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ABSTRACT

The growing need to reduce patient exposure to ionizing radiation in medical imaging
has led to the widespread adoption of low-dose computed tomography protocols, guided by
the principle of ALARA (As Low As Reasonably Achievable). However, lowering the radiation
dose results in increased image noise and artifacts, which can significantly compromise diag-
nostic quality. Advanced deep learning techniques have demonstrated that neural networks can
effectively learn mappings between LDCT and corresponding NDCT images, improving recon-
struction quality. Nevertheless, most existing approaches rely on direct mappings, which may
have reached a performance plateau, as suggested by the diminishing improvements observed
across recent models. In this context, diffusion models have emerged as promising alternatives
for image restoration due to their generative capabilities. However, traditional formulations
based on stochastic noise addition may not be well-suited when modeling complex noise dis-
tributions. Previous works have addressed this issue by redefining the forward process as a
deterministic transformation between clean and noisy images, aligning more closely with ac-
tual real-world scenarios. Building upon this alternative formulation, we introduce a flexible
power-law noise scheduler parameterized by an exponent 𝛾, which controls the rate at which
noise is introduced during the diffusion process. This design enables the exploration of different
noise progression dynamics, and allows for the evaluation of Curriculum Learning hypotheses
in the context of LDCT denoising. When 𝛾 > 1, the model follows a curriculum that gradually
increases noise complexity, while 𝛾 < 1 corresponds to a reverse curriculum. This flexibility
positions 𝛾 as a key component for guiding the learning process. Experimental results show
that the proposed method outperforms standard reconstruction techniques, especially under
aggressive noise schedules. Additionally, the best results were obtained with 𝛾 > 1, reinforcing
the effectiveness of a curriculum-based degradation strategy in LDCT reconstruction tasks.

Keywords: Low Dose CT. Medical Image Denoising. Diffusion Models. Noise Schedule. Cur-
riculum Learning.



RESUMO

A crescente necessidade de reduzir a exposição dos pacientes à radiação ionizante em im-
agens médicas levou à adoção generalizada de protocolos de tomografia computadorizada de
baixa dose, guiados pelo princípio ALARA (Tão Baixo Quanto Razoavelmente Exequível). No
entanto, a redução da dose de radiação resulta em aumento do ruído e artefatos nas imagens,
o que pode comprometer significativamente a qualidade diagnóstica. Técnicas avançadas de
deep learning têm demonstrado que redes neurais podem aprender efetivamente mapeamentos
entre imagens LDCT e as correspondentes NDCT, melhorando a qualidade da reconstrução.
Contudo, a maioria das abordagens existentes baseia-se em mapeamentos diretos, que podem
ter atingido um platô de desempenho, como sugerido pelas melhorias cada vez menores ob-
servadas em modelos recentes. Nesse contexto, modelos de difusão surgem como alternativas
promissoras para restauração de imagens devido às suas capacidades generativas. Entretanto,
formulações tradicionais baseadas na adição estocástica de ruído podem não ser adequadas
para modelar distribuições complexas de ruído. Trabalhos anteriores abordaram essa questão
redefinindo o processo de adição de ruído como uma transformação determinística entre im-
agens limpas e ruidosas, alinhando-se mais de perto com cenários reais. Com base nessa
formulação alternativa, esta dissertação propõe uma rotina de adição de ruído flexível baseada
em uma lei de potência, parametrizada por um expoente 𝛾, que controla a taxa em qual o
ruído é introduzido durante o processo de difusão. Esse design possibilita a exploração de
diferentes dinâmicas de progressão do ruído e permite a avaliação de hipóteses de Apren-
dizado por Currículo no contexto de remoção de ruído em imagens médicas. Quando 𝛾 > 1,
o modelo segue um currículo que aumenta gradualmente a complexidade do ruído, enquanto
𝛾 < 1 corresponde a um currículo reverso. Essa flexibilidade posiciona 𝛾 como um componente
chave para guiar o processo de aprendizado. Resultados experimentais mostram que o método
proposto supera técnicas padrão de reconstrução, especialmente sob agendamentos de ruído
mais agressivos. Além disso, os melhores resultados foram obtidos com 𝛾 > 1, reforçando a
eficácia de uma estratégia de degradação baseada em currículo nas tarefas de reconstrução de
tomografias de baixa dose.

Palavras-chaves: TC de Baixa Dose. Remoção de ruído. Redes de Difusão. Rotina de Adição
de Ruído. Aprendizado por currículo.
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1 INTRODUCTION

This initial chapter introduces the research context of this master’s thesis, providing an
overview of denoising algorithms for medical imaging, and discusses the motivations that justify
its development. The chapter also defines the main goal and specific objectives of the study,
highlighting the key contributions achieved. Finally, it provides an overview of the document
structure.

1.1 CONTEXT

Computed Tomography (CT) is a diagnostic medical imaging procedure that uses a com-
bination of X-rays to produce detailed visualizations of internal body parts such as bones,
muscles, organs, and blood vessels. Unlike standard X-ray, which uses a single beam of energy
aimed directly at the desired body part, in a CT scan a series of rays are rotated around a spe-
cific body part, and a computed generated cross-sectional image is produced (PATEL; JESUS,
2023). This method is widely used in clinical procedures because, in addition to its non-invasive
nature, the images produced can help to detect several pathological abnormalities, including
tumors, nodules, vascular problems, and fractures (METTLER et al., 2000).

Although CT can provide an excellent clinicopathological correlation for a suspected illness
(KISTLER et al., 1975), its use involves ionizing radiation, which has the potential to be car-
cinogen depending on factors such as the type of radiation, exposure time, irradiated tissue
and age (KRILLE et al., 2010). Of all X-ray-based diagnostics, CT scans constitute one of the
highest radiation dose-demanding (KALRA et al., 2002), requiring from 50 to 1000 times the
radiation dose than conventional X-rays (PATEL; JESUS, 2023). This overexposure can lead to
the development of metabolic abnormalities, genetic disorders, and even cancer, which can
significantly reduce the patient’s quality of life (MEULEPAS et al., 2019).

To address this issue, Low-Dose Computed Tomography (LDCT) protocols have emerged
as an alternative to minimize radiation exposure while trying not to affect clinical dignosis.
Usually, to obtain LDCT images, the X-ray flux is deliberately reduced during the procedure by
lowering the tube voltage, which lowers the tube current, and effectively reduces the amount of
radiation that penetrates the body (RAMPINELLI; ORIGGI; BELLOMI, 2013). However, reducing
the radiation dose of the X-rays affects the Signal-to-Noise Ratio (SNR) of the X-ray signals
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and results in low contrast CT images with noise and artifacts, as well as blurred edges and
low textures (KULATHILAKE et al., 2023), which reduces the confiability of the diagnosis. Figure
1 shows the quality contrast between a normal-dose and a low-dose CT.

(a) NDCT (b) LDCT

Figure 1 – Comparison between normal-dose (a) and low-dose (b) abdomen CT images show a liver lesion
(red box) and a cystic lesion in the left kidney (blue box). The red circle represents metastasis,
which is difficult to identify in the LDCT image. (Source: Yang et al. (2018)).

To address this challenge, several denoising algorithms have been proposed to recover
visual details in LDCT images, in order to improve their clinical usability. These methods
aim to reduce the quality difference between LDCT and Normal-Dose Computed Tomography
(NDCT) images. Over the years, machine learning and deep learning techniques have become
widely adopted in CT protocols (ZHANG; GU; SHI, 2022).

The classical deep learning-based approach to LDCT denoising consists of learning a func-
tion 𝑓 in the image space that maps a noisy LDCT image to its corresponding clean NDCT
counterpart. This supervised mapping framework has led to substantial performance improve-
ments and has been explored in a wide range of architectures, including Convolutional Neural
Network (CNN), encoder-decoder structures, and residual learning models.

However, recent comparative studies such as that by Eulig et al. (2024) suggest that the
performance gains between the most recent models are becoming marginal when evaluated
using standard quantitative metrics. This observation raises important questions about the
potential saturation of performance in direct mapping approaches, especially in scenarios where
the noise characteristics are complex and non-Gaussian, as is the case with real-world LDCT
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data. In this context, generative models have emerged as powerful frameworks for learning
data distributions and generating high-quality synthetic samples.

Generative models are a class of deep learning models designed to learn the underlying
data distribution of a given dataset, enabling the generation of new samples that are statis-
tically similar to the training data. Formally, these models are trained to learn the probability
distribution 𝑝𝑑𝑎𝑡𝑎(x) of given dataset and sample new data x̂ ∼ 𝑝𝜃(x), where 𝜃 represents
the learnable parameters of the learned model (RUTHOTTO; HABER, 2021). In the context of
imaging, samples are typically represented as two-dimensional matrices x ∈ R𝐻×𝑊 or, alterna-
tively, as high-dimensional vectors obtained by flattening 𝐻 ×𝑊 images into one-dimensional
sequences (BISHOP, 1995).

Traditional generative models include Generative Adversarial Network (GAN) (GOODFEL-

LOW et al., 2014), Variational AutoEncoder (VAE) (KINGMA; WELLING, 2013), and Flow-
based models (DINH; KRUEGER; BENGIO, 2014; DINH; SOHL-DICKSTEIN; BENGIO, 2016; KINGMA;

DHARIWAL, 2018). They have shown great success in high-quality sampling generation, but
each method has its own limitations. GANs are known for training instability due to their ad-
versarial nature, and can easily suffer from mode collapse (THANH-TUNG; TRAN, 2020), which
affects sampling diversity. VAEs are more stable, but often produce blurry images and lack
detail (HUANG et al., 2018). Flow models require specialized reversible architectures that are
computationally expensive (CHEN et al., 2019).

More recently, the Denoising Diffusion Probabilistic Model (DDPM) (HO; JAIN; ABBEEL,
2020) has emerged as a new class of latent variable generative models that works by gradually
adding noise to an input signal, and then learns to reverse this process in order to generate
new samples. Figure 2 shows a comparative scheme between these four generative models
(WENG, 2021).

In the field of generative imaging, denoising diffusion models became the state of the
art in many tasks, including text-to-image generation, inpainting, super-resolution, and image
restoration (NICHOL et al., 2021; NICHOL; DHARIWAL, 2021; RAMESH et al., 2021; MENG et

al., 2022), having demonstrated superiority over traditional approaches (DHARIWAL; NICHOL,
2021). However, despite their widespread use in other contexts, the application of diffusion
models to image denoising remains relatively unexplored (HUNG et al., 2023; LIU et al., 2023).

This gap can be attributed to the inherit way these models operate: they use two Markov
chains parameterized by a neural network. In the forward chain, noise is progressively sampled
from a predefined isotropic distribution and added to the image, ultimately yielding a fully
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noisy image at the end of the process. In the reverse chain, a neural network is trained to
iteratively remove this noise and reconstruct the original image (HO; JAIN; ABBEEL, 2020).

Figure 2 – Comparison between the schematic diagrams of GAN, VAE, flow model and diffusion model. Unlike
the aforementioned models, DDPM is learned through an iterative procedure and the latent variable
has high dimensionality, same as the input data. (Source: Weng (2021)).

Diffusion-based methods often perform image denoising as a conditional image generation
task. In classic conditional diffusion models, the reverse process begins with pure noise and
is guided by an input signal (SAHARIA et al., 2022a), which can be a class label, a text rep-
resentation, a semantic map, or even, in the case of LDCT denoising, an image (XIA; LYU;

WANG, 2022). This conditioning signal may be concatenated within a Convolutional Neural
Network architecture along with the data input the timestep embeddings (ROMBACH et al.,
2022). Figure 3 provides a general overview of the conditioning process for image denoising.
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Figure 3 – Illustration of the original diffusion model approach applied to image denoising. The forward process
remains the same: a certain amount of noise is gradually added until the image becomes pure noise.
In the reverse process, the conditioning image is embedded into the network along with the timestep
embeddings. (Source:Xie et al. (2023)).

1.2 MOTIVATION

A key limitation in applying DDPMs to image denoising tasks lies in the mismatch between
the noise distribution assumed during training and the actual noise characteristics of real-
world data. In standard DDPMs, the forward process injects Gaussian noise into clean images
to simulate a degradation trajectory. However, in many practical scenarios, the noise pattern
is more complex and does not follow a Gaussian distribution. This discrepancy results in
suboptimal performance, as the model learns to remove a type of noise that is statistically
different from what is actually present in the images.

Direct Low-Dose to Normal-Dose CT mapping methods appear to have reached a plateau,
as they are advancing with relatively incremental image quality gains. This trend points to
a possible exhaustion of traditional approach-based solutions. Despite the aforementioned
challenges, diffusion models possess an inherent advantage for denoising: their progressive
refinement mechanism. By decomposing the LDCT-to-NDCT mapping into multiple denoising
steps, they avoid the limitations of single-step reconstruction.

With this in mind, our methods builds upon a previously explored alternative forward pro-
cess, in which the trajectory from clean NDCT images to noisy LDCT images is explicitly
defined as a deterministic transition. This eliminates the need to model the noise with a
predefined probability distribution and allows better alignment with the empirical noise char-
acteristics of the data.
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Additionally, we hypothesize that explicitly modeling the noise level added at each diffusion
step according to a power-law schedule enables the investigation of learning schemes inspired
by Curriculum Learning, where early steps involve minor degradations, or Reverse Curriculum
Learning, which starts with higher noise increments.

This formulation allows us to explore how explicit difficulty modulation, interpreted here
as the amount of residual noise added between successive steps, can influence the quality of
LDCT-to-NDCT reconstruction and the behavior of the model during training.

1.3 OBJECTIVES

This work proposes a novel denoising strategy based on conditional diffusion models de-
signed for low-dose CT image reconstruction. Motivated by the limitation of classical DDPMs
in modeling the noise characteristics of real-world data, our primary goal is to introduce a
flexible power-law noise scheduler that enables the exploration of different strategies for diffi-
culty modulation throughout the diffusion process. In order to achieve this goal, our specific
objectives are listed as follows:

• To develop a mathematical formulation for the noise scheduler based on a power-law
function, parameterizing its progression through the exponent 𝛾;

• To implement the DDPM diffusion process using multiple steps of residual noise addition,
modulating the incremental noise level between steps;

• To empirically evaluate the impact of different noise scheduler configurations on LDCT-
to-NDCT image reconstruction performance;

• To investigate the feasibility of interpretations based on Curriculum Learning and Reverse
Curriculum Learning through residual noise modulation;

• To compare the results obtained with traditional direct mapping approaches and other
well-established noise schedules in the diffusion model literature.

1.4 CONTRIBUTIONS

The following contributions are expected to be achieved upon the completion of the afore-
mentioned objectives:
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• The proposal of a novel noise scheduler compatible with the DDPM framework, based
on a power-law formulation with flexible parameterization, whose approach allows con-
trol over the progression of residual noise added at each diffusion step through the
hyperparameter 𝛾, which regulates the rate of noise addition;

• An ablation study that explores how different noise scheduler configurations can modu-
late the incremental difficulty between successive diffusion steps;

• An analysis on the impact of explicit difficulty modulation on the steps of the image
denoising learning process, introducing for the first time in the literature the discussion
of Curriculum Learning and Reverse Curriculum Learning concepts applied in the context
of diffusion models.

1.5 DOCUMENT STRUCTURE

This work is structured into the following chapters:

• Chapter 2: Presents the theoretical foundations of diffusion models, including the for-
ward and reverse processes, and their application to image generation tasks.

• Chapter 3: Introduces the conditional aspects of guided diffusion models and reviews
recent advances in image-conditioned diffusion, as well as their applicability to image
denoising tasks.

• Chapter 4: Describes the proposed forward process, the conditioning strategy, the noise
scheduling mechanism, and the deterministic reverse process, detailing the architectural
and algorithmic choices.

• Chapter 5: Presents the overall experimental pipeline, detailing dataset descriptions,
training protocols, and evaluation metrics.

• Chapter 6: Describes experimental results, including comparisons with baseline methods
and ablation studies.

• Chapter 7: Summarizes the main findings, discusses limitations, and outlines directions
for future research.
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2 DENOISING DIFFUSION PROBABILISTIC MODELS

This chapter introduces the theoretical foundations of diffusion models and presents the
methods and techniques on which they are based. Section 2.1 provides a brief overview of the
general diffusion formulation, while Sections 2.1.1 and 2.1.2 formalize its two main compo-
nents: the forward and reverse processes. Sections 2.2 and 2.3 present the training objective
and model architecture proposed in the original DDPM formulation, respectively. Finally, Sec-
tion 2.4 discusses the design details of noise schedules.

2.1 DIFFUSION PROCESS

The concept of diffusion originates from the field of thermodynamics, where it describes the
spontaneous movement of particles from regions of higher concentrations to regions of lower
concentrations driven by the principle of entropy (JARZYNSKI, 2012). In statistics, it refers to
the process of transforming complex distributions simpler ones (NEAL, 1998). This intuition
inspired the development of the Diffusion Probabilistic Model (DPM) (SOHL-DICKSTEIN et al.,
2015), a class of generative models that also borrow principles from non-equilibrium statistical
physics (JARZYNSKI, 1997) and sequential Monte Carlo methods (NEAL, 1998).

In the context of generative modeling, DPMs are considered implicit models: they learn
to generate samples without explicitly defining a probability distribution over the data (WU;

GAO; ZHA, 2021). Instead, they provide a way of interacting with the probability distribution
indirectly. The learning process involves a forward diffusion stage, modeled as a Markov chain,
where structured data is progressively corrupted with noise. A neural network is then trained
to reverse this process, step by step, in order to recover the original data distribution (SOHL-

DICKSTEIN et al., 2015). Figure 4 illustrates this process (KREIS; GAO; VAHDAT, 2022).

Figure 4 – General overview of the diffusion framework. The process consists of two stages: a forward diffusion
process that gradually adds noise to the input, and a reverse denoising process that learns to
generate data samples from noise. (Source: Kreis, Gao e Vahdat (2022)).
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2.1.1 Forward diffusion process

In this stage, the input data x0 ∈ R𝐻×𝑊 , assumed to be continuous over pixel values to
enable the diffusion modeling, sampled from the original data distribution 𝑞(x0) is progressively
transformed into a latent variable x𝑇 ∈ R𝐻×𝑊 of the same dimensionality through a forward
diffusion process, which consists of a Markov chain that gradually adds Gaussian noise to
x0 over 𝑇 steps, generating a sequence x1, x2, · · · , x𝑇 , where x𝑇 asymptotically approaches
a standard Gaussian distribution, x𝑇 ∼ 𝒩 (0, I), and each intermediate step x𝑡 ∈ R𝐻×𝑊

becomes increasingly noisier. Figure 5 illustrates this process.

Figure 5 – Illustration of the formal definition of the forward process in 𝑇 steps. The data sample x0 gradually
loses its distinguishable features as the step 𝑡 becomes larger, and eventually when 𝑇 → ∞, x0
becomes equivalent to an isotropic Gaussian distribution. (Source: Kreis, Gao e Vahdat (2022)).

Formally, the forward process is defined as Equation 2.1 (HO; JAIN; ABBEEL, 2020)

𝑞(x𝑡|x𝑡−1) = 𝒩
(︂

x𝑡;
√︁

1− 𝛽𝑡x𝑡−1, 𝛽𝑡I
)︂

, (2.1)

where 𝑞(x𝑡|x𝑡−1) is the conditional distribution of the latent variable x𝑡 given the previous state
x𝑡−1, and {𝛽𝑡 ∈ (0, 1)}𝑇

𝑡=1 is the variance schedule that controls the addition of Gaussian noise
that produces the sequence x1, · · · , x𝑇 . The notation 𝒩 (x𝑡; 𝜇𝑡, Σ𝑡) denotes a multivariate
Gaussian distribution evaluated at x𝑡 defined by mean 𝜇 ∈ R𝐻×𝑊 and covariance Σ ∈ R𝐻×𝑊 ,
where 𝜇𝑡 =

√
1− 𝛽𝑡x𝑡−1 and Σ𝑡 = 𝛽𝑡I, with I ∈ R𝐻×𝑊 indicating the identity matrix.

The joint probability of the process that guides the initial sample x0 to the final sample
x𝑇 is defined in Equation 2.2. This formulation highlights the Markovian characteristic of the
process, as each sample x𝑡 depends only on the immediately preceding sample x𝑡−1 (SOHL-

DICKSTEIN et al., 2015).

𝑞(x1:𝑇 |x0) =
𝑇∏︁

𝑡=1
𝑞(x𝑡|x𝑡−1), (2.2)
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where the trajectory stated by 𝑞(x1:𝑇 ) indicates that the process is repeatedly applied from
timestep 1 to 𝑇 . Once the larger the total number of timesteps 𝑇 , the greater the computa-
tional power required to compute 𝑞(x𝑡|x𝑡−1). To solve this issue, Ho, Jain e Abbeel (2020)
proposed a reparameterization trick that allows a tractable and closed-form of sampling strat-
egy at any given timestep 𝑡. Let’s assume 𝛼𝑡 = 1− 𝛽𝑡, then we can use a recursive manner to
express x𝑡 directly in terms of x0

x𝑡 =
√︁

1− 𝛽𝑡x𝑡−1 +
√︁

𝛽𝑡𝜖𝑡−1

= √𝛼𝑡x𝑡−1 +
√

1− 𝛼𝑡𝜖𝑡−1

= √𝛼𝑡

(︁√
𝛼𝑡−1x𝑡−2 +

√︁
1− 𝛼𝑡−1𝜖𝑡−2

)︁
+
√

1− 𝛼𝑡𝜖𝑡−1

= √𝛼𝑡𝛼𝑡−1x𝑡−2 +
√︁

𝛼𝑡(1− 𝛼𝑡−1)𝜖𝑡−2 +
√

1− 𝛼𝑡𝜖𝑡−1⏟  ⏞  
sum of independent Gaussian

= √𝛼𝑡𝛼𝑡−1x𝑡−2 +
√︁

1− 𝛼𝑡𝛼𝑡−1 𝜖𝑡−1

= · · ·

=
√

𝛼̄𝑡x0 +
√

1− 𝛼̄𝑡 𝜖

(2.3)

where 𝛼𝑡 = ∏︀𝑡
𝑖=0 𝛼𝑖 and 𝜖0, 𝜖1, . . . , 𝜖𝑡−1 ∼ 𝒩 (0, I) are independent Gaussian noise terms.

Here, 0 ∈ R𝐻×𝑊 is a zero matrix, and I ∈ R𝐻×𝑊 is the identity matrix. The merged noise
term 𝜖 ∼ 𝒩 (0, I), due to the property that a linear combination of independent Gaussian
variables is still Gaussian. By using Equation 2.3, we can define the diffusion kernel of the
forward process as shown in Equation 2.4 (HO; JAIN; ABBEEL, 2020)

𝑞(x𝑡|x0) = 𝒩 (x𝑡;
√

𝛼𝑡x0, (1− 𝛼𝑡)I) (2.4)

Finally, Equation 2.4 allows us to generate a sample x𝑡 directly from an input sample x0

(HO; JAIN; ABBEEL, 2020). This procss is described in Equation 2.5

𝑞(x𝑡) =
∫︁

𝑞(x0, x𝑡)𝑑x0 =
∫︁

𝑞(x0)𝑞(x𝑡|x0)𝑑x0, (2.5)

where 𝑞(x𝑡) is the distribution of the intermediate diffused data, 𝑞(x0, x𝑡) is the joint proba-
bility, and 𝑞(x𝑡|x0) is the diffusion kernel. To sample x𝑡 ∼ 𝑞(x𝑡), we first sample x0 ∼ 𝑞(x0)

and then sample x𝑡 ∼ 𝑞(x𝑡|x0). Figure 6 illustrates how the distributions behaves during this
process.
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Figure 6 – Illustration of the forward process. Starting from the data distribution 𝑞(x0), each subsequent step
adds more noise, resulting in progressively noisier distributions 𝑞(x1), . . . , 𝑞(x𝑇 ). As 𝑡 increases, the
distribution gradually approaches an isotropic Gaussian. (Source: Kreis, Gao e Vahdat (2022)).

2.1.2 Reverse diffusion process

Ideally, the generative process of diffusion would consist of initially sampling x𝑇 ∼ 𝒩 (0, I)

and then iteratively computing x𝑡−1 ∼ 𝑞(x𝑡−1|x𝑡) in a step-wise manner until we recovered a
sample x0 from the original data distribution. Figure 7 illustrates this generative process.

Figure 7 – Illustration of the ideal reverse process. Starting from pure Gaussian noise x𝑇 ∼ 𝒩 (0, I), the model
iteratively samples from reverse conditionals 𝑞(x𝑡−1|x𝑡), gradually denoising the latent variables to
approach a sample x0 from the data distribution 𝑞(x0). (Source: Kreis, Gao e Vahdat (2022)).
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The key challenge lies in modeling the reverse transitions 𝑞(x𝑡−1|x𝑡). From the forward
process, each latent variable x𝑡 is conditionally generated from the previous step, according to
𝑞(x𝑡|x𝑡−1). Now, when generating data, we aim to reverse this process. For that, we require
the posterior distribution 𝑞(x𝑡−1|x𝑡), which tells us how to sample a cleaner version x𝑡−1 given
a noisier one x𝑡 given a noisier one (HO; JAIN; ABBEEL, 2020). Using Bayes’ theorem we can
model this process through the reverse conditional distribution expressed in Equation 2.6

𝑞(x𝑡−1|x𝑡) =

forward kernel⏞  ⏟  
𝑞(x𝑡|x𝑡−1) ·

marginal⏞  ⏟  
𝑞(x𝑡−1)

𝑞(x𝑡)⏟  ⏞  
marginal

(2.6)

Although theoretically defined, this expression is intractable in practice because both 𝑞(x𝑡−1)

and 𝑞(x𝑡) are marginal distributions that require integrating on the unknown distribution 𝑞(x0).
This can be written as (HO; JAIN; ABBEEL, 2020)

𝑞(x𝑡−1) =
∫︁

𝑞(x𝑡−1|x0)𝑞(x0)𝑑x0

𝑞(x𝑡) =
∫︁

𝑞(x𝑡|x0)𝑞(x0)𝑑x0

Here the notation 𝑞(x0) refers to the prior data distribution, and the conditionals 𝑞(x𝑡−1|x0)

and 𝑞(x𝑡|x0) are known Gaussian transitions. What is fundamentally difficult to compute are
the reverse conditionals 𝑞(x𝑡−1|x𝑡) due to the unknown nature of 𝑞(x0) (LUO, 2022; STRüMKE;

LANGSETH, 2023; GALLON; JENTZEN; WURSTEMBERGER, 2024). This intractability motivated
the use of learned neural network approximation 𝑝𝜃(x𝑡−1|x𝑡) to approximate 𝑞(x𝑡−1|x𝑡)

Since the reverse process has the same distributional form as the forward process (FELLER,
1949), which is an isotropic Gaussian distribution, then the goal of the reverse process is
to learn the parameters of the Gaussian transitions that revert the forward process. These
parameters, specifically the mean and variance, can be predicted by a deep neural network
(SOHL-DICKSTEIN et al., 2015).

Objectively, we use a deep neural network 𝑝𝜃 parameterized by 𝜃 to approximate the reverse
transition distribution 𝑞(x𝑡−1|x𝑡). This distribution is modeled as a Gaussian whose parameters
depend on the noisy input x𝑡 and the corresponding timestep 𝑡:

𝑝𝜃(x𝑡−1|x𝑡) = 𝒩 (x𝑡−1; 𝜇𝜃(x𝑡, 𝑡), Σ𝜃(x𝑡, 𝑡)), (2.7)

where 𝜇𝜃 and Σ𝜃 denote the predicted mean and covariance of the reverse Gaussian transition.
By conditioning the model on both the timestep 𝑡 and the noisy sample x𝑡, the network learns
to denoise different levels of noise added in the forward process. Figure 8 illustrates this process.
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Figure 8 – Illustration of the generative (reverse) diffusion process. Starting from a noise sample x𝑇 ∼ 𝒩 (0, I),
the model iteratively reconstructs a data-like sample x̂0 by applying a trained neural network.
(Source: Kreis, Gao e Vahdat (2022)).

Just like in the forward diffusion, the reverse process can also be modeled as a Markov chain,
trained to recover x̂0 from pure noise x𝑇 ∼ 𝒩 (0, I) (HO; JAIN; ABBEEL, 2020). Consequently,
the full generative model is expressed as

𝑝𝜃(x0:𝑇 ) = 𝑝(x𝑇 )
𝑇∏︁

𝑡=1
𝑝𝜃(x𝑡−1|x𝑡), (2.8)

where the 𝑝𝜃(x0:𝑇 ) trajectory represents the joint distribution over all latent variables along
the reverse Markov chain.

2.2 TRAINING OBJECTIVE

Like most generative models, the training objective of diffusion models is to learn a model
distribution 𝑝𝜃(x0) that approximates the true data distribution 𝑞(x0), which is achieved by
minimizing the negative log-likelihood via a variational lower bound (SOHL-DICKSTEIN et al.,
2015)

− log 𝑝𝜃 (x0) ≤ − log 𝑝𝜃 (x0) + 𝐷KL (𝑞 (x1:𝑇 |x0) ‖𝑝𝜃 (x1:𝑇 |x0))

= − log 𝑝𝜃 (x0) + Ex1:𝑇 ∼𝑞(x1:𝑇 |x0)

[︃
log 𝑞 (x1:𝑇 |x0)

𝑝𝜃 (x0:𝑇 ) /𝑝𝜃 (x0)

]︃

= − log 𝑝𝜃 (x0) + E𝑞

[︃
log 𝑞 (x1:𝑇 |x0)

𝑝𝜃 (x0:𝑇 ) + log 𝑝𝜃 (x0)
]︃

= E𝑞

[︃
log 𝑞 (x1:𝑇 |x0)

𝑝𝜃 (x0:𝑇 )

]︃
(2.9)

Equation 2.9 yields the following VLB objetive

𝐿VLB = E𝑞(x0)𝑞(x1:𝑇 |x0)

[︃
− log 𝑝𝜃 (x0:𝑇 )

𝑞 (x1:𝑇 |x0)

]︃
≥ E𝑞(x0) [− log 𝑝𝜃 (x0)] ,
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2.2.1 Decomposition of the VLB

Using the Markov property of both processes, we decompose 𝐿VLB into a combination of
several KL-divergence terms (HO; JAIN; ABBEEL, 2020)

𝐿VLB = E𝑞(x0,𝑇 )

[︃
log 𝑞 (x1:𝑇 |x0)

𝑝𝜃 (x0:𝑇 )

]︃

= E𝑞

[︃
log

∏︀𝑇
𝑡=1 𝑞 (x𝑡|x𝑡−1)

𝑝𝜃 (x𝑇 )∏︀𝑇
𝑡=1 𝑝𝜃 (x𝑡−1|x𝑡)

]︃

= E𝑞

[︃
− log 𝑝𝜃 (x𝑇 ) +

𝑇∑︁
𝑡=1

log 𝑞 (x𝑡|x𝑡−1)
𝑝𝜃 (x𝑡−1|x𝑡)

]︃

= E𝑞

[︃
− log 𝑝𝜃 (x𝑇 ) +

𝑇∑︁
𝑡=2

log 𝑞 (x𝑡|x𝑡−1)
𝑝𝜃 (x𝑡−1|x𝑡)

+ log 𝑞 (x1|x0)
𝑝𝜃 (x0|x1)

]︃

= E𝑞

[︃
− log 𝑝𝜃 (x𝑇 ) +

𝑇∑︁
𝑡=2

log
(︃

𝑞 (x𝑡−1|x𝑡, x0)
𝑝𝜃 (x𝑡−1|x𝑡)

· 𝑞 (x𝑡|x0)
𝑞 (x𝑡−1|x0)

)︃
+ log 𝑞 (x1|x0)

𝑝𝜃 (x0|x1)

]︃

= E𝑞

[︃
− log 𝑝𝜃 (x𝑇 ) +

𝑇∑︁
𝑡=2

log 𝑞 (x𝑡−1|x𝑡, x0)
𝑝𝜃 (x𝑡−1|x𝑡)

+
𝑇∑︁

𝑡=2
log 𝑞 (x𝑡|x0)

𝑞 (x𝑡−1|x0)
+ log 𝑞 (x1|x0)

𝑝𝜃 (x0|x1)

]︃

= E𝑞

[︃
− log 𝑝𝜃 (x𝑇 ) +

𝑇∑︁
𝑡=2

log 𝑞 (x𝑡−1|x𝑡, x0)
𝑝𝜃 (x𝑡−1|x𝑡)

+ log 𝑞 (x𝑇 |x0)
𝑞 (x1|x0)

+ log 𝑞 (x1|x0)
𝑝𝜃 (x0|x1)

]︃

= E𝑞

[︃
log 𝑞 (x𝑇 |x0)

𝑝𝜃 (x𝑇 ) +
𝑇∑︁

𝑡=2
log 𝑞 (x𝑡−1|x𝑡, x0)

𝑝𝜃 (x𝑡−1|x𝑡)
− log 𝑝𝜃 (x0|x1)

]︃

= E𝑞

⎡⎢⎢⎣𝐷𝐾𝐿(𝑞(x𝑇 |x0)||𝑝(x𝑇 ))⏟  ⏞  
𝐿𝑇

+
∑︁
𝑡>1

𝐷𝐾𝐿(𝑞(x𝑡−1|x𝑡, x0)||𝑝𝜃(x𝑡−1|x𝑡))⏟  ⏞  
𝐿𝑡−1

− log 𝑝𝜃(x0|x1)⏟  ⏞  
𝐿0

⎤⎥⎥⎦
(2.10)

The term 𝐿𝑇 shows how close x𝑇 is to the standard Gaussian. Since the approximate posterior
𝑞 has no learnable parameters due to the fixed variance schedule, this term is constant during
training and can be ignored. 𝐿𝑡−1, or simply 𝐿𝑡, expresses the difference between the desired
denoising steps 𝑝𝜃(x𝑡−1|x𝑡) and the approximate ones 𝑞(x𝑡−1|x𝑡, x0). The term 𝐿0 is similar
to the reconstruction term of a variational autoencoder (KINGMA et al., 2016; SALIMANS et al.,
2017).

2.2.2 Parameterization of 𝐿𝑡 for training loss

In practice, Ho, Jain e Abbeel (2020) derived a tractable reverse conditional probability
𝑞(x𝑡−1|x𝑡) by additionally conditioning it on x0. The new formulation of this process is written
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in Equation 2.11
𝑞(x𝑡−1|x𝑡, x0) = 𝒩 (x𝑡−1; 𝜇𝑡(x𝑡, x0), 𝛽𝑡I), (2.11)

Since 𝛼𝑡 = 1− 𝛽𝑡 and 𝛼𝑡 = ∏︀𝑡
𝑖=0 𝛼𝑖, the variance can be defined as follows

𝛽𝑡 = 1
⧸︂(︃

𝛼𝑡

𝛽𝑡

+ 1
1− 𝛼̄𝑡

)︃
= 1

⧸︂(︃
𝛼𝑡 − 𝛼̄𝑡 + 𝛽𝑡

𝛽𝑡 (1− 𝛼̄𝑡−1)

)︃
= 1− 𝛼̄𝑡−1

1− 𝛼̄𝑡

· 𝛽𝑡

Following the standard Gaussian density function, the mean can be parameterized as

𝜇𝑡(x𝑡, x0) =
(︃√

𝛼𝑡

𝛽𝑡

x𝑡 +
√

𝛼̄𝑡−1

1− 𝛼̄𝑡−1
x0

)︃⧸︂(︃
𝛼𝑡

𝛽𝑡

+ 1
1− 𝛼̄𝑡−1

)︃

=
(︃√

𝛼𝑡

𝛽𝑡

x𝑡 +
√

𝛼̄𝑡−1

1− 𝛼̄𝑡−1
x0

)︃
·
(︂1− 𝛼̄𝑡−1

1− 𝛼̄𝑡

· 𝛽𝑡

)︂

=
√

𝛼̄𝑡−1𝛽𝑡

1− 𝛼̄𝑡

x0 +
√

𝛼𝑡(1− 𝛼̄𝑡−1)
1− 𝛼̄𝑡

x𝑡

(2.12)

From the reparameterization trick expressed in Equation 2.3, we can write x0 as

x0 = 1
√

𝛼𝑡

(x𝑡 −
√

1− 𝛼̄𝑡𝜖) (2.13)

Finally, by replacing Equation 2.13 in Equation 2.12, Ho, Jain e Abbeel (2020) showed the
compact form of the estimated mean in Equation 2.15

𝜇𝑡(x𝑡, x0) = 1
√

𝛼𝑡

(︃
x𝑡 −

1− 𝛼̄𝑡√
1− 𝛼̄𝑡

𝜖

)︃
(2.14)

From Equation 2.7, we know we need to learn a neural network to approximate the conditioned
probability distributions in the reverse diffusion process

𝑝𝜃(x𝑡−1|x𝑡) = 𝒩 (x𝑡−1; 𝜇𝜃(x𝑡, 𝑡), Σ𝜃(x𝑡, 𝑡)),

which means we would like to train 𝜇𝜃 to predict 𝜇𝑡. Since x𝑡 is available as input at training
time, we can reparameterize the Gaussian noise term instead to make it predict 𝜖𝑡 from the
input x𝑡 at timestep 𝑡

𝜇𝜃(x𝑡, x0) = 1
√

𝛼𝑡

(︃
x𝑡 −

1− 𝛼̄𝑡√
1− 𝛼̄𝑡

𝜖𝜃(x𝑡, 𝑡)
)︃

, (2.15)

where 𝜖𝜃(x𝑡, 𝑡) is the noise predicted by the network as timestep 𝑡.
From Equation 2.10, the loss term 𝐿𝑡 can be parameterized to minimize the difference

from 𝜇𝑡 (HO; JAIN; ABBEEL, 2020)

𝐿𝑡 = 𝐷KL (𝑞 (x𝑡−1|x𝑡, x0) ‖𝑝𝜃 (x𝑡−1|x𝑡)) = E𝑞

[︃
1

2𝜎2
𝑡

‖𝜇̃𝑡 (x𝑡, x0)− 𝜇𝜃 (x𝑡, 𝑡)‖2
]︃
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Ho, Jain e Abbeel (2020) demonstrated that maximizing the log-likelihood can be reduced to
simply learning the denoising steps 𝐿𝑡

𝐿𝑡 = Ex0,𝜖

[︃
1

2 ‖Σ𝜃 (x𝑡, 𝑡)‖2
2
‖𝜇̃𝑡 (x𝑡, x0)− 𝜇𝜃 (x𝑡, 𝑡)‖2

]︃

= Ex0,𝜖

⎡⎣ 1
2 ‖Σ𝜃‖2

2

⃦⃦⃦⃦
⃦ 1
√

𝛼𝑡

(︃
x𝑡 −

1− 𝛼𝑡√
1− 𝛼̄𝑡

𝜖

)︃
− 1
√

𝛼𝑡

(︃
x𝑡 −

1− 𝛼𝑡√
1− 𝛼̄𝑡

𝜖𝜃 (x𝑡, 𝑡)
)︃⃦⃦⃦⃦
⃦

2
⎤⎦

= Ex0,𝜖

[︃
(1−𝛼𝑡)2

2𝛼𝑡 (1− 𝛼̄𝑡) ‖Σ𝜃‖2
2
‖𝜖− 𝜖𝜃 (x𝑡, 𝑡)‖2

]︃

= Ex0,𝜖

⎡⎢⎢⎢⎢⎢⎣
(1−𝛼𝑡)2

2𝛼𝑡 (1− 𝛼̄𝑡) ‖Σ𝜃‖2
2⏟  ⏞  

weighting factor

⃦⃦⃦⃦
⃦⃦⃦𝜖𝑡 − 𝜖𝜃

⎛⎜⎝√𝛼̄𝑡x0 +
√

1− 𝛼𝑡𝜖⏟  ⏞  
x𝑡

, 𝑡

⎞⎟⎠
⃦⃦⃦⃦
⃦⃦⃦

2

⎤⎥⎥⎥⎥⎥⎦

(2.16)

Ho, Jain e Abbeel (2020) showed empirically that better results were achieved with a
simplified objective that ignores the weighting term

𝐿𝑠𝑖𝑚𝑝𝑙𝑒
𝑡 = E𝑞(x𝑡|x0)

[︁
||𝜖− 𝜖𝜃(x𝑡, 𝑡)||2

]︁
(2.17)

In practical terms, this corresponds to the mean squared error between the actual noise at
time 𝑡, 𝜖𝑡, and the predicted noise by the network at time 𝑡, 𝜖𝜃(x𝑡, 𝑡), given a sample x𝑡.

Algorithm 1 (HO; JAIN; ABBEEL, 2020) summarizes the training process for a standard
diffusion model. The main objective is to train the network to predict the noise added to
an image at a given timestep. At each iteration, a clean image x0 is sampled from the data
distribution and a timestep 𝑡 is chosen randomly. Then, synthetic Gaussian noise is sampled
𝜖 ∼ 𝒩 (0, I) and used to generate a noisy version of the input image according to Equation
2.3. The network parameters are then optimized via gradient descent to minimize the squared
error between the actual noise 𝜖 and the prediction 𝜖𝜃(x𝑡, 𝑡).

Algorithm 1 Training
1: Input: data distribution 𝑞(x0), total timesteps 𝑇
2: Output trained network 𝜖𝜃

3: repeat
4: x0 ∼ 𝑞(x0)
5: 𝑡 ∼ Uniform({1, . . . , 𝑇})
6: 𝜖 ∼ 𝒩 (0, I)
7: Take gradient descent step on
8: ∇𝜃‖𝜖− 𝜖𝜃(

√
𝛼𝑡x0 +

√
1− 𝛼𝑡𝜖, 𝑡)‖2

9: until converged

During the inference phase, Algorithm 2 (HO; JAIN; ABBEEL, 2020) is used to generate new
image samples. In short, the model uses the predictions of the trained network to progressively
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reverse the noise addition process, starting from a pure noise sample x𝑇 ∼ 𝒩 (0, I). Going
through each timestep, from 𝑇 to 1, the network uses the noise estimate present in the current
image x𝑡 to reconstruct the less noisy image x𝑡−1, according to Equation 2.15. The term z is
an additional noise term used to control variability, and 𝜎2

𝑡 = 𝛽𝑡. At the end of the process, a
new image sample x0 is obtained.

Algorithm 2 Sampling
1: x𝑇 ∼ 𝒩 (0, I)
2: for 𝑡 = 𝑇, . . . , 1 do
3: z ∼ 𝒩 (0, I) if 𝑡 > 1, else z = 0
4: x𝑡−1 = 1√

𝛼𝑡

(︁
x𝑡 − 1−𝛼𝑡√

1−𝛼𝑡
𝜖𝜃(x𝑡, 𝑡)

)︁
+ Σ𝑡z

5: end for
6: return x0

2.3 MODEL ARCHITECTURE

The original implementation of DDPMs (HO; JAIN; ABBEEL, 2020) employs a U-Net model
(RONNEBERGER; FISCHER; BROX, 2015), with ResNet blocks (HE et al., 2016), group normal-
ization (WU; HE, 2018) as well as self-attention blocks (VASWANI et al., 2017). Each diffusion
timesteps 𝑡 is specified to the network by adding a sinusoidal position embedding (VASWANI et

al., 2017) into each residual block.
To provide the model a sense of progression through time, the timestep 𝑡 is mapped to a

high-dimension vector 𝜆(𝑡) ∈ R𝑑 using a sinusoidal encoding defined as

𝜆(𝑡)2𝑖 = sin
(︂

𝑡

100002𝑖/𝑑

)︂
𝜆(𝑡)2𝑖+1 = cos

(︂
𝑡

100002𝑖/𝑑

)︂
,

where 𝑑 is the embedding dimension (VASWANI et al., 2017). After this, the embedding 𝜆(𝑡)

is passed to a sequence of fully-connected layers producing a learned vector representation
that is added into the blocks of the U-Net. This temporal embedding enables the network to
adjust its behavior depending on how much noise is present in the input image x𝑡 (DHARIWAL;

NICHOL, 2021). Figure 9 illustrates this process.
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Figure 9 – Illustration of the denoising neural network architecture used in DDPMs. At each training step 𝑡, a
noisy image x𝑡 is input to a U-Net-based model. The timestep 𝑡 is encoded via a sinusoidal position
embedding and processed through fully-connected layers before being injected into the blocks of
the U-Net. The model is trained to predict the noise 𝜖𝜃(x𝑡, 𝑡) added to the original image. (Source:
Kreis, Gao e Vahdat (2022)).

2.4 NOISE SCHEDULE

Each diffusion step is modeled by a variance schedule {𝛽𝑡}𝑇
𝑡=1 that dictates the diffusion

rate, that is how fast the data distribution will be converted into the prior distribution, which
is the Gaussian in the standard formulation. To achieve this, the noise addition must follow
a specific pace, controlled by a chosen schedule. The variance parameter 𝛽𝑡 can be fixed to
a constant or follow a specific schedule over the 𝑇 timesteps. Ho, Jain e Abbeel (2020) set
𝑇 = 1000 and used a linear schedule that increases from 𝛽1 = 10−4 to 𝛽𝑇 = 0.02, while
Nichol e Dhariwal (2021) employed a cosine schedule. Guo et al. (2025) examined several
types of noise schedule, such as the Fibonacci schedule, which is derived from the first 𝑇

terms of the Fibonacci sequence (CHEN et al., 2020); the Laplace schedule, which is based on
the Laplace distribution (HANG et al., 2024); and even a learned noise schedule instead of a
fixed one, modeled by a monotonic neural network (SAHOO et al., 2024). Figure 10 shows the
𝛼𝑡 progression for the linear and cosine schedules.

The work of Chen (2023) expanded the study on the noise addition aspect of diffusion
models by examining the performance of different choices of noise schedule conditioned on
different image sizes. Figure 11 highlights the importance of choosing an appropriate noise
schedule. As the image resolution increases, the denoising task becomes simpler because the
redundancy of information in data increases, making it easier to recover the original signal.
Some practical observations demonstrate that, as image size increases, the optimal noise
scheduling tends to shift towards a noisier one due to increased redundancy in pixels (GU et

al., 2022; HOOGEBOOM; HEEK; SALIMANS, 2023).
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Figure 10 – 𝛼𝑡 throughout the diffusion steps for different schedules. The yellow curve represents the linear
schedule, where the steadily increase of noise variance over time results in a faster decrease of 𝛼𝑡.
The orange curve shows the cosine schedule, which preserves more information from the original
image in the first steps. The red curve is the Fibonacci schedule, which produces slower nonlinear
growth at first, with noise intensifying in the final steps. The Laplace schedule, represented by the
pink curve, concentrates noise in the initial and final steps, with less noise in the center. (Source:
Adapted from Nichol e Dhariwal (2021)).

Figure 11 – Example of noised images corrupted by the same noise level. Higher-resolution images tend to
exhibit more overall local redundancy between neighboring pixels, which makes the effect of noise
less noticeable. That means less information is destroyed with the same level of noise. (Source:
Chen (2023)).

Nichol e Dhariwal (2021) also explores the model efficiency related to the choice of total
noise steps 𝑇 . Just as the image size, the value of 𝑇 also correlates to the choice of noise
schedule. Their work also shows that the linear noise schedule used in Ho, Jain e Abbeel
(2020) worked well for high-resolution images but was suboptimal for images of resolution
64×64 and 32×32, because The linear schedule’s forward noising process becomes too noisy
at the end, which reduces its contributions to sample quality. Finally, the authors indicate
that the noise schedule should be adapted based on the choice of T and the image resolution
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(NICHOL; DHARIWAL, 2021). Figure 12 demonstrates a visual comparison between the noise
addition in the linear and cosine schedules.

Figure 12 – Example of latent samples generated with linear (top) and cosine (bottom) noise schedules re-
spectively at linearly spaced values of t from 0 to T. In the linear schedule, the last latent states
are almost entirely pure noise, while the cosine schedule adds noise more gradually, preserving the
overall visual structure for more steps. (Source: Nichol e Dhariwal (2021)).
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3 RELATED WORKS

This chapter reviews some of the most relevant studies related to LDCT denoising and
reconstruction techniques. It first presents a brief overview of these methods in Section 3.1.
Section 3.2, explores conditioning mechanisms in diffusion models. Finally, Sections 3.3 and 3.4
detail image-conditioned diffusion methods and their recent advancements, which represent
the current state of the art in generative reconstruction frameworks.

3.1 LDCT IMAGE RECONSTRUCTION AND DENOISING TECHNIQUES

Low-dose computed tomography has became a central research topic in medical imaging
due to its potential to minimize radiation exposure while maintaining diagnostically reliable
image quality. The main challenge in LDCT imaging is the presence of high levels of noise
caused by the reduced X-ray flux, which manifests as artifacts that degrade image interpretabil-
ity. Over the years, several LDCT image reconstruction and denoising techniques have been
proposed to mitigate these effects, ranging from traditional model-based algorithms to modern
deep learning methods.

Early approaches to LDCT reconstruction were grounded in analytical and iterative formu-
lations (MURPHY et al., 2025). The Filtered Back Projection (FBP) (PELT; BATENBURG, 2013)
method served as the foundation of CT reconstruction and was often used alongside machine
learnig based reconstruction techniques to generate CT images. To improve upon FBP, re-
searchers developed model-based iterative reconstruction (MBIR) (LIU, 2014) methods, which
incorporate statistical priors and noise models into the reconstruction process. MBIR and its
variants, such as adaptive statistical iterative reconstruction (ASIR) (HSIEH et al., 2013) and
penalized weighted least-squares (PWLS) (THIBAULT et al., 2007) approaches, were able to
reduce noise while preserving structural details through explicit regularization terms. However,
iterative methods suffer from high computational cost and sensitivity to noise artifacts (QIN et

al., 2019).
With the advent of deep learning techniques, data-driven models rapidly became the dom-

inant approach to LDCT denoising. Convolutional Neural Networks were among the first to
achieve good performance in suppressing CT noise. For instance, the Residual Encoder-Decoder
Convolutional Neural Network (RED-CNN) proposed by Chen et al. (2017) combines convo-
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lutional layers with residual learning to restore NDCT images from their LDCT counterparts.
Despite their success, CNN-based models tend to oversmooth fine details, compromising tex-
ture quality of anatomical structures (WOLTERINK et al., 2017).

To overcome these limitations, generative models were introduced to better capture the
distribution of high-quality CT images. Generative Adversarial Networks revolutionized the
synthetic data generation paradigm, particularly in imaging applications. Using an adversarial
structure, composed of two competing networks, a generator and a discriminator, GANs are
able to produce data indistinguishable from real data. The work of Wolterink et al. (2017)
demonstrated the ability of GANs to synthesize high-quality images from noisy inputs. Ex-
panding this paradigm, the Wasserstein Generative Adversarial Network (WGAN) (ARJOVSKY;

CHINTALA; BOTTOU, 2017) model introduced a perceptual loss to enhance visual realism and
preserve texture details, addressing the oversmoothing effect observed in MSE-based methods.

An advanced variant of the GAN is the Self-Attention Convolutional Neural Network
(SACNN) proposed by Li et al. (2020), which integrates a self-attention mechanism into
the generator architecture. The self-attention mechanism gives the SACNN the ability to cap-
ture long-range contextual dependencies across the entire image, essential for detailed image
reconstruction, which solidifies it as a robust model for LDCT reconstruction.

In more recent years, diffusion models emerged as a promising class of generative frame-
works capable of learning complex data distributions through a more stable training process
than the adversarial paradigm of GANs. The following sections explore conditional diffusion
models and their extensions to image-guided restoration tasks, as well as the current state of
the art in diffusion-based approaches for image denoising.

3.2 CONDITIONAL DIFFUSION MODELS

Conditioning is one of the most important aspects of generative models. In the context of
diffusion models, guidance can refer to a textual prompt, a class label or an image (HO et al.,
2022). Mathematically, this refers to conditioning a prior distribution 𝑝(x) with a condition y,
resulting in 𝑝(x|y) (HO et al., 2022). A conditional diffusion model can be modeled as

𝑝𝜃(x0:𝑇 |𝑦) = 𝑝(x𝑇 )
𝑇∏︁

𝑡=1
𝑝𝜃(x𝑡−1|x𝑡, 𝑦), (3.1)

where the conditioning information y is incorporated at each timestep 𝑡. One of the reasons
behind the high sampling quality of diffusion models, particularly in text-to-image generation,
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is precisely the fact that the condition is made available to the model at every denoising step
(NICHOL et al., 2021; SAHARIA et al., 2022b; ROMBACH et al., 2022; RAMESH et al., 2022).

3.3 IMAGE-CONDITIONED DIFFUSION

Since the popularization of conditional diffusion models, several approaches were developed
in the field of inverse problems and deterministic image generation (KADKHODAIE; SIMONCELLI,
2021; KAWAR; VAKSMAN; ELAD, 2021; KAWAR et al., 2022). These methods apply the idea of
feeding an input image as a conditional information into the network. This concept has been
successfully adapted to many models designed for the problems of deblurring, inpainting, super-
resolution, image enhancement and image restoration (SAHARIA et al., 2022a; SAHARIA et al.,
2022c; WHANG et al., 2022; ÖZDENIZCI; LEGENSTEIN, 2023; GUO et al., 2023; HOU et al., 2023;
WANG et al., 2025).

Figure 13 – Illustration of the general image conditioning pipeline applied to DDPMs. Typically, the condition
image y is concatenated to the network along with x𝑡. (Source: Saharia et al. (2022c)).

As explained in Chapter 2, both the training and inference stages of the standard diffusion
model pipeline rely heavily on the properties of the Gaussian noise applied during the forward
and reverse processes. In an effort to deconstruct this reliance, Bansal et al. (2022) introduced
Cold Diffusion, a framework that extends the classical diffusion formulation to arbitrary image
transformations. In contrast to traditional noise-based approaches, that rely on the addition of
Gaussian noise throughout the forward process, the degradation operator 𝐷 of Cold Diffusion
applies specific image transformations such as blurring or masking, which are fully determin-
istic. On the other hand, the restoration operator 𝑅 is trained to invert these transformations
using the ℓ1 norm as loss function, producing a generative behavior. The authors generalize
their method to several different tasks, such as deblurring, inpainting, super-resolution and
snowification (BANSAL et al., 2022).
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One of the main contributions of Cold Diffusion consists in the improved sampling tech-
nique shown in Algorithm 3 (BANSAL et al., 2022). The traditional diffusion sampling process,
explained in Algorithm 2, adds noise back to the image during iterative denoising in order to
improve stability. Similarly, the authors verified that adding a certain level of degradation into
the restoration process produces greater stability in regard to the errors yielded by the network
(BANSAL et al., 2022; XIE et al., 2023).

Algorithm 3 Improved Sampling for Cold Diffusion
1: Input: a degraded sample x𝑡

2: for 𝑡 = 𝑇, . . . , 1 do
3: x̂0 = 𝑅(x𝑡, 𝑡)
4: x𝑡−1 = x𝑡 −𝐷(x̂0, 𝑡) + 𝐷(x̂0, 𝑡− 1)
5: end for
6: return x0

3.4 DIFFUSION FOR IMAGE DENOISING

In the context of image denoising, the use of the traditional diffusion-based model usu-
ally proves inefficient, as the modeled noise is not necessarily completely consistent with the
Gaussian noise applied during the diffusion process (XIE et al., 2023). As a result, the current
state-of-the-art methods rely on sophisticated strategies to overcome this issue.

Xu et al. (2024) introduce SWORD, a Stage-by-stage Wavelet Optimization Refinement
Diffusion model for sparse-view CT reconstruction. Their method integrates wavelet decom-
position into the diffusion framework. Existing diffusion models often focus on the sinogram
or image domains, leading to instability during training and convergence to local minimal so-
lutions. Unlike these models, SWORD establishes a unified mathematical model incorporating
low-frequency and high-frequency, solved through an optimization procedure. By refining the
reconstruction at each stage through wavelet-based priors, the model is able to effectively
remove noise artifacts.

Although supervised deep learning techniques have shown promise in tackling the problem
of LDCT denoising, they require a set of paired low-dose and normal-dose CT images for
training, which can be difficult to acquire in clinical settings. To address this limitation, Liu
et al. (2023) introduce Dn-Dp, an unsupervised method for denoising LDCT images using
diffusion probabilistic priors. The proposed method uses NDCT images for training, enabling
zero-shot LDCT image denoising.
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Shi et al. (2024) introduce Resfusion, a general framework for image restoration using
denoising diffusion probabilistic models. Unlike diffusion-based methods that rely on degraded
images as conditional input, Resfusion incorporates a residual term into the forward process,
initiating the reverse process directly from noisy degraded images, rather than pure Gaussian
noise itself, enabling more effective restoration and noise removal.

Finally, Gao et al. (2023) introduce CoreDiff, a novel COntextual eRror-modulated gEner-
alized Diffusion model, specifically designed for LDCT denoising and generalization. Their work
aims to reduce the long inference times associated with standard diffusion models by extend-
ing the Cold Diffusion model. CoreDiff uses LDCT images instead of random Gaussian noise,
employing a "mean-preserving degradation operator" to mimic CT degradation. Furthermore,
the authors propose a ContextuaL Error-modulAted Restorarion Network, CLEAR-Net, which
uses contextual information to constrain the sampling process and refine timestep embeddings.
A one-shot learning framework is also introduced, which enables the rapid adaptation of the
trained model to unseen dose levels.
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4 CONDITIONAL DIFFUSION FOR LDCT DENOISING

In this chapter, we present our diffusion-based framework developed specifically for LDCT
image denoising. The method builds upon existing strategies that incorporates the conditioning
noisy image directly into the forward process, an approach that better reflects the character-
istics of real-world noise and eliminates the need to assume a specific noise distribution.

While such image-conditioned formulation has been previously explored, our contribution
lies in extending its noise schedule aspect through a novel modulation mechanism. Specifically,
we introduce a parameter 𝛾 that controls the schedule by which noise is distributed throughout
the diffusion process.

The remainder of this chapter introduced the full training and inference algorithms in
Sections 4.1 and 4.3, respectively, as well as an in-depth analysis of the proposed modifications
to the forward and reverse processes, presented in Section 4.2.

4.1 TRAINING OVERVIEW

Our training process follows the standard diffusion approach presented in Section 2.2,
which consists of learning a denoising function employing a parametrized U-Net model U𝜃.
The network takes a noisy observation x𝑡, generated via an interpolation method described
in Section 4.2.1, and a timestep 𝑡, which is embedded into U𝜃 using sinusoidal positional
encoding, as inputs and predicts the clean image x0, denoted as x̂0. The training procedure
is proposed in Algorithm 4.

Algorithm 4 Proposed training procedure
1: Input:clean x0 and noisy inputs x𝑇 , hyperparameter 𝛾, total timesteps 𝑇 , learning rate 𝜂
2: Output: trained network U𝜃

3: repeat
4: 𝑡 ∼ Uniform({1, . . . , 𝑇}) ◁ sample random timestep
5: 𝛼𝑡 = ( 𝑡

𝑇
)𝛾 ◁ compute coefficient

6: x𝑡 = (1− 𝛼𝑡)x0 + 𝛼𝑡x𝑇 ◁ generate intermediate image
7: x̂0 = U𝜃(x𝑡, 𝑡) ◁ predict clean image
8: ℒ = ℒTOTAL(x̂0, x0) ◁ compute loss
9: ∇𝜃ℒ ◁ backpropagate gradients

10: 𝜃 ← 𝜃 − 𝜂 · ∇𝜃ℒ ◁ update network parameters
11: until convergence

First, we set the hyperparameter 𝛾 and sample a clean image x0 and its noisy counterpart
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x𝑇 from the dataset. We then randomly select a timestep 𝑡 and compute the interpolation
weight 𝛼𝑡. Using this coefficient, we generate the intermediate noisy image x𝑡 as a linear
combination of x0 and x𝑇 . The model U𝜃 takes x𝑡 and 𝑡 as inputs and returns the predicted
clean image x̂0. Finally, we compute the loss between x̂0 and the ground truth x0, and update
the model parameters via gradient descent.

4.2 DIFFUSION PROCESS

As discussed in Chapter 2, standard diffusion models progressively add Gaussian noise to
an image until it becomes pure noise. Traditional image-conditioned diffusion models apply the
condition only during the reverse process. However, this leaves the forward process unchanged,
still relying on Gaussian noise addition.

As discussed in Chapter 1, in image denoising problems, where the noise present in real-
world data usually does not follow a normal distribution, regulating noise addition becomes
challenging. In addition, the standard approach may introduce irrelevant residual information
when applied to image denoising.

To address this limitation, we redefine the image-conditioned diffusion process to better
reflect LDCT image degradation, which does not follow a normal distribution. Rather than
injecting synthetic noise into the NDCT image, we propose a redefinition of the forward process
as a gradual addition of residual noise in multiple steps. This approach starts with the NDCT
image and gradually transforms it into its corresponding LDCT version. Figure 14 illustrates
this process.

forward process

reverse process

Figure 14 – Illustration of the redefined image-conditioned diffusion process. In the forward process, a clean
NDCT image is progressively transformed into its corresponding LDCT version. The reverse process
aims to recover the NDCT image from the LDCT input through a learned denoising model.
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4.2.1 Proposed power-law noise schedule

The primary difference between our approach and conventional DDPMs, which were pre-
sented in Chapter 2, consists in the noise schedule. Instead of using a fixed variance schedule
such as those presented in Section 2.4, we employ a power-law based interpolation scheme that
ensures a flexible transition between NDCT and LDCT images. Unlike conventional schedules
that rely on explicitly predefined noise levels, our method applies a linear combination approach
that ensures that, at timestep 𝑡 = 0, the image is the original NDCT image, and at timestep
𝑡 = 𝑇 , the image corresponds to the LDCT image. Figure 15 illustrates how this process
works.

Figure 15 – Example of the redefined noise schedule. The process starts with the NDCT image at timestep
𝑡 = 0 and finishes with the LDCT image at timestep 𝑡 = 𝑇 . The intermediate images x𝑡 are
interpolated versions of these two inputs generated through a linear combination scheme.

In traditional diffusion models, noisy samples at timestep 𝑡 are generated as

x𝑡 =
√

𝛼̄𝑡x0 +
√

1− 𝛼̄𝑡 𝜖, 𝜖 ∼ 𝒩 (0, I), (4.1)

where x0 is the clean image and 𝜖 represents Gaussian noise. This formulation assumes a
synthetic, isotropic noise model, which may not accurately reflect the noise characteristics
present in real-world LDCT data. Inspired by some prior works that have explored image-
conditioned diffusion (HO et al., 2022; CHUNG et al., 2022), we choose to explicitly integrate
the real noisy image x𝑇 into the forward process, replacing Gaussian noise with a known noisy
observation. A naive attempt could be formulated as:

x𝑡 =
√︁

(1− 𝛼𝑡)x0 +√𝛼𝑡x𝑇 , (4.2)

in analogy to Equation 4.1. However, this introduces residual artifacts because
√︁

(1− 𝛼𝑡) +
√

𝛼𝑡 ̸= 1, which violates interpolation consistency (GAO et al., 2023). To address this issue, we
adopt a simpler interpolation scheme (SONG; MENG; ERMON, 2020)

x𝑡 = (1− 𝛼𝑡)x0 + 𝛼𝑡x𝑇 , (4.3)
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where 𝛼𝑡 ∈ (0, 1) determines the proportion of noise added to the clean image at timestep
𝑡 ∈ Z, 1 < 𝑡 < 𝑇 , with 𝑇 ∈ N being the total number diffusion steps. Given a pair of images
(x0, x𝑇 ), where x0 ∈ R𝐻×𝑊 is the clean NDCT image and x𝑇 ∈ R𝐻×𝑊 is the corresponding
noisy LDCT image, 𝛼𝑡 is defined as:

𝛼𝑡 =
(︂

𝑡

𝑇

)︂𝛾

(4.4)

Small values of 𝛼 result in images closer to x0, while larger values produce images closer to
x𝑇 . That way, as 𝛼 increases with 𝑡, the images of intermediate timesteps become increasingly
closer to the noisy input. Figure 16 shows the 𝛼𝑡 progression for different choices of 𝛾 ∈ R.

Figure 16 – Behavior of 𝛼𝑡 throughout diffusion steps under the proposed 𝛾-parameterized noise schedule.
This schedule is the core of our method: it allows dynamic control over the pace at which the
noisy input x𝑇 is progressively added into the clean input x0. 𝛾 < 1 lead to a faster increase of
𝛼𝑡, which results in noisier intermediate images x𝑡 at the beginning of the forward process. On
the other hand, 𝛾 > 1 result in a delayed growth of 𝛼𝑡, causing a slower transformation in the
noisy input.
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4.2.2 The proposed 𝛾 factor

We introduce a power-law schedule modulated by a scalar hyperparameter 𝛾, which defines
the rate of the transition from NDCT to LDCT images over the diffusion process. When 𝛾 = 1,
the interpolation follows a linear trajectory. For 𝛾 < 1, degradation is accelerated in early steps,
leading to noisier intermediate images, whereas for 𝛾 > 1, the transition starts more softly
and intensifies in later steps. This flexibility allows the model to adapt to different noise
characteristics observed in real-world low-dose CT scenarios.

Coincidentally, this formulation provides a natural bridge to the theory of Curriculum Learn-
ing (BENGIO et al., 2009), where a model is trained starting with simpler examples and is
gradually introduced to more complex ones. In our case, setting 𝛾 > 1 produces a curriculum
schedule, where early training steps involve nearly clean images, and noise increases progres-
sively. Conversely, setting 𝛾 < 1 induces a Reverse Curriculum Learning regime (WEINSHALL;

COHEN; AMIR, 2018), where the model is presented with noisier samples from the beginning,
potentially encouraging robustness early on. Figure 17 visually demonstrates the influence of
different 𝛾 values on the progression of noise over time.

Figure 17 – Example of samples generated with different values of 𝛾. Each row corresponds to a different 𝛾:
the top row represents 𝛾 = 0.5, the middle row is the traditional linear schedule 𝛾 = 1.0 and
the bottom row is equivalent to 𝛾 = 2.0, respectively. Compared to the linear schedule, the lower
value of 𝛾 concentrate noise addition at earlier stages, while the higher value produces a more
aggressive transition at the end of the process.

4.2.3 Loss optimization

The choice of loss is one of the main aspects to be considered when training diffusion
models (KINGMA et al., 2021). Studies conducted by Lin e Yang (2025) and Berrada et al.
(2025) show that, in terms of diffusion conditional guidance, the MSE objective works worse
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than the perceptual objective. In addition, in the context of CT denoising (ALMEIDA, 2024),
pixel-wise losses can cause the MSE effect: a phenomenon that compromises the reconstruction
of fine details, leading to over-smoothed images that lack sharpness in textures and edges
(WOLTERINK et al., 2017; YU et al., 2017; LI et al., 2020). This effect can also influence the
quantitative analysis by resulting in intrinsically higher metric values (YANG et al., 2018).

For that reason, in order to optimize the denoising performance, we adopted a weighted
combination of both the MSE loss (WANG; BOVIK, 2009) and the VGG perceptual loss (JOHN-

SON; ALAHI; FEI-FEI, 2016) for our training. The total loss used is defined as:

ℒTOTAL = 𝜆1ℒMSE + 𝜆2ℒVGG, (4.5)

where ℒ𝑀𝑆𝐸 refers to the mean squared error and ℒ𝑉 𝐺𝐺 is the perceptual loss calculated on
feature representations extracted from a pre-trained VGG-19 (SIMONYAN; ZISSERMAN, 2014).
The hyperparameters 𝜆1 e 𝜆2 balance the contribution of the perceptual loss relative to the
pixel-wise loss, and are set to 1 and 10−3, respectively.

4.3 INFERENCE

The effectiveness of the denoising process is highly dependent on the sampling strategy
adopted by the diffusion model (MA et al., 2025). In conventional DDPMs, the inference stage
consists of a sequential denoising procedure that progressively reconstructs a clean image x0

from pure noise x𝑇 ∼ 𝒩 (0, I). This process is inherently stochastic and relies on a series of
Gaussian-based reverse transitions, as formulated in Algorithm 2. However, in our proposed
LDCT denoising formulation such stochasticity may introduce unnecessary variance.

To address this limitation, we adopt the deterministic sampling proposed in Algorithm 3
of Cold Diffusion (BANSAL et al., 2022). Cold Diffusion redefines the degradation process in
diffusion models as an arbitrary, deterministic transformation 𝐷, and trains a restoration oper-
ator 𝑅 to reverse it. The key insight from Cold Diffusion is that injecting a controlled amount
of degradation even during inference enhances sampling stability and reduces error accumula-
tion. The sampling strategy adopted by our proposed method is described in Algorithm 5 and
formalized in Equations 4.6 e 4.7.

The sampling process begin with with a noisy image x𝑇 , sampled from the data distribution.
At each timestep 𝑡, the algorithm computes a modulation factor 𝛼𝑡 =

(︁
𝑡
𝑇

)︁𝛾
, which controls

the relative contribution of the initial noisy image and the predicted clean image x̂0. Then,
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Algorithm 5 Adapted deterministic sampling
1: Input: noisy input x𝑇 , hyperparameter 𝛾
2: Output: denoised image x0
3: for 𝑡 = 𝑇, . . . , 1 do
4: 𝛼𝑡 =

(︁
𝑡
𝑇

)︁𝛾

5: 𝛼𝑡−1 =
(︁

𝑡−1
𝑇

)︁𝛾

6: x̂0 = U𝜃(x𝑡, 𝑡)
7: x̃𝑡 = (1− 𝛼𝑡)x̂0 + 𝛼𝑡x𝑇

8: x̃𝑡−1 = (1− 𝛼𝑡−1)x̂0 + 𝛼𝑡−1x𝑇

9: x𝑡−1 = x𝑡 − x̃𝑡 + x̃𝑡−1
10: end for

an intermediate target state x̃𝑡 is computed as a linear interpolation between x̂0 and x𝑇 ,
modulated by 𝛼𝑡. The denoised estimate at timestep 𝑡−1, x𝑡−1, is then obtained by adjusting
the previous state x𝑡 according to the change in interpolation from x̃𝑡 to x̃𝑡−1. The process
iterates until 𝑡 = 1, at which point x0 represents the final denoised output.

4.3.1 Deterministic Sampling Strategy

Our sampling procedure builds upon the improved deterministic strategy introduced in the
Cold Diffusion framework (BANSAL et al., 2022). In this formulation, the degradation operator
𝐷 is used to generate intermediate states between the predicted clean image x̂0 and the
degraded observation x𝑇 , guiding the iterative reconstruction process.

In our implementation, we define the degradation operator 𝐷 as a weighted combination
of the noisy observation x𝑇 and the predicted clean image x̂0. In conformity with Equation
4.3, the interpolation terms used in Algorithm 5 can be formally expressed as:

𝐷(x̂0, 𝑡) = x𝑡 = (1− 𝛼𝑡)x̂0 + 𝛼𝑡x𝑇 , 𝛼𝑡 =
(︂

𝑡

𝑇

)︂𝛾

(4.6)

𝐷(x̂0, 𝑡−1) = x𝑡−1 = (1− 𝛼𝑡−1)x̂0 + 𝛼𝑡−1x𝑇 , 𝛼𝑡−1 =
(︂

𝑡− 1
𝑇

)︂𝛾

(4.7)

This strategy customizes the restoration step as an interpolation between the current estimate
and the noisy input, progressively refining the result while preserving global structure. The de-
terministic nature of this sampling allows for more stable reconstructions and better alignment
with our training objective.
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5 EXPERIMENTS DESIGN

This chapter presents the overall experimental pipeline proposed to evaluate our method.
The dataset used is introduced in Section 5.1. Section 5.2 details the choices of our network’s
architectural design, as well as the hyperparameters 𝛾 and 𝑇 . Then, in Section 4.2.3 we dis-
cussed loss optimization for denoising of medical images. Section 5.3 presents the experimental
environment used. Finally, Section 5.4 describes and justifies the metrics used to evaluate the
results obtained.

5.1 MAYO CHALLENGE DATASET

In our experiments, we used the 2016 Low-Dose CT Grand Challenge dataset (MCCOL-

LOUGH et al., 2017), sponsored by the American Association of Physicists in Medicine (AAPM),
the National Institute of Biomedical Imaging and Bioengineering (NIBIB), and Mayo Clinic,
for training and inference. The data used in this study were provided by the Mayo’s CT Clinical
Innovation Center and consist of abdominal CT scans of 30 patients acquired in the portal
venous phase with the Siemens SOMATOM Flash scanner (AAPM, 2016). The provided data
included cases of both benign and metastatic lesions, as well as cases without lesions.

The full-dose data were acquired at 120 kV and 200 quality reference mAs (QRM), while
the simulated low-dose data correspond to 120 kV and 50 QRM, that is, a quarter of the full
dose (CHRISTE et al., 2013). To simulate low-dose conditions, Poisson noise was inserted into
the sinogram (projection) data, reaching a noise level corresponding to 25% of the original
dose. Both full and quarter-dose images were reconstructed using filtered backprojection (FBP)
(AAPM, 2016).

The full dataset is divided into training and testing subsets. The training set comprises 10
patients, with both full-dose and quarter-dose images available, while the testing set contains
the remaining 20 patients with only quarter-dose images available. The data are organized
into four subsets based on slice thickness (1mm and 3mm) and reconstruction kernel (B30
and D45) (AAPM, 2016).

The dataset division ensures a robust evaluation of denoising algorithms under varying
noise and resolution conditions. The 1mm slices provide higher spatial resolution but retain
more noise, whereas the 3mm slices reduce noise at the expense of lower resolution due to
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partial averaging (FORD; DECKER, 2016). Thinner slices are usually preferred for visualizing
fine details and structures, while thicker slices can reduce radiation exposure (KATARIA et al.,
2020). Additionally, the B30 kernel produces smoother images with suppressed noise but less
sharpness, while the sharp D45 kernel enhances structural details at the cost of amplified
noise (ZENG et al., 2022). By combining these parameters the dataset allows for a more robust
evaluation of denoising algorithms in terms of image quality, noise levels, and spatial resolution.

The Mayo Challenge database continues to be widely used by scientists world-wide and
have become a de facto standard set of reference data for use in developing and evaluat-
ing CT reconstruction and denoising techniques (Mayo Clinic, 2016). Figure 18 shows some
representative examples of images from this dataset.
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Figure 18 – Example of images from the 2016 Low Dose CT Grand Challenge dataset. The top row represents
the CT scans obtained with the use of full radiation dose (NDCT), while the bottom row displays
their corresponding low-dose counterparts (LDCT). The LDCT condition was simulated by inject-
ing Poisson noise into the projection data, emulating the effects of a noise level corresponding to
25% of the original full dose result.

For our experiments, we used the complete set of full dose and quarter dose images from
the 10 patients of the training set. We further selected 8 patients (L067, L109, L143, L192,
L286, L291, L310 and L333) for the training phase, 1 patient (L096) for the validation set and
1 patient (L506) for the test set. All four subsets (1mm B30, 1mm D45, 3mm B30, and 3mm
D45) of images were included in our training and inference pipeline. We used patches of size
64×64 to train our diffusion network and the full images with resolutions of 512×512 during
inference. No additional processing was required, since the the data was already normalized in
the adequate range for the purposes of our experiments.
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5.2 EXPERIMENT PIPELINE

Following the standard training pipeline of a diffusion models (HO; JAIN; ABBEEL, 2020), we
employed a U-Net (RONNEBERGER; FISCHER; BROX, 2015) architecture as the backbone of our
reverse diffusion network. While a variety of arhitectural designs are available, ranging from
simple convolutional networks to complex attention-based models, we opted for a simpler and
more computationally efficient approach. Our U-Net consists of four downsampling blocks, a
central bottleneck block, four upsampling blocks, and a final output convolutional layer.

The experimental setup was designed to evaluate the model’s denoising performance under
varying hyperparameter conditions. Specifically, we focused on two aspects: the effect of the
𝛾 parameter in the noise schedule and the total number of diffusion steps 𝑇 .

For the 𝛾 parameter, which modulates the intensity of the noise addition in the forward
process, we tested three configurations:

• 𝛾 = 1.0, corresponding to a linear noise schedule;

• 𝛾 = 0.5, leading to a slower addition in early steps;

• 𝛾 = 2.0, resulting in a more aggressive addition concentrated in later stages.

In addition to 𝛾, we also explored variations on the total number diffusion steps. We tested
𝑇 = 10, 𝑇 = 50, and 𝑇 = 100, using the same value of 𝑇 during both training and inference.
The computational effort increased consistent with the number of diffusion steps: training
with 𝑇 = 10 required approximately 68 hours, 𝑇 = 50 took around 81 hours, and 𝑇 = 100

required about 97 hours. This experimental framework allowed us to analyze how both the
noise schedule and the diffusion steps affect the denoising quality and computational cost of
LDCT reconstruction.

5.3 IMPLEMENTATION DETAILS

All experiments were conducted in a Linux-based environment running on a server equipped
with an NVIDIA A100 GPU with 80 GB of memory. The entire diffusion model was implemented
in Python v3.9.6 using the PyTorch deep learning framework (v2.2.0) (PASZKE et al., 2019).
GPU acceleration was enabled through CUDA v12.1 and cuDNN v8.



57

We trained all models using the AdamW (Adaptive Moment Estimation with Weight Decay)
(KINGMA; BA, 2014) optimizer, whose hyperparameters were set to 𝛽1 = 0.9 and 𝛽2 = 0.999.
The learning rate was initially set to 3 × 10−4, and a ReduceLROnPlateau scheduler was
employed to adapt its value dynamically based on the validation loss, reducing it when per-
formance stagnated. We performed 3000 training iterations, with a validation step executed
every 100 epochs.

To ensure a fair comparison across configurations, all experiments were conducted using the
same training, validation, and test split The model’s performance was quantitatively evaluated
using standard image quality metrics, which are detailed in Section 5.4.

5.4 QUANTITATIVE EVALUATION

Quantitative metrics are important tools to evaluate the performance of neural network
models. The following commonly used objective image quality assessment metrics were em-
ployed to evaluate the denoising performance of our framework: Structure Similarity Index
Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Root Mean Squared Error (RMSE).

SSIM (WANG et al., 2004) measures the degradation of structural information between two
images. It aims to quantify perceived visual quality by comparing luminance (𝑙), contrast (𝑐),
and structural similarity (𝑠) between the predicted image y and the reference image x. The
SSIM index is defined as:

SSIM(x, y) = [𝑙(x, y)]𝛼 · [𝑐(x, y)]𝛽 · [𝑠(x, y)]𝛾, (5.1)

where 𝛼, 𝛽, and 𝛾 are parameters to adjust the relative importance of each component (typi-
cally set to 1). The individual components are defined as

𝑙(x, y) = 2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇2
𝑥 + 𝜇2

𝑦 + 𝐶1
,

𝑐(x, y) = 2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎2
𝑥 + 𝜎2

𝑦 + 𝐶2
,

𝑠(x, y) = 𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3
,

where 𝐶1 = (𝐾1𝐿)2, 𝐶2 = (𝐾2𝐿)2, and 𝐶3 = 𝐶2/2 are constants to stabilize the division when
denominators are small. 𝐿 is the dynamic range of the image pixel values, usually 𝐿 = 255

or 𝐿 = 1 for normalized images, and typically 𝐾1 = 0.01 and 𝐾2 = 0.03. The final SSIM
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formula, when 𝛼 = 𝛽 = 𝛾 = 1, becomes:

SSIM(x, y) = (2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)
(𝜇2

𝑥 + 𝜇2
𝑦 + 𝐶1)(𝜎2

𝑥 + 𝜎2
𝑦 + 𝐶2)

, (5.2)

where 𝜇𝑥, 𝜇𝑦 are the local means of x and y, 𝜎𝑥, 𝜎𝑦 are the local standard deviations, and
𝜎𝑥𝑦 is the local cross-covariance between x and y. SSIM values range from −1 to 1, with 1

indicating perfect similarity.
PSNR measures the fidelity of a signal with respect to noise. Higher PSNR values indicate

better quality reconstructions. It is derived from the Mean Squared Error (MSE) and is defined
as:

PSNR(x, y) = 10 · log10

(︃
𝑀𝐴𝑋2

𝐼

MSE(x, y)

)︃
, (5.3)

where 𝑀𝐴𝑋𝐼 is the maximum possible pixel value of the image.
RMSE is a widely used metric that quantifies the difference between two signals. It com-

putes the square root of the average of the squared differences between corresponding pixel
values:

RMSE(x, y) =

⎯⎸⎸⎷ 1
𝑁

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2, (5.4)

where 𝑁 is the total number of pixels. Unlike SSIM and PSNR, RMSE is minimized—the
lower the value, the better the reconstruction quality.
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6 RESULTS

In this chapter, we present and analyze the results obtained with the proposed diffusion-
based denoising method including the ablation study of varying the hyperparameter 𝛾 within
the proposed noise scheduler associated with the DDPM algorithm. To verify the reconstruction
quality of the low-dose CT images, our evaluation was conducted using the standard image
quality metrics SSIM, PSNR, and RMSE. We adopted the U-Net presented in Section 5.2 as
our reference baseline. The goal of these experiments is to validate the effectiveness of our
proposed conditioning denoising process.

In the following sections, we will use the term FBP referring to the input image recon-
structed using the classic Filtered BackProjection algorithm, which is the low-dose CT image
itself. The U-Net corresponds to the baseline denoising network, trained to directly map noisy
inputs to clean outputs. The notations DDPM-10, DDPM-50, and DDPM-100 represent the
proposed diffusion-based denoising model using 𝑇 = 10, 𝑇 = 50, and 𝑇 = 100 steps, respec-
tively.

6.1 IMPACT OF THE POWER-LAW NOISE SCHEDULER PARAMETER 𝛾

This section presents a comparative evaluation of the denoising performance for different
values of the parameter 𝛾, specifically 𝛾 = 0.5, 𝛾 = 1.0, and 𝛾 = 2.0. For each subset of
the dataset, we report the SSIM, PSNR, and RMSE metrics obtained by different methods,
including the FBP and U-Net baselines, as well as DDPM-based models with varying numbers
of diffusion steps. These results allow us to analyze how different choices of 𝛾 influence the
denoising quality across configurations.

6.1.1 Subset 1mm B30

This section presents the results obtained with all evaluated methods trained on the 1mm
B30 subset of the 2016 Low-Dose CT Grand Challenge dataset. Tables 1, 2, and 3 show the
metric results obtained for this subset, considering the three different values of 𝛾 = 0.5, 1.0,
and 2.0.



60

6.1.1.1 Denoising performance using 𝛾 = 0.5

Table 1 shows the performance metrics for the experiments using 𝛾 = 0.5. The diffusion-
based models using the proposed power-law noise scheduler outperformed the baseline in most
configurations. Notably, the DDPM-10 model achieved the best overall results, with SSIM =
0.8582, PSNR = 28.2766, and RMSE = 15.8037. In contrast, the DDPM-100 model, which
uses a larger number of diffusion steps, yielded inferior values even when compared to the
U-Net baseline.

Table 1 – Average values of PSNR, SSIM, and RMSE computed on the test set for each configuration evaluated
with 𝛾 = 0.5.

Method SSIM ↑ PSNR ↑ RMSE ↓
FBP 0.8246 24.4688 24.6370

U-Net 0.8404 26.2271 19.9204
DDPM-10 0.8582 28.2766 15.8037
DDPM-50 0.8556 27.8958 16.5160
DDPM-100 0.8401 25.7159 22.2768

6.1.1.2 Denoising performance using 𝛾 = 1.0

Table 2 shows the results for 𝛾 = 1.0. Here, the diffusion-based models using the proposed
power-law noise scheduler outperformed the baseline in all configurations. Among them, the
DDPM-50 model obtained the best performance in terms of SSIM (0.8575), PSNR (28.0442),
and RMSE (16.2225). The DDPM-10 model showed a good value of SSIM (0.8566), although
with slightly lower performance if compared to 𝛾 = 0.5. On the other hand, the DDPM-100
model improved substantially.

Table 2 – Average values of PSNR, SSIM, and RMSE computed on the test set for each configuration evaluated
with 𝛾 = 1.0.

Method SSIM ↑ PSNR ↑ RMSE ↓
FBP 0.8246 24.4688 24.6370

U-Net 0.8404 26.2271 19.9204
DDPM-10 0.8566 27.6151 17.2269
DDPM-50 0.8575 28.0442 16.2225
DDPM-100 0.8535 27.8176 16.6427
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6.1.1.3 Denoising performance using 𝛾 = 2.0

For 𝛾 = 2.0, as shown in Table 3, the performance of the diffusion-based models using
the proposed power-law noise scheduler significantly outperformed the reference methods FBP
and U-Net in all metrics. Despite a slight performance drop, DDPM-50 maintained consistent
results. The DDPM-10 model presented the best values for all metrics in all tested configura-
tions. Notably, the results of the DDPM-100 model also benefited from increased 𝛾, achieving
its best results so far, with SSIM = 0.8574, PSNR = 28.0910, and RMSE = 16.1563.

Table 3 – Average values of PSNR, SSIM, and RMSE computed on the test set for each configuration evaluated
with 𝛾 = 2.0.

Method SSIM ↑ PSNR ↑ RMSE ↓
FBP 0.8246 24.4688 24.6370

U-Net 0.8404 26.2271 19.9204
DDPM-10 0.8600 28.4501 15.4728
DDPM-50 0.8565 27.7689 16.7264
DDPM-100 0.8574 28.0910 16.1563

6.1.2 Subset 1mm D45

In this section we present the quantitative results of all evaluated methods trained in the
subset 1mm D45 of the 2016 Low-Dose CT Grand Challenge dataset. Tables 4, 5, and 6 show
the quantitative results for this subset, considering the three different values of 𝛾 = 0.5, 1.0,
and 2.0, respectively. Beforehand, the DDPM-based methods consistently outperform both
the FBP and the U-Net baseline in all configurations.

6.1.2.1 Denoising performance using 𝛾 = 0.5

For 𝛾 = 0.5, as shown in Table 4, the DDPM-10 algorithm using the proposed power-
law noise scheduler achieves the best overall performance, with an SSIM of 0.7974, PSNR of
22.0386, and RMSE of 32.3823.
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Table 4 – Average values of PSNR, SSIM, and RMSE computed on the test set for each configuration evaluated
with 𝛾 = 0.5.

Method SSIM ↑ PSNR ↑ RMSE ↓
FBP 0.7582 17.4163 55.0131

U-Net 0.7810 19.7124 42.1110
DDPM-10 0.7974 22.0386 32.3823
DDPM-50 0.7958 21.6794 33.6719
DDPM-100 0.7932 21.7063 33.6637

6.1.2.2 Denoising performance using 𝛾 = 1.0

With 𝛾 = 1.0, DDPM-10 remains the most effective configuration, improving its SSIM
and PSNR to 0.7979 and 22.0713, respectively, and reducing the RMSE to 32.2554. On the
other hand, DDPM-50 and DDPM-100 do not benefit from the increased 𝛾, and their results
worsen when compared to the previous configuration.

Table 5 – Average values of PSNR, SSIM, and RMSE computed on the test set for each configuration evaluated
with 𝛾 = 1.0.

Method SSIM ↑ PSNR ↑ RMSE ↓
FBP 0.7582 17.4163 55.0131

U-Net 0.7810 19.7124 42.1110
DDPM-10 0.7979 22.0713 32.2554
DDPM-50 0.7802 21.4759 34.4874
DDPM-100 0.7961 21.6237 34.0327

6.1.2.3 Denoising performance using 𝛾 = 2.0

Table 6 – Average values of PSNR, SSIM, and RMSE computed on the test set for each configuration evaluated
with 𝛾 = 2.0.

Method SSIM ↑ PSNR ↑ RMSE ↓
FBP 0.7582 17.4163 55.0131

U-Net 0.7810 19.7124 42.1110
DDPM-10 0.8006 22.1844 31.8486
DDPM-50 0.7892 21.4153 34.9011
DDPM-100 0.7886 20.8443 36.7960

Table 6 shows the results for 𝛾 = 1.0. The DDPM-10 algorithm using the proposed power-
law noise scheduler once again shows the highest performance across all metrics, reaching an
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SSIM of 0.8006, PSNR of 22.1844, and RMSE of 31.8486, which are the best overall values
in this subset.

6.1.3 Subset 3mm B30

This section presents the quantitative results for the 3mm B30 subset of the 2016 Low-
Dose CT Grand Challenge dataset, evaluating the performance of all methods across different
𝛾 values.

6.1.3.1 Denoising performance using 𝛾 = 0.5

For 𝛾 = 0.5, whose results are shown in Table 7, the diffusion-based models using the
proposed power-law noise scheduler consistently outperformed both FBP and U-Net baselines.
Notably, DDPM-100 achieved the highest SSIM (0.9024) and PSNR (32.0904) while also
yielding the lowest RMSE (10.1977), suggesting that a longer diffusion process was beneficial
for this subset. DDPM-50 performed well but was still surpassed by DDPM-100 in all metrics.

Table 7 – Average values of PSNR, SSIM, and RMSE computed on the test set for each configuration evaluated
with 𝛾 = 0.5.

Method SSIM ↑ PSNR ↑ RMSE ↓
FBP 0.8759 29.2489 14.2416

U-Net 0.8815 29.9050 13.4720
DDPM-10 0.8899 30.7692 11.8186
DDPM-50 0.8964 30.5294 12.8385
DDPM-100 0.9024 32.0904 10.1977

6.1.3.2 Denoising performance using 𝛾 = 1.0

When increasing 𝛾 to 1.0, as presented in Table 8, the DDPM-10 model showed significant
improvement, achieving the best SSIM (0.9056) and PSNR (32.1137) among all configurations.
DDPM-100 shows a slight drop in performance compared to 𝛾 = 0.5, but still outperforms
the baseline model.
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Table 8 – Average values of PSNR, SSIM, and RMSE computed on the test set for each configuration evaluated
with 𝛾 = 1.0.

Method SSIM ↑ PSNR ↑ RMSE ↓
FBP 0.8759 29.2489 14.2416

U-Net 0.8815 29.9050 13.4720
DDPM-10 0.9056 32.1137 10.2571
DDPM-50 0.9028 31.6889 10.9820
DDPM-100 0.9044 31.9737 10.3872

6.1.3.3 Denoising performance using 𝛾 = 2.0

Table 9 presents the results obtained at 𝛾 = 2.0. The DDPM-100 algorithm using the pro-
posed power-law noise scheduler regained its advantage, achieving the highest SSIM (0.9102)
and PSNR (32.5248), along with the lowest RMSE (9.6830). Meanwhile, the DDPM-10 and
DDPM-50 models also maintain stronger performances than the baseline model.

Table 9 – Average values of PSNR, SSIM, and RMSE computed on the test set for each configuration evaluated
with 𝛾 = 2.0.

Method SSIM ↑ PSNR ↑ RMSE ↓
FBP 0.8759 29.2489 14.2416

U-Net 0.8815 29.9050 13.4720
DDPM-10 0.9059 32.5002 9.7152
DDPM-50 0.9011 31.9750 10.2806
DDPM-100 0.9102 32.5248 9.6830

6.1.4 Subset 3mm D45

The following sections covers the 3mm D45 subset of the 2016 Low-Dose CT Grand
Challenge dataset, where diffusion models exhibit varying performance depending on 𝛾.

6.1.4.1 Denoising performance using 𝛾 = 0.5

For 𝛾 = 0.5, presented in Table 10, all diffusion-based models outperformed the U-Net
baseline in at least one metric. The DDPM-10 algorithm using the proposed power-law noise
scheduler had better results for PSNR (25.8926) and RMSE (20.8012). In contrast, DDPM-50
achieved higher SSIM value, but porformed worse in terms of PSNR and RMSE. DDPM-100
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achieved the best value of SSIM (0.8403).

Table 10 – Average values of PSNR, SSIM, and RMSE computed on the test set for each configuration
evaluated with 𝛾 = 0.5.

Method SSIM ↑ PSNR ↑ RMSE ↓
FBP 0.8017 21.6048 34.1898

U-Net 0.8375 25.6238 21.3804
DDPM-10 0.8362 25.8926 20.8012
DDPM-50 0.8387 25.0504 23.3512
DDPM-100 0.8403 25.6542 21.4031

6.1.4.2 Denoising performance using 𝛾 = 1.0

The results obtained With 𝛾 = 1.0 are presented in Table 11. DDPM-10 achieved the best
SSIM (0.8405), PSNR (25.8318), and RMSE (21.0408). Both DDPM-50 and DDPM-100
models struggled significantly, performing worse than the U-Net in all evaluated metrics.

Table 11 – Average values of PSNR, SSIM, and RMSE computed on the test set for each configuration
evaluated with 𝛾 = 1.0.

Method SSIM ↑ PSNR ↑ RMSE ↓
FBP 0.8017 21.6048 34.1898

U-Net 0.8375 25.6238 21.3804
DDPM-10 0.8405 25.8318 21.0408
DDPM-50 0.8353 25.0886 22.7049
DDPM-100 0.8304 25.0537 23.3485

6.1.4.3 Denoising performance using

At 𝛾 = 2.0, whose results are shown in Table 12, the DDPM-10 algorithm using the
proposed power-law noise scheduler again led in SSIM (0.8430), PSNR (25.9625), and RMSE
(20.7183). This time, DDPM-50 outperformed the U-Net in terms of SSIM (0.8385) and
PSNR (25.6485) when compared to the prior 𝛾 results. Even though DDPM-100 performed
worse than the baseline, it was still better than the previous 𝛾.
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Table 12 – Average values of PSNR, SSIM, and RMSE computed on the test set for each configuration
evaluated with 𝛾 = 2.0.

Method SSIM ↑ PSNR ↑ RMSE ↓
FBP 0.8017 21.6048 34.1898

U-Net 0.8375 25.6238 21.3804
DDPM-10 0.8430 25.9625 20.7183
DDPM-50 0.8385 25.6485 21.4689
DDPM-100 0.8345 25.3909 22.1356

6.2 IMPACT OF THE NUMBER OF DIFFUSION STEPS 𝑇

This section presents a comparative evaluation of DDPM models trained with different
numbers of diffusion steps, specifically 𝑇 = 10, 𝑇 = 50, and 𝑇 = 100. In addition to
reporting the image quality metrics SSIM, PSNR, and RMSE, we analyze the Variational
Lower Bound (VLB) curves across diffusion steps for each configuration. In these graphs,
higher values indicate higher contributions to the Negative Log-Likelihood (NLL), suggesting
that the model struggles to effectively denoise those steps. On the other hand, lower loss
curves correspond to tighter VLBs and better approximation of the data likelihood. These
analyses help us understand the impact of the choice of 𝑇 in conjunction with the parameter
𝛾 on the denoising quality of the trained models.

6.2.1 Subset 1mm B30

Tables 13, 14 and 15 report the SSIM, PSNR, and RMSE values for different 𝛾 values
across the DDPM-10, DDPM-50, and DDPM-100 configurations, respectively, trained on the
1mm B30 subset. Figures 19, 20 and 21 display the loss contribution per diffusion step for
each of these models.

6.2.1.1 Denoising performance using 𝑇 = 10

Table 13 presents the results for DDPM-10, where the DDPM-10 model presented its best
performance with 𝛾 = 2.0, slightly outperforming the other two configurations. The loss curves
in Figure 19 show that 𝛾 = 1.0 leads to high losses during the initial steps of the diffusion,
which are stabilized later in the process. In contrast, both 𝛾 = 0.5 and 𝛾 = 2.0 yield more
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Table 13 – Average SSIM, PSNR, and RMSE metrics on the test set for each 𝛾 value tested with DDPM-10.

𝛾 SSIM ↑ PSNR ↑ RMSE ↓
0.5 0.8582 28.2766 15.8037
1.0 0.8566 27.6151 17.2269
2.0 0.8600 28.4501 15.4728

stable behavior throughout, with the latter performing better in the early steps.

Figure 19 – Loss contribution across diffusion steps for DDPM-10 with different values of 𝛾..

6.2.1.2 Denoising performance using 𝑇 = 50

Table 14 presents the results for DDPM-50, which had its best performance with 𝛾 =

1.0, with minimal variations between SSIM, PSNR, and RMSE compared to the other 𝛾

configurations.

Table 14 – Average SSIM, PSNR, and RMSE metrics on the test set for each 𝛾 value tested with DDPM-50.

𝛾 SSIM ↑ PSNR ↑ RMSE ↓
0.5 0.8556 27.8958 16.5160
1.0 0.8575 28.0442 16.2225
2.0 0.8565 27.7689 16.7264

As shown in Figure 20, the curve for 𝛾 = 2.0 exhibits smaller losses in the early diffusion



68

steps, but the performance worsens in later ones. The model trained with 𝛾 = 1.0, on the
other hand, maintained a more stable curve throughout the steps.

Figure 20 – Loss contribution across diffusion steps for DDPM-50 with different values of 𝛾..

6.2.1.3 Denoising performance using 𝑇 = 100

Table 18 shows the results for DDPM-100. Among all tested configurations in the 1mm
B30 subset, DDPM-100 presented the most unstable behavior, with a clear performance im-
provement as 𝛾 increased. As shown in Table 15, the results for 𝛾 = 0.5 were considerably
worse than those for 𝛾 = 1.0 and 𝛾 = 2.0.

Table 15 – Average SSIM, PSNR, and RMSE metrics on the test set for each 𝛾 value tested with DDPM-100.

𝛾 SSIM ↑ PSNR ↑ RMSE ↓
0.5 0.8401 25.7159 22.2768
1.0 0.8535 27.8176 16.6427
2.0 0.8574 28.0910 16.1563

The loss curves in Figure 21 show that, for 𝛾 = 0.5, the initial steps dominate the loss,
which means the model struggles to learn a balanced denoising process in those timesteps.
The 𝛾 = 1.0 configuration shows similar behavior, but with lower loss values. As 𝛾 increases
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to 2.0, the loss distribution becomes more uniform in the early steps, with the highest losses
only appearing later in the process.

Figure 21 – Loss contribution across diffusion steps for DDPM-100 with different values of 𝛾..

6.2.2 Subset 1mm D45

Tables 16, 17, and 18 report the SSIM, PSNR, and RMSE values for different 𝛾 values
across the DDPM-10, DDPM-50, and DDPM-100 configurations, respectively, for the 1mm
D45 subset. Figures 22, 23 and 24 display the loss contribution per diffusion step for each
model.

6.2.2.1 Denoising performance using 𝑇 = 10

Table 16 and Figure 22 present the quantitative results and the evolution of the loss terms,
respectively, for the 1mm D45 subset using the DDPM-10 model with different values of 𝛾..

From Table 16, we observe that increasing 𝛾 leads to consistent improvements across all
metrics. The SSIM increases from 0.7974 to 0.8006, PSNR from 22.0386 to 22.1844, and
RMSE decreases from 32.3823 to 31.8486 as 𝛾 goes from 0.5 to 2.0.

Figure 22 illustrates how the loss contributions evolve throughout the diffusion steps for
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Table 16 – Average SSIM, PSNR, and RMSE metrics on the test set for each 𝛾 value tested with DDPM-10.

𝛾 SSIM ↑ PSNR ↑ RMSE ↓
0.5 0.7974 22.0386 32.3823
1.0 0.7979 22.0713 32.2554
2.0 0.8006 22.1844 31.8486

Figure 22 – Loss contribution across diffusion steps for DDPM-10 with different values of 𝛾.

each value of 𝛾. The curves of all configurations behave similarly, with early steps being easier
to denoise and higher loss values getting concentrated at the end of the process.

6.2.2.2 Denoising performance using 𝑇 = 50

Table 17 and Figure 23 present the quantitative results and the loss curves obtained using
DDPM-50 with different 𝛾 values on the 1mm D45 subset.

Table 17 – Average SSIM, PSNR, and RMSE metrics on the test set for each 𝛾 value tested with DDPM-50.

𝛾 SSIM ↑ PSNR ↑ RMSE ↓
0.5 0.7958 21.6794 33.6719
1.0 0.7802 21.4759 34.4874
2.0 0.7892 21.4153 34.9011

Table 17 shows that the results for SSIM, PSNR and RMSE remain relatively stable across
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the tested values of 𝛾, with only slight variations. The best SSIM (0.7958), PSNR (21.6794),
and RMSE (33.6719) are obtained with 𝛾 = 0.5, while 𝛾 = 1.0 and 𝛾 = 2.0 produce closer
results.

Figure 23 – Loss contribution across diffusion steps for DDPM-50 with different values of 𝛾.

The loss curves illustrated in Figure 23 show a similar behavior to the curves of the previous
model, where the loss contribution is more concentrated at the last timesteps.

6.2.2.3 Denoising performance using 𝑇 = 100

Table 18 and Figure 24 present the quantitative results and the VLB loss curves obtained
using DDPM-100 with different 𝛾 values on the 1mm D45 subset.

Table 18 – Average SSIM, PSNR, and RMSE metrics on the test set for each 𝛾 value tested with DDPM-100.

𝛾 SSIM ↑ PSNR ↑ RMSE ↓
0.5 0.7932 21.7063 33.6637
1.0 0.7961 21.6237 34.0327
2.0 0.7979 21.7770 33.3761

The results of Table 18 show that 𝛾 = 2.0 yielded the best results of SSIM (0.7979) and
PSNR (21.7770), while 𝛾 = 0.5 presented the best value of RMSE (33.6637). Even though
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improvements were observed as 𝛾 increased, here no value of 𝛾 stands out as significantly
superior.

Figure 24 – Loss contribution across diffusion steps for DDPM-100 with different values of 𝛾.

The analysis of Figure 24 shows that for 𝛾 = 0.5 the curve increases steadily throughout
the process, indicating that the loss grows as the noise level increases. In contrast, 𝛾 = 2.0

shows a rapid increase in loss during the early steps, which then saturates and remains high,
suggesting the model faces greater difficulty at intermediate to late steps due to stronger noise
injection. The 𝛾 = 1.0 curve exhibits the most stable behavior, with relatively small variations
across steps. Interestingly, it starts slightly higher than the other two, but remains more stable
throughout the process.

6.2.3 Subset 3mm B30

Tables 19, 20 and 21 report the SSIM, PSNR, and RMSE values for different 𝛾 values
across the DDPM-10, DDPM-50, and DDPM-100 configurations, respectively, trained on the
3mm B30 subset. Figures 25, 26 and 27 display the loss contribution per diffusion step for
each of these models.
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6.2.3.1 Denoising performance using 𝑇 = 10

Table 19 presents the quantitative results for DDPM-10 across different 𝛾 values. Per-
formance improves consistently as 𝛾 increases, with 𝛾 = 2.0 achieving the highest SSIM
(0.9059), PSNR (32.5002), and lowest RMSE (9.7152). This suggests that higher 𝛾 values
enhance denoising performance for shorter diffusion steps in this subset.

Table 19 – Average SSIM, PSNR, and RMSE metrics on the test set for each 𝛾 value tested with DDPM-10.

𝛾 SSIM ↑ PSNR ↑ RMSE ↓
0.5 0.8899 30.7692 11.8186
1.0 0.9056 32.1137 10.2571
2.0 0.9059 32.5002 9.7152

Figure 25 illustrates the loss contribution across timesteps for the DDPM-10 model with
varying values of 𝛾. The results indicate that 𝛾 = 0.5 lead to higher loss terms across all steps,
with a moderately increasing trend. In contrast, 𝛾 = 2.0 starts with low loss in early steps but
exhibits an accentuated increase. The curve for 𝛾 = 1.0 maintains a smoother progression,
suggesting a more balanced concentration of the learning signal across the diffusion steps.

Figure 25 – Loss contribution across diffusion steps for DDPM-10 with different values of 𝛾.
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6.2.3.2 Denoising performance using 𝑇 = 50

Table 20 shows the results for all 𝛾 configurations for DDPM-50. 𝛾 = 2.0 yields the best
metrics, with SSIM = 0.9044, PSNR = 31.9737, and RMSE = 10.3872. Once again, higher
values of 𝛾 tend to perform better when trained with larger values of 𝑇 .

Table 20 – Average SSIM, PSNR, and RMSE metrics on the test set for each 𝛾 value tested with DDPM-50.

𝛾 SSIM ↑ PSNR ↑ RMSE ↓
0.5 0.8964 30.5294 12.8385
1.0 0.9028 31.6889 10.9820
2.0 0.9044 31.9737 10.3872

Figure 26 illustrates the variational loss terms for the DDPM-50 model under different
values of 𝛾. As observed, 𝛾 = 0.5 maintains the highest loss values across almost all diffusion
steps, following a nearly monotonic trend. On the other hand, the curve for 𝛾 = 2.0 is
significantly less smooth, with extremely lower losses at early steps and rapidly increasing
values toward the end. For 𝛾 = 1.0, the loss curve has a slight fluctuation at middle-steps but
remains relatively balanced throughout the process.

Figure 26 – Loss contribution across diffusion steps for DDPM-50 with different values of 𝛾.
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6.2.3.3 Denoising performance using 𝑇 = 100

Table 21 presents the results for DDPM-100, which had its best performance at 𝛾 =

2.0, with SSIM=0.9102, PSNR=32.5248, and RMSE=9.6830. The other two configurations,
𝛾 = 0.5 and 𝛾 = 1.0, achieved slightly lower results, with 𝛾 = 0.5 showing the worst values.
Although the differences are relatively small, the consistent improvement across all 𝛾 variations
suggests that higher values of 𝛾 can positively impact of models trained in the 3mm B30 subset.

Table 21 – Average SSIM, PSNR, and RMSE metrics on the test set for each 𝛾 value tested with DDPM-100.

𝛾 SSIM ↑ PSNR ↑ RMSE ↓
0.5 0.9024 32.0904 10.1977
1.0 0.9044 31.9737 10.3872
2.0 0.9102 32.5248 9.6830

Figure 27 shows the loss contribution per diffusion step for DDPM-100. The analysis of
the curves demonstrate that for 𝛾 = 2.0 the loss values remain low and rapidly increase at
later steps. In contrast, for 𝛾 = 0.5, the loss is more uniformly distributed across the entire
process. The 𝛾 = 1.0 curve behaves as an intermediate case, exhibiting a gradual increase in
the final steps but still maintaining lower loss in the early stages.

Figure 27 – Loss contribution across diffusion steps for DDPM-100 with different values of 𝛾.
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6.2.4 Subset 3mm D45

Tables 22, 23, and 24 report the SSIM, PSNR, and RMSE values for different 𝛾 values
across the DDPM-10, DDPM-50, and DDPM-100 configurations, respectively, for the 3mm
D45 subset. Figures 28, 29 and 30 display the loss contribution per diffusion step for each
model.

6.2.4.1 Denoising performance using 𝑇 = 10

In DDPM-10, whose results are shown in Table 22, 𝛾 = 2.0 achieves the best performance,
with SSIM=0.8430, PSNR=25.9625, RMSE=20.7183), although the differences between con-
figurations are smaller.
Table 22 – Average SSIM, PSNR, and RMSE metrics on the test set for each 𝛾 value tested with DDPM-10.

𝛾 SSIM ↑ PSNR ↑ RMSE ↓
0.5 0.8362 25.8926 20.8012
1.0 0.8405 25.8318 21.0408
2.0 0.8430 25.9625 20.7183

Figure 28 illustrates the evolution of the loss term across the diffusion steps for each 𝛾

configuration in the DDPM-10 setup. The curve for 𝛾 = 2.0 shows significantly lower loss
values at earlier steps shows 𝛾 = 0.5 has high initial-step losses, while 𝛾 = 1.0 distributes
loss more evenly. This may contribute to the slightly better quantitative results seen in Table
22, particularly in SSIM, because the model is mora specialized in reconstructing fine details.
Meanwhile, the curves for 𝛾 = 0.5 and 𝛾 = 1.0 behave extremely similarly, with a more
balanced distribution of loss across timesteps.

6.2.4.2 Denoising performance using 𝑇 = 50

As shown in Table 23, the DDPM-50 configuration exhibits relatively small variations in
performance across different values of 𝛾. The best overall results are achieved with 𝛾 = 2.0,
which yields the highest PSNR (25.6485) and the lowest RMSE (21.4689). However, 𝛾 = 0.5

had a slight higher SSIM value (0.8387).
Figure 29 illustrates the behavior of the loss term across the normalized diffusion steps

𝑡/𝑇 for different values of 𝛾 in the DDPM-50 configuration. the curve for 𝛾 = 2.0 presents a
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Figure 28 – Loss contribution across diffusion steps for DDPM-10 with different values of 𝛾.

Table 23 – Average SSIM, PSNR, and RMSE metrics on the test set for each 𝛾 value tested with DDPM-50.

𝛾 SSIM ↑ PSNR ↑ RMSE ↓
0.5 0.8387 25.0504 23.3512
1.0 0.8353 25.0886 22.7049
2.0 0.8385 25.6485 21.4689

pronounced U-shape, suggesting that the model emphasized learning at mid-level noise levels.
In contrast, for 𝛾 = 0.5, the loss increases steadily throughout the process, with higher loss
at final steps. The configuration with 𝛾 = 1.0 shows consistently higher loss values across the
entire process.

6.2.4.3 Denoising performance using 𝑇 = 100

Table 24 presents the quantitative results for DDPM-100 across different values of 𝛾. Unlike
previous configurations, the results here reveal no consistent trend favoring higher 𝛾 values.
On the opposite, the best SSIM (0.8403), PSNR (25.6542), and RMSE (21.4031) values were
obtained with 𝛾 = 0.5.

Figure 30 illustrates the loss contribution across timesteps for the DDPM-100 model with
varying values of 𝛾. When 𝛾 = 0.5, the beginning of the process shows lower losses, which
gradually increase as 𝑡 increases. This early-step focus appears to correlate with the improved
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Figure 29 – Loss contribution across diffusion steps for DDPM-50 with different values of 𝛾.

Table 24 – Average SSIM, PSNR, and RMSE metrics on the test set for each 𝛾 value tested with DDPM-100.

𝛾 SSIM ↑ PSNR ↑ RMSE ↓
0.5 0.8403 25.6542 21.4031
1.0 0.8304 25.0537 23.3485
2.0 0.8345 25.3909 22.1356

quantitative results shown in Table 24, especially in terms of SSIM. In contrast, maintains a
relatively uniform loss across all steps but yields the weakest performance among the three set-
tings. Surprisingly, the 𝛾 = 2.0 curve behaves much smoother compared to previous presented
configurations.
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Figure 30 – Loss contribution across diffusion steps for DDPM-100 with different values of 𝛾.

6.3 DISCUSSION

In this section, we focus on discussing the results presented in Sections 6.1 and 6.2. Our
findings demonstrate that the diffusion-based models using the proposed power-law noise
scheduler consistently outperform the baseline method, which reinforces our hypothesis that
iterative denoising leads to more effective denoising than single-step reconstruction techniques.
This aligns with recent advances in the literature, where diffusion models have shown superior
performance in image restoration tasks, particularly in medical imaging scenarios where high-
frequency details are essential (HUNG et al., 2023; WU et al., 2023; WU et al., 2024).

The starting point of our hypothesis was that explicitly modeling the residual noise schedule
could modulate the difficulty of the denoising task across the diffusion process. Our experimen-
tal results show that 𝛾 = 1.0, which corresponds to the linear schedule, tends to perform worse
across all configurations, while the best results were consistently achieved with 𝛾 = 2.0. This
validates the superiority of power-lar noise schedules applied to higher-resolution images, since
our 512× 512 images tend to benefit from more aggressive, noisier schedules that emphasize
later denoising steps, as proposed by the works of Nichol e Dhariwal (2021), Chen (2023).

From the analysis of the loss curves, we can already perceive manifestations of the Curricu-
lum Learning effect, since our power-law schedule operationalizes the curriculum strategies as



80

stated in Section 4.2.1. For instance, for 𝛾 = 2.0, the loss is concentrated at later timesteps,
which carry stronger high-frequency structures (KARRAS et al., 2022). The smoother and more
stable loss pattern observed for 𝛾 = 2.0 during the initial half of the diffusion process also
indicates that the model faces less variability when learning to denoise early steps, which can
help the model focus on capturing fine details (QIAN et al., 2024).

For shorter diffusion processes such as 𝑇 = 10, the differences between schedules were
less pronounced, even though 𝛾 = 2.0 still achieved the best overall performance. This may
be attributed to the small number of diffusion steps, which minimizes the risk of timestep
undersampling during training (KINGMA et al., 2021). Similar findings were reported in Gao et
al. (2023), Xia et al. (2024), which shows that with fewer steps, the sampling across timesteps
becomes inherently more uniform, ensuring that each step contributes more equally to the
learning process.

In contrast, the 𝛾 parameter trade-off is particularly noticeable in longer schedules such
as 𝑇 = 100, where the performance improves consistently as 𝛾 increases. This heightened
sensitivity to 𝛾 may be explained by the fact that higher values of 𝛾 concentrate more noise,
and consequently more training signal, in the later steps of the forward process. This focus
allows the model to better learn from later timesteps, which is often where denoising is easier
(ULYANOV; VEDALDI; LEMPITSKY, 2018). Once again our approach aligns with principles from
Curriculum Learning (BENGIO et al., 2009), even though our network was trained with random
timestep sampling. By modulating the amount of residual noise added, we replicate a learning
structure in which earlier or later timesteps are emphasized depending on 𝛾 (LIANG; BHARDWAJ;

ZHOU, 2024).
Interestingly, lower values of 𝛾, such as 0.5, and even the linear schedule with 𝛾 = 1.0,

distribute the noise more uniformly across timesteps. While this may seem more balanced, it
can lead to training inconsistency unless the model is trained for a greater number of epochs,
as more steps increase the risk of timestep undersampling during training (KIM et al., 2024b).

To better explore the learning potential of each schedule, targeted training strategies can
be adopted. For instance, with higher values of 𝛾, where the loss is concentrated in the
later timesteps, a warm-up phase could be applied specifically to these steps to accelerate
convergence where the learning potential is strongest. On the other hand, for lower values
of 𝛾, where the loss is more uniformly spread across the diffusion process, an initial training
phase ensuring all timesteps are sampled can prevent the risk of timestep undersampling.
Training weighting strategy for different timesteps are important (HANG et al., 2023) because
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the diffusion model specializes in high-frequency content at early steps, whereas it generates
low-frequency content at later ones (SAMI et al., 2024; QIAN et al., 2024).

This concept is in line with the broader idea of task difficulty-based curriculum learning, as
explored by the work of Kim et al. (2024a), which demonstrates that earlier timesteps usually
are computationally more challenging and benefit from being introduced progressively during
training. Similarly, the idea of structuring goals in a curriculum via diffusion processes has
been explored in Sayar et al. (2024). This evoked perspective of the principles of Curriculum
Learning is directly reflected in the modulation of noise intensity via the power-law scheduler
proposed in our diffusion framework, where different values of 𝛾 implicitly define a difficulty
progression throughout the diffusion steps.
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7 CONCLUSION

In this work, we presented a conditional diffusion-based approach for denoising low-dose
computed tomography (LDCT) images, addressing key challenges associated with the tradi-
tional way Denoising Diffusion Probabilistic Models address image denoising tasks. Rather than
following the standard formulation, which relies on a stochastic Gaussian forward process and
requires the network to learn to predict the added noise, we adopt a simplified deterministic
forward formulation that has been previously proposed in the literature for image-conditioned
diffusion tasks.

This alternative formulation eliminates the need to explicitly define a specific noise distri-
bution during the forward process. As previously discussed, the traditional DDPM pipeline may
not be ideally suited for denoising tasks, as the distribution of the synthesized noise may not
reflect the actual characteristics of the noise present in real-world data. Instead, the adopted
approach directly leverages the noise already present in the noisy image itself, allowing the
network to focus on reconstructing the clean image rather than learning to estimate noise.

Building upon this formulation, our main contribution consists in redefining of the noise
schedule by introducing a modulation parameter 𝛾, a power-law based modulation factor
that controls the intensity of noise addition throughout the diffusion steps. This scheduling
mechanism determines how much of the residual noise, which is obtained from the difference
between the noisy LDCT image and clean NDCT image, is added at each diffusion step. The
power-law 𝛾 enables the exploration of different noise schedule routines, which can concentrate
noise addition on early or late timesteps.

Our experimental results demonstrate that the proposed method outperforms the baseline,
and that the 𝛾 parameter plays an important role in performance. In particular, for longer
diffusion schedules, higher values of 𝛾 lead to better results, suggesting that concentrating
noise in the later steps helps the network focus on more relevant parts of the denoising process.
We also observed that shorter diffusion processes can produce results comparable to, or even
better than, longer ones.

Finally, our analysis reveals that the use of the 𝛾-scheduler introduces an implicit form
of task difficulty modulation along the diffusion trajectory, closely related to the principles
of Curriculum Learning and Reverse Curriculum Learning. This aligns with recent literature
suggesting that controlling the complexity of noise addition over time can benefit training.
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7.1 LIMITATIONS

While the proposed method simplifies the forward process and reduces inference time, it is
not without limitations. One potential issue is the bias introduced by the deterministic forward
process, which may reduce the model’s robustness in scenarios with significant variation in noise
characteristics. Traditional diffusion models are known for their diversity and stochasticity
in sample generation, and although creativity is not relevant for denoising, quality may be
compromised in a fully deterministic formulation.

Furthermore, the reliance on interpolation to generate intermediate states during the for-
ward process raises questions about theoretical optimality. While practical, there is still a need
for strong theoretical or empirical evidence that this interpolation is the optimal strategy.
Additionally, our sampling strategy is adopted directly from the Cold Diffusion framework.
Although formally grounded, its suitability as the optimal choice for our specific conditional
denoising task needs empirical validation.

Moreover, since the model samples timesteps uniformly during training, some timesteps
may be underrepresented, especially in longer schedules. As shown in Figure 31, the compar-
ison of the histograms suggests that, while all timesteps are generally sampled with similar
frequency, small variations become more noticeable as the total number of steps increases.
This imbalance can affect convergence and denoising performance, particularly in scenarios
where the noise schedule distributes noise unevenly throughout the forward process.

Figure 31 – Histogram comparison of the frequency of sampled timesteps during training for different num-
ber of diffusion steps, with 𝑇 = 10, 𝑇 = 50, and 𝑇 = 100, respectively. The model samples
timesteps uniformly, but longer schedules may introduce slight imbalances in the frequency of
certain timesteps.

Finally, another important limitation of this work is the lack of qualitative evaluation con-
ducted by medical experts. While the quantitative metrics, such as PSNR, SSIM, and RMSE,
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provide an objective assessment of the model’s performance, they do not fully capture clinical
relevance or diagnostic quality. The visual fidelity of reconstructed CT images, especially in
detecting subtle anatomical details or pathological structures, must be assessed by radiologists
or trained professionals.

7.2 FUTURE RESEARCH

This study opens several possibilities for further research, both in terms of methodological
refinements and clinical validation. Future investigations may consider the following directions:

• Qualitative clinical evaluation: A crucial step toward real-world applicability involves
collaborating with medical professionals to perform qualitative assessments. Specialists
could evaluate whether the reconstructions preserve clinically relevant structures and
support diagnostic interpretation.

• Adaptive timestep sampling: Instead of relying on uniform sampling during training,
future models could explore adaptive strategies that prioritize potentially undersampled
or more informative timesteps. This could help improve convergence and learning sta-
bility, especially in long schedules.

• Learnable noise schedule (𝛾): Instead of setting 𝛾 manually, future approaches might
benefit from learning the noise scheduling function dynamically during training in re-
sponse to validation performance.

• Alternative sampling strategies: Exploring new or hybrid sampling algorithms, or
modifying existing ones could improve the quality of reconstructions.

• Extension to other imaging modalities and noise types: Applying the proposed
approach to other modalities such as MRI, as well as to more realistic or diverse noise
distributions, could test the generalization of the method in different clinical scenarios.

• Extrapolating residual noise: An interesting extension would be to extrapolate the use
of residual noise, obtained from the difference between noisy and clean images, in the
forward process. By expanding this residual noise according to the scheduler, it may be
possible to retain the benefits of direct noise prediction while preserving the deterministic
formulation.
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