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Resumo

A adoção do paradigma Data Mesh tem impulsionado a descentralização da posse de dados
nas organizações, permitindo que cada domínio de negócio gerencie seus próprios produtos de
dados. Embora essa abordagem aumente a autonomia e a flexibilidade, ela também intensifica
o risco de criação de tabelas estruturalmente semelhantes entre os domínios, gerando redun-
dâncias que comprometem a governança, a rastreabilidade e a eficiência dos recursos. Esta dis-
sertação apresenta uma metodologia para detecção de redundâncias estruturais em arquiteturas
de dados distribuídas, fundamentada na modelagem de tabelas como grafos direcionados e na
aplicação de algoritmos de isomorfismo de subgrafos. Nesse contexto, três abordagens foram
consideradas: o VF2, utilizado como referência consolidada na literatura; o Node Match, um
algoritmo híbrido desenvolvido neste trabalho com função de pré-filtragem; e modelos super-
visionados baseados em redes neurais gráficas (GNN), aplicados à predição de isomorfismos.
Como parte das contribuições, também foi desenvolvida a ferramenta Isomera, em Python, res-
ponsável por operacionalizar a metodologia e permitir sua experimentação prática. A proposta
organiza um ciclo de experimentação em quatro etapas: geração automatizada de cenários, apli-
cação dos algoritmos, validação humana supervisionada, necessária para mitigar falsos positi-
vos e assegurar confiabilidade, e avaliação quantitativa dos resultados. A ferramenta Isomera
possibilita simular arquiteturas sintéticas ou baseadas em benchmarks consolidados, como o
TPC-DS, além de oferecer recursos para a execução controlada de experimentos, a compara-
ção entre algoritmos e a análise de métricas como tempo de execução (ET), acurácia (ACC)
e frequência de sucesso (SF). Dois estudos de caso ilustraram a aplicação da metodologia: o
primeiro, utilizando VF2 e Node Match, e o segundo, incorporando redes neurais (GNN), que
demonstraram ganhos de acurácia em cenários de maior complexidade, ainda que com maior
custo computacional. Adicionalmente, esta dissertação contribui com um artefato científico e
experimental que favorece a replicação de testes, a expansão modular com novos algoritmos e a
análise sistemática de trade-offs entre performance e precisão. Ao unir flexibilidade, reproduti-
bilidade e análise crítica, o trabalho oferece uma base sólida para pesquisadores e profissionais
que buscam aprimorar a governança de dados em arquiteturas distribuídas.

Palavras-chave: Data Mesh, Redundância Estrutural, Governança de Dados, Isomorfismo de
Grafos, VF2, Node Match, GNN, Isomera, TPC-DS.

viii



Abstract

The adoption of the Data Mesh paradigm has fostered the decentralization of data ownership
within organizations, allowing each business domain to manage its own data products. While
this approach increases autonomy and flexibility, it also intensifies the risk of structurally simi-
lar tables being created across domains, leading to redundancies that compromise governance,
traceability, and resource efficiency. This dissertation presents a methodology for detecting
structural redundancies in distributed data architectures, based on modeling tables as directed
graphs and applying subgraph isomorphism algorithms. In this context, three approaches were
considered: VF2, widely used as a reference in the literature; Node Match, a hybrid algorithm
developed in this work with a pre-filtering function; and supervised models based on Graph
Neural Networks (GNN), applied to isomorphism prediction. As an additional contribution, the
Isomera tool was developed in Python, designed to operationalize the methodology and ena-
ble its practical experimentation. The proposed methodology follows a four-step experimen-
tal cycle: automated scenario generation, algorithm application, human-supervised validation
— necessary to mitigate false positives and ensure reliability — and quantitative evaluation
of results. The Isomera tool enables the simulation of synthetic architectures or those based
on consolidated benchmarks such as TPC-DS, while providing features for controlled expe-
riment execution, algorithm comparison, and metric analysis, including execution time (ET),
accuracy (ACC), and success frequency (SF). Two case studies illustrated the application of
the methodology: the first using VF2 and Node Match, and the second incorporating GNNs,
which demonstrated accuracy gains in more complex scenarios, albeit with higher computati-
onal cost. Additionally, this dissertation contributes a scientific and experimental artifact that
supports test replication, modular expansion with new algorithms, and systematic analysis of
trade-offs between performance and accuracy. By combining flexibility, reproducibility, and
critical analysis, the work offers a solid foundation for researchers and practitioners seeking to
improve data governance in distributed architectures.

Keywords: Data Mesh, Structural Redundancy, Data Governance, Graph Isomorphism, VF2,
Node Match, GNN, Isomera, TPC-DS.
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CAPÍTULO 1

Introdução

1.1 Contextualização

O avanço da transformação digital, intensificado pela incorporação estratégica de tecnologias
como a inteligência artificial, tem provocado uma profunda reconfiguração nos processos orga-
nizacionais, impulsionando a geração massiva de dados em múltiplos contextos e setores. Ao
viabilizar automações, personalizações e inovações em escala, este avanço acelerado promove
ganhos em eficiência, qualidade e tomada de decisão, mas também impõe desafios gerenciais e
culturais para as organizações (KAVAK; RUSU, 2025).

Esse crescimento, impulsionado por demandas analíticas e operacionais cada vez mais com-
plexas, trouxe à tona desafios estruturais ligados à governança, à redundância e à interoperabi-
lidade de dados (BENA et al., 2025). Tradicionalmente, arquiteturas centralizadas como Data
Warehouses e Data Lakes dominaram as arquiteturas tecnológicas. Contudo, essas abordagens
monolíticas vêm demonstrando limitações frente à crescente heterogeneidade dos negócios e à
necessidade de autonomia entre as equipes (GIEß; HUTTERER, 2025).

Nesse cenário, o paradigma do Data Mesh surge como uma proposta moderna que busca
descentralizar a posse e a responsabilidade sobre os dados, atribuindo aos próprios domínios
a missão de gerenciar seus produtos de dados com independência. Essa arquitetura promove
maior escalabilidade organizacional ao romper com o gargalo imposto pelas equipes centrais
de engenharia de dados e alinhar a tomada de decisões às equipes mais próximas da informação
(BODAPATI, 2025).

Em linhas gerais, um domínio de negócio é um grupo de pessoas com profundo conheci-
mento sobre uma área específica da organização, como vendas, logística ou finanças, sendo,
portanto, o responsável natural pela geração e interpretação dos dados relacionados à sua ativi-
dade. Ao transferir para os domínios a responsabilidade pelo ciclo de vida dos dados, o Data
Mesh promove maior contextualização, agilidade e qualidade no tratamento da informação.

Concebido por Zhamak Dehghani, o Data Mesh se fundamenta em quatro pilares essen-
ciais: (i) a propriedade dos dados por domínio, que transfere a responsabilidade pela gestão
dos dados para os próprios domínios, valorizando o conhecimento específico e contextual de
cada equipe sobre os ativos sob sua responsabilidade; (ii) o dado como produto, o que implica
tratá-lo com critérios de usabilidade, confiabilidade e qualidade; (iii) uma plataforma de dados
de autosserviço, que permite aos domínios criar, transformar e servir dados com mínima de-
pendência técnica; e (iv) a governança federada computacional, que harmoniza o controle de
acesso e a padronização sem comprometer a autonomia (DEHGHANI, 2019).

Para situar visualmente essa arquitetura, a Figura 1.1 sintetiza o Data Mesh: domínios
autônomos (Pagamentos, Finanças, Marketing e Machine Learning) compartilham dados, em

1



2 CAPÍTULO 1 INTRODUÇÃO

geral, em nuvem, enquanto dois times transversais dão suporte: (i) equipe de infraestrutura
(platform team), responsável por armazenamento, processamento e serviços de autosserviço; e
(ii) governança, responsável por políticas, segurança e qualidade.

Figura 1.1: Arquitetura Data Mesh em alto nível com domínios autônomos, equipe de infraes-
trutura e equipe de governança.

Neste tipo de arquitetura, há conceitos importantes sobre como as tabelas são criadas e no-
meadas ao longo do fluxo de dados. Para orientar a leitura, a Figura 1.2 apresenta, de forma
didática, três camadas recorrentes: (i) camada de registro, System of Record (SOR), onde resi-
dem os dados brutos; (ii) camada de transformação, System of Transformation (SOT), na qual
os dados são tratados e estruturados; e (iii) camada de processamento especializado, Speci-
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alized Processing Engines (SPEC), voltada a análises avançadas. Em cenários reais, podem
existir dependências cruzadas (por exemplo, SOT a partir de SOT, SPEC a partir de SPEC ou
diretamente de SOR); aqui adotamos a organização idealizada apenas para fins didáticos.

Figura 1.2: Relação idealizada entre camadas: SOR → SOT → SPEC (arquitetura "limpa").
Na prática, podem ocorrer dependências cruzadas.

Cada domínio passa a funcionar como uma unidade lógica autônoma dentro da organização,
sendo responsável por criar, manter e compartilhar suas próprias tabelas e ativos. Esses ativos,
em geral, são construídos a partir de sistemas de registro, System of Record (SOR), responsáveis
por armazenar os dados em sua forma original, como ERPs (Enterprise Resource Planning),
CRMs (Customer Relationship Management), e bases de logs e sensores. Essa camada é fun-
damental para garantir a integridade, a rastreabilidade e a persistência das informações.

A partir dessa base, os domínios criam estruturas intermediárias conhecidas como System
of Transformation (SOT), onde os dados são submetidos a processos de limpeza, normaliza-
ção, enriquecimento e agregação, com o objetivo de estruturar informações mais coerentes e
utilizáveis para consumo organizacional.

Finalmente, para demandas específicas e análises mais complexas, são utilizadas camadas
de processamento especializadas, chamadas Specialized Processing Engines (SPEC), nas quais
se aplicam técnicas avançadas como aprendizado de máquina, análise preditiva e modelagem
estatística, viabilizando a geração de insights estratégicos para os domínios de negócio 1. Sem
padronização ou mecanismos de validação cruzada, essa evolução pode favorecer o surgimento
de estruturas redundantes, um problema ainda pouco discutido em soluções práticas de Data
Mesh.

Para evidenciar esse problema de forma concreta, a Figura 1.3 ilustra um exemplo em que
diferentes domínios geram e consomem dados (A–H). Observa-se uma duplicidade entre as
tabelas E (Pagamentos) e G (Machine Learning), ambas derivadas das bases B e D. Ainda que

1A. Hashimoto, SoR, SoT e Spec no contexto de Engenharia de Dados, Alura, 2024. Disponível em: <https:
//www.alura.com.br/artigos/sor-sot-spec>. Acesso em: 6 out. 2025.

https://www.alura.com.br/artigos/sor-sot-spec
https://www.alura.com.br/artigos/sor-sot-spec
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regras de negócio possam diferir entre esses domínios, o conteúdo estrutural dessas tabelas
poderia ser consolidado em uma única base, reduzindo redundâncias e custos.

Figura 1.3: Exemplo de duplicidade: E (Pagamentos) e G (ML) derivadas de B e D em domí-
nios distintos, sugerindo redundância potencial.

Embora o Data Mesh promova flexibilidade e agilidade, ela também introduz riscos: a
proliferação de tabelas estruturalmente semelhantes entre domínios, como vimos na figura an-
teriors. Essas redundâncias, quando não gerenciadas adequadamente, afetam diretamente a
governança de dados, elevam custos operacionais e dificultam a rastreabilidade das informa-
ções (DEVI; INAMPUDI; VIJAYABOOPATHY, 2025).

Em ambientes de nuvem, onde os custos estão diretamente associados à escalabilidade e
ao volume de armazenamento, a duplicação de estruturas entre domínios pode comprometer
significativamente a sustentabilidade financeira da arquitetura de dados. O acúmulo de tabelas
redundantes em um cenário descentralizado pode levar a um crescimento desproporcional dos
custos de manutenção, superando, em certos casos, o valor agregado pela descentralização dos
dados 2.

Estudos recentes apontam que mesmo empresas de grande porte enfrentam desafios ao
adotar o Data Mesh, em especial no que tange à duplicidade de estruturas, ausência de padrões
e dificuldades na consolidação de políticas de qualidade. Casos como o da Netflix ilustram as
dificuldades técnicas e organizacionais para alcançar uma descentralização sustentável 3.

2H. Rollin, The Brutal Cost of Data Mesh, Medium, 2023. Disponível em: <https://medium.com/@hannes.
rollin/the-brutal-cost-of-data-mesh-df8cec245506>. Acesso em: 6 out. 2025.

3 Netflix, Netflix Technology Blog, 2022. Disponível em: <https://netflixtechblog.com/
data-mesh-a-data-movement-and-processing-platform-netflix-1288bcab2873>. Acesso em: 21 jul. 2025.

https://medium.com/@hannes.rollin/the-brutal-cost-of-data-mesh-df8cec245506
https://medium.com/@hannes.rollin/the-brutal-cost-of-data-mesh-df8cec245506
https://netflixtechblog.com/data-mesh-a-data-movement-and-processing-platform-netflix-1288bcab2873
https://netflixtechblog.com/data-mesh-a-data-movement-and-processing-platform-netflix-1288bcab2873
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O problema se agrava quando múltiplos domínios criam tabelas com esquemas muito si-
milares, mas ligeiramente adaptados às suas realidades locais, dificultando o reconhecimento
automático dessas redundâncias por sistemas de governança. Essa fragmentação semântica e
estrutural impõe desafios concretos à governança e amplia a necessidade de métodos computa-
cionais que consigam identificar e mitigar tais redundâncias.

Dentre as abordagens emergentes para identificação dessas duplicidades, a representação
estrutural por grafos tem se mostrado particularmente promissora. Grafos permitem capturar
com precisão as relações entre tabelas, colunas, tipos de dados e chaves, viabilizando a modela-
gem do ecossistema de dados como uma rede de dependências e estruturas (PATEL; DHARWA,
2017).

Essa representação facilita a aplicação de algoritmos de comparação estrutural, como de-
tecção de isomorfismos, que podem automatizar a identificação de duplicações e padrões re-
correntes em larga escala (REN; LI, 2024). Ao explorar tais capacidades, abre-se espaço para
práticas de governança mais automatizadas, escaláveis e eficazes, reduzindo os custos operaci-
onais associados ao controle manual de ativos.

Para tornar essa ideia concreta no nosso exemplo, modelamos a arquitetura como um grafo
direcionado: cada tabela, (X e Y ), por exemplo, são vértices e criamos uma aresta X → Y
quando Y é derivada ou consome dados de X . No cenário da Figura 1.3, os vértices são B, D, E
e G e as dependências são B→E, D→E, B→G e D→G. Formalmente, focamos no subgrafo
G′ = {V,E}, e não no grafo completo contendo A, C, F e H, para destacar apenas a porção dire-
tamente ligada à geração de E e G, com V = {B,D,E,G} e E = {(B,E),(D,E),(B,G),(D,G)}.
A Figura 1.4 ilustra esse subgrafo.

Figura 1.4: Subgrafo G′ destacando a geração de E e G a partir de B e D.

Neste cenário, torna-se estratégico o desenvolvimento de soluções computacionais capazes
de automatizar a identificação e a validação de redundâncias estruturais em ecossistemas de
dados complexos e distribuídos.

Embora esta dissertação tenha sido concebida no contexto de arquiteturas baseadas em Data
Mesh, a metodologia proposta possui caráter geral e pode ser aplicada a qualquer ambiente em
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que as relações entre tabelas possam ser formalmente representadas como grafos. Isso inclui
arquiteturas tradicionais, como Data Warehouses e Data Lakes, bem como sistemas híbridos
que combinam características de ambos. Dessa forma, o método aqui apresentado não se res-
tringe a um modelo de governança específico, mas se consolida como uma estrutura analítica
adaptável para o estudo, a avaliação e a otimização de diferentes arquiteturas de dados.

1.2 Motivação e Justificativa

A autonomia conferida aos domínios de negócio no paradigma Data Mesh representa uma
transformação significativa no modo como os dados são concebidos, tratados e disponibilizados
dentro das organizações. Contudo, ao mesmo tempo em que permite maior escalabilidade
e responsividade às demandas locais, essa descentralização tem exposto lacunas críticas nos
mecanismos de controle de qualidade e padronização de estruturas (SERRA, 2024).

Um dos reflexos mais notórios dessa descentralização é o surgimento de tabelas estrutu-
ralmente redundantes, artefatos que compartilham esquemas semelhantes, mas que são desen-
volvidos de forma paralela e não coordenada por diferentes equipes. Essas redundâncias não
apenas aumentam a complexidade dos pipelines de dados, como também geram desperdícios de
recursos computacionais em plataformas baseadas em nuvem. Em um cenário onde o armaze-
namento e o processamento são cobrados por volume e desempenho, a ausência de mecanismos
automatizados para detectar tais duplicidades representa uma vulnerabilidade operacional (JI
et al., 2012).

Casos reais ilustram esse problema com clareza: instituições como o Itaú Unibanco relata-
ram desafios concretos relacionados ao acúmulo excessivo de arquivos em buckets do Amazon
S3, que elevaram significativamente os custos de armazenamento. A empresa foi obrigada
a desenvolver indicadores, aplicar regras de ciclo de vida e adotar estratégias específicas de
arquivamento para mitigar os impactos financeiros de estruturas pouco otimizadas.4

Mais do que um problema de custo, trata-se de uma questão de confiança. Tabelas similares,
quando mal documentadas ou desconectadas de um catálogo unificado, podem induzir a inter-
pretações conflitantes sobre o mesmo fenômeno de negócio, comprometendo a consistência
analítica e a confiabilidade dos dashboards e modelos que delas derivam. Essa fragmentação
dificulta a rastreabilidade de dados e sobrecarrega processos de governança que deveriam ser
federados e automatizados, como preconizado no próprio modelo de Data Mesh (KAPFERER;
BRUNNER; ZELLER, 2021).

Diante disso, esta dissertação se justifica pela necessidade urgente de estruturar uma abor-
dagem sistemática para identificação de redundâncias estruturais em ambientes de dados distri-
buídos. Ao empregar algoritmos de isomorfismo de grafos, propõe-se não apenas reconhecer
similaridades, mas também inferir equivalências estruturais entre tabelas distribuídas.

Essa combinação entre técnicas computacionais e conhecimento especializado visa for-
talecer os pilares da governança de dados, promovendo maior transparência, padronização e

4R. Lovatti, J. Escoaiella, T. B. dos Santos, H. Papa, O. Correia, K. Oliveira e R. M. Dias, Como
o Itaú reduziu custos de armazenamento no Amazon S3, Blog da AWS – Seção Customer Solutions,
Amazon Web Services, 14 fev. 2025. Disponível em: <https://aws.amazon.com/pt/blogs/aws-brasil/
como-o-itau-reduziu-custos-de-armazenamento-no-amazon-s3/>. Acesso em: 6 out. 2025.

https://aws.amazon.com/pt/blogs/aws-brasil/como-o-itau-reduziu-custos-de-armazenamento-no-amazon-s3/
https://aws.amazon.com/pt/blogs/aws-brasil/como-o-itau-reduziu-custos-de-armazenamento-no-amazon-s3/
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eficiência em arquiteturas modernas orientadas por domínios.

1.3 Trabalhos Relacionados

A literatura recente tem abordado com crescente interesse os desafios oriundos da descentrali-
zação de dados em arquiteturas distribuídas. Dehghani foi pioneira ao estabelecer os pilares do
Data Mesh, apontando para a necessidade de reorganizar a responsabilidade sobre os dados a
partir da lógica de domínios (KAPFERER; BRUNNER; ZELLER, 2021). Serra complementa
essa visão com uma análise crítica das principais arquiteturas modernas, como Data Lakehouse
e Data Fabric, destacando que, em ambientes distribuídos, a governança tende a se tornar mais
frágil sem ferramentas automatizadas de controle (SERRA, 2024).

No contexto de governança e engenharia de dados, Hashimoto destaca como a evolução dos
pipelines a partir das fontes SOR pode gerar camadas sucessivas (SOT e SPEC), aumentando a
complexidade estrutural dos dados gerados por cada domínio 5. Quando não há padronização
ou mecanismos de validação cruzada, essa evolução pode favorecer o surgimento de estruturas
redundantes, um problema ainda pouco discutido em soluções práticas de Data Mesh.

Na tentativa de identificar tais redundâncias em arquiteturas não modernizadas em Data
Mesh, diferentes abordagens baseadas em teoria dos grafos têm sido exploradas. Ren e Li
discutem definições fundamentais de isomorfismo de grafos e sua aplicação em bases relaci-
onais (REN; LI, 2024). Já Mancinska et al. exploram variações do problema de isomorfismo
em grafos com atributos semânticos, demonstrando que, em determinadas configurações, o
reconhecimento estrutural pode ultrapassar os limites da tratabilidade clássica, exigindo abor-
dagens heurísticas para viabilizar soluções computacionais em tempo viável (MANčINSKA;
ROBERSON; VARVITSIOTIS, 2024).

Cordella et al. introduziram o algoritmo VF2, uma das abordagens determinísticas mais
consolidadas para verificação de isomorfismo e subisomorfismo de grafos, cuja eficiência de-
corre da combinação entre uma representação em espaço de estados (State Space Representa-
tion) e um conjunto de regras de viabilidade (feasibility rules) que reduzem drasticamente o
espaço de busca (CORDELLA et al., 2004). Seu diferencial reside na capacidade de integrar,
simultaneamente, comparações sintáticas e semânticas entre pares de nós, sendo especialmente
eficaz em grafos atribuídos.

Em contextos com grandes volumes de dados, como em empresas ou aplicações científicas,
é comum lidar com grafos que apresentam ruídos, falhas ou estruturas incompletas. Nessas
situações, métodos que exigem uma correspondência exata entre os grafos tendem a ser pouco
eficazes. É nesse cenário que os algoritmos baseados em distância de edição de grafos (Graph
Edit Distance – GED) ganham destaque, por serem mais flexíveis e tolerantes a imperfeições. A
proposta de Zheng et al. se destaca justamente por adotar uma abordagem que combina técnicas
para reduzir o esforço computacional durante a busca por grafos semelhantes, mantendo bons
níveis de precisão (ZHENG et al., 2015). Os resultados experimentais apresentados pelos
autores demonstram que sua solução é capaz de superar métodos tradicionais tanto em agilidade

5A. Hashimoto, SoR, SoT e Spec no contexto de Engenharia de Dados, Alura, 2024. Disponível em: <https:
//www.alura.com.br/artigos/sor-sot-spec>. Acesso em: 6 out. 2025.

https://www.alura.com.br/artigos/sor-sot-spec
https://www.alura.com.br/artigos/sor-sot-spec
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quanto na qualidade das respostas, mesmo quando aplicada a bases de dados complexas e
diversificadas.

Outros estudos aplicados complementam essa base teórica. Souza explora a biblioteca
NetworkX na detecção de similaridade estrutural em bancos relacionais, evidenciando como a
modelagem em grafos pode ser útil para refinar consultas e visualizar padrões ocultos (SOUZA;
GUEDES, 2023). Elmagarmid et al., por sua vez, discutem estratégias clássicas de deduplica-
ção baseadas em atributos, que embora úteis, não conseguem lidar com a complexidade estru-
tural de tabelas completas (ELMAGARMID; IPEIROTIS; VERYKIOS, 2007).

No campo das ferramentas e plataformas, Fan et al. investigam algoritmos adaptativos para
identificação de isomorfismos parciais em grandes grafos dinâmicos, considerando aspectos
como estabilidade topológica e variações incrementais nas estruturas (ZHANG et al., 2023).
Esses avanços evidenciam o potencial das representações em grafos como uma base sólida para
inspeção estrutural automatizada, especialmente em ambientes descentralizados e altamente
mutáveis como os propostos pelo Data Mesh.

Yazici e Taşkomaz introduzem o BF-BigGraph, um método inovador de isomorfismo de
subgrafos que combina a estratégia de busca best-first com técnicas de aprendizado de máquina
para consultas eficientes em bases de grafos de larga escala (YAZICI; TAşKOMAZ, 2024).
Utilizando o algoritmo Random Forest como classificador supervisionado, o modelo é capaz
de prever ordens de correspondência otimizadas e restringir o espaço de busca, melhorando
significativamente o tempo de resposta e o uso de memória em bases com bilhões de nós e
arestas. Os experimentos demonstram que o BF-BigGraph supera abordagens clássicas em
consultas complexas. Esses resultados evidenciam o potencial de metodologias baseadas em
machine learning.

A proposta de Lu et al. introduz uma abordagem baseada em redes neurais genéticas (GNN)
para detecção de dados duplicados em ambientes de integração e mineração de dados. O mé-
todo combina a capacidade de generalização de redes neurais artificiais com a eficiência de
algoritmos genéticos para otimizar tanto a topologia quanto os pesos do modelo antes da fase
de aplicação. Essa estratégia permite mapear não linearmente as similaridades entre segmentos
de registros, superando limitações dos métodos tradicionais. (LU et al., 2016).

Liu et al. propõem o G-Finder, um algoritmo que busca encontrar partes semelhantes entre
grafos grandes usando estratégias inteligentes de busca e divisão (LIU et al., 2019). Seu dife-
rencial está em conseguir encontrar estruturas parecidas mesmo quando o grafo possui atributos
variados e está incompleto, algo comum em ambientes descentralizados.

Wang et al. propõem o OblivGM, um sistema para consultas por isomorfismo de subgrafos
atribuídos em grafos armazenados na nuvem, com foco na preservação da privacidade (WANG
et al., 2022). A solução utiliza criptografia leve para proteger tanto os dados quanto os padrões
de acesso durante a execução das consultas, mesmo com predicados de igualdade e intervalo.
Essa abordagem é relevante para contextos descentralizados como o Data Mesh, onde a confi-
dencialidade estrutural entre domínios é fundamental.

Outro avanço importante no campo de isomorfismo de subgrafos é o FIRST (Fast Interac-
tive Attributed Subgraph Matching), proposto por Du et al., que introduz um modelo interativo
e eficiente para busca de subgrafos atribuídos (DU; CAO, 2017). O algoritmo é especialmente
adequado para cenários exploratórios em que o usuário não possui um padrão de busca definido
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a priori e precisa ajustar interativamente a consulta com base nos resultados obtidos. O FIRST
adota estratégias computacionais eficientes para acelerar o processo de correspondência entre
subgrafos em redes heterogêneas, mesmo quando há revisões sucessivas na consulta. Essa ca-
pacidade de adaptação torna a abordagem especialmente útil em cenários como o Data Mesh,
onde a governança dinâmica e a identificação de sobreposições semânticas entre domínios com
alta diversidade de atributos são essenciais. A inspiração conceitual do FIRST motivou a cria-
ção do algoritmo Node Match, proposto nesta dissertação, que antecipa à etapa tradicional de
isomorfismo (como o VF2) um processo de pré-filtragem baseado na similaridade entre nós.
Essa estratégia reduz significativamente o espaço de busca ao restringir a execução do isomor-
fismo apenas aos pares mais promissores, promovendo ganhos relevantes de desempenho em
arquiteturas de dados descentralizadas.

A revisão da literatura revela uma diversidade significativa de abordagens para identificação
de estruturas semelhantes ou duplicadas em conjuntos de dados. No entanto, grande parte des-
ses estudos concentra-se em contextos mais tradicionais, como bancos relacionais centraliza-
dos, sistemas transacionais ou grafos homogêneos com topologias estáticas. Embora ofereçam
contribuições valiosas, como algoritmos eficientes, heurísticas adaptativas e modelos com foco
em privacidade, esses trabalhos não foram concebidos para enfrentar os desafios específicos de
arquiteturas modernas descentralizadas, como o Data Mesh.

Nesse sentido, ainda são escassas as soluções voltadas à detecção de duplicidades estrutu-
rais em ambientes onde os dados são distribuídos entre domínios independentes, com variações
sutis em esquemas e alto volume de ativos gerados. Essa lacuna evidencia a necessidade de
métodos práticos e adaptáveis, capazes de operar em cenários orientados por domínio e apoiar
a governança descentralizada.

Com base nesses referenciais, esta dissertação propõe um método híbrido para identifica-
ção de isomorfismos estruturais, combinando algoritmos baseados em grafos com uma etapa de
validação manual. A metodologia foi aplicada em ambientes simulados e reais orientados por
domínios, utilizando o benchmark TPC-DS como base de testes (NAMBIAR; POESS, 2006).
A fim de destacar os diferenciais da abordagem proposta, realizou-se uma análise comparativa
com os principais métodos disponíveis na literatura, considerando critérios como escalabili-
dade, aplicabilidade prática e aderência ao modelo de dados distribuídos do Data Mesh. A
Tabela 1.1 apresenta esse comparativo, evidenciando as contribuições centrais de cada estudo
e os aspectos que diferenciam esta dissertação.

Tabela 1.1: Comparativo entre os principais trabalhos e esta dissertação quanto aos algoritmos
utilizados e à arquitetura de dados analisada.

Autor / Trabalho
Algoritmos de detecção de isomorfismo Arquitetura de dados

VF2 Node Match G-FINDER OblivGM FIRST BF-BigGraph GNN Convencional Data Mesh
Cordella et al. (2001) x x

Liu et al. (2019) [G-Finder] x x

Wang et al. (2022) [OblivGM] x x

Du et al. (2017) [FIRST] x x

Yazici e Taşkomaz (2024) [BF-BigGraph] x x

Lu et al. (2024) [GNN - Dup. Detection] x x

Esta Dissertação (2025) x x x x x

Legenda: x indica presença e implantação na ferramenta
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Vale destacar que, na coluna “Convencional”, estão incluídos trabalhos que operam sobre
arquiteturas tradicionais, como bancos de dados relacionais centralizados, pipelines monolíti-
cos ou grafos homogêneos com topologia estática. Diferente disso, a proposta desta dissertação
é a única voltada especificamente para arquiteturas baseadas em Data Mesh, caracterizadas por
descentralização, orientação a domínios e alta variabilidade estrutural entre os nós, mas que
também pode ser utilizada por arquiteturas convencionais.

1.4 Objetivos

O objetivo geral desta pesquisa é desenvolver um método baseado em grafos para detectar
redundâncias estruturais em tabelas distribuídas no contexto de arquiteturas Data Mesh, inte-
grando algoritmos de isomorfismo com validação humana e avaliando a eficiência por meio de
métricas computacionais.

Os objetivos específicos são:

• Modelar arquiteturas distribuídas como grafos direcionados, representando relações de
linhagem entre tabelas de diferentes domínios;

• Aplicar algoritmos de isomorfismo de subgrafos, como VF2 e Node Match, para detectar
estruturas redundantes;

• Desenvolver uma ferramenta em Python (Isomera) que simula arquiteturas, executa os
algoritmos e coleta métricas;

• Incorporar uma etapa de validação humana para confirmar ou refutar as duplicações de-
tectadas automaticamente;

• Avaliar o desempenho dos algoritmos por meio de métricas como tempo de execução
(ET), acurácia (ACC) e Success Frequency (SF);

• Aplicar o método proposto a cenários baseados em benchmarks (como o TPC-DS) e
arquiteturas sintéticas;

• Analisar os resultados obtidos em diferentes níveis de complexidade arquitetural e propor
recomendações para ambientes reais.

Por fim, esta dissertação busca responder duas questões centrais: como identificar tabelas
duplicadas em arquiteturas distribuídas orientadas por domínio, como o Data Mesh; e como
mensurar a eficiência de diferentes abordagens na identificação dessas duplicações em ambien-
tes Data Mesh.

1.5 Estrutura da Dissertação

Esta dissertação está organizada em seis capítulos. O Capítulo 1 apresenta o contexto da pes-
quisa no cenário da engenharia de dados contemporânea, destacando a motivação, os objeti-
vos e a relevância do problema abordado, define as perguntas de pesquisa e as contribuições
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esperadas. O Capítulo 2 reúne os principais conceitos que sustentam o trabalho, abordando
fundamentos de álgebra linear, teoria dos grafos e detecção de isomorfismos, além de discu-
tir os princípios do paradigma Data Mesh e sua relação com a governança e modelagem de
arquiteturas distribuídas. O Capítulo 3 detalha o processo metodológico desenvolvido para
identificação e validação de redundâncias estruturais em arquiteturas de dados, descrevendo as
fases de modelagem em grafos, detecção de isomorfismo, validação supervisionada e avaliação
das métricas, estabelecendo a base conceitual para a implementação prática.

O Capítulo 4 apresenta a ferramenta computacional Isomera, desenvolvida como artefato
de apoio à metodologia proposta, descrevendo seus módulos internos, bibliotecas empregadas
(NetworkX, DearPyGui), interface gráfica, pseudocódigos e fluxo de execução, demons-
trando como a metodologia foi operacionalizada e aplicada em experimentos reais. O Capítulo
5 expõe os estudos de caso realizados para validar a metodologia e a ferramenta, incluindo ex-
perimentos com diferentes algoritmos de detecção (VF2, Node Match e GNN), cujos resultados
são analisados de acordo com métricas de desempenho, precisão e eficiência computacional,
permitindo comparar abordagens e discutir implicações práticas. Por fim, o Capítulo 6 resume
as principais contribuições teóricas e práticas do trabalho, discute suas limitações e apresenta
perspectivas de continuidade, como a integração de novos algoritmos, o uso de técnicas de in-
teligência artificial generativa e a ampliação do escopo da ferramenta para outras arquiteturas
de dados, como Data Warehouse e Data Lake.



CAPÍTULO 2

Fundamentação Teórica

Este capítulo apresenta os fundamentos teóricos e técnicos que sustentam a metodologia pro-
posta para a identificação de redundâncias estruturais em ambientes Data Mesh. São discutidos
inicialmente os princípios desse paradigma, seguidos pela representação de dados como gra-
fos e pelas definições formais da teoria dos grafos que servem de base para o estudo. Em
seguida, são descritos os algoritmos empregados na detecção de isomorfismos estruturais, in-
cluindo abordagens clássicas e o Node Match, desenvolvido no âmbito desta pesquisa, além de
modelos baseados em aprendizado de máquina. Por fim, são introduzidos conceitos algébricos,
como matrizes de adjacência e operações de permutação, que oferecem suporte à análise de
duplicidade estrutural.

2.1 Data Mesh

As arquiteturas modernas de dados têm evoluído substancialmente para atender às crescentes
demandas por escalabilidade, flexibilidade e integração entre diferentes domínios organizaci-
onais. Inicialmente, os Data Warehouses consolidaram-se como soluções voltadas ao arma-
zenamento estruturado e à análise de dados históricos, promovendo consistência e controle
centralizado com base em esquemas rígidos e dados integrados (INMON, 2005; KIMBALL;
ROSS, 2013). Posteriormente, os Data Lakes emergiram como uma alternativa mais flexível às
abordagens tradicionais, ao permitirem o armazenamento de dados estruturados, semiestrutu-
rados e não estruturados em sua forma original, sem necessidade de pré-processamento. Essa
flexibilidade é viabilizada pelo uso do paradigma schema-on-read, no qual a estrutura dos da-
dos é interpretada apenas no momento da leitura, conforme a necessidade de cada aplicação
ou análise. Diferentemente do modelo schema-on-write, adotado em Data Warehouses, que
impõe um esquema rígido no momento da ingestão, o schema-on-read permite maior agilidade
na ingestão de dados heterogêneos e dinamismo na análise. Essa característica tornou os Data
Lakes especialmente atrativos para cenários de ciência de dados e aprendizado de máquina, nos
quais os dados frequentemente precisam ser explorados de modo iterativo e adaptável (KHINE;
WANG, 2017).

Apesar da consolidação dos Data Warehouses e da ascensão dos Data Lakes como es-
tratégias centrais para armazenar e analisar grandes volumes de dados, ambas as abordagens
enfrentam limitações significativas à medida que a complexidade dos ecossistemas organizaci-
onais cresce. Os Data Warehouses, por adotarem modelos de dados fixos previamente definidos
(schema-on-write), exigem que os dados sejam transformados e ajustados antes de serem ar-
mazenados. Isso implica que qualquer alteração no formato ou na estrutura dos dados, como a

12



2.1 DATA MESH 13

introdução de uma nova coluna em uma tabela de vendas ou a inclusão de um tipo de dado se-
miestruturado, requer modificações no esquema previamente estabelecido, demandando tempo
e esforço técnico consideráveis. Além disso, sua arquitetura centralizada dificulta a adaptação
rápida às novas necessidades analíticas dos domínios, limitando a escalabilidade e a agilidade
em contextos organizacionais dinâmicos (FANG, 2015). Já os Data Lakes, embora promovam
maior flexibilidade por meio do armazenamento de dados em estado bruto (schema-on-read),
enfrentam desafios substanciais quanto à arquitetura, governança, gerenciamento de metadados
e modelagem. Ainda não há consenso sobre uma arquitetura ideal para Data Lakes, tampouco
diretrizes consolidadas para integrar aspectos como controle de qualidade, linhagem dos dados,
perfis de acesso e interoperabilidade entre ferramentas (GIEBLER et al., 2019). A ausência de
uma estratégia de governança clara e bem definida compromete a usabilidade e a confiabili-
dade desses repositórios, favorecendo o acúmulo desordenado de dados inválidos, incoerentes
ou obsoletos, o chamado “pântano de dados” (data swamp), em que o valor potencial do data
lake se deteriora por falta de controle do ciclo de vida, da semântica e da integridade dos dados
(DERAKHSHANNIA et al., 2020).

Diante das limitações das arquiteturas centralizadas, como a rigidez estrutural dos Data
Warehouses e a ausência de controle e qualidade nos Data Lakes, surgiram propostas híbri-
das capazes de integrar o melhor de ambos os mundos. O Data Lakehouse, por exemplo,
busca combinar a governança, a confiabilidade e o desempenho analítico dos Warehouses com
a flexibilidade e a escalabilidade dos Lakes, possibilitando processamento analítico direto so-
bre dados brutos, sem comprometer consistência ou performance (HARBY; ZULKERNINE,
2022). Em paralelo, o Data Fabric propõe uma arquitetura de integração inteligente baseada
em metadados ativos e conhecimento contextual, conectando automaticamente múltiplas fon-
tes de dados heterogêneas, distribuídas e isoladas por meio de um tecido virtual unificado que
favorece descoberta, mapeamento e acesso contínuo. Embora avance na virtualização e na au-
tomação de pipelines, o Data Fabric não endereça por completo os desafios organizacionais
de descentralização da governança, autonomia dos domínios e escalabilidade da produção de
dados, aspectos críticos em ecossistemas empresariais complexos (BLOHM et al., 2024).

Nesse cenário, o Data Mesh desponta como alternativa arquitetural ao propor a descen-
tralização da responsabilidade sobre os dados, delegando aos domínios de negócio o papel de
mantê-los como produtos interoperáveis e confiáveis. Nas arquiteturas monolíticas, típicas de
Data Warehouses e de muitos Data Lakes, todo o ciclo de ingestão, transformação, modelagem
e disponibilização de dados é concentrado em uma equipe ou plataforma central. Esse arranjo
cria um ponto único de controle, mas também de sobrecarga, já que todos os fluxos precisam
atravessar a mesma estrutura técnica para chegar aos consumidores. Em contraste, o Data Mesh
distribui essas responsabilidades entre os próprios domínios que produzem e consomem os da-
dos, permitindo que cada um administre seu ciclo de ponta a ponta. Essa mudança promove
escalabilidade organizacional, autonomia operacional e governança federada, em contraposi-
ção aos modelos centralizados que frequentemente geram gargalos e dificultam a adaptação às
necessidades específicas de cada área (KANAGARLA, 2024).

Conforme sistematizado por Dehghani e discutido na Seção 1.1, o Data Mesh apoia-se
em quatro pilares fundamentais que visam superar as limitações impostas pelos tradicionais
silos organizacionais e permitir que a escalabilidade do uso de dados acompanhe a estrutura



14 CAPÍTULO 2 FUNDAMENTAÇÃO TEÓRICA

descentralizada das organizações modernas.
O primeiro pilar, propriedade dos dados por domínio, confronta diretamente a lógica das

arquiteturas monolíticas. Nessas arquiteturas, é comum encontrar equipes hiperespecializadas
de dados posicionadas entre os domínios produtores (como times de produto) e os consumi-
dores (como times de recomendação ou relatórios executivos), sem conhecimento contextual
ou autonomia para responder rapidamente às demandas do negócio (DEHGHANI, 2022). Essa
fragmentação gera silos organizacionais: à esquerda os produtores, à direita os consumidores
e, no centro, uma equipe de dados sobrecarregada que atua como gargalo. A Figura 2.1 ilustra
esse desalinhamento estrutural, no qual a concentração de responsabilidades compromete es-
calabilidade e tempo de resposta. Ao transferir a responsabilidade para os próprios domínios, o
Data Mesh rompe com essa centralização e garante que cada área de negócio assuma a gestão
dos dados que produz.

Figura 2.1: Silos em pipelines centralizados: equipe de dados no centro vira gargalo entre
produtores e consumidores. Fonte: Dehghani (DEHGHANI, 2022).

O segundo pilar, dado como produto, implica que os domínios de negócio assumam res-
ponsabilidade integral pela concepção, qualidade, arquitetura e entrega dos dados que produ-
zem. Esse princípio contrasta fortemente com arquiteturas tradicionais, nas quais as equipes
de tecnologia são organizadas em torno de etapas isoladas do ciclo de vida dos dados, inges-
tão, transformação, modelagem e disponibilização. Como ilustrado na Figura 2.2, esse arranjo
gera uma decomposição orientada por atividades, em que cada equipe se responsabiliza apenas
por uma fração do processo. Para que um produto de dados seja disponibilizado, é necessário
atravessar múltiplas camadas técnicas, envolvendo diferentes grupos altamente especializados.

Essa fragmentação exige coordenação intensa entre equipes distintas, geralmente sem visão
completa do objetivo de negócio. Como consequência, o ciclo de valor dos dados torna-se lento
e rígido: dependências se acumulam, pequenas alterações exigem longas negociações e o tempo
de resposta às demandas organizacionais cresce de forma desproporcional. O acoplamento
entre etapas, aliado à ausência de autonomia dos domínios, transforma os pipelines em gargalos
permanentes, atrasando a entrega de valor e limitando a escalabilidade em contextos de rápido
crescimento.
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Figura 2.2: Pipeline monolítico orientado por atividades; dependências entre etapas geram
atrasos e gargalos. Adaptado de Dehghani (DEHGHANI, 2022).

Em contraponto, o Data Mesh propõe uma decomposição organizacional orientada por re-
sultados (outcomes), representada na Figura 2.3, correspondente ao pilar de dados como pro-
duto. Nesse modelo, cada equipe multidisciplinar passa a ser responsável de ponta a ponta
pelos seus próprios produtos de dados, incorporando desde a definição de requisitos de negócio
até a entrega para consumo. Na prática, isso significa que o mesmo time que antes limitava-se à
sustentação de seus sistemas operacionais, ou que atuava apenas como consumidor de relatórios
e dashboards, agora assume a responsabilidade integral pelo pipeline completo: coleta na fonte,
transformação e integração, e disponibilização final em camadas especializadas. Essa mudança
não é apenas técnica, mas cultural. Exige que os domínios incorporem práticas de qualidade,
versionamento e documentação, tratando os dados com o mesmo rigor aplicado a produtos de
software. Com isso, o modelo busca alinhar os dados diretamente às necessidades específicas
de cada domínio, promovendo maior agilidade, escalabilidade e clareza de responsabilidades
na produção e no consumo de dados.

Figura 2.3: Decomposição orientada por resultados no Data Mesh: cada domínio opera seu
pipeline ponta a ponta com autonomia. Fonte: Dehghani (DEHGHANI, 2022).

O terceiro pilar, denominado plataforma de dados de autosserviço, complementa esse ar-
ranjo organizacional e garante que a autonomia dos domínios seja factível. Nesse pilar, a equipe
de plataforma (platform team) assume a responsabilidade por prover a infraestrutura comum,
normalmente baseada em ambientes de nuvem, capaz de padronizar funções essenciais como
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armazenamento escalável, processamento distribuído, versionamento de dados, catálogos de
metadados, monitoramento e segurança, conforme ilustrado na Figura 2.4. Essa camada de
autosserviço funciona como um alicerce compartilhado que reduz a complexidade técnica da
descentralização, permitindo que equipes de negócio foquem no valor dos dados e não na ma-
nutenção da infraestrutura. Além disso, elimina a dependência de equipes centrais para tarefas
básicas, viabilizando que cada domínio projete, publique e mantenha seus fluxos de dados com
maior independência. Ao reduzir gargalos históricos de comunicação e coordenação, esse pilar
transforma a descentralização em prática sustentável, assegurando que a escalabilidade organi-
zacional em larga escala seja alcançada sem abrir mão de governança e confiabilidade.

Figura 2.4: Plataforma de autosserviço: infraestrutura comum (armazenamento, processa-
mento, catálogo, segurança) para os domínios. Adaptado de Dehghani (DEHGHANI, 2022).

Na prática, diferentes provedores de nuvem já oferecem recursos que materializam esse
pilar. O caso da Amazon Web Services (AWS) ilustra bem essa aplicação: como resumido
na Tabela 2.1 e ilustrado na Figura 2.5, serviços da AWS oferecem desde armazenamento
e processamento até descoberta, governança e aprendizado de máquina, permitindo que os
domínios atuem simultaneamente como produtores e consumidores de dados. Em conjunto,
esses serviços mitigam parte dos riscos associados à descentralização, ao fornecer uma camada
comum que promove interoperabilidade e consistência entre os domínios, sem comprometer
sua autonomia1 .

1S. Teles, Data Mesh: indo além do Data Lake e Data Warehouse, Blog da comunidade Data Hackers, 2021.
Disponível em: <https://medium.com>. Acesso em: 6 out. 2025.

https://medium.com
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Figura 2.5: Exemplo AWS do pilar de plataforma: Glue, DynamoDB e Lake Formation como
autosserviço para domínios. Fonte: Teles

Tabela 2.1: Serviços da AWS aplicados ao pilar de plataforma de autosserviço no Data Mesh.

Serviço Descrição resumida Contribuição ao Data Mesh
Amazon S3 Armazenamento de objetos escalável e distribuído. Camada base para persistência e compartilhamento de dados entre domínios.

CloudFormation Infraestrutura como código (IaC). Automatiza a criação de ambientes padronizados entre domínios.

Athena Consulta interativa em dados no S3 via SQL. Facilita o consumo direto de dados sem movimentação entre sistemas.

Crawler Varredura e catalogação automática de dados. Detecta esquemas e metadados, promovendo descoberta e integração.

AWS Glue Serviço de ETL gerenciado. Orquestra pipelines e integrações entre domínios.

Neptune Banco de grafos gerenciado. Representa relações e dependências entre produtos de dados.

DynamoDB Banco NoSQL de baixa latência. Suporta aplicações e catálogos distribuídos de dados.

DataBrew Ferramenta visual de preparação de dados. Permite limpeza e transformação por equipes de negócio.

Elasticsearch (OpenSearch) Motor de busca e análise. Facilita indexação e descoberta de produtos de dados.

SageMaker Plataforma de aprendizado de máquina. Permite criação e publicação de modelos de ML como produtos de dados.

O quarto pilar, denominado governança federada computacional, busca responder a um dos
maiores desafios do Data Mesh: como manter coerência e confiabilidade em um cenário no qual
múltiplos domínios atuam de forma autônoma. Em arquiteturas descentralizadas, a liberdade
de cada domínio para modelar e operar seus produtos pode levar à fragmentação semântica, à
duplicação de métricas e à inconsistência na definição de regras de negócio. Por exemplo, o
conceito de "cliente"pode ser calculado de forma distinta por dois domínios, resultando em re-
latórios divergentes e em decisões estratégicas baseadas em visões incompatíveis. Para mitigar
esse risco, como mostrado na Figura 2.6, a governança federada estabelece um mecanismo de
coordenação no qual representantes de diferentes domínios definem, de forma colaborativa e
automatizada, políticas globais de nomenclatura, qualidade, segurança, acesso e conformidade
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regulatória. Assim, cada domínio preserva sua autonomia operacional, mas dentro de um con-
junto comum de diretrizes que garantem interoperabilidade e confiança nos dados em escala
organizacional.

Figura 2.6: Pilar de governança federada no Data Mesh: representantes de diferentes domí-
nios colaboram para definir e automatizar políticas globais de dados (qualidade, segurança,
nomenclatura e compliance), garantindo interoperabilidade sem comprometer a autonomia lo-
cal. Fonte: Adaptada de Dehghani (DEHGHANI, 2022).

Apesar de sua proposta inovadora e dos avanços proporcionados pelos quatro pilares, a im-
plementação prática do Data Mesh ainda enfrenta desafios substanciais, tanto técnicos quanto
organizacionais. Entre eles, destacam-se a dificuldade de padronizar processos entre domínios
heterogêneos, a necessidade de maturidade tecnológica para garantir autonomia com respon-
sabilidade e o alto custo de manutenção de múltiplos pipelines independentes. Cada domínio
passa a definir suas próprias estruturas de dados, regras de negócio e modelos de transformação,
o que, embora promova flexibilidade e velocidade, também aumenta o risco de fragmentação
semântica, inconsistência de métricas e sobreposição de esforços entre equipes. Em ecossiste-
mas complexos, nos quais dezenas de domínios coexistem, a ausência de mecanismos automá-
ticos de controle e validação interdomínios pode levar à proliferação de tabelas estruturalmente
semelhantes, com nomes e propósitos distintos, mas funções equivalentes, um fenômeno co-
nhecido como redundância estrutural.

Esse tipo de redundância, embora muitas vezes imperceptível em estágios iniciais, tende
a crescer exponencialmente à medida que novos produtos de dados são criados de forma pa-
ralela e autônoma. O resultado é um cenário de governança fragmentada, alto consumo de
recursos computacionais e dificuldade de rastreabilidade entre origens e derivadas de dados,
comprometendo a confiabilidade das análises e a eficiência operacional do ecossistema como
um todo. Assim, o principal problema identificado nesta pesquisa decorre justamente dessa
lacuna: a falta de métodos sistemáticos e escaláveis para detectar, analisar e mitigar redundân-
cias estruturais em arquiteturas distribuídas orientadas a domínios. A seção seguinte (2.1.1)
aprofunda essa discussão, apresentando a visão geral da metodologia proposta para identificar
tais redundâncias com base na modelagem de tabelas como grafos e na aplicação de algoritmos
de isomorfismo estrutural.



2.1 DATA MESH 19

A Figura 2.7 apresenta uma visão simplificada do modelo operacional do Data Mesh, no
qual os domínios de negócio atuam de forma autônoma e responsável na criação de produtos de
dados (data products), impulsionando aplicações digitais orientadas por dados. Cada domínio
conta com equipes multifuncionais, combinando competências de negócio, tecnologia e dados,
capazes de projetar, operar e evoluir seus próprios produtos. Esses dados são compartilhados
em um ambiente centralizado de plataforma, permitindo sua composição e reutilização por ou-
tros domínios. Essa plataforma (self-serve data platform) é operada pelo time de tecnologia
(platform team), que provê serviços técnicos necessários para suportar produção e consumo de
dados com autonomia. Complementando essa estrutura, um mecanismo de governança fede-
rada, com representantes de múltiplos domínios, define e automatiza políticas globais (nomen-
claturas, qualidade, segurança e compliance), assegurando padrões coerentes sem abrir mão
da descentralização operacional. Esse modelo busca equilibrar liberdade local com coerência
organizacional, permitindo escalar a produção e o consumo de dados de forma sustentável.

Figura 2.7: Operação simplificada do Data Mesh: domínios publicam produtos em plataforma
de autosserviço com governança federada. Adaptado de Dehghani (DEHGHANI, 2022).

Assim, o Data Mesh não é apenas uma evolução técnica, mas uma reconfiguração socio-
técnica que realinha o fluxo de dados com a estrutura de domínio da organização, favorecendo
agilidade, qualidade e valor no uso dos dados em larga escala.
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2.1.1 Representação Prática do Data Mesh

Com base nas figuras anteriores, a Figura 2.8 apresenta uma representação simplificada de
uma arquitetura Data Mesh, destacando de forma prática como os domínios de negócio se
organizam. Cada domínio corresponde a uma área específica da organização, como Marketing,
Finanças, Pagamentos e Machine Learning, e assume a responsabilidade integral pelos dados
que produz. Esses domínios deixam de atuar de forma restrita como apenas consumidores
ou produtores e passam a operar como unidades autônomas, responsáveis por criar e manter
seus próprios produtos de dados, além de consumi-los internamente e também acessar dados
disponibilizados por ele e por outros domínios.

No exemplo ilustrado, cada domínio possui tabelas próprias, Marketing com A e B, Finan-
ças com C e D, Pagamentos com E e F, e Machine Learning com G e H. Todas essas tabelas
são disponibilizadas na infraestrutura em Data Mesh, tornando-se acessíveis a outros domí-
nios que delas necessitem. Essa descentralização viabiliza escalabilidade e autonomia, já que
cada área administra seu ciclo de dados de ponta a ponta, desde a coleta até a disponibilização
para consumo, como mostrado na Figura 2.3. Por outro lado, o modelo também evidencia um
risco central desta pesquisa: a possibilidade de redundância estrutural. Diferentes domínios
podem criar tabelas semelhantes, com estruturas quase idênticas e finalidades sobrepostas, sem
que exista um mecanismo de coordenação explícito. Esse cenário compromete a governança,
aumenta os custos de armazenamento e dificulta a rastreabilidade dos dados, problemas que
justificam a necessidade de metodologias específicas para detecção e mitigação dessas redun-
dâncias.

Figura 2.8: Arquitetura Data Mesh simplificada com domínios (A–H) e compartilhamento
distribuído; autonomia pode gerar redundâncias.
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2.1.1.1 Camadas Operacionais em Domínios de Data Mesh: SOR, SOT e SPEC

O modelo de dados em um domínio do Data Mesh são organizados em três camadas principais
que estruturam o fluxo de origem (SOR), transformação (SOT) e consumo de informações
(SPEC) 2. Quando não há padronização ou mecanismos de validação cruzada, essa evolução
pode favorecer o surgimento de estruturas redundantes, um problema ainda pouco discutido em
soluções práticas de Data Mesh. Essa separação permite que cada domínio mantenha clareza
sobre o papel e o estágio de maturidade de seus dados, além de favorecer a interoperabilidade
com outros domínios da organização.

• SOR (System of Record): São os dados brutos capturados diretamente de sistemas ope-
racionais e transacionais, como ERPs, CRMs, sistemas de pagamento ou plataformas de
e-commerce. Por exemplo, o domínio de Pagamentos pode possuir um SOR com todas
as transações realizadas, contendo atributos como ID da compra, valor, data e método
de pagamento. Já o domínio de Marketing pode manter um SOR com os registros de
campanhas, cliques e leads capturados em plataformas digitais. Esses conjuntos repre-
sentam a “fonte do sistema” ou "base bruta"e formam a base do pipeline de dados de
cada domínio.

• SOT (System of Transformation): Nesta camada, os dados brutos são tratados, limpos
e combinados com outras fontes para gerar informações de negócio mais estruturadas.
Continuando o exemplo anterior, o domínio de Pagamentos pode integrar seu SOR de
transações com o SOR de campanhas do domínio de Marketing, produzindo um SOT
que correlaciona campanhas publicitárias com compras efetivadas, revelando a taxa de
conversão por canal. Essa etapa inclui enriquecimentos, validações e junções, sendo
essencial para garantir a coerência e a rastreabilidade entre os dados de origem e os
resultados intermediários.

• SPEC (Specialized Processing Engines): Representa a camada de consumo especiali-
zado, na qual os dados já transformados são utilizados para finalidades analíticas ou
operacionais. No mesmo cenário, o domínio de Machine Learning pode consumir o SOT
gerado por Pagamentos e criar uma tabela SPEC usada em modelos de predição de churn
ou de recomendação de produtos. Da mesma forma, o domínio de Finanças pode usar
um SPEC derivado para gerar relatórios contábeis e dashboards executivos. Essa camada
garante que os dados estejam prontos para uso e expostos como verdadeiros produtos,
confiáveis, versionados e documentados.

Seguindo a modelagem da Figura 2.8, a Figura 2.9 exemplifica o funcionamento dessas
camadas dentro de um Data Mesh. No exemplo visual, os domínios de Marketing e Finanças
geram suas tabelas SOR (B e D), que são consideradas as fontes primárias de dados brutos. O
domínio de Pagamentos, ao consumir essas informações, cria uma tabela SOT (E) enriquecida,
que por sua vez origina uma tabela SPEC (F) voltada a análises avançadas ou uso em APIs de
negócio. Esse fluxo evidencia como os domínios atuam simultaneamente como produtores e

2A. Hashimoto, SoR, SoT e Spec no contexto de Engenharia de Dados, Alura, 2024. Disponível em: <https:
//www.alura.com.br/artigos/sor-sot-spec>. Acesso em: 6 out. 2025.

https://www.alura.com.br/artigos/sor-sot-spec
https://www.alura.com.br/artigos/sor-sot-spec
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consumidores, formando uma rede colaborativa de dados. Cada domínio mantém sua autono-
mia técnica e semântica, mas participa ativamente da construção de valor coletivo dentro da
organização.

Essa estrutura hierárquica de camadas, ao mesmo tempo simples e poderosa, é o que sus-
tenta a modularidade e a escalabilidade do Data Mesh. Contudo, ela também reforça um dos
desafios centrais desta pesquisa: quando múltiplos domínios criam suas próprias camadas SOR,
SOT e SPEC sem uma visão global consolidada, surgem redundâncias estruturais, diferentes
tabelas com esquemas semelhantes e propósitos sobrepostos, que podem comprometer a efici-
ência e a governança do ecossistema de dados.

Figura 2.9: Camadas SOR, SOT e SPEC: produção, transformação e consumo distribuídos
entre domínios.

2.1.1.2 Redundância Estrutural: Um Problema Emergente

A autonomia conferida pelo Data Mesh permite que cada domínio desenvolva seus próprios pi-
pelines de dados de forma independente, respondendo com agilidade às demandas específicas
de negócio. Esse princípio, embora essencial para a escalabilidade organizacional, traz con-
sigo um desafio crescente: a ausência de mecanismos de coordenação e visibilidade entre os
domínios pode levar à criação de ativos redundantes, especialmente tabelas que compartilham
estrutura, semântica e propósito semelhantes, mas são construídas de maneira isolada 3 .

Em um cenário típico, diferentes equipes acessam as mesmas fontes de dados, recriando

3S. Teles, Data Mesh: indo além do Data Lake e Data Warehouse, Blog da comunidade Data Hackers, 2021.
Disponível em: <https://medium.com>. Acesso em: 6 out. 2025.

https://medium.com
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processos de transformação e modelagem que já existem em outros domínios. Essa duplica-
ção não é fruto de descuido técnico, mas de um efeito colateral natural da descentralização,
onde cada domínio, buscando autonomia e velocidade, tende a reproduzir soluções que aten-
dem a problemas locais, sem conhecimento das implementações já existentes em outras áreas.
A ausência de catálogos de metadados consolidados, políticas de interoperabilidade ou valida-
ções automáticas entre domínios amplifica esse fenômeno, que se torna progressivamente mais
difícil de detectar à medida que o ecossistema de dados cresce.

Essa redundância estrutural afeta diretamente a governança e a qualidade das informações,
elevando custos de armazenamento e processamento, além de introduzir riscos de inconsistên-
cia semântica entre tabelas que deveriam representar o mesmo conceito (JI et al., 2012). Em
muitos casos, diferentes domínios partem das mesmas camadas SOR para gerar SOTs e SPECs
semelhantes, criando múltiplas versões de um mesmo indicador, como “receita líquida”, “nú-
mero de clientes ativos” ou “taxa de conversão”, com lógicas distintas e resultados incongru-
entes. Essa fragmentação compromete a rastreabilidade (data lineage), dificulta auditorias e
reduz a confiabilidade dos produtos de dados corporativos.

A Figura 2.10 exemplifica esse problema. Nela, os domínios de Pagamentos e de Machine
Learning consomem, de forma independente, os mesmos dados brutos provenientes de Marke-
ting e Finanças para construir suas próprias tabelas intermediárias, denominadas SOT E e SOT
G. Embora sigam fluxos técnicos diferentes, ambas possuem estrutura e finalidade semelhantes,
representando análises de desempenho transacional. Esse paralelismo revela uma sobreposição
de esforços e um risco de divergência analítica entre domínios que, teoricamente, deveriam
compartilhar uma visão unificada sobre os mesmos fenômenos de negócio.

Figura 2.10: Redundância estrutural: domínios distintos criam SOTs semelhantes a partir das
mesmas fontes.

A proposta desta dissertação busca enfrentar exatamente esse desafio: identificar e mitigar
estruturas redundantes criadas de forma paralela por diferentes domínios dentro de uma arqui-
tetura Data Mesh. Para isso, adota-se uma abordagem que combina princípios de governança
distribuída com modelagem formal, representando as tabelas como grafos direcionados, como
detalhado na Seção 2.3.4. Essa representação permite capturar, de forma abstrata e compa-
rável, os relacionamentos entre colunas, chaves e dependências, viabilizando a aplicação de
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algoritmos de isomorfismo de subgrafos para detectar padrões estruturais equivalentes, ainda
que nomeados ou organizados de maneiras distintas (PATEL; DHARWA, 2017).

2.2 Fundamentos de Álgebra Linear

A álgebra linear constitui um dos pilares fundamentais para a representação e manipulação de
estruturas relacionais e topológicas no âmbito da ciência de dados. Por meio de representações
matriciais e transformações vetoriais, torna-se possível modelar tabelas, fluxos de dados e co-
nexões entre elementos em arquiteturas distribuídas, fornecendo uma base matemática sólida
para análises estruturais e inferências computacionais (STOLL, 2020). Esta seção apresenta
os conceitos algébricos necessários para compreender, posteriormente, a modelagem de dados
como grafos e a verificação de equivalências estruturais.

2.2.1 Espaços Vetoriais

Um espaço vetorial é uma estrutura algébrica composta por um conjunto de vetores, sobre
o qual estão definidas operações de adição e multiplicação por escalares (GOODFELLOW;
BENGIO; COURVILLE, 2016). Em Rn, um vetor pode ser representado como uma n-upla
ordenada de números reais:

v⃗ =


v1

v2
...

vn

 , vi ∈ R.

No contexto computacional, vetores são amplamente utilizados para representar variáveis,
atributos, colunas de tabelas ou relações entre objetos. Em uma tabela de dados, por exemplo,
cada linha pode ser vista como um vetor que reúne os valores das colunas correspondentes,
como identificador, tipo, tamanho ou relação com outras tabelas. Essa representação vetorial
permite traduzir estruturas de dados em formas numéricas, manipuláveis por operações mate-
máticas e algoritmos de aprendizado.

2.2.2 Operações com Vetores

A partir dessa representação, torna-se possível aplicar operações algébricas sobre os vetores
que descrevem as entidades de um domínio de dados. Essas operações formam a espinha
dorsal de diversas técnicas e algoritmos de análise estrutural, especialmente quando buscamos
identificar padrões, semelhanças e redundâncias entre tabelas. Duas operações fundamentais
sobre vetores são a adição e a multiplicação por escalar, as quais permitem combinar ou ajustar
proporcionalmente diferentes dimensões de informação.

• Adição de Vetores: Dado dois vetores u⃗, v⃗ ∈ Rn, a operação de adição é realizada ele-
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mento a elemento, resultando em um novo vetor w⃗ ∈ Rn tal que:

u⃗+ v⃗ =


u1 + v1

u2 + v2
...

un + vn


Esta operação é comutativa e associativa, permitindo combinações lineares de vetores de
maneira consistente.

• Multiplicação por Escalar: Seja α ∈ R um escalar e v⃗ ∈ Rn, a multiplicação escalar
resulta em um vetor α v⃗ ∈ Rn cujos elementos são dados por:

α v⃗ =


αv1

αv2
...

αvn


Essa operação estica ou comprime o vetor original dependendo do valor absoluto de α ,
e inverte sua direção se α < 0.

Essas operações básicas (adição e multiplicação por escalar) fundamentam o conceito de
combinação linear, no qual vetores podem ser expressos como somas ponderadas de outros
vetores (GOODFELLOW; BENGIO; COURVILLE, 2016). Na prática, essa propriedade se
manifesta de maneira evidente na multiplicação entre um vetor e uma matriz, tema que será
aprofundado na próxima subseção, em que o resultado corresponde a uma combinação linear
das colunas da matriz, com os coeficientes determinados pelos elementos do vetor multiplicador
(MITRAN, 2023).

2.2.3 Matrizes

Uma matriz é uma extensão natural do conceito de vetor, podendo ser vista como uma estrutura
bidimensional que organiza informações em linhas e colunas. Formalmente, uma matriz A ∈
Rm×n possui m linhas e n colunas, sendo cada elemento ai j um valor real associado à posição
i, j:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...

am1 am2 . . . amn

 .
Diferentemente dos vetores, que representam entidades individuais (como colunas de uma

tabela ou atributos isolados), as matrizes descrevem conjuntos de relações. No contexto desta
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dissertação, elas são utilizadas para codificar estruturas de tabelas e seus relacionamentos, per-
mitindo representar, de forma numérica, como diferentes entidades de um domínio se conectam
entre si. Cada célula de uma matriz pode indicar a presença, ausência ou intensidade de uma
relação, por exemplo, a existência de uma chave estrangeira entre duas tabelas, uma corres-
pondência entre colunas com tipos de dados semelhantes ou uma dependência funcional entre
atributos. Essa capacidade de capturar múltiplas conexões simultaneamente torna as matrizes
o ponto de partida para a modelagem em grafos e para a análise de equivalências estruturais.

Um exemplo prático ajuda a compreender esse conceito. Considere o cenário apresentado
na Figura 2.10, no qual o domínio de Pagamentos constrói uma tabela intermediária SOT E a
partir das fontes SOR B (Marketing) e SOR D (Finanças), representados nas Tabelas 2.2 e 2.3,
resultando posteriormente em uma tabela final SPEC F.

Tabela 2.2: Tabela SOR_B — Domínio de Marketing

id_produto nome_campanha
1 Verão 2025

2 Inverno 2025

3 Black Friday

Tabela 2.3: Tabela SOR_D — Domínio de Finanças

id_produto valor_campanha (R$)
1 1200

2 800

3 1500

... ...

A tabela SOT_E é formada a partir de uma operação de join entre as duas SORs com base
no campo id_produto, consolidando as informações de nome e valor de cada campanha, como
está estruturado na Tabela 2.4. É uma tabela intermediára, conendo apenas um relacionamento,
sem sumarizações ou filtros, mas que já pode ser consumida por completo por outros domínios.

Tabela 2.4: Tabela SOT_E — Domínio de Pagamentos

id_produto nome_campanha valor_campanha (R$)
1 Verão 2025 1200

2 Inverno 2025 800

3 Black Friday 1500

... ... ...
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Por fim, a tabela SPEC_F é derivada da SOT_E por meio de uma transformação analítica,
na qual são calculadas as médias de valor por campanha (tabela 2.5). Essa etapa caracteriza
a camada SPEC, responsável por consolidar informações agregadas e analíticas que servirão
de base para relatórios, dashboards ou modelos preditivos. Nesse caso, a tabela de saída con-
tém apenas as colunas nome_campanha e media_campanha (R$), representando o valor médio
investido em cada campanha de marketing.

Tabela 2.5: Tabela SPEC_F — Domínio de Pagamentos

nome_campanha media_campanha (R$)
Verão 2025 1150,00

Inverno 2025 950,00

Black Friday 1600,00

... ...

De forma matricial, todo o fluxo descrito, desde a combinação das fontes SOR_B e SOR_D
até a formação da tabela analítica SPEC_F, pode ser interpretado como uma sequência de trans-
formações lineares. Cada etapa (join, agregação e cálculo de média) corresponde a uma ope-
ração que transforma um conjunto de entradas em uma nova estrutura derivada, mantendo a
coerência entre as relações de origem e destino.

Nesse contexto, em vez de representar diretamente os valores das tabelas, podemos re-
presentar as dependências entre elas. Considerando as quatro tabelas envolvidas no processo
(SOR_B, SOR_D, SOT_E e SPEC_F), a relação entre elas pode ser codificada por meio de uma
matriz binária, em que o valor 1 indica a existência de uma dependência direta (por exemplo,
quando uma tabela é gerada a partir de outra), e o valor 0 indica ausência de relação.

M =


SOR_B SOR_D SOT_E SPEC_F

SOR_B 0 0 1 0

SOR_D 0 0 1 0

SOT_E 0 0 0 1

SPEC_F 0 0 0 0


Assim, a modelagem matricial dessas relações pode ser expressa como uma matriz de ad-

jacência, que chamaremos de M. Essa matriz sintetiza, em formato numérico, as dependências
entre as tabelas de um domínio. Cada linha de M representa uma tabela de origem (que fornece
dados) e cada coluna representa uma tabela de destino (que consome dados).

Definimos o conjunto de tabelas T = {SOR_B,SOR_D,SOT_E,SPEC_F} e a matriz de
adjacência

M : T ×T →{0,1}, M(i, j) =

{
1, se existe derivação direta de i para j,
0, caso contrário.
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A matriz de adjacência resultante é:

M =


0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 0

 .
A interpretação da matriz M é direta: as entradas M(SOR_B, SOT_E) = 1 e M(SOR_D,

SOT_E) = 1 indicam que a tabela SOT_E é derivada simultaneamente das tabelas SOR_B
e SOR_D. De forma análoga, M(SOT_E, SPEC_F) = 1 representa que a SPEC_F é criada
a partir da SOT_E. As demais posições da matriz mantêm o valor 0, indicando ausência de
dependência direta entre as tabelas correspondentes, ou seja, não há fluxo de dados imediato
entre essas entidades.

Essa representação em forma de matriz sintetiza o comportamento estrutural do fluxo de
dados SOR → SOT → SPEC, permitindo que operações algébricas sejam aplicadas para iden-
tificar padrões, redundâncias e equivalências estruturais. Em outras palavras, essa modelagem
matricial constitui a base conceitual desta dissertação: traduzir a lógica relacional entre tabelas
de um domínio em uma estrutura formal que possa ser analisada matematicamente e, posteri-
ormente, modelada como um grafo.

2.2.4 Operações com Matrizes

As operações matriciais constituem a base da álgebra linear aplicada e permitem descrever, de
forma numérica e estruturada, as dependências entre entidades em um sistema de dados. Cada
operação, adição, multiplicação por escalar e multiplicação entre matrizes, carrega proprieda-
des que tornam possível representar transformações, composições e fluxos de informação entre
tabelas dentro de um domínio do Data Mesh. Formalmente, seja A = (ai j)m×n uma matriz real,
B = (bi j)m×n outra matriz da mesma ordem e k ∈ R um escalar (BOLDRINI et al., 1986), as
principais operações são definidas a seguir.

2.2.4.0.1 Adição e Subtração Duas matrizes de mesma ordem podem ser somadas ou sub-
traídas elemento a elemento:

A+B = (ai j +bi j)m×n, A−B = (ai j −bi j)m×n.

Essa operação permite comparar e combinar relações correspondentes, sendo útil para avaliar
diferenças entre dependências estruturais de dois domínios ou para integrar fluxos semelhantes
de transformação.

2.2.4.0.2 Multiplicação por um Escalar A multiplicação escalar consiste em multiplicar
todos os elementos de uma matriz por um número real k:

kA = (kai j)m×n.

Essa operação altera proporcionalmente a intensidade das relações representadas na matriz,
podendo ser utilizada, por exemplo, para ponderar pesos de influência ou frequência de uso
entre tabelas interligadas.



2.2 FUNDAMENTOS DE ÁLGEBRA LINEAR 29

2.2.4.0.3 Multiplicação de Matrizes Dadas duas matrizes A = (ai j)m×n e B = (b jk)n×p, o
produto C = AB é definido como:

cik =
n

∑
j=1

ai jb jk, para i = 1, . . . ,m e k = 1, . . . , p.

Essa operação combina as relações diretas representadas em A com as de B, revelando conexões
indiretas entre entidades, conceito fundamental na análise de fluxos de dados e na modelagem
de grafos. A multiplicação matricial é associativa e distributiva, mas não comutativa (AB ̸=BA),
o que é particularmente relevante para representar dependências direcionadas.

2.2.4.0.4 Transposição A transposta de uma matriz A = (ai j)m×n é a matriz AT = (a ji)n×m,
obtida pela troca de linhas por colunas:

AT = (a ji)n×m.

Essa operação é útil para reorganizar estruturas, inverter a direção de relações ou comparar
simetrias entre fluxos de dados.

2.2.4.0.5 Determinante O determinante é um número real associado a uma matriz quadrada
que sintetiza, em um único valor, certas propriedades estruturais da matriz. Ele mede o quanto
uma transformação linear representada por essa matriz altera o tamanho ou a escala do espaço
em que atua, funcionando como um indicador de “preservação” ou “colapso” das relações
internas entre variáveis.

Para uma matriz 2×2,

A =

[
a11 a12

a21 a22

]
,

o determinante é calculado por:

det(A) = a11a22 −a12a21.

No caso de uma matriz 3×3,

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,
o determinante é obtido:

det(A) = a11a22a33 +a12a23a31 +a13a21a32 −a13a22a31 −a12a21a33 −a11a23a32.

De modo geral, o cálculo do determinante envolve multiplicações diagonais e suas respecti-
vas subtrações, e seu valor indica o grau de independência entre as linhas ou colunas da matriz.
Quando det(A) ̸= 0, as linhas (ou colunas) são linearmente independentes, e a matriz representa
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uma transformação reversível. Por outro lado, se det(A) = 0, ocorre perda de informação, as
linhas são combinações lineares umas das outras, e a transformação “achata” o espaço em uma
dimensão inferior, tornando impossível recuperar o estado original.

No contexto desta dissertação, o determinante pode ser interpretado como uma medida de
preservação estrutural entre tabelas ou camadas de dados. Por exemplo, em uma matriz que
representa relações entre tabelas (SOR, SOT e SPEC), um determinante não nulo indicaria que
cada conjunto de relações contribui de forma única e independente para o fluxo de dados. Já
um determinante igual a zero sugeriria redundância, isto é, que uma ou mais dependências
são combinações de outras já existentes, o que, em termos práticos, reflete sobreposição de
pipelines ou duplicidade estrutural em um domínio do Data Mesh.

2.2.4.0.6 Matriz Inversa Uma matriz quadrada A ∈ Rn×n é dita inversível quando o seu
determinante é diferente de zero. Nessa condição, existe uma matriz A−1, chamada de inversa
de A, que satisfaz:

AA−1 = A−1A = In.

A matriz inversa tem o papel de desfazer o efeito da transformação realizada por A. Em ou-
tras palavras, se uma matriz representa uma transformação de dados, sua inversa representa o
processo de recuperação, ou reconstrução, das informações originais.

2.2.4.0.7 Matriz Identidade A matriz identidade In é uma matriz quadrada composta por 1s
na diagonal principal e 0s em todas as demais posições:

In =


1 0 . . . 0

0 1 . . . 0
...

... . . . ...

0 0 . . . 1

 .
Ela atua como o elemento neutro da multiplicação matricial, de modo que AIn = InA = A para
qualquer matriz A de dimensão compatível. No contexto deste trabalho, o conceito de iden-
tidade pode ser interpretado como o estado de equilíbrio de um sistema de dados, no qual
nenhuma transformação altera a estrutura original. Essa analogia é útil para compreender ope-
rações reversíveis e a preservação de consistência em pipelines de dados, isto é, quando o fluxo
de transformação pode ser revertido sem perda de informação.

A relação entre a matriz identidade e a inversa é direta: enquanto In representa o ponto de
estabilidade, a inversa A−1 representa o caminho de volta até ele. Formalmente, para o caso de
uma matriz 2×2, a inversa é obtida pela fórmula:

A−1 =
1

det(A)

[
a22 −a12

−a21 a11

]
, onde det(A) = a11a22 −a12a21.

Considere a matriz

A =

[
2 1

1 1

]
.
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O primeiro passo é calcular o seu determinante:

det(A) = a11a22 −a12a21 = 2 ·1−1 ·1 = 2−1 = 1.

Como det(A) ̸= 0, A é inversível. Aplicando a fórmula da inversa, temos:

A−1 =
1

det(A)

[
a22 −a12

−a21 a11

]
=

1
1

[
1 −1

−1 2

]
=

[
1 −1

−1 2

]
.

Para verificar, multiplicamos A por A−1:

AA−1 =

[
2 1

1 1

][
1 −1

−1 2

]
=

[
(2 ·1+1 · (−1)) (2 · (−1)+1 ·2)
(1 ·1+1 · (−1)) (1 · (−1)+1 ·2)

]
=

[
1 0

0 1

]
= I2.

2.2.4.0.8 Cálculo da inversa de uma matriz, regra geral Para uma matriz quadrada A =
(ai j)n×n, a inversa é dada por

A−1 =
1

det(A)
adj(A),

em que adj(A) é a transposta da matriz dos cofatores. Cada cofator Ci j é calculado por

Ci j = (−1)i+ j det(Mi j),

sendo Mi j a submatriz obtida ao eliminar a linha i e a coluna j de A. Se det(A) = 0, a inversa
não existe.

Considere a matriz de adjacência já apresentada na seção 2.2.3

M =


0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 0

 .
O determinante de uma matriz 4×4 pode ser calculado pela expansão de Laplace.

2.2.4.0.9 Expansão de Laplace A expansão de Laplace é um método geral para calcular o
determinante de uma matriz de ordem n≥ 2. Ela consiste em decompor o determinante em uma
soma de produtos entre os elementos de uma linha (ou coluna) e seus respectivos cofatores. O
cofator Ci j de um elemento ai j é dado por:

Ci j = (−1)i+ j det(Mi j),

onde Mi j é a submatriz obtida ao eliminar a linha i e a coluna j da matriz original.
Assim, o determinante de uma matriz A = (ai j)n×n pode ser calculado por:

det(A) =
n

∑
j=1

ai jCi j,
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ou seja, expandindo pela linha i, ou de forma equivalente:

det(A) =
n

∑
i=1

ai jCi j,

ao expandir pela coluna j. Ambas as abordagens produzem o mesmo resultado.
Exemplo. Considere a matriz:

A =

2 1 3

0 4 5

1 0 6

 .
O cálculo do determinante pode ser realizado por meio da expansão de Laplace, que con-

siste em desenvolver o determinante em função de uma linha ou coluna escolhida. Expandindo
pela primeira linha, a fórmula geral é dada por:

det(A) =
3

∑
j=1

a1 j C1 j, com C1 j = (−1)1+ j det(M1 j),

em que M1 j representa a submatriz obtida pela eliminação da linha 1 e da coluna j de A, e C1 j
é o cofator correspondente.

As submatrizes e seus respectivos determinantes são:

M11 =

[
4 5

0 6

]
, det(M11) = (4 ·6−0 ·5) = 24, C11 = (+1) ·24 = 24.

M12 =

[
0 5

1 6

]
, det(M12) = (0 ·6−1 ·5) =−5, C12 = (−1) · (−5) = 5.

M13 =

[
0 4

1 0

]
, det(M13) = (0 ·0−1 ·4) =−4, C13 = (+1) · (−4) =−4.

Substituindo os valores na fórmula da expansão:

det(A) = a11C11 +a12C12 +a13C13,

det(A) = 2(24)+1(5)+3(−4) = 48+5−12 = 41.

Logo, det(A) = 41.
Esse procedimento ilustra o método da expansão de Laplace, aplicável a matrizes de qual-

quer dimensão n, em que o determinante é calculado de forma recursiva a partir dos determi-
nantes de submatrizes de ordem inferior.

Retomando a matriz M

M =


0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 0

 ,
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o objetivo é avaliar sua inversibilidade por meio do determinante.
O determinante de uma matriz 4×4 pode ser calculado pela expansão de Laplace. Expan-

dindo det(M) pela primeira linha (onde apenas o terceiro elemento é não nulo), tem-se:

det(M) = 0 ·C11 +0 ·C12 +1 ·C13 +0 ·C14 =C13,

com C13 = (−1)1+3 det(M13) = (+1)det(M13). A submatriz M13 é obtida removendo a pri-
meira linha e a terceira coluna:

M13 =

0 0 0

0 0 1

0 0 0

 .
O determinante de M13 é zero, pois a matriz possui pelo menos duas linhas nulas e, portanto,
linhas linearmente dependentes:

det(M13) = 0.

Logo,
det(M) = det(M13) = 0.

De forma alternativa, como M é estritamente triangular superior (grafo acíclico), trata-se de
uma matriz nilpotente (Mk = 0 para algum k), o que também implica det(M) = 0.

Em termos simples, “estritamente triangular superior” significa que todos os elementos na
diagonal principal e abaixo dela são zero. Isso ocorre quando conseguimos numerar as tabelas
(ordenamento topológico) de modo que os dados sempre fluam da linha i para uma coluna j
com j > i, isto é, sem ciclos. Já “nilpotente” significa que, ao elevar a matriz a uma certa
potência k, obtemos a matriz nula: Mk = 0. No contexto de matrizes de adjacência, as entradas
de Mk contam quantos caminhos de comprimento k existem entre pares de tabelas; se, para
um k suficientemente grande, não restam caminhos, então Mk = 0, o que caracteriza um grafo
acíclico finito.

Uma matriz nilpotente tem todos os autovalores iguais a zero, e como o determinante é o
produto dos autovalores, segue det(M) = 0. Isso implica que M não é inversível. No nosso
contexto, esse fato tem uma leitura intuitiva: em pipelines acíclicos há agregações e direci-
onamentos de informação, logo a transformação “uma etapa adiante” não é bijetiva, e não é
possível, por uma inversão linear, recuperar de forma única todas as origens a partir dos desti-
nos.

Impacto prático: o determinante nulo sinaliza colapso de volume (perda de graus de liber-
dade), mas não localiza a redundância. Por isso, para detectar onde a duplicidade acontece,
recorremos a ferramentas complementares: (i) potências de M (M2,M3, . . .) para revelar de-
pendências indiretas (alcançabilidade multi-etapas), e (ii) testes de equivalência estrutural por
permutação, como B = PAP⊤, que preservam a estrutura de origens e destinos e permitem
comparar padrões de conexões entre tabelas.

Em resumo prático para este trabalho: det(M) = 0 é esperado em fluxos acíclicos e, por
si só, não prova duplicidade, pois mesmo sem duplicatas o determinante seria zero devido à
triangularidade. A não inversibilidade significa que não conseguimos, por operações lineares,
desfazer o fluxo para recuperar de forma única todas as origens a partir dos destinos, logo a
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estratégia para achar duplicidades precisa observar padrões estruturais, por exemplo, colunas
iguais para duplicidades de destinos (duas SOT recebendo as mesmas entradas) e linhas iguais
para duplicidades de fontes (duas SOR apontando para os mesmos destinos).

Como det(M) = 0, a matriz M não é inversível, isto é, não existe M−1 tal que M M−1 = I4.
Portanto, a matriz M não possui inversa.

Agora, se adicionarmos a SOT_G da Figura 2.10, do domínio de machine learning na matriz
M, teremos a matriz M’ dada por

M′ =



SOR_B SOR_D SOT_E SOT_G SPEC_F

SOR_B 0 0 1 1 0

SOR_D 0 0 1 1 0

SOT_E 0 0 0 0 1

SOT_G 0 0 0 0 0

SPEC_F 0 0 0 0 0


Temos a nova matriz de adjacência M’ dada por

M′ =


0 0 1 1 0

0 0 1 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

 .

Neste caso, o det(M′) = 0, ou seja, há em M′ uma dependência linear global, mas o determi-
nante não indica a localização. Em particular, as colunas 3 e 4 (SOT_E, SOT_G) são idênticas,
pois recebem exatamente as mesmas entradas (SOR_B, SOR_D), indicando equivalência es-
trutural entre SOT_E e SOT_G. Observação: as linhas 1 e 2 (SOR_B, SOR_D) também são
idênticas, refletindo destinos iguais.

O que mudou ao passar de 4× 4 para 5× 5? A matriz continuou representando um grafo
acíclico, portanto permaneceu estritamente triangular superior com diagonal nula, por isso o
determinante continuou igual a zero, algo esperado. Além disso, ao introduzirmos a SOT_G,
criamos deliberadamente uma coluna adicional igual à coluna da SOT_E, tornando visível, nas
próprias colunas 3 e 4, a duplicidade de destinos, isto é, duas SOT geradas pelas mesmas fon-
tes. Em termos de diagnóstico, o tamanho maior da matriz não altera o fato de o determinante
ser zero, mas fornece um “testemunho” observável da duplicidade, pois colunas idênticas lo-
calizam onde está a redundância, e isso pode ser confirmado formalmente por equivalência
estrutural via B = PAP⊤.

2.2.5 Matrizes de Permutação e Interpretação Estrutural

Uma matriz de permutação P∈Rn×n é uma matriz quadrada obtida a partir da matriz identidade
pela troca de linhas (ou colunas). Cada linha e cada coluna contém exatamente um elemento
igual a 1, e todos os demais são 0.
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Formalmente, se In é a matriz identidade de ordem n, então qualquer permutação π dos
índices {1,2, . . . ,n} gera uma matriz de permutação P tal que:

Pi j =

{
1, se j = π(i),
0, caso contrário.

O produto PA reordena as linhas de A, enquanto AP reordena as colunas. Isso ocorre porque
a multiplicação à esquerda por P altera a ordem das linhas de A, ao passo que a multiplicação
à direita altera a ordem das colunas.

Para ilustrar, considere a matriz

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,
e a matriz de permutação

P =

0 1 0

1 0 0

0 0 1

 ,
que troca a primeira e a segunda linhas (ou colunas) da matriz sobre a qual atua.

2.2.5.0.1 Reordenação de linhas (PA): passo a passo Sejam

P =

0 1 0

1 0 0

0 0 1

 e A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
Pela regra padrão de multiplicação matricial, cada elemento do produto é

(PA)i j =
3

∑
k=1

pik ak j.

Como cada linha de P tem exatamente um único 1 e os demais termos iguais a 0, essa soma
reduz-se a selecionar uma única linha de A. Assim, cada linha de PA é uma cópia de alguma
linha de A, determinada pela posição do 1 na linha correspondente de P.

Primeira linha de P: [0 1 0]. Para todo j,

(PA)1 j = 0 ·a1 j +1 ·a2 j +0 ·a3 j = a2 j.

Logo, a 1ª linha de PA é a 2ª linha de A: [a21 a22 a23].
Segunda linha de P: [1 0 0]. Para todo j,

(PA)2 j = 1 ·a1 j +0 ·a2 j +0 ·a3 j = a1 j.
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Logo, a 2ª linha de PA é a 1ª linha de A: [a11 a12 a13].
Terceira linha de P: [0 0 1]. Para todo j,

(PA)3 j = 0 ·a1 j +0 ·a2 j +1 ·a3 j = a3 j.

Logo, a 3ª linha de PA é a 3ª linha de A: [a31 a32 a33].
Um exemplo pontual de elemento (via produto linha-coluna):

(PA)12 =
3

∑
k=1

p1k ak2 = 0 ·a12 +1 ·a22 +0 ·a32 = a22.

Portanto, o produto final é

PA =

a21 a22 a23

a11 a12 a13

a31 a32 a33

 ,
mostrando claramente que P permuta as linhas 1 e 2 de A e mantém a linha 3 inalterada.

2.2.5.0.2 Reordenação de colunas (AP): passo a passo De forma análoga ao caso anterior,
a multiplicação de A à direita por P provoca uma reordenação de colunas. Cada elemento do
produto é obtido por:

(AP)i j =
3

∑
k=1

aik pk j.

Aqui, cada coluna de AP é formada a partir de uma combinação linear das colunas de A, em
que os coeficientes vêm da matriz P. Como cada coluna de P contém exatamente um único
1 e zeros nas demais posições, cada coluna de AP corresponde a uma coluna específica de A,
determinada pela posição do 1 em P.

Dadas:

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , P =

0 1 0

1 0 0

0 0 1

 ,
temos o seguinte raciocínio.

Primeira coluna de P: [0 1 0]T . Logo,

(AP)·,1 = 0 · col1(A)+1 · col2(A)+0 · col3(A) = col2(A).

Portanto, a 1ª coluna de AP é a 2ª coluna de A: [a12,a22,a32]
T .

Segunda coluna de P: [1 0 0]T . Assim,

(AP)·,2 = 1 · col1(A)+0 · col2(A)+0 · col3(A) = col1(A),

isto é, a 2ª coluna de AP é a 1ª coluna de A: [a11,a21,a31]
T .

Terceira coluna de P: [0 0 1]T . Logo,

(AP)·,3 = 0 · col1(A)+0 · col2(A)+1 · col3(A) = col3(A),
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ou seja, a 3ª coluna de AP permanece igual à 3ª de A.
Assim, o produto resultante é:

AP =

a12 a11 a13

a22 a21 a23

a32 a31 a33

 .
Conclui-se que P realiza a troca das colunas 1 e 2 de A, mantendo a coluna 3 inalterada, uma
reordenação horizontal que preserva todas as relações internas entre as linhas.

2.2.5.1 Matrizes Isomorfas

Agora, considere a matriz M′ da Seção 2.2.4 que expressa as relações entre tabelas de diferentes
domínios.

M′ =



SOR_B SOR_D SOT_E SOT_G SPEC_F

SOR_B 0 0 1 1 0

SOR_D 0 0 1 1 0

SOT_E 0 0 0 0 1

SOT_G 0 0 0 0 0

SPEC_F 0 0 0 0 0


.

Dessa matriz completa, podem ser extraídas duas matrizes de interesse:

A=


SOR_B SOR_D SOT_E

SOR_B 0 0 1

SOR_D 0 0 1

SOT_E 0 0 0

 , B=


SOR_B SOR_D SOT_G

SOR_B 0 0 1

SOR_D 0 0 1

SOT_G 0 0 0

 .

As duas matrizes A e B apresentam a mesma estrutura relacional: em ambas, as tabelas
SOR_B e SOR_D funcionam como fontes de dados que alimentam uma terceira tabela (SOT_E
em A e SOT_G em B), sem que existam dependências adicionais. Isso significa que, do ponto
de vista estrutural, SOT_E e SOT_G exercem o mesmo papel dentro do domínio, configurando
uma duplicidade funcional.

Essa equivalência pode ser formalmente verificada por meio de uma matriz de permuta-
ção P. Se existir P tal que B = PA, ou seja, se uma simples reordenação das linhas de A for
capaz de gerar B, conclui-se que ambas as matrizes representam a mesma estrutura lógica de
dependências. Na prática, isso significa que as origens e relações de geração das SOT permane-
cem inalteradas, o que indica que SOT_E e SOT_G exercem funções equivalentes, derivando
das mesmas fontes (SOR_B e SOR_D), caracterizando assim uma duplicidade estrutural no
contexto analisado.
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Por exemplo, se existir uma matriz de permutação P tal que:

P =

0 1 0

1 0 0

0 0 1

 ,
então B = PA reordena as linhas 1 e 2 de A, mantendo inalteradas as relações entre as tabelas de
origem e destino. Esse resultado mostra que, embora os identificadores ou nomes das tabelas
(como SOT_E e SOT_G) possam diferir, a estrutura relacional subjacente é idêntica.

Assim, a existência de uma matriz P que satisfaça B = PA confirma que as duas estrutu-
ras são estruturalmente equivalentes, isto é, B pode ser obtida a partir de A apenas por uma
reordenação de linhas, sem alterar a lógica de dependência entre as tabelas.

Aplicando B = PA, o resultado é:

B =

0 1 0

1 0 0

0 0 1


0 0 1

0 0 1

0 0 0

=

0 0 1

0 0 1

0 0 0

 .
Essa estrutura numérica é idêntica à matriz A. Assim, A e B podem ser considerados dupli-

cados, uma vez que as linhas representam as origens de dados e as colunas os destinos. Mesmo
com a mudança nos rótulos das tabelas, troca da primeira com a segunda linha, a estrutura de
dependência, isto é, as relações de origem e destino, permanece inalterada.

A relação B = PA permite apenas a reordenação das linhas de A, isto é, altera as posições
das origens das relações, mas mantém fixas as colunas (os destinos). Em outras palavras, PA
reorganiza as fontes de dados, mas não ajusta simultaneamente a ordem dos destinos corres-
pondentes, o que pode distorcer a estrutura relacional quando as dependências são simétricas
ou bidirecionais.

Para representar de forma completa uma reordenação estrutural coerente, em que tanto as
origens (linhas) quanto os destinos (colunas) são permutados de maneira consistente, é neces-
sário incluir a multiplicação também à direita pela transposta de P.

Quando apenas PA é aplicado, a operação reordena exclusivamente as linhas de A, modifi-
cando apenas as origens das relações, mas mantendo fixos os destinos. Isso resultaria em uma
transformação assimétrica, alterando a interpretação estrutural do sistema.

Por outro lado, a multiplicação pela transposta P⊤ à direita garante que as colunas (destinos)
sejam reordenadas de forma correspondente às linhas, mantendo a coerência entre as conexões
de origem e destino. Dessa forma, cada permutação de linha é acompanhada pela permutação
equivalente de coluna, preservando o significado relacional entre os elementos.

Assim, a formulação geral que assegura uma reordenação estrutural completa é dada por:

B = PAP⊤.

Nessa operação, P reordena as linhas (origens) e P⊤ reordena as colunas (destinos) de modo
equivalente, garantindo que a estrutura relacional permaneça inalterada, apenas com os rótulos
trocados.



2.2 FUNDAMENTOS DE ÁLGEBRA LINEAR 39

Mantemos B = PA como passo pedagógico, por ser uma forma simples de visualizar a re-
ordenação de linhas antes de apresentar a forma completa B = PAP⊤, que realiza a permutação
coordenada de linhas e colunas.

Em termos práticos, B = PAP⊤ assegura que a estrutura relacional subjacente de A seja
mantida, apenas com os rótulos reorganizados. Essa é justamente a propriedade necessária
para detectar duplicidades estruturais entre tabelas ou domínios, garantindo que duas arquite-
turas distintas compartilhem o mesmo padrão de conexões entre suas entidades (TAKAPOUI;
BOYD, 2016).

Voltando ao exemplo de A e B, A é

A =

0 0 1

0 0 1

0 0 0

 ,
em que as duas primeiras linhas (SOR_B e SOR_D) apontam para a terceira linha (SOT_E).

Definindo a matriz de permutação

P =

0 1 0

1 0 0

0 0 1

 ,
temos

B = PAP⊤.

Como P⊤ = P para a matriz de troca utilizada e A′ = PA, então B = A′P⊤. A primeira
coluna de B é a segunda coluna de A′, a segunda coluna de B é a primeira coluna de A′ e a
terceira coluna de B é a terceira coluna de A′. Neste exemplo, as duas primeiras colunas de A
(e de A′) são nulas e a terceira coluna é [1,1,0]T ; logo, a permutação de colunas não altera o
resultado final.

Calculando, obtém-se:

B =

0 0 1

0 0 1

0 0 0

 .
Nesse caso, o resultado B é estruturalmente idêntico a A. O que ocorreu foi apenas a

troca dos rótulos das entidades SOR_B e SOR_D (linhas e colunas 1 e 2), mas a estrutura de
dependência foi preservada: ambas continuam alimentando a mesma tabela destino (SOT_E).

Esse exemplo mostra que, quando existe uma matriz P tal que B = PAP⊤, podemos afirmar
que A e B são estruturalmente equivalentes. Na prática, isso significa que SOT_E e uma even-
tual SOT_G gerada da mesma forma representam uma duplicidade na arquitetura, pois derivam
das mesmas fontes (SOR_B e SOR_D), apenas com rótulos diferentes.

O objetivo da metodologia proposta nesta dissertação é justamente identificar, de forma sis-
temática, uma matriz de permutação P que satisfaça a igualdade B = PAP⊤. Quando tal matriz
existe, conclui-se que as estruturas A e B são isomorfas, isto é, equivalentes em termos de suas
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origens e destinos, indicando que há uma duplicidade estrutural no Data Mesh. Essa verifi-
cação permite detectar, de forma algébrica, redundâncias entre domínios distintos, garantindo
consistência e otimização na modelagem distribuída de dados.

2.3 Teoria dos Grafos

A teoria dos grafos é um ramo consolidado da matemática discreta que fornece as ferramentas
necessárias para representar, modelar e analisar relações entre objetos. Em ciência de dados
e, especialmente, em arquiteturas distribuídas como Data Mesh como visto na seção 1.1, a
modelagem por grafos permite expressar relações entre tabelas, transformações e dependências
de forma abstrata, formal e computacionalmente tratável (PATEL; DHARWA, 2017).

2.3.1 Definições e Notação

Um grafo direcionado é um par ordenado

G = (V,E),

em que V é um conjunto finito e não vazio de vértices (ou nós) e E ⊆ V ×V é um conjunto
de arestas direcionadas. Quando necessário, admitimos um multigrafo direcionado rotulado e
ponderado, denotado por

G = (V,E, ℓ,w),

No modelo geral, pode-se considerar um multigrafo dirigido rotulado e ponderado, G =
(V,E, ℓ,w), em que ℓ : V ∪E →L anota nós/arestas e w : E →R>0 atribui pesos. Nesta disser-
tação, entretanto, adotamos a forma mínima: grafos dirigidos não rotulados e não ponderados,
isto é, trabalhamos com G = (V,E) sem as funções ℓ e w. Os vértices representam tabelas
(SOR/SOT/SPEC) e cada aresta indica unicamente a existência de uma dependência/transfor-
mação entre duas tabelas, sem tipificação semântica adicional nem peso associado.

Em contextos de modelagem de dados, é possível representar tabelas como vértices e suas
inter-relações, como chaves estrangeiras ou dependências de transformação, por meio de ares-
tas direcionadas (ROY-HUBARA et al., 2017). Nesta dissertação, essa representação é forma-
lizada ao modelar SOR, SOT e SPEC como subconjuntos disjuntos de V , isto é, uma partição
parcial do conjunto de vértices, enquanto E representa o conjunto de dependências entre essas
tabelas. Não assumimos laços (v,v) por padrão, tampouco dependências “de uma tabela em si
mesma”.

Antes de avançarmos para a seção de classes de grafos, retomamos o exemplo M apresen-
tado anteriormente e explicitamos que a Figura 2.10 pode ser representada por um grafo da
forma

G = (V,E),
V = {SOR_B, SOR_D, SOT_E, SPEC_F},
E = {(SOR_B,SOT_E), (SOR_D,SOT_E), (SOT_E,SPEC_F)}.
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Nesse grafo, o conjunto V representa as tabelas envolvidas no fluxo de dados: as tabelas
SOR_B e SOR_D são as fontes de dados (origens), a tabela SOT_E corresponde à camada
intermediária que realiza a transformação, e a tabela SPEC_F representa a camada analítica
de consumo. Já o conjunto E descreve as dependências entre essas tabelas. Por exemplo,
a aresta (SOR_B,SOT_E) indica que existe uma relação direta de derivação entre a tabela
SOR_B e a SOT_E, isto é, SOT_E é gerada a partir dos dados de SOR_B. O mesmo ocorre
para (SOR_D,SOT_E), enquanto a aresta (SOT_E,SPEC_F) representa a transformação final
que produz a tabela analítica. No caso do exemplo M′, tem-se um novo grafo, denotado por
G′, que inclui a tabela SOT_G e, consequentemente, adiciona as arestas (SOR_B,SOT_G) e
(SOR_D,SOT_G).

2.3.2 Classes de Grafos

A diversidade de aplicações dos grafos em engenharia de dados torna essencial compreen-
der suas diferentes classificações, uma vez que cada tipo possui propriedades estruturais que
impactam diretamente a análise, a modelagem e a execução de algoritmos. No escopo desta
dissertação, que lida com a representação de arquiteturas de dados e a identificação de redun-
dâncias estruturais, algumas classes de grafos se destacam de forma especial, como mostrado
na Figura 2.11 (FILHO, 2017).

Figura 2.11: Representações visuais dos principais tipos de grafos utilizados em ciência de
dados. Fonte: (FILHO, 2017)

• Grafo Direcionado: Um grafo orientado pode ser definido como G = (V,E), com E ⊆
V ×V , onde cada aresta possui uma direção (FEOFILOFF; KOHAYAKAWA; WAKA-
BAYASHI, 2011). É amplamente utilizado para representar dependências unilaterais,
como a derivação de dados entre tabelas em pipelines.

• Grafo Não Direcionado: Definido como G = (V,E), com E ⊆ {{u,v} | u,v ∈ V}, ou
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seja, cada aresta representa uma relação simétrica. É comum em redes sociais ou cone-
xões bidirecionais (STEEN, 2010).

• Grafo Direcionado Acíclico (DAG): Um DAG é um grafo orientado G = (V,E) tal que
não contém ciclos, ou seja, não existe qualquer sequência de vértices v1,v2, . . . ,vk com
k > 1 tal que (vi,vi+1) ∈ E para todo i e v1 = vk. Essa ausência de ciclos assegura a
existência de uma ordenação topológica dos vértices, permitindo que tarefas ou trans-
formações associadas a cada nó sejam executadas em sequência lógica sem ambiguidade
ou retroalimentação. Conforme demonstrado em (FEOFILOFF, 2020), essa propriedade
torna os DAGs fundamentais na análise de dependências e no agendamento de tarefas em
sistemas computacionais. Em arquiteturas analíticas modernas, como pipelines de dados
e estruturas de data lineage, os DAGs são amplamente utilizados para garantir rastrea-
bilidade, consistência e controle de fluxo ao longo do ciclo de vida da informação. Em
nosso cenário, não existe uma tabela sendo criada por ela mesma, ou seja, não tem uma
SOR, SOT ou SPEC em que a origem são elas mesmas.

• Grafo Ponderado: Um grafo ponderado é definido como G = (V,E,w), onde w : E →
R+ associa a cada aresta um peso positivo. Em contextos distribuídos, um grafo direci-
onado é dito balanceado quando, para todo vértice vi ∈V , a soma dos pesos das arestas
que chegam em vi é igual à soma dos pesos das arestas que saem de vi. Grafos ponderados
são amplamente empregados em aplicações como roteamento de dados, balanceamento
de carga e sincronização de tarefas em redes de agentes autônomos (RIKOS; HADJI-
COSTIS, 2018).

• Grafo Bipartido: Um grafo bipartido é formalmente definido como G = (U ∪W,E),
onde U e W são conjuntos disjuntos de vértices e E ⊆ U ×W , ou seja, as arestas ocor-
rem exclusivamente entre elementos de U e W , sem conexões internas dentro de cada
conjunto. Essa estrutura é especialmente eficaz para modelar interações entre dois tipos
distintos de entidades. Um exemplo notável de aplicação dessa estrutura está no trabalho
de (SOSA; URREGO-LOPEZ; PRIETO, 2024), que analisaram uma rede bipartida com-
posta por usuários e séries de anime. Utilizando técnicas de análise textual e modelos
exponenciais aleatórios de grafos (ERGMs), os autores demonstraram que a frequência
de certos termos nas descrições das séries influencia diretamente a formação de comuni-
dades entre os usuários. O estudo mostra que descrições com temas como aventura, mú-
sica ou vida estudantil tendem a promover maior conectividade na rede, enquanto tópicos
como ficção científica ou guerra apresentam efeito oposto. Essa abordagem fornece in-
sights relevantes para aprimorar sistemas de recomendação e estratégias de engajamento
em plataformas de entretenimento digital.

• Grafo Rotulado: Um grafo rotulado é formalmente representado como G = (V,E, ℓ),
onde V é o conjunto de vértices, E ⊆V ×V é o conjunto de arestas, e ℓ : V ∪E → L é uma
função que atribui rótulos semânticos a vértices e/ou arestas, sendo L o conjunto de pos-
síveis rótulos. A rotulação permite codificar informações contextuais e semânticas sobre
os elementos do grafo, favorecendo análises mais precisas e inferências automatizadas.
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No contexto de arquiteturas analíticas e data mesh, os rótulos nas arestas podem descre-
ver relações semânticas específicas entre tabelas e transformações, como, por exemplo,
“remuneração” ou “empresa”. Suponha-se que a tabela SOT_A seja derivada das ta-
belas SOR_A e SOR_B. Ao rotular a aresta SOR_A → SOT_A com “remuneração” e
SOR_B → SOT_A com “empresa”, torna-se possível, por meio de mecanismos de busca
semântica, recuperar rapidamente todas as origens envolvidas na geração da informação
presente em SOT_A, a partir de consultas por metadados que envolvam esses conceitos.
Essa abordagem é coerente com as diretrizes discutidas por (HOSEINI; THEISSEN-
LIPP; QUIX, 2024), que destacam a importância da vinculação de metadados a grafos
de conhecimento (Knowledge Graphs).

A correta escolha da estrutura gráfica a ser utilizada não apenas influencia a expressividade
da modelagem, mas também impacta diretamente a complexidade dos algoritmos aplicáveis e
a viabilidade computacional de sua execução. No contexto do Data Mesh, a flexibilidade na
escolha do tipo de grafo é ainda mais crítica, dado que os domínios são autônomos, heterogê-
neos e dinâmicos. Por essa razão, esta dissertação prioriza o uso de grafos direcionados, por
serem os mais aderentes à realidade dos pipelines distribuídos que se busca modelar e otimizar.

Como ressalta Steen em sua introdução à teoria dos grafos, essa distinção é fundamental
para a correta modelagem e análise de redes complexas (STEEN, 2010). Retomando o exemplo
apresentado anteriormente, o grafo resultante da matriz M′ pode ser formalmente classificado
da seguinte forma:

G′ = (V ′,E ′),

V ′ = {SOR_B, SOR_D, SOT_E, SOT_G, SPEC_F},
E ′ = {(SOR_B,SOT_E), (SOR_D,SOT_E),

(SOR_B,SOT_G), (SOR_D,SOT_G), (SOT_E,SPEC_F)}.

Matematicamente, o grafo G′ é um grafo direcionado acíclico (DAG), pois cada aresta
(u,v) ∈ E ′ representa uma dependência orientada entre duas tabelas sem formação de ciclos.
Adicionalmente, trata-se de um grafo não ponderado e não rotulado, já que não há pesos (w)
associados às arestas nem funções de rótulo (ℓ) aplicadas a vértices ou conexões. Por fim, é
possível observar que G′ possui múltiplas arestas distintas saindo das mesmas origens (SOR_B,
SOR_D), o que caracteriza um grafo com fan-out múltiplo, em que uma mesma tabela de
origem alimenta mais de uma transformação (neste caso, SOT_E e SOT_G).

Essa configuração reforça a duplicidade estrutural analisada na Seção 2.2.5.1, evidenciando
como a representação gráfica permite identificar redundâncias formais em arquiteturas de dados
distribuídas.

2.3.3 Representação Computacional de Grafos

Considere o grafo G=(V,E), com vértices V = {v1,v2,v3,v4} e arestas: E = {e1 =(v1,v1), e2 =
(v1,v2), e3 =(v1,v3), e4 =(v3,v4), e5 =(v2,v3), e6 =(v2,v3), e7 =(v4,v4)} como mostrado na
Figura 2.12. Este grafo é direcionado, pois todas as arestas têm uma direção bem definida entre
vértices.
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Figura 2.12: Representação do grafo G = (V,E) com múltiplas arestas e laços.

As representações computacionais clássicas para esse grafo são as seguintes:

• Lista de Adjacência: Cada vértice é associado a uma lista com os vértices que podem
ser alcançados a partir dele por meio de uma aresta direcionada (ou seja, os destinos das
arestas de saída):

– v1 → [v1,v2,v3]

– v2 → [v3,v3]

– v3 → [v4]

– v4 → [v4]

Essa estrutura é eficiente em termos de espaço, especialmente em grafos esparsos, ou
seja, grafos nos quais o número de arestas é significativamente menor que o número
máximo possível de conexões entre os vértices.

• Matriz de Incidência: A matriz M ∈N4×7, com linhas representando vértices e colunas
representando arestas, é dada por:

M =


2 1 1 0 0 0 0

0 1 0 0 1 1 0

0 0 1 1 1 1 0

0 0 0 1 0 0 2


O valor 2 indica um laço (como em e1 e e7). Os valores 1 indicam incidência simples: o
vértice está conectado como origem ou destino daquela aresta.

• Matriz de Adjacência: Representa as conexões entre os vértices de forma matricial:

A =


1 1 1 0

0 0 2 0

0 0 0 1

0 0 0 1


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Nesta notação, Ai j indica a quantidade de arestas direcionadas do vértice vi para o vértice
v j, refletindo explicitamente a orientação das conexões no grafo. Essa forma matricial
é particularmente vantajosa para a aplicação de operações algébricas, além de facilitar a
análise de propriedades estruturais. Por sua expressividade e aplicabilidade, adotaremos
essa representação ao longo desta dissertação.

Voltando ao nosso exemplo M′, apresentado anteriormente, a estrutura de dependências
entre tabelas pode ser expressa por sua matriz de adjacência, denotada por A(M′):

A(M′) =


0 0 1 1 0

0 0 1 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

 .

Formalmente, A(M′) corresponde à representação computacional do grafo G′ = (V ′,E ′),
em que cada linha representa uma tabela de origem (produtora de dados) e cada coluna, uma
tabela de destino (consumidora de dados). O valor A(M′)i j = 1 indica a existência de uma aresta
direcionada de vi para v j, ou seja, uma dependência direta entre as tabelas correspondentes.

Dessa forma, A(M′) sintetiza, em formato matricial, o mesmo conjunto de relações repre-
sentado graficamente, permitindo que operações algébricas e transformações lineares sejam
aplicadas para identificar padrões, redundâncias e equivalências estruturais em arquiteturas de
dados. Essa correspondência entre grafo e matriz reforça o caráter direcionado e acíclico da
estrutura analisada, servindo como base formal para as análises desenvolvidas nas seções se-
guintes.

2.3.4 Subgrafos e Equivalência Estrutural

Em teoria dos grafos, o conceito de subgrafo é fundamental para a análise modular de sistemas
complexos. Um subgrafo consiste em uma parte de um grafo maior, preservando apenas um
subconjunto de seus vértices e as arestas que conectam esses vértices entre si. Formalmente,
um subgrafo G′ = (V ′,E ′) de um grafo G = (V,E) é definido por:

V ′ ⊆V, E ′ ⊆ E ∩ (V ′×V ′).

Ou seja, V ′ contém apenas alguns vértices de V , e E ′ contém todas as arestas que, no grafo
original, conectam pares de vértices pertencentes a V ′. Essa definição garante que o subgrafo
mantenha a coerência estrutural do grafo principal, representando um fragmento funcional-
mente consistente de sua topologia.

A identificação e comparação de subgrafos são operações essenciais em tarefas de análise
estrutural, pois permitem reconhecer módulos, dependências locais e possíveis redundâncias
em arquiteturas complexas. (MESSMER; BUNKE, 2000) propõem, por exemplo, uma técnica
baseada em decomposição hierárquica para detecção eficiente de isomorfismos de subgrafos,
aplicável em cenários de reconhecimento estrutural e otimização de grafos de grande escala.
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Para ilustrar, considere:

G = (V,E), V = {v1,v2,v3,v4}, E = {(v1,v2),(v2,v3),(v3,v4)}.

Um subgrafo possível é:

G′ = (V ′,E ′), V ′ = {v2,v3}, E ′ = {(v2,v3)}.

Esse subgrafo representa uma etapa intermediária dentro de um fluxo maior de transforma-
ções, mantendo apenas a parte relevante da estrutura global, um conceito análogo à extração de
dependências parciais em um pipeline de dados.

A Figura 2.13 ilustra como pipelines compostos por tabelas (SOR, SOT, SPEC) podem ser
representados como vértices de um grafo, em que as transformações entre eles são modela-
das como arestas direcionadas. Essa representação torna explícita a linhagem dos dados e as
relações estruturais entre os componentes da arquitetura.

Figura 2.13: Conversão de uma arquitetura de tabelas para grafo

A Figura 2.14 apresenta a construção resultante do grafo geral, evidenciando subgrafos
embutidos (como X e Y) e destacando a existência de caminhos equivalentes. Essa estrutura
grafo-orientada facilita tanto a visualização quanto a análise algébrica de possíveis duplicidades
na arquitetura.
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Figura 2.14: Grafo resultante da modelagem das tabelas e subgrafos internos

Por fim, a Figura 2.15 apresenta a matriz de adjacência correspondente ao grafo modelado.
Essa matriz é a base para a comparação entre subestruturas por meio de operações algébricas,
como permutações, que permitem identificar equivalências formais entre partes distintas da
arquitetura.

Figura 2.15: Matriz de Adjacência associada ao grafo da arquitetura

Importância para a Detecção de Redundâncias

A matriz de adjacência constitui o elo formal entre a representação gráfica e a análise algébrica
das estruturas de dados. Por meio dela, é possível identificar equivalências estruturais entre
diferentes partes de um grafo, independentemente da ordem dos vértices ou da nomenclatura
adotada em cada domínio. Na prática, essa análise se traduz na detecção de subgrafos isomor-
fos, ou seja, fragmentos da arquitetura que compartilham a mesma estrutura de dependências
entre tabelas.

Retomando o exemplo do grafo G′ e de sua matriz de adjacência A(M′), apresentada an-
teriormente, quando decompomos A(M′) em duas submatrizes, conforme discutido na Se-
ção 2.2.5.1, estamos, na verdade, isolando dois subgrafos do grafo original. Cada submatriz
representa um subconjunto de vértices (tabelas) e as respectivas arestas (dependências) entre
eles, permitindo comparar suas estruturas de derivação de forma independente.

No caso da matriz A(M′):
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A(M′) =


0 0 1 1 0

0 0 1 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

 ,

podemos extrair dois subgrafos principais, correspondentes às estruturas derivadas de SOT_E
e SOT_G:

A1 =

0 0 1

0 0 1

0 0 0

 , A2 =

0 0 1

0 0 1

0 0 0

 .
Ambas as matrizes representam subgrafos equivalentes:

G1 = ({SOR_B,SOR_D,SOT_E},{(SOR_B,SOT_E),(SOR_D,SOT_E)}),

G2 = ({SOR_B,SOR_D,SOT_G},{(SOR_B,SOT_G),(SOR_D,SOT_G)}).

Esses dois subgrafos são estruturalmente idênticos, pois compartilham o mesmo padrão de
dependências. Formalmente, existe uma matriz de permutação P tal que:

A2 = PA1P⊤,

2.3.5 Isomorfismo de Grafos

Dando continuidade ao exemplo anterior, em que verificamos que os subgrafos G1 e G2 deri-
vados de A(M′) possuem a mesma estrutura de dependências, podemos formalizar essa equiva-
lência por meio do conceito de isomorfismo de grafos. O isomorfismo expressa a ideia de que
dois grafos diferentes, em rótulos, nomes ou posições, podem representar exatamente a mesma
estrutura de conectividade.

Formalmente, dois grafos G = (V,E) e G′ = (V ′,E ′) são ditos isomorfos se existe uma
função bijetiva

f : V →V ′

tal que, para todo par de vértices (u,v) ∈ E, a aresta correspondente ( f (u), f (v)) pertence a
E ′. Essa relação garante que a estrutura de conexões é preservada, mesmo quando os vértices
de G e G′ apresentam nomes distintos ou posições diferentes na representação.

No plano matricial, essa condição é expressa pela igualdade

B = PAP⊤,
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em que A e B são as matrizes de adjacência dos grafos G e G′, e P é uma matriz de permu-
tação que representa a reordenação dos vértices segundo a bijeção f . Se tal matriz P existir,
então G e G′ são isomorfos, o que significa que compartilham a mesma topologia interna e as
mesmas relações de dependência.

Essa propriedade foi demonstrada na Seção 2.2.5.1, quando verificamos que as submatri-
zes A1 e A2, correspondentes às tabelas SOT_E e SOT_G, satisfazem a relação A2 = PA1P⊤,
comprovando que ambas representam estruturas equivalentes do ponto de vista estrutural.

Em termos conceituais, o isomorfismo de grafos permite reconhecer quando duas arquite-
turas, ainda que possuam vértices nomeados de maneira diferente, apresentam o mesmo padrão
de relações de dependência e fluxo de dados. No contexto desta dissertação, isso significa que
diferentes domínios da arquitetura Data Mesh podem conter pipelines estruturalmente idênti-
cos, como SOT_E e SOT_G, mesmo que tenham sido desenvolvidos de forma independente.

A verificação de isomorfismo constitui, portanto, o núcleo lógico do método proposto, pois
permite detectar redundâncias estruturais, quantificar equivalências entre pipelines e promo-
ver o reuso de componentes já validados, contribuindo para a otimização e padronização das
arquiteturas distribuídas de dados.

2.3.6 Aplicações Práticas

A teoria dos grafos encontra múltiplas aplicações, particularmente em cenários que envolvem a
modelagem e a compreensão de estruturas relacionais complexas. Uma de suas aplicações mais
comuns ocorre no mapeamento de linhagem de dados, onde grafos direcionados são utilizados
para descrever o fluxo de origem e transformação dos dados ao longo dos pipelines, como
mencionado na seção 2.3.3. Essa abordagem permite rastreabilidade e auditoria precisa, sendo
amplamente adotada em arquiteturas de dados modernas.

Por exemplo, em ambientes de integração de informações, os grafos auxiliam na modela-
gem dos processos de ETL (Extract, Transform, Load), em que os nós representam tabelas, e
as arestas expressam dependências e fluxos de dados entre etapas. Essa representação gráfica
é especialmente valiosa na detecção de gargalos e redundâncias, adotando a identificação de
isomorfismos em subgrafos como estratégia para otimização e deduplicação estrutural (MES-
SMER; BUNKE, 2000).

Outro uso relevante da teoria dos grafos está na organização semântica de bases de conheci-
mento. (ROY-HUBARA et al., 2017), demonstram como grafos podem representar esquemas
de bancos de dados, onde vértices correspondem a entidades e arestas codificam relaciona-
mentos semânticos ou integrações entre atributos. Essa representação gráfica facilita tanto a
modelagem conceitual quanto a navegação por dados complexos.

Por fim, uma aplicação recente que ilustra bem o uso de grafos com redes neurais é a de-
tecção de dados duplicados em bases heterogêneas. (LU et al., 2016) propõem um modelo
baseado em GNN (Graph Neural Networks) que utiliza a topologia do grafo para otimizar a
detecção de registros duplicados. Nesse modelo, os registros são representados como nós, com
arestas indicando similaridades semânticas, e a rede aprende a classificar padrões de duplici-
dade por meio de um processo supervisionado guiado por algoritmos genéticos. A abordagem
mostrou resultados superiores a modelos tradicionais, especialmente em termos de precisão e
robustez frente a inconsistências de sintaxe.
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Em todos esses casos, a modelagem em grafos atua como um recurso estratégico ao propor-
cionar uma visão estruturada e abstrata dos sistemas. Conforme argumenta (NETTO, 2012),
os grafos fornecem uma linguagem matemática de alto poder expressivo, tornando visíveis pa-
drões, relações e dependências que permanecem ocultos em abordagens tabulares tradicionais.
Essa capacidade de representar, comparar e transformar estruturas com precisão formal é es-
pecialmente valiosa em arquiteturas modernas e distribuídas como o Data Mesh, nas quais a
complexidade organizacional dos dados tende a crescer continuamente.

2.4 Algoritmos

A detecção de estruturas redundantes em arquiteturas distribuídas pode ser formalizada como
um problema de isomorfismo de subgrafos como mencionado na seção 2.3. Neste contexto,
diferentes algoritmos podem ser aplicados para identificar se duas estruturas distintas represen-
tam essencialmente a mesma topologia de dados. Para simplificação, esta dissertação avalia
três abordagens: uma exata, uma heurística e uma baseada em aprendizado de máquina.

2.4.1 VF2: Algoritmo Exato de Isomorfismo

O algoritmo VF2, proposto por (CORDELLA et al., 2004), é um dos métodos exatos mais
eficientes e reconhecidos na detecção de isomorfismo e subisomorfismo de grafos. Seu objetivo
é identificar, dados dois grafos direcionados G1 = (N1,E1) e G2 = (N2,E2), se existe uma
função de mapeamento entre os nós de G1 e os de G2, preservando suas conexões e, quando
especificado, seus rótulos e atributos.

Em termos formais, o algoritmo busca uma função de correspondência M : N1 → N2 tal
que, para todo par de nós (ni,n j) ∈ E1, a imagem (M(ni),M(n j)) ∈ E2, garantindo assim que a
estrutura do grafo G1 esteja contida em G2 (subisomorfismo) ou seja estruturalmente idêntica
a ele (isomorfismo total).

Para alcançar esse objetivo, o VF2 constrói o mapeamento passo a passo por meio de uma
representação por espaço de estados. Cada estado parcial s é uma configuração atual da busca,
representando um subconjunto do mapeamento total M(s) ⊆ N1 ×N2. A cada nova expansão
do estado, um novo par (n,m) é adicionado ao mapeamento, com n ∈ N1 e m ∈ N2, desde que
ainda não tenham sido utilizados.

A função que decide se um par (n,m) pode ser adicionado é chamada de função de viabili-
dade:

F(s,n,m) = Festrutural(s,n,m)∧Fsemântica(s,n,m)

A primeira condição, Festrutural, verifica se o par respeita as conexões dos grafos: se os
predecessores e sucessores de n já mapeados têm suas imagens coerentes com os predeces-
sores e sucessores de m. Já Fsemântica valida se os atributos dos nós e arestas envolvidos são
compatíveis, quando disponíveis.

As verificações estruturais incluem regras específicas como:

Rpred(s,n,m)⇔∀n′ ∈ Pred(n),∃m′ ∈ Pred(m) : (n′,m′) ∈ M(s)
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Rsucc(s,n,m)⇔∀n′ ∈ Succ(n),∃m′ ∈ Succ(m) : (n′,m′) ∈ M(s)

Ou seja, para que a expansão do estado seja válida, todo predecessor (ou sucessor) de um
nó em G1 já mapeado deve ter uma correspondência coerente no grafo G2. Isso garante que a
estrutura de conectividade local é preservada no mapeamento parcial em construção.

À medida que esse processo de expansão prossegue , validando passo a passo as conexões,
o algoritmo busca construir uma função de mapeamento M tal que todas as arestas presentes
em G1 sejam correspondidas por arestas equivalentes em G2. Quando isso é alcançado e todos
os nós de G1 foram emparelhados com nós de G2 (no caso de isomorfismo total), ou um sub-
conjunto representativo foi mapeado (no caso de subisomorfismo), pode-se afirmar que G1 e
G2 são isomorfos.

Formalmente, isso equivale a dizer que existe uma matriz de permutação P tal que:

B = PAPT

onde A e B são as matrizes de adjacência dos grafos G1 e G2, respectivamente. Essa equi-
valência matricial confirma que os dois grafos compartilham a mesma estrutura, ainda que os
rótulos dos nós sejam diferentes. Dessa forma, o algoritmo VF2 traduz a tarefa de identificação
de isomorfismo em uma sequência de verificações estruturais e semânticas que convergem para
um mapeamento globalmente consistente.

Considere os seguintes grafos direcionados simples:

• G1 = (N1,B1), onde N1 = {A,B,C} e B1 = {(A,B),(B,C)}

• G2 = (N2,B2), onde N2 = {X ,Y,Z} e B2 = {(X ,Y ),(Y,Z)}

O algoritmo VF2 tentará construir um mapeamento entre os nós de G1 e G2, de modo a
preservar a estrutura de adjacência. Um possível mapeamento válido seria:

M = {(A 7→ X),(B 7→ Y ),(C 7→ Z)}

Verificamos que:
- (A,B) ∈ B1 ⇒ (X ,Y ) ∈ B2; - (B,C) ∈ B1 ⇒ (Y,Z) ∈ B2.
Ou seja, todas as conexões entre os nós de G1 são preservadas na imagem correspondente

em G2, o que satisfaz a condição de compatibilidade estrutural. Admitindo-se compatibilidade
entre os atributos dos nós e das arestas também sejam compatíveis (compatibilidade semântica),
o VF2 concluirá corretamente que G1 e G2 são isomorfos.

(CORDELLA et al., 2004) testaram o VF2 em aplicações reais de reconhecimento gráfico,
como o processamento de plantas técnicas, símbolos em desenhos CAD e mapas cadastrais.
Nessas aplicações, o algoritmo superou o desempenho de outras abordagens. Essa vantagem
decorre do uso eficiente de memória e filtragem que tornam o VF2 particularmente adequado
para tarefas de verificação final em sistemas complexos e com grande número de vértices.
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2.4.2 Node Match: Filtro Estrutural Inicial por Equivalência de I/O

O algoritmo Node Match, desenvolvido nesta dissertação e baseado nos estudos de (ZENG et
al., 2009) e (DU; CAO, 2017), tem como objetivo realizar uma filtragem inicial eficiente entre
subgrafos, selecionando apenas aqueles que compartilham características externas compatíveis.
Ao contrário de métodos exaustivos, como o VF2, o Node Match não explora o espaço completo
de mapeamentos possíveis. Em vez disso, opera como um mecanismo de pré-seleção baseado
na estrutura superficial dos grafos, especialmente seus pontos de entrada e saída.

Sejam dois subgrafos direcionados G1 = (V1,E1) e G2 = (V2,E2). O algoritmo Node Match
inicia identificando os nós com grau de entrada igual a zero, isto é, vértices que não recebem
arestas de outros nós, e os nós com grau de saída igual a zero, ou seja, aqueles dos quais não
partem arestas. Esses conjuntos representam, respectivamente, os pontos de entrada e saída de
cada subgrafo:

In(G) = {v ∈V | deg−(v) = 0}, Out(G) = {v ∈V | deg+(v) = 0}

A etapa de filtragem estrutural verifica se os dois subgrafos compartilham o mesmo nú-
mero de nós de entrada e de saída, uma condição necessária (ainda que não suficiente) para a
equivalência estrutural:

|In(G1)|= |In(G2)| e |Out(G1)|= |Out(G2)|

Essa equivalência superficial permite descartar, de forma eficiente, pares de subgrafos es-
truturalmente incompatíveis logo nas primeiras etapas, evitando a execução desnecessária de
algoritmos exatos de isomorfismo em casos inviáveis.

Além disso, são comparadas os rótulos ou nomes dos nós de entrada e saída. Caso os sub-
grafos apresentem esse padrão de conectividade semelhante, em termos de direção e quantidade
de vértices de entrada e saída, são considerados potenciais equivalentes.

Apenas os subgrafos que atendem a essas condições são encaminhados para a etapa de
verificação completa com o algoritmo VF2. Dessa forma, o Node Match atua como um filtro
seletivo, descartando antecipadamente comparações entre estruturas incompatíveis e reduzindo
significativamente o espaço de busca.

Considere os seguintes grafos direcionados que representam pipelines de processamento de
dados:

• Grafo GA = (VA,EA): onde VA = {T1,T2,T3} e EA = {(T1,T2),(T2,T3)};

• Grafo GB = (VB,EB): onde VB = {S1,S2,S3} e EB = {(S1,S2),(S2,S3)}.

Ambos os grafos possuem:

1. Um único nó de entrada: T1 em GA e S1 em GB, ambos com grau de entrada igual a zero;

2. Um único nó de saída: T3 em GA e S3 em GB, ambos com grau de saída igual a zero;

3. Três vértices dispostos de forma linear, com dois arcos direcionados que formam uma
cadeia sequencial.
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Se houver compatibilidade entre os rótulos dos vértices ℓ(Ti) = ℓ(Si) para i = 1,2,3, o al-
goritmo Node Match identifica os dois grafos como estruturalmente equivalentes. Isso permite,
então, aplicar o algoritmo VF2 para a verificação detalhada de isomorfismo entre GA e GB, bus-
cando confirmar que existe uma bijeção entre VA e VB que preserva a estrutura de conectividade
e os rótulos das arestas.

Com isso, o algoritmo contribui diretamente para a escalabilidade da solução proposta,
concentrando o esforço computacional apenas nos casos mais promissores.

2.4.3 Redes Neurais em Grafos (GNN

Este trabalho explora, como alternativa às abordagens clássicas de detecção de isomorfismos
(baseadas em busca exaustiva ou heurísticas fixas), o uso de Graph Neural Networks (GNNs),
redes neurais projetadas para operar diretamente sobre grafos. Ao invés de aplicar regras deter-
minísticas para avaliar similaridade estrutural, o modelo baseado em GNN aprende, por meio
de exemplos rotulados, a reconhecer padrões isomórficos mesmo diante de pequenas variações
topológicas (LU et al., 2016).

Uma GNN é uma arquitetura de rede neural projetada para operar diretamente sobre gra-
fos. Seu funcionamento consiste em aprender uma representação vetorial para cada vértice,
chamada de embedding, com base na estrutura local do grafo. O processo ocorre de forma ite-
rativa: em cada camada da rede, cada nó atualiza sua representação combinando suas próprias
informações com as de seus vizinhos imediatos. Essa atualização é realizada por uma função
de agregação seguida de uma transformação não linear, denominada função de ativação (como
ReLU ou tanh), aplicada dentro de camadas ocultas da rede, como mostrado na Figura 2.16.
Ao longo das camadas, a GNN captura padrões estruturais de forma progressiva, acumulando
contexto: a primeira camada enxerga a vizinhança direta, a segunda vê vizinhos dos vizinhos,
e assim por diante4.

Figura 2.16: Estrutura simplificada de uma GNN. Fonte: Gillis

Neste trabalho, a arquitetura implementada é baseada no modelo Graph Isomorphism Network
(GIN), derivada da GNN, proposto por (XU et al., 2019), que se destaca por sua expressividade

4A. S. Gillis, What are graph neural networks (GNNs)?, TechTarget / The AI Summer, 2024. Disponível em:
<https://theaisummer.com/Graph_Neural_Networks/>. Acesso em: 23 jul. 2025.

https://theaisummer.com/Graph_Neural_Networks/
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teórica. A escolha do GIN se justifica por seu desempenho superior em tarefas de comparação
estrutural e sua capacidade de generalização.

Seja um grafo direcionado G= (V,E), onde V é o conjunto de vértices (ou nós) e E ⊆V ×V
representa o conjunto de arestas (ligações entre os nós). Em arquiteturas neurais baseadas em
grafos, cada vértice v∈V é inicialmente representado por um vetor denso de atributos h(0)v ∈Rd ,
chamado de embedding inicial.

No presente trabalho, para simplificação, assumimos que os vértices não possuem atributos
semânticos explícitos, como tipo de dado, nome de tabela ou função na arquitetura. Diante
disso, todos os nós recebem o mesmo vetor inicial constante:

h(0)v = 1 ∈ Rd, ∀v ∈V

onde 1 denota um vetor em Rd cujas d componentes são iguais a 1. Essa estratégia tem
um propósito específico: forçar o modelo a aprender exclusivamente a partir da topologia do
grafo, ou seja, das conexões entre os nós, já que o conteúdo de cada nó individualmente é
indistinguível dos demais na etapa inicial.

Caso os nós tivessem atributos semânticos relevantes, o vetor h(0)v poderia ser definido com
base neles, o que permitiria à rede neural combinar tanto a estrutura do grafo quanto a semân-
tica local de cada vértice. No entanto, ao nivelar os vetores iniciais, o aprendizado torna-se
totalmente dependente da propagação estrutural, o que é particularmente adequado para tarefas
de verificação de isomorfismo estrutural.

A atualização dos embeddings ao longo das camadas da rede segue o modelo do Graph
Isomorphism Network (GIN), proposto por (XU et al., 2019). A fórmula de propagação é
definida como:

h(l+1)
v = MLP(l)

(
(1+ ε

(l)) ·h(l)v + ∑
u∈N (v)

h(l)u

)
(2.1)

onde:

• h(l)v ∈ Rd é o embedding do nó v na camada l;

• N (v) representa o conjunto de vizinhos imediatos de v;

• ε(l) ∈ R é um parâmetro (fixo ou treinável) que regula o peso da contribuição do próprio
nó em relação à soma dos vizinhos;

• MLP(l) : Rd → Rd é uma rede neural chamada Multi-Layer Perceptron, composta por
camadas totalmente conectadas com ativação não-linear, que transforma a soma agregada
em uma nova representação vetorial.

Nas redes neurais aplicadas a grafos (GNNs), cada nó é representado por um vetor (embed-
ding) que é atualizado a partir das informações de sua vizinhança. Esse processo de atualização
ocorre por meio de um mecanismo chamado agregação, responsável por coletar os embeddings
dos nós vizinhos e combiná-los com o embedding atual do nó central. No caso do Graph
Isomorphism Network (GIN), essa operação segue dois passos principais:
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1. Agregação Local: realiza-se a soma dos embeddings dos vizinhos ∑u∈N (v) h(l)u , adici-

onando também a representação do próprio nó, ponderada por um fator (1+ ε(l)) · h(l)v ,
onde ε(l) é um parâmetro treinável (ou fixo).

2. Transformação Não-Linear: o resultado dessa soma é então passado por uma MLP
(Multi-Layer Perceptron), que aprende uma nova representação vetorial para o nó, incor-
porando de forma não-linear as informações estruturais da vizinhança.

Diferentemente de outras arquiteturas de GNN que utilizam médias normalizadas, o GIN
utiliza a soma pura como mecanismo de agregação. Essa abordagem foi fundamentada teorica-
mente por (XU et al., 2019), que demonstraram que a soma possui maior capacidade expressiva
para distinguir diferentes estruturas de vizinhança. Isso significa que mesmo grafos com topo-
logias sutilmente distintas podem ser diferenciados com maior precisão, o que torna o GIN
especialmente eficaz em tarefas de detecção de isomorfismo estrutural em grafos. Combinado
à aplicação de uma MLP com função de ativação não-linear, como a ReLU, o GIN consegue
produzir embeddings com alto poder discriminativo.

Ao final de K camadas de propagação, cada nó v ∈ V terá acumulado informações estru-
turais de até K passos de vizinhança, representadas no vetor h(K)

v . Para transformar todos os
embeddings nodais em uma representação única para o grafo como um todo, é aplicada uma
operação de agregação global:

zG = ∑
v∈V

h(K)
v (2.2)

Esse vetor zG ∈ Rd é chamado de embedding global do grafo, e atua como um resumo
vetorial da topologia completa de G.

Para a classificação do isomorfismo entre estes grafos, dado dois subgrafos G1 e G2, repre-
sentados pelos embeddings globais z1 e z2, a tarefa de verificação de isomorfismo estrutural
é modelada como uma classificação binária. Para isso, os dois vetores são concatenados e
processados por uma camada linear com ativação sigmoide:

ŷ = σ (W · [z1∥z2]+b) (2.3)

onde:

• [z1∥z2] ∈ R2d é a concatenação dos embeddings dos subgrafos;

• W ∈ R1×2d e b ∈ R são os parâmetros do classificador denso;

• σ(·) é a função sigmoide, que retorna a probabilidade estimada de que G1 ∼= G2.

O modelo é treinado supervisionadamente a partir de pares de subgrafos previamente rotu-
lados: pares positivos (y = 1) indicam estruturas isomórficas, enquanto pares negativos (y = 0)
correspondem a subgrafos estruturalmente distintos. Durante a etapa de inferência, a saída do
classificador corresponde a uma probabilidade, sobre a qual se aplica um limiar (threshold)
para decidir se o par deve ser considerado equivalente.
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Em síntese, o GNN opera como um mecanismo de predição aprendida, capaz de identificar
similaridades estruturais com maior flexibilidade que os métodos tradicionais. Embora não
substitua algoritmos formais, sua capacidade de generalização o torna particularmente valioso
em ambientes Data Mesh complexos, onde a escalabilidade, a adaptabilidade e a eficiência são
fatores críticos para a governança de dados automatizada.

2.4.4 Comparação Geral dos Algoritmos

Para orientar a seleção do modelo mais apropriado conforme o contexto, complexidade de
dados, acurácia e desempenho, organizamos os critérios-chave em um quadro sintético. A
Tabela 2.6 sintetiza essas dimensões, facilitando a interpretação dos papéis complementares de
cada abordagem na pipeline de detecção de isomorfismos.

Tabela 2.6: Comparativo entre os algoritmos de isomorfismo.

Critério VF2 Node Match GNN
Tipo Exato Híbrido Aprendizado Supervisionado

Complexidade Baixa Baixa Alta

Acurácia Baixa Baixa Alta

Desempenho Baixo Médio Alto

Uso ideal Validação final Pré-filtragem Predição baseada em histórico

A comparação entre os três algoritmos evidencia a complementaridade entre abordagens
formais, filtragens sintéticas e modelos baseados em aprendizado. O VF2 se destaca por sua
precisão e fundamentação teórica, sendo ideal para etapas finais de verificação onde a garantia
formal de isomorfismo é indispensável. No entanto, seu custo computacional elevado limita
sua aplicação a conjuntos reduzidos de comparações.

Por outro lado, o algoritmo Node Match propõe uma solução mais leve, voltada à pré-
seleção de candidatos com potencial equivalência estrutural. Seu principal mérito reside na
eficiência, pois elimina pares obviamente distintos com base em características sintéticas, como
grau dos nós, atributos e conectividade direta. Porém, por utilizar o VF2 depois dessa filtragem,
seu custo computacional também é limitado a conjuntos de dados maiores.

A GNN, por sua vez, representa uma abordagem moderna e adaptativa, que aprende di-
retamente com os dados (aprendizado supervisionado) como reconhecer padrões isomórficos.
Embora exija um custo computacional mais alto e infraestrutura adequada, ela se mostra al-
tamente eficaz em contextos com grande volume de dados, oferecendo predições rápidas e
escaláveis após o treinamento inicial. Assim, cada técnica assume um papel distinto na pipe-
line metodológica: Node Match como filtro inicial, GNN como acelerador inteligente e VF2
como verificador final.
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2.5 Métricas de Avaliação

A avaliação da eficácia do método proposto baseia-se em três métricas principais: acurácia
(ACC), tempo de execução (ET) e frequência de acertos (Success Frequency - SF). Cada mé-
trica mede um aspecto diferente da performance dos algoritmos aplicados (VF2, Node Match
e GNN), permitindo uma análise equilibrada entre precisão e eficiência computacional.

A avaliação de modelos classificadores supervisionados, como os utilizados nesta disser-
tação para detectar isomorfismo entre subgrafos, é fundamentada na análise da matriz de con-
fusão (HASNAIN et al., 2020). Essa matriz resume o desempenho do modelo ao organizar
os acertos e erros de classificação em quatro categorias: Verdadeiros Positivos (VP), Falsos
Positivos (FP), Verdadeiros Negativos (VN) e Falsos Negativos (FN). A partir dessa estrutura,
derivam-se métricas clássicas da aprendizagem supervisionada:

• Acurácia: proporção de classificações corretas entre todas as tentativas; adequada quando
há equilíbrio entre as classes e serve como métrica geral de desempenho.

• Precisão: proporção de instâncias classificadas como positivas que são de fato positivas;
útil quando o custo de falsos positivos é alto.

• Sensibilidade (ou recall): proporção de positivos reais que foram corretamente identifi-
cados; importante quando se deseja minimizar falsos negativos.

• F1-Score: média harmônica entre precisão e sensibilidade; equilibra os dois extremos em
cenários desbalanceados.

A escolha pela acurácia como métrica principal nesta dissertação se justifica pela neces-
sidade de mensurar o desempenho global de um classificador supervisionado. No entanto,
quando não se dispõe de rótulos ou não se deseja formular o problema como uma tarefa de
classificação binária, torna-se necessário recorrer a noções contínuas ou não supervisionadas
de comparação estrutural.

Nesse contexto, a similaridade entre grafos refere-se ao grau em que duas estruturas com-
partilham padrões topológicos. Em vez de fornecer uma decisão categórica (isomórfico ou não),
essas medidas atribuem um score que quantifica o quanto os grafos são semelhantes, mesmo
que não sejam idênticos. Essa abordagem é útil em identificação de padrões em grandes bases
de grafos.

Diversas técnicas podem ser empregadas para mensurar essa similaridade, incluindo:

• Graph Edit Distance (GED): calcula o custo mínimo necessário para transformar um
grafo em outro por meio de operações básicas (adição, remoção ou substituição de nós e
arestas) (ZENG et al., 2009).

• Alinhamento Estrutural: busca maximizar a correspondência entre subestruturas dos gra-
fos, sendo amplamente utilizado em bioinformática e reconhecimento de padrões (SHA-
RAN; IDEKER, 2006).
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• Kernels de Grafos: projetam os grafos em espaços vetoriais de alta dimensão, utili-
zando funções especiais para medir similaridade em termos de subestruturas recorrentes
(SHERVASHIDZE et al., 2011).

• Métricas Espectrais: comparam os autovalores (espectros) das matrizes associadas aos
grafos (como a de adjacência ou a Laplaciana), assumindo que grafos semelhantes pos-
suem espectros semelhantes (WILSON; ZHU, 2008).

Essas métricas são particularmente úteis em tarefas como clustering de grafos, onde o obje-
tivo é agrupar estruturas similares sem conhecimento prévio de classes, e matching parcial, que
visa identificar sobreposições ou subestruturas comuns entre grafos maiores. Ambas as tarefas
não exigem pares rotulados de grafos isomórficos, operando em contextos exploratórios.

Neste trabalho, o problema foi formulado explicitamente como uma tarefa de classificação
binária, cujo objetivo é prever se dois subgrafos são isomorfos (y = 1) ou não (y = 0) e, além
disso, por simplificação, optou-se por usar a acurácia.

Como fundamento operacional das métricas reportadas, a matriz de confusão organiza acer-
tos e erros em quatro categorias, permitindo visualizar assimetrias entre classes e embasar a
escolha de limiares. A Tabela 2.7 apresenta essa estrutura sobre a qual derivamos a acurácia,
precisão, sensibilidade e F1-Score decritos anteriormente.

Tabela 2.7: Matriz de Confusão para Isomorfismo de Subgrafos.

Classe Real / Predita Não Isomorfo (0) Isomorfo (1)
Não Isomorfo (0) Verdadeiro Negativo (TN) Falso Positivo (FP)

Isomorfo (1) Falso Negativo (FN) Verdadeiro Positivo (TP)

• Verdadeiros Positivos (TP): pares isomorfos corretamente identificados como tal;

• Falsos Positivos (FP): pares não isomorfos classificados incorretamente como isomorfos;

• Falsos Negativos (FN): pares isomorfos classificados incorretamente como não isomor-
fos;

• Verdadeiros Negativos (TN): pares não isomorfos corretamente identificados como tal.

2.5.1 Acurácia (ACC)

Com base na matriz de confusão, define-se a acurácia como a proporção total de classificações
corretas (positivas e negativas) sobre o total de predições feitas:

ACC =
T P+T N

T P+FP+FN +T N
No contexto da identificação de isomorfismo estrutural entre subgrafos, essa métrica indica

a capacidade do algoritmo de distinguir corretamente entre estruturas duplicadas e distintas.
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Uma acurácia elevada sugere que o modelo está realizando uma discriminação eficaz, enquanto
valores baixos indicam presença significativa de erros, sejam falsos positivos (detecção inde-
vida de duplicidade) ou falsos negativos (falha em identificar padrões repetidos).

Essa métrica é particularmente relevante quando decisões de governança e integração de
dados são baseadas nos resultados do classificador, uma vez que erros podem gerar inconsis-
tências analíticas ou redundância operacional.

2.5.2 Tempo de Execução (ET)

O tempo de execução representa o tempo necessário para que o algoritmo percorra todos os
pares de subgrafos e retorne suas predições. É medido em segundos (s) e calculado com base
no tempo total da função de comparação.

ET = t f im − tincio

A métrica ET é essencial para avaliar a viabilidade prática dos algoritmos, sobretudo em
arquiteturas reais com milhares de tabelas distribuídas. Algoritmos com alta acurácia mas
tempo de execução inviável não são apropriados para ambientes produtivos com grande escala.

2.5.3 Success Frequency (SF): Frequência de sucesso

A métrica Success Frequency (SF) foi concebida neste trabalho como uma medida de eficiência
algorítmica que integra duas dimensões críticas da avaliação de modelos: a acurácia e o tempo
de execução. Sua proposta é simples, mas poderosa: quantificar o número de acertos totais pro-
duzidos por segundo de execução. Essa métrica torna-se especialmente relevante no contexto
de arquiteturas distribuídas e escaláveis, como o Data Mesh, em que tanto a qualidade quanto
a velocidade de decisão são vitais.

Seja ACC a acurácia de um algoritmo, definida no intervalo [0,1], e Npares o total de pares
de subgrafos analisados durante o processo. Definindo ET como o tempo total de execução
(em segundos), a Success Frequency (SF) é expressa como:

SF =
ACC ·Npares

ET
Unidade: acertos por segundo (s−1)
A SF pode ser vista como a derivada do número de acertos em relação ao tempo, i.e.,

d(Acertos)
dt , sob a hipótese de execução determinística e tempo contínuo. Ela assume que os

acertos são produzidos uniformemente durante a execução do algoritmo, permitindo uma inter-
pretação em termos de frequência de sucesso temporal.

• Se SF = 2s−1, o algoritmo gera, em média, dois pares corretamente identificados por
segundo.

• Se SF → 0, o algoritmo ou é impreciso, ou extremamente lento, ou ambos.

Ao contrário de métricas clássicas como Acurácia (ACC) ou Tempo (ET ) isoladamente, a
SF permite comparar algoritmos com diferentes comportamentos de execução. Por exemplo:
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• Algoritmo A: ACC = 0.95, ET = 100s, Npares = 1000 resulta em SF = 9.5

• Algoritmo B: ACC = 0.80, ET = 20s, Npares = 1000 resulta em SF = 40

Embora o algoritmo A tenha melhor acurácia, o algoritmo B tem maior eficiência operaci-
onal por segundo, podendo ser mais útil em sistemas com alta demanda em tempo real.

No contexto do Isomera, a SF é utilizada como a principal métrica de escolha entre algorit-
mos:

1. Para cada execução do VF2, Node Match ou GNN, o sistema registra:

• O total de pares avaliados Npares;

• O tempo de execução total ET ;

• O número de acertos confirmados por validação humana Nacertos.

2. Calcula-se a acurácia ACC = Nacertos
Npares

;

3. A SF é então computada automaticamente para todos os cenários e algoritmos testados:

SF =
Nacertos

ET
=

ACC ·Npares

ET

4. Os resultados são organizados em tabelas e visualizações comparativas.

A SF permite à ferramenta Isomera recomendar o algoritmo mais apropriado conforme o
contexto:

• Cenários com pouca complexidade e alta demanda por velocidade: preferir heurísticas
com alta SF mesmo com menor ACC;

• Cenários críticos com alta exigência de precisão: priorizar algoritmos com alta ACC,
mesmo com menor SF;

• Cenários de benchmarking ou análise híbrida: comparar modelos por SF permite avaliar
a capacidade de escalar com qualidade.

A Success Frequency atua como uma métrica integradora, balanceando desempenho com-
putacional com acerto lógico. Ao adotar essa métrica como guia, o método proposto assume um
caráter operacional realista e adaptável, essencial para a maturidade de soluções em ambientes
de dados altamente distribuídos como o Data Mesh.
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Metodologia

Este capítulo apresenta a metodologia desenvolvida para identificar redundâncias estruturais
em arquiteturas baseadas no paradigma Data Mesh, por meio da modelagem dos esquemas
relacionais como grafos direcionados e da aplicação de algoritmos de detecção de isomorfismo
estrutural entre domínios. Cada subseção representa uma etapa da metodologia, organizada
em termos de entradas (dados ou artefatos necessários), ações (operações executadas) e saídas
(resultados produzidos), garantindo clareza na descrição do processo e reprodutibilidade dos
procedimentos.

3.1 Metodologia Proposta

A metodologia proposta tem como propósito identificar e validar redundâncias estruturais em
arquiteturas de dados, por meio de um processo fundamentado em modelagem matemática,
detecção e validação. Embora tenha sido concebida com foco em arquiteturas Data Mesh,
o método é aplicável a qualquer ambiente em que os elementos de uma arquitetura possam
ser modelados como grafos direcionados, incluindo Data Warehouses, Data Lakes e sistemas
híbridos. Em todos esses contextos, as tabelas, relações de transformação e dependências entre
domínios podem ser representadas por vértices e arestas, tornando o processo de identificação
de equivalências estruturais generalizável e reprodutível.

A metodologia foi estruturada para manter um equilíbrio entre rigor teórico e aplicabili-
dade prática, permitindo que arquiteturas complexas sejam analisadas de forma sistemática e
transparente. Ela se apoia em conceitos de álgebra linear e teoria dos grafos, descritos na Se-
ção 2.3.4, e é composta por quatro etapas principais que se interligam de maneira iterativa:
modelagem conceitual da arquitetura, detecção de isomorfismos estruturais, validação supervi-
sionada das duplicidades e consolidação dos resultados. Essa estrutura visa garantir reprodu-
tibilidade, clareza no fluxo de decisão e consistência entre as análises teóricas e os resultados
obtidos empiricamente.

A Figura 3.1 apresenta uma visão geral do processo metodológico proposto, destacando
as quatro etapas centrais e seus fluxos de interação. O diagrama mostra que o processo se
inicia com a modelagem em grafos, a partir de três possíveis origens: a geração randômica de
grafos sintéticos, o uso de arquiteturas reais baseadas no benchmark TPC-DS ou a modelagem
personalizada definida pelo usuário. Em seguida, a metodologia avança para a fase de detecção
de isomorfismo, onde são aplicados diferentes algoritmos (VF2, Node Match e GNN) com o
objetivo de identificar subgrafos estruturalmente equivalentes.

Os resultados dessa detecção são então encaminhados à etapa de validação supervisionada,
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na qual o especialista confirma ou rejeita as correspondências sugeridas pelos algoritmos. Caso
os pares validados não apresentem redundâncias estruturais consistentes, o processo retorna à
etapa de modelagem, ajustando critérios ou parâmetros de geração dos grafos, o que caracteriza
o caráter iterativo do método. Após a validação, realiza-se a avaliação das métricas de desem-
penho (acurácia, tempo de execução e frequência de sucesso), consolidando os resultados e
gerando como produto final um grafo otimizado, sem vértices duplicados, representando uma
arquitetura de dados mais enxuta e consistente.

Essa representação visual (Figura 3.1) sintetiza o ciclo contínuo de refinamento que orienta
a metodologia, destacando a retroalimentação entre as fases e o alinhamento entre análise algo-
rítmica e validação humana. O fluxo apresentado reforça a natureza reprodutível e expansível
do processo, que pode ser aplicado a diferentes tipos de arquitetura de dados, sejam elas Data
Mesh, Data Warehouses ou Data Lakes, desde que suas estruturas possam ser expressas como
grafos direcionados.

Modelagem em
grafos

Detecção de
isomorfismo

Fase de validação

Não Pares isomorfos
validados ?

Avaliação das
métricas

TPC-DS
(Benchmarking)

Modelagem
específicada pelo

usuário

Geração
randômica de

grafos

VF2 Node Math GNN

Entendimento do
sistema

Grafo sem vértices
duplicados

(arquitetura sem
tabelas duplicadas)

Figura 3.1: Fluxo metodológico para detecção e validação de redundâncias estruturais em ar-
quiteturas de dados.
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3.1.1 Entendimento do Sistema

A primeira fase consiste em compreender profundamente o sistema de dados sob análise, identi-
ficando seus domínios, tabelas e fluxos de dependência. Essa etapa é fundamental para garantir
que o processo de detecção e validação ocorra sobre uma representação coerente da arquitetura,
evitando interpretações equivocadas das conexões entre os elementos do sistema.

É ideal que, antes da execução da metodologia, o pesquisador já disponha de um mapea-
mento claro das relações entre as tabelas que deseja estudar, isto é, quais dependem de quais,
quais servem como origem e quais representam transformações intermediárias ou produtos
finais. Quando essa informação não está explicitamente documentada, torna-se necessário rea-
lizar o processo de transformação da arquitetura em um grafo dirigido, atividade que demanda
a identificação manual das tabelas e de suas dependências lógicas. Esse procedimento foi apli-
cado no presente trabalho utilizando o benchmark TPC-DS, que será detalhado na Seção 5,
onde as tabelas foram segmentadas em domínios e classificadas de acordo com os papéis de
origem (SOR), transformação (SOT) e consumo (SPEC).

Essa etapa inicial, portanto, não apenas define o escopo da modelagem como também de-
limita os limites de observação, assegurando que apenas as relações relevantes sejam conside-
radas no grafo resultante. O produto é um mapa conceitual estruturado, que serve como base
formal para a etapa seguinte de modelagem em grafos e posterior aplicação dos algoritmos de
detecção de isomorfismo.

Como perspectiva futura, propõe-se o desenvolvimento de um módulo automatizado para
geração de grafos diretamente a partir de esquemas SQL ou modelos de dados relacionais exis-
tentes. Tal funcionalidade permitiria converter automaticamente as dependências entre tabelas
em representações gráficas, eliminando a necessidade de mapeamento manual e ampliando a
escalabilidade da metodologia em ambientes reais. Embora ainda não implementada nesta dis-
sertação, essa capacidade representa um avanço natural do trabalho e o caminho ideal para
automatizar a fase inicial de compreensão do sistema.

3.1.2 Modelagem em Grafos

Nesta etapa, a arquitetura de dados é convertida em um grafo direcionado G = (V,E), em que
cada vértice v ∈ V representa uma tabela (SOR, SOT, SPEC) e cada aresta e ∈ E representa
uma relação de dependência/transformação entre elas. Em paralelo, é gerada a matriz de adja-
cência A, que codifica as conexões de forma binária e serve de base para as etapas de detecção
e validação. O objetivo é produzir uma representação coerente e verificável, pronta para a
comparação entre subestruturas.
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Tabela 3.1: Entradas, ações e saídas da etapa de modelagem em grafos.

Categoria Descrição

Entradas Mapa conceitual do sistema (domínios, tabelas e relações de de-
pendência); fontes de dados estruturadas (JSON/CSV) ou bench-
mark (ex.: TPC-DS); parâmetros opcionais para geração sinté-
tica (número de domínios, limites de tabelas por domínio e pro-
porção entre SOR, SOT e SPEC); convenções estruturais (DAG
sem ciclos, ausência de auto-laços e consistência na hierarquia
SOR→SOT→SPEC).

Ações Normalização das entradas e padronização dos papéis SOR, SOT
e SPEC; construção do grafo direcionado G = (V,E) utilizando a
biblioteca NetworkX; geração da matriz de adjacência A e dos
dicionários de mapeamento entre vértices e índices; execução de
um procedimento de validação estrutural, que verifica e corrige
inconsistências topológicas.; por fim, os artefatos são persistidos
em JSON/CSV/PNG e disponibilizados para inspeção.

Saídas Grafo direcionado G = (V,E) consistente e pronto para análise;
matriz de adjacência A ∈ {0,1}|V |×|V | com ordenação indexada de
V ; dicionários de mapeamento (índice ↔ tabela); relatório de veri-
ficação estrutural contendo: número total de nós e arestas válidos,
quantidade de anomalias detectadas, tipo de inconsistência e ação
aplicada.

3.1.2.0.1 Entradas. Partem de um mapa conceitual (domínios, tabelas e dependências) e de
uma fonte: arquivos JSON/CSV previamente estruturados, o benchmark TPC-DS, ou uma con-
figuração sintética controlada por parâmetros (domínios e limites mínimo/máximo de tabelas
por domínio, além da proporção SOR/SOT/SPEC). As convenções de nomenclatura asseguram
unicidade e identificação clara do papel de cada tabela.

3.1.2.0.2 Ações. Após normalizar nomes e papéis, o grafo é construído em NetworkX e
sua matriz de adjacência A é gerada com ordenação consistente de V . Em seguida, são executa-
das checagens de sanidade para capturar problemas com a topologia: (i) SPEC sem quaisquer
predecessores (isto é, “criadas do nada”); (ii) SOT sem origem; (iii) SOR com entradas (por
exemplo, uma SOR derivada de outra SOR). Quando a arquitetura é gerada sinteticamente, os
nós/arestas que violam essas regras são removidos automaticamente do grafo final. Quando
a arquitetura é importada, as ocorrências são apenas registradas e exibidas ao usuário, preser-
vando fielmente o insumo original. Por fim, os artefatos são persistidos (JSON/CSV/PNG) e
disponibilizados para inspeção.

3.1.2.0.3 Saídas. O resultado é um grafo G = (V,E) pronto para análise, a matriz de adja-
cência A binária e os dicionários de mapeamento índice↔vértice. Acompanha o conjunto um
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relatório de checagens que detalha cada inconsistência detectada e a ação adotada (remoção
em geração sintética; sinalização em importação), garantindo rastreabilidade e reprodutibili-
dade para as etapas seguintes de detecção e validação.

3.1.3 Detecção de Isomorfismo

A etapa de detecção constitui o núcleo analítico da metodologia, sendo responsável por identi-
ficar subgrafos estruturalmente equivalentes em diferentes partes da arquitetura de dados. Dois
subgrafos G1 = (V1,E1) e G2 = (V2,E2) são considerados isomorfos se existir uma bijeção
f : V1 → V2 tal que, para todo par (u,v), vale a condição (u,v) ∈ E1 ⇒ ( f (u), f (v)) ∈ E2. Em
termos matriciais, essa equivalência é expressa pela relação B = PAP⊤, em que A e B são as
matrizes de adjacência dos subgrafos e P é uma matriz de permutação, como discutido na Se-
ção 2.3.5. Essa formulação garante que a comparação entre estruturas seja independente da
ordenação dos vértices, permitindo avaliar a similaridade puramente estrutural entre diferentes
partes da arquitetura.

A metodologia proposta não define um algoritmo específico para a detecção de isomor-
fismos, mas estabelece o processo pelo qual um algoritmo deve ser aplicado e avaliado. Ou
seja, a metodologia é agnóstica em relação à técnica utilizada, podendo empregar tanto méto-
dos exatos quanto heurísticos ou baseados em aprendizado de máquina. Neste trabalho, foram
implementadas e comparadas três abordagens representativas: (i) o algoritmo VF2, voltado
à detecção exata de isomorfismo de subgrafos; (ii) o método Node Match, um algoritmo hí-
brido com pré-filtragem de atributos de nós antes da comparação topológica; e (iii) o modelo
GNN (Graph Neural Networks), voltado à predição de isomorfismo estrutura por meio de re-
presentações vetoriais aprendidas. Essas abordagens foram escolhidas por cobrirem diferentes
dimensões de análise, precisão, custo computacional e capacidade de generalização, e podem
ser executadas de forma independente ou comparadas dentro da ferramenta Isomera.

A natureza modular da metodologia permite a inclusão de novas técnicas de detecção con-
forme o avanço da pesquisa. Outros algoritmos podem ser incorporados, como métodos pro-
babilísticos, estratégias baseadas em padrões frequentistas ou modelos híbridos que combinem
aprendizado supervisionado e heurísticas estruturais. Além disso, há um potencial promissor
para integrar abordagens de inteligência artificial generativa, capazes de propor representações
intermediárias de grafos ou sugerir automaticamente pares candidatos a isomorfismo. Essas
extensões estão previstas como desdobramentos futuros, reforçando o caráter evolutivo e adap-
tável da metodologia proposta a diferentes contextos analíticos e arquiteturais.

A seguir, a Tabela 3.2 apresenta um resumo técnico das entradas, ações e saídas dessa etapa.
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Tabela 3.2: Entradas, ações e saídas da etapa de detecção de isomorfismo.

Categoria Descrição

Entradas Grafo dirigido G = (V,E) e matriz de adjacência; definição dos
subgrafos de interesse (por domínio, tipo de tabela ou profundi-
dade); seleção do algoritmo de detecção (VF2, Node Match ou
GNN); parâmetros de comparação, como limite de profundidade
e atributos considerados (grau, tipo, domínio).

Ações 1. Segmentação do grafo em subgrafos candidatos a redundância;
2. Aplicação da técnica escolhida: - VF2: detecção exata de iso-
morfismo de subgrafos; - Node Match: algoritmo híbrido com pré-
filtragem por atributos e posterior verificação topológica; - GNN:
predição de isomorfismo estrutural via embeddings aprendidos; 3.
Cálculo das métricas parciais (número de pares, tempo e similari-
dade média); 4. Registro dos pares candidatos e salvamento do log
de execução.

Saídas Conjunto de pares de subgrafos potencialmente isomórficos; mé-
tricas de desempenho associadas (tempo médio de execução, taxa
de correspondência, confiança da predição); relatório de execução
contendo parâmetros aplicados e estatísticas de correspondência
estrutural.

3.1.3.0.1 Entradas. O processo inicia-se a partir do grafo dirigido gerado na etapa anterior
e da sua matriz de adjacência, utilizados como base para as comparações estruturais. São
definidos os subgrafos de interesse, por exemplo, grupos de tabelas pertencentes ao mesmo
domínio ou com padrões de ligação semelhantes, e escolhida a abordagem de detecção mais
adequada à análise pretendida. Essas entradas determinam o escopo da busca e o grau de
detalhamento da comparação entre estruturas.

3.1.3.0.2 Ações. O sistema realiza uma segmentação inicial do grafo e, em seguida, aplica
o algoritmo de detecção selecionado:

• VF2: realiza a detecção exata de isomorfismo de subgrafos, comparando todas as com-
binações de vértices e arestas. Ideal para cenários de alta precisão, embora mais custoso
computacionalmente.

• Node Match: aplica uma pré-filtragem baseada em atributos (como tipo da tabela, grau
de entrada/saída e domínio) antes da análise topológica, reduzindo o espaço de busca e o
tempo de execução. É indicado para arquiteturas com grande número de nós e arestas.

• GNN: realiza a predição de isomorfismo estrutural utilizando representações vetoriais
(embeddings) de cada subgrafo aprendidas por uma rede neural gráfica. Essa abordagem
é robusta a pequenas variações estruturais e útil para cenários onde o isomorfismo não é
estritamente exato.
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3.1.3.0.3 Saídas. Como resultado, obtém-se um conjunto de pares de subgrafos classifi-
cados como estruturalmente semelhantes, acompanhados de métricas quantitativas de desem-
penho e confiança. Esses pares são registrados em relatórios de execução e armazenados para
posterior análise na fase de validação, onde serão avaliados quanto à sua equivalência funcional
e semântica.

3.1.4 Validação Supervisionada

A validação supervisionada representa uma das fases mais críticas da metodologia, pois é nela
que o julgamento humano complementa e refina os resultados obtidos pelos algoritmos de de-
tecção. Mesmo que dois subgrafos apresentem uma equivalência estrutural perfeita, isso não
implica necessariamente que desempenhem a mesma função dentro da arquitetura de dados.
Em contextos reais, especialmente em sistemas analíticos complexos, uma tabela pode ter o
mesmo formato e estrutura de outra, mas servir a propósitos distintos, como domínios dife-
rentes, regras de filtragem específicas ou segmentações de negócio. Por isso, a intervenção
manual é indispensável para evitar decisões incorretas, como a exclusão de tabelas relevantes
ou a fusão indevida de estruturas que, embora semelhantes, não são redundantes do ponto de
vista funcional.

Durante esta etapa, o especialista analisa os pares de subgrafos identificados pelos algorit-
mos e decide, com base em sua compreensão contextual da arquitetura, se a correspondência
representa uma duplicidade funcional real ou não. Essa análise é conduzida diretamente na
ferramenta, que apresenta lado a lado os subgrafos candidatos, suas tabelas e dependências,
permitindo uma comparação visual precisa e contextualizada.

Nesta fase, existem duas possibilidades principais de decisão: (i) o usuário confirma que
um dos pares é realmente duplicado, validando assim a predição feita pelo algoritmo, caracteri-
zando um caso de verdadeiro positivo (TP); ou (ii) o usuário rejeita a sugestão de duplicidade,
indicando que, embora estruturalmente semelhantes, os subgrafos exercem papéis distintos no
contexto da arquitetura, configurando um falso positivo (FP).

Além desses casos apresentados na interface, há uma terceira situação implícita: os pares
que são conhecidos como duplicados (por exemplo, na base de benchmark utilizada) mas que
não foram identificados automaticamente pelo algoritmo. Esses pares não são exibidos ao
usuário durante a validação, mas são registrados internamente na base de dados, compondo os
falsos negativos (FN) utilizados na etapa de cálculo das métricas.

Dessa forma, a validação supervisionada não se limita à simples confirmação ou rejeição
das predições do algoritmo, mas atua como o ponto de integração entre a detecção automática
e o julgamento humano. É a partir dessas decisões que se constrói a base de verdade (ground
truth) da metodologia, a qual permitirá, posteriormente, a avaliação quantitativa de desempenho
dos algoritmos por meio da matriz de confusão.
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Tabela 3.3: Entradas, ações e saídas da etapa de validação supervisionada.

Categoria Conteúdo

Entradas Conjunto de pares candidatos a isomorfismo estrutural, resultante
da etapa de detecção; representações gráficas e matriciais de cada
subgrafo

Ações Apresentação dos pares candidatos ao usuário na interface grá-
fica; análise contextual de cada par, considerando tanto a estrutura
quanto a função; classificação dos pares como duplicados (TP),
distintos (FP) ou falsos negativos (FN); registro das decisões na
base de verdade (ground truth) e atualização da matriz de confu-
são; escolha dos vértices a serem removidos em caso de duplici-
dade confirmada.

Saídas Base de verdade validada, contendo os rótulos atribuídos a cada par
analisado; matriz de confusão consolidada com os cenários TP, FP,
FN e TN; grafo anotado com as decisões de exclusão ou preserva-
ção; relatório de validação contendo as estatísticas e observações
do especialista.

3.1.4.0.1 Entradas. A validação supervisionada recebe como entrada o conjunto de pares
de subgrafos gerados na fase de detecção. Cada par contém suas representações gráficas e
matriciais, além de informações contextuais como o domínio de origem, o tipo de tabela (SOR,
SOT ou SPEC) e o grau de conectividade. Esses elementos são fundamentais para que o usuário
possa compreender o significado funcional de cada estrutura antes de classificá-la.

3.1.4.0.2 Ações. As ações executadas nesta etapa ocorrem de forma interativa, diretamente
na interface da ferramenta. Os pares são apresentados ao usuário lado a lado, permitindo a
comparação visual e a análise contextual. O avaliador classifica cada correspondência como
duplicada, distinta ou não detectada, decisão que é registrada automaticamente na base de ver-
dade. A partir dessas classificações, a matriz de confusão é atualizada, fornecendo a base
quantitativa necessária para calcular as métricas de desempenho dos algoritmos. Quando uma
duplicidade é confirmada, o usuário também pode selecionar qual nó deve ser removido, ga-
rantindo a integridade da arquitetura final.

3.1.4.0.3 Saídas. O principal produto desta etapa é a base de verdade validada, que repre-
senta o resultado consolidado da interação entre o algoritmo e o especialista. Essa base contém
todos os rótulos atribuídos aos pares analisados e alimenta diretamente a matriz de confusão. O
sistema também gera um relatório de validação com estatísticas, observações e um grafo ano-
tado, destacando os pares confirmados como redundantes. Esses registros não apenas permitem
o cálculo posterior de métricas como acurácia, tempo e frequência de acertos, mas também ga-
rantem a reprodutibilidade e a rastreabilidade de todas as decisões tomadas.

Por fim, a validação supervisionada cumpre um papel central de controle de qualidade,
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assegurando que apenas redundâncias reais sejam tratadas como isomorfismos válidos. Essa
etapa protege a arquitetura de remoções indevidas e preserva a coerência semântica e funcional
dos dados, funcionando como um elo essencial entre a análise automatizada e o julgamento
humano. Ela traduz o equilíbrio entre precisão computacional e entendimento contextual, con-
solidando a metodologia como uma abordagem confiável, auditável e adaptável para o estudo
de arquiteturas de dados complexas.

Critérios e protocolo de validação

Nesta dissertação, o autor atuou como único avaliador especializado, acumulando experiên-
cia direta tanto sobre o conjunto de dados quanto sobre os cenários simulados utilizados nos
experimentos. A presença de um avaliador com conhecimento profundo do contexto é impres-
cindível nesta etapa: a decisão sobre duplicidade funcional exige interpretação de nuances de
uso, escopo de domínio, regras de filtragem e consumidores, que não são plenamente captura-
das pela análise estrutural automática. A opção por um único avaliador decorreu de restrições
de escopo e tempo, sendo mitigada por um protocolo explícito de decisão, registro breve de
justificativas e rastreabilidade integral no ground truth. Para trabalhos futuros, recomenda-se
incluir múltiplos avaliadores. A seguir, sintetizam-se as diretrizes adotadas para garantir con-
sistência, auditabilidade e reprodutibilidade:

• Critério de equivalência funcional: a confirmação de duplicidade requer, além da equi-
valência estrutural, a análise de papel funcional (uso, regras de filtragem, consumidores)
do subgrafo no domínio.

• Desempate semântico: em casos de estruturas idênticas com finalidades distintas (por
exemplo, segmentações de negócio), o par é rotulado como não redundante.

• Documentação da decisão: cada decisão registra justificativa breve e os identificadores
dos nós envolvidos, compondo o ground truth auditável.

• Conflitos entre avaliadores: quando houver múltiplos avaliadores, recomenda-se regra
de maioria simples; empates devem ser resolvidos por um terceiro avaliador com maior
senioridade. (Não se aplica aos experimentos desta dissertação.)

3.1.5 Avaliação das Métricas

A etapa de avaliação das métricas encerra o ciclo metodológico, quantificando a eficácia dos al-
goritmos utilizados na detecção de isomorfismo a partir das classificações obtidas durante a fase
de validação. Seu objetivo é traduzir o julgamento humano, consolidado na base de verdade
(ground truth), em indicadores quantitativos que permitam comparar objetivamente diferentes
abordagens, identificando o equilíbrio entre precisão e eficiência computacional. Essa análise
é fundamental para avaliar não apenas a qualidade das detecções realizadas, mas também o
custo operacional associado a cada algoritmo, oferecendo suporte à escolha do método mais
adequado para cada tipo de arquitetura ou volume de dados.
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Tabela 3.4: Entradas, ações e saídas da etapa de avaliação das métricas.

Categoria Conteúdo

Entradas Base de verdade (ground truth) contendo decisões do usuário (pa-
res confirmados e rejeitados); matriz de confusão gerada a partir
das classificações TP, FP, FN e TN; tempos de execução registra-
dos para cada algoritmo testado.

Ações Leitura e consolidação das decisões de validação; atualização da
matriz de confusão; cálculo das métricas de desempenho (Acurá-
cia, Tempo de Execução e Frequência de Sucesso); comparação
cruzada entre algoritmos; geração de relatórios e gráficos de de-
sempenho.

Saídas Indicadores quantitativos de desempenho; tabelas comparativas e
visualizações das métricas; relatório de eficiência por algoritmo;
grafo final sem vértices redundantes, representando a arquitetura
otimizada.

3.1.5.0.1 Entradas. A avaliação inicia a partir da base de verdade consolidada na etapa an-
terior, composta pelas decisões do usuário sobre os pares de subgrafos analisados. Essas infor-
mações são estruturadas em uma matriz de confusão, na qual se registram os casos de verda-
deiro positivo (TP), falso positivo (FP), falso negativo (FN) e verdadeiro negativo (TN). Além
disso, são utilizados os tempos de execução medidos durante a aplicação de cada algoritmo de
detecção, garantindo que o desempenho seja avaliado tanto sob a ótica da precisão quanto da
eficiência.

3.1.5.0.2 Ações. Primeiro, a metodologia realiza a leitura e a consolidação das decisões de
validação, atualizando a matriz de confusão de forma automática. Com base nesses dados, são
calculadas três métricas principais: (i) Acurácia (ACC), que representa a proporção de classi-
ficações corretas em relação ao total avaliado; (ii) Tempo de Execução (ET), correspondente
ao tempo médio gasto pelo algoritmo na análise dos pares; e (iii) Frequência de Sucesso (SF),
métrica composta que expressa a razão entre o número de acertos e o tempo total de execução,
combinando qualidade e velocidade. A seguir, são realizadas comparações cruzadas entre al-
goritmos, como VF2, Node Match e GNN —, permitindo analisar como diferentes estratégias
se comportam sob o mesmo conjunto de dados. Essas comparações são sintetizadas em tabelas
e gráficos, auxiliando na interpretação dos resultados e na identificação da abordagem mais
eficiente para cada cenário.

3.1.5.0.3 Saídas. O resultado final da avaliação consiste em um conjunto de indicadores
quantitativos que descrevem o desempenho dos algoritmos em termos de precisão e eficiência.
Essas métricas permitem não apenas comparar métodos distintos, mas também calibrar os pa-
râmetros da metodologia para execuções futuras. Com base nos resultados obtidos, o grafo é
reconstruído sem vértices redundantes, refletindo uma arquitetura otimizada e coerente com as
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decisões validadas. O relatório final apresenta, de forma consolidada, as métricas calculadas, as
análises comparativas e as visualizações correspondentes, permitindo uma interpretação clara
e reprodutível do desempenho de cada algoritmo.

3.1.5.0.4 Considerações Finais. Essa fase da metodologia não apenas quantifica resultados,
mas também reforça seu caráter científico e auditável. Ao integrar julgamento humano, análise
algorítmica e métricas objetivas, o processo garante transparência e confiabilidade, possibili-
tando reproduzir experimentos, ajustar parâmetros e expandir o estudo para novas abordagens
de detecção. Além disso, a estrutura modular adotada permite incorporar métricas adicionais,
como precisão, revocação ou F1-Score —, ampliando a capacidade analítica da metodologia e
abrindo caminho para investigações futuras.

3.2 Grafo sem Vértices Duplicados

A última fase da metodologia consolida os resultados obtidos nas etapas anteriores, gerando
uma nova versão da arquitetura de dados na forma de um grafo orientado sem redundâncias
estruturais. Esse grafo representa o produto final do processo, no qual as duplicidades identifi-
cadas pelos algoritmos e confirmadas pelo usuário durante a validação são removidas de forma
controlada e documentada. O resultado é uma arquitetura racionalizada, mais coesa e seman-
ticamente estável, que preserva apenas os fluxos de transformação e dependência efetivamente
válidos, eliminando sobreposições funcionais entre domínios ou camadas de dados.

Tabela 3.5: Entradas, ações e saídas da etapa de consolidação do grafo final.

Categoria Conteúdo

Entradas Conjunto validado de pares duplicados (base de verdade); grafo
original G = (V,E); informações de dependência e metadados as-
sociados aos nós e arestas.

Ações Remoção dos vértices redundantes identificados durante a valida-
ção; reconstrução das conexões incidentes preservando a integri-
dade topológica; atualização das relações entre domínios e cama-
das SOR/SOT/SPEC; geração do grafo otimizado G′ = (V ′,E ′) e
exportação dos resultados (JSON/CSV/PNG); comparação entre a
topologia original e a final para mensurar o ganho estrutural.

Saídas Grafo orientado G′ sem redundâncias estruturais; relatório de mo-
dificações aplicadas (vértices removidos, arestas ajustadas e domí-
nios afetados); visualização comparativa entre G e G′; indicadores
de melhoria topológica (redução de nós, densidade e conectividade
média).
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3.2.0.0.1 Entradas. A reconstrução do grafo parte da base de verdade consolidada, con-
tendo as duplicidades confirmadas pelo usuário e registradas durante a validação supervisi-
onada. Essas informações são aplicadas sobre o grafo original G = (V,E), que contém os
vértices correspondentes às tabelas e as arestas representando suas relações de dependência.
Além disso, são consideradas informações auxiliares como o tipo da tabela (SOR, SOT ou
SPEC), o domínio de origem e o papel topológico de cada vértice, garantindo que a exclusão
de redundâncias preserve a coerência semântica do modelo.

3.2.0.0.2 Ações. O sistema executa a remoção das duplicidades de forma controlada, eli-
minando apenas os vértices marcados como redundantes e realocando as arestas associadas
quando necessário. Essa reconstrução assegura que a estrutura permaneça um grafo direci-
onado acíclico (DAG), sem laços indevidos ou desconexões não intencionais. Em seguida,
o grafo otimizado G′ = (V ′,E ′) é gerado e exportado em diferentes formatos (JSON, CSV e
PNG), acompanhado de um relatório detalhado das modificações realizadas, incluindo a conta-
gem de vértices removidos, arestas reconfiguradas e domínios impactados. Por fim, realiza-se
uma comparação entre a topologia original e a resultante, permitindo mensurar o ganho estru-
tural obtido em termos de redução de redundâncias e melhoria da conectividade média.

3.2.0.0.3 Saídas. O produto final é o grafo otimizado G′, livre de duplicidades e semantica-
mente consistente, representando uma versão consolidada e depurada da arquitetura de dados.
Além da estrutura visual e da matriz de adjacência correspondente, são gerados indicadores
quantitativos de melhoria, como redução percentual de vértices e diminuição de densidade de
arestas, que demonstram o impacto direto da metodologia na racionalização da arquitetura. Es-
ses resultados servem tanto para documentação e auditoria quanto para embasar decisões de
reconfiguração de pipelines e políticas de governança de dados.

3.2.0.0.4 Análise dos Resultados. A consolidação do grafo final simboliza o fechamento
do ciclo metodológico, unindo a precisão algorítmica à curadoria humana. O modelo resul-
tante não apenas reflete a eliminação de redundâncias estruturais, mas também materializa uma
visão otimizada do sistema de dados, onde cada elemento existente tem um papel funcional
justificado. Além disso, a comparação entre o grafo original e o otimizado fornece evidências
quantitativas e visuais do impacto da metodologia, servindo como referência para ajustes futu-
ros, replicações experimentais e extensões da abordagem em outros tipos de arquitetura, como
Data Warehouses e Data Lakes.



CAPÍTULO 4

Ferramental — Isomera

A ferramenta Isomera foi desenvolvida no contexto desta dissertação como um artefato com-
putacional que dá suporte direto à metodologia de detecção de redundâncias estruturais em
arquiteturas Data Mesh. Seu propósito é operacionalizar, de forma modular, interativa e re-
produtível, as etapas de modelagem, comparação e validação de subgrafos que representam
dependências entre tabelas.

Neste capítulo, adotamos o nome Isomera para o artefato construído. A escolha remete à
ideia de isomeria e ao isomorfismo em grafos: estruturas que, embora nomeadas ou organizadas
de modo distinto, compartilham equivalência estrutural. O termo “Isomera” combina “Iso”,
derivado de isomorfismo, com “mera”, inspirado em isomeria na química, reforçando a noção
de equivalência estrutural sob diferentes formas.

A concepção do Isomera surgiu da necessidade de um ambiente integrado que unificasse a
modelagem matemática apresentada nos capítulos anteriores, fundamentada em álgebra linear
e teoria dos grafos, com uma implementação prática e visual que permitisse executar e verificar,
passo a passo, os algoritmos propostos. Assim, a ferramenta atua como elo entre o arcabouço
teórico e a aplicação empírica da metodologia, viabilizando desde a geração do grafo e da
matriz de adjacência até a comparação entre algoritmos e a validação supervisionada.

4.1 Arquitetura Geral da Ferramenta

A Figura 4.1 apresenta a arquitetura geral do Isomera, organizada em quatro blocos funcionais
que podem ser agrupados em duas grandes camadas: infraestrutura e aplicação. Essa estrutura
hierárquica foi projetada para garantir modularidade, escalabilidade e reprodutibilidade, asse-
gurando que o sistema possa ser executado de forma consistente em qualquer ambiente com-
putacional compatível. A arquitetura do Isomera reflete um princípio de design minimalista
e científico: manter o núcleo da aplicação leve, portátil e autônomo, de modo que o processo
de instalação, execução e análise seja inteiramente reproduzível por qualquer pesquisador sem
dependências externas complexas.

Um dos aspectos mais relevantes do projeto é a ênfase na reprodutibilidade dos experimen-
tos, princípio essencial na pesquisa científica moderna. O Isomera foi desenvolvido de modo a
permitir que os mesmos resultados sejam obtidos em qualquer máquina que possua uma insta-
lação padrão de Python (versão 3.11), independentemente de variações no sistema operacional.
Isso é alcançado por meio de um controle automatizado de dependências, que garante que to-
das as bibliotecas utilizadas sejam instaladas localmente, com versões fixadas, dentro de um
ambiente virtual isolado. Assim, a ferramenta elimina inconsistências que poderiam surgir em

73



74 CAPÍTULO 4 FERRAMENTAL — ISOMERA

execuções diferentes, além de permitir auditorias e comparações exatas entre experimentos, o
que é crucial em estudos de desempenho de algoritmos e validações empíricas.

Outro ponto de destaque é a leveza operacional da aplicação. O Isomera foi intencional-
mente projetado para ser eficiente em termos de recursos, tanto de processamento quanto de
armazenamento. Todas as operações são realizadas localmente, sem necessidade de servidores,
bancos de dados externos ou infraestrutura em nuvem. Os resultados, incluindo logs, matri-
zes de adjacência, métricas e grafos, são armazenados diretamente em disco, permitindo fácil
acesso, replicação e transporte entre ambientes. Apesar de ser uma ferramenta científica com
componentes gráficos e computacionais avançados, o sistema mantém um desempenho satis-
fatório mesmo em máquinas modestas, tornando-o ideal para uso em laboratórios acadêmicos,
instituições de ensino e experimentos offline.

Figura 4.1: Arquitetura em blocos da ferramenta Isomera.

A camada de infraestrutura reúne os elementos responsáveis por prover o ambiente de exe-
cução: hardware local (CPU e memória), sistema operacional (Windows, Linux ou macOS) e a
máquina virtual Python (versão 3.11), que encapsula as dependências. Como o Isomera instala
automaticamente as bibliotecas necessárias antes da primeira execução, não exige hardware de
alto desempenho nem armazenamento veloz. Toda a operação é realizada de forma local, com
resultados gravados em disco e estrutura organizada em diretórios legíveis e padronizados. Em-
bora a biblioteca DearPyGui disponha de renderização via GPU, essa funcionalidade ainda
não foi habilitada na versão atual, pois os experimentos conduzidos nesta dissertação não de-
mandaram processamento gráfico intensivo. Dessa forma, o foco recai sobre a compatibilidade,
a leveza e a autonomia de execução: basta que o computador possua o Python instalado e uma
conexão inicial com a internet para baixar as dependências, sendo todo o processamento sub-
sequente independente de rede.

A camada de aplicação concentra o núcleo lógico e funcional da ferramenta, composto pe-
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los módulos de modelagem em grafos, detecção de isomorfismo, validação manual e avaliação
de métricas. Cada módulo representa uma etapa metodológica do processo de análise, atuando
de forma encadeada dentro de um fluxo controlado pela interface gráfica. Essa camada também
inclui um módulo transversal de persistência local, responsável por salvar artefatos, logs e re-
sultados de cada execução, permitindo que o usuário retome, revise ou replique experimentos
anteriores. A interface, construída com DearPyGui, centraliza toda a interação com o sis-
tema, tornando o processo acessível, visual e intuitivo, sem necessidade de executar scripts ou
editar código.

Em síntese, a arquitetura do Isomera foi desenhada para oferecer um equilíbrio entre rigor
científico, eficiência computacional e usabilidade prática. Ela traduz os princípios da metodo-
logia proposta em uma aplicação funcional, reprodutível e extensível, características essenciais
para sua utilização tanto em ambientes acadêmicos quanto em projetos de pesquisa aplicada
em engenharia de dados.

Camada de Infraestrutura

A arquitetura de execução foi projetada de modo a equilibrar simplicidade e robustez. A ferra-
menta utiliza o hardware local (CPU e memória RAM disponíveis) para processar as operações
de modelagem, comparação e visualização. Não há necessidade de GPU ou processadores
dedicados, uma vez que os algoritmos empregados são otimizados para execução em CPU e
operam sobre conjuntos de dados moderados, típicos de análises estruturais. Além disso, a ins-
talação é autônoma: na primeira execução, o sistema cria uma máquina virtual Python (versão
3.11) e instala automaticamente as bibliotecas necessárias, isolando-as do sistema principal.
Esse mecanismo evita conflitos de dependências e assegura a reprodutibilidade dos resultados,
um requisito fundamental para experimentos científicos controlados.

Tabela 4.1: Resumo da camada de infraestrutura da ferramenta Isomera.

Componente Descrição e função
Hardware local Utiliza CPU e RAM disponíveis. O desempenho é suficiente para

execução local dos experimentos, sem exigir configurações avan-
çadas.

Sistema operacional Compatível com Windows, Linux e macOS, assegurando ampla
portabilidade e independência de plataforma.

Máquina virtual Python 3.11 Ambiente principal de execução; instala e gerencia automatica-
mente todas as bibliotecas requeridas, garantindo isolamento e
estabilidade.

Renderização GPU Recurso oferecido pelo DearPyGui, mas ainda desativado nesta
versão. A renderização via CPU é suficiente para as simulações
conduzidas.

Dependências locais Instaladas automaticamente na primeira execução. Após isso, o
uso é totalmente offline, favorecendo reprodutibilidade e controle
de versão.
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Em síntese, essa camada foi pensada para manter o Isomera leve, portátil e de fácil replica-
ção. Não há necessidade de servidores externos, bancos de dados dedicados ou configurações
avançadas. O usuário precisa apenas ter o Python instalado e conexão inicial à internet para o
download das bibliotecas. A partir daí, todo o funcionamento se torna local e independente,
permitindo que os resultados sejam reproduzidos integralmente em qualquer ambiente acadê-
mico ou corporativo.

Camada da Aplicação

A camada de aplicação representa o núcleo lógico do Isomera. Nela, são implementadas as
etapas metodológicas descritas nesta dissertação, desde a modelagem em grafos até a avaliação
das métricas de desempenho. Cada módulo funciona como uma unidade funcional indepen-
dente, mas totalmente integrada por meio da interface gráfica, que atua como um orquestrador
visual de todo o fluxo computacional.

Os módulos foram concebidos com base nos princípios de clareza, rastreabilidade e mo-
dularidade. Isso significa que cada parte da aplicação corresponde a um pseudocódigo formal,
apresentado nas seções seguintes, descrevendo de forma transparente as operações realizadas.

Tabela 4.2: Resumo dos módulos principais da camada de aplicação.

Módulo Descrição e responsabilidade
Modelagem em grafos Converte tabelas e dependências em grafos direcionados e matri-

zes de adjacência. Implementado com NetworkX, constitui a
base analítica da ferramenta.

Detecção de isomorfismo Executa os algoritmos VF2, Node Match e GNN sobre subgrafos,
identificando padrões estruturais equivalentes entre diferentes do-
mínios. É o núcleo de processamento da aplicação.

Validação manual Exibe, via DearPyGui, os pares de subgrafos detectados, per-
mitindo que o usuário confirme ou rejeite redundâncias. Essa va-
lidação supervisionada cria a base de verdade para as métricas.

Avaliação de métricas Calcula acurácia (ACC), tempo de execução (ET) e frequência de
sucesso (SF), consolidando as decisões do usuário e exportando
os resultados em CSV.

Persistência local Armazena logs, grafos, matrizes e resultados em formatos JSON,
CSV e PNG, garantindo reprodutibilidade e rastreabilidade com-
pleta.

Essa camada foi desenhada para oferecer tanto poder analítico quanto transparência cien-
tífica. O usuário pode acompanhar visualmente o avanço de cada etapa, inspecionar os grafos
gerados, verificar os pares identificados e avaliar o desempenho dos algoritmos em tempo real.
Além disso, a estrutura de persistência permite retomar experimentos anteriores, comparar re-
sultados e documentar todas as etapas do processo de forma auditável.
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Bibliotecas de Suporte

O Isomera fundamenta-se em um conjunto de bibliotecas científicas do ecossistema Python,
amplamente reconhecidas por sua estabilidade, integração e suporte à pesquisa aplicada. Essas
bibliotecas fornecem uma base técnica sólida que combina desempenho, legibilidade e fácil
manutenção, permitindo que a ferramenta se mantenha compatível com práticas modernas de
ciência de dados.

Tabela 4.3: Bibliotecas utilizadas na implementação do Isomera.

Biblioteca Função principal
NetworkX Estruturação, manipulação e análise de grafos direcionados e mul-

tigrafos.

Pandas Organização de matrizes de adjacência, transformação de dados e
exportação de resultados tabulares.

DearPyGui Interface gráfica interativa com suporte a visualização de grafos e
componentes dinâmicos.

Matplotlib e Seaborn Criação de gráficos comparativos e visualizações analíticas de
métricas e tempos de execução.

Torch e Torch Geometric Implementação das redes neurais gráficas (GNN) e treinamento
supervisionado de modelos baseados em embeddings estruturais.

A integração entre essas bibliotecas garante que o Isomera mantenha um equilíbrio entre
precisão algorítmica e facilidade de uso. Todas as dependências foram escolhidas de forma
criteriosa, considerando desempenho, suporte ativo da comunidade e compatibilidade entre
versões, o que assegura longevidade e confiabilidade à ferramenta.

Interação com o Usuário

A interação com o usuário é inteiramente conduzida pela interface gráfica desenvolvida com
a biblioteca DearPyGui. Essa interface foi projetada para oferecer uma experiência fluida,
intuitiva e cientificamente rastreável, na qual cada ação do pesquisador é refletida diretamente
no ambiente visual. O usuário é capaz de realizar todo o fluxo metodológico, desde o carrega-
mento dos dados até a validação e exportação dos resultados, sem a necessidade de acessar o
código-fonte ou executar comandos externos.

A Figura 4.2 e a Tabela 4.4 apresentam o fluxo geral de uso da ferramenta Isomera, que
organiza as etapas de execução em uma sequência lógica, permitindo compreender a progres-
são dos dados desde a entrada até a análise final. O diagrama evidencia a modularidade do
sistema e a integração entre os algoritmos e a interface, assegurando clareza na execução e
reprodutibilidade dos experimentos.
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Figura 4.2: Fluxo de uso da ferramenta Isomera.

Tabela 4.4: Resumo das etapas do fluxo de uso da ferramenta Isomera.

Etapa Descrição resumida
Carregamento ou geração Importa arquivos JSON/CSV ou gera arquitetura sintética com

parâmetros ajustáveis.

Modelagem em grafos Converte tabelas e dependências em grafos direcionados e ma-
trizes de adjacência (NetworkX).

Execução de algoritmos Aplica VF2, Node Match ou GNN e registra os pares candidatos
a isomorfismo.

Validação manual Usuário confirma ou rejeita pares isomórficos; decisões alimen-
tam a base de validação.

Cálculo das métricas Calcula ACC, ET e SF e exibe resultados em gráficos compara-
tivos.

Exportação e persistência Salva grafos, métricas e logs em CSV, JSON e PNG.
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Durante a execução, o Isomera registra automaticamente todos os parâmetros definidos
pelo usuário, as ações realizadas e os resultados gerados em cada etapa do processo. Esses
registros formam um histórico completo e rastreável de execução, assegurando que qualquer
experimento possa ser reproduzido ou auditado posteriormente com precisão. O mecanismo
de registro inclui não apenas os valores de entrada e saída, mas também metadados como data
e hora de execução, versão das bibliotecas utilizadas e configurações do ambiente computaci-
onal. Essa documentação automática elimina a necessidade de anotações manuais e garante
que toda informação relevante para a reprodutibilidade esteja preservada de forma estruturada
e consultável.

A leveza da ferramenta também é um aspecto central do seu design: todas as operações são
processadas localmente, sem dependência de servidores externos, o que garante independên-
cia, privacidade e controle total sobre os dados. Mesmo com essa simplicidade operacional, o
Isomera mantém desempenho eficiente em CPU e armazenamento local, tornando-se adequado
tanto para uso em pesquisa aplicada quanto em atividades de ensino. Sua modularidade e trans-
parência reforçam o caráter científico da aplicação, permitindo que resultados sejam facilmente
replicados, comparados e compartilhados.

Além disso, a organização interna dos arquivos gerados segue uma estrutura padronizada e
intuitiva, facilitando a navegação e a posterior análise dos dados produzidos. Cada execução
cria automaticamente um conjunto de artefatos que incluem grafos em formato visual, ma-
trizes numéricas, métricas consolidadas e logs detalhados, todos armazenados em diretórios
específicos que refletem a hierarquia lógica do experimento. Essa estruturação permite que
o pesquisador localize rapidamente qualquer informação relevante e mantenha organizado o
histórico de múltiplas execuções, contribuindo para a manutenção da integridade científica do
trabalho e para a clareza na apresentação dos resultados.

A interface do Isomera representa a materialização prática da metodologia proposta, unindo
modelagem teórica e experimentação visual em um único ambiente. Desenvolvida integral-
mente com a biblioteca DearPyGui, ela oferece uma experiência interativa e intuitiva, que
conduz o usuário por todas as etapas, da geração da arquitetura à validação e análise dos re-
sultados, sem necessidade de interação direta com o código ou execução de comandos exter-
nos. Essa abordagem garante acessibilidade e reprodutibilidade, permitindo que o processo
de detecção e validação de redundâncias estruturais seja realizado de forma simples, guiada e
transparente. O layout da interface segue a mesma lógica sequencial da metodologia descrita
na dissertação, apresentando os módulos de forma ordenada: modelagem, detecção, validação
e métricas, o que facilita a navegação e o entendimento do fluxo completo de análise.

4.2 Interface e Visualização da Ferramenta

A seguir, são apresentadas as principais telas da ferramenta Isomera, em sequência lógica,
acompanhando o mesmo fluxo metodológico proposto nesta dissertação. As imagens foram
organizadas para que o leitor possa compreender passo a passo como a ferramenta funciona
na prática, desde a geração do grafo até a visualização final do resultado consolidado sem
redundâncias estruturais.
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Figura 4.3: Visão geral da ferramenta Isomera (DearPyGui).

A Figura 4.3 apresenta a visão geral da ferramenta Isomera, exibindo o conjunto completo
de módulos disponíveis na interface gráfica. Nesta tela, o usuário tem acesso aos principais
recursos da aplicação, modelagem de grafos, execução dos algoritmos de detecção de isomor-
fismo, validação manual e análise de métricas. Toda a interação é visual e intuitiva, permitindo
a configuração de experimentos, o acompanhamento do progresso e a exportação dos resulta-
dos, tudo dentro de um único ambiente gráfico.

A interface foi projetada de modo a guiar o pesquisador em uma jornada completa: do car-
regamento dos dados até a análise dos resultados. Essa abordagem promove um uso acessível
mesmo para usuários sem familiaridade com programação, tornando o Isomera uma ferramenta
didática e experimental ao mesmo tempo, adequada tanto para pesquisa científica quanto para
ensino de conceitos ligados à teoria dos grafos e às arquiteturas Data Mesh.

Figura 4.4: Modelagem como grafo e matriz de adjacência.
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A Figura 4.4 marca o início do exemplo prático apresentado neste capítulo. Aqui, o usuário
define os parâmetros de configuração do experimento, podendo importar uma arquitetura real
(como o benchmark TPC-DS) ou gerar automaticamente uma arquitetura sintética diretamente
pela interface. Os campos de entrada permitem controlar o número de tabelas, a quantidade
de domínios e os limites mínimo e máximo de tabelas e linhas por domínio, parâmetros que
determinam a complexidade e densidade do grafo a ser estudado.

No exemplo exibido, os seguintes valores foram configurados para o experimento: 3 tabelas
de origem (SOR), 4 domínios, 6 tabelas por domínio (mínimo e máximo), 10 linhas mínimas e
20 linhas máximas por tabela. Esses parâmetros definem o tamanho e a conectividade inicial da
arquitetura simulada, influenciando diretamente a estrutura final do grafo e o comportamento
dos algoritmos de detecção.

À direita da interface, observa-se a matriz de adjacência correspondente ao grafo gerado.
Ela representa, em formato numérico, as relações de dependência entre tabelas, permitindo ao
usuário verificar visualmente se as conexões foram geradas corretamente. Essa visualização
reforça o princípio de transparência da ferramenta, facilitando a compreensão de como cada
aresta (transformação) e cada nó (tabela) se traduzem em relações matemáticas dentro da ma-
triz.

Figura 4.5: Detecção de isomorfismo (VF2).

Na Figura 4.5, o processo de detecção de isomorfismo é iniciado. O usuário seleciona o
algoritmo desejado, neste caso, o VF2, e o sistema executa automaticamente a comparação
entre os subgrafos gerados a partir da arquitetura modelada. Durante essa execução, o Isomera
analisa cada par de subestruturas e identifica padrões equivalentes de conectividade, armaze-
nando os resultados intermediários em memória e em disco. Essa etapa corresponde ao núcleo
computacional da ferramenta, onde a teoria dos grafos é aplicada diretamente à prática para
detectar redundâncias estruturais.
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Figura 4.6: Validação manual de pares redundantes.

A Figura 4.6 apresenta a tela de validação manual, etapa essencial do processo. Após a
execução dos algoritmos, os pares de subgrafos identificados como equivalentes são exibidos
para inspeção visual do usuário. A partir dessa interface, o analista decide se as correspondên-
cias encontradas representam redundâncias reais ou apenas semelhanças formais. Essa decisão
alimenta automaticamente a base de validação, que é usada nas próximas etapas para o cálculo
das métricas de desempenho.

Figura 4.7: Comparação entre algoritmos (métrica SF).
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A Figura 4.7 mostra o painel de métricas, responsável por consolidar os resultados expe-
rimentais. Aqui, o sistema apresenta indicadores quantitativos como acurácia (ACC), tempo
de execução (ET) e frequência de sucesso (SF). Essas métricas permitem comparar o desem-
penho dos algoritmos (VF2, Node Match e GNN) sob os mesmos parâmetros experimentais,
identificando qual abordagem apresenta o melhor equilíbrio entre precisão e eficiência.

Figura 4.8: Grafo final sem tabelas duplicadas.

Por fim, a Figura 4.8 apresenta o resultado consolidado do experimento: um grafo orientado
representando a arquitetura final sem redundâncias estruturais. Essa visualização sintetiza todo
o processo realizado, da modelagem inicial à validação, e evidencia como a aplicação dos algo-
ritmos de isomorfismo contribui para identificar e remover duplicidades de forma sistemática.
O grafo resultante preserva as relações válidas entre tabelas, ao mesmo tempo em que elimina
estruturas equivalentes, resultando em uma representação mais enxuta, coerente e otimizada da
arquitetura Data Mesh.

4.3 Detalhamento da Solução

A ferramenta Isomera foi inteiramente desenvolvida em Python, escolhida por sua ampla ado-
ção em ciência de dados, legibilidade e ecossistema científico consolidado. Essa escolha tam-
bém favoreceu a integração entre os conceitos matemáticos da metodologia e a implementação
de algoritmos de grafos e aprendizado supervisionado.

As principais bibliotecas utilizadas são descritas a seguir.
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4.3.1 Escolha da Biblioteca NetworkX

A biblioteca NetworkX foi selecionada como núcleo da modelagem e análise estrutural dos
grafos que representam as arquiteturas de dados. Segundo (SOUZA; GUEDES, 2023), a
NetworkX apresenta o melhor equilíbrio entre flexibilidade, integração e estabilidade den-
tre as principais bibliotecas analisadas (Gephi, Pajek, iGraph e NetworkX).

Enquanto Gephi e Pajek são voltadas à visualização, e iGraph oferece maior desempenho
porém menor flexibilidade, a NetworkX destacou-se pela capacidade de representar grafos
direcionados, multigrafos e estruturas com auto-laços, além de conter implementações estáveis
de algoritmos como busca em profundidade, clusterização e detecção de isomorfismos. A ferra-
menta aproveita especialmente o algoritmo VF2 nativo da biblioteca, amplamente referenciado
na literatura para verificação de equivalências estruturais.

4.3.2 Uso de DearPyGui para a Interface Gráfica

A interface gráfica foi construída com a biblioteca DearPyGui, escolhida por seu desempenho
gráfico acelerado via GPU e suporte a interações em tempo real. De acordo com Langner
et al. (LANGNER et al., 2025), o DearPyGui é particularmente indicado para aplicações
científicas que exigem visualizações de alta performance, como a manipulação de grafos e
matrizes de grande porte.

Sua arquitetura baseada em renderização direta permite que o usuário interaja com cada
etapa da metodologia, geração de grafos, execução de algoritmos e validação manual, sem
perda de desempenho. Além disso, a biblioteca permite criar painéis interativos para compara-
ção de métricas e exportação visual dos resultados.

4.3.3 Módulo de Modelagem em Grafos

O primeiro módulo da ferramenta é responsável por transformar tabelas e suas dependências em
uma estrutura de grafo direcionado, com vértices representando entidades (SOR, SOT e SPEC)
e arestas representando as relações de derivação. Essa modelagem formal constitui a base de
toda a metodologia, pois converte o problema de redundância estrutural em um problema de
equivalência entre subgrafos.

O processo é automatizado por meio da função representada no pseudocódigo da Figura 4.9,
que cria o grafo, define as conexões e gera a matriz de adjacência correspondente. A saída desse
módulo é utilizada diretamente na etapa de detecção de isomorfismo.
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Figura 4.9: Pseudocódigo — módulo de modelagem em grafos.

Esse módulo permite tanto a importação de dados reais (ex.: TPC-DS, PostgreSQL, MySQL)
quanto a geração de arquiteturas sintéticas, configuradas com parâmetros de complexidade de-
finidos pelo usuário (número de domínios, número de tabelas e densidade de conexões). A
matriz de adjacência gerada representa a estrutura formal que será utilizada nas comparações
posteriores.
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4.3.4 Módulo de Detecção de Isomorfismo

O segundo módulo executa o núcleo computacional da ferramenta, aplicando algoritmos de
detecção de isomorfismo sobre os subgrafos extraídos. Essa etapa identifica pares de estruturas
topologicamente equivalentes, revelando redundâncias entre diferentes domínios da arquite-
tura.

O pseudocódigo da Figura 4.10 apresenta o fluxo de execução deste módulo. Nele, o usuário
seleciona o algoritmo desejado, VF2, Node Match ou GNN, e o sistema executa as compara-
ções, registrando os pares isomórficos e os resultados parciais.

Figura 4.10: Pseudocódigo — módulo de detecção de isomorfismo.

O módulo é implementado de forma extensível, permitindo que novos algoritmos sejam
incorporados futuramente. Atualmente, o Isomera combina a precisão do algoritmo VF2, a
eficiência híbrida do Node Match e o poder de generalização das redes neurais gráficas (GNNs),
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possibilitando uma análise balanceada entre desempenho e exatidão.

4.3.5 Módulo de Validação Manual

O terceiro módulo incorpora a intervenção humana no processo de detecção, garantindo que
as correspondências identificadas pelos algoritmos sejam analisadas em termos de contexto
e semântica. A validação manual é realizada diretamente na interface, onde o usuário pode
confirmar ou rejeitar cada par de subgrafos sugerido como isomórfico.

A lógica dessa etapa está representada no pseudocódigo da Figura 4.11. Nele, o sistema
apresenta os pares detectados, registra as decisões do usuário e atualiza automaticamente a
base de validação que servirá para o cálculo das métricas.

Figura 4.11: Pseudocódigo — módulo de validação manual.

Essa etapa garante que a análise final considere não apenas a equivalência estrutural, mas
também a equivalência funcional e semântica das estruturas, o que é fundamental para evitar
falsos positivos em ambientes de dados complexos.

4.3.6 Módulo de Avaliação de Métricas

O quarto módulo é responsável por consolidar quantitativamente os resultados obtidos nas eta-
pas anteriores. Com base nas decisões registradas pelo usuário, o sistema calcula automatica-
mente métricas de desempenho como acurácia (ACC), tempo de execução (ET) e frequência
de sucesso (SF), apresentando os resultados de forma visual e comparativa.

A Figura 4.12 mostra o pseudocódigo que representa o funcionamento interno deste mó-
dulo.
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Figura 4.12: Pseudocódigo — módulo de avaliação de métricas.

O módulo também exporta os resultados em formatos reutilizáveis (CSV, JSON, PNG),
assegurando a reprodutibilidade dos experimentos. Esses dados podem ser reaproveitados para
estudos comparativos, auditorias ou replicações futuras da pesquisa.

4.3.7 Módulo de Persistência Local

Por fim, o módulo de persistência garante que todas as informações processadas, grafos, matri-
zes, logs e resultados, sejam salvas localmente no ambiente de execução. Esse design elimina
dependências externas, reforçando a filosofia de reprodutibilidade e controle total dos dados.
Todos os artefatos podem ser carregados novamente em execuções futuras, permitindo conti-
nuidade e rastreabilidade completa dos experimentos.



CAPÍTULO 5

Estudo de Caso e Avaliação Experimental

Este capítulo apresenta os experimentos realizados para avaliar a eficácia do método proposto
na detecção de redundâncias estruturais em arquiteturas Data Mesh, por meio da comparação
entre três algoritmos de isomorfismo de grafos: VF2, Node Match e Graph Neural Network
(GNN). A avaliação se deu com base em métricas de acurácia, tempo de execução e frequência
de acertos, conforme definido na Seção 2.5.

5.1 Transformação do TPC-DS em Arquitetura em Grafo

Para fornecer uma base realista de validação, o benchmark analítico TPC-DS, mencionado na
Seção 1.3 (NAMBIAR; POESS, 2006), foi reinterpretado como uma arquitetura distribuída
baseada em domínios. O TPC-DS contém mais de 20 tabelas com relacionamentos complexos
e consultas analíticas típicas de ambientes empresariais.

Embora o TPC-DS tenha sido originalmente concebido para avaliar arquiteturas analíti-
cas centralizadas (por exemplo, data warehouses), sua escolha nesta dissertação justifica-se
por três razões: (i) disponibilidade pública e ampla aceitação acadêmica, o que favorece a re-
produtibilidade; (ii) riqueza estrutural de esquemas e relacionamentos, suficiente para emular
dependências e linhagens entre entidades; e (iii) possibilidade de agrupamento funcional em
domínios, permitindo sua adaptação ao contexto descentralizado do Data Mesh.

Para alinhá-lo a esse contexto, as tabelas foram particionadas em domínios temáticos e
organizadas segundo as camadas SOR, SOT e SPEC, o que viabiliza a análise de redundâncias
estruturais entre domínios sob um protocolo controlado.

Como limitação, reconhece-se que o TPC-DS não contempla aspectos organizacionais e de
governança típicos de um ambiente Data Mesh real; ainda assim, sua estrutura fornece uma
base adequada para o estudo comparativo de algoritmos sob topologias complexas.

Nesta dissertação, as tabelas do benchmark TPC-DS foram agrupadas em cinco domínios
semânticos de negócio, cada um representando uma área funcional distinta da arquitetura ana-
lítica. Esse agrupamento foi definido com base na afinidade temática e no uso conjunto das
tabelas, resultando na seguinte estrutura de domínios:

• D1 – Customer: engloba dados de clientes, endereços e demografia, com tabelas como
SOR_customer, SOR_customer_address e SOR_customer_demographics;

• D2 – Store: concentra informações geográficas e organizacionais, como SOR_store,
SOR_region, SOR_nation e SOR_call_center;

89
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• D3 – Catalog: abrange produtos e campanhas, com tabelas como SOR_item, SOR_promotion
e SOR_reason;

• D4 – Time: reúne dados temporais de apoio à análise, como SOR_date_dim e SOR_time_dim;

• D5 – Warehouse: trata da estrutura logística, incluindo SOR_warehouse, SOR_ship_mode
e SOR_income_band.

Cada domínio foi modelado com três tipos de tabelas, em conformidade com os princípios
da arquitetura Data Mesh:

• SOR: representam as tabelas brutas extraídas diretamente do TPC-DS, utilizadas como
ponto de partida para a modelagem;

• SOT: são derivações intermediárias obtidas por meio de transformações locais dentro de
cada domínio, estruturando os dados para consumo interno;

• SPEC: compõem visões analíticas especializadas, que sintetizam informações a partir de
múltiplos domínios ou camadas, promovendo o reuso e a integração semântica.

A separação hierárquica entre SOR, SOT e SPEC possibilitou a geração de grafos dirigidos
em que os nós representam entidades (tabelas) e as arestas codificam transformações, deriva-
ções ou junções entre elas.

A construção desses grafos foi parametrizada quanto ao número de tabelas e domínios, per-
mitindo a geração automática de diferentes cenários experimentais (ver código na Seção A.1).

A Figura 5.1 ilustra essa transformação do TPC-DS em um grafo de arquitetura de dados,
estruturado para fins de análise de redundâncias e detecção de padrões isomorfos.

Figura 5.1: Transformação do TPC-DS em um grafo orientado por SOR, SOT e SPEC

Com essa estrutura, tornou-se possível simular pipelines reais de dados, com diferentes
graus de acoplamento e redundância estrutural, possibilitando a aplicação dos algoritmos de
isomorfismo para avaliar duplicações, similaridades e padrões recorrentes.



5.2 MODELAGEM DE ARQUITETURAS SINTÉTICAS COM ISOMERA 91

5.2 Modelagem de Arquiteturas Sintéticas com Isomera

Para complementar a avaliação com casos reais, foi desenvolvida na ferramenta a possibilidade
de gerar cenários sintéticos com diferentes parâmetros e embasados no benchmark reinter-
pretado do TPC-DS. Essa funcionalidade permite simular arquiteturas com níveis variados de
complexidade estrutural, controlando aspectos como densidade de conexões, número de enti-
dades e distribuição entre domínios, o que viabiliza a análise sistemática do comportamento
dos algoritmos sob diferentes condições operacionais.

A geração sintética é essencial para validar a metodologia proposta sob condições contro-
ladas, uma vez que ambientes reais raramente oferecem a diversidade estrutural e o controle
necessário para uma análise comparativa robusta. Por meio dessa funcionalidade, torna-se pos-
sível explorar desde arquiteturas simples e isoladas, com poucos domínios e baixa conectivi-
dade, até cenários densamente interconectados que emulam ambientes corporativos complexos,
nos quais múltiplos domínios compartilham dependências e transformações. A parametrização
é realizada de forma flexível, permitindo ao usuário definir as seguintes características estrutu-
rais da arquitetura a ser gerada:

• Número de domínios (de 1 a 5);

• Quantidade de tabelas SOR por domínio;

• Faixa de variação para o número de tabelas SOT e SPEC;

• Probabilidade de conexões inter e intra-domínios.

A partir desses parâmetros, o Isomera constrói um grafo direcionado com as seguintes
regras: SOR são os nós de origem em cada domínio, SOT conectam-se aleatoriamente a SOR,
SPEC derivam de SOT, podendo conectar-se entre domínios.

O resultado é uma matriz de adjacência e uma tabela de linhagem totalmente reprodutível,
permitindo simular diferentes níveis de sobreposição estrutural. A Tabela 5.1 apresenta os
parâmetros utilizados e a simulação de múltiplos cenários com diferentes complexidades.

Tabela 5.1: Cenários de Experimento e suas Características.

Cenário SOR Domínios Descrição
1 2 1 a 5 Arquiteturas leves com baixa duplicação

2 4 1 a 5 Sobreposição moderada entre domínios

3 8 1 a 5 Complexidade média com redundâncias esperadas

4 16 1 a 5 Arquiteturas densas com alto grau de duplicidade

A Figura 5.2 mostra exemplos visuais de grafos gerados a partir do TPC-DS e dos cenários
sintéticos. Esses grafos foram posteriormente utilizados como entrada para os algoritmos de
comparação estrutural.
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Figura 5.2: Exemplos de grafos gerados por cada cenário na ferramenta Isomera a partir de
benchmarks

5.3 Execução dos Testes

Com os grafos gerados, tanto os oriundos da adaptação do TPC-DS quanto os sintetizados ar-
tificialmente, foi realizada uma etapa fundamental de validação manual, na qual cada subgrafo
representado visualmente na Figura 5.2 foi analisado para identificar pares isomorfos reais.
Esta identificação prévia foi essencial para estabelecer um conjunto de referência (ground truth)
que pudesse ser utilizado nas métricas de benchmarking.

Ao adotar essa abordagem, o processo de validação pôde ser automatizado nas execuções
subsequentes, sem a necessidade de intervenção humana para cada novo teste. Isso garantiu
maior reprodutibilidade, robustez na comparação e acelerou significativamente o ciclo de testes
da ferramenta Isomera.

Os testes foram então executados em ambiente controlado, dentro de uma máquina virtual
com recursos computacionais padronizados, e cada algoritmo foi rodado 1000 vezes conse-
cutivas por cenário. Esse número elevado de execuções teve como objetivo mitigar variações
naturais de tempo decorrentes de sobrecarga momentânea de CPU, memória ou processos em
background, e garantir que o tempo final analisado representasse a média estável de execução.

Para a análise comparativa, foram selecionados três algoritmos: o VF2, o Node Match e
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a Graph Neural Network (GNN). A escolha desses algoritmos permite avaliar diferentes abor-
dagens para o problema de detecção de isomorfismo, desde métodos exatos e determinísticos
até técnicas baseadas em aprendizado de máquina, possibilitando uma análise abrangente de
desempenho sob múltiplas perspectivas, incluindo precisão, velocidade e capacidade de gene-
ralização.

A execução seguiu os seguintes passos sistemáticos:

1. Definição do conjunto de pares de subgrafos extraídos dos cenários sintetizados;

2. Aplicação dos algoritmos sobre cada grafo;

3. Registro dos tempos de execução, predições e comparação com os rótulos reais (definidos
previamente na validação manual);

4. Cálculo das métricas apresentadas na Seção 2.5: acurácia (ACC), tempo de execução
(ET) e frequência de acertos (SF).

A avaliação experimental foi estruturada em dois estudos de caso sequenciais, cada um
com objetivos específicos e complementares. Essa divisão permitiu uma análise progressiva e
incremental do desempenho dos algoritmos, partindo de abordagens clássicas e evoluindo para
técnicas baseadas em aprendizado de máquina.

O Estudo de Caso I focou na comparação entre os algoritmos VF2 e Node Match, os quais
estavam inicialmente implementados na primeira versão do Isomera. Os resultados dessa pri-
meira fase revelaram limitações de acurácia em cenários de maior complexidade estrutural,
especialmente quando o número de domínios e tabelas aumentava significativamente, o que
motivou a busca por abordagens mais sofisticadas capazes de capturar padrões estruturais mais
complexos.

Em resposta a essas limitações, o Estudo de Caso II introduziu o uso de uma Graph Neural
Network (GNN), treinada sobre os mesmos cenários com pares previamente rotulados. Essa in-
trodução marcou uma evolução metodológica importante, ao alavancar técnicas de aprendizado
de máquina para predição supervisionada de isomorfismo, permitindo que o modelo capturasse
padrões estruturais que algoritmos tradicionais não conseguiam generalizar. Os resultados ob-
tidos nas duas fases são apresentados nas seções seguintes, permitindo uma análise crítica da
aplicabilidade de cada abordagem em ambientes distribuídos e heterogêneos.

5.4 Protocolo Experimental e Reprodutibilidade

Para assegurar a reprodutibilidade dos experimentos realizados e permitir comparações futuras
sob as mesmas condições, esta seção descreve de forma detalhada o ambiente, os parâmetros
de execução, as repetições adotadas e as estratégias de controle de aleatoriedade empregadas
durante as simulações com a ferramenta Isomera.

Além de especificar o ambiente e os parâmetros, documentamos as definições adotadas para
mensuração de tempo (ET), cálculo de métricas e organização dos artefatos produzidos (arqui-
vos CSV/JSON e figuras). Essas informações permitem que terceiros repliquem integralmente
os experimentos e verifiquem os resultados a partir dos mesmos insumos e configurações.
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Ambiente de Execução

Todos os testes foram conduzidos em ambiente controlado, dentro de uma máquina virtual
configurada especificamente para o estudo. A Tabela 5.2 descreve as especificações técnicas
do ambiente experimental utilizado.

Tabela 5.2: Especificações do ambiente de execução dos experimentos.

Categoria Item Descrição
Sistema Sistema operacional Linux Ubuntu 22.04 LTS (64 bits)

Hardware Processador Intel Core i7-12700H (14 núcleos, 3.5 GHz)

Hardware Memória RAM 16 GB DDR5

Software Versão do Python 3.11.7 (ambiente virtual isolado)

Biblioteca NetworkX Modelagem e análise de grafos em Python.

Biblioteca Pandas Manipulação de dados tabulares (DataFrames) e CSV.

Biblioteca NumPy Arrays e operações numéricas vetorizadas.

Biblioteca Matplotlib Geração de figuras e gráficos estáticos.

Biblioteca Seaborn Visualizações estatísticas com estilos aprimorados.

Biblioteca PyTorch Treinamento e inferência de redes neurais em CPU.

Biblioteca Torch Geometric Operadores e camadas para GNNs (ex.: GIN, pooling).

Execução Interface de execução Aplicação local do Isomera, modo offline.

Os experimentos foram executados exclusivamente em CPU (sem GPU), em uma máquina
virtual dedicada e sem outras cargas concorrentes, com toda a execução em modo offline. As
dependências foram isoladas em um ambiente virtual (venv) para fixar versões. Os tempos
foram medidos com relógio de alta resolução do Python e não houve paralelização explícita
nas rotinas de isomorfismo, facilitando a replicação em ambiente equivalente.

Parâmetros Experimentais

A configuração dos experimentos seguiu um conjunto padronizado de parâmetros, garantindo
que todos os testes pudessem ser reproduzidos de forma consistente. Esses parâmetros definem
o número de execuções, as sementes aleatórias utilizadas e a estrutura do conjunto de referência
(ground truth). A Tabela 5.3 apresenta o resumo dessas configurações.
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Tabela 5.3: Parâmetros experimentais e controles de reprodutibilidade.

Parâmetro Descrição
Número de repetições Execução em lote para todas as instâncias de cada cenário,

com repetições controladas por um conjunto fixo de semen-
tes.

Sementes aleatórias Valores e locais: random=42; NumPy=42;
PyTorch=42; geração/nomeação dos grafos (arquivos
.gml)=42; amostragem de negativos e embaralhamen-
tos=42.

Tipos de cenário TPC-DS com quatro níveis de complexidade (SOR ∈ {2,
4, 8, 16}).

Ground truth Construída manualmente na fase de valida-
ção supervisionada e armazenada em JSON
(validations/real_pairs_*.json).

Critério de execução Conjunto de instâncias e número de repetições definidos
previamente; não há critério adaptativo de parada.

Persistência dos resultados Artefatos gerados localmente: tempos
(execution_times.csv), métricas
(evaluation_metrics.csv), pares predi-
tos (predicted_pairs/*.json) e figuras
(img/*.png).

Adoções específicas para mensuração de tempo (ET): no Estudo de Caso I (VF2 e Node
Match), o ET corresponde ao tempo de processamento por par de grafos no algoritmo avaliado.
No Estudo de Caso II (GNN), o ET refere-se apenas ao tempo de inferência por par; o tempo de
treinamento é realizado uma única vez por cenário e não é contabilizado no ET das predições.

Os artefatos e seus diretórios estão resumidos na Tabela 5.4. O formato GML (Graph
Modelling Language) é um formato textual legível que representa grafos com nós/arestas e
atributos.

Tabela 5.4: Artefatos persistidos e diretórios de saída.

Recurso Local
Grafos de entrada (.gml) benchmark_graphs/

Modelos GNN (.pkl) modelos_gnn/

Com base nesses artefatos, a Tabela 5.5 resume os conjuntos e hiperparâmetros fixados nas
execuções de referência. Termos consagrados de aprendizado de máquina são mantidos em
inglês quando necessário e definidos brevemente no texto.
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Tabela 5.5: Conjuntos e hiperparâmetros fixos utilizados.

Item Valor/Descrição

SOR {2,4,8,16}
Domínios {1,2,3,4,5}
Semente (grafos/.gml) seed = 42

Repetições runs = 1000 (VF2, NodeMatch); runs = 1000
(GNN — inferência)

GNN — arquitetura 2 camadas GIN (64 unidades) + global mean pooling;
classificador denso (oculta = 128)

GNN — treinamento epochs = 50; lr = 0.01 (learning rate);
BCEWithLogitsLoss; otimizador Adam

GNN — limiares threshold de inferência = 0.3; limiar de treino para
contagem de acerto = 0.6

O limiar (threshold) é o ponto de decisão aplicado à probabilidade para classificar um par
como duplicado. Como a duplicidade é rara no conjunto, usar 0.3 na inferência reduz a chance
de deixar de identificar duplicações verdadeiras, aceitando mais candidatos para verificação. Já
0.6 é empregado somente como critério interno de contagem durante o treino, para uma leitura
mais conservadora da evolução por época; esse limiar não interfere na decisão final do modelo.

Sobre o PyTorch Geometric, usamos essa biblioteca para construir a rede de grafos: o
modelo aprende representações dos subgrafos e, com base nelas, decide se há duplicidade.
Em linhas gerais, combinamos camadas que capturam a estrutura do grafo com uma etapa de
agregação (pooling) que resume o subgrafo em um vetor, seguida de um classificador simples.
Nos benchmarks, somente a inferência do modelo é considerada no tempo de execução (ET).

O learning rate (lr) define o tamanho do passo nas atualizações dos pesos; adotamos 0.01
por oferecer progresso consistente sem oscilações. O Adam é um otimizador que combina
momento e ajuste adaptativo para cada parâmetro, o que costuma acelerar a convergência. A
BCEWithLogitsLoss é uma função de custo para classificação binária que opera diretamente
com logits e já incorpora a sigmoid, trazendo estabilidade numérica.

A acurácia média de treinamento foi 74,31%, calculada como a média das acurácias finais
de cada cenário (D1–D5). Foi necessário treinar um modelo por cenário e salvar um arquivo
.pkl para cada um, porque um único modelo global não alcançou boa acurácia; os padrões
estruturais variam por cenário e o ajuste específico por domínio trouxe resultados melhores. A
Tabela 5.6 apresenta os valores por cenário e os respectivos modelos treinados.
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Tabela 5.6: Média de acurácia final por cenário (D1–D5) e respectivos modelos.

Cenário (D) Média de Acurácia (%) Modelos Correspondentes
D1 72.99 graph_SOR2_D1, graph_SOR4_D1,

graph_SOR8_D1, graph_SOR16_D1

D2 75.00 graph_SOR2_D2, graph_SOR4_D2,
graph_SOR8_D2, graph_SOR16_D2

D3 75.00 graph_SOR2_D3, graph_SOR4_D3,
graph_SOR8_D3, graph_SOR16_D3

D4 75.00 graph_SOR2_D4, graph_SOR4_D4,
graph_SOR8_D4, graph_SOR16_D4

D5 73.81 graph_SOR2_D5, graph_SOR4_D5,
graph_SOR8_D5, graph_SOR16_D5

A adoção desses parâmetros assegura que qualquer pesquisador possa reproduzir integral-
mente os resultados apresentados nesta dissertação, bastando replicar as mesmas configurações
experimentais e utilizar a versão da ferramenta Isomera disponibilizada no repositório público
do projeto.

5.5 Estudo de Caso I

O primeiro estudo de caso foi conduzido com base nos quatro cenários definidos na Seção 5.2,
utilizando grafos derivados de transformações estruturais sobre o benchmark TPC-DS. O prin-
cipal objetivo foi comparar o desempenho de dois algoritmos de detecção de isomorfismos,
VF2 e Node Match, frente a diferentes níveis de complexidade arquitetural, representados pelo
número de tabelas de origem (SOR).

5.5.1 Metodologia

A avaliação foi realizada de forma sistemática, com a geração automática de múltiplas ins-
tâncias para cada configuração de complexidade, controlando o número de SOR e o grau de
conectividade das estruturas de dados. Cada par de grafos foi submetido tanto ao algoritmo
VF2 quanto ao Node Match.

As métricas utilizadas para análise, conforme definido na Seção 2.5, foram:

• Tempo médio de execução (ET)

• Acurácia (ACC);

• Frequência de Sucesso (SF).

A execução foi repetida com variações controladas de sementes aleatórias para assegurar a
reprodutibilidade dos experimentos.
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5.5.2 Análise dos resultados

As Figuras 5.3, 5.4 e 5.5 apresentam, respectivamente, a distribuição dos tempos de execução,
a acurácia e a evolução da frequência de sucesso (SF) em função da complexidade dos cenários.

Figura 5.3: Tempo de execução (ET) para diferentes configurações de SOR.

A partir da análise dos resultados, observa-se uma tendência consistente de queda no desem-
penho dos algoritmos à medida que a complexidade estrutural dos grafos aumenta, conforme
representado pelo número de tabelas de origem (SOR).

No que diz respeito ao tempo médio de execução (ET), ambos os métodos apresentaram
tempos significativamente baixos nos cenários mais simples. Para SOR = 2, o VF2 registrou
aproximadamente 1,10 segundos, enquanto o Node Match atingiu 1,11 segundos. Já no cenário
com SOR = 4, os tempos médios foram de 5,18 segundos para o VF2 e 4,61 segundos para o
Node Match. Com o aumento da complexidade, observa-se uma elevação gradual nos tempos
de processamento: com SOR = 8, o VF2 alcançou 16,65 segundos e o Node Match 15,81
segundos; por fim, com SOR = 16, ambos os algoritmos convergiram para um tempo médio
próximo a 24 segundos (VF2: 23,57 s; Node Match: 23,76 s).

Em relação à acurácia (ACC), os resultados foram baixos em todos os cenários, especial-
mente no mais complexo. Com SOR = 16, tanto o VF2 quanto o Node Match atingiram valores
próximos de apenas 4% de acertos (4,04% e 4,29%, respectivamente), refletindo a limitação
dessas abordagens na identificação de isomorfismos em arquiteturas altamente densas. Nos de-
mais cenários, o Node Match apresentou desempenho superior ao VF2. Especificamente: para
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Figura 5.4: Acurácia (ACC) para diferentes configurações de SOR.

SOR = 2, o VF2 obteve 13,77% de acurácia, enquanto o Node Match alcançou 17,72%; com
SOR = 4, os valores foram de 16,83% (VF2) e 22,67% (Node Match); em SOR = 8, o VF2
obteve 14,77% e o Node Match 17,67%. Esses resultados sugerem que o Node Match, mesmo
sendo heurístico, é mais resiliente diante de alterações estruturais em grafos moderadamente
complexos.

A métrica composta de frequência de sucesso (SF), que pondera tempo e acurácia, eviden-
cia com mais clareza a vantagem relativa do Node Match em cenários com menor e média
complexidade. No caso de SOR = 2, o Node Match alcançou 168,64 acertos por segundo,
enquanto o VF2 registrou 143,65 acertos por segundo. Para SOR = 4, o ganho foi ainda mais
expressivo: o Node Match atingiu 358,52 acertos por segundo, contra 220,80 acertos por se-
gundo do VF2. Com SOR = 8, os valores também favoreceram o Node Match, com 220,42
acertos por segundo, frente a 161,91 acertos por segundo do VF2. Entretanto, no cenário mais
complexo (SOR = 16), ambos os algoritmos apresentaram quedas drásticas na eficiência: o
Node Match obteve 26,16 acertos por segundo, enquanto o VF2 registrou 22,85 acertos por
segundo. Esses resultados reforçam que nenhuma das abordagens avaliadas é adequada para
lidar com estruturas de larga escala, evidenciando a necessidade de técnicas mais robustas e
escaláveis para contextos de maior densidade estrutural.

Esses achados reforçam não apenas a utilidade do framework proposto como ferramenta
de análise comparativa, mas também a necessidade de incorporar novos algoritmos capazes de
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Figura 5.5: Evolução da frequência de sucesso (SF) conforme aumenta a complexidade.

lidar com grafos maiores e mais intrincados — o que motiva o aprofundamento explorado no
Estudo de Caso II.

5.5.3 Considerações Finais do Estudo de Caso I

Embora o desempenho dos algoritmos tenha sido limitado, este primeiro estudo de caso cumpre
seu papel como etapa metodológica fundamental. Ele permitiu validar o arcabouço de simu-
lação e avaliação proposto, além de evidenciar a necessidade de abordagens mais sofisticadas
para cenários de alta complexidade. A partir dessa constatação, o próximo estudo de caso
(Seção 5.6) busca ampliar a análise com a introdução de novos algoritmos, incluindo métodos
baseados em aprendizado supervisionado e técnicas mais modernas de embeddings estruturais.

5.6 Estudo de Caso II

Dando continuidade à análise iniciada no Estudo de Caso I, o segundo estudo de caso tem
como foco a inclusão de um novo algoritmo baseado em aprendizado supervisionado: uma
rede neural gráfica (GNN), como descrito na subseção 2.4.3. A principal motivação desta etapa
é investigar se, em cenários com maior complexidade estrutural, a abordagem supervisionada
pode oferecer ganhos de acurácia e custo-benefício (SF), superando as limitações observadas
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nas técnicas clássicas.

5.6.1 Metodologia

Para viabilizar a aplicação do GNN, foi necessário treinar um modelo para cada cenário ex-
perimental, com base em exemplos reais de pares isomorfos. Inicialmente, cada grafo foi
decomposto em subgrafos locais, considerando um nó central e seus vizinhos diretos. Os pa-
res de subgrafos rotulados como isomorfos (positivos) foram extraídos manualmente, enquanto
os pares negativos foram gerados de forma aleatória, respeitando o balanceamento e evitando
sobreposição com os positivos.

Cada subgrafo foi convertido para o formato PyTorch Geometric (PyG), com atributos cons-
tantes nos nós e arestas dirigidas. Durante o treinamento, a arquitetura GIN recebeu esses pares
como entrada, processando cada subgrafo com duas camadas convolucionais seguidas de mean
pooling. Os vetores gerados foram concatenados e passados por uma rede densa para prever a
probabilidade de isomorfismo. O treinamento foi supervisionado, utilizando função de custo
BCEWithLogitsLoss e otimizador Adam, com 50 épocas de aprendizado por cenário. Os mo-
delos resultantes foram salvos e empregados na fase de inferência com limiar de decisão fixo.

Além das métricas de avaliação em teste, acompanhou-se a acurácia de treinamento por
época para monitorar a convergência do modelo. A média da acurácia de treino ao longo das
épocas, agregada por cenário, foi de 74,31%.

Mantendo a mesma configuração experimental descrita na Seção 5.2, os experimentos fo-
ram estendidos para incluir o GNN supervisionado, treinado com base em amostras reais de
isomorfismos presentes nos dados de entrada. O modelo foi avaliado sob os mesmos critérios
anteriores: tempo de execução (ET), acurácia (ACC) e frequência de sucesso (SF), utilizando
os mesmos cenários com 2, 4, 8 e 16 tabelas de origem (SOR).

A adição do GNN permite avaliar o potencial de generalização do modelo em grafos não
vistos, bem como sua escalabilidade frente à complexidade arquitetural. O código da Seção A.2
mostra o treinamento do GNN e a execução do VF2 e Node Match.

5.6.2 Análise dos Resultados

As Figuras 5.6, 5.7 e 5.8 ilustram, respectivamente, a comparação entre os três algoritmos
quanto ao tempo de execução, acurácia e frequência de sucesso, em cada configuração de SOR.

Em termos de tempo de execução, o GNN apresentou desempenho inferior aos algoritmos
VF2 e Node Match, com tempos significativamente mais altos em todos os cenários. Para SOR
= 2, o GNN registrou 0,17 segundos, contra 0,01 segundos de VF2 e Node Match. Em SOR
= 4, o tempo aumentou para 0,58 segundos (GNN), enquanto o VF2 ficou em 0,05 segundos
e o Node Match em 0,04 segundos. Com SOR = 8, o tempo médio do GNN chegou a 1,75
segundos, frente a 0,16 segundos do VF2 e 0,15 segundos do Node Match. Finalmente, no
cenário mais complexo (SOR = 16), o GNN atingiu 1,78 segundos, contra 0,23 segundos nos
dois algoritmos clássicos.

Apesar da maior carga computacional, o GNN apresentou melhoria nas taxas de acerto
em cenários complexos. Para SOR = 16, sua acurácia foi de 12,80%, superior aos 4,29% do
Node Match e 4,04% do VF2. Para SOR = 8, a acurácia do GNN alcançou 20,87%, frente a
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Figura 5.6: Tempo de execução (ET) para diferentes configurações de SOR com inclusão do
GNN.

17,67% (Node Match) e 14,77% (VF2). No entanto, nos cenários mais simples, o GNN obteve
desempenho inferior: 7,27% de acurácia para SOR = 2 e 15,76% para SOR = 4, ambos abaixo
dos resultados dos algoritmos clássicos nesses mesmos cenários.

A métrica de frequência de sucesso (SF), que pondera simultaneamente tempo e acurácia,
evidenciou o custo da abordagem supervisionada. O GNN teve SF de apenas 3,99 acertos por
segundo para SOR = 2, 15,96 para SOR = 4, 21,93 para SOR = 8 e 11,17 para SOR = 16. Esses
valores são significativamente menores que os obtidos pelos demais algoritmos: por exemplo,
com SOR = 4, o Node Match atingiu 358,52 acertos por segundo, e o VF2, 220,80. Em SOR =
8, o Node Match chegou a 220,42, contra 21,93 do GNN, ainda que a acurácia do GNN tenha
superado as demais em forma isolada.

5.7 Conclusão dos Estudos de Caso

A realização dos estudos de caso permitiu validar a metodologia proposta para avaliação de al-
goritmos de detecção de redundância estrutural em arquiteturas baseadas em grafos. Utilizando
uma base adaptada do benchmark TPC-DS, foi possível estruturar cenários com diferentes ní-
veis de complexidade representados pelo número de tabelas SOR e analisar o desempenho em
cada cenário.
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Figura 5.7: Acurácia (ACC) para diferentes configurações de SOR com inclusão do GNN.

No Estudo de Caso I, a comparação entre os algoritmos VF2 e Node Match revelou que,
apesar de suas limitações em termos de acurácia, ambos apresentaram bom desempenho com-
putacional nos cenários de baixa complexidade. O Node Match destacou-se pela maior fre-
quência de sucesso (SF) em SOR menores, sugerindo sua utilidade como ferramenta de triagem
preliminar. No entanto, ambos os algoritmos demonstraram severa degradação de desempenho
à medida que a complexidade estrutural aumentava, tanto em termos de tempo quanto de acerto,
especialmente com SOR = 16.

Diante dessa limitação, o Estudo de Caso II incorporou uma abordagem supervisionada ba-
seada em redes neurais (GNN), com o objetivo de investigar ganhos em acurácia nos cenários
mais complexos. Os resultados indicaram que o GNN, de fato, obteve melhor desempenho em
termos de acurácia para SOR = 8 e SOR = 16, superando consistentemente os métodos ante-
riores nesse critério. Contudo, o custo computacional da inferência afetou negativamente sua
frequência de sucesso (SF), indicando que, embora promissora, a abordagem supervisionada
ainda demanda otimizações para aplicações em tempo real.

Do ponto de vista metodológico, os estudos confirmaram a efetividade do arcabouço pro-
posto. A geração automática dos cenários, a definição precisa das métricas e a aplicação siste-
mática dos algoritmos garantiram reprodutibilidade e comparabilidade dos resultados. Mais do
que avaliar algoritmos isolados, a metodologia se mostrou eficaz como ferramenta de experi-
mentação científica voltada à análise da robustez, escalabilidade e custo-benefício de diferentes
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Figura 5.8: Frequência de Sucesso (SF) para diferentes configurações de SOR com inclusão do
GNN.

estratégias de detecção de redundâncias.
Assim, os estudos de caso não apenas evidenciam limitações das abordagens tradicionais

em arquiteturas complexas, como também sinalizam caminhos para a evolução da técnica, seja
por meio de métodos supervisionados otimizados, estratégias híbridas ou mecanismos adapta-
tivos de seleção de algoritmos conforme o grau de complexidade da arquitetura em análise.

5.8 Limitações e Ameaças à Validade

Como todo experimento empírico em ciência de dados, os estudos apresentados nesta disserta-
ção estão sujeitos a limitações que podem afetar a generalização e a interpretação dos resulta-
dos. Esta subseção discute as principais ameaças à validade do trabalho, concentrando-se em
três dimensões críticas: dependência de validação manual, escalabilidade e custo computacio-
nal, e generalização dos resultados para ambientes Data Mesh reais.

Dependência de Validação Manual

A principal limitação da metodologia reside na necessidade de validação supervisionada por es-
pecialistas para confirmar se as duplicidades detectadas correspondem, de fato, a redundâncias
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funcionais. Apesar de os algoritmos de isomorfismo — VF2, Node Match e GNN — serem
capazes de identificar similaridades estruturais com precisão, nem sempre a equivalência topo-
lógica implica equivalência semântica. Em ambientes corporativos, duas tabelas podem possuir
o mesmo formato e conexões, mas desempenhar papéis distintos em contextos de negócio es-
pecíficos.

Por essa razão, a intervenção humana torna-se essencial para evitar a exclusão de entidades
legítimas e preservar a integridade lógica do sistema. Essa dependência, entretanto, introduz
uma limitação prática: a escalabilidade do processo de validação. Em arquiteturas de larga
escala, a revisão manual de pares de subgrafos torna-se custosa e demorada, podendo afetar o
tempo total de análise. Nos trabalhos futuros, propõe-se o uso de abordagens com IA gene-
rativa, de modo a reduzir o esforço manual e acelerar ou retirar o processo de confirmação de
duplicidades.

Escalabilidade e Custo Computacional

Outra limitação relevante diz respeito ao custo computacional dos algoritmos de detecção, es-
pecialmente quando aplicados a grafos de alta densidade. O algoritmo VF2, embora exato,
apresenta complexidade exponencial e torna-se inviável em arquiteturas muito grandes. Mesmo
o Node Match, um algoritmo híbrido com pré-filtragem, e o modelo supervisionado GNN, com
melhor capacidade de generalização, ainda demandam recursos computacionais significativos
quando o número de vértices e arestas cresce exponencialmente. Nos trabalhos futuros, propõe-
se o uso de abordagens com IA generativa, de modo a reduzir o esforço manual e acelerar ou
até eliminar o processo de confirmação de duplicidades.

Durante os experimentos realizados, observou-se que o tempo médio de execução aumen-
tava substancialmente em cenários com mais de 16 tabelas de origem (SOR), o que evidencia
o impacto direto da complexidade estrutural sobre a eficiência dos métodos. Como mitigação,
recomenda-se, em aplicações práticas, o uso de técnicas de paralelização, particionamento de
grafos e indexação de subestruturas recorrentes, de forma a distribuir a carga de processamento
e tornar o processo de detecção mais escalável.

Há a necessidade de mais estudos voltados à compreensão detalhada da complexidade com-
putacional envolvida na detecção de isomorfismos, considerando fatores como tamanho, den-
sidade e profundidade topológica dos grafos. Investigações adicionais podem contribuir para
o desenvolvimento de mecanismos de estimativa e controle de custo, bem como de técnicas
que reduzam o impacto da complexidade, como a decomposição hierárquica de componentes,
a compressão de subgrafos equivalentes e a adoção de heurísticas adaptativas para ajuste dinâ-
mico do nível de busca. Essas abordagens podem ampliar a aplicabilidade da metodologia a
ambientes corporativos de larga escala, equilibrando precisão analítica e desempenho compu-
tacional.

A Tabela 5.7 apresenta as principais ameaças à validade observadas nos estudos experimen-
tais e as respectivas estratégias de mitigação consideradas no escopo desta dissertação.
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Tabela 5.7: Síntese das ameaças à validade e estratégias de mitigação

Categoria Descrição da Limitação Mitigação / Direção de Aper-
feiçoamento

Dependência de va-
lidação manual

A metodologia requer interven-
ção humana para confirmar se
pares identificados pelos algorit-
mos representam realmente du-
plicidades funcionais. Essa de-
pendência limita a escalabili-
dade do processo e pode introdu-
zir vieses subjetivos, principal-
mente em arquiteturas muito ex-
tensas.

Integrar técnicas de IA genera-
tiva capazes de sugerir automa-
ticamente classificações prelimi-
nares de duplicidade com base
em padrões históricos.

Custo computacio-
nal

O tempo de execução cresce de
forma não linear com o número
de vértices e arestas, tornando o
processo inviável para grafos de
alta densidade. Os algoritmos
exatos, como VF2, sofrem com
explosão combinatória, e mesmo
abordagens heurísticas e super-
visionadas demandam recursos
intensivos.

Adoção de estratégias de parale-
lização, particionamento de gra-
fos e indexação de subestrutu-
ras recorrentes para distribuir a
carga de processamento. Estu-
dos adicionais são necessários
para mensurar e reduzir a com-
plexidade estrutural de grafos de
grande escala.

Generalização dos
resultados

Os experimentos foram conduzi-
dos em cenários controlados —
tanto sintéticos quanto baseados
no benchmark TPC-DS — que,
embora realistas, não abrangem
toda a diversidade de arquitetu-
ras corporativas.

Aplicação e validação da me-
todologia em diferentes contex-
tos, incluindo arquiteturas reais
de Data Mesh, Data Lake e Data
Warehouse, garantindo maior ro-
bustez e capacidade de generali-
zação.

Limitações do
ground truth

A base de referência utilizada
para rotulagem contém apenas
pares previamente identificados
e validados, restringindo a di-
versidade de exemplos para trei-
namento e avaliação supervisio-
nada.

Ampliação da base de pares vali-
dados e criação de pipelines au-
tomáticos de geração e valida-
ção cruzada entre domínios, com
monitoramento de consistência
semântica usando IA generativa.
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Conclusão e Trabalhos Futuros

Esta dissertação apresentou uma metodologia sistemática para a detecção de redundâncias es-
truturais em arquiteturas de dados distribuídas, com ênfase na aplicabilidade ao contexto de
Data Mesh. O principal foco deste trabalho não foi o desempenho absoluto de um algoritmo es-
pecífico, mas sim o desenvolvimento de um arcabouço metodológico reprodutível, comparável
e extensível, capaz de apoiar pesquisadores e profissionais na avaliação objetiva de diferentes
estratégias de detecção.

A proposta foi operacionalizada por meio da ferramenta Isomera, construída para permitir
simulações automáticas, validações controladas e medições padronizadas em arquiteturas mo-
deladas como grafos direcionados. A metodologia baseia-se em quatro etapas articuladas: (i)
geração de grafos estruturais a partir de cenários sintéticos ou benchmarks realistas; (ii) aplica-
ção de algoritmos de isomorfismo (VF2, Node Match ou GNN); (iii) validação supervisionada
dos pares redundantes; e (iv) avaliação do desempenho com base em métricas objetivas como
tempo de execução, acurácia e frequência de sucesso (SF).

A realização de dois estudos de caso distintos demonstrou o valor da metodologia proposta.
O Estudo de Caso I comparou os algoritmos VF2 e Node Match em diferentes configurações de
complexidade, revelando limitações previsíveis nas abordagens clássicas — sobretudo em ce-
nários densos, mas, mais importante, validando o funcionamento do arcabouço sob condições
controladas e reprodutíveis. Já o Estudo de Caso II introduziu uma rede neural gráfica (GNN)
supervisionada como uma alternativa mais robusta para contextos de alta complexidade. Em-
bora o custo computacional tenha sido superior, o aumento de acurácia nos cenários com 8 e 16
SOR mostrou que modelos de aprendizado supervisionado podem capturar padrões estruturais
que escapam aos algoritmos tradicionais.

Em resposta às perguntas de pesquisa, demonstrou-se que é possível aplicar algoritmos de
isomorfismo para detectar automaticamente estruturas redundantes em arquiteturas orientadas
a dados, desde que essas arquiteturas estejam representadas em forma de grafos com modela-
gem consistente. A comparação entre algoritmos clássicos e modelos baseados em aprendizado
supervisionado revelou que diferentes técnicas apresentam vantagens distintas conforme a den-
sidade e o grau de sobreposição entre os domínios. Além disso, observou-se que a intervenção
humana na etapa de validação é indispensável para evitar que pares estruturalmente equivalen-
tes, mas semanticamente distintos, sejam erroneamente classificados como duplicidade. Assim,
a metodologia proposta mostrou-se adequada para integrar automação e julgamento humano de
forma complementar no processo de refinamento arquitetural.

Contudo, o maior resultado desta pesquisa não está nos valores numéricos isolados, mas
na consolidação de um processo experimental que une geração sistemática de dados, aplicação
modular de algoritmos, supervisão de resultados e mensuração quantitativa. Ao estruturar esse
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ciclo completo, o trabalho oferece uma base confiável para replicação científica, comparação
entre métodos e avanço incremental no campo da engenharia de dados orientada a grafos.

Adicionalmente à metodologia, o trabalho contribuiu com o desenvolvimento de um arte-
fato computacional completo, escrito em Python, capaz de reproduzir todas as etapas propostas,
desde a geração dos grafos até a exportação dos pares detectados e das métricas de desempe-
nho. A ferramenta Isomera permite a integração com benchmarks sintéticos (como o TPC-DS)
e viabiliza experimentos controlados com diferentes algoritmos e configurações. Seu código
modular e interface interativa contribuem não apenas para o uso prático em ambientes corpo-
rativos, como também para o ensino, pesquisa e reprodutibilidade acadêmica.

Por fim, espera-se que este trabalho inspire futuras investigações que combinem modelagem
algébrica, técnicas de aprendizado de máquina e representação em grafos para o aprimoramento
da governança de dados em ecossistemas complexos e descentralizados.

Trabalhos Futuros

Como desdobramentos naturais deste estudo, destacam-se as seguintes linhas de continuidade:

• Detecção a nível colunar: estender o modelo atual para identificar redundâncias e equi-
valências estruturais também em nível de colunas, permitindo uma análise mais granular
das dependências entre atributos das tabelas;

• Geração de grafos a partir de bases reais: implementar mecanismos automáticos de
construção de grafos diretamente a partir de esquemas e metadados de bancos de dados
relacionais (PostgreSQL, MySQL, Glue Catalog etc.), possibilitando a validação empí-
rica do método proposto;

• Aplicação em tempo real e batch: adaptar a metodologia para ambientes híbridos, per-
mitindo a execução contínua de verificações de redundância tanto em fluxos em tempo
real quanto em processamentos em lote;

• Aprimoramento semântico: expandir o modelo atual para incorporar ontologias e me-
tadados semânticos, permitindo detectar redundâncias conceituais além das estruturais;

• Testes com novos algoritmos de aprendizado: incluir abordagens supervisionadas e
não supervisionadas como autoencoders, graph transformers, e modelos de aprendizado
contrastivo;

• Exploração de IA generativa: investigar a aplicação de modelos generativos (GNNs
generativos, LLMs com raciocínio estrutural) para propor agrupamentos e reduções ar-
quiteturais de forma proativa;

• Integração com metadados reais: habilitar a leitura direta de esquemas de bancos de
dados (PostgreSQL, MySQL, Glue Catalog etc.), facilitando a aplicação prática da me-
todologia em pipelines produtivos;
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• Desenvolvimento colaborativo: evoluir a ferramenta Isomera para uma plataforma in-
terativa com validação distribuída, versionamento de testes e exportação de relatórios;

• Simulação de impacto operacional: integrar redes estocásticas de Petri para avaliar
como a presença ou remoção de redundâncias afeta disponibilidade em arquiteturas Data
Mesh;

• Estudo de custos computacionais e escalabilidade: investigar o comportamento de de-
sempenho e os custos computacionais associados à execução dos algoritmos de detecção
de isomorfismos e à manutenção de pipelines em arquiteturas Data Mesh, analisando
tempo de execução, uso de memória, variação com o aumento do número de vértices e
arestas, e limites práticos de escalabilidade em cenários distribuídos;

• Análise de complexidade computacional: realizar uma avaliação comparativa entre
diferentes algoritmos de isomorfismo de grafos considerando tempo de execução, es-
calabilidade e uso de memória. Os resultados poderão ser organizados em tabelas de
complexidade e benchmarks experimentais para diferentes topologias de grafos.
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APÊNDICE A

Códigos

A.1 Geração de Grafos com Base no TPC-DS

O código abaixo mostra a função desenvolvida em Python para gerar cenários de benchmark
com diferentes quantidades de tabelas e domínios, utilizando dados do TPC-DS. A função cria
grafos dirigidos representando arquiteturas Data Mesh simuladas.

Listing A.1: Função de geração de grafos baseada no TPC-DS
1 import networkx as nx
2 import random
3 import os
4

5 def build_tpcds_graph_scenario(sor_count=2, domain_count=1, seed=42,
save_gml=True, output_dir="benchmark_graphs"):

6 random.seed(seed)
7 G = nx.DiGraph()
8

9 domain_templates = {
10 "D1": {"label": "Customer", "SORs": ["SOR_customer", "

SOR_customer_address", "SOR_customer_demographics"]},
11 "D2": {"label": "Store", "SORs": ["SOR_store", "SOR_region", "

SOR_nation", "SOR_call_center"]},
12 "D3": {"label": "Catalog", "SORs": ["SOR_item", "SOR_promotion", "

SOR_reason"]},
13 "D4": {"label": "Time", "SORs": ["SOR_date_dim", "SOR_time_dim"]},
14 "D5": {"label": "Warehouse", "SORs": ["SOR_warehouse", "

SOR_ship_mode", "SOR_income_band"]}
15 }
16

17 all_sots = [
18 "SOT_customer_attr", "SOT_customer_orders", "SOT_store_sales", "

SOT_catalog_sales",
19 "SOT_web_sales", "SOT_time_sales", "SOT_warehouse_stock"
20 ]
21

22 sot_sor_template = {
23 "SOT_customer_attr": ["SOR_customer", "SOR_customer_address", "

SOR_customer_demographics"],
24 "SOT_customer_orders": ["SOR_customer", "SOR_item", "SOR_date_dim"

],
25 "SOT_store_sales": ["SOR_store", "SOR_region", "SOR_promotion"],
26 "SOT_catalog_sales": ["SOR_item", "SOR_promotion", "SOR_reason"],

116
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27 "SOT_web_sales": ["SOR_customer", "SOR_item", "SOR_time_dim"],
28 "SOT_time_sales": ["SOR_date_dim", "SOR_time_dim"],
29 "SOT_warehouse_stock": ["SOR_warehouse", "SOR_ship_mode", "

SOR_income_band"]
30 }
31

32 all_specs = [
33 "SPEC_customer_summary", "SPEC_store_sales_summary", "

SPEC_catalog_performance",
34 "SPEC_web_sales_summary", "SPEC_time_analysis", "

SPEC_warehouse_logistics"
35 ]
36

37 spec_template_inputs = {
38 "SPEC_customer_summary": [
39 "SOT_customer_attr", "SOT_customer_orders",
40 "SPEC_store_sales_summary", "SPEC_catalog_performance"
41 ],
42 "SPEC_store_sales_summary": [
43 "SOT_store_sales", "SOT_customer_orders", "

SPEC_customer_summary"
44 ],
45 "SPEC_catalog_performance": [
46 "SOT_catalog_sales", "SOT_customer_attr", "SOT_store_sales"
47 ],
48 "SPEC_web_sales_summary": [
49 "SOT_web_sales", "SOT_customer_orders", "SPEC_customer_summary"
50 ],
51 "SPEC_time_analysis": [
52 "SOT_time_sales", "SOT_web_sales", "SOT_catalog_sales"
53 ],
54 "SPEC_warehouse_logistics": [
55 "SOT_warehouse_stock", "SOT_store_sales", "

SPEC_store_sales_summary"
56 ]
57 }
58

59 all_sor_nodes, all_sot_nodes, all_spec_nodes = [], [], []
60 domain_sors_dict, domain_sots_dict = {}, {}
61

62 for d in range(1, domain_count + 1):
63 domain_key = f"D{d}"
64 template_sors = domain_templates[domain_key]["SORs"]
65 selected_sors = []
66

67 if sor_count <= len(template_sors):
68 selected_sors = random.sample(template_sors, sor_count)
69 else:
70 selected_sors = template_sors.copy()
71 extras_needed = sor_count - len(template_sors)
72 for i in range(extras_needed):
73 selected_sors.append(f"SOR_extra_{i+1}")
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74

75 domain_sors = []
76 for sor in selected_sors:
77 node = f"{sor}_{domain_key}"
78 G.add_node(node, type="SOR")
79 domain_sors.append(node)
80 all_sor_nodes.append(node)
81

82 domain_sors_dict[domain_key] = domain_sors
83

84 for domain_key, sor_nodes in domain_sors_dict.items():
85 selected_sots = random.sample(all_sots, min(len(all_sots),

sor_count))
86 domain_sots = []
87

88 for sot in selected_sots:
89 node = f"{sot}_{domain_key}"
90 G.add_node(node, type="SOT")
91 domain_sots.append(node)
92 all_sot_nodes.append(node)
93

94 template = sot_sor_template.get(sot, [])
95 matches = [f"{s}_{domain_key}" for s in template if f"{s}_{

domain_key}" in sor_nodes]
96 edges = matches[:2] if len(matches) >= 2 else random.sample(

sor_nodes, min(2, len(sor_nodes)))
97

98 for target in edges:
99 G.add_edge(node, target)

100

101 domain_sots_dict[domain_key] = domain_sots
102

103 for domain_key, domain_sots in domain_sots_dict.items():
104 selected_specs = random.sample(all_specs, min(len(all_specs),

sor_count))
105 for spec in selected_specs:
106 node = f"{spec}_{domain_key}"
107 G.add_node(node, type="SPEC")
108 all_spec_nodes.append(node)
109

110 reuse_key = random.choice([k for k in domain_sots_dict if k !=
domain_key]) \

111 if domain_count > 1 and random.random() < 0.3 else
domain_key

112

113 input_keys = spec_template_inputs.get(spec, [])
114 candidates = [f"{i}_{reuse_key}" for i in input_keys if f"{i}_{

reuse_key}" in all_sot_nodes + all_spec_nodes]
115 if not candidates:
116 candidates = random.sample(all_sot_nodes, 1)
117

118 for tgt in candidates:
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119 G.add_edge(node, tgt)
120

121 if save_gml:
122 os.makedirs(output_dir, exist_ok=True)
123 filename = f"{output_dir}/graph_SOR{sor_count}_D{domain_count}_seed

{seed}.gml"
124 nx.write_gml(G, filename)
125 print(f" Grafo salvo: {filename}")
126

127 return G
128

129 def generate_all_benchmark_graphs():
130 for sor in [2, 4, 8, 16]:
131 for domain in [1, 2, 3, 4, 5]:
132 print(f"Gerando grafo para SOR = {sor}, Domain = {domain}")
133 build_tpcds_graph_scenario(sor_count=sor,domain_count=domain,

seed=42)
134

135 generate_all_benchmark_graphs()

A.2 Execução dos algoritmos

Código para execução dos algoritmos VF2, Node Match e GNN. Além do treinamento do
GNN.

Listing A.2: Treinamento GNN
1

2 import os
3 import json
4 import time
5 import pickle
6 import random
7 import networkx as nx
8 import pandas as pd
9 from itertools import combinations

10

11 import torch
12 import torch.nn as nn
13 import torch.nn.functional as F
14 from torch_geometric.data import Data
15 from torch_geometric.nn import global_mean_pool
16

17 # ===============================
18 # MODELOS GNN
19 # ===============================
20

21 class GINLayer(nn.Module):
22 def __init__(self, in_channels, out_channels):
23 super(GINLayer, self).__init__()
24 self.eps = nn.Parameter(torch.zeros(1))
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25 self.mlp = nn.Sequential(
26 nn.Linear(in_channels, out_channels),
27 nn.ReLU(),
28 nn.Linear(out_channels, out_channels)
29 )
30

31 def forward(self, x, edge_index):
32 row, col = edge_index
33 agg = torch.zeros_like(x)
34 agg.index_add_(0, row, x[col])
35 out = self.mlp((1 + self.eps) * x + agg)
36 return out
37

38 class SubgraphGNN(nn.Module):
39 def __init__(self, in_channels=1, hidden_channels=64, out_channels=64):
40 super(SubgraphGNN, self).__init__()
41 self.gin1 = GINLayer(in_channels, hidden_channels)
42 self.gin2 = GINLayer(hidden_channels, out_channels)
43

44 def forward(self, x, edge_index, batch):
45 x = self.gin1(x, edge_index)
46 x = F.relu(x)
47 x = self.gin2(x, edge_index)
48 return global_mean_pool(x, batch)
49

50 class PairClassifier(nn.Module):
51 def __init__(self, emb_size=64):
52 super(PairClassifier, self).__init__()
53 self.fc = nn.Sequential(
54 nn.Linear(emb_size * 2, 128),
55 nn.ReLU(),
56 nn.Linear(128, 1)
57 )
58

59 def forward(self, emb1, emb2):
60 emb1 = emb1.view(1, -1)
61 emb2 = emb2.view(1, -1)
62 x = torch.cat([emb1, emb2], dim=1)
63 return self.fc(x).squeeze(1)
64

65 # ===============================
66 # funcoes auxiliares
67 # ===============================
68

69 def is_valid_pair(u, v):
70 """Retorna True apenas se ambos forem SPEC ou ambos forem SOT."""
71 return (
72 (str(u).startswith("SPEC") and str(v).startswith("SPEC")) or
73 (str(u).startswith("SOT") and str(v).startswith("SOT"))
74 )
75

76 def extract_subgraphs(G):
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77 subgraphs = {}
78 for node in G.nodes:
79 neighbors = list(G.successors(node))
80 subgraphs[node] = G.subgraph([node] + neighbors).copy()
81 return subgraphs
82

83 def graph_to_pyg_data(G_nx):
84 mapping = {n: i for i, n in enumerate(G_nx.nodes)}
85 edge_index = torch.tensor([[mapping[u], mapping[v]] for u, v in G_nx.

edges], dtype=torch.long).t().contiguous()
86 x = torch.ones((len(G_nx.nodes), 1))
87 return Data(x=x, edge_index=edge_index)
88

89 def create_datasets_by_scenario(graph_dir="benchmark_graphs",
validation_dir="validations"):

90 scenario_datasets = {}
91 for filename in os.listdir(validation_dir):
92 if filename.endswith(".json") and filename.startswith("real_pairs_"

):
93 scenario_id = filename.replace("real_pairs_", "").replace(".

json", "")
94 gml_path = os.path.join(graph_dir, f"{scenario_id}.gml")
95

96 with open(os.path.join(validation_dir, filename)) as f:
97 real_pairs = json.load(f)
98

99 G = nx.read_gml(gml_path)
100 subgraphs = extract_subgraphs(G)
101 nodes = list(subgraphs.keys())
102 real_set = set(tuple(sorted(p)) for p in real_pairs if

is_valid_pair(p[0], p[1]))
103

104 dataset = []
105

106 # Positivos (pares reais)
107 for u, v in real_set:
108 g1 = graph_to_pyg_data(subgraphs[u])
109 g2 = graph_to_pyg_data(subgraphs[v])
110 dataset.append((g1, g2, 1.0))
111

112 num_positives = len(real_set)
113 num_negatives = num_positives * 3
114

115 # Negativos (pares aleatorios nao-isomorfos)
116 negative_set = set()
117 attempts = 0
118 max_attempts = 5000
119 while len(negative_set) < num_negatives and attempts <

max_attempts:
120 u, v = random.sample(nodes, 2)
121 pair = tuple(sorted((u, v)))
122 if is_valid_pair(u, v) and pair not in real_set and pair
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not in negative_set:
123 g1 = graph_to_pyg_data(subgraphs[u])
124 g2 = graph_to_pyg_data(subgraphs[v])
125 if g1.edge_index.numel() > 0 and g2.edge_index.numel()

> 0:
126 dataset.append((g1, g2, 0.0))
127 negative_set.add(pair)
128 attempts += 1
129

130 print(f" Dataset para {scenario_id}: {len(real_set)} positivos,
{len(negative_set)} negativos")

131 scenario_datasets[scenario_id] = dataset
132

133 return scenario_datasets
134

135

136 def train_and_save_gnn_model(dataset, model_path="modelos_gnn/gnn_model.pkl
", epochs=50, lr=0.01):

137 device = torch.device(’cuda’ if torch.cuda.is_available() else ’cpu’)
138 gnn = SubgraphGNN().to(device)
139 clf = PairClassifier().to(device)
140 optimizer = torch.optim.Adam(list(gnn.parameters()) + list(clf.

parameters()), lr=lr)
141 criterion = nn.BCEWithLogitsLoss()
142

143 print(f" Treinando modelo: {model_path} com {len(dataset)} pares...")
144 for epoch in range(epochs):
145 random.shuffle(dataset)
146 total_loss = 0
147 correct = 0
148 total = 0
149 for g1, g2, label in dataset:
150 g1, g2 = g1.to(device), g2.to(device)
151 g1.batch = torch.zeros(g1.num_nodes, dtype=torch.long).to(

device)
152 g2.batch = torch.zeros(g2.num_nodes, dtype=torch.long).to(

device)
153 emb1 = gnn(g1.x, g1.edge_index, g1.batch).unsqueeze(0)
154 emb2 = gnn(g2.x, g2.edge_index, g2.batch).unsqueeze(0)
155 pred = clf(emb1, emb2)
156 loss = criterion(pred, torch.tensor([label], dtype=torch.float,

device=device))
157 optimizer.zero_grad()
158 loss.backward()
159 optimizer.step()
160 total_loss += loss.item()
161

162 # Acuracia simples
163 predicted_label = (torch.sigmoid(pred).item() >= 0.6) #

threshold
164 if predicted_label == bool(label):
165 correct += 1
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166 total += 1
167

168 acc = 100 * correct / total if total > 0 else 0.0
169 print(f"Epoca {epoch+1}/{epochs} - Loss: {total_loss:.4f} -

Acuracia: {acc:2f}%")
170

171 os.makedirs(os.path.dirname(model_path), exist_ok=True)
172 with open(model_path, "wb") as f:
173 pickle.dump((gnn.cpu(), clf.cpu()), f)
174 print(f" Modelo salvo: {model_path}")
175

176

177 def train_and_save_models_by_scenario(datasets_dict, output_base_dir="
modelos_gnn_separados", epochs=2, lr=0.01):

178 os.makedirs(output_base_dir, exist_ok=True)
179 for scenario_id, dataset in datasets_dict.items():
180 model_path = os.path.join(output_base_dir, f"{scenario_id}.pkl")
181 train_and_save_gnn_model(dataset, model_path=model_path, epochs=

epochs, lr=lr)
182

183 def predict_isomorphism_with_saved_gnn(G, model_path="modelos_gnn/gnn_model
.pkl", threshold=0.3):

184 if not os.path.exists(model_path):
185 raise FileNotFoundError(f"Modelo GNN ausente em: {model_path}")
186 with open(model_path, "rb") as f:
187 gnn, clf = pickle.load(f)
188

189 device = torch.device(’cuda’ if torch.cuda.is_available() else ’cpu’)
190 gnn, clf = gnn.to(device), clf.to(device)
191

192 subgraphs = extract_subgraphs(G)
193 nodes = list(subgraphs.keys())
194 isomorphic_pairs = []
195

196 for u, v in combinations(nodes, 2):
197 g1_data = graph_to_pyg_data(subgraphs[u])
198 g2_data = graph_to_pyg_data(subgraphs[v])
199

200 if g1_data.edge_index.dim() < 2 or g1_data.edge_index.shape[1] ==
0:

201 continue
202 if g2_data.edge_index.dim() < 2 or g2_data.edge_index.shape[1] ==

0:
203 continue
204

205 g1 = g1_data.to(device)
206 g2 = g2_data.to(device)
207 g1.batch = torch.zeros(g1.num_nodes, dtype=torch.long).to(device)
208 g2.batch = torch.zeros(g2.num_nodes, dtype=torch.long).to(device)
209

210 with torch.no_grad():
211 emb1 = gnn(g1.x, g1.edge_index, g1.batch).unsqueeze(0)
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212 emb2 = gnn(g2.x, g2.edge_index, g2.batch).unsqueeze(0)
213 score = torch.sigmoid(clf(emb1, emb2))
214 prinf(f"[DEBUG] {u} e {v}: score {score.item(}:.4f}")
215 if score.item() >= threshold:
216 isomorphic_pairs.append((u, v))
217

218 return isomorphic_pairs
219

220 def predict_isomorphism_by_scenario(G, scenario_id, model_dir="
modelos_gnn_separados", threshold=0.3):

221 model_path = os.path.join(model_dir, f"{scenario_id}.pkl")
222 return predict_isomorphism_with_saved_gnn(G, model_path=model_path,

threshold=threshold)
223

224 def run_isomorphism_on_benchmarks(
225 input_dir="benchmark_graphs",
226 output_dir="predicted_pairs",
227 algorithms=["VF2", "NodeMatch", "GNN"],
228 runs=1000,
229 time_log="execution_times.csv"
230 ):
231 os.makedirs(output_dir, exist_ok=True)
232

233 for f in os.listdir(output_dir):
234 os.remove(os.path.join(output_dir, f))
235

236 if "GNN" in algorithms:
237 datasets_by_scenario = create_datasets_by_scenario()
238 train_and_save_models_by_scenario(datasets_by_scenario)
239

240 execution_data = []
241 gml_files = [f for f in os.listdir(input_dir) if f.endswith(".gml")]
242

243 total_steps = len(gml_files) * len(algorithms)
244 current_step = 0
245

246 for gml_file in gml_files:
247 gml_path = os.path.join(input_dir, gml_file)
248 scenario_id = gml_file.replace(".gml", "")
249 G = nx.read_gml(gml_path)
250

251 for algo in algorithms:
252 current_step += 1
253 progress = (current_step / total_steps) * 100
254 print(f"\n Progresso: {progress:.2f}% ({current_step}/{

total_steps})")
255 print(f" Executando {algo} em {scenario_id}...")
256

257 total_time = 0
258 all_pairs = set()
259

260 for _ in range(runs if algo != "GNN" else 1):
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261 start = time.time()
262 if algo == "GNN":
263 pairs = predict_isomorphism_by_scenario(G, scenario_id)
264 else:
265 pairs = run_isomorphism(G, algorithm=algo)
266 end = time.time()
267 total_time += (end - start)
268 all_pairs.update(tuple(sorted(p)) for p in pairs)
269

270 avg_time = total_time / (1 if algo == "GNN" else runs)
271 filename = f"{output_dir}/pairs_{scenario_id}_{algo}.json"
272 with open(filename, "w") as f:
273 json.dump(sorted(list(all_pairs)), f, indent=4)
274

275 execution_data.append({
276 "scenario": scenario_id,
277 "algorithm": algo,
278 "runs": 1 if algo == "GNN" else runs,
279 "avg_time_seconds": round(avg_time, 6)
280 })
281 print(f"Resultado salvo: {filename} | tempo medio: {avg_time:.6

f}s")
282

283 df = pd.DataFrame(execution_data)
284 df.to_csv(time_log, index=False)
285 print(f"\n Tabela de tempos salva em: {time_log}")
286

287 def run_isomorphism(G, algorithm="VF2"):
288 subgraphs = [(node, G.subgraph([node] + list(G.successors(node)))) for

node in G.nodes]
289 isomorphic_pairs = []
290 for i in range(len(subgraphs)):
291 for j in range(i + 1, len(subgraphs)):
292 if algorithm == "VF2":
293 if nx.is_isomorphic(subgraphs[i][1], subgraphs[j][1]):
294 isomorphic_pairs.append((subgraphs[i][0], subgraphs[j

][0]))
295 elif algorithm == "NodeMatch":
296 if nx.is_isomorphic(subgraphs[i][1], subgraphs[j][1],

node_match=lambda x, y: x == y):
297 isomorphic_pairs.append((subgraphs[i][0], subgraphs[j

][0]))
298 return isomorphic_pairs
299

300

301 # Rodar
302 run_isomorphism_on_benchmarks()
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