéo) Ausente Todos Ausente Ausente
CDKN2A (Metilacao) Todos Frequente Raro Raro
MLH1 (Metilag&o) Ausente Frequente Raro Raro
Aberragbes no numero de | Raro Raro Raro Frequente
copias
Mutacdes/alteracbes ge- | Raro Frequente Raro Frequente
némicas
TP53 Raro Presente Raro Frequente
CDH1 Ausente Raro Presente Raro
PIK3CA Frequente Presente Raro Raro
RHOA Raro Raro Presente Raro
Fusdo CLDN18-ARHGAP | Ausente Raro Presente Raro
ARID1A Frequente Presente Raro Raro
Amplificacdo de RTK Raro Raro Raro Frequente
Mutagéo de RTK Raro Frequente Raro Raro
Amplificacdo de CD274 | Frequente Raro Raro Raro

Fonte: The Cancer Genome Atlas Research Network. (2014). Comprehensive molecular characterization of
gastric adenocarcinoma. Nature, 513, 202—-209).

No entanto, embora essa iniciativa deva ser reconhecida como um passo positivo em

direcao a integracao de dados moleculares na rotina médica, a maneira como foi implemen-

tada peca por simplismo, pois as correlagdes propostas sao frequentemente genéricas e

nao capturam a complexidade da heterogeneidade tumoral observada no TCGA.

Por exemplo, o subtipo pouco coeso (incluindo células em anel de sinete) na OMS é

alinhado ao subtipo GS, enquanto o carcinoma, contudo, essa associacao € criticamente

limitada pela falta de marcadores moleculares especificos validados que permitam uma

predicao robusta no nivel individual do paciente. O estudo TCGA de 2014 (Figura 1) ilustra
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claramente a associagao entre subtipos moleculares e tipos histopatolégicos de Lauren,
revelando uma heterogeneidade evidente: embora o tipo difuso seja o0 mais frequente no
subtipo GS (73% dos casos), nem todo tumor difuso é GS, e nem todo GS ¢é difuso. Essa
sobreposicao incompleta se aplica igualmente a outras caracteristicas mencionadas, como
a localizagao anatémica ou o perfil mutacional, destacando que correlagdes simplistas po-
dem levar a classificagdes imprecisas e subestimar a variabilidade tumoral (Cancer Genome
Atlas Research Network, 2014). Assim, ha uma necessidade urgente de sistemas de predi¢ao
mais robustos, incorporando algoritmos de aprendizado de maquina para andlise integrada

de multiplas regras, a fim de refinar essas associagdes e melhorar a aplicabilidade clinica.

2.9 CARCINOGENESE DOS SUBTIPOS MOLECULARES DO ADENOCARCINOMA GAS-
TRICO

A carcinogénese gastrica é um processo multifatorial de transformacgéo de células epi-
teliais normais em neoplasias invasivas, impulsionado por uma cascata de alteragées am-
bientais, epigenéticas e genéticas que culminam em proliferagdo descontrolada, invasao
tecidual e metédstases. Em outras palavras, trata-se de uma progressao gradual onde fato-
res como infecgao por Helicobacter pylori, exposi¢cao a carcindgenos dietéticos e predispo-
sicoes genéticas interagem.

Os subtipos moleculares permitem uma compreensao mais individualizada da carcino-
génese. Posto que dois pacientes com diagnéstico de tumores tubulares que pertencam
a subtipos diferentes passaram por processos de carcinogénese subjacente muito diferen-

tes.

2.9.1 Carcinogénese no Subtipo EBV-Positivo

A carcinogénese nos tumores EBV-positivos inicia-se com a infec¢éo cronica pelo Epstein-
Barr virus, que integra seu genoma nas células epiteliais gastricas, desencadeando hiper-
metilagdo extrema de promotores de DNA (EBV-CIMP) e silenciamento de genes supres-
sores como CDKN2A (Cancer Genome Atlas Research Network, 2014). Em outras palavras, esse
processo viral promove uma reprogramacao epigenética que ativa vias oncogénicas, no-
tadamente PIBK/AKT via mutagdes recorrentes em PIK3CA (80% dos casos), e amplifica

genes imunomoduladores como PD-L1 e PD-L2, sugerindo um papel central da imunoeva-
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2.9.2 Carcinogénese no Subtipo MSI (Instavel em Microssatélites)

Nos tumores MSI, a carcinogénese decorre de defeitos no sistema de reparo de DNA
por desemparelhamento (MMR), frequentemente devido ao silenciamento epigenético de
MLH1, levando a uma alta taxa de mutagdes somaticas (hipermutagéo) (Cancer Genome
Atlas Research Network, 2014). Em outras palavras, essa instabilidade acumula erros genéti-
cos em genes como KRAS, ARID1A e PTEN, gerando um ambiente imunogénico rico em

neoantigenos, o que favorece a resposta a imunoterapias.

2.9.3 Carcinogénese no Subtipo GS (Genomicamente Estavel)

A carcinogénese no subtipo GS é impulsionada por mutagées em genes de adesao ce-
lular, como RHOA, ou fusbes envolvendo GTPases, resultando em uma morfologia pouco
coesa (Cancer Genome Atlas Research Network, 2014). Em outras palavras, essas alteragbes
comprometem a coesao celular, facilitando a invasao tecidual e metastase. Apesar da es-
tabilidade gendémica, a heterogeneidade observada no TCGA sugere que outros fatores
epigenéticos ou microambientais ainda precisam ser elucidados, demandando estudos in-

tegrados para capturar a complexidade desse subtipo.

2.9.4 Carcinogénese no Subtipo CIN (Instabilidade Cromossémica)

Nos tumores CIN, a carcinogénese € marcada por aberragdes cromossdmica, com
ganhos e perdas cromossdmicas, frequentemente associadas a mutagées em TP53 (FU-
KAYAMA; RUGGE; WASHINGTON, 2019). Em outras palavras, essa desregulagao mitética ace-
lera a progressao tumoral, tornando esses tumores candidatos a terapias direcionadas
como inibidores de HER2. A prevaléncia desse subtipo (50% dos casos) reforca a ne-
cessidade de ferramentas bioinforméticas avancadas para monitorar a evolugéo clonal,
especialmente em contextos de resisténcia terapéutica.

Nos canceres hematol6gicos, como leucemias e linfomas, sao frequentemente obser-
vadas alteragées cromossémicas especificas, como dele¢des e translocagdes, que es-

tdo associadas a subtipos particulares da doenga. Por exemplo, a transloca¢ao conhecida
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como cromossomo Filadélfia, é caracteristica da leucemia mieloide crbnica. Essas altera-
¢Oes servem como marcadores diagndsticos e podem orientar o tratamento.

Em contraste, os tumores sélidos, como o adenocarcinoma gastrico, geralmente exibem
uma ampla variedade de alteracées cromossdmicas (heterogeneidade), incluindo aneu-
ploidias e rearranjos complexos, sem padroes especificos que possam ser diretamente
associados a subtipos tumorais. Essa heterogeneidade torna o diagnéstico baseado em
alteracdées cromossbémicas especificas menos preciso em tumores sélidos. Além disso,
a INC em tumores solidos pode resultar em uma diversidade de alteragbes genémicas
que contribuem para a progressao tumoral, sem um padrdo uniforme. Portanto, enquanto
nos canceres hematoldgicos as alteragdes cromossémicas especificas desempenham um
papel crucial no diagndéstico e na classificagdo, nos tumores soélidos a diversidade de alte-
racoes gendmicas torna essa abordagem menos eficaz (RAJAGOPALAN et al., 2003; THOMP-

SON; BAKHOUM; COMPTON, 2010).

2.10 PAINEIS IMUNO-HISTOQUIMICOS E SONDAS GENOMICAS NA ESTRATEGIA DI-
AGNOSTICA DOS SUBTIPOS MOLECULARES

Um painel apenas utilizando imuno-histoquimica (IHQ) e hibridizagéo in situ foi pro-
posto para chegar aos subtipos moleculares na préatica médica. Enquanto o TCGA utilizou
6 plataformas moleculares incluindo sequenciamento do exoma e do transcriptoma, os au-
tores do painel propuseram uma maneira de classificar as amostras utilizando 10 recortes
histol6gicos, sendo um para sonda para EBV de hibridizagao in situ (ISH) e 9 para dife-
rentes anticorpos na IHQ (MLH1, PMS2, MSH2, MSH6, HER2, EGFR, MET, PTEN e P53)
(KIM et al., 2016). Em uma tese de doutorado um painel bem mais enxuto com 7 laminas
sendo ISIH para EBV e IHQ (MLH1, MSH2, MSH6, PMS2, E-CADERINA e P53)(RAMOS,
2019).

A principal critica a esses painéis € que os autores nao levaram em conta a heteroge-
neidade das categorias propostas no TCGA, eles apenas realizaram seu painel, mas nao
0 compararam com amostras nas quais foram realizados os sequenciamentos, partiram do
conhecimento da literatura em antigenos presentes nas anormalidades moleculares inferi-
das em outros tipos de cancer e os utilizaram. E, portanto, de grande interesse verificar a
correlagao entre esses marcadores e a classificacao realizada por multi-6micas no banco

de dados originais.
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No painel proposto por Ramos, o marcador P53 é de fato o unico direcionado especifi-
camente para o subtipo CIN, o que representa uma simplificag@o significativa em relacdo
ao painel de Kim. A escolha de P53 como marcador € baseada na sua frequente muta-
cao no subtipo CIN, refletindo a instabilidade gendémica caracteristica deste subtipo. No
entanto, utilizar apenas o P53 para identificar tumores CIN pode ser insuficiente para cap-
turar toda a complexidade molecular desse subtipo. A instabilidade cromossémica é um
fendmeno que envolve uma ampla gama de alteragcdes genéticas e epigenéticas, e focar
unicamente no P53 pode deixar de lado outras vias criticas que também contribuem para
o fendtipo CIN, como as amplificagbes de HER2, EGFR e MET observadas em outras
abordagens mais abrangentes, como a do TCGA.

A limitacdo de usar apenas P53 como marcador para CIN esta na sub-representacao
do espectro completo das alteragbes associadas ao subtipo, o que pode levar a uma sub-
diagnostico ou até a falta de identificacao de certos casos de CIN. Embora a simplificacao
do painel seja uma vantagem em termos de custo e acessibilidade, a falta de correlagao
direta com os achados multiémicos detalhados do TCGA compromete a precisao diagnds-
tica. Assim, enquanto o painel de Ramos oferece uma abordagem mais enxuta e pratica,
ele pode nao ser suficiente para capturar a heterogeneidade completa do subtipo CIN,
sugerindo a necessidade de integrar mais marcadores ou validar a eficacia de P53 em
conjunto com outras alteragées moleculares em amostras ja analisadas pelo TCGA.

Uma maneira relativamente simples de checar se as intuigdes dos autores dos pai-
néis estao corretas é verificar por métodos de bioinformatica se, nas amostras originais
do TCGA cujos dados de mutacdes soméaticas foram disponibilizados, a correlagdo com
os antigenos propostos. Seguindo esse raciocinio também verificar se ha casos que nao
apresentam esses antigenos e que outras maneiras haveria de identifica-los por IHQ, ou,
por outro lado, se todos os marcadores sao de fato propostos. Embora, por exemplo, no
subtipo instabilidade microssatélite (MSI), que foi verificada na amostra do TCGA pelo
grande aumento de mutacbes e por hipermetilagdo, com a mutagdo nos genes de re-
paro, verificada no painel por MLH1, MSH2, MSH6 e PMS2, no caso do cancer gastrico
essa associacao precisa ainda ser provada no caso especifico por ser concebivel que ou-
tros mecanismos estejam atuando. Essa verificagao da significancia entre os marcadores
imuno-histoquimicos e a mutagdo somatica necesséria a expressao do referido antigeno é

importante para estabelecer a sensibilidade e especificidade dos painéis.
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2.11 GENES ABORDADOS NA TESE

Na presente sessao sao citadas as associagdes conhecidas dos genes tratados na pre-
sente tese. Tanto os que compde os painéis imuno-histoquimicos propostos na literatura
como os identificados aqui por aprendizado de maquina e apresentados nos Capitulos. A
tabela 9 lista os genes citados em ordem alfabética servindo para consulta sobre associa-
¢cbes conhecidas com carcinogénese e disponibilidade de Anticorpos Ac para diagnéstico

imuno-histoquimico de variantes genéticas no gene em questao.

Tabela 9 — Resumo funcional dos genes abordados e sua relevancia

em carcinogénese.

Gene Tipo Funcio- Associacao com Carcinogénese Ac
nal Principal

ARID1A  Supressor Perda de funcdo em cancer gastrico, de ovario e Sim
Tumoral endométrio. Promove instabilidade epigenética e

progressao tumoral.

ATM Reparo de DNA Mutagdes aumentam a suscetibilidade a tumores Sim
(mama, gastrico). Sua perda favorece instabilidade

genbmica e metastase.

BHLHB9  Supressor Silenciamento associado a neoplasias colorretais, Raros

Tumoral  (Po- sugerindo que sua perda contribui para a progres-

tencial) sdo de tumores gastrointestinais.
BOC Sinalizacao Ce- Expressdo aberrante associada a meduloblasto- Raros
lular mas e sarcomas. Pode ativar a via oncogénica
Hedgehog.
CD14 Resposta Pode promover imunoescapismo ou inflamagdo Sim
Imune cronica que facilita a carcinogénese.

Continua na préxima pagina
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Tabela 9 — Resumo funcional dos genes abordados e sua relevancia

em carcinogénese. (continuagao)

Gene Tipo Funcio- Associacao com Carcinogénese Ac
nal Principal

CDH1 Supressor Tu- Perda de funcao facilita invasao e metastase. Mu- Sim
moral / Adesdo tagdes germinativas causam cancer gastrico difuso

hereditério.

CHD1 Remodelador Deleg¢des sao frequentes no cancer de prostata, Sim
de Cromatina associadas a agressividade tumoral e instabilidade

genbmica.

DOCK3  Motilidade Ce- Expressao aberrante em gliomas pode aumentara Sim
lular invasdo e motilidade tumoral.

EGFR Oncogene Mutacdes de ganho de funcao e amplificagdo im- Sim
pulsionam o crescimento de tumores de pulmao,
glioblastoma e outros.

FAS Apoptose Via frequentemente desativada em tumores séli- Sim
dos, contribuindo para o escape da morte celular
programada.

GGNBP2 Supressor Perda de expressdo observada em tumores testi- Raros
Tumoral  (Po- culares, sugerindo um papel na supressao tumoral.
tencial)

GLIS2 Fator de Trans- Perda de funcédo pode favorecer a progressdo de Raros
cricao tumores renais e outros carcinomas.

HERC2 E3 Ubiquitina Mutacdes germinativas associadas a predisposi- Sim
Ligase ¢ao a tumores, possivelmente pela modulacao da

fungéo do p53.

Continua na préxima pagina
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Tabela 9 — Resumo funcional dos genes abordados e sua relevancia

em carcinogénese. (continuagao)

Gene Tipo Funcio- Associacao com Carcinogénese Ac
nal Principal

HER2 Oncogene Amplificacdo e superexpressdo em cancer de Sim
mama e gastrico conferem crescimento agressivo
e sao alvos terapéuticos.

KDM2B  Oncogene (Epi- Superexpressdao em leucemias e carcinomas, re- Sim

genética) prime genes supressores de tumor e promove pro-
liferagao.

KMT2D Supressor Frequentemente mutado em linfomas e carcino- Sim
Tumoral (Epi- mas; a perda de fungéo facilita a transformacéo
geneética) maligna.

MEF2C Fator de Trans- Reordenamentos em leucemias promovem auto- Sim
cricao renovacdo. Em tumores sdélidos, pode contribuir

para angiogénese.

MET Oncogene Mutagdes ativadoras e amplificagdes sao drivers Sim
em carcinomas gastricos, renais e de pulméao, esti-
mulando invasao e metastase.

MLHA1 Reparo de DNA Mutagdes causam a Sindrome de Lynch. A perda Sim

(MMR) de funcéo leva a instabilidade de microssatélites
(MSI).

MSH2 Reparo de DNA Mutagdes causam a Sindrome de Lynch, levando Sim
(MMR) a instabilidade de microssatélites e acelerando a

evolucao tumoral.

MSH6 Reparo de DNA Mutagdes associadas a Sindrome de Lynch e a Sim

(MMR)

canceres de prostata e endométrio.

Continua na préxima pagina
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Tabela 9 — Resumo funcional dos genes abordados e sua relevancia

em carcinogénese. (continuagao)

Gene Tipo Funcio- Associacao com Carcinogénese Ac

nal Principal

MUC16 Biomarcador / Superexpresso em cancer de ovario, onde pode Sim
Mucina promover disseminagdo peritoneal e evasao

imune. Conhecido como CA125.

MUC6 Mucina Prote- Perda de expressao esta associada a progressdao Sim
tora para metaplasia intestinal, precursora do cancer
gastrico.
PIKBCA  Oncogene Mutagcdes de ganho de funcao sao drivers em car- Sim

cinomas de mama, célon e endométrio, ativando

vias de crescimento.

PMS2 Reparo de DNA Mutagdes causam uma forma da Sindrome de Sim
(MMR) Lynch. Sua perda contribui para a instabilidade de

microssatélites.

PRCC Fusdo Génica Translocagdes com o gene TFE3 produzem protei- Raros
Oncogénica nas de fusdo oncogénicas no carcinoma de células
renais.
PTEN Supressor Perda de fungao é comum em glioblastomas e can- Sim
Tumoral cer de préstata, resultando em ativagao da via pré-

sobrevivéncia PISK/AKT.

PTPN14  Supressor Perda de fungédo promove proliferagdo tumoral ao Sim

Tumoral  (Via desinibir o oncogene YAP.

Hippo)

Continua na préxima pagina
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Tabela 9 — Resumo funcional dos genes abordados e sua relevancia

em carcinogénese. (continuagao)

Gene Tipo Funcio- Associacao com Carcinogénese Ac
nal Principal
SDR9C7 Biomarcador Expressdo aumentada em carcinomas de cabega Raros
(Metabolismo) e pescoco, podendo atuar como biomarcador de
prognaéstico.
SEC31A Fusdo Génica Fusdes com o gene ALK geram um receptor cons- Nao
Oncogénica titutivamente ativo com potencial oncogénico.
SYNEH1 Estabilidade Dele¢des podem comprometer a integridade nu- Sim
Genbmica clear, favorecendo a instabilidade do genoma e a
progressao de carcinomas.
TP53 Supressor "Guardiao do Genoma". Mutado em >50% dos can- Sim
Tumoral ceres, abolindo a supressdo tumoral. Mutagbes
germinativas causam a Sindrome de Li-Fraumeni.
ZBTB41  Fator de Trans- Mutagdes identificadas em cancer gastrointestinal, Raros

cricao

sugerindo contribuicdo para a desregulacéo trans-

cricional.

MMR: Mismatch Repair (Reparo de Erros de Pareamento). A disponibilidade de anticorpos foi baseada nas

informagdes do texto de origem.

2.12 REDES NEURAIS CONVOLUCIONAIS NO DIAGNOSTICO HISTOPATOLOGICO
DO CANCER GASTRICO

Outra abordagem de aprimoramento do diagnéstico do cancer em bioinformatica é a In-

teligéncia Artificial 1A aplicada a problemas de visdo computacional VC como classificagdo

e reconhecimento de objetos em imagens histopatoldgicas digitalizadas.

A propria digitalizagdo de imagens de laminas inteiras (Whole Slide Imaging - WSI) é
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recente. O primeiro sistema de patologia digital aprovado para diagnéstico primario foi o
Philips IntelliSite Pathology Solution, aprovado pela FDA (Food and Drug Administration
dos EUA) em 2017 e publicado em 2018. Isso foi um marco histérico, permitindo 0 uso
de WSI para diagnésticos primarios em patologia cirdrgica, em vez de microscépios tra-
dicionais (EVANS et al., 2018). Embora a fotografia digital de campos especificos seja bem
mais antiga, contemporanea da prépria fotografia digital, ja que o microscépio 6ptico € es-
sencialmente lentes de aumento, para produzir WSI confiaveis foi necessario o avango do
poder computacional para costurar milhares de imagens em uma Unica imagem digital da
lamina inteira. Esse € um avango disruptivo por proporcionar o0 aumento do dialogo entre
especialistas que podem agora ver a mesma WSI estando em locais diferentes.

Assim, em 2020, quando da escrita do projeto da presente tese e do projeto de inovacao
que a acompanha, a patologia digital havia sido publicizada ha somente dois anos. Durante
o periodo do presente trabalho muito aconteceu no campo. Com o desenvolvimento de
modelos de redes neurais treinadas por aprendizado profundo (deep learning) capazes
de auxiliar no diagnéstico patoldgico. As redes neurais tém o potencial de impulsionar
o desenvolvimento da patologia enquanto area do conhecimento por promover padrdes
quantitativos de analise e diagnadstico.

Foram publicados trabalhos demonstrando a eficiéncia de IA’s no reconhecimento dos
padrdes histomorfolégicos do cancer gastrico (1IZUKA et al., 2020; HUANG, 2021 ; JANG; SONG;
LEE, 2021; KANAVATI et al., 2021) utilizando aprendizado supervisionado a partir de imagens
rotuladas por patologistas. Jang et al. (2021) demonstraram que uma CNN Inception-v3 foi
capaz de distinguir adenocarcinomas gastricos diferenciados vs. indiferenciados e mucino-
S0S Vs. ndo-mucinosos, alcangando AUCs de 0,932 e 0,979, respectivamente. De forma
semelhante, Kanavati & Tsuneki (2021) avaliaram o desempenho de CNNs na classifica-
cao do adenocarcinoma difuso (tipo Lauren), utilizando mais de 2.900 biépsias de multiplos
hospitais japoneses. Os modelos atingiram AUCs préximos de 0,95-0,99 em diferentes
coortes, mostrando que a IA pode capturar os padrées histologicos reconhecidos por pa-
tologistas.

Esse avanco foi possibilitado pelo aumento do poder computacional devido a computa-
¢ao em nuvem. Consistiu no desenvolvimento das técnicas de aprendizado profundo, em
especial das redes neurais convolucionais (Convulotional Neuro Networks — CNN). Do
ponto de vista computacional, as imagens sdo matrizes matematicas que podem ser reco-

nhecidas por modelos profundos treinados por métodos de aprendizado supervisionados.
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Para uma introducao a visao computacional vide 2.6.4

CNNs podem identificar cancer em imagens histolégicas ao serem treinadas em con-
junto de dados (datasets) rotulados por especialistas utilizando aprendizado supervisio-
nado (lIZUKA et al., 2020; HUANG, 2021). Esses datasets sao conjuntos de imagens sele-
cionadas com tamanho padronizado acompanhadas de rotulos, ou seja, de informagoes
indicando, por exemplo, se € uma imagem de cancer ou nao, ou, por exemplo, que tipo de
cancer, etc. Quando sao utilizados datasets rotulados por patologistas para o treinamento
supervisionado de CNN apresenta acuracia comparavel ao de humanos no reconheci-
mento dos padrdes especificos associados ao cancer para os quais foi treinado. As CNN’s
demonstram resultados com grande acuracia em uma quantidade crescente de problemas
de visdo computacional, permitindo analises quantitativas onde antes sé era possivel ana-
lises qualitativas. Além de aplicagdes praticas, as CNN tem ainda grande potencial como

ferramenta de investigagéo cientifica.

2.13 SUPERVISAO MOLECULAR DE REDES NEURAIS CONVOLUCIONAIS NO CAN-
CER GASTRICO

Do ponto de vista da visdo computacional, um grande desafio a ser superado € a limi-
tacado a rotulacdo humana para o desenvolvimento. Ou seja, 0 modelo desenvolvido estara
limitado ao que os observadores humanos ja identificaram e informaram na rotulacao do
dataset de treinamento e essa rotulagdo € feita por anotacdo humana. A principal estra-
tégia na ciéncia da computagao é a utilizacdo de métodos nao-supervisionados. Um bom
exemplo desse tipo de abordagem em imagens histopatologicas € o trabalho de (LEE et
al., 2022) que usou CNN para extrair atributos depois usou métodos de clustering nao
supervisionado e finalmente usou florestas aleatérias (random forests) para associar 0s
agrupamentos (clusters) encontrados com informagdes clinicamente significativas. Assim,
em diversas aplicacdes da visdo computacional pesquisadores buscam estratégias de trei-
namento nao-supervisionado para superar a limitacao dos rétulos humanos e potencializar
as CNN como ferramental de investigacao cientifica.

No campo especifico do reconhecimento de imagens histoldgicas foi proposta como so-
lugéo disruptiva a ideia de supervisdo molecular no treinamento de redes neurais (MONJO
et al., 2022). Com o advento das 6micas e da visdo computacional surgiu uma oportuni-

dade de usar (deep learning) para descoberta de fenétipos a partir de dados moleculares
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conhecidos. Durante a histéria do desenvolvimento da genética a ordem dos fatores foi
a partir de um fendétipo conhecido pesquisar quais acontecimentos moleculares estavam
associados ao fen6tipo em questao. Esse foi o caminho desde os trabalhos de Mendel até
as recentes investigagcdes multi-6micas para compreensado do cancer. O que impulsiona
essa busca em uma direcao diferente é o fato conhecido que o sequenciamento de nova
geracao trouxe abundancia de dados com necessidade do desenvolvimento de técnicas
de interpretacdo. Para uma introducdo ao genoma e ao sequenciamento vide 2.5.2.

A supervisdo molecular é, assim, a estratégia de pesquisa de oferecer dados mole-
culares como rétulos moleculares em datasets de imagens histopatologicas, sem roétulos
humanos, e a partir de treinamento supervisionado classico descobrir atributos profundos
(deep features, que devido a sua relacao direta com dados genéticos podem ser consi-
derado fendtipos profundos (deep phenotype. (YURKOVICH et al., 2020) Fendtipo profundo
refere a caracterizagdo detalhada e complexa de fendtipos (caracteristicas identificaveis)
de uma condicao, obtida a partir de analises avancadas. Nesse contexto, utiliza-se apren-
dizado profundo (deep learning) para extrair padrdes complexos de dados, especialmente
em imagens histopatoldgicas.

Na supervisdo molecular, portanto, embora seja o treinamento supervisionado, ndo ha
0 viés da supervisdo humana. Muitas vezes os rétulos moleculares sdo resultantes de
aprendizado nao-supervisionado, como é o caso na presente tese. (Cancer Genome Atlas
Research Network, 2014) Monjo e colaboradores (MONJO et al., 2022) demonstraram um mo-
delo capaz de identificar os diferentes tipos celulares em amostras de cancer de mama
utilizando dados de transcriptémica espacial para treinar a CNN. O Slide-seq (RODRIGUES;
SILVA; FONSECA, 2019) é uma técnica que marca com barcodes de localizagdo conhecida
no eixo x e y e depois sequéncia, permitindo um resultado de transcriptomica espacial. O
que é muito util para compreender as diferencas entre as linhagens de um mesmo tecido
ja que atinge um transcriptoma de single cell. Trata-se de uma técnica nova, de alta tecno-
logia e alto custo mas que aponta para o potencial futuro dessa abordagem de treinamento
de redes neurais.

No tema especifico da aplicagdo da supervisdo molecular na classificacao de imagens
histopatoldgicas nos subtipos moleculares do CG dois trabalhos se destacam (WANG et al.,
2022; FLINNER et al., 2022). Wang et al. (2022) introduziram um modelo para predi¢do dos
quatro subtipos do TCGA (CIN, MSI, EBV, GS). Ja Flinner et al. (2022) aplicaram deep

learning nos quatro subtipos do TCGA e compararam a testes moleculares independentes
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e imuno-histoquimica. Ambos com resultados signitifcativos.

Wang et al. (WANG et al., 2022) propuseram o Deep Ensemble for Molecular Subtyping,
uma abordagem de ensemble baseada em deep learning que integra multiplos classifica-
dores de uma mesma rede (EfficientNEt-v2) para prever os subtipos moleculares direta-
mente de imagens histopatoldgicas coradas com hematoxilina-eosina (H&E) do TCGA. O
modelo foi treinado em um conjunto de dados derivado de 295 amostras de adenocarci-
noma gastrico do TCGA, divididas em tiles (pequenos patches de imagem) para analise
granular. No nivel de tile, alcangou areas sob a curva ROC (AUROC) de 0.785 para o
subtipo CIN (instabilidade cromossémica), 0.668 para MSI (instabilidade de microssatéli-
tes), 0.762 para EBV (positivo para virus Epstein-Barr) e 0.811 para GS (genomicamente
estavel). No nivel de paciente, onde as predi¢des de tiles sdo agregadas para uma classifi-
cagao final, os valores de AUROC foram ainda mais elevados: 0.897 para CIN, 0.764 para
MSI, 0.890 para EBV e 0.898 para GS. Esses resultados demonstram uma performance
robusta, especialmente para os subtipos CIN, EBV e GS, com o ensemble superando mo-
delos individuais e reduzindo o overfitting e melhorando a generalizagao.

Por sua vez, Flinner et al. (FLINNER et al., 2022) desenvolveram uma rede neural con-
volucional (CNN) de ensemble com técnica de bagging para prever os quatro subtipos
moleculares do TCGA diretamente de slides H&E, comparando o desempenho com testes
imuno-histoquimicos (IHC) padrao (para MLH1, PMS2, HER2 e EBER-ISH) e analises mo-
leculares independentes (como sequenciamento para MSI e deteccao de EBV). O estudo
utilizou uma coorte de 438 amostras de GC, com validagdo externa em conjuntos inde-
pendentes. Os resultados mostraram que o modelo de deep learning superou o IHC na
acuracia geral de predi¢cao dos subtipos, com uma acuracia média de 85-90% para clas-
sificagdo binaria e AUROC acima de 0.85 para subtipos como EBV e CIN em validagao
cruzada. Especificamente, para EBV, o modelo alcancou sensibilidade de 92% e precisao
de 88%, identificando caracteristicas como linfocitos infilirantes e padrdes glandulares;
para MSI, AUROC de 0.82, destacando heterogeneidade intratumoral em 15-20% dos ca-
sos; para CIN, AUROC de 0.89, correlacionado com amplificacbes em HER2; e para GS,
AUROC de 0.80, associado a tipos difusos. Em comparagéo ao IHC, que teve acuracia
de cerca de 75-80% e falhas em casos heterogéneos, o deep learning identificou casos
com predicbes mistas (intra-tumoral heterogeneity) em 10-15% das amostras, sugerindo
que o método pode detectar variagdes ndo capturadas por marcadores tradicionais. Os

autores enfatizam que o deep learning é superior em cenarios de triagem, reduzindo a ne-
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cessidade de testes moleculares caros e permitindo uma abordagem mais personalizada,

embora recomendem validagdo adicional em coortes maiores para robustez clinica.
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3 CAPITULO 1: G.SUBTVISION — SUBTIPAGEM MOLECULAR DO CANCER GAS-
TRICO COM METODOS DE ENSEMBLE DE REDES NEURAIS CONVOLUCIONAIS
(CNNS)

RESUMO

A classificacdo molecular do adenocarcinoma gastrico em 4 subtipos: Instabilidade
cromossdmica (CIN), instabilidade microssatélite (MSI), virus Epstein-Barr (EBV) e gené-
mica estavel (GS) depende de métodos onerosos e de acesso limitado. A classificagao
de imagens histopatolégicas por redes neurais convolucionais (CNNs) é uma alternativa
promissora. Este estudo propde o G.Subtvision (gastro subtypes computational vision), en-
semble multiarquitetura de CNNs (MobileNetV2, ShuffleNet e GoogLeNet) treinadas com
rétulos moleculares para predicao multiclasse do subtipo do adenocarcinoma gastrico. Me-
todologia: A partir de 263 casos, com 476 laminas (TCGA-STAD). O treinamento ocorreu
em diversas distribuicdes de treino e validacao k-fold, k=10. Avaliagdo no nivel de tile e
paciente superou a reprodugéo controle de modelo previamente publicado em precisao
por 4 pontos percentuais na média e 14 pontos no subtipo MSI. O G.Subtvison avanca
incrementalmente a subtipagem molecular do cancer gastrico por CNN. Codigo e material

suplementar disponiveis.
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3.1 INTRODUGAO

O consércio The Cancer Genome Atlas (TCGA) estabeleceu, em 2014, uma classifi-
cacao molecular em quatro grupos principais: tumores associados ao virus Epstein-Barr
(EBV), instabilidade de microssatélites (MSI), instabilidade cromossémica (CIN) e gené-
mica estavel (GS). Esta subtipagem tem impacto direto na estratificagdo prognéstica e na
indicacao terapéutica, uma vez que tumores EBV e MSI, por exemplo, demonstram melhor
resposta a imunoterapia, enquanto tumores CIN e GS apresentam comportamento clinico
distinto e resisténcia a determinados esquemas quimioterapicos (Sohn et al., 2017). Ape-
sar de seu valor clinico, a subtipagem molecular depende de técnicas laboratoriais caras
e pouco acessiveis, como hibridizagéo in situ (ISH), imunohistoquimica (IHC) ampliada e
sequenciamento genémico em larga escala. Estas abordagens ndo apenas elevam custos,
como demandam infraestrutura tecnolégica nem sempre disponivel em paises em desen-
volvimento, além de prolongarem o tempo para decisao terapéutica. Este cenario motiva
a busca por métodos complementares capazes de aproximar a classificacdo molecular da
pratica clinica diaria (FLINNER et al., 2022; WANG et al., 2022).

Nos ultimos anos, o avango da patologia digital e do aprendizado profundo (deep le-
arning) trouxe a possibilidade de extrair assinaturas moleculares latentes diretamente de
imagens histopatoldgicas coradas em H&E (Hematoxilina e Eosina). Redes neurais con-
volucionais (CNNs) tém sido utilizadas para predizer alteragdes moleculares e biomarca-
dores de forma supervisionada, explorando a relagao entre padrées morfolégicos e perfis
gendmicos. Trabalhos pioneiros, como os de Coudray et al. (2018) em cancer de pulmao
e Kather et al. (2019) em céncer colorretal, abriram caminho para este campo, posterior-
mente expandido para o adenocarcinoma géstrico. Diversos estudos exploraram a super-
visdo molecular em cancer gastrico.

Flinner et al. (2022) mostraram que modelos de deep learning baseados em H&E po-
dem predizer subtipos do TCGA, mas com desempenho limitado em GS e MSI, desta-
cando a dificuldade em classes menos representadas. Jeong et al. (2022) desenvolveram
um classificador para EBV, alcangando AUC-ROC elevado em nivel de tiles, embora com
precisao moderada em nivel de pacientes, sugerindo utilidade para triagem clinica. Zheng
et al. (2022) propuseram o modelo de aprendizado profundo EBVNet e mostraram que a
fusdo humano—maquina supera tanto modelos isolados quanto patologistas, ressaltando a

importancia da integracao entre Inteligéncia Artificial (IA) e pratica médica.
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Em outra perspectiva, Zhou et al. (2023) aplicaram CNNs para predizer resposta a
quimioterapia neoadjuvante, ampliando o escopo da patologia digital para biomarcadores
terapéuticos. Finalmente, a reviséo sistematica de Cifici et al. (2022) consolidou evidéncias
de que CNNs podem predizer mutagbes (TP53, KRAS, BRAF), instabilidade de microssa-
télites e EBV diretamente de H&E, mas destacou a falta de validacao externa robusta como
limitag&o central do campo.

Um marco especifico para o cancer gastrico foi o estudo de Wang et al. (2022), que in-
troduziu 0 modelo DEMoS (Deep learning-based Ensemble approach for Molecular Subty-
ping). Utilizando o modelo EfficientNet em abordagem de ensemble, os autores obtiveram
resultados consistentes, mas ainda insuficientes em classes desbalanceadas, sobretudo
EBV e GS. Essa limitagdo abriu espaco para novas investigacées focadas em melhorar
a robustez dos modelos para essas categorias. No presente estudo, optamos por combi-
nar trés arquiteturas de redes neurais convolucionais com caracteristicas complementares:
MobileNetV2, ShuffleNet e GooglLeNet. A MobileNetV2, proposta por Sandler et al. (2018),
introduziu o conceito de inverted residuals e linear bottlenecks, permitindo modelos mais
leves e eficientes sem perda expressiva de acuracia, o0 que a torna particularmente ade-
quada para grandes volumes de tiles histopatolégicos, reduzindo o custo computacional. A
ShuffleNet, desenvolvida por Zhang et al. (2018), utiliza a técnica de channel shuffle para
otimizar a comunicagao entre grupos convolucionais, alcangando alta eficiéncia em dispo-
sitivos de baixo custo computacional, sendo Util para cendrios em que a escalabilidade do
processamento de milhares de tiles é um desafio. J& a GoogLeNet (Inception v1), intro-
duzida por Szegedy et al., 2015, marcou a transigdo para arquiteturas mais profundas e
modulares, com o uso de inception modules que permitem captar padrées em multiplas
escalas dentro de uma mesma camada.

Essa diversidade arquitetural garante que cada rede explore aspectos distintos da mor-
fologia tumoral, aumentando a chance de identificar padrées histopatolégicos associados
a subtipos moleculares. Assim, a combinacéo dessas arquiteturas em um ensemble multi-
arquitetura tem como objetivo potencializar a robustez do modelo, explorando simultanea-
mente eficiéncia computacional (MobileNetV2 e ShuffleNet) e capacidade de extragao de
caracteristicas complexas (GoogLeNet).

O presente trabalho insere-se nesse contexto, propondo ensembles multiarquitetura
com o objetivo de aprimorar a predicao dos subtipos moleculares do adenocarcinoma gas-

trico a partir de imagens histopatolégicas do TCGA-STAD. O diferencial metodoldgico con-
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siste em combinar arquiteturas distintas usando métodos de votacao diferentes, isto é, em
hard e soft voting, visando capturar padroes complementares e reduzir o viés de mode-
los individuais. Além disso, enfatizamos a precisdo como métrica prioritaria, Em trajetorias
diagnésticas existem dois papéis distintos para testes: (i) testes de triagem/triage (ou de
rastreio), nos quais privilegia-se alta sensibilidade (recall) para reduzir falsos-negativos
e “nao perder casos”; e (ii) testes confirmatérios para diagnostico diferencial, nos quais
privilegia-se alta especificidade e alto valor preditivo positivo (PPV/precisao) para redu-
zir falsos-positivos e “confirmar” com seguranga antes de uma decisao terapéutica. Em
contextos de subtipagem molecular do cancer gastrico, o uso pretendido € o diagnéstico
diferencial; portanto, precisdo/PPV deve ser enfatizada a frente de recall, pois decisdes
errbneas por falso-positivo podem induzir terapias inadequadas e risco direto ao paciente.
Essa priorizagéo esta alinhada as recomendagées classicas de avaliacao de testes diag-
nésticos (uso de PPV/NPV na pratica clinica real, dependéncia da prevaléncia e da pro-
babilidade pré-teste) e as diretrizes para estudos de acuracia diagnostica (BOSSUYT et al.,
2015)

O presente estudo propde trés contribuigcdes principais: Avango metodoldgico: ensem-
bles multiarquitetura mostraram ganhos em precisdo e F1-score, em especial para EBV
e GS, subtipos minoritarios e de dificil classificacdo. Comparacgéo direta com a literatura:
demonstramos ganhos substanciais em relacdo a Wang et al. (2022), especialmente em
recall de EBV (+32—-34 pontos em nivel de tiles), além de aproximacdes e contrastes com
Flinner, Jeong, Zheng e Zhou. Pensamento clinico: ao priorizar precisao, destaca-se aqui
a importancia dos modelos computacionais serem ferramentas de apoio a tomada de de-

cisao confiavel, capazes de minimizar danos iatrogénicos de falsos positivos.

3.2 METODOLOGIA

3.2.1 Dataset: Conjunto de Dados

O estudo foi realizado utilizando o projeto Stomach Adenocarcinoma (STAD) da base
publica do The Cancer Genomic Atlas (TCGA) acessivel pelo site (National Cancer Institute,

2025).
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3.2.1.1 Imagens de ldminas inteiras

O TCGA disponibiliza imagens de Iaminas inteiras (do inglés, Whole Slide Image, WSI)
coradas em hematoxilina e eosina (HE) em formato SVS de alta qualidade produzidas por
patologia digital a 40x, vide Figura 1. Foram utilizadas 476 laminas inteiras (referentes a
263 casos do STAD) distribuidas associadas aos rétulos dos subtipos da seguinte maneira:

CIN (232 laminas), seguida por MSI (114 laminas), GS (73 laminas) e EBV (57 laminas).

Figura 1 — Imagem de uma WSl inteira.

Fonte: Extraida de The Cancer Genome Atlas (TCGA), Cancer Genome Atlas Research Network (2014)

3.2.2 Pré-processamento das imagens

O pré-processamento das imagens compreendeu trés etapas principais que podem ser
observada da Figura 2: (I) segmentagcédo em tiles de 224x224 px; (Il) deteccdo e excluséo

de imagens borradas; e (lll) normalizagao de cor.
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3.2.2.1 Segmentacdo de Imagem

O Corte das WSI (Tiling) foi realizado nas 476 imagens de laminas inteiras, classifica-
das em conjuntos segundo as 4 classes distintas em conformidade com o subtipo molecu-
lar (CIN, MSI, EBV, GS). Foram incluidos nos metadados da WSI os rétulos corresponden-
tes aos casos. Foi entdo utilizada a fungdo deepzoom da biblioteca open slide na versao
1.3.1 (OpenSlide, 2023) com fator de ampliagéo de 10x. As WS/ foram cortadas em tiles no
formato de 224x224 pixels. Foram removidos aqueles contendo mais de 50% de fundo. Fo-
ram removidas também as imagens borradas utilizando o filtro Laplaciano conforme mostra
esquema 2. Ao final desse processo, foram obtidos na ordem de 1.500.000 tiles, com dis-
tribuicdo entre os subtipos moleculares CIN (maior propor¢ao, acima de 400.000 tiles), MSI
(cerca de 200.000), GS (aproximadamente 150.000) e EBV (em torno de 150.000).

3.2.2.2 Normalizagdo de cor

Para abordar a variabilidade na coloragdo das imagens, implementamos a normaliza-
¢ao de cor baseada no método Macenko, conforme eq 3.1. aplicado com uso de um modelo
de referéncia para ajustar ao espaco cromatico e padronizacao de luminosidade (MACENKO

etal., 2009).

Thorm = Iy - exp (_decomV<ODfontea Sfonte) : Salvo) (3-1)

onde:
* Ihorm € a intensidade do pixel na imagem normalizada (em RGB)
» Iy é aintensidade de luz transmitida (geralmente 255 para imagens de 8 bits)
* ODsonte = — 10g19(Tionte/ 1) é a Densidade Optica da imagem original
* Shonte € @ Matriz de vetores extraida da imagem original
» decomv é o processo de deconvolugao

* Savo € @ matriz de vetores da imagem de referéncia
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Figura 2 — Fluxograma do corte e processamento das imagens do TCGA.
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3.3 AGRUPAMENTOS: TREINO, VALIDACAO E TESTE

Nesta etapa, foram criados aleatoriamente dois grupos de tiles pré-processados: Um
grupo treino/validacdo com 380 laminas (1.350.000) tiles e um grupo teste hold out com

96 laminas (179.952 tiles), conforme a distribuicdo da Figura 3.

3.3.1 Grupo Treinamento/Validagao

Os grupos de treinamento e validagao para cada modelo (explicados no topico treina-
mento abaixo) foram separados utilizando o método K-fold. Uma utilizacao parcial do cross
validation com o objetivo apenas de gerar multiplas separagdes aleatérias de conjuntos de
treinamento e validagdo na intencao de reduzir viés em grupos de validagdo de classes
minoritarias. Na proporcao 90/10. Consequentemente, treinando 10 modelos. Foi utilizado
K=10 e, portanto, foram treinados 10 modelos para cada arquitetura (explicadas no tépico

treinamento abaixo) , variando os grupos de teste e validagéo.
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Figura 3 — Proporgao da distribui¢cdo dos tiles entre os grupos
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Fonte: O autor (2025).

3.3.2 Grupo Teste

96 laminas foram separadas para uso no teste final (hold out). Medidas foram tomadas
para evitar contaminagao das imagens de laminas inteiras do conjunto teste com os outros
conjuntos. Apds andlise da distribuicao de laminas no grupo teste, foram acrescentados
aleatoriamente mais casos das classes minoritarias. Totalizando 96 I1aminas de 82 casos
(179.952 tiles). Distribuidos CIN: 89.707 tiles, provenientes de 47 laminas inteiras (WSls),
correspondentes a 41 pacientes. MSI: 37.973 tiles, de 23 WSIs, representando 18 pacien-
tes. GS: 27.191 tiles, de 15 WSiIs, relativos a 13 pacientes. EBV: 25.081 tiles, oriundos de
11 WSiIs, correspondentes a 10 pacientes. Essa distribui¢do fica melhor evidenciada pelas

Figuras [4 - 5 - 6]
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Figura 4 — Distribuicao do Grupo Teste (Hold-out)
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Figura 6 — Distribuicdo de imagem de I&mina por paciente por classe
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3.4 TREINAMENTO

O treinamento foi desenvolvido utilizando a versdo Python 3.8.20, em um ambiente
virtual criado para isolar as dependéncias e garantir a reprodutibilidade dos resultados.
Foram utilizadas as bibliotecas scikit-learn 1.2.2, Pandas 1.5.3, PyTorch 2.4.1+cu118 com
documentacao detalhada e suas dependéncias. Foram treinadas quatro redes neurais con-
volucionais EfficientNet, MobileNetV2, GoogleNet e ShuffleNet. Todas as redes foram inici-
alizadas com pesos pré-treinados no ImageNet e tiveram suas camadas finais adaptadas
para a classificacdo dos quatro subtipos moleculares do adenocarcinoma gastrico (EBV,
MSI, GS e CIN), utilizando os tiles do conjunto de treinamento/validagdo. A otimizagéo
foi realizada com o algoritmo Adam, empregando taxa de aprendizado inicial de 0,001 e
weight decay de 1 x 10~*. A taxa de aprendizado foi ajustada de forma adaptativa pelo
agendador ReduceLROnPlateau, configurado para reduzir a learning rate em um fator de
0,5 sempre que o valor da funcéo de custo no conjunto de validacdo permanecesse inal-
terado por trés épocas consecutivas, considerando um limiar de 1 x 1078. O treinamento
foi conduzido por até 50 épocas, com mecanismo de Early Stopping e paciéncia de cinco
épocas, interrompendo automaticamente o processo caso nao fosse observada melhoria
na funcdo de custo no conjunto de validacdo nesse intervalo. Para cada arquitetura, fo-

ram treinados 10 modelos independentes, correspondendo aos 10 folds definidos na etapa
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anterior. Durante o treinamento, a funcdo de custo adotada foi uma composigéo de duas
fungdes: a fungéo padrao de entropia cruzada (Cross Entropy Loss, LC'E) e a Macro Soft
F1 Loss (LF'1). Especificamente, a loss final foi definida como a média aritmética dessas
duas fungdes:

L= %(L‘CE + LF1)

Essa formulagao teve como objetivo combinar a estabilidade da Cross Entropy Loss na
otimizacdo com a capacidade da Macro Soft F1 Loss de promover melhor equilibrio en-
tre precisao (precision) e sensibilidade (recall) nas diferentes classes, especialmente em
cenarios de desbalanceamento.Durante o treinamento, além da fungdo de custo padrao
(Cross Entropy Loss), foi incorporada a fungédo Macro Soft F1 Loss, com o objetivo de apri-
morar o equilibrio entre precisao (precision) e sensibilidade (recall) nas diferentes classes.
Os valores intermediarios, como a fungéo de custo no conjunto de treino e no conjunto de
validagcdo, bem como a taxa de aprendizado, foram monitorados e registrados no Tensor
Board para acompanhamento e analise posterior. Ao término de cada fold, o modelo de
melhor desempenho foi armazenado, e os graficos de evolugéo das fungdes de custo foram

exportados para analise visual.

3.5 METODOLOGIA DE ENSEMBLES
Ensembles uniarquitetura (Single Architecture SA)

Foi formado um comité de modelos (Ensemble) que contabiliza os votos levando em
conta duas abordagens: (a) o vetor de probabilidade da confianga (soft voting) para chegar
a uma predi¢cao ou (b) o vetor das classes preditas, para os 10 modelos de uma Unica arqui-
tetura, conforme ilustra a Figura 7. Na abordagem soft voting, a soma das probabilidades

de confianca de cada modelo é realizada para definir a classe predita.
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Figura 7 — Ensemble Uniarquitetura (SA)
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Fonte: O autor (2025).

3.5.1 Ensembles multiarquiteturas (MA)

Os Ensembles MA foram construidos com trés arquiteturas de rede (MobileNet V2,
ShuffleNet e GoogleNet) Figura 8. Os 30 modelos (10 modelos de cada uma das 3 ar-
quiteturas selecionadas) foram consolidados em um comité de modelos (Ensemble). Os
métodos de ensemble contabilizaram os votos majoritarios (hard voting) ou os votos pon-

derados pela confianga (soft voting).

Figura 8 — SubtVision
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Fonte: O autor (2025).
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3.6 METRICAS UTILIZADAS

As métricas foram computadas usando a biblioteca scikit-learn, versao 1.2.2, incluindo
médias macro (ndo ponderadas) e weighted (ponderadas por classe). Para acompanha-
mento mais detalhado dos resultados, foram utilizados relatérios por fold e ensemble, com
curvas ROC visualizadas via TensorBoard. As métricas foram calculadas nos niveis de ti-
les e consolidadas para o nivel dos pacientes, incluindo: Precisdo (eq 3.2) — Proporgao
de predi¢des positivas corretas, ela expressa a confianga no diagnéstico positivo, ja que
os falsos positivos vao reduzir essa métrica. A precisdo expressa a mesma intengao da
especificidade, porém o faz ao representar a propor¢éo de verdadeiros positivos no total
de positivos indicados pelo modelo. Sensibilidade ou Recall (eq 3.3) — Proporcao de po-
sitivos reais corretamente identificados, expressa, portanto, a proporcao de verdadeiros
positivos sobre o total de casos positivos, ja que o total de casos positivos € a soma dos
verdadeiros positivos com os falsos negativos. F1-Score (eq 3.4) — Média harménica de
precisdo e recall, € uma métrica que combina precisdo e recall em uma unica medida,
oferecendo um balango entre a capacidade de identificar corretamente os positivos (sen-
sibilidade - recall) e a confiabilidade dessas predicdes (precisdo). AUC-ROC: Area sob a
curva ROC (one-vs-rest por classe) € uma ferramenta gréafica utilizada para avaliar o de-
sempenho de um modelo de classificacao binaria, representando o trade-off entre a taxa
de verdadeiros positivos (Recall) (TPR) e a taxa de falsos positivos (FPR) a medida que
a confianga do modelo na predicdo aumenta. A area abaixo da curva ROC (neste texto
chamada de AUC-ROC) corresponde a medida numérica obtida ao calcular a area sob a
curva ROC. Intuitivamente, ela representa a probabilidade de o modelo atribuir um valor
de score mais alto para uma instancia positiva do que para uma negativa escolhida alea-
toriamente. Quanto maior a AUC-ROC (préxima de 1), melhor a capacidade de separagao
entre as classes; valores préximos de 0,5 indicam um modelo aleatério, e valores abaixo

disso sugerem um modelo que classifica pior do que o acaso.

VP
isdo= —— 2
Precisio VP FP (3.2)
P
Recall = —— 1~ (3.3)

VP + FN
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Precisao x Recall
F1-Score = 2 x — (3.4)
Precisao + Recall

1
AUC-ROC = / TPR(FPR)d(FPR) (3.5)
0

onde:

VP = Verdadeiros Positivos (True Positives)

FP = Falsos Positivos (False Positives)

F'N = Falsos Negativos (False Negatives)

VN = Verdadeiros Negativos ( True Negatives)

W , -
TPR = 5 (Taxa de Verdadeiros Positivos ou Recall)

FPR = & (Taxa de Falsos Positivos)

3.6.1 Teste de Wilcoxon Signed-Rank

O teste de Wilcoxon Signed-Rank foi aplicado para comparar os resultados dos en-
sembles com os modelos individuais ao longo dos folds de validagdo cruzada. Por ser um
método ndo paramétrico. Para uma explicacdo mais detalhada sobre os fundamentos e a
aplicagéo do teste, consulte a documentagao da Statsoft sobre o tema (acessando a secao

"Wilcoxon matched pairs test").

3.7 RESULTADOS E DISCUSSAO

Este capitulo apresenta resultados e discussdes dos experimentos realizados. No pri-
meiro momento, serdo apresentados os resultados a nivel de tile, em seguida a nivel de
paciente, discutindo-se como as métricas de precisao, revocagao, F1-Score e AUC-ROC
se comportaram nos modelos individuais e o G.SubtVision, usando a abordagem de votos

soft voting.
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3.7.1 Nivel dos TILEs

PRECISION no nivel do TILE

No nivel dos tiles, os ensembles multiarquitetura (MA) com hard voting e soft voting
(G.SubtVision), alcangcaram médias macro de precisdo de 0,53 e 0,56, respectivamente,
tendo o segundo superado as arquiteturas individuais MobileNetV2 (0,55), ShuffleNet (0,53)
e GoogLeNet (0,48), como apresentados na Tabela 1. Por classe, os valores para CIN vari-
aram de 0,61 a 0,64 nos modelos individuais e 0,62-0,63 nos ensembles; para EBV, de 0,40
a 0,62 nos individuais e 0,50-0,62 nos ensembles; para MSI, de 0,51 a 0,65 nos individuais

e 0,61-0,65 nos ensembles.

Tabela 1 — Comparacédo de PRECISION entre modelos (no nivel de tiles).

Wang et al. Reproducdo Mobile Shuffle Google Ensemble G.Subt

CICERE (2022)  EfficientNet Netv2 Net LeNet MAHard Vision
CIN 0,45 0,61 0,62 0,61 0,64 0,63 0,62
EBV 0,14 0,56 0,61 0,62 0,40 0,50 0,62
GS 0,76 0,42 0,31 0,26 0,36 0,36 0,34
MSI 0,56 0,51 0,65 0,62 0,53 0,61 0,65
Macro AVG 0,48 0,52 0,55 0,53 0,48 0,53 0,56
Weighted AVG 0,55 0,55 0,58 0,56 0,54 0,57 0,59

Fonte: O autor (2025).

Comparando com Wang et al. (2022), que reportou média macro de 0,48, observou-se
melhoria de 8 pontos percentuais com o G.SubtVision, mas ao comparar com a reproducao
realizada aqui com EfficientNet, a precisao melhorou apenas 4 pontos percentuais (WANG
etal., 2022).

O unico subtipo que apresentou reducédo de precisao foi GS, de 0,42 na reproducao
de Wang com EficientNet a 0,36 nos individuais e 0,34-0,36 nos ensembles; Em relagao
a Flinner et al. (2022), que também analisaram os quatro subtipos em TCGA e UKC, os
valores de precisé@o relatados foram préximos aos observados aqui (CIN = 0,53; EBV =
0,52; MSI = 0,43; GS = 0,55), confirmando a consisténcia metodolégica e a dificuldade
comum em MSI e GS. O maior aumento de preciséo foi encontrado na categoria EBV com
melhora de 48 pontos percentuais em relagdo a Wang et al. 2022 e 10 pontos percentuais

em relacdo a Flinner et al (2022); A precisao para MS| aumentou entre 9 pontos percentuais
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em relagdo a Wang e 22 em relagao a Flinner. Na categoria CIN a precisao aumentou
entre 17 pontos em relagao a Wang e 9 pontos em relagéo a Flinner. Ao superar limitagées
comuns de abordagens individuais, esta estratégia demonstra robustez metodolégica e
relevancia clinica, uma vez que a reducdo de falsos positivos e amplia a confiabilidade

diagnoéstica dos modelos e CNN.

3.7.1.1 Recall no nivel do TILE

No nivel dos tiles, os ensembles MA com hard voting e G.SubtVision com soft voting,
obtiveram médias macro de recall de 0,46 e 0,47, respectivamente,ligeiramente superio-
res as arquiteturas individuais (0,44-0,46), como apresentados na Tabela 2. Por classe,
CIN apresentou recall de 0,74-0,84 nos individuais e 0,80 nos ensembles; EBV, de 0,30-
0,44 nos individuais e 0,39 nos ensembles; GS, de 0,24-0,44 nos individuais e 0,39-0,40
nos ensembles; e MSI, de 0,23-0,33 nos individuais e 0,27-0,28 nos ensembles. A média
ponderada foi de 0,57 nos ensembles. O recall mede a capacidade de detectar instancias
verdadeiras, critico para classes minoritarias em contextos de triagem. Os modelos do pre-
sente estudo apresentaram sensibilidade elevada para CIN (até 0,84 nos modelos individu-
ais e 0,80 nos ensembles MA). O que representou um aumento de 32 pontos percentuais
em relacao aos resultados do artigo publicado por Wang em 2022, cuja metodologia foi
reproduzida. A sensibilidade na categoria MSI do modelo reproducao da metodologia, ao
contrario, da categoria CIN, foi pior 45 pontos que o artigo previamente publicado. Esse
modelo reprodugdo mesmo assim foi melhor que os resultados do ensemble MA em 6
ou 7 pontos percentuais. Para as categorias minoritarias, os modelos aqui apresentados
obtiveram resultados significativamente melhores que os anteriormente publicados. Para
0 subtipo GS, o modelo G.SubtVision demonstrou resultados 8 pontos percentuais mais
sensiveis que os resultados publicados e 16 pontos mais sensiveis que a reproducao da
metodologia no presente agrupamento aleatério entre o grupo de treinamento e o teste.
No grupo EBYV foi identificado o maior avanco de sensibilidade com aumento de 23 a 34

pontos percentuais em relagcdo a metodologia de Wang 2022.
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Tabela 2 — Comparag¢édo de RECALL entre modelos (no nivel de tiles).

Wang et al. Reproducdo Mobile Shuffle Google Ensemble G.Subt

Slesss (2022)  EfficientNet Netv2 Net LeNet MAHard Vision
CIN 0,52 0,84 0,78 081 0,74 0,80 0,80
EBV 0,07 0,35 0,30 040 0,44 0,39 0,39
GS 0,32 0,24 044 025 043 0,39 0,40
MSI 0,78 0,33 0,31 032 023 0,27 0,28
Macro AVG 0,42 0,44 0,46 044 0,46 0,46 0,47
Weighted AVG 0,54 0,57 0,56 056 0,54 0,57 0,57

Fonte: O autor (2025).

3.7.1.2 F1 score no nivel do TILE

No nivel dos tiles, os ensembles MA e G.SubtVision registraram médias macro de F1-
score de 0,47 e 0,48, respectivamente, superando ligeiramente as individuais (0,45-0,47),
como é possivel observar na Tabela 3. Por classe, CIN variou de 0,68-0,71 nos individu-
ais e 0,70 nos ensembles; EBV, de 0,40-0,48 nos individuais e 0,44-0,48 nos ensembles;
GS, de 0,25-0,40 nos individuais e 0,36-0,38 nos ensembles; e MSI, de 0,32-0,42 nos in-
dividuais e 0,38-0,39 nos ensembles. A média ponderada foi de 0,55-0,56 nos ensembles.
Comparando com Wang et al. (2022), que apresentou média macro de 0,42, os ensem-
bles melhoraram 5-6 pontos, com ganhos notaveis em EBV (31-39 pontos em relagao aos
0,09). Para GS, houve reducao em relagao aos 0,45 de Wang, mas melhoria de 5-9 pontos
sobre a reproducao com EfficientNet (0,31). Na literatura, F1-scores em ensembles para
histopatologia géstrica, como em Li et al. (2022), variam de 0,44-0,49, enfatizando a robus-
tez dos ensembles em datasets desbalanceados, alinhando-se aos nossos achados onde
o F1 reflete equilibrio melhorado em classes majoritarias.

F1 score expressa o equilibrio entre sensibilidade e precisdo, sendo aqui utilizado para
analise geral do equilibrio do desempenho dos modelos. No nivel dos tiles, os ensembles
alcancaram média macro F1 de 0,48, superando em 6 pontos os 0,42 de Wang, superando
ainda em 2 pontos os resultados da reproducao com Efficient Net. Apresentou melhorias
notaveis em EBV com 31 a 39 pontos percentuais (0,48 vs. 0,09). No entanto, GS perma-

neceu desafiador (0,36). O ensemble multiarquiterura melhora a robustez geral.
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Tabela 3 — Comparacéo de F1-score entre modelos (no nivel de tiles).

Wang et al. Reproducdo Mobile Shuffle Google Ensemble G.Subt

Slesss (2022)  EfficientNet Netv2 Net LeNet MAHard Vision
CIN 0,48 0,71 0,60 0,70 0,68 0,70 0,70
EBV 0,09 0,43 0,40 048 0,42 0,44 0,48
GS 0,45 0,31 0,36 025 0,40 0,38 0,36
MSI 0,66 0,40 042 042 0,32 0,38 0,39
Macro AVG 0,42 0,46 0,47 046 045 0,47 0,48
Weighted AVG 0,51 0,54 0,54 054 0,53 0,55 0,56

Fonte: O autor (2025).

3.7.1.3 AUC-ROC no nivel do TILE

No nivel dos tiles, o G.SubtVision obteve AUC-ROC de 0,76 para CIN, 0,83 para EBV,
0,67 para GS e 0,78 para MSI, com média macro implicita de 0,81, como é possivel obser-
var na Tabela 4. Comparando com Wang et al. (2022), que reportou AUC-ROC de 0,762
(CIN), 0,668 (EBV), 0,785 (GS) e 0,811 (MSI), observou-se melhoria em EBV (aumento de
0,162) e reducdo em GS (0,115) e MSI (0,031), possivelmente devido a vieses na confianca
das predicdes. A area sob a curva ROC foi construida, como é bastante frequente na ana-
lise de resultados de redes neurais, a partir da confianga dos modelos em suas predigoes.
Aqui se enfatiza, do ponto de vista de estatistica médica, essa confiancga é “auto-declarada”
pelo modelo. Ao analisar os resultados de Wang para a categoria EBV, percebe-se como
essa métrica pode ser enviesada. O F1 score para o EBV em Wang (encontrado em seu
material suplementar) foi de apenas 0.09 (precisao foi 0.14 e recall 0.07); no entanto, a
area sob a curva ROC para EBV foi 0.67. Uma provavel razdo para esse aparente viés é
que a confianga do modelo em suas predi¢cdes teve magnitudes desalinhadas com o acerto

do ground truth pela predicdo do modelo.
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Figura 9 — AUC-ROC Ensemble Soft Voting 3 arquiteturas (nivel do tile)

Curva ROC Ensemble Soft Voting dos 3 Modelos - MobileNet, GoogleNet, ShuffleNet - a Nivel de Tile
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Fonte: O autor (2025).

Tabela 4 — Comparagédo da Curva ROC (AUC-ROC) entre modelos (no nivel de tiles).

Curva ROC \;Vta:Ig Reprod. Mobile Shuffle Google G.Subt

" EfficientNet NetV2 Net LeNet Vision

(2022)

CIN 0,762 0,75 0,74 0,73 0,74 0,76
EBV 0,668 0,83 081 081 0,76 0,83
GS 0,785 0,69 0,67 062 0,68 0,67
MS| 0,811 0,75 0,79 0,72 0,74 0,78
Macro AVG 0,81 0,80 0,79 078 081

Fonte: O autor (2025).

3.7.2 Resultados no nivel dos pacientes

3.7.2.1 PRECISION dos modelos no nivel do paciente

Na Tabela 5 pode-se observar que no nivel dos pacientes, os ensembles MA e o

G.SubtVision alcangcaram médias macro de precisdo de 0,80, com valores por classe: CIN
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0,57-0,58; EBV 1,00; GS 0,62; MSI 1,00. A média ponderada foi de 0,73. Comparando com
Wang et al. (2022), que obteve média macro de 0,77, os ensembles melhoraram 3 pontos,
com perfeicdo em EBV e MSI (1,00 vs. 1,00 e 0,65 de Wang). Para GS, reducao de 21 pon-
tos (0,62 vs. 0,83). A reproducao com EfficientNet obteve o melhor resultado apresentando
um aumento de 17 pontos (1,00 vs 0,83 de Wang). No subtipo CIN pode-se observar que
os resultados entre os ensembles e os dados publicados por Wang foram semelhantes.
Porém ao comparar o nivel dos tiles com o nivel do paciente observa-se que os resulta-
dos de Wang apresentaram melhora de 13 pontos percentuais ( de 0.45 a 0.58), por outro
lado a reproducédo reduziu 3 pontos ( de 0.61 para 0.55). Os Resultados dos ensembles
reduziram 5 pontos ( de 0.63 ou 0.62 no nivel do tile para 0.58 ou 0.57).

Para EBV no nivel do paciente, Wang publicou precisdo de 1.00. Partindo no nivel do
Tile de uma precisao de 0,14. A reproducao do artigo partindo de 0.56 de preciséo atingiu
também 1.00 de pecisao ao nivel do paciente. Ou seja, no nivel do tile, a razéo (Verdadeiros
Positivos / [Verdadeiros Positivos + Falsos Negativos]) atingiu 0.14, mas a agregacao por
maior frequéncia (nivel do paciente) eliminou o falso negativo. Os modelos de ensemble
apresentou precisao de 1,00, ou seja, ndo houve falsos positivos. O mesmo ocorreu para
o MSI, no qual os ensemble MA atingiram 1,00, ou seja, zeraram os falsos positivos. Para
o subtipo GS, o resultado foi desafiador 0,62, abaixo de 21 pontos do resultado de Wang,

e 38 pontos abaixo da reproducao.

Tabela 5 — PRECISION: Wang et al. (2022) vs. ensemble MA com soft voting em nivel de pacientes

Wang et al. Reproducao Mobile Shuffle Google Ensemble EESU

Classe . . MA Hard Vision
(2022) EfficientNet NetV2 Net LeNet (PACIENTE) (PACIENTE)
CIN 0,58 0,55 0,57 0,61 0,58 0,58 0,57
EBV 1,00 1,00 1,00 0,62 0,57 1,00 1,00
GS 0,83 1,00 0,57 0,26 0,71 0,62 0,62
MSI 0,65 0,60 1,00 0,62 0,50 1,00 1,00
Macro AVG 0,77 0,79 0,78 0,53 0,59 0,80 0,80
Weighted AVG 0,71 0,69 0,71 0,56 0,58 0,73 0,73

Fonte: O autor (2025).

Um achado inesperado em relagéo aos resultados publicados por Wang foi a irregula-
ridade do aumento ou diminuicdo das métricas no nivel do paciente comparado ao nivel

dos Tiles. Em outras palavras, Wang apresentou apés a agregacao do nivel dos tiles para
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o nivel do paciente aumento em todas as métricas. Aqui isso néo foi verificado, houve au-
mentos e redugdes das métricas ao agregar o nivel do tile para o nivel do Paciente, usando
o mesmo método. Os resultados e discussao do nivel do paciente serdao apresentados se-
guindo a mesma sequéncia: primeiro precision seguida de recall, f-1 Scores e Area sob a

curva Roc.

3.7.2.2 RECALL no nivel do paciente

No nivel dos pacientes, o ensemble MA e o G.SubtVision obtiveram médias macro de
recall de 0,46 e 0,45, respectivamente. Por classe: CIN 0,95; EBV 0,30; GS 0,38; MSI
0,17-0,22. Média ponderada de 0,61-0,62. A Tabela 6 mostra que os resultados de CIN
foram equilibrados tendendo mais a sensibilidade 0,95 que a precisao descrita acima. Na
categoria EBV o contrario acontece, o ensemble é preciso (1.00), mas muito menos sen-
sivel (0.30) o que significa que quando indica EBV essa predigéo € confiavel, mas que no
entanto quando o resultado sdo outras categorias pode estar sendo falso negativo para
EBV. O mesmo acontece para MSI, o G.SubtVision é preciso para MSI (1.00) no entanto
a sensibilidade foi bem baixa para MSI (0,17) sendo a categoria mais desafiadora para o
modelo G.SubtVision aqui proposto.

Comparando com Wang et al. (2022), que reportou média macro de 0,49, houve leve
reducado de 3 a 4 pontos, com ganhos em CIN (41 pontos) mas perdas em MSI (72-77
pontos). Ao comparar os resultados do autor com a reproducao de sua metodologia (Effici-
entNet) observa-se que a reproducao foi melhor que os resultados previamente publicados

na categoria CIN (0.98 vs 0.54) e bem inferior na categoria MSI ( 0.60 vs 0.94).

3.7.2.3 F1 Paciente

No nivel dos pacientes, os ensembles MA e G.SubtVision alcangaram médias macro
de F1-score de 0,51 e 0,48. Por classe: CIN 0,72; EBV 0,46; GS 0,48; MSI 0,29-0,36.
Média ponderada de 0,55-0,57, como mostrado na Tabela 7. Comparando com Wang et
al. (2022), que obteve 0,52 na média macro, houve variagdo minima (-4 a -1 ponto), com
ganhos em CIN (16 pontos) mas reducées em MSI (41-48 pontos). Superior a EfficientNet
(0,42) em 6-9 pontos na média macro. Na literatura, F1 paciente em subtipagem, como em

Wang et al. (2023) extensao, atinge 0,45-0,55, reforcando a agregacao como desafio.
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Tabela 6 — RECALL: Wang et al. (2022) vs. MA com soft voting em nivel de pacientes

LU Reproducao Mobile Shuffle Google i GZS.U bt
Classe (2022)  EicientNet Netv2 Net LeNet MAHard — Vision

(PCT_IMG) (PACIENTE) (PACIENTE)
CIN 0,54 0,98 0,95 0,81 0,93 0,95 0,95
EBV 0,14 0,30 0,30 0,40 0,40 0,30 0,30
GS 0,36 0,15 0,31 0,25 0,38 0,38 0,38
MSI 0,94 0,60 0,17 0,32 0,06 0,22 0,17
Macro AVG 0,49 0,40 0,43 0,44 0,44 0,46 0,45
Weighted AVG 0,66 0,59 0,60 0,56 0,59 0,62 0,61

Fonte: O autor (2025).

Tabela 7 — F1-score: Wang et al. (2022) vs. ensemble MA com soft voting em nivel de pacientes

Wangetal. o roducio Mobile Shuffle Google Cnsemple — G.Subt
LD (2022)  pricientNet Netv2 Net LeNet AHard - Vision

(PCT_IMG) (PACIENTE) (PACIENTE)
CIN 0,56 0,71 0,71 070 0,71 0,72 0,72
EBV 0,25 0,46 046 048 047 0,46 0,46
GS 0,50 0,27 0,40 025 050 0,48 0,48
MSI 0,77 0,26 029 042 0,10 0,36 0,29
Macro AVG 0,52 0,42 046 046 045 0,51 0,48
Weighted AVG 0,62 0,59 0,54 054 051 0,57 0,55

3.7.2.4 AUC-ROC paciente

Fonte: O autor (2025).

E apresentado No nivel dos pacientes, o ensemble MA soft voting registrou AUC-ROC

de 0,82 (CIN), 0,94 (EBV), 0,71 (GS) e 0,86 (MSI), com média macro de 0,85, como é

possivel observar na Tabela 8. Comparando com Wang et al. (2022), que reportou 0,890
(CIN), 0,764 (EBV), 0,897 (GS) e 0,898 (MSI), observou-se melhoria em EBV (0,176) e

reducao em GS (0,187). Superior a EfficientNet em média (0,73 vs. 0,85). Na literatura,

AUC-ROC paciente em ensembles gastricos, como em Huang et al. (2022), varia de 0,80-

0,90, com ensembles elevando valores em EBV.
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Figura 10 — AUC-ROC G.SubtVision (nivel do paciente)

Curva ROC Soft Voting dos 3 Modelos - MobileNetV2, GoogleNet, ShuffleNet - a Nivel de Paciente
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Fonte: O autor (2025).

Tabela 8 — AUC-ROC: Wang et al. (2022) vs. ensemble MA com soft voting em nivel de pacientes

Wang et al. Reproducao Mobile Shuffle Google Al
CIEERE (2022)  EfficientNet Netv2 Net LeNet , A Soft
(PACIENTE)
CIN 0,890 0,80 0,80 0,81 0,79 0,82
EBV 0,764 0,94 0,95 0,89 0,87 0,94
GS 0,897 0,71 0,72 0,70 0,74 0,71
MSI 0,898 0,82 0,86 0,81 0,84 0,86
Macro AVG 0,83 0,85 0,83 0,83 0,85

Fonte: O autor (2025).

Em comparagdo com Wang et al. (2022), observamos ganhos de +32—-34 pontos em
recall para EBV no nivel de tiles e melhora substancial em PPV no nivel de pacientes, atin-
gindo precisao perfeita (1,00) para EBV e MSI. Esses resultados contrastam com Jeong
et al. (2022), que reportaram recall elevado mas precisdo mais baixa, e complementam
Zheng et al. (2022), que demonstraram aumento de robustez ao integrar CNNs e pato-

logistas. Achados semelhantes foram descritos por Flinner et al. (2022) e sintetizados na
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revisdo sistematica de Cifici et al. (2022), que destaca a necessidade de validagao externa.
Em linha com Zhou et al. (2023), nossos resultados reforgcam o potencial translacional da
Inteligéncia Artificial na patologia digital. Assim, os resultados ndo apenas confirmam avan-
cos recentes na literatura, mas evidenciam o potencial translacional dos ensembles como
ferramenta de apoio a pratica em patologia digital, aproximando a classificagdo molecular

baseada em imagens da acuracia obtida por métodos gen6micos mais custosos.

3.8 CONCLUSAO

O presente estudo demonstrou que o G.SubtVision, um modelo de ensemble Soft com
MobileNetV2, ShuffleNet e GoogLeNet, melhorou significativamente a predi¢cdo dos subti-
pos moleculares do adenocarcinoma gastrico (CIN, MSI, EBV e GS) a partir de imagens
histopatolégicas. Para uma compreensao mais profunda do desempenho do modelo, inclu-
indo uma discussao sobre suas limitagdes, a contribui¢cao individual de cada arquitetura no
ensemble e perspectivas futuras, convidamos o leitor a consultar o Material Suplementar.
Assim, este trabalho ndo apenas confirma avancos recentes na literatura, mas também
aprimora o potencial translacional das CNNs como ferramenta acessivel de apoio ao diag-

nostico.
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4 CAPITULO 2: REDES NEURAIS CONVOLUCIONAIS CLASSIFICAM SUBTIPO MO-
LECULAR DO CANCER GASTRICO EM DATASET TUBULAR-CONTROLADO

RESUMO

Uma abordagem promissora em desenvolvimento para a classificagdo dos subtipos
moleculares do cancer gastrico € o treinamento de redes neurais convolucionais (CNN)
em imagens histopatolégicas supervisionadas por rotulos moleculares. Essa supervisao
molecular pode estar identificando novos atributos por aprendizado profundo (deep lear-
ning). A evidéncia atual, no entanto, ainda ndo demonstra de forma conclusiva a desco-
berta de atributos inéditos. Metodologia: O presente estudo utilizou dados TCGA-STAD
(the cancer genomic atlas - stomach adenocarcinoma) e organizou um novo conjunto de
dados (dataset), apenas com tipos histolégicos tubulares (WHO-2019), denominado da-
taset tubular-controlado (22 casos de tipo tubular categorizados como CIN ou nao-CIN )
e outro conjunto denominado dataset geral (263 casos dos 4 subtipos - CIN, MSI, GS e
EBV). MobilleNet- V2 foi treinada em ambos os datasets e os resultados foram contrasta-
dos. Adicionalmente foram treinadas apenas no dataset tubular-controlado outras 5 redes:
VGG19, DenseNet, ResNet50-v2, Inception-v3 e NASNet-Mobile). Diversas redes obtive-
ram resultados significativos. A NASNet-Mobile apresentou o melhor desempenho global
(AUROC >0,72). O desempenho da MobileNetV2 no dataset tubular controlado para o sub-
tipo CIN teve precisao, recall, F1-score a AUC-ROC respectivamente de 0.62/ 0.73/ 0.66/
0.64 enquanto no dataset geral a mesma rede obteve 0.63/0.69/0.66/0.69. Concluiu-se, ao
contrastar esses resultados, que a predigao do subtipo molecular instabilidade cromossé-
mica CIN em adenocarcinomas gastricos por CNN persiste no dataset tubular-controlado,

reforgcando o papel das CNN em identificar fendtipos profundos.
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4.1 INTRODUCAO

O cancer gastrico permanece como uma das principais causas de mortalidade por can-
cer em todo o mundo, apresentando elevada heterogeneidade clinica, histolégica e mole-
cular. Em 2014, o consércio The Cancer Genome Atlas (TCGA) prop6s uma classifica-
¢ao molecular que subdivide os adenocarcinomas gastricos em quatro grupos principais:
associado ao virus Epstein-Barr (EBV), instavel por microssatélites (MSI), instabilidade
cromossémica (CIN) e genbmica estavel (GS). Essa estratificacdo revela subgrupos com
caracteristicas genéticas e fenotipicas distintas, com impacto direto no prognéstico e nas
opcoes terapéuticas. Entre esses subtipos, a instabilidade cromossémica (CIN) destaca-
se como o subgrupo mais prevalente, associado a alteragées cromossdmicas extensas,
aneuploidia e padrdes clinicos especificos (Cancer Genome Atlas Research Network, 2014).

Tradicionalmente, a pratica diagnéstica em patologia baseia-se na supervisao de espe-
cialistas, utilizando critérios morfolégicos vistos a microscopia 6ptica, como o sistema de
Lauren (intestinal, difuso, misto) uma classificacao classica de 1965 Correcao sugerida:
que diferencia o cancer gastrico em tipos Intestinal, Difuso e Misto (LAUREN, 1965) ou a
classificacao da OMS-2019 (que classifica conforme a morfologia os cancer gastricos em:
Papilifero, Tubular (bem diferenciado, moderadamente diferenciado e mal diferenciado),
Pouco Coeso ( Anel de sinete ou nao-anel de sinete), Mucinoso, Misto, Adenoescamoso,
Carcinoma de células escamosas, Carcinoma indiferenciado, Carcinoma de estroma lin-
foide, Adenocarcinoma hepatéide, com diferenciagéo enteroblastica, tipo glandula fundica
e micropapilar. Essas classificacoes refletem décadas de conhecimento acumulado e au-
mento de sua complexidade buscando categorias mais histomorfolégicas cada vez mais
especificas.

Os avancgos dos métodos de sequenciamento e da compreensdo dos processos carci-
nogénicos com o desenvolvimento de tratamentos especificos tém potencializado o avanco
da classificacao de canceres de diversas topografias, como por exemplo o de mama e da
préstata, com tipos imunofenotipicos bem estabelecidos. No cancer gastrico, a abordagem
molecular ainda ndo esta bem estabelecida. A classificagdo molecular foi proposta pelo
TCGA em 2014, mas ainda ha limitagdes de acessibilidade aos métodos multibmicos nos
quais ela foi inicialmente identificada com tentativas ainda imaturas de estabelecer painéis
de imuno-histoquimica (KIM et al., 2016; FUKAYAMA; RUGGE; WASHINGTON, 2019).

Recentemente, modelos de aprendizado profundo tém demonstrado a capacidade de
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predizer subtipos moleculares diretamente a partir de imagens histopatolégicas coradas
em Hematoxilina e Eosina (H&E). Treinando CNN “s por supervisao de rétulos moleculares.
Estudos pioneiros como Kather et al. (2019) demonstraram a capacidade do deep learning
em predizer MSI diretamente de imagens histolégicas. Nesse contexto, trabalhos como os
de Wang et al. (2022), Flinner et al. (2022) mostraram que redes neurais convolucionais
(CNNs) podem alcangar desempenhos robustos na classificagdo de subtipos do TCGA.
(KATHER et al., 2020; WANG et al., 2022; FLINNER et al., 2022)

O uso de aprendizado profundo em patologia digital pode ser agrupado em duas gran-
des vertentes: a supervisao de especialistas, em que os rotulos sdo definidos por patolo-
gistas a partir de critérios morfolégicos convencionais, € a supervisdo molecular, em que 0s
rétulos derivam de dados gendmicos ou biomarcadores independentes da morfologia. Esta
distincao € fundamental para compreender tanto os avangos recentes quanto as lacunas
que ainda persistem.

Na primeira vertente, os modelos buscam replicar ou ampliar classifica¢des ja estabe-
lecidas por patologistas. Jang et al. (2021) demonstraram que uma CNN Inception-v3 foi
capaz de distinguir adenocarcinomas gastricos diferenciados vs. indiferenciados e muci-
Nosos vs. Ndo-mucinosos, alcangando AUCs-ROC de 0,932 e 0,979, respectivamente, em
nivel de patch. O estudo reforca que a inteligéncia artificial pode reduzir a subjetividade e
acelerar tarefas que ja fazem parte da rotina diagnéstica. De forma semelhante, Kanavati &
Tsuneki (2021) avaliaram o desempenho de CNNs na classificacdo do adenocarcinoma di-
fuso (tipo Lauren), utilizando mais de 2.900 bidpsias de multiplos hospitais japoneses. Os
modelos atingiram AUCs-ROC proximos de 0,95-0,99 em diferentes coortes, mostrando
que a IA pode capturar padrdes histolégicos que patologistas ja reconhecem, mas com
maior rapidez e reprodutibilidade. Em comum, esses trabalhos utilizam abordagem de trei-
namento supervisionado dependente dos rétulos atribuidos por especialistas tomando-os
como verdade de base (ground truth) (JANG; SONG; LEE, 2021)

Na segunda vertente, emergem os estudos que classificam imagens de H&E em sub-
tipos moleculares. Wang et al. (2022) introduziram o método para predicao dos quatro
subtipos do TCGA (CIN, MSI, EBV, GS). Ja Flinner et al. (2022) aplicaram deep learning
nos quatro subtipos do TCGA e compararam a testes moleculares independentes e imuno-
histoquimica. Essas abordagens tém em comum o treinamento supervisionado tomando
dados moleculares como ground truth. Esses dados moleculares devem ser alcancados

por meios nao operador-dependente, através de sequenciamento ou sondas, auxiliadas
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métodos de bioinformatica.

A ideia central deste estudo é fazer uso das redes neurais computacionais como instru-
mento de descoberta de fenbtipos previamente desconhecidos associados ao genétipo do
rétulo molecular. Por serem descobertos por métodos de aprendizado profundo, podem ser
de maneira geral chamados de atributos profundos (deep features) e, quando especifica-
mente referentes a gendtipos de rétulos moleculares, sao por definicao fenotipos profundos
(deep phenotypes). Apesar dos avangos, a literatura de supervisdo molecular ainda sofre
de uma limitagcao central: a auséncia de controles estritos de morfologia. Ndo esté ainda
comprovado se as CNNs estao de fato aprendendo atributos profundos subjacentes de-
correntes de genotipos (fendtipos profundos) ou apenas reproduzindo associagées com
tipologias ja conhecidas (como tubular vs. papilifero). Até o momento nenhum estudo iso-
lou um Unico subtipo morfoldgico e testou se o desempenho se mantém. (FLINNER et al.,
2022; WANG et al., 2022)

No presente trabalho se avalia se esses modelos de fato aprendem atributos néo pre-
viamente descritos de gendtipos, ou apenas captam associagées com tipologias morfolé-
gicas ja estabelecidas. Caso a precisdo dos modelos possa ser explicada por associagoes
com tipos histopatolégicos, o potencial da supervisao de rotulos moleculares seria apenas
a automatizagao de classificacdes ja disponiveis. Por outro lado, caso haja identificagao
de padrdes fenoétipos previamente desconhecidos se apoia o potencial das CNN como fer-
ramenta de investigacdo cientifica no tema. O presente trabalho busca preencher essa
lacuna, avaliando se a predicdo por CNNs persiste em um conjunto tubular-controlado, no

qual a tipologia histolégica é mantida constante segundo a classificagao OMS-2019.

4.2 METODOLOGIA

Essa secéo descreve a metodologia adotada nos experimentos realizados. Inicialmente,
foi feita a organizacao e descricdo dos conjuntos de dados utilizados, desde as imagens
de laminas inteiras até a construcdo dos datasets especificos (tubular-controlado e ge-
ral), bem como a divisdo em grupos de treinamento, validagéo e teste. Em seguida, séo
detalhadas a arquitetura de redes e o processo de treinamento, assim como as métricas
de avaliacao aplicadas. Por fim, sdo discutidos os aspectos relacionados a ética, repro-
dutibilidade e disponibilidade dos dados e modelos. A Figura 1 apresenta um fluxograma

resumindo o pipeline metodoldgico.
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Figura 1 — Fluxograma das abordagens do dataset tubular controlado e geral
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4.2.1 Dataset: Conjunto de Dados

O estudo foi realizado utilizando o projeto STAD (Stomach Adenocarcinoma) da base
publica do TCGA (The Cancer Genomic Atlas) O conjunto de dados de imagens histopa-
tolégicas e rotulos dos subtipos moleculares foi extraido do projeto STAD (Stomach Ade-
nocarcinomay), disponivel no banco de dados publico TCGA (The Cancer Genomic Atlas)

(The Cancer Genome Atlas Research Network, 2014).

4.2.1.1 Imagens de ldminas inteiras

O TCGA disponibiliza imagens de laminas inteiras (WSI) coradas em hematoxilina e
eosina (H&E) em formato SVS de alta qualidade produzidas por patologia digital a 40x

associadas aos subtipos moleculares CIN, EBV, MSI e GS.

4.2.1.2 Tipos Histopatolégicos

A classificagao histopatolégica disponivel na base do TCGA ¢é a classificagao de Lau-

ren, Para os objetivos do presente estudo foi utilizada a classificagdo da OMS de 2019.
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4.2.1.3 Construgdo do dataset tubular-controlado

95 casos do TCGA foram examinados por médicos especialistas em patologia com
mais de 10 anos de atuacgao diagndstica que classificaram os casos segundo a classifica-
cao da OMS 2019 e descreveram detalhes das caracteristicas particulares da morfologia.
Foram selecionados apenas casos classificados como Tubulares. Foram incluidos 23 ca-
sos representados por 37 imagens de lamina inteiras. As imagens foram agrupadas por 3
subtipos de tubulares: bem (2), moderadamente (32) e mal diferenciados (5). Devido ao
relativamente pequeno numero de casos e da diminuta presenca das classes minoritarias
escolheu-se tratar o problema de maneira binaria entre as classes majoritarias. O dataset
foi por isso categorizado para CIN ou ndo-CIN (MSI) O pré-processamento das imagens
compreendeu duas etapas principais: (I) segmentagcédo das whole slide images (WSIs) em
patches de 224x224 px representando apenas areas cancerigenas tendo sido orientado
por médicos patologistas experientes; e (Il) normalizagao de cor aplicando o método Ma-

cenko (MACENKO et al., 2009).

4.2.1.4 Grupos treinamento, validagao e teste dos experimentos com o dataset tubular-

controlado

Os grupos treinamento, validagao e teste foram construidos de maneira a ter uma dis-
tribuicdo semelhante entre tubulares bem, moderadamente e mal diferenciados em nossos
grupos de treinamento, validagéo e teste. A separacao foi feita por casos, ndo permitindo
contaminacao de patches entre os grupos. Para a classe CIN, as imagens foram distribui-
das em 12 para treino, 3 para validacao e 4 para teste. Para a classe ndo-CIN as imagens
foram distribuidas em 12 para treino, 4 para validagao e 4 para teste Figura 2. Ao se extrair
o patches de cada imagem obteve-se na classe CIN uma distribuicdo de 5600 patches para
treino, 1487 para validagéao e 1725 para teste. Enquanto que na classe nao-CIN obteve-se
uma distribuicdo de 5896 patches para treino, 3586 patches para validacéo e 3908 patches

para teste Figura 3.
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Figura 2 — Distribuicao de Imagens por Classe e Conjunto
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Figura 3 — Distribuigao de Patches por Classe e Conjunto
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4.2.1.5 Construgdo do dataset geral

Foram utilizadas 476 imagens de laminas inteiras (WSI) coradas com Hematoxilina e
Eosina (H&E), com resolugcédo de 40x. Como o numero de imagens é relativamente bem
maior essas imagens foram categorizadas nos quatro subtipos moleculares: CIN (232),

MSI (114), GS (73) e EBV (57). Durante o processo de criagdao do dataset geral para o
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modelo de analise foram aplicadas trés etapas principais de pré-processamento, a saber:
Segmentacao em Tiles - as 476 imagens WSI foram divididas em pequenas imagens qua-
dradas de 224x224 pixels ( tiles). O corte foi realizado com um fator de ampliagdo de 10x.
Durante este processo, tiles com menos de 50% de presenca de tecidos foram removidos.
Ao final, cerca de 1.500.000 tiles foram gerados, distribuidos entre os subtipos molecula-
res. Por fim, aplicou-se uma normalizagao de cor, um template de referéncia foi utilizado
para ajustar o espaco de cor e a luminosidade dos tiles, utilizando o método de Macenko

(MACENKO et al., 2009)

4.2.1.6 Grupos treinamento, validacao e teste dos experimentos com dataset geral

Nesta etapa, aplicou-se divisao aleatéria de dados para treinar, validar e testar os mo-
delos. Primeiro, divisao inicial dos dados para os grupos Treino (241 casos) ( 950.434 tiles)
correspondendo a 72% do dataset, Validagcdo (153 casos) ( 105.603 tiles), 8% do data-
set e grupo Teste Hold-Out com 82 casos (179.952 tiles), 20% do dataset. Medidas foram
tomadas para ndo permitir contaminagdo entre os tiles de um mesmo paciente entre os

grupos.

4.2.2 Arquitetura e treinamento

Foram treinadas no dataset tubular-controlado 6 arquiteturas de redes neurais con-
volucionais (CNNs): MobileNet-V2, VGG19, DenseNet, ResNet50-v2, 2, Inception-v3 e
NASNet-Mobile. No dataset geral foi treinada MobileNet-V2. Todas as redes tiveram pe-
sos inicializados a partir do ImageNet (DENG et al., 2009) Os modelos foram treinados com
dois valores distintos de learning rate (1e-4 e 1e-3), a fim de avaliar a estabilidade e sen-
sibilidade ao parametro. Utilizou-se o otimizador Adam (KINGMA; BA, 2015), com weight
decay e estratégia de reducao do learning rate on plateau. O treinamento foi realizado
em mini-batches de 32 imagens, com early stopping monitorando a perda de validacao,
interrompendo o processo quando ndo havia melhora apés 15 épocas consecutivas. (PRE-

CHELT, 1997)
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4.2.3 Meétricas utilizadas

As métricas empregadas foram: Precisao (valor preditivo positivo, PPV): métrica priori-
taria, refletindo a proporcao de predigdes positivas corretas. A énfase no PPV se justifica
pelo contexto clinico de diagndstico diferencial, no qual falsos positivos podem levar a con-
dutas terapéuticas inadequadas e risco direto ao paciente. Essa escolha esta alinhada as
recomendacgdes das diretrizes STARD 2015 para estudos de acuracia diagnéstica. Recall
(sensibilidade): proporcao de verdadeiros positivos corretamente identificados, importante
para mensurar a capacidade de detecgao de casos. F1-score: média harmonica entre pre-
cisdo e recall, avaliando o equilibrio entre ambas. Area sob a curva ROC (AUROC): métrica

global de discriminagao avaliando confianga do modelo nas predicoes.

4.2.4 Etica, reprodutibilidade e disponibilidade

Os dados utilizados neste estudo sédo provenientes do The Cancer Genome Atlas —
Stomach Adenocarcinoma (TCGA-STAD), um repositério publico e de acesso aberto, dis-
ponivel no Genomic Data Commons. Por se tratar de dados previamente coletados, ano-
nimizados e disponibilizados em dominio publico, ndo se faz necessario a submisséao ao
comité de ética local, em conformidade com as diretrizes internacionais para o uso secun-

dario de dados publicos.

4.3 RESULTADOS E DISCUSSAO

Resultados no Dataset Tubular-Controlado

No conjunto tubular-controlado, composto exclusivamente por adenocarcinomas gas-
tricos tubulares reclassificados de acordo com a OMS-2019 por médicos especialistas em
patologia com mais de 10 anos de atuacgdo., As redes neurais convolucionais (CNNs) de-
monstraram capacidade de predizer o subtipo molecular CIN de forma consistente e esta-
tisticamente superior ao acaso.A Tabela 1 apresenta os resultados para as seis arquiteturas
avaliadas (MobileNetV2, VGG19, DenseNet, ResNet50-v2, Inception-v3 e NASNet-Mobile),
treinadas com dois valores de taxa de aprendizado (learning rate, Ir: 1e-4 e 1e-3). As mé-

tricas incluem acuracia (acc), F1-score, precisdao (PPV), recall e &rea sob a curva ROC
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(AUROC). Observa-se que o NASNet-Mobile obteve o melhor desempenho global com Ir
= 0,001, alcangando F1 = 0,71, precisdo = 0,72, recall = 0,71 e AUROC = 0,73. Essa ar-
quitetura destacou-se pela robustez, com valores médios de AUROC > 0,70, confirmando
sua eficiéncia em cenarios restritos. As demais redes apresentaram F1-scores variando de
0,59 a 0,70 para Ir = 0,0001, e de 0,61 a 0,71 para Ir = 0,001, com AUROC consistente-
mente acima de 0,60 em todos os casos. A macro-F1 média no dataset tubular-controlado
foi de 0,47-0,49, indicando que, mesmo sob controle morfoldgico estrito, os modelos man-
tém discriminagdo molecular para CIN. Notavelmente, a taxa de aprendizado mais alta (Ir
= 0,001) tende a melhorar o recall em varias arquiteturas, como na MobileNetV2 (recall =

1,00), embora as custas de uma leve redugédo na precisao em alguns casos.

Tabela 1 — Resultados CNN “s no dataset tubular controlado.

Arquitetura Ir ACl(JO;a)c'a F1-Score Precisao Recall AUROC
o
MobileNetV2 0,0001 0,59 0,66 0,62 0,73 0,64
0,001 0,56 0,71 0,56 1,00 0,56
0,0001 0,67 0,70 0,69 0,73 0,69
VGG19
0,001 0,61 0,66 0,64 0,71 0,64
0,0001 0,65 0,68 0,68 0,69 0,66
DenseNet
0,001 0,54 0,64 0,56 0,77 0,61
’ 1 ’ ’ H 7 571 ’ 7
ResNet50-v2 0,000 0,65 0,69 0,6 0 0,6
0,001 0,60 0,61 0,67 0,57 0,63
, 0,0001 0,60 0,59 0,68 0,53 0,62
Inception-v3
0,001 0,64 0,67 0,69 0,66 0,68
NASNet-Mobile 0,0001 0,65 0,67 0,70 0,66 0,67
0,001 0,69 0,71 0,72 0,71 0,73

Resultados no dataset tubular-controlado. As métricas sao calculadas em nivel de tile, priorizando a precisao
(PPV) conforme o contexto clinico de diagndéstico diferencial. Valores em negrito indicam o melhor desempe-
nho por arquitetura para os valores de learning rate (1e-4 e 1e-3) avaliados.

4.3.1 Resultados no Dataset Geral

Os resultados da MobileNetV2 no dataset geral sédo visualizados na Tabela 2. Essa

detalha as métricas por subtipo molecular (CIN, EBV, GS, MSI), com precisao, recall, F1-
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score. No subtipo CIN (classe majoritaria), a precisdo foi de 0,63, recall de 0,69 e F1
de 0,66, com suporte de 89.707 tiles. Para classes minoritarias, os valores foram mais
modestos: EBV (precisado 0,49, recall 0,33, F1 0,39), GS (precisao 0,29, recall 0,44, F1
0,35) e MSI (precisao 0,50, recall 0,32, F1 0,39).

Tabela 2 — Resultados da MobileNetV2 no dataset geral.

Classe Precisao Recall F1-Score AUC-ROC
CIN 0,63 0,69 0,66 0,69
EBV 0,49 0,33 0,39 0,77
GS 0,29 0,44 0,35 0,67
MSI 0,50 0,32 0,39 0,69
Macro AVG 0,48 0,44 0,45

Weighted AVG 0,53 0,52 0,52

Micro AVG 0,76

Métricas calculadas em nivel de tile, com énfase na precisao para o subtipo CIN (0,63). O suporte reflete a
distribuicao desbalanceada, com CIN como classe dominante.

Em resumo, o NASNet-Mobile apresentou o melhor desempenho no dataset contro-
lado, destacando-se na identificagdo de CIN em adenocarcinomas tubulares (F1 médio >
0,70) mas varias redes tiveram um desempenho acima do aleatério. Isso demonstra que
as CNNs capturam padrbes histopatoldgicos nao previamente conhecidos, rejeitando a
hip6tese nula e confirmando a utilidade da supervisdo molecular para revelar fenétipos
profundos.

Os resultados da MobileNet-V2 no dataset tubular-controlado e no dataset geral para
o subtipo CIN foram muito aproximados. Ha4 uma evidente limitagdo metodolégica ao com-
parar datasets diferentes, sendo um deles muito maior e outro categorizado para um pro-
blema binario e, portanto, ndo é possivel afirmar que os resultados foram iguais do ponto
de vista estatistico, pois nao € o mesmo grupo de teste. No entanto, ndo seria necessario
provar que ambos sao idénticos para demonstrar que a CNN esta identificando um atri-
buto profundo que vai além do tipo tubular, caso o desempenho da CNN fosse acima do
aleatério ambora inferior no dataset tubular-controlado em relagao ao grupo controle do
dataset geral ja estaria demonstragdo que ha a participagao parcial de um atributo pro-
fundo. O contraste de resultados, ainda mais, foi surpreendente por sua proximidade: O
desempenho da MobileNet-V2 no dataset tubular controlado para o subtipo CIN teve pre-

cisao, sensibilidade (Recall), F1-score e AUC-ROC respectivamente de 0.62/ 0.73/ 0.66/
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0.64 enquanto no dataset geral a mesma rede obteve 0.63/ 0.69/ 0.66/ 0.69. A diferenca
de precisao foi de 1 ponto percentual, e o F1-Score foi idéntico. Indicando uma diferenca
muito pequena de falsos positivos.

Os autores compreendem a limitacdo metodolégica de comparar os resultados de da-
tasets diferentes, essa porém é o nucleo da abordagem que precisara ser metodologi-
camente aprimorada. Defendem, no entanto, o potencial explicativo da abordagem que
permite testar se de fato a CNN esta classificando atributos profundos (deep features) ao
organizar um dataset controlado para os atributos conhecidos.

E uma contribuicdo médica ao campo, ja que os especialistas podem desafiar o poder
de predigcdo da CNN ao organizar um dataset especifico para testar uma hipétese. Um
préximo passo no desenvolvimento da abordagem é ajustar o treinamento para poder rodar
o modelo treinado no dataset tubular-controlado no grupo teste do dataset geral, assim
podendo comparar estatisticamente os resultados dos modelos ja que o grupo teste seria

entdo o0 mesmo.

4.4 CONCLUSAO

Este estudo aponta para que redes neurais convolucionais (CNNs) sdao capazes de
predizer a instabilidade cromossémica (CIN) em adenocarcinomas géastricos no dataset
tubular-controlado (composto exclusivamente por tumores tubulares). A manutencao de
desempenho acima do acaso e aproximada (por contraste) com o grupo controle do dataset
geral sugere que esses modelos identificam padrées histomorfoldégicos subjacentes ao

subtipo molecular e ndo associagcées com a classificagao histopatolégica WHO 2019.
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5 CAPITULO 3: G.SUBTFOREST — CLASSIFICADOR DE SUBTIPOS MOLECULA-
RES DO CA GASTRICO COM TCGA VIA RANDOM FOREST EM PAINEIS OTIMI-
ZADOS

RESUMO

A aplicacao da classificagdo molecular do adenocarcinoma gastrico permanece um
desafio. Este estudo apresenta os G.SubtForest (Gastro Subtyping Trough Random Forest)
classificadores com base em painéis de mutagao para subtipos moleculares. Dois paineis
sdo aqui propostos com 18 e 9 genes respectivamente. Metodologia: A partir de 18.600
variantes de nucleotideo (SNV) somaticas ndo-sindnimas da base TCGA-STAD (The Can-
cer Genomic Atlas - Stomach Adenocarcinoma) foram organizados 10 grupos treinamento
e validagao utilizando K-fold (k=10) foram entao treinados modelos de Random Forest e
utilizado SHapley Additive exPlanations (SHAP) para identificar os genes de maior influén-
cia colaborativa nas predicoes. Os resultados dos 10 modelos foram consolidados em dois
painéis otimizados: um com 18 genes, adequado ao sequenciamento de nova geragao, e
outro com 9 genes, apropriado para imuno-histoquimica. Novos modelos G.SubtForest 18
e G.SubtForest 9 foram treinados para classificacdo de casos a partir da informagéao da
mutacdo em cada um dos paineis. Os G.subtForest mostraram desempenho consistente
(AUC-ROC avg 0,91 e 0,89, respectivamente). Os resultados evidenciam ganhos relevan-
tes na estratificacdo de pacientes e oferecem solugéo reprodutivel e escalavel para uso

translacional. Cédigo e material suplementar disponiveis.
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5.1 INTRODUGAO

O adenocarcinoma gastrico representa uma das principais causas de mortalidade por
cancer no mundo, com heterogeneidade histolégica e molecular que complica o diagnos-
tico e tratamento (Cancer Genome Atlas Research Network, 2014). A classificagdo molecular,
proposta pelo The Cancer Genome Atlas no projeto Stomach Adenocarcinome (TCGA-
STAD), descobriu quatro clusters de dados multibmicos denominados subtipos molecula-
res: positivo para virus Epstein-Barr (EBV), instabilidade de microssatélites (MSI), geno-
micamente estavel (GS) e instabilidade cromossémica (CIN) (Cancer Genome Atlas Research
Network, 2014).

Apesar dos avancos cientificos, o avango do diagnéstico de rotina enfrenta lacunas
significativas que n&o capturam a heterogeneidade molecular, contribuindo para altas taxas
de recidiva(KIM et al., 2016).

A classificagcao da Organizagcao Mundial da Saude (WHO) para o cancer gastrico é ba-
seada em apenas em aspectos histomorfoldgicos. Depois de descrever toda a classificagao
dos tipos histopatoldgicos cita a classificagcao molecular apenas no tépico sobre prognds-
tico, descrevendo apenas o que é frequente ou ndo em cada subtipo molecular. Embora a
classificacao da (WHO) represente um marco na padroniza¢ao do diagnéstico histopatol6-
gico do cancer gastrico, seu escopo permanece centrado em critérios morfolégicos e nao
incorpora, de forma sistematica, informagdes moleculares ou genémicas.

Essa lacuna limita a capacidade de correlacionar padrdes histolégicos com proces-
s0s carcinogénicos mais precisos, restringindo o potencial de estratificacdo prognéstica
e preditiva. A crescente disponibilidade de dados multibmicos e o avango da bioinforma-
tica, indicam caminhos para futuras revises das diretrizes, capazes de integrar morfolo-
gia, marcadores imuno-histoquimicos e assinaturas genéticas. Tal abordagem ampliara a
utilidade clinica das classificacdes, permitindo diagnésticos mais alinhados com a defini-
¢ao de terapias-alvo e maior alinhamento com a medicina de precisao(FUKAYAMA; RUGGE;
WASHINGTON, 2019) O presente estudo busca contribuir nessa diregao.

Trabalhos propuseram painéis imuno-histoquimicos (IHC) para subtipos moleculares do
adenocarcinoma gastrico, como o de Kim et al., que propdés MLH1, PMS2, MSH2, MSHS6,
HER2, EGFR, MET, PTEN e P53 e ISH para EBV em 438 pacientes. encontrando ape-
nas 14 EBV,(3,3%); 21 MSI (4,8%); (associando-o0 a deficiéncia nas proteinas de reparo
de mismatch mmr - MLH1, PMS2, MSH2, MSH®6). 218 (49,8%) sobreexpressao de RTKs
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(HER2,EGFR,MET) e em 258 (59,1%) p53 overexpressed/null foi identificada uma alta
prevaléncia de mutac¢des ou inativagdo proteica, associando ambos os fenétipos a CIN. No
entanto, ha grandes limitacbes metodoldgicas nas associagdes entre os fendtipos imuno-
histoquimicos e os subtipos moleculares feitos pelos autores. Eles o fazem apenas por
inferéncia indutiva, argumentando razoabilidade apenas por associa¢des probabilisticas
com o que foi publicado em artigo (The Cancer Genome Atlas Research Network, 2014) sem veri-
ficar nos dados originais suas suposi¢coes ou utilizar os mesmos critérios diagndésticos do
artigo original (sequenciamento de exoma e metiloma).

Ja Flinner et al (FLINNER et al., 2022) apresentaram um modelo de classificacao de sub-
tipos moleculares com IA em imagens histopatolégicas do TCGA e compararam os resulta-
dos desse modelo aos dos marcadores imunohistoquimicos propostos por Kin et al em um
grupo com controle externo por analise de variagao de numero de cépias (copy number va-
riation) encontrando que o modelo de IA em imagens foi melhor que o painel previamente
proposto para subtipo CIN. Por outro lado, Wang et al. (2022) desenvolveram um modelo
de rede neural convolucional usando TCGA como fonte de imagens histopatolégicas e ré-
tulos derivados de sequenciamento multibmico, oferecendo uma base molecular robusta
para os subtipos EBV, MSI, GS e CIN.

Paineis genéticos sdo de suma importancia para a classificacdo de tumores, como
ja ocorre em outros tumores como mama e préstata. Esses paineis devem somar infor-
macoes significativas aos achados histomorfoldgicos. Dependendo do tamanho do painel,
métodos variam: IHC para painéis pequenos e sequenciamento de proxima geragao (NGS)
para painéis maiores, mas problemas como cobertura inadequada em blocos de parafina
fixados em formalina (FFPE) de painéis grandes e inadequacgao de acesso e aumento do
custo saude persistem, limitando a translagéo para a rotina de painéis grandes (KIN et al.,
2016; FUKAYAMA; RUGGE; WASHINGTON, 2019).

O aprendizado de maquina tem grande potencial na descoberta de mutag¢des chave
para diagnostico diferencial de cancer, com algoritmos como Random Forest (RF) destacando-
se por sua robustez em dados de alta dimensionalidade, reducdo de viés em classes
desbalanceadas (ex.: EBV minoritario) e selegdo de features via importancia Gini, como
demonstrado em estudos recentes para subtipos TCGA (XU et al., 2023). (JANG et al., 2023).

O objetivo deste estudo é desenvolver um sistema preditivo para subtipos moleculares
do cancer gastrico otimizando Paineis Genéticos ao fazer uso de Random Forest em dados

do TCGA-STAD, A importancia deste estudo reside no avango do campo, fornecendo uma
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ferramenta bioinformatica reprodutivel (com codigo suplementar) para estratificacao de pa-
cientes, facilitando terapias direcionadas e reduzindo mortalidade, alinhado a abordagens

multibmicas integradas (LIU et al., 2024).

5.2 METODOLOGIA

A metodologia desta etapa foi delineada para organizar o processo de aquisigéo, pre-
paragao e andlise dos dados do SNV-TCGA STAD. Inicialmente, os dados foram coletados
e estruturados, seguidos pela definicdo dos agrupamentos em treino, validacao e teste.
Na sequéncia, descreve-se o processo de treinamento dos modelos e a consolidagéo dos
painéis obtidos. Por fim, sdo apresentadas as métricas utilizadas para avaliagédo dos re-
sultados. A Figura 1 ilustra, em formato de fluxograma, o fluxo metodolédgico, desde a

aquisicao dos dados até a avaliacao final.

Figura 1 — Fluxograma do pipeline da criagao dos paineis genéticos.
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5.2.1 Aquisicao de dados SNV-TCGA STAD

A deteccdo de mutagdes somdticas por variagdo de nucleétidos unicos (SNV) foi ini-
cialmente realizada pelo pipeline do TCGA utilizando o software VarScan2 (v2.4.4), que
compara as amostras tumorais ao DNA germinativo emparelhado para identificar muta-
¢bes somaticas. Os arquivos de saida (geralmente .maf, .vcf ou .tsv) foram posteriormente
anotados com ferramentas como SnpEff ou ANNOVAR, que classificam o tipo funcional
de cada variante (por exemplo: sinbnima, missense, nonsense, splicing, etc.) e atribuem a
cada uma um gene correspondente. Para esta pesquisa, foram utilizadas apenas as vari-
antes com impacto funcional ndo-sindbnimo, com exclusdo sistematica das mutagdes clas-
sificadas como "synonymous_variant", a fim de focar em alteracdes com consequéncias
de alteracdes de traducéo proteica. Apds o processamento, as mutacoes foram agrupadas
por gene e por subtipo molecular (EBV, MSI, GS, CIN), com o objetivo de determinar os

genes mais frequentemente mutados em cada categoria.

5.2.2 Agrupamentos: Treino, Validacao e Teste.

Nesta etapa, foram criados aleatoriamente dois grupos de casos: Um grupo treino e
validagéao com (290) casos e um grupo teste hold out com 81 casos oriundos de um dataset

com montante de 443 casos.

5.2.2.1 Grupo Treinamento/Validagao

Os grupos de treinamento e validagao para cada modelo (explicados no tépico treina-
mento abaixo) foram separados utilizando o método K fold. Uma utilizagado parcial do k-
fold cross validation com o objetivo, apenas, de gerar multiplas separacdes aleatérias de
conjuntos de treinamento e validacdo. Consequentemente, treinando 10 modelos (K=10),
como pode ser obsevada pela Figura 2. A inten¢do do uso do método foi reduzir o viés em

grupos de validacao de classes minoritarias. As separagdes treino/validagao foram 90/10.
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Figura 2 — Exemplo de Validagdo Cruzada K-Fold (K=10)
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5.2.2.2 Grupo Teste

81 casos foram separados para uso no teste final (hold out) tanto com imagens histopa-
tolégicas como com as informagdes sobre SNV dos 10 genes do painel de genes influen-
tes. Medidas foram tomadas para evitar contaminacéo das imagens dos casos do conjunto
teste com os outros conjuntos. Ap6s analise da distribuicdo de casos no grupo teste, foram
acrescentados aleatoriamente mais casos das classes minoritarias. Totalizando 81 casos.

Distribuidos 41 CIN, 18 MS, 12 GS e 10 EBV, vide Figura 3.
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Figura 3 — Distribuicdo de Casos no Grupo Teste (Hold-out)
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5.2.3 Treinamento

Foi empregado o algoritmo Random Forest (implementacdo RandomForestClassifier),
configurado com random_state=42, execugdo paralela (n_jobs=-1) e balanceamento au-
toméatico das classes (class_weight="balanced’). A etapa de ajuste de hiperparametros
foi conduzida por meio do RandomizedSearchCV, definido com n_iter=10, validagao cru-
zada de trés particdes (cv=3), processamento paralelo (n_jobs=-1) e random_state=42.
O espago de busca contemplou os seguintes hiperparametros: quantidade de arvores no
ensemble (n_estimators € 100, 200, 300, 400, 500), numero maximo de atributos con-
siderados por divisao (max_features € ‘sqrt’, log2’, None), profundidade maxima permi-
tida (max_depth € None, 10, 20, 30), nimero minimo de amostras exigido para realizar
uma divisdao (min_samples_split € 2, 5, 10), nimero minimo de amostras por né folha
(min_samples_leaf € 1, 2, 4) e uso ou ndao do método bootstrap para amostragem (boots-
trap € True, False).

10 modelos de Random Forest foram treinados (K-fold, k=10) nos dados tabulados
SNV (Varscan) nao-sinénimos contendo 18.600 genes para a tarefa de classificagéo dos 4
subtipos moleculares (denominada lista todos os genes).

Em cada modelo treinado em um dos 10 folds (explicados em agrupamentos) foi em-
pregado o método SHAP (SHapley Additive exPlanations) para avaliagao da influéncia de

cada gene nas predi¢coes dos modelos. Para cada subtipo, foram selecionados os 10 genes
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com maior magnitude de influéncia para a predi¢gdo de cada modelo. 2.4 Consolidagdo das
listas (SHAPLEY, 1953; CHEN et al., 2025)

As 40 listas de genes (10 para cada um dos 4 subtipos) foram consolidadas por dife-
rentes metodologias explicadas a seguir.

Novos modelos de Random Forest (K-fold=10) foram treinados conforme cada painel
consolidado, mantendo somente as informagdes relevantes aos genes presentes no painel

em treinamento.

5.2.4 Consolidacao dos painéis

Inicialmente, as 40 listas (maiores magnetudes de SHAP) foram consolidadas por vo-
tacao simples (Hard Voting), compondo-se assim um painel dos 10 genes mais frequentes
nas listas de influentes dos modelos. Denominado painel de 10 genes mais influentes por
frequéncia de aparéncia nas listas.

Um segundo método utilizado para consolidar as listas da maneira a ter mais explicabi-
lidade bioldgica foi primeiro excluir os genes das listas cujos SHAP eram negativos. O que
significa que a sua influéncia se da quando nao esta presente.

A partir das listas contendo somente SHAP positivo, os painéis foram consolidados por
método de pontuagédo ponderada que considera a posicao nos rankings e a frequéncia de
aparicao entre subtipos para 4 listas (denominadas listas 10 mais por subtipo).

Essas quatro listas foram entdo consolidadas em uma Unica lista de 36 genes ordena-
dos por influéncia na predigdo dos quatro subtipos por método de pontuagcado ponderada
(denominada Painel 36 mais influentes).

O Método do Cotovelo foi entao utilizado para determinar o niumero ideal do ponto de
vista de custo-efetividade de genes no painel final, identificando o ponto de corte onde a
variancia explicada se estabiliza, 18 genes (75% de variancia e até o 5° de cada subtipo).
A dimensao do painel foi também escolhida para ser apropriada a NGS (New Generation
Sequencing) com alta profundidade de cobertura em bloco de parafina, maior que 500X.

Foi também selecionado um painel viavel reduzido para ser apropriado a imuno-histoquimica,
com 9 genes (Os 3 primeiros de cada subtipo, excluindo dois genes que nao tém ainda an-
ticorpos listados no genecard.org).(STELZER et al., 2016) Foram também treinados modelos
de Random Forest para classificagao a partir do painel imuno-histoquimico proposto (KIN
etal., 2016)
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5.2.5 Meétricas

As métricas foram computadas com scikit-learn (v1.2.2), incluindo médias macro (ndo
ponderadas) e ponderadas (ponderadas por classe). Relatérios por fold e ensemble, com
curvas ROC visualizadas via TensorBoard. As métricas foram calculadas nos niveis de
tiles e pacientes, incluindo: Precisao (eq 5.1) — Proporgao de predigdes positivas corretas;
Sensibilidade ou Recall (eq 5.2) — Proporgao de positivos reais corretamente identificados;
F1-Score (eq 5.3) —Média harménica de precisdo e recall; AUC-ROC: Area sob a curva

ROC (one-vs-rest por classe)

VP

isd0 = ——— A

Precisio VP FP (5.1)
VP

= — 2

Recall TP L FN (5.2)

Precisé Recall
F1-Score = 2 x reCI_S?O X neca (5.3)
Precisao + Recall

1
AUC-ROC = / TPR(FPR)d(FPR) (5.4)
0

onde:

VP = Verdadeiros Positivos (True Positives)

F'P = Falsos Positivos (False Positives)

FN = Falsos Negativos (False Negatives)

VN = Verdadeiros Negativos ( True Negatives)

TPR = ypie (Taxa de Verdadeiros Positivos ou Recall)

FPR = FPEF—PVN (Taxa de Falsos Positivos)

A curva ROC é uma ferramenta grafica utilizada para avaliar o desempenho de um
modelo de classificacdo binaria, representando o trade-off entre a taxa de verdadeiros
positivos (Recall) (TPR) e a taxa de falsos positivos (FPR) a medida que a confianga do

modelo na predicao aumenta.
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5.3 RESULTADOS E DISCUSSAO

Primeiro sdo apresentados os painéis com os genes mais influentes. Na sequéncia,
sao apresentados os resultados do poder de predicdo por Random Forest, discutidas as
diferentes métricas de precisao, recall, F1 score e AUC-ROC. Depois é apresentada as
comparagOes das métricas entre entre os painéis imuno-histoquimico aqui proposto e o
poder de predicdo do painel imunoistoquimico proposto por Kim et al 2016 na base do
TCGA STAD.

5.3.1 Descricao dos Painéis Genéticos

A andlise de frequéncia e importéancia resultou na definicdo dos seguintes painéis ge-

néticos:

+ 10 genes mais frequentes: ARID1A, TP53, RNF213, MUC16, PIK3CA, KMT2D,
HERC2, DOCK3, SYNE1, PCDHB13.

» Painel TOP 36: TP53, ARID1A, MUC16, ZBTB41, GGNBP2, PIK3CA, SYT17, MEF2C,
MUC6, RNF213, SEC31A, BOC, CDH18, NFASC, BHLHB9, FAS, HERC2, SYNET1,
ATM, CHD1, GRIP1, PCDHA2, PRCC, GJD4, KMT2D, DOCK3, KDM2B, KIF21A,
SDR9C7, CD14, CTNNBL1, DYSF, XKR6, GLIS2, MYO15A, PTPN14.

Nota: No material suplementar estao disponiveis 0s pesos ponderados e a influéncia

na predicao de cada subtipo dos 36 genes.

+ Painel TOP 18: TP53, ARID1A, MUC16, ZBTB41, GGNBP2, PIK3CA, SYT17, MEF2C,
MUC6, RNF213, SEC31A, BOC, CDH18, NFASC, BHLHB9, FAS, HERC2, SYNE1.

Os pesos ponderados e ordem de importancia por subtipo disponiveis na tabela 1

Essa reducéo prioriza um numero de genes que representa mais de 75% da variancia
acumulada na pontuacao ponderada € € um painel apropriado para sequenciamento de
alta profundidade de cobertura maior que 500X. O que é importante para o diagndostico em

material emblocado em parafina proveniente de rotinas diagndsticas.

+ TOP 9 IHQ com os 9 genes: TP53, ARID1A, MUC16, ZBTB41, GGNBP2, PIK3CA,
MEF2C, MUC6, RNF213
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Esse painel incluiu inicialmente 11 genes até o 3% gene por subtipo. Dois genes foram

excluidos, SYT17 e SEC31A, pois ainda nao tém anticorpos listados no Genecard.org.

(GENECARDS, 2025)

Esse painel reduz o custo e aumenta a acessibilidade sobremaneira, pois é apropriado

para estudos imunoistoquimicos.

Tabela 1 — Composigao dos Painéis Genéticos Otimizados.

Posicao Gene

Soma de Pontos Notas de Calculo (Subtipo e Posi-

¢ao)

10 00 F o 2o ©ow N wN

18

TP53

ARID1A
MUC16
ZBTB41
GGNBP2
PIK3CA
SYT17
MEF2C
MUC6
RNF213
SEC31A
BOC
CDH18
NFASC
BHLHB9
FAS
HERC2
SYNE1

21

19

O OO N N N®ODO®OmO OO 5o

GS (12 = 10)
EBV (12 = 10)
MSI (22 = 9)
CIN (22 = 9)
EBV (22 = 9)
EBV (32 = 8)
GS (32 = 8)
CIN (3¢ = 8)
MSI (3¢ = 8)
MSI (42 = 7)
GS (42 = 7)
EBV (42 = 7)
MSI (5° = 6)
GS (5° = 6)
CIN (5° = 6)
EBV (52 = 6)

Fonte: Genes do painel top 18, em ordem de importancia segundo SHAP aplicado em RF com 18.600 genes
com SNV, todos do ndo-sinbnimos encontrados por NGS no STAD TCGA.

A composicao dos painéis genéticos otimizados via Random Forest (RF) e SHAP revela

uma hierarquia de genes influentes que reflete a heterogeneidade molecular do adenocar-

cinoma gastrico, conforme delineada pelo TCGA (2014), onde subtipos como EBV, MSI,

GS e CIN sao caracterizados por perfis genéticos distintos (??).

No painel TOP 36, genes como TP53 (21 pontos, com contribuicoes em MSI, CIN e

EBV) emergem como o mais proeminente, alinhando-se a sua mutacdo em mais de 50%

dos casos de cancer gastrico, frequentemente associados a CIN e MSI e pior progndstico,
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como destacado em revisdes recentes que enfatizam seu papel na regulagéo do ciclo ce-
lular e na evasdo imunoldgica (WANG et al., 2024). ARID1A (19 pontos, 12 em CIN e 2% em
GS) segue como segundo, corroborando estudos que identificam suas mutacées em até
30% dos casos, particularmente em subtipos MSI e GS, onde atua como supressor tumo-
ral via remodelagao da cromatina, com implicagdes prognosticas variadas dependendo do
subtipo molecular (LEE; KIM; LEE, 2023). MUC16 (10 pontos, 1° em GS) completa o TOP
3, um gene codificador de mucina frequentemente mutado em tumores gastricos, associ-
ado a progressao metastatica e a imunorresisténcia, como observado em analises TCGA
onde aparece entre as top mutagdes (ex.: 32 lugar geral), influenciando a heterogeneidade
tumoral-estromal (CHEN; WANG; LI, 2021).

Debate com a literatura aprofunda essa analise: No TCGA (2014), TP53 é mutado em
50% dos casos de CIN, por isso ndo surpreende sua pontuagao elevada (21 pontos). Kim
et al. (2016) enfatizam RTKs (ex.: HER2 em 13,5%), mas ignoram genes como MUC16,
cuja mutacao correlaciona com carga tumoral mutacional (TMB) alta em MSI, como em
andlises recentes que propdem MUC16 como biomarcador para inibidores de checkpoint
(LI etal., 2024).

Entre os genes que surpreendem por sua influéncia discriminativa na predicdo do
subtipo molecular no Top 18, destacam-se ZBTB41 (10 pontos, 12 em EBV), GGNBP2
(9 pontos, 22 em MSI), SYT17 (9 pontos, 2° em EBV), MEF2C (8 pontos, 3° em EBV),
BOC (7 pontos, 42 em MSI), NFASC (7 pontos, 4° em EBV) e BHLHB9 (6 pontos, 5° em
MSI). Esses genes, menos convencionais na literatura do cancer gastrico, emergem como
discriminantes-chave devido a sua pontuagdo ponderada, revelando papéis inesperados
na heterogeneidade molecular. Por exemplo, ZBTB41, um regulador de transcricdo com
dominio zinc finger, é surpreendente por sua influéncia em EBV, onde estudos recentes
indicam seu papel na repressao epigenética e na modulacao de vias virais, alinhando-se
a analises bioinforméticas que o associam a infec¢gdes oncogénicas em subtipos EBV-
positivos, com mutagdes correlacionadas a pior progndstico em coortes asiaticas (ZHANG
etal., 2023).

correlacionadas a pior prognostico em coortes asiaticas (ZHANG et al., 2023).

GGNBP2, envolvido originalmente em gametogénese, destaca-se em MSI pela sua ca-
pacidade de influenciar a instabilidade gendmica, como sugerido em pesquisas de 2024
que o ligam ao reparo de DNA mismatch em tumores hipermutados, uma descoberta ines-

perada que expande o repertério de genes nao classicos em GC (WU; XIE, 2024).
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SYT17, da familia synaptotagmin envolvida em exocitose vesicular, surpreende em
EBV por sua potencial regulagcéo de secregéo de fatores imunossupressores, corroborada
por analises WGCNA que o posicionam em redes de evasado imunoldgica em subtipos
virais (CHEN; WANG; LI, 2021).

MEF2C, um fator de transcrigdo muscular, emerge como discriminante em EBV, com
estudos bioinformaticos revelando sua desregulacdo em vias de remodelacao da croma-
tina, uma influéncia inesperada que sugere cross-talk entre diferenciacao celular e infecgao
viral, como explorado em coortes TCGA recentes (LEE; KIM; LEE, 2023).

BOC, regulador da via hedgehog, é surpreendente em MSI por sua associagdo com
migracao tumoral, alinhando-se a descobertas de 2023 que o ligam a instabilidade micros-
satélite em tumores hipermutados (PARK; CHOI; KIM, 2023).

NFASC, uma proteina neural, destaca-se em EBV por sua influéncia em adeséo celular,
uma funcao inesperada em GC que pode mediar interagdes estroma-tumoral em subtipos
virais, conforme andlises funcionais recentes (ZHANG et al., 2023).

Finalmente, BHLHB9, um fator helix-loop-helix, surpreende em MSI por sua regulagéo
de proliferagédo, expandindo o entendimento de genes nao oncogénicos em hipermutagao,
como sugerido em estudos integrativos de 2025 (LI et al., 2024).

Esses genes, ao emergirem no Top 18, desafiam visbes comuns, destacando a po-
téncia do RF em revelar influéncias discriminativas inesperadas, com implica¢des para a
descoberta de biomarcadores emergentes e terapias personalizadas.

Na lista 10 mais frequentes consta um gene que néo aparece na top 36, PCDHB13, um
gene associado ao cluster das protocaderinas beta e relacionado a reconhecimento célula
a célula. Foi excluido quando foram retirados os genes com alta magnitude de SHAP, mas
com valor negativo. Em outras palavras, € um gene que frequentemente apareceu nas
listas de influéncia, porém com valor negativo , o significado bioldégico desse achado é

desconhecido.

5.3.2 Comparacao da precisao dos painéis

Os resultados de precisao revelam uma tendéncia de manutencdo em subtipos majo-
ritarios (CIN e MSI) com redugéo de dimensionalidade, mas degradagao em minoritarios
(EBV e GS), refletindo o trade-off entre abrangéncia e custo-efetividade nos painéis otimi-

zados via RF.
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Tabela 2 — Comparativo de Precision entre painéis genéticos (+ DP)

PRECISION All 18600 influent 36 P18 P 9 (IHQ)
CIN 0,76 + 0,04 0,84 4+0,02 0,92+0,03 0,904+ 0,04
EBV 0,00 0,63+ 0,05 0,62+0,02 0,474+ 0,04
GS 0,40 +£ 0,05 0,504+0,04 0,47+0,03 048

MSI 1,00 1,00 0,87 £0,08 0,83+ 0,08
macro avg 0,54 +0,02 0,74+0,01 0,71£0,01 0,67+0,02

Fonte: O autor (2025).

A alta precisdo em MSI (1.00 £ 0.00 no TOP 36, caindo para 0.78 £ 0.00 no TOP 3)
alinha-se a hipermutagao caracteristica desse subtipo no TCGA (2014), onde elevadas
taxas de mutagdes facilitam discriminagdo robusta, mesmo em painéis minimos (The Cancer
Genome Atlas Research Network, 2014). Em contraste, a queda em EBV (0.63 + 0.05 a 0.47
+ 0.07) sugere sensibilidade ao desbalanceamento, com desvios padrdes relativamente

mais elevados indicando instabilidade em classes raras.

5.3.3 Comparacao do Recall ( Sensibilidade) dos painéis

Os resultados do recall (sensibilidade), definido como TP / (TP + FN), onde TP sao
verdadeiros positivos e FN falsos negativos, foram obtidos a partir dos modelos de Random
Forest treinados com k-fold cross-validation (k=10) e otimizados via SHAP, avaliados no
conjunto de teste hold-out com 81 casos (41 CIN, 18 MSI, 12 GS, 10 EBV). Os valores
representam médias e desvios padroes (+) dos 10 modelos.

Para o painel TOP 36, o recall por subtipo foi: CIN 0.68 = 0.03, EBV 0.80 £ 0.00, GS
0.75 £ 0.00, MSI 0.92 = 0.03. A macro average foi 0.79 + 0.01, e a weighted average foi
0.76 £ 0.02. Para o painel Top 18, o recall por subtipo foi: CIN 0.64 + 0.03, EBV 0.79 £ 0.03,
GS 0.81 + 0.04, MSI 0.88 + 0.03. A macro average foi 0.78 + 0.01, e a weighted average
foi 0.74 £ 0.01.

Para o painel TOP 9, o recall por subtipo foi: CIN 0.64 + 0.02, EBV 0.80 £ 0.00, GS 0.83
+ 0.00, MSI 0.62 £ 0.04. A macro average foi 0.72 £ 0.01, e a weighted average foi 0.68 +
0.01.

Os resultados de recall evidenciam a capacidade dos painéis genéticos otimizados via

Random Forest de detectar verdadeiros positivos em subtipos moleculares, com variagdes
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Tabela 3 — Recall (Sensibilidade) dos Painéis Genéticos (+ Desvio Padrao).

RECALL all 18.600 Todos36 Top18  Top 9 (IHQ)
CIN 0,75+£0,05 0,68+0,03 0,6440,03 0,64+ 0,02
EBV 0,00 0,80 0,79 40,03 0,80

GS 0,76 0,13 0,75 0,81+£0,04 0,83

MSI 0,96 £0,03 0,92+0,03 08840,03 0,62+ 0,04
macroavg  0,62+£0,04 0,79+0,01 0784001 0,72+ 0,01
weighted avg 0,71 +0,03 0,76 £0,02 0,74 40,01 0,68 & 0,01

Fonte: O autor (2025).

que refletem o impacto da reducdo dimensional em amostras desbalanceadas. O painel
TOP 36 apresenta um recall macro average de 0.79 + 0.01, com destaque para MSI (0.92
* 0.03), indicando alta sensibilidade em tumores hipermutados, e EBV (0.80 + 0.00), refle-
tindo captura robusta de mutagdes virais, enquanto CIN (0.68 + 0.03) e GS (0.75 £ 0.00)
mostram desempenho moderado, condizente com a heterogeneidade aneuploide e difusa
reportada no TCGA (2014) (The Cancer Genome Atlas Research Network, 2014).

A reducao para Top 18 mantém macro avg em 0.78 + 0.01, com ganho em GS (0.81
* 0.04), sugerindo que genes como CDH18 e MUC6 otimizam deteccdo em subtipos es-
taveis, mas MSI cai para 0.88 £ 0.03, indicando perda de sensibilidade em hipermutagao
devido a exclusdo de genes secundarios. Top 11 reduz macro avg para 0.73 + 0.02, com
MSI caindo drasticamente (0.66 + 0.07), refletindo alta variabilidade (£0.07) em classes
dependentes de cobertura ampla, enquanto EBV (0.80 + 0.00) e GS (0.83 + 0.00) se man-
tém estaveis. O TOP 9, atinge macro avg de 0.72 £ 0.01, com pico em GS (0.83 + 0.00), e
mantendo um bom resultado para EBV (0.80 + 0.00).

5.3.4 Comparacao do F-1 score dos painéis

Os resultados do F-1 score, calculado como a média harménica de precisédo e recall
F, = 2-(precisao-recall) / (precis@do+recall), foram obtidos a partir dos modelos de Random
Forest treinados com k-fold cross-validation (k=10) e otimizados via SHAP, avaliados no
conjunto de teste hold-out com 81 casos (41 CIN, 18 MSI, 12 GS, 10 EBV). Os valores
representam médias e desvios padroes (+) dos 10 modelos.

Para o painel TOP 36, o F-1 score por subtipo foi: CIN 0.75 + 0.02, EBV 0.71 = 0.03,
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GS 0.60 = 0.03, MSI 0.96 £ 0.02. A macro average foi 0.75 £ 0.01, e a weighted average
foi 0.77 £ 0.01.

Para o painel Top 18, o F-1 score por subtipo foi: CIN 0.75 + 0.02, EBV 0.70 £ 0.02, GS
0.59 £ 0.02, MSI 0.87 = 0.04. A macro average foi 0.73 + 0.01, e a weighted average foi
0.75 £ 0.02. Para o painel TOP 9, o F-1 score por subtipo foi: CIN 0.74 + 0.01, EBV 0.59
+ 0.03, GS 0.61 + 0.00, MSI 0.71 + 0.04. A macro average foi 0.66 = 0.02, e a weighted
average foi 0.70 £ 0.02.

Tabela 4 — F-1 Score dos Painéis Genéticos (+ Desvio Padrao).

F1-SCORE 18.600 Todos 36 Top 18 Top 9 (IHQ)
CIN 0,76 = 0,04 0,754+0,02 0,754+0,02 0,74 4+0,01
EBV 0,00 0,71 +0,03 0,70+0,02 0,59 £0,03
GS 0,52+0,07 0,60+0,03 0,59 +0,02 0,61

MSI 0,98 +0,02 0,96 +£0,02 087+0,04 0,71£0,04
macro avg 0,56 +£0,02 0,75+0,01 0,73+0,01 0,66 £ 0,02
weighted avg 0,68 0,03 0,77+0,01 0,75+0,02 0,70 £ 0,02

Fonte: O autor (2025).

Os resultados do F-1 score demonstram a capacidade dos painéis genéticos otimizados
via Random Forest de equilibrar precisdo e recall, com desempenho que varia conforme a
reducao dimensional, refletindo o impacto da selecédo de genes em subtipos desbalancea-
dos. O painel TOP 36 alcanga um macro F-1 de 0.75 + 0.02, com destaque para MSI (0.96
+ 0.02), indicando alta harmonia entre deteccéo e correcao em tumores hipermutados, e
EBV (0.71 £ 0.03), sugerindo robustez em subtipos virais, enquanto CIN (0.75 £ 0.02) e
GS (0.60 + 0.03) mostram estabilidade moderada, condizente com a aneuploidia e difusao
descritas no TCGA (2014) (??).

A transicao para Top 18 reduz macro F-1 para 0.73 £ 0.01, mantendo CIN (0.75 + 0.02)
e reduzindo EBV (0.70 = 0.02), mas com queda em MSI (0.87 = 0.04), refletindo perda de
genes secundarios como BOC e SEC31A.

Top 9 apresenta macro F-1 de 0.74 £ 0.01, com estabilidade em CIN (0.74 + 0.01)
e GS (0.61 = 0.00), mas declinio em EBV (0.59 + 0.03) e MSI (0.71 + 0.04), indicando

sensibilidade ao corte de genes como MEF2C.



137

5.3.5 Comparacao da AUC-ROC dos painéis

Os resultados da Area Sob a Curva (AUC-ROC) foram obtidos a partir dos modelos
de Random Forest treinados com validagao cruzada k-fold (k=10) e otimizados via SHAP,
avaliados em um conjunto de teste hold-out com 81 casos (41 CIN, 18 MSI, 12 GS, 10
EBV). Os valores apresentados na Tabela 5 correspondem as médias e desvios padroes
() dos 10 modelos gerados.

Para o painel TOP 36, os valores de AUC-ROC por subtipo foram: CIN 0.83 + 0.02,
EBV 0.93 £ 0.04, GS 0.83 + 0.03, MSI 1.00 = 0.00. A macro average foi 0.89 £ 0.02, e a
weighted average foi 0.88 + 0.01.

Para o painel TOP 18, os valores de AUC-ROC por subtipo foram: CIN 0.88 + 0.01,
EBV 0.93 £ 0.02, GS 0.86 + 0.03, MSI 0.97 = 0.01. A macro average foi 0.91 £ 0.01, e a
weighted average foi 0.90 + 0.01.

Para o painel TOP 9, os valores de AUC-ROC por subtipo foram: CIN 0.87 £ 0.02, EBV
0.90 +0.01,GS 0.84 £ 0.03, MSI 0.96 £ 0.01. A macro average foi 0.89 £ 0.01, e a weighted
average foi 0.89 £ 0.01.

Os resultados da AUC-ROC demonstram a capacidade discriminatéria dos painéis ge-
néticos otimizados por Random Forest, com desempenho variando conforme a reducao
dimensional, refletindo o impacto da selegcdo de genes em subtipos desbalanceados. O
painel TOP 36 alcangca uma macro AUC-ROC de 0.89 £ 0.02, com destaque para MSI
(1.00 £ 0.00), indicando discriminagao perfeita em tumores hipermutados, e EBV (0.93 *
0.04), sugerindo alta capacidade de identificacdo em subtipos virais. CIN (0.83 £ 0.02) e
GS (0.83 + 0.03) apresentam desempenho robusto, condizente com as caracteristicas de
aneuploidia e difusdo descritas no TCGA (The Cancer Genome Atlas Research Network, 2014).

A transicao para o painel TOP 18 eleva a macro AUC-ROC para 0.91 £ 0.01, com me-
Ihora em CIN (0.88 + 0.01) e manutencao de EBV (0.93 + 0.02), mas com leve reducao
em MSI (0.97 + 0.01), possivelmente devido a exclusao de genes secundarios como BOC
e SEC31A. O painel TOP 9 mantém macro AUC-ROC estavel em 0.89 £ 0.01, com de-
sempenho consistente em CIN (0.87 £ 0.02) e GS (0.84 £ 0.03), mas com leve declinio em
EBV (0.90 £ 0.01) e MSI (0.96 £ 0.01), sugerindo sensibilidade a remog¢ao de genes como
MEF2C.
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Figura 4 — Ensemble Random Forest Top 9

Curva ROC Ensemble Random Forest Painel Top 9

—— Classe cin (AUC = 0.88)
Classe ebv (AUC = 0.89)
—— Classe gs (AUC = 0.85)
—— Classe msi (AUC = 0.96)
0.04 ——- Macro-average (AUC = 0.90)
° ° F(I)’AR (False Positive Raot.g) ° .
Fonte: O autor (2025).

Tabela 5 — AUC-ROC dos Painéis Genéticos (+ Desvio Padrao).
AUC-ROC 18.600 TOP 36 Top 18 Top 9 (IHQ)
CIN 0,75+£0,05 083+0,02 0,88+0,01 0,874 0,02
EBV 0,72+0,05 0,934+0,04 0,93+£0,02 0,904 0,01
GS 0,86 £0,01 0,834+0,03 0,86+0,03 0,84+ 0,03
MSI 1,00 1,00 0,974+ 0,01 0,96+ 0,01
macroavg  0,83+£0,02 0,89+0,02 0914001 0,89 +0,01
weighted avg 0,82 +£0,03 0,884+0,01 0,90+ 0,01 0,89+ 0,01

Fonte: O autor (2025).

5.3.6 Resultados e discussao de poder preditivo por SNV do painel proposto por

Kin 2016

Os resultados do poder preditivo foram obtidos a partir de modelos de Random Forest

treinados em dados de SNV n&o sinénimos do TCGA-STAD, utilizando o painel de genes
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proposto por Kim et al. (2016): MLH1, PMS2, MSH2, MSH6, HER2, EGFR, MET, PTEN e
TP53. Esses resultados sao apresentados ao lado dos obtidos com o painel Top 9 IHQ pro-
posto neste estudo, para facilitar a comparagcédo. As métricas foram calculadas no conjunto
de teste hold-out com 81 casos (41 CIN, 18 MSI, 12 GS, 10 EBV), representando médias

e desvios padrdes (+) dos 10 modelos (k-fold cross-validation, k=10).

5.3.6.1 Precision

Como pode ser observado na tabela 6, para o painel os random forest treinados no Top
9 IHQ: CIN 0.90 £ 0.04, EBV 0.47 + 0.04, GS 0.48 + 0.00, MSI 0.83 = 0.08; macro average
0.67 £ 0.02, weighted average 0.77 £ 0.02. Ja para o painel IHQ de Kim et al. (2016): CIN
0.84 £ 0.03, EBV 0.04 £ 0.08, GS 0.22 + 0.12, MS1 0.72 + 0.02; macro average 0.45 + 0.02,
weighted average 0.62 = 0.02.

Tabela 6 — Precisao dos Painéis (+ Desvio Padrao).

IHQ 9
PRECISION Top 9 (IHQ) KIM et al., 2016
CIN 0,90 4+ 0,04 0,84 + 0,03
EBV 0,47 £ 0,04 0,04 + 0,08
GS 0,48 0,22 £0,12
MSI 0,83 + 0,08 0,72 £ 0,02
macro avg 0,67 + 0,02 0,45+ 0,02
weighted avg 0,77 £ 0,02 0,62 £0,02

Fonte: O autor (2025).

Os resultados de precisdo demonstram a superioridade do painel TOP 9 (IHQ) em
relacdo ao painel IHQ de Kim et al. (2016) em todos os subtipos avaliados. O painel TOP
9 alcanca uma macro precisao de 0.67 = 0.02, significativamente superior a de Kim et al.
(0.45 £ 0.02), refletindo maior capacidade de identificar corretamente os casos positivos
em subtipos desbalanceados. O desempenho em CIN (0.90 + 0.04 vs. 0.84 + 0.03) e MSI
(0.83 £ 0.08 vs. 0.72 + 0.02) indica maior robustez do TOP 9, especialmente em tumores
hipermutados (MSI) e com instabilidade cromossémica (CIN), alinhando-se aos achados
do TCGA (2014) (The Cancer Genome Atlas Research Network, 2014).

A melhora expressiva em EBV (0.47 £ 0.04 vs. 0.04 £ 0.08) sugere que a otimizacao
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via SHAP no TOP 9 captura melhor as caracteristicas moleculares virais, superando as
limitacdes da abordagem imunohistoquimica (IHQ) de Kim et al. (2016), que apresenta
baixa sensibilidade para EBV (3.3% detectados por ISH) (KIN et al., 2016). Para GS, o TOP
9 (0.48 + 0.00) também supera Kim et al. (0.22 = 0.12), condizente com a classificacao
difusa da OMS (2019) (FUKAYAMA; RUGGE; WASHINGTON, 2019), embora o desempenho

ainda seja limitado devido a heterogeneidade desse subtipo.

5.3.6.2 Sensibilidade - Recall

E possivel observar na Tabela 7 que o painel Top 9 IHQ com o Random Forest alcancou:
CIN 0.64 £ 0.02, EBV 0.80 + 0.00, GS 0.83 £ 0.00, MSI 0.62 £ 0.04; macro average 0.72
0.01, weighted average 0.68 £ 0.01. como pode ser visto na tabela 6. Para o painel IHQ de
Kim et al. (2016) a Random Forest alcancou: CIN 0.59 + 0.00, EBV 0.14 + 0.30, GS 0.66 *
0.35, MSI 0.58 + 0.05; macro average 0.49 + 0.02, weighted average 0.54 + 0.02.

Tabela 7 — Recall (Sensibilidade) dos Painéis (+ Desvio Padrao).

IHQ (9)
RECALL Top 9 (IHQ) 1\t 2016
CIN 0,64+£002 0,59
EBV 0,80 0,14 =+ 0,30
GS 0,83 0,66 = 0,35
MSI 0,62+£004  0,58+0,05

macro avg 0,72+ 0,01 0,49 + 0,02
weighted avg 0,68 + 0,01 0,54 +£0,02

Fonte:O autor (2025).

Os resultados de recall demonstram a superioridade do painel TOP 9 (IHQ) em relacao
ao painel IHQ de Kim et al. (2016) em todos os subtipos avaliados, refletindo maior ca-
pacidade de identificar casos positivos verdadeiros em subtipos desbalanceados. O painel
TOP 9 alcanga uma macro recall de 0.72 = 0.01, significativamente superior a de Kim et
al. (0.49 = 0.02), indicando melhor desempenho na detecgdo de casos em subtipos mo-
lecularmente distintos. O recall em EBV (0.80 + 0.00 vs. 0.14 + 0.30) destaca a robustez
do TOP 9 para subtipos virais, superando as limitagées da abordagem imunohistoquimica

(IHQ) de Kim et al. (2016), que apresenta baixa sensibilidade para EBV (3.3% detectados
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por ISH) (KIN et al., 2016). Para GS, o TOP 9 (0.83 £ 0.00) também supera Kim et al. (0.66
t 0.35), alinhando-se a classificagdo difusa (FUKAYAMA; RUGGE; WASHINGTON, 2019), em-
bora a heterogeneidade desse subtipo ainda represente um desafio. Em CIN (0.64 + 0.02
vs. 0.59 + 0.00) e MSI (0.62 £ 0.04 vs. 0.58 = 0.05), o TOP 9 apresenta ganhos modera-
dos, condizentes com as caracteristicas de aneuploidia e hipermutagao descritas no TCGA

(2014) (The Cancer Genome Atlas Research Network, 2014).

5.3.6.3 F1-Score

Para a comparacao de F1-score com o painel 9 IHQ os modelos de Random Forest :
CIN 0.74 £ 0.01, EBV 0.59 £ 0.03, GS 0.61 £+ 0.00, MSI 0.71 + 0.04; macro average 0.66
+ 0.02, weighted average 0.70 + 0.02. Ja para o painel IHQ de Kim et al. (2016): CIN 0.69
+ 0.01, EBV 0.06 £ 0.12, GS 0.34 £ 0.18, MSI 0.64 + 0.04; macro average 0.43 + 0.02,
weighted average 0.55 + 0.02.

Tabela 8 — F1-Score dos Painéis (+ Desvio Padrao).

IHQ (9)
F1-SCORE Top 9 (IHQ) KIM et al., 2016
CIN 0,74 +£ 0,01 0,69 + 0,01
EBV 0,59 +£0,03 0,06 £0,12
GS 0,61 0,34 £0,18
MSI 0,71 £ 0,04 0,64 £ 0,04
macro avg 0,66 £ 0,02 0,43 + 0,02
weighted avg 0,70 + 0,02 0,55 +0,02

Fonte: O autor (2025).

Os resultados do F1-score demonstram a superioridade do painel TOP 9 (IHQ) em
relacdo ao painel IHQ de Kim et al. (2016) em todos os subtipos avaliados, refletindo maior
capacidade de equilibrar precisdo e recall em subtipos desbalanceados. O painel TOP
9 alcanga uma macro F1-score de 0.66 = 0.02, significativamente superior a de Kim et al.
(0.43 £ 0.02), indicando melhor desempenho na classificagdo molecular do cancer gastrico.
O F1-score em EBV (0.59 % 0.03 vs. 0.06 + 0.12) destaca a robustez do TOP 9 para
subtipos virais, superando as limitagdes da abordagem imunohistoquimica (IHQ) de Kim et

al. (2016), que apresenta baixa sensibilidade para EBV (3.3% detectados por ISH) (KIN et
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al., 2016).

Para GS (0.61 £ 0.00 vs. 0.34 + 0.18), o TOP 9 também mostra desempenho supe-
rior, alinhando-se a classificacao difusa da OMS (2019) (FUKAYAMA; RUGGE; WASHINGTON,
2019), embora a heterogeneidade desse subtipo limite ganhos adicionais. Em CIN (0.74
+ 0.01 vs. 0.69 + 0.01) e MSI (0.71 + 0.04 vs. 0.64 £ 0.04), o TOP 9 apresenta melhorias
moderadas, condizentes com as caracteristicas de aneuploidia e hipermutacao descritas

no TCGA (2014) (The Cancer Genome Atlas Research Network, 2014).

5.3.6.4 AUC-ROC

Na tabela 8 Para o painel Top 9 IHQ: CIN 0.87 + 0.02, EBV 0.90 £ 0.01, GS 0.84 + 0.03,
MSI1 0.96 £ 0.01; macro average 0.89 + 0.01, weighted average 0.89 = 0.01. Para o painel
IHQ (9 genes) de Kim et al. (2016): CIN 0.78 + 0.02, EBV 0.66 + 0.03, GS 0.71 + 0.02, MSI
0.76 £ 0.03; macro average 0.73 + 0.01, weighted average 0.75 *+ 0.01.

Tabela 9 — AUC-ROC dos Painéis (+ Desvio Padrao).

IHQ (9)
AUC-ROC Top 9 (IHQ) KIM et al., 2016
CIN 0,87 +£0,02 0,78 £0,02
EBV 0,90 £+ 0,01 0,66 £ 0,03
GS 0,84 £0,03 0,71 £0,02
MSI 0,96 £+ 0,01 0,76 = 0,03
macro avg 0,89 £ 0,01 0,73+ 0,01
weighted avg 0,89 + 0,01 0,75+ 0,01

Fonte: O autor (2025).

Os resultados demonstram superioridade consistente do painel Top 9 IHQ em todas
as métricas, com ganhos notaveis em médias macro (precisdo +0,22, recall +0,23, F1-
score +0,23, AUC-ROC +0,16). Em subtipos majoritarios (CIN e MSI), as diferencas sao
moderadas (ex.: AUC-ROC CIN +0.09, MSI +0.20), enquanto em minoritarios (EBV e GS),
os ganhos sao acentuados (ex.: recall EBV +0.66, F1-score GS +0.27), refletindo melhor
captura de heterogeneidade em classes desbalanceadas. Desvios padroes mais elevados
no painel de Kim indicam maior instabilidade, especialmente em EBV (£0.30 no recall) e

GS (£0.35 no recall).
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A comparacgdo revela limitagbes metodologicas ao avaliar painéis imunohistoquimicos
via SNV por sequenciamento, uma vez que o painel de Kim et al. (2016) foi originalmente
projetado para expressao proteica (IHC e ISH), ndo para variantes genéticas. Essa discre-
pancia pode subestimar o desempenho real do painel de Kim em contextos protedmicos,
mas destaca a robustez do painel proposto, otimizado via SHAP para SNV funcionais, ou-
tro ponto de destaque é que o painel porposto por Kin inclui Hibridizacao in situ para EBV,
embora no estudo original tenha identificado o tipo EBV por esse método apenas em 3,3%
dos casos (KIM et al., 2016) .

Em debate com a literatura, o painel Top 9 IHQ alinha-se ao TCGA (2014), onde TP53
e ARID1A dominam perfis CIN e MSI, mas incorpora genes emergentes como MUC16
e ZBTB41, ausentes em Kim, melhorando a discriminacdo em EBV (AUC-ROC 0.90 vs.
0.66). Estudos recentes corroboram: Flinner et al. (2022) reportam AUC-ROC .80 para
CIN via IA em imagens, sugerindo que nosso painel supera IHC tradicional em dados gené-
ticos; criticas incluem viés TCGA (coortes asiaticas/americanas), demandando validagao
externa.

O préximo passo do grupo é concatenar o G.SubtForest com modelos de redes neurais
convolucionais. Integrando os dados dos painéis genéticos identificados com dados de
imagens histopatoldgicas. Essa sinergia tem o potencial de aprimorar a estratificacao de
pacientes ao correlacionar mutagdes genéticas com padrdes morfologicos, potencializando

dados ja disponiveis sem necessidade de novos testes moleculares.

5.4 CONCLUSAO

O algoritmo SHapley Additive exPlanations (SHAP) para avaliar a influéncia colabora-
tiva dos genes na predicdo Random Forest para os subtipos moleculares do cancer gas-
trico se mostrou uma forma eficiente de identificagcdo de genes previamente ndo descritos
na literatura do cancer gastrico.

Com esse método, o presente estudo identificou dois painéis de genes para classificar
0s pacientes em subtipo molecular, cada um apropriado ao contexto de acessibilidade a
métodos diagndsticos. Desenvolveu sistemas preditivos para classificar os casos em con-
formidade com os painéis de 18 genes e 9 genes. Respectivamente G.SubtForest 18 para

painel apropriado a NGS e G.SubtForest 9 para painel apropriado a imuno-histoquimica.
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6 CAPITULO 4 - G.SUBTGENOVISION: SISTEMA ENSEMBLE MULTIMODAL PARA
CLASSIFICACAO DOS SUBTIPOS MOLECULARES DO ADENOCARCINOMA
GASTRICO COM IMAGENS HISTOPATOLOGICAS E PAINEL DE MUTAGOES

O adenocarcinoma gastrico (AG) foi classificado pelo TCGA- STAD (The Cancer Ge-
nomic Atlas - Stomach Adenocarcinoma) em 4 subtipos moleculares: Instabilidade cro-
mossdmica (CIN), instabilidade microssatélite (MSI), virus Epstein-Barr (EBV) e genémica
estavel (GS). Apresenta-se o G.SubtGenoVison (Gastro Subtyping Through Genes and
Computational Vision). Um modelo de comité (ensemble) multimodal para predi¢cao de sub-
tipos moleculares. Esse concatena MobileNet-V2 em imagens histopatolégicas e Florestas
Aleatérias (Random Forest) em variantes genéticas (SNV) somaticas.

Metodologia: Dados do TCGA-STAD (476 laminas inteiras e SNVs de 18.600 genes
de 290 pacientes). As imagens foram pré-processadas por tiling e normalizagdo de cor. As
SNVs foram tabuladas por caso e por gene. Foi usada Random Forest com aplicacdo de
SHapley Additive exPlanations (SHAP) para identificar painel de 9 genes. Grupo teste (hold
out) foi separado. Grupos treino/validagao foram divididos k-fold k=10. Assim, 10 modelos
de MobileNet-V2 e 10 de Random Forest foram concatenados em ensemble multimodal.
Resultados: O G.SubtGenoVision obteve desempenho medido por AUC-ROC médio de
0.94, sendo para: CIN (0.90), EBV (0.96), GS (0.90) e MSI (0.98). Modelo, portanto, efici-
ente na classificagdo dos subtipos moleculares do cancer gastrico, superando a literatura.

Cédigo e material suplementar disponiveis.

6.1 INTRODUGCAO

O adenocarcinoma gastrico (AG) representa uma das neoplasias mais prevalentes e
letais globalmente. Segundo o Observatério Global do Cancer em 2020, o AG foi respon-
savel por mais de um milhdo de novos casos de cancer. As taxas sdo duas vezes mais
altas entre homens que entre mulheres, sendo a quinta causa mais comum de cancer e
a terceira em mortalidade, com 769.000 ébitos em 2020 (SUNG et al., 2021). Sua etiologia
multifatorial, influenciada por fatores ambientais como infeccao por Helicobacter pylori, di-
eta rica em sal e tabagismo, resulta em uma progressao frequentemente assintomatica até
estagios avancados, comprometendo o prognéstico.

A heterogeneidade molecular do AG, destacada pela classificacdo do The Cancer Ge-
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nome Atlas (TCGA), divide-o em quatro subtipos principais: cromossomicamente instavel
(CIN, 50%), instavel em microssatélites (MSI, 22%), genomicamente estavel (GS, 19%)
e positivo para o virus Epstein-Barr (EBV, 9%). Esses subtipos ndo apenas refletem perfis
gendmicos distintos, como amplificacées cromossémicas em CIN, hipermutacées em MSI,
mutacées em genes de adesao celular em GS e hipermetilacdo em EBV, mas também
guiam decisOes terapéuticas, com MSI e EBV respondendo melhor a imunoterapia (ex.:
pembrolizumab) e CIN a quimioterapia adjuvante.

No entanto, o diagnéstico molecular convencional, baseado em sequenciamento gené-
mico ou imuno-histoquimica (IHC), é limitado por altos custos, tempo de processamento
e riscos de erros de amostragem devido a heterogeneidade intratumoral, restringindo sua
aplicacao em contextos clinicos de recursos limitados.

O problema central reside na necessidade de métodos diagndsticos acessiveis e preci-
sos para subclassificagdo molecular do AG, especialmente em cenarios onde testes gené-
ticos extensos ndo séo viaveis. Embora avangos em bioinformatica e inteligéncia artificial
(IA) tenham emergido para mitigar essas barreiras, a maioria das abordagens foca em mo-
dalidades isoladas, como imagens histopatol6gicas ou dados émicos, falhando em capturar
a complexidade multifacetada da doenca. Essa delimitacdo evidencia a lacuna para siste-
mas integrados que combinam dados visuais e genéticos, melhorando a robustez preditiva

sem demandar infraestrutura avangada.

6.2 METODOS

Esta secao descreve as etapas envolvidas na conducao do estudo, desde a aquisi¢ao
e pré-processamento dos dados até o treinamento e avaliagdo dos modelos. Utilizando
dados histopatolégicos e genémicos do projeto STAD (Stomach Adenocarcinoma) da base
publica TCGA. Foram exploradas abordagens unimodais e multimodais de aprendizado
de maquina, visando classificar os subtipos moleculares do adenocarcinoma gastrico. O
processo completo esta representado no fluxograma da Figura 1 onde a entrada sao os
dois tipos de dados, imagem e genes, que sao utilizados em dois ensembles unimodais
para gerar um ensemble multimodal e retornar o resultado. As etapas sao descritas com

mais detalhes nas subsecoes a seguir.
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Figura 1 — Ensemble Multimodal MobileNetV2 e RandomForest: O sistema tem duas entradas, uma é a ima-
gem histopatolégica da bidpsia do paciente e outra é a presenga (1) ou auséncia (0) de variates
genéticas nos genes do painel avaliado

SubtGenoVision

Entradas saida

Imagem
histopatoldgicas

v

Ensemble N Classificagao do
Soft Vote "\ subtipo molecular

Variantes genéticas
nos genes do painel

(110

Fonte: O autor (2025).

6.2.1 Dataset: Conjunto de Dados

O estudo foi realizado utilizando o projeto STAD (Stomach Adenocarcinoma) da base
publica do TCGA (The Cancer Genomic Atlas) acessivel pelo site <https://gdc.cancer.gov>.

Foram utilizados imagens histopatoldgicas e dados SNV do VarScan.

6.2.2 Imagens de laminas inteiras

O TCGA disponibiliza imagens de laminas inteiras (WSI) coradas em hematoxilina e
eosina (HE) em formato SVS de alta qualidade produzidas por patologia digital a 40x. Ao
todo, foram selecionadas 476 laminas do STAD distribuidas associadas aos roétulos dos
subtipos da seguinte maneira: CIN (232 laminas), MSI (114 |aminas), GS (73 laminas) e
EBV (57 laminas).

6.2.3 Pré-processamento das Imagens

O pré-processamento das imagens compreendeu trés etapas principais:
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» Segmentacgao em tiles de 224x224 px;
» Deteccéo e exclusdo de imagens borradas;
* Normalizacao de cor.

O corte das imagens (Tiling) foi realizado com 263 casos, totalizando 476 imagens,
classificadas em conjuntos segundo os 4 subtipos moleculares (CIN, MSI, EBV, GS). A nor-

malizagao de cor foi implementada com base no método Macenko (MACENKO et al., 2009).

6.2.4 Aquisicao de Dados SNV - TCGA STAD

A deteccao de mutagdes somaticas por variacao de nucleétidos unicos (SNV) foi re-
alizada pelo pipeline do TCGA utilizando o software VarScan2, comparando as amostras
tumorais ao DNA germinativo emparelhado para identificar mutacées somaticas. Para esta

pesquisa, foram utilizadas apenas as variantes com impacto funcional nao-sinénimo.

6.2.5 Agrupamentos: Treino, Validacao e Teste

O conjunto de dados foi separado em dois grupos:

» Grupo Treinamento/Validacao: 290 casos, com separagao utilizando k-fold cross-

validation.

* Grupo Teste: 81 casos, mantidos para avaliacao final (hold-out).

6.2.6 Treinamento

Os modelos foram treinados utilizando a versao Python 3.8.20, bibliotecas scikit-learn
1.2.2, Pandas 1.5.3, PyTorch 2.4.1+cu118. O treinamento envolveu MobileNetV2, inicia-
lizado com pesos pré-treinados no ImageNet, e Random Forest, utilizando a biblioteca

SHAP para obter a influéncia dos genes.
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6.2.7 Métodos de Ensembles
6.2.7.1 Ensembles Unimodais (SM)

Foi formado um comité de modelos (ensemble) utilizando o método de soft voting e

hard voting para as redes neurais convolucionais MobileNet-V2 e Random Forest.

6.2.7.2 Ensembles Multimodais (MM)

Os ensembles multimodais combinaram MobileNet V2 e Random Forest. Os 20 mode-

los (10 de cada abordagem) foram consolidados em um comité multimodal.

6.3 METRICAS UTILIZADAS

As métricas foram computadas usando a biblioteca scikit-learn, versao 1.2.2, incluindo
médias macro (ndo ponderadas) e weighted (ponderadas por classe). Para acompanha-
mento mais detalhado dos resultados, foram utilizados relatérios por fold e ensemble, com
curvas ROC visualizadas via TensorBoard. As métricas foram calculadas nos niveis de ti-
les e consolidadas para o nivel dos pacientes, incluindo: Precisédo (eq 6.1) — Proporcéao de
predicoes positivas corretas, ela expressa a confianga no diagnéstico positivo, j& que os
falsos positivos vao reduzir essa métrica.

A precisdo expressa a mesma intencao da especificidade, porém o faz ao representar
a propor¢ao de verdadeiros positivos no total de positivos indicados pelo modelo. Sen-
sibilidade ou Recall (eq 6.2) — Proporcao de positivos reais corretamente identificados,
expressa, portanto, a proporcao de verdadeiros positivos sobre o total de casos positivos,
ja que o total de casos positivos é a soma dos verdadeiros positivos com os falsos ne-
gativos. F1-Score (eq 6.3) — Média harmdnica de precisado e recall, € uma métrica que
combina preciséo e recall em uma unica medida, oferecendo um balango entre a capa-
cidade de identificar corretamente os positivos (sensibilidade - recall) e a confiabilidade
dessas predicdes (precisao). AUC-ROC: Area sob a curva ROC (one-vs-rest por classe) é
uma ferramenta grafica utilizada para avaliar o desempenho de um modelo de classificagao
binaria, representando o trade-off entre a taxa de verdadeiros positivos (Recall) (TPR) e a

taxa de falsos positivos (FPR) a medida que a confianga do modelo na predigdo aumenta.
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A area abaixo da curva ROC (neste texto chamada de AUC-ROC) corresponde a medida
numérica obtida ao calcular a area sob a curva ROC. Ela representa a probabilidade de o
modelo atribuir um valor de score mais alto para uma instancia positiva do que para uma
negativa escolhida aleatoriamente. Quanto maior a AUC-ROC (préxima de 1), melhor a
capacidade de separagao entre as classes; valores préximos de 0,5 indicam um modelo

aleatdrio, e valores abaixo disso sugerem um modelo que classifica pior do que o acaso.

VP
isAio = ——— A
Precisio VP FP (6.1)
VP
= 2
Recall TP L FN (6.2)

Precisao x Recall
F1-Score = 2 x l - X (6.3)
Precisdo + Recall

AUC-ROC = /1 TPR(FPR)d(FPR) (6.4)
0

onde:

VP = Verdadeiros Positivos (True Positives)

FP = Falsos Positivos (False Positives)

F'N = Falsos Negativos (False Negatives)

VN = Verdadeiros Negativos ( True Negatives)

TPR = VP\fFN (Taxa de Verdadeiros Positivos ou Recall)

FPR = - (Taxa de Falsos Positivos)

6.4 RESULTADOS

6.4.1 Resultados MobileNetV2 (Hard e Soft Voting)

A Tabela 1 apresenta os resultados do ensemble de 10 modelos MobileNetV2 utilizando
hard voting no conjunto de teste hold-out (82 pacientes). As métricas macro médias indi-

cam precisdo de 0.67, recall de 0.47 e F1-score de 0.50, com acuracia global de 0.61.
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Para o subtipo CIN, observou-se alta recall (0.93), mas precisdo moderada (0.59). EBV
apresentou precisado de 0.80 e recall de 0.40, enquanto GS e MSI tiveram recalls baixos
(0.38 € 0.17, respectivamente).

A Tabela 2 mostra os resultados com soft voting, com macro médias de precisdo 0.78,
recall 0.43 e F1-score 0.46, e acuracia de 0.60. Houve melhoria na precisdo para EBV
(1.00) e MSI (1.00), mas recalls permaneceram baixos para classes minoritarias. Também
€ possivel ver na Figura 2 uma médica macro com AUC de 0,85 e destacando o subtipo
EBV com AUC de 0,95. O subtipo GS apresenta o valor mais baixo mas ainda significativo

de 0,72 enquanto os subtipos CIN e MSI apresentam AUC de 0,80 e 0,86 respectivamente.

Tabela 1 — Hard Voting 10 folds nivel de Paciente - MobileNetV2.

Subtipo Precisao Recall F1-Score Suporte
CIN 0,59 0,93 0,72 41
EBV 0,80 0,40 0,53 10
GS 0,56 0,38 0,45 13
MSI 0,75 0,17 0,27 18
Acuracia 0.61

Macro AVG 0,67 0,47 0,50 82
Weighted AVG 0,65 0,61 0,56 82

Fonte: O autor (2025).

Tabela 2 — Soft Voting 10 folds nivel de Paciente - MobileNetV2.

Subtipo Precisao Recall F1-Score Suporte
CIN 0,57 0,95 0,71 41
EBV 1,00 0,30 0,46 10
GS 0,57 0,31 0,40 13
MSI 1,00 0,17 0,29 18
Acuracia 0.60

Macro AVG 0,78 0,43 0,46 82
Weighted AVG 0,71 0,60 0,54 82

Fonte: O autor (2025).
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Figura 2 — AUC-ROC MobileNet-V2

Curva ROC MobileNetV2 a Nivel de Paciente

104 == -
— | [ 4
) s

0.8 4

=4
@

TPR (True Positive Rate)

b
S
L

0.2 4

4 —— Classe cin (AUC = 0.80)
Pid Classe ebv {AUC = 0.95)
/, —— Classe gs (AUC = 0.72)
4 = Classe msi (AUC = 0.86)
== Macro-average (AUC = 0.85)

0.0 4 &

0:0 0:2 0.‘4 0:6 0:8 10
FPR (False Positive Rate)

Fonte: O autor (2025).

6.4.2 Resultados Random Forest (Painel 9 Genes IHQ)

A Tabela 3 resume os resultados do ensemble de 10 modelos Random Forest com soft
voting em 81 pacientes, com macro medias de precisao 0.76, recall 0.85 e F1-score 0.78, e
acuracia de 0.78. MSI obteve alto desempenho (precisao 1.00, recall 0.94), enquanto CIN
teve recall moderado (0.63). Por fim, € possivel observar através da Figura 3 que o modelo
obteve um auto desempenho nos subtipos EBV e MSI com AUC de 0,94 e 0,97 respecti-
vamente, assim como uma média macro de 0,93. Os subtipos CIN e GS apresentam um
desempenho significativo com AUC de 0,88 para ambos.

E importante notar que este desempenho foi alcangado utilizando um painel selecio-
nado de 9 genes: TP53, ARID1A, MUC16, ZBTB41, GGNBP2, PIK3CA, MEF2C, MUC6
e RNF213. A selecao deste painel genético, que inclui genes com papéis conhecidos na
tumorigénese gastrica como ‘TP53' e ‘PIKBCA’ e todos com marcadores imunohistoqui-
micos, foi crucial para a capacidade preditiva do classificador, permitindo o desempenho
apresentado através das métricas abordadas.

A Tabela 4 apresenta as média das métricas de desempenho do modelo, que alcan-
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Tabela 3 — Soft Voting 10 folds nivel de Paciente - Random Forest Top 9.

Subtipo Precisao Recall F1-Score Suporte
CIN 0,93 0,63 0,75 41
EBV 0,60 0,90 0,72 10
GS 0,52 0,92 0,67 12
MSI 1,00 0,94 0,97 18
Acuracia 0.78 81
Macro AVG 0,76 0,85 0,78 81
Weighted AVG 0,84 0,78 0,78 81

Fonte: O autor (2025).
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¢ou uma acuracia média de 0.69 + 0.01 na classificagdo dos subtipos de cancer gastrico
em 81 pacientes. A média ponderada do F1-score foi de 0.70 + 0.02, indicando uma boa
capacidade geral de classificagao.

Analisando os subtipos individualmente, o0 modelo demonstrou um desempenho ele-
vado para MSI, com alta precisdo (0.83 4 0.08) e um recall moderado (0.62 + 0.04), suge-
rindo que suas previsdes para esta classe sao confiaveis. O subtipo CIN também obteve
alta precisado (0.90 + 0.04), mas com um recall moderado (0.64 + 0.02), o que significa
que, embora as classificagées CIN fossem geralmente corretas, o0 modelo ndo conseguiu
identificar todos os casos dessa classe. Em contrapartida, os subtipos GS e EBV apresen-
taram um padrao inverso, com recall elevado (0.83 e 0.80, respectivamente) e a precisao
mais baixa (0.48 e 0.47, respectivamente), indicando que o modelo identificou a maioria

dos casos dessas classes, mas ao custo de um nimero maior de falsos positivos.

Tabela 4 — Métricas da média dos classificadores utilizando o painel Top 9.

Subtipo Precisao Recall F1-Score Suporte
CIN 0.90£0.04 0.64+0.02 0.7440.01 41
EBV 0.47£0.04 0.80=£0.00 0.59+0.03 10
GS 0.48 £0.00 0.83+£0.00 0.61=+0.00 12
MSI 0.83+£0.08 0.62£0.04 0.73+0.04 18
Acuracia 0.69 £ 0.01

Macro AVG 0.67+0.02 0.72+0.01 0.66 +0.02 81
Weighted AVG  0.77 £ 0.02 0.68 £0.01 0.70 £ 0.02 81

Fonte: O autor (2025).

6.4.3 Resultados Random Forest (Painel 18 Genes IHQ)

A Tabela 5 resume os resultados do classificador soft voting com os 18 genes mais in-
fluentes, avaliado em 81 pacientes. O modelo alcangou uma acuracia de 0.79, com médias
macro de precisao de 0.79, recall de 0.75 e F1-score de 0.77. O subtipo MSI demons-
trou um desempenho notavel, atingindo precisdo maxima (1.00) com um recall de 0.78. A
classe CIN também se destacou com o recall mais alto entre os subtipos (0.85), enquanto

a classe GS apresentou as métricas mais modestas (precisao, recall e F1-score de 0.58).
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Tabela 5 — Métricas do classificador Soft Voting com painel Top 18.

Subtipo Precisao Recall F1-Score Suporte
CIN 0,78 0,85 0,81 41
EBV 0,80 0,80 0,80 10
GS 0,58 0,58 0,58 12
MSI 1,00 0,78 0,88 18
Acuracia 0.79

Macro AVG 0,79 0,75 0,77 81
Weighted AVG 0,80 0,79 0,79 81

Fonte: O autor (2025).

A Tabela 6 apresenta as média das métricas de desempenho do modelo, que alcan-

¢cou uma acuracia média de 0.74 + 0.01 na classificagao dos subtipos de cancer gastrico

em 81 pacientes. A média ponderada do F1-score foi de 0.75 £ 0.02, indicando uma boa

capacidade geral de classificacao.

Tabela 6 — Métricas da média dos classificadores utilizando o painel Top 18.

Subtipo Precisao Recall F1-Score Suporte
CIN 0.92+0.03 0.64+0.03 0.7540.02 41
EBV 0.62+0.02 0.794+0.03 0.704+0.02 10
GS 0.474+0.03 0.814+0.04 0.5940.02 12
MSI 0.87+0.08 0.884+0.03 0.8740.04 18
Acuracia 0.74 +0.01

Macro AVG 0.71£0.01 0.78+0.01 0.7340.01 81
Weighted AVG 0.80 £ 0.02 0.74+0.01 0.75+0.02 81

Fonte: O autor (2025).

Analisando os subtipos individualmente, o0 modelo demonstrou um desempenho exce-

lente para MSI, com alta precisao (0.87 4+ 0.08) e recall (0.88 4+ 0.03), sugerindo que suas

previsdes para esta classe sao muito confiaveis. O subtipo CIN também obteve alta preci-

séo (0.92 4 0.03), mas com um recall moderado (0.64 4 0.03), o que significa que, embora

as classificacdes CIN fossem geralmente corretas, o modelo ndo conseguiu identificar to-

dos os casos dessa classe. Em contrapartida, os subtipos GS e EBV apresentaram um

padrao inverso, com recall elevado (0.81 e 0.79, respectivamente) e a precisdo mais baixa
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(0.47 e 0.62), indicando que o modelo identificou a maioria dos casos dessas classes, mas
ao custo de um numero maior de falsos positivos.

Por fim, é possivel observar através da Figura 4 que o modelo obteve um auto desem-
penho nos subtipos EBV e MSI com AUC de 0,92 e 0,97 respectivamente, assim como
uma média macro de 0,92. Os subtipos CIN e GS apresentam um desempenho significa-

tivo com AUC de 0,89 e 0,87 respectivamente.

Figura 4 — AUC-ROC do Random Forest com painel genético Top 18

Curva ROC Random Frest Painel Top 18
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Fonte: O autor (2025).

E importante notar que este desempenho foi alcangado utilizando um painel selecio-
nado de 18 genes: TP53, ARID1A, MUC16, ZBTB41, GGNBP2, PIK3CA, SYT17, MEF2C,
MUC6, RNF213, SEC31A, BOC, CDH18, NFASC, BHLHB9, FAS, HERC2 e SYNE1. A
selecao deste painel genético, que inclui genes com papéis conhecidos na tumorigénese
gastrica como ‘TP53‘ e ‘PIK3CA, foi crucial para a capacidade preditiva do classificador,
permitindo que o modelo discernisse entre os subtipos moleculares com a acurécia repor-

tada.
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6.4.4 Resultados Ensemble Multimodal (MobileNet + Random Forest)

Os resultados do ensemble multimodal GSubType-GenoVision, combinando MobileNet
(visdo computacional) e Random Forest (RF), foram obtidos a partir de 20 modelos trei-
nados com k-fold cross-validation (k=10). As métricas de precisao, recall e F1-score foram
calculadas para dois métodos de agregacao: hard voting (votagcao majoritaria) e soft voting

(média de probabilidades).

Tabela 7 — SubtGenoVision 9

Subtipo Precisao Recall F1-Score Suporte
CIN 0,77 0,83 0,80 41
EBV 0,73 0,80 0,76 10
GS 0,58 0,58 0,58 12
MSI 0,86 0,67 0,75 18
Acuracia 0.75

Macro AVG 0,74 0,72 0,72 81
Weighted AVG 0,76 0,75 0,75 81

Fonte: O autor (2025).

Tabela 8 — AUR-ROC: Wang et al. (2022) Vs. modelos desenvolvidos.

Wangetal. G.Subt G.SubtGeno G.SubtGeno

Subtipo (2022) Forest9 Vision9 Vision18
CIN 0,890 0,87 0,90 0,91
EBV 0,764 0,90 0,96 0,98
GS 0,897 0,84 0,90 0,90
MSI 0,898 0,96 0,98 0,99
Macro AVG 0,840 0,89 0,94 0,95

Fonte: O autor (2025).

Note que a Tabela 8 apresenta uma comparacao direta da performance AUR-ROC do
modelo G.SubtGenoVision18 com o trabalho de referéncia de Wang et al. (2022). O modelo
proposto demonstra uma superioridade consistente, alcangando uma média macro (Macro
AVG) de 0,95, um avanco significativo em relacao aos 0,84 reportados pelo modelo base.

Ja na Tabela 8 comparamos a performance AUR-ROC dos modelos desenvolvidos com

o trabalho de referéncia de Wang et al. (2022). Observa-se uma melhoria progressiva e
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Figura 5 — AUC-ROC G.SubtGenoVision 9

Curva ROC do Ensemble Multimodal: MobileNet e Random Forest Painel Genético Top 9 Genes
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Fonte: O autor (2025).

substancial em todos os modelos propostos, que superam consistentemente o modelo
base.

O modelo G.SubtForest9 baseado apenas em caracteristicas genémicas, ja demonstra
um avancgo significativo, elevando a média macro (Macro AVG) de 0,84 para 0,89. Este
modelo se destaca na classificacao dos subtipos EBV (0,90) e MSI (0,96), superando com
folga o trabalho de referéncia.

A integracdo de dados histopatolégicos e genémicos nos modelos G.SubtGenoVision
resulta em um salto de performance ainda maior. O G.SubtGenoVision9 alcan¢ga uma meé-
dia macro de 0,94, mostrando a for¢a da fusao de dados. O desempenho na classificagdo
de EBV (0,96) e MSI (0,98) é notavelmente alto, indicando uma sinergia eficaz entre as
fontes de informacao.

Finalmente, o G.SubtGenoVision18 que utiliza um painel genético expandido, firma-se
como o modelo de melhor desempenho, atingindo uma média macro de 0,95. Ele obtém
resultados quase perfeitos para os subtipos MSI (0,99) e EBV (0,98), e melhora ou iguala a
performance em todas as outras classes. Essa evolugdo demonstra que a combinagéo de

dados de visdo computacional com um painel genético otimizado é uma estratégia robusta
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e superior para a classificagdo dos subtipos moleculares do adenocarcinoma gastrico.

O modelo G.SubtGenoVision (Artigo 4) integra visdo computacional (MobileNetV2) e
dados genéticos (Random Forest com 9 genes) e alcangou um AUC-ROC médio de 0.94
na classificacao dos quatro subtipos moleculares (CIN, MSI, EBV, GS) [6].

Para estabelecer uma comparacao rigorosa com a literatura unimodal, utilizamos o
desempenho do modelo DEMoS de Wang et al. (2022), que se baseia exclusivamente em
imagens histopatoldgicas. Os resultados de DEMoS no nivel do paciente sdo os seguintes
(WANG et al., 2022):

A andlise comparativa no nivel de paciente demonstra a robustez do sistema multimo-
dal, especialmente na melhoria da discriminacao das classes minoritarias:

Comparado com Wang et al. (2022) (WANG et al., 2022), 0 G.SubtGenoVision 6 melhorou

os valores AUC-ROC no nivel do paciente nos seguintes subtipos:

* CIN (Instabilidade Cromossémica): O G.SubtGenoVision obteve um AUC-ROC de
0.90, superando o AUC-ROC de 0.890 de Wang et al. (2022) em 0.010 ponto per-
centual. Embora ambos os modelos demonstrem alta capacidade preditiva para esta
classe majoritaria, a integragcdo multimodal fornece um ganho marginal, mas consis-

tente

« EBV (Virus Epstein-Barr): O G.SubtGenoVision alcangcou um AUC-ROC de 0.96, re-
presentando uma melhoria acentuada de 0.196 ponto percentual sobre o AUC-ROC
de 0.764 de Wang et al. (2022). Este ganho substancial é particularmente relevante,
pois EBV é uma classe minoritaria (9% dos casos [??]), e o alto desempenho no
AUC-ROC (0.96) sugere que a inclusdo do componente genético do Random Forest
(otimizado para SNVs influentes) complementa eficazmente a predicdo da Mobile-
NetV2, que isoladamente alcancou AUC-ROC de 0.95 para EBV

* GS (Genomicamente Estavel): O G.SubtGenoVision atingiu um AUC-ROC de 0.90,
um aumento de apenas 0.003 ponto percentual em relagdo ao AUC-ROC de 0.897
de Wang et al. (2022). Isso indica que, para o GS, a abordagem unimodal de Wang
ja era altamente eficiente, e a integragdo multimodal manteve esse alto nivel de dis-

criminagéo.

* MSI (Instabilidade Microssatélite): O G.SubtGenoVision obteve um AUC-ROC de
0.98, superando o AUC-ROC de 0.898 de Wang et al. (2022) em 0.082 ponto per-
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centual. Este resultado no MSI (uma classe minoritaria) demonstra que a fusdo de
dados genéticos, especialmente através do Random Forest otimizado [5], forneceu
a informacao essencial para alcancar uma capacidade de discriminagao préxima da

perfeicdo (0.98).

Figura 6 — AUC-ROC MobileNet-V2

Curva ROC do Ensemble Multimodal: MobileNet e Random Forest Painel Genético Top 18 Genes
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Fonte: O autor (2025).

Enquanto a média macro do AUC-ROC de Wang et al. (2022) no nivel do paciente
(calculada em = 0.862) ja era considerada um desempenho favoravel, o0 G.SubtGenoVision
elevou a métrica global para 0.94.

O aprimoramento do G.SubtGenoVision (0.94) sobre DEMoS (0.862) reside na sua
capacidade de balancear o desempenho: ele mantém a alta precisao alcangada pela Visao
Computacional em classes como CIN e GS, enquanto usa a informagdo molecular para
amplificar o desempenho nas classes minoritarias MSI e EBV, superando a tendéncia dos

modelos unimodais em classes desbalanceadas.
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Tabela 9 — Comparagao de AUC-ROC por Subtipo Individual.

Subtipo G.SubtGenoVision 18

(Wang et al., 2022)

Molecular (Multimodal AUC-ROC [6]) (Unimodal AUC-ROC) Ganho
CIN 0,91 0,890 20 %
EBV 0,97 0,764 20,6 %
GS 0,90 0,897 0,3 %
MSI 0,99 0,898 20 %

Fonte: O autor (2025).

6.5 CONCLUSAO

O sistema proposto, G.SubtGenoVision, demonstrou desempenho superior aos mode-

los existentes na literatura e mostrou-se eficiente na classificagéo dos subtipos moleculares

do adenocarcinoma gastrico. A combinacao de imagens histopatoldgicas e dados genéti-

cos foi eficaz em superar limitagées de abordagens unimodais, ampliando a acessibilidade

a classificagdo molecular e proporcionando avangos significativos para o diagnostico e tra-

tamento do cancer gastrico.
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7 DISCUSSAO GERAL

O Artigo 1 “G.SubtVision: Subtipagem Molecular do Cancer Gastrico com Métodos de
Ensemble de Redes Neurais Convolucionais (CNNs)” estabelece uma base tedrica robusta
ao reconstruir com inteligéncia artificial o conhecimento em patologia, transitando de anali-
ses morfologicas baseadas em imagens histopatolégicas (Lauren, 1965; OMS, 2019) para
a integracao de dados moleculares (TCGA, 2014) e, finalmente, ao ensemble de multiplas
arquiteturas de redes neurais convolucionais proposto. A implementagao do G.SubtVision,
com trés arquiteturas de CNNs (MobileNetV2, ShuffleNet e GoogLeNet) é treinada em 263
casos com 476 laminas, resultou em F1-score macro de 0.48 e precisdo macro de 0.56,
superando o HEAL de Wang et al. (2022) em 4% na média e 14% em MSI, com desempe-
nho excepcional em EBV (0.48 vs. 0.09). Esses resultados se alinham com os de Flinner et
al. (2022), que enfrentaram desafios em subtipos minoritarios como GS e MSI. A revisao
de Cifici et al. (2022) reforca que a falta de validacao externa limita modelos anteriores
(FLINNER et al., 2022; CIFCI; FOERSCH; KATHER, 2022).

Essa abordagem técnica encontra respaldo na hipétese de que a combinagao de arqui-
teturas complementares explora a diversidade de features extraidas, superando a depen-
déncia de um unico modelo, como o EfficientNet em Wang. A superioridade em classes
desbalanceadas, como EBYV, pode ser atribuida em parte a capacidade do ensemble de
ponderar predigdes de forma distribuida, reduzindo o impacto de amostras escassas.

Além disso, o uso de supervisao molecular, em vez de critérios morfolégicos humanos,
alinha-se a tendéncia de Kather et al. (2019) e Coudray et al. (2018) em outras topografias,
sugerindo que o G.SubtVision estabelece um marco inicial para a patologia digital no can-
cer gastrico. Por outro lado, quando se observam os resultados da reproducédo do modelo
de Wang et al. 2022 com EfficientNet, realizado, percebe-se que a distribuicdo de casos
no grupo teste pode ter sido uma parte importante do melhoramento observado (KATHER et
al., 2020; COUDRAY et al., 2018).

Na pratica, o G.SubtVision € uma ferramenta que pode auxiliar na triagem de casos
para exames moleculares especificos que possam fortalecer o poder preditivo dos subti-
pos moleculares. Com a expansao da patologia digital com escéner de laminas acessiveis
e plataformas online para diagnéstico patolégico, o G.SubtVision pode ser extremamente

acessivel mesmo em laborat6rios com recursos limitados, pois as imagens histopatol6gi-



162

cas ja fazem parte da rotina e com o scanner de laminas inteiras digitalizando a imagem
que pode ser processada em nuvem.

Ja o Artigo 2 “Redes neurais convolucionais classificam subtipo molecular do cancer
gastrico em dataset tubular-controlado” aprofunda a investigacdo ao validar a capacidade
das CNNs de identificar fenotipos profundos, definidos como atributos profundos (deep fe-
atures) diretamente associados a padrées gendmicos. O dataset tubular-controlado, com-
posto por 22 casos tubulares do TCGA-STAD categorizados como CIN ou nao-CIN, foi pro-
jetado para testar a hipétese de que a classificagao seria indireta via distribui¢cdo histopato-
l6gica. Resultados mostram que NASNet-Mobile alcangou AUROC global >0.72, enquanto
MobileNetV2 apresentou precisdo 0.62, recall 0.73, F1 0.66 e AUROC 0.64, comparaveis
ao dataset geral (0.63/0.69/0.66/0.69), rejeitando essa hipotese. Essa consisténcia alinha-
se a Kather et al. (2019), que identificaram MSI em HE, porém esse teste com um dataset
construido com tipo histopatol6gico homogéneo para verificar se mesmo diante dessas
condi¢cdes a CNN continuaria a classificar os subtipos. A persisténcia da predicdo em CIN
reforga essa capacidade.

Tecnicamente, as métricas do dataset tubular-controlado indicam que a performance
independe do tipo histolégico tubular, mas decorre de padrdes moleculares subjacentes. A
comparacao com o dataset geral mostra estabilidade (diferenca de AUROC <0.05), suge-
rindo robustez em cenarios controlados, uma limitagao reconhecida por Wang et al. (2022)
em classes desbalanceadas.

Na pratica, isso significa que as redes neurais nao estdao apenas "imitando"o que ja
se sabe, mas descobrindo novas pistas no tecido, mesmo em amostras pequenas ou he-
terogéneas. Para um patologista, isso reduz a chance de erros em biopsias desafiadoras
do ponto de vista de categorizacao histopatolégica. Ja que o reconhecimento dos padrbes
subjacentes aos subtipos moleculares parece ter independéncia da associacdo desses
com o tipo histopatolégico. (WANG et al., 2022)

A transicao para o Artigo 3, “G.SubtForest: Classificador de Subtipos Moleculares do
CA Gastrico com TCGA via Random Forest e Painéis Otimizados”, representa um avango
na modalidade genémica, complementando as contribui¢des visuais. Tecnicamente, o ar-
tigo propde o G.SubtForest, baseado em Random Forest aplicado a 18.600 variantes de
nucleotideo unico (SNV) nado sindnimas do TCGA-STAD, com k-fold (k=10) para treina-
mento e SHAP para identificar genes influentes, resultando em painéis otimizados de 18

genes (adequado a NGS) e 9 genes (adequado a IHC), alcangando AUC-ROC média de
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0.91 e 0.89, respectivamente.

Essa abordagem supera painéis IHC propostos por Kim et al. (2016), que atingem AUC-
ROC 0.73, com ganhos de +0.18 macro, alinhando-se ao TCGA (2014) em genes como
TP53 e ARID1A, mas identificando inéditos como ZBTB41 em EBV e GGNBP2 em MSI,
hipotetizando que a teoria dos jogos via SHAP captura interagbes colaborativas melhor
que inferéncias indutivas, mitigando desbalanceamentos em subtipos como EBV ( 9% no
TCGA).

A correlacdo com artigos anteriores € evidente: enquanto o G.SubtVision (Artigo 1)
e o dataset tubular-controlado (Artigo 2) capturam deep features visuais, o G.SubtForest
adiciona dados genéticos, preparando a integracdo multimodal no Artigo 4, superando li-
mitacbes de imagens isoladas como em Flinner et al. (2022), onde IA em HE alcanca
AUC-ROC 0.80 para CIN, vs. 0.88 aqui (CHEN et al., 2025; LIU et al., 2025; KIM et al., 2016;
Cancer Genome Atlas Research Network, 2014).

Na pratica, isso € como criar um "menu genético"acessivel: em vez de sequenciar tudo,
caro e lento como nos métodos multibmicos do TCGA, usa-se um painel compacto de
9 genes para IHC em rotinas hospitalares, facilitando estratificagéo rapida de pacientes
para terapias-alvo, como inibidores de checkpoint em MSI, sem sobrecarregar sistemas
de saude em paises em desenvolvimento. Expandindo nos subitens da Conclusao, o pré-
processamento de dados do TCGA (VARSCAN), mutagées nao-sinbnimas, alinha-se a
necessidade de foco em variantes funcionais, como destacado por Kim et al. (2016) em
IHC, mas a abordagem via SNV aqui supera em precisdo (AUC-ROC 0.91 vs. 0.73), hi-
potetizando que a redugéo de ruido melhora discriminagdo em MSI hipermutados, onde
hipermutag¢des demandam filtragem robusta.

O treinamento de 10 modelos Random Forest (Tépico 3.2) com k=10 mitiga desba-
lanceamentos, alcan¢gando macro F1 0.75 para TOP 36, superior a Lian et al. (2020) em
metilacao ( 0.70), sugerindo que ensembles elevam robustez em GS (F1 0.60), melhor que
Flinner et al. (2022) em IHC ( 0.50) (FLINNER et al., 2022; KIM et al., 2016).

A revisdo de importancia de variaveis via SHAP e teoria dos jogos, resulta em painéis
com TP53 e ARID1A, alinhados ao TCGA (2014), mas hipotetizando que SHAP supera im-
portancia permutada ao capturar colaboragdes, explicando genes inéditos como ZBTB41
(12 em EBYV, ligado a repressao epigenética). A aplicacdo de SHAP para pontuacéo ponde-
rada (Tépico 3.4) constrdi painéis acessiveis, superando Kim (2016) em AUC-ROC (+0.16),

priorizando MUC16 (ausente em Kim), melhorando acessibilidade em contextos limitados,
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como Rdcken (2022) em biomarcadores preditivos. Genes relevantes inéditos (Topico 3.5),
como GGNBP2 (22 em MSI) e BHLHB9 (5° em MSI), contrastam com foco em TP53 do
TCGA (2014), hipotetizando papéis em instabilidade e proliferacédo, expandindo repertério
para terapias.

Os sistemas G.SubtForest 18 (NGS) e 9 (IHC) (Tépico 3.8) obtém AUC-ROC 0.91 e
0.89, superando Flinner (2022) em CIN ( 0.80), hipotetizando que SHAP-RF eleva transla-
¢ao, como Lian (2020) em metilacao, facilitando rotina clinica. Na pratica, é como oferecer
"opgdes econdmicas": o painel 9 para IHC em hospitais sem NGS, reduzindo custos vs.
multidmicos (TCGA, 2014), superando inferéncias probabilisticas de Kim (2016), promo-
vendo medicina de precisdo acessivel (FLINNER et al., 2022; LIU et al., 2024).

A culminancia da tese se da no Artigo 4, G.SubtGenoVision: Sistema ensemble multi-
modal para classificagdo dos subtipos moleculares do adenocarcinoma gastrico com Ima-
gens histopatolégicas e painel de mutagdes, que integra as modalidades visuais e genémi-
cas desenvolvidas nos artigos anteriores. Tecnicamente, o G.SubtGenoVision concatena
10 modelos MobileNetV2 (desenvolvidos para o artigo 1) com o G.SubtForest 9 (do Artigo
3), utilizando dados do TCGA-STAD (476 laminas e SNVs de 18.600 genes em 290 paci-
entes), com pré-processamento de tiling e normalizacao de cor para imagens, e tabulagao
por caso/gene para SNVs (SANDLER et al., 2018; Cancer Genome Atlas Research Network, 2014).

O G.SubtGenoVision alcangou AUC-ROC médio de 0.94, demonstrando superioridade
notavel sobre as abordagens unimodais. A comparagao no nivel de paciente entre as abor-
dagens de Visdo Computacional isolada (G.SubtVision/Artigo 1 e Wang et al./DEMoS) e o

G.SubtGenoVision multimodal revela o impacto da integracao:

» Comparado com G.SubtVision (CNN ensemble unimodal, AUC-ROC 0.85), 0 G.SubtGenoVision

melhorou os valores AUROC:

— CIN: (0.82 para 0.90), resultando em uma melhoria de 0.08 ponto percentual.

— EBV: (0.94 para 0.96), um ganho modesto de 0.02 ponto percentual, reforcando

a alta capacidade preditiva da MobileNetV2 isolada para esta classe

— GS: (0.71 para 0.90), um ganho substancial de 0.19 ponto percentual. Este
aumento significativo demonstra que a adigao da informagao genética (Random
Forest) foi crucial para resgatar a baixa performance da CNN (MobileNetV2) na

classificacao do subtipo Genomicamente Estavel
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— MSI: (0.86 para 0.98), uma melhoria robusta de 0.12 ponto percentual.

» Comparado com Wang et al. (2022) (DEMoS, AUC-ROC médio = 0.86), 0 G.SubtGenoVision

melhorou os valores AUROC no nivel do paciente:

— CIN: (0.890 para 0.90), com um ganho marginal de 0.010 ponto percentual,

refletindo a eficacia de ambas as abordagens em uma classe majoritaria

— (0.764 para 0.96), um ganho substancial de 0.196 ponto percentual. Este ganho
valida a estratégia multimodal, superando a dificuldade do DEMoS em classes
minoritarias

— GS: (0.897 para 0.90), com um ganho minimo de 0.003 ponto percentual. Em-
bora Wang et al. (2022) ja tivessem alcancado alta performance para GS, o

G.SubtGenoVision conseguiu igualar esse patamar robusto

— MSI: (0.898 para 0.98), com um ganho de 0.082 ponto percentual, destacando

a capacidade da fusao de dados genéticos em MSI, um subtipo hipermutado

Na pratica, € como montar uma triangulagdo de modos de conhecimento para o diag-
ndstico: imagens e genes colaboram para dar respostas mais precisas e rapidas, ajudando
a identificar subtipos que guiam tratamentos sem depender de testes caros e demorados.

Por fim, é importante enfatizar que a tecnologia necesséria a translagéo dos resultados
foi desenvolvida em paralelo, com projeto de inovagao (descrito no tépico "Outras Produ-
¢bes Durante o Vinculo com o PPGGBM") que culminou na criacdo do Pathoscope. Uma
solugao nacional integral em patologia digital com escéner de laminas, plataforma online e
modelos de IA, viabilizando aplicagao pratica dos avangos ja que a infraestrutura acelera
translacao clinica, integrando ensembles multimodais em fluxos reais, permitindo o avanco

para estudos clinicos prospectivos.
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Tabela 1 — AUC-ROC: Wang et al. (2022) vs. Modelos desenvolvidos em nivel de pacientes

SM M G.SubtVision G.SubtForest9 G.SubtGenoVision9 G.SubtGenoVision18

et al. (2022)
CIN 0,890 0,82 0,87 0,90 0,91
EBV 0,764 0,94 0,90 0,96 0,98
GS 0,897 0,71 0,84 0,90 0,90
MSI 0,898 0,86 0,96 0,98 0,99
Macro AVG 0,84 0,85 0,89 0,94 0,95

Fonte: O autor (2025).
Tabela 2 — Precisoin: Wang et al. (2022) vs. Modelos desenvolvidos em nivel de pacientes
Wang . . . . . . .

SM G.SubtVision G.SubtForest9 G.SubtiGenoVision9 G.SubtiGenoVision18

et al. (2022)
CIN 0,58 0,57 0,90+0,04 0,77 0,78
EBV 1,00 1,00 0,47+0,04 0,73 0,80
GS 0,83 0,62 0,48+0,00 0,58 0,58
MSI 0,65 1,00 0,83+0,08 0,86 1,00
Macro AVG 0,77 0,80 0,67+0,02 0,74 0,79

Fonte: O autor (2025).
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8 CONCLUSAO

A presente tese:

» Desenvolveu G.SubtVision: sistema preditivo para imagens histopatolégicas na iden-

tificacao de subtipos moleculares:

— Prop6s um novo método, fundamentado em ensemble de trés redes neurais
convolucionais: G.SubtVision, demonstrando resultados superiores a literatura

(Artigo 1).

— Demonstrou que as redes neurais foram capazes de classificar o subtipo mole-
cular, mesmo em dataset tubular-controlado, apontando para a identificagdo de
fendtipo profundo (atributo profundo decorrente de treinamento supervisionado

com dados genéticos) (Artigo 2).

» Desenvolveu G.SubtForest, sistemas preditivos no modo de conhecimento das mu-

tacdes somaticas de variagao de nucleotideo unico (SNV):

— ldentificou painéis de mutag¢des para a classificacdo do subtipo molecular com
18 e 9 genes que podem ser aplicados de acordo com a acessibilidade a méto-

dos diagnésticos.

— ldentificou genes relevantes na diferenciacao entre subtipos moleculares que

ndo estavam previamente descritos na literatura sobre cancer gastrico.

— Desenvolveu sistemas preditivos G.SubtForest 18 para painel com NGS e G.SubtForest

9 para painel com imuno-histoquimica (Artigo 3).

» Desenvolveu o G.SubtGenovision, sistema de ensemble multimodal integrando pa-

drdes de imagens histopatolégicas e mutagées somaticas:

— Desenvolveu sistema integrando em ensemble 10 modelos de MobileNetV2 e
G.SubtForest 9, obteendo resultados significativamente superiores aos descri-
tos na literatura. Contribuindo para a ampliagao da acessibilidade a classifica-

cao dos subtipos moleculares.

» Desenvolveu sistema aplicavel na pratica médica ja que foi realizado paralelamente

ao projeto de inovacao que resultou no Pathoscope, que confere a infraestrutura
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tecnoldgica necesséria para viabilizar, em curto prazo, a aplicagao pratica dos avan-
¢os aqui descritos, por meio de scanner de Iaminas, plataforma diagndstica online e
modelos de inteligéncia artificial, conforme descrito no tépico "Producédo Durante o
Vinculo com o PPGGBM".
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9 PRODUCAO DURANTE O VINCULO COM O PPGGBM

Nesse capitulo serdo encontradas outras producdes realizadas durante o processo de
doutoramento que nao se relacionam diretamente com o encadeamento I6gico dos objeti-
vos principais da presente tese. Destaca-se o projeto de inovacgéo diretamente associado
a acessibilidade dos resultados da presente tese. Outras producdes foram capitulo de livro

publicado e experimentos realizados que nao entraram na presente tese.

Coordenacao de projeto de inovacao: Sistema de deteccao precoce do cancer por

inteligéncia artificial.

O autor durante o desenvolvimento da presente tese escreveu e coordenou o projeto
“Sistema de deteccao precoce do cancer por inteligéncia artificial aplicada a patologia di-
gital: prevencao do cancer de colo do Utero e de estdbmago”.

Submeteu o projeto de sua autoria a chamada publica para empresas do setor saude
desenvolverem tecnologia 4.0. imediatamente antes da selecao ao doutorado no PPGGBM.
Dentre as tecnologias habilitadoras consideradas nessa chamada publica como tecnolo-
gias 4.0 estavam a Inteligéncia Artificial e a computagdo em nuvem.

A digitalizag@o da patologia passou a ser possivel ha menos de uma década. Embora
a fotografia digital de partes pequenas da lamina uma de cada vez em conformidade com
o aumento do microscopio ja existissem desde o surgimento da fotografia digital, foi ape-
nas com o aumento do poder computacional e do avango nos algoritimos que a costura
automatizada dos pedacgos para compor digitalmente a lamina inteira passou a ser pos-
sivel. Por ter menos de uma década a patologia digital est4 ainda em sua infancia, sem
ainda haver em 2020 uma solucao nacional. Os custos com scanners de laminas inteiras
€ ainda elevado a ponto de ser proibitivo para pequenos laboratérios. Os aparelhos dis-
poniveis apenas para compra elevam em demasia o custo da imagem em um mercado
de margens pequenas e em tendéncia de queda por competicao acirrada de precos entre
os laboratorios de patologia. Essa tem sido a principal barreira a ampla adogao da tecno-
logia. O acesso a essa tecnologia, portanto, permanece restrito as grandes empresas. O
que é uma limitagédo a acessibilidade das Inteligéncias Atrtificiais (IA) que ja& demonstraram

eficiéncia significativa no reconhecimento de imagens como maior probabilidade de pre-
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senca de um tipo especifico de tumor e, portanto, com potencial de otimizar o suporte aos
patologistas.

Foi aprovado na linha tematica SAUDE 4.0 propondo o desenvolvimento de uma solu-
cao que integre a captura de imagens de laminas inteiras com cameras digitais acopladas
a microscopios automatizados usando processamento interno de costuras das imagens
microscopicas para a exportacao da WS/ imagem de lamina inteira. Sistema web de vi-
sualizagdo online com seguranca e integragdo com Sistemas de Informacgéo Laboratorial.
Processamento de imagens em nuvem com modelos de inteligéncia artificial para a sele-
¢ao de campos de maior probabilidade de cancer, aumentando a sensibilidade. Um salto
rumo a um futuro mais acessivel e eficiente para a patologia digital.

Objetivo Geral Desenvolver uma solucéo integral de patologia digital ampliada por inte-
ligéncia artificial.

Objetivos especificos: 1- Desenvolver scanner de laminas para digitalizagdo de laminas
histoldgicas e citoldégicas 2- Desenvolver sistema web para patologia digital que permita
interface com o usudrio patologista e colaboragao entre usuérios patologistas 3- Treinar in-
teligéncia computacional para identificar alteragées morfolégicas em amostras de citologia
oncotica vaginal e histologia de mucosa gastrica; Desenvolver aplicagdo considerando a
experiéncia do patologista;

4- Validar a aplicagdo em grupos de pacientes em estudos retrospectivos e prospectivos
controlados; Validar a aplicacdo em ambiente operacional; Implantar a aplicagao validada
na rotina operacional de laboratoérios patologia credenciados.

Da perspectiva de Experiéncia do Usuario, a construcao da plataforma do PATHOS-
COPE foi realizada em conjunto com um time de patologistas do Ampliar o que permitiu
uma melhor compreensao de usabilidade bem como a definicdo das melhores ferramentas
de manipulacdo de imagens para a area.

A inovagao desenvolvida aqui é disruptiva no ambito nacional pois altera significativa-
mente a maneira como as analises patologicas sao feitas e atende as principais demandas
estratégicas dos laboratérios especializados na area. Ainda hoje a informatizagao € parcial
nos laboratorios de patologia, sendo usada apenas como ferramenta de gestdo e edigao
de texto, todo o trabalho de reconhecimento de padrdes de imagens é manual, utilizando
microscépio 6tico e sem qualquer sistema de apoio ao diagnéstico. O presente projeto
desenvolveu um sistema de apoio diagnéstico ao cancer desenvolvendo a primeira tecno-

logia de patologia digital ampliada por inteligéncia computacional no pais. A proposta do
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projeto redesenha todo o modelo de negdcio, aumentando a escalabilidade e atendendo
uma demanda reprimida para diagnéstico de cancer, em um momento que, caso nada seja
feito, se tornaré critica, ndo havendo numero suficiente de patologista para os diagnésticos
necessarios. A inteligéncia artificial aplicada a patologia digital utilizando computacdo em
nuvem é uma inovagao disruptiva no ambito nacional e internacional, ja que esta presente
na pratica médica, somente em uns poucos centros nos paises desenvolvidos.

Niveis de Maturidade Tecnoldgica (TRLs) abrangidos nivel 3 Imagens processada ja
validada nivel 4 Curadoria das imagens ra ser realizada com banco balanceado e marcado
nivel 5 resultados estatisticos favoraveis nivel 6 testes em ambiente virtual nivel 7 protétipo
em ambiente operacional validado

A capacidade do novo processo alterar o paradigma técnico-econémico vigente esta
em que infelizmente o patologista atua na maior parte do tempo como microscopista. O
conhecimento fisiopatoldgico crescente ja hd muito tempo € extenso demais para que 0s
clinicos e cirurgides os dominem sem auxilio especializado. Por outro lado o médico pa-
tologista frequentemente ndo recebe as informagdes completas dos casos e se encontra
sobrecarregado com o rastreamento microscépico manual. O rastreamento pode ser com-
parado a procurar por uma moeda em um gramado. Para poder afirmar a auséncia de
moeda é necessario um rastreamento minucioso. Afirmar a auséncia de pequenas célu-
las em uma imagem com milhares de quadros € muitas vezes uma atividade, monoétona,
delongada e extenuante que exige longos periodos de imobilidade diante do microscopio.
Esse paradigma leva ao aumento de falso-negativo por pequenas alteracdes passarem
desapercebidas.

Nos laboratérios pequenos e médios, que € o caso de todos do norte-nordeste, o pa-
tologista lauda grande diversidade de topografias, exercendo a chamada patologia geral.
Fazem todo o rastreamento sozinhos com grande consumo de tempo. O que é um in-
centivo a reducao do tempo despendido em uma laminas. Seria de grande interesse dos
patologistas um processo de trabalho que permitisse uma maior especializagdo dos exa-
mes laudados e o auxilio de |IA supervisionada, permitindo mais precisdo nos exames e
menor estresse para o patologista. O avango possibilitara a patologia digital nacional e as-
sim permitird melhor organizagéo do fluxo na rede de laboratérios credenciados. Permitira
que os patologistas possam trabalhar a distancia, com colaboracao técnico-cientifica entre
servicos de diversas regides, permitira assim que os patologistas atuem de maneira mais

especializada, mesmo pertencendo a servigos menores. Promovera aumento da qualidade
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nos diagnosticos devido ao uso de ferramentas de computacao para desenhar, destacar
imagens, medir, contar e cooperar em tempo real com outros patologistas. Padrdes que
ndo sao faceis de serem percebidos por seres humanos, mas que sao reconhecidos por
inteligéncia artificial sdo um exemplo inequivoco da contribuicdo das redes neurais para o
diagnostico.

A patologia digital vai acessibilizar diagnosticos mais rapidos e precisos a milhares de
pessoas, promovendo a colaboragdo entre médicos patologistas nas regides e médicos
patologistas hiper especializados em grande variedade de topografias. Rede neural de-
senvolvida para citologia auxiliara no diagnéstico precoce de casos de milhares de casos
de cancer de colo do utero evitando morbidade e mortalidade Rede neural desenvolvida
para histologia auxiliara no diagnéstico precoce de milhares de casos de cancer do esto-
mago. O scanner de Imagens de Laminas Inteiras devido a computagdo em nuvem podera
ser um servigco acessivel aos laboratérios do norte-nordeste que continuardo competitivos.
O novos processos organizardo os dados nos arquivos da beneficiaria proponente para
deixa-los limpos e preparados para novos desenvolvimentos de redes neurais.

Impacto Tecnolégico: 1. Avango no ambito do diagndstico patolégico com utilizagao
da patologia digital com computacdo em nuvem e assistida por inteligéncia artificial 2.
Introducdo na rotina diagnédstica Sistema inteligente de apoio ao diagndstico precoce do
cancer de estbmago 3. Introdugéo na rotina diagnéstica Sistema inteligente de apoio ao
diagnéstico precoce do cancer de colo do Utero 4. Avango da Telemedicina no apoio ao
diagnéstico anatomopatoldgico do cancer. 5. Reducao de doengas ocupacionais da coluna
nos médicos patologistas com desenvolvimento de estacao de trabalho ergonomicamente
apropriada.

O autor da presente atuou como primeiro autor e coordenador geral do projeto, coorde-
nando o desenvolvimento do scanner de laminas ( microscopio automatizado), do sistema
web de visualizagdo de WS/ imagens de laminas inteiras, do desenvolvimento dos mode-
los de visdo computacional e da coordenagéao financeira, de contratagcdes e demissdes de
desenvolvedores de tecnologia da informacao, da prestacao de contas.

O resultado desse trabalho foi a criagdo da primeira empresa especializada em pa-
tologia digital do Brasil. A PATHOSCOPE, comprometida com a ampliacdo da visao da

patologia por inteligéncia artificial para o diagndstico mais precisos e velozes.
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CAPITULO PUBLICADO: SAUDE, BEM-ESTAR E BUSCA POR SENTIDO: PENSANDO
CRIATIVAMENTE AS INTERRELAGOES PARA A PRATICA DA SUSTENTABILIDADE

Capitulo de livro indexado e com comité de avaliagdo publicada pela editora UFPE na
serie livro texto: Objetivos do desenvolvimento sustentével, uma abordagem multidisciplinar
dos desafios e solucdes (LINS et al., 2024)

Esse capitulo fala sobre a importancia da promogéao da saude no contexto do envelheci-
mento populacional, destacando estratégias para garantir uma longevidade ativa e sauda-
vel. Ele aborda a diferenga entre expectativa de vida e tempo de saude, enfatizando o papel
dos habitos saudaveis e da prevengao no envelhecimento biolégico. Além disso, apresenta
a promog¢ao da saude como uma abordagem integrada, que vai além do tratamento de
doencas, abrangendo o bem-estar fisico, mental, social e comunitario. O capitulo também
incentiva o uso do pensamento criativo e da colaboragéo interdisciplinar para enfrentar
os desafios de saude e alcangar as metas de desenvolvimento sustentavel, promovendo

empreendimentos transformadores e sustentaveis na sociedade.
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