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Resumo

A adocido do paradigma Data Mesh tem impulsionado a descentraliza¢do da posse de dados
nas organizagdes, permitindo que cada dominio de negdécio gerencie seus proprios produtos de
dados. Embora essa abordagem aumente a autonomia e a flexibilidade, ela também intensifica
o risco de criagdo de tabelas estruturalmente semelhantes entre os dominios, gerando redun-
dancias que comprometem a governanga, a rastreabilidade e a eficiéncia dos recursos. Esta dis-
sertacdo apresenta uma metodologia para deteccao de redundancias estruturais em arquiteturas
de dados distribuidas, fundamentada na modelagem de tabelas como grafos direcionados e na
aplicacao de algoritmos de isomorfismo de subgrafos. Nesse contexto, trés abordagens foram
consideradas: o VF2, utilizado como referéncia consolidada na literatura; o Node Match, um
algoritmo hibrido desenvolvido neste trabalho com funcao de pré-filtragem; e modelos super-
visionados baseados em redes neurais graficas (GNN), aplicados a predi¢do de isomorfismos.
Como parte das contribui¢des, também foi desenvolvida a ferramenta Isomera, em Python, res-
ponsavel por operacionalizar a metodologia e permitir sua experimentacgio pratica. A proposta
organiza um ciclo de experimenta¢do em quatro etapas: geracdo automatizada de cendrios, apli-
cacdo dos algoritmos, validacdo humana supervisionada, necessdria para mitigar falsos positi-
vos e assegurar confiabilidade, e avaliacdo quantitativa dos resultados. A ferramenta Isomera
possibilita simular arquiteturas sintéticas ou baseadas em benchmarks consolidados, como o
TPC-DS, além de oferecer recursos para a execugdo controlada de experimentos, a compara-
¢do entre algoritmos e a andlise de métricas como tempo de execuc¢do (ET), acurdcia (ACC)
e frequéncia de sucesso (SF). Dois estudos de caso ilustraram a aplicacdo da metodologia: o
primeiro, utilizando VF2 e Node Match, e o segundo, incorporando redes neurais (GNN), que
demonstraram ganhos de acuricia em cendrios de maior complexidade, ainda que com maior
custo computacional. Adicionalmente, esta dissertacao contribui com um artefato cientifico e
experimental que favorece a replicacao de testes, a expansao modular com novos algoritmos e a
andlise sistematica de trade-offs entre performance e precisdo. Ao unir flexibilidade, reproduti-
bilidade e andlise critica, o trabalho oferece uma base s6lida para pesquisadores e profissionais
que buscam aprimorar a governanca de dados em arquiteturas distribuidas.

Palavras-chave: Data Mesh, Redundancia Estrutural, Governanga de Dados, Isomorfismo de
Grafos, VF2, Node Match, GNN, Isomera, TPC-DS.

viil



Abstract

The adoption of the Data Mesh paradigm has fostered the decentralization of data ownership
within organizations, allowing each business domain to manage its own data products. While
this approach increases autonomy and flexibility, it also intensifies the risk of structurally simi-
lar tables being created across domains, leading to redundancies that compromise governance,
traceability, and resource efficiency. This dissertation presents a methodology for detecting
structural redundancies in distributed data architectures, based on modeling tables as directed
graphs and applying subgraph isomorphism algorithms. In this context, three approaches were
considered: VF2, widely used as a reference in the literature; Node Match, a hybrid algorithm
developed in this work with a pre-filtering function; and supervised models based on Graph
Neural Networks (GNN), applied to isomorphism prediction. As an additional contribution, the
Isomera tool was developed in Python, designed to operationalize the methodology and ena-
ble its practical experimentation. The proposed methodology follows a four-step experimen-
tal cycle: automated scenario generation, algorithm application, human-supervised validation
— necessary to mitigate false positives and ensure reliability — and quantitative evaluation
of results. The Isomera tool enables the simulation of synthetic architectures or those based
on consolidated benchmarks such as TPC-DS, while providing features for controlled expe-
riment execution, algorithm comparison, and metric analysis, including execution time (ET),
accuracy (ACC), and success frequency (SF). Two case studies illustrated the application of
the methodology: the first using VF2 and Node Match, and the second incorporating GNNs,
which demonstrated accuracy gains in more complex scenarios, albeit with higher computati-
onal cost. Additionally, this dissertation contributes a scientific and experimental artifact that
supports test replication, modular expansion with new algorithms, and systematic analysis of
trade-offs between performance and accuracy. By combining flexibility, reproducibility, and
critical analysis, the work offers a solid foundation for researchers and practitioners seeking to
improve data governance in distributed architectures.

Keywords: Data Mesh, Structural Redundancy, Data Governance, Graph Isomorphism, VF2,
Node Match, GNN, Isomera, TPC-DS.
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CAPITULO 1

Introducao

1.1 Contextualizacao

O avango da transformacao digital, intensificado pela incorporagdo estratégica de tecnologias
como a inteligéncia artificial, tem provocado uma profunda reconfiguragdo nos processos orga-
nizacionais, impulsionando a geracao massiva de dados em multiplos contextos e setores. Ao
viabilizar automagdes, personalizagdes e inovacdes em escala, este avanco acelerado promove
ganhos em eficiéncia, qualidade e tomada de decisdo, mas também impde desafios gerenciais e
culturais para as organizacoes (KAVAK; RUSU, [2025).

Esse crescimento, impulsionado por demandas analiticas e operacionais cada vez mais com-
plexas, trouxe a tona desafios estruturais ligados a governanga, a redundéncia e a interoperabi-
lidade de dados (BENA et al., 2025). Tradicionalmente, arquiteturas centralizadas como Data
Warehouses e Data Lakes dominaram as arquiteturas tecnoldgicas. Contudo, essas abordagens
monoliticas vém demonstrando limitacdes frente a crescente heterogeneidade dos negdcios e a
necessidade de autonomia entre as equipes (GIEL; HUTTERER| 2025).

Nesse cendrio, o paradigma do Data Mesh surge como uma proposta moderna que busca
descentralizar a posse e a responsabilidade sobre os dados, atribuindo aos proprios dominios
a missao de gerenciar seus produtos de dados com independéncia. Essa arquitetura promove
maior escalabilidade organizacional ao romper com o gargalo imposto pelas equipes centrais
de engenharia de dados e alinhar a tomada de decisdes as equipes mais proximas da informagdo
(BODAPATTI, 2025)).

Em linhas gerais, um dominio de negdcio € um grupo de pessoas com profundo conheci-
mento sobre uma drea especifica da organizacdo, como vendas, logistica ou finangas, sendo,
portanto, o responsdvel natural pela geracdo e interpretacdo dos dados relacionados a sua ativi-
dade. Ao transferir para os dominios a responsabilidade pelo ciclo de vida dos dados, o Data
Mesh promove maior contextualizagao, agilidade e qualidade no tratamento da informacao.

Concebido por Zhamak Dehghani, o Data Mesh se fundamenta em quatro pilares essen-
ciais: (i) a propriedade dos dados por dominio, que transfere a responsabilidade pela gestao
dos dados para os proprios dominios, valorizando o conhecimento especifico e contextual de
cada equipe sobre os ativos sob sua responsabilidade; (i1) o dado como produto, o que implica
tratd-lo com critérios de usabilidade, confiabilidade e qualidade; (iii) uma plataforma de dados
de autosservico, que permite aos dominios criar, transformar e servir dados com minima de-
pendéncia técnica; e (iv) a governanga federada computacional, que harmoniza o controle de
acesso e a padroniza¢do sem comprometer a autonomia (DEHGHANI, 2019).

Para situar visualmente essa arquitetura, a Figura [I.1] sintetiza o Data Mesh: dominios
autdbnomos (Pagamentos, Financas, Marketing e Machine Learning) compartilham dados, em



2 CAPITULO 1 INTRODUCAO

geral, em nuvem, enquanto dois times transversais dao suporte: (i) equipe de infraestrutura
(platform team), responsdvel por armazenamento, processamento e servicos de autosservico; e
(i1) governanca, responsavel por politicas, segurancga e qualidade.

Equipe de governanca

Politicas de Padrées de Politicas de LGPD Padroées de

dados gerais qualidade acesso aos dados seguranga
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Figura 1.1: Arquitetura Data Mesh em alto nivel com dominios autdonomos, equipe de infraes-
trutura e equipe de governanga.

Neste tipo de arquitetura, hd conceitos importantes sobre como as tabelas sdo criadas e no-
meadas ao longo do fluxo de dados. Para orientar a leitura, a Figura [1.2| apresenta, de forma
didatica, trés camadas recorrentes: (i) camada de registro, System of Record (SOR), onde resi-
dem os dados brutos; (ii) camada de transformacdo, System of Transformation (SOT), na qual
os dados sdo tratados e estruturados; e (iii) camada de processamento especializado, Speci-
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alized Processing Engines (SPEC), voltada a andlises avancadas. Em cendrios reais, podem
existir dependéncias cruzadas (por exemplo, SOT a partir de SOT, SPEC a partir de SPEC ou
diretamente de SOR); aqui adotamos a organizacao idealizada apenas para fins didaticos.

Q<> —_— System of Record System of Specialized

~ Transformation Processing Engines

Sistemas empresariais —
E TSORﬂ
Dispositivos ) [SOT@ B
. (SOR BT o SPEC
- - ABZ
Servidores I
=t SOT BZ}

Outras fontes

Figura 1.2: Relacdo idealizada entre camadas: SOR — SOT — SPEC (arquitetura "limpa").
Na prética, podem ocorrer dependéncias cruzadas.

Cada dominio passa a funcionar como uma unidade l6gica autdnoma dentro da organizagao,
sendo responsdvel por criar, manter e compartilhar suas proprias tabelas e ativos. Esses ativos,
em geral, sdo construidos a partir de sistemas de registro, System of Record (SOR), responsaveis
por armazenar os dados em sua forma original, como ERPs (Enterprise Resource Planning),
CRMs (Customer Relationship Management), e bases de logs e sensores. Essa camada € fun-
damental para garantir a integridade, a rastreabilidade e a persisténcia das informacdes.

A partir dessa base, os dominios criam estruturas intermedidrias conhecidas como System
of Transformation (SOT), onde os dados sdo submetidos a processos de limpeza, normaliza-
¢do, enriquecimento e agregacdo, com o objetivo de estruturar informacdes mais coerentes e
utilizdveis para consumo organizacional.

Finalmente, para demandas especificas e andlises mais complexas, sdo utilizadas camadas
de processamento especializadas, chamadas Specialized Processing Engines (SPEC), nas quais
se aplicam técnicas avancadas como aprendizado de méquina, anélise preditiva e modelagem
estatistica, viabilizando a geracao de insights estratégicos para os dominios de negécio|'| Sem
padronizacao ou mecanismos de validacdo cruzada, essa evolug¢do pode favorecer o surgimento
de estruturas redundantes, um problema ainda pouco discutido em solucdes praticas de Data
Mesh.

Para evidenciar esse problema de forma concreta, a Figura [[.3]ilustra um exemplo em que
diferentes dominios geram e consomem dados (A—H). Observa-se uma duplicidade entre as
tabelas E (Pagamentos) e G (Machine Learning), ambas derivadas das bases B e D. Ainda que

I A. Hashimoto, SoR, SoT e Spec no contexto de Engenharia de Dados, Alura, 2024. Disponivel em: <https:
/fwww.alura.com.br/artigos/sor-sot-spec>. Acesso em: 6 out. 2025.
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regras de negdcio possam diferir entre esses dominios, o contetido estrutural dessas tabelas
poderia ser consolidado em uma unica base, reduzindo redundancias e custos.

Dados compartilhados entre os dominios (Data Mesh)

D D
:

_________________________________

m
&l

Dominio de Machine Learning N

-
<

&
Q||
(®)
=0

[" - | Tabelas duplicadas

Representagao de relacionamento para geragao da tabela E (join)

Representagao de relacionamento para geragdo da tabela G (join)

Figura 1.3: Exemplo de duplicidade: E (Pagamentos) e G (ML) derivadas de B e D em domi-
nios distintos, sugerindo redundancia potencial.

Embora o Data Mesh promova flexibilidade e agilidade, ela também introduz riscos: a
proliferacao de tabelas estruturalmente semelhantes entre dominios, como vimos na figura an-
teriors. Essas redundancias, quando ndo gerenciadas adequadamente, afetam diretamente a
governanca de dados, elevam custos operacionais e dificultam a rastreabilidade das informa-
coes (DEVI; INAMPUDI; VIJAYABOOPATHY| 2025).

Em ambientes de nuvem, onde os custos estdo diretamente associados a escalabilidade e
ao volume de armazenamento, a duplicacio de estruturas entre dominios pode comprometer
significativamente a sustentabilidade financeira da arquitetura de dados. O actimulo de tabelas
redundantes em um cendrio descentralizado pode levar a um crescimento desproporcional dos
custos de manuteng¢do, superando, em certos casos, o valor agregado pela descentralizacdo dos
dados [l

Estudos recentes apontam que mesmo empresas de grande porte enfrentam desafios ao
adotar o Data Mesh, em especial no que tange a duplicidade de estruturas, auséncia de padroes
e dificuldades na consolidacdo de politicas de qualidade. Casos como o da Netflix ilustram as
dificuldades técnicas e organizacionais para alcancar uma descentralizac¢do sustentdvel

2H. Rollin, The Brutal Cost of Data Mesh, Medium, 2023. Disponivel em: <https://medium.com/@hannes.
rollin/the-brutal-cost-of-data-mesh-df8cec245506>. Acesso em: 6 out. 2025.

3 Netflix, Netflix Technology Blog, 2022. Disponivel em: <https://netflixtechblog.com/
data-mesh-a-data-movement-and-processing-platform-netflix- 1288bcab2873>. Acesso em: 21 jul. 2025.
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O problema se agrava quando multiplos dominios criam tabelas com esquemas muito si-
milares, mas ligeiramente adaptados as suas realidades locais, dificultando o reconhecimento
automadtico dessas redundancias por sistemas de governanga. Essa fragmentacdo semantica e
estrutural impde desafios concretos a governanca e amplia a necessidade de métodos computa-
cionais que consigam identificar e mitigar tais redundancias.

Dentre as abordagens emergentes para identificacdo dessas duplicidades, a representacdo
estrutural por grafos tem se mostrado particularmente promissora. Grafos permitem capturar
com precisao as relagdes entre tabelas, colunas, tipos de dados e chaves, viabilizando a modela-
gem do ecossistema de dados como uma rede de dependéncias e estruturas (PATEL; DHARWA,
2017).

Essa representacdo facilita a aplicac@o de algoritmos de comparacgdo estrutural, como de-
teccao de isomorfismos, que podem automatizar a identificacdo de duplicagcdes e padrdes re-
correntes em larga escala (REN; LI, 2024). Ao explorar tais capacidades, abre-se espaco para
praticas de governanc¢a mais automatizadas, escalaveis e eficazes, reduzindo os custos operaci-
onais associados ao controle manual de ativos.

Para tornar essa ideia concreta no nosso exemplo, modelamos a arquitetura como um grafo
direcionado: cada tabela, (X e Y), por exemplo, sdo vértices e criamos uma aresta X — Y
quando Y ¢ derivada ou consome dados de X. No cendrio da Figura|l.3} os vértices sdo B, D, E
e G e as dependéncias sio B — E, D — E, B— G e D — G. Formalmente, focamos no subgrafo
G' ={V,E}, e ndo no grafo completo contendo A, C, F e H, para destacar apenas a por¢do dire-
tamente ligada a geragdo de E ¢ G,comV = {B,D,E,G} e E ={(B,E),(D,E),(B,G),(D,G)}.
A Figura|I.4]ilustra esse subgrafo.

el

e2

ed

ed

Figura 1.4: Subgrafo G’ destacando a geracio de E e G a partir de B e D.

Neste cendrio, torna-se estratégico o desenvolvimento de solucdes computacionais capazes
de automatizar a identificacdo e a validacdo de redundincias estruturais em ecossistemas de
dados complexos e distribuidos.

Embora esta dissertac@o tenha sido concebida no contexto de arquiteturas baseadas em Data
Mesh, a metodologia proposta possui carater geral e pode ser aplicada a qualquer ambiente em
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que as relacdes entre tabelas possam ser formalmente representadas como grafos. Isso inclui
arquiteturas tradicionais, como Data Warehouses e Data Lakes, bem como sistemas hibridos
que combinam caracteristicas de ambos. Dessa forma, o método aqui apresentado ndo se res-
tringe a um modelo de governanga especifico, mas se consolida como uma estrutura analitica
adaptdvel para o estudo, a avaliacao e a otimizacao de diferentes arquiteturas de dados.

1.2 Motivacao e Justificativa

A autonomia conferida aos dominios de negdcio no paradigma Data Mesh representa uma
transformacao significativa no modo como os dados sdo concebidos, tratados e disponibilizados
dentro das organizagdes. Contudo, a0 mesmo tempo em que permite maior escalabilidade
e responsividade as demandas locais, essa descentralizacdo tem exposto lacunas criticas nos
mecanismos de controle de qualidade e padronizacao de estruturas (SERRA,2024]).

Um dos reflexos mais notdrios dessa descentralizacdo é o surgimento de tabelas estrutu-
ralmente redundantes, artefatos que compartilham esquemas semelhantes, mas que sdo desen-
volvidos de forma paralela e ndo coordenada por diferentes equipes. Essas redundancias nao
apenas aumentam a complexidade dos pipelines de dados, como também geram desperdicios de
recursos computacionais em plataformas baseadas em nuvem. Em um cenario onde o armaze-
namento e o processamento sdo cobrados por volume e desempenho, a auséncia de mecanismos
automatizados para detectar tais duplicidades representa uma vulnerabilidade operacional (JI
et al.,[2012).

Casos reais ilustram esse problema com clareza: instituicdes como o Itai Unibanco relata-
ram desafios concretos relacionados ao acimulo excessivo de arquivos em buckets do Amazon
S3, que elevaram significativamente os custos de armazenamento. A empresa foi obrigada
a desenvolver indicadores, aplicar regras de ciclo de vida e adotar estratégias especificas de
arquivamento para mitigar os impactos financeiros de estruturas pouco otimizadasﬁ

Mais do que um problema de custo, trata-se de uma questao de confianga. Tabelas similares,
quando mal documentadas ou desconectadas de um catdlogo unificado, podem induzir a inter-
pretacdes conflitantes sobre o0 mesmo fendmeno de negdcio, comprometendo a consisténcia
analitica e a confiabilidade dos dashboards e modelos que delas derivam. Essa fragmentacao
dificulta a rastreabilidade de dados e sobrecarrega processos de governanga que deveriam ser
federados e automatizados, como preconizado no préprio modelo de Data Mesh (KAPFERER;
BRUNNER; ZELLER| 2021).

Diante disso, esta dissertacdo se justifica pela necessidade urgente de estruturar uma abor-
dagem sistemadtica para identificagdo de redundancias estruturais em ambientes de dados distri-
buidos. Ao empregar algoritmos de isomorfismo de grafos, propde-se ndo apenas reconhecer
similaridades, mas também inferir equivaléncias estruturais entre tabelas distribuidas.

Essa combinag¢do entre técnicas computacionais e conhecimento especializado visa for-
talecer os pilares da governanca de dados, promovendo maior transparéncia, padronizagdo e

4R, Lovatti, J. Escoaiella, T. B. dos Santos, H. Papa, O. Correia, K. Oliveira e R. M. Dias, Como
o Itad reduziu custos de armazenamento no Amazon S3, Blog da AWS - Secdo Customer Solutions,
Amazon Web Services, 14 fev. 2025. Disponivel em: <https://aws.amazon.com/pt/blogs/aws-brasil/
como-o-itau-reduziu-custos-de-armazenamento-no-amazon-s3/>L Acesso em: 6 out. 2025.
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eficiéncia em arquiteturas modernas orientadas por dominios.

1.3 Trabalhos Relacionados

A literatura recente tem abordado com crescente interesse os desafios oriundos da descentrali-
zacdo de dados em arquiteturas distribuidas. Dehghani foi pioneira ao estabelecer os pilares do
Data Mesh, apontando para a necessidade de reorganizar a responsabilidade sobre os dados a
partir da légica de dominios (KAPFERER; BRUNNER; ZELLER| [2021). Serra complementa
essa visdo com uma andlise critica das principais arquiteturas modernas, como Data Lakehouse
e Data Fabric, destacando que, em ambientes distribuidos, a governanca tende a se tornar mais
fragil sem ferramentas automatizadas de controle (SERRA| 2024).

No contexto de governanca e engenharia de dados, Hashimoto destaca como a evolugdo dos
pipelines a partir das fontes SOR pode gerar camadas sucessivas (SOT e SPEC), aumentando a
complexidade estrutural dos dados gerados por cada dominio ﬂ Quando ndo ha padronizagdo
ou mecanismos de validagdo cruzada, essa evolucio pode favorecer o surgimento de estruturas
redundantes, um problema ainda pouco discutido em solu¢des praticas de Data Mesh.

Na tentativa de identificar tais redundancias em arquiteturas ndo modernizadas em Data
Mesh, diferentes abordagens baseadas em teoria dos grafos tém sido exploradas. Ren e Li
discutem definicdes fundamentais de isomorfismo de grafos e sua aplicagdo em bases relaci-
onais (REN; LI, 2024). J4 Mancinska et al. exploram varia¢des do problema de isomorfismo
em grafos com atributos semanticos, demonstrando que, em determinadas configuracdes, o
reconhecimento estrutural pode ultrapassar os limites da tratabilidade cldssica, exigindo abor-
dagens heuristicas para viabilizar solu¢cdes computacionais em tempo vidvel (MANCINSKA;
ROBERSON; VARVITSIOTIS, 2024).

Cordella et al. introduziram o algoritmo VF2, uma das abordagens deterministicas mais
consolidadas para verificacdo de isomorfismo e subisomorfismo de grafos, cuja eficiéncia de-
corre da combinacdo entre uma representacdo em espacgo de estados (State Space Representa-
tion) e um conjunto de regras de viabilidade (feasibility rules) que reduzem drasticamente o
espaco de busca (CORDELLA et al., [2004). Seu diferencial reside na capacidade de integrar,
simultaneamente, comparagdes sintdticas e semanticas entre pares de nds, sendo especialmente
eficaz em grafos atribuidos.

Em contextos com grandes volumes de dados, como em empresas ou aplicagdes cientificas,
€ comum lidar com grafos que apresentam ruidos, falhas ou estruturas incompletas. Nessas
situacdes, métodos que exigem uma correspondéncia exata entre os grafos tendem a ser pouco
eficazes. E nesse cendrio que os algoritmos baseados em distancia de edi¢io de grafos (Graph
Edit Distance — GED) ganham destaque, por serem mais flexiveis e tolerantes a imperfeicoes. A
proposta de Zheng et al. se destaca justamente por adotar uma abordagem que combina técnicas
para reduzir o esfor¢o computacional durante a busca por grafos semelhantes, mantendo bons
niveis de precisdao (ZHENG et al., 2015). Os resultados experimentais apresentados pelos
autores demonstram que sua solucdo € capaz de superar métodos tradicionais tanto em agilidade

5A. Hashimoto, SoR, SoT e Spec no contexto de Engenharia de Dados, Alura, 2024. Disponivel em: <https:
/fwww.alura.com.br/artigos/sor-sot-spec>. Acesso em: 6 out. 2025.
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quanto na qualidade das respostas, mesmo quando aplicada a bases de dados complexas e
diversificadas.

Outros estudos aplicados complementam essa base tedrica. Souza explora a biblioteca
NetworkX na deteccdo de similaridade estrutural em bancos relacionais, evidenciando como a
modelagem em grafos pode ser ttil para refinar consultas e visualizar padroes ocultos (SOUZA;
GUEDES, 2023). Elmagarmid et al., por sua vez, discutem estratégias classicas de deduplica-
¢do baseadas em atributos, que embora tteis, ndo conseguem lidar com a complexidade estru-
tural de tabelas completas (ELMAGARMID; IPEIROTIS; VERYKIOS, 2007).

No campo das ferramentas e plataformas, Fan et al. investigam algoritmos adaptativos para
identificacdo de isomorfismos parciais em grandes grafos dindmicos, considerando aspectos
como estabilidade topoldgica e variacOes incrementais nas estruturas (ZHANG et al., 2023).
Esses avancgos evidenciam o potencial das representacdes em grafos como uma base sélida para
inspe¢do estrutural automatizada, especialmente em ambientes descentralizados e altamente
mutdveis como os propostos pelo Data Mesh.

Yazici e Tagkomaz introduzem o BF-BigGraph, um método inovador de isomorfismo de
subgrafos que combina a estratégia de busca best-first com técnicas de aprendizado de maquina
para consultas eficientes em bases de grafos de larga escala (YAZICI; TAsSKOMAZ, 2024).
Utilizando o algoritmo Random Forest como classificador supervisionado, o0 modelo é capaz
de prever ordens de correspondéncia otimizadas e restringir o espaco de busca, melhorando
significativamente o tempo de resposta e o uso de memoria em bases com bilhdes de nds e
arestas. Os experimentos demonstram que o BF-BigGraph supera abordagens cldssicas em
consultas complexas. Esses resultados evidenciam o potencial de metodologias baseadas em
machine learning.

A proposta de Lu et al. introduz uma abordagem baseada em redes neurais genéticas (GNN)
para deteccao de dados duplicados em ambientes de integracdo e mineracdo de dados. O mé-
todo combina a capacidade de generalizacdo de redes neurais artificiais com a eficiéncia de
algoritmos genéticos para otimizar tanto a topologia quanto os pesos do modelo antes da fase
de aplicacdo. Essa estratégia permite mapear ndo linearmente as similaridades entre segmentos
de registros, superando limitacdes dos métodos tradicionais. (LU ez al.,[2016)).

Liu et al. propdem o G-Finder, um algoritmo que busca encontrar partes semelhantes entre
grafos grandes usando estratégias inteligentes de busca e divisdo (LIU et al., 2019). Seu dife-
rencial estd em conseguir encontrar estruturas parecidas mesmo quando o grafo possui atributos
variados e estd incompleto, algo comum em ambientes descentralizados.

Wang et al. propdem o OblivGM, um sistema para consultas por isomorfismo de subgrafos
atribuidos em grafos armazenados na nuvem, com foco na preservacao da privacidade (WANG
et al., 2022). A solugdo utiliza criptografia leve para proteger tanto os dados quanto os padrdes
de acesso durante a execucdo das consultas, mesmo com predicados de igualdade e intervalo.
Essa abordagem € relevante para contextos descentralizados como o Data Mesh, onde a confi-
dencialidade estrutural entre dominios é fundamental.

Outro avanc¢o importante no campo de isomorfismo de subgrafos € o FIRST (Fast Interac-
tive Attributed Subgraph Matching), proposto por Du et al., que introduz um modelo interativo
e eficiente para busca de subgrafos atribuidos (DU; CAO, 2017). O algoritmo € especialmente
adequado para cendrios exploratérios em que o usudrio nao possui um padrao de busca definido
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a priori e precisa ajustar interativamente a consulta com base nos resultados obtidos. O FIRST
adota estratégias computacionais eficientes para acelerar o processo de correspondéncia entre
subgrafos em redes heterogéneas, mesmo quando ha revisdes sucessivas na consulta. Essa ca-
pacidade de adaptacdo torna a abordagem especialmente util em cendrios como o Data Mesh,
onde a governanca dinamica e a identificagdo de sobreposi¢cdes semanticas entre dominios com
alta diversidade de atributos sdo essenciais. A inspiracdo conceitual do FIRST motivou a cria-
¢do do algoritmo Node Match, proposto nesta dissertacdo, que antecipa a etapa tradicional de
isomorfismo (como o VF2) um processo de pré-filtragem baseado na similaridade entre nos.
Essa estratégia reduz significativamente o espago de busca ao restringir a execu¢do do isomor-
fismo apenas aos pares mais promissores, promovendo ganhos relevantes de desempenho em
arquiteturas de dados descentralizadas.

A revisdo da literatura revela uma diversidade significativa de abordagens para identificacao
de estruturas semelhantes ou duplicadas em conjuntos de dados. No entanto, grande parte des-
ses estudos concentra-se em contextos mais tradicionais, como bancos relacionais centraliza-
dos, sistemas transacionais ou grafos homogéneos com topologias estiticas. Embora oferecam
contribui¢des valiosas, como algoritmos eficientes, heuristicas adaptativas e modelos com foco
em privacidade, esses trabalhos ndo foram concebidos para enfrentar os desafios especificos de
arquiteturas modernas descentralizadas, como o Data Mesh.

Nesse sentido, ainda sdo escassas as solugdes voltadas a detec¢do de duplicidades estrutu-
rais em ambientes onde os dados sdo distribuidos entre dominios independentes, com variacoes
sutis em esquemas e alto volume de ativos gerados. Essa lacuna evidencia a necessidade de
métodos praticos e adaptdveis, capazes de operar em cendrios orientados por dominio e apoiar
a governanga descentralizada.

Com base nesses referenciais, esta dissertagcdo propde um método hibrido para identifica-
¢do de isomorfismos estruturais, combinando algoritmos baseados em grafos com uma etapa de
validagdo manual. A metodologia foi aplicada em ambientes simulados e reais orientados por
dominios, utilizando o benchmark TPC-DS como base de testes (NAMBIAR; POESS, 2006)).
A fim de destacar os diferenciais da abordagem proposta, realizou-se uma anélise comparativa
com os principais métodos disponiveis na literatura, considerando critérios como escalabili-
dade, aplicabilidade prética e aderéncia ao modelo de dados distribuidos do Data Mesh. A
Tabela [I.T] apresenta esse comparativo, evidenciando as contribui¢des centrais de cada estudo
e os aspectos que diferenciam esta dissertacao.

Tabela 1.1: Comparativo entre os principais trabalhos e esta dissertacdo quanto aos algoritmos
utilizados e a arquitetura de dados analisada.

Algoritmos de deteccio de isomorfismo Arquitetura de dados
Autor / Trabalho
VF2 Node Match G-FINDER OblivGM FIRST BF-BigGraph GNN Convencional Data Mesh

Cordella et al. (2001) X X
Liu et al. (2019) [G-Finder] X X
Wang et al. (2022) [OblivGM] X X
Du et al. (2017) [FIRST] X X
Yazici e Tagkomaz (2024) [BF-BigGraph] X X
Lu et al. (2024) [GNN - Dup. Detection] X X

Esta Dissertacdo (2025) X X X X X

Legenda: x indica presenca e implantacdo na ferramenta
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Vale destacar que, na coluna “Convencional”, estdo incluidos trabalhos que operam sobre
arquiteturas tradicionais, como bancos de dados relacionais centralizados, pipelines monoliti-
cos ou grafos homogéneos com topologia estdtica. Diferente disso, a proposta desta dissertacao
¢ a unica voltada especificamente para arquiteturas baseadas em Data Mesh, caracterizadas por
descentralizacdo, orientacdo a dominios e alta variabilidade estrutural entre os nds, mas que
também pode ser utilizada por arquiteturas convencionais.

1.4 Objetivos

O objetivo geral desta pesquisa € desenvolver um método baseado em grafos para detectar
redundancias estruturais em tabelas distribuidas no contexto de arquiteturas Data Mesh, inte-
grando algoritmos de isomorfismo com valida¢do humana e avaliando a eficiéncia por meio de
métricas computacionais.

Os objetivos especificos sdo:

* Modelar arquiteturas distribuidas como grafos direcionados, representando relagdes de
linhagem entre tabelas de diferentes dominios;

* Aplicar algoritmos de isomorfismo de subgrafos, como VF2 e Node Match, para detectar
estruturas redundantes;

* Desenvolver uma ferramenta em Python (Isomera) que simula arquiteturas, executa os
algoritmos e coleta métricas;

* Incorporar uma etapa de validagao humana para confirmar ou refutar as duplicacoes de-
tectadas automaticamente;

* Avaliar o desempenho dos algoritmos por meio de métricas como tempo de execucao
(ET), acurécia (ACC) e Success Frequency (SF);

* Aplicar o método proposto a cendrios baseados em benchmarks (como o TPC-DS) e
arquiteturas sintéticas;

* Analisar os resultados obtidos em diferentes niveis de complexidade arquitetural e propor
recomendacdes para ambientes reais.

Por fim, esta dissertacao busca responder duas questdes centrais: como identificar tabelas
duplicadas em arquiteturas distribuidas orientadas por dominio, como o Data Mesh; e como
mensurar a eficiéncia de diferentes abordagens na identificacdo dessas duplicacdes em ambien-
tes Data Mesh.

1.5 Estrutura da Dissertacao

Esta dissertacdo estd organizada em seis capitulos. O Capitulo [I] apresenta o contexto da pes-
quisa no cendrio da engenharia de dados contemporanea, destacando a motivagdo, os objeti-
vos e a relevancia do problema abordado, define as perguntas de pesquisa e as contribui¢des
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esperadas. O Capitulo [2] retine os principais conceitos que sustentam o trabalho, abordando
fundamentos de élgebra linear, teoria dos grafos e detec¢do de isomorfismos, além de discu-
tir os principios do paradigma Data Mesh e sua relacio com a governanca e modelagem de
arquiteturas distribuidas. O Capitulo |3| detalha o processo metodolégico desenvolvido para
identificacdo e validacdo de redundancias estruturais em arquiteturas de dados, descrevendo as
fases de modelagem em grafos, deteccao de isomorfismo, validagdo supervisionada e avaliagdao
das métricas, estabelecendo a base conceitual para a implementacdo pratica.

O Capitulo [ apresenta a ferramenta computacional Isomera, desenvolvida como artefato
de apoio a metodologia proposta, descrevendo seus mddulos internos, bibliotecas empregadas
(NetworkX, DearPyGui), interface grafica, pseudocddigos e fluxo de execugdo, demons-
trando como a metodologia foi operacionalizada e aplicada em experimentos reais. O Capitulo
[5expde os estudos de caso realizados para validar a metodologia e a ferramenta, incluindo ex-
perimentos com diferentes algoritmos de detec¢do (VF2, Node Match e GNN), cujos resultados
s@o analisados de acordo com métricas de desempenho, precisdo e eficiéncia computacional,
permitindo comparar abordagens e discutir implicagdes praticas. Por fim, o Capitulo [6]resume
as principais contribuicdes tedricas e praticas do trabalho, discute suas limitagdes e apresenta
perspectivas de continuidade, como a integracdo de novos algoritmos, o uso de técnicas de in-
teligéncia artificial generativa e a ampliacdo do escopo da ferramenta para outras arquiteturas
de dados, como Data Warehouse e Data Lake.



CAPITULO 2

Fundamentacao Tedrica

Este capitulo apresenta os fundamentos tedricos e técnicos que sustentam a metodologia pro-
posta para a identificacdo de redundancias estruturais em ambientes Data Mesh. Sao discutidos
inicialmente os principios desse paradigma, seguidos pela representacdo de dados como gra-
fos e pelas defini¢des formais da teoria dos grafos que servem de base para o estudo. Em
seguida, sdo descritos os algoritmos empregados na detec¢do de isomorfismos estruturais, in-
cluindo abordagens classicas e o Node Match, desenvolvido no ambito desta pesquisa, além de
modelos baseados em aprendizado de maquina. Por fim, sdo introduzidos conceitos algébricos,
como matrizes de adjacéncia e operacdes de permutacdo, que oferecem suporte a andlise de
duplicidade estrutural.

2.1 Data Mesh

As arquiteturas modernas de dados t€ém evoluido substancialmente para atender as crescentes
demandas por escalabilidade, flexibilidade e integracio entre diferentes dominios organizaci-
onais. Inicialmente, os Data Warehouses consolidaram-se como solu¢des voltadas ao arma-
zenamento estruturado e a andlise de dados histéricos, promovendo consisténcia e controle
centralizado com base em esquemas rigidos e dados integrados (INMON| 2005; KIMBALL,;
ROSS, 2013). Posteriormente, os Data Lakes emergiram como uma alternativa mais flexivel as
abordagens tradicionais, ao permitirem o armazenamento de dados estruturados, semiestrutu-
rados e ndo estruturados em sua forma original, sem necessidade de pré-processamento. Essa
flexibilidade € viabilizada pelo uso do paradigma schema-on-read, no qual a estrutura dos da-
dos ¢ interpretada apenas no momento da leitura, conforme a necessidade de cada aplicagcdo
ou andlise. Diferentemente do modelo schema-on-write, adotado em Data Warehouses, que
impde um esquema rigido no momento da ingestao, o schema-on-read permite maior agilidade
na ingestdo de dados heterogéneos e dinamismo na andlise. Essa caracteristica tornou os Data
Lakes especialmente atrativos para cendrios de ciéncia de dados e aprendizado de maquina, nos
quais os dados frequentemente precisam ser explorados de modo iterativo e adaptavel (KHINE;
WANG!, 2017).

Apesar da consolidacdo dos Data Warehouses e da ascensdo dos Data Lakes como es-
tratégias centrais para armazenar € analisar grandes volumes de dados, ambas as abordagens
enfrentam limitacdes significativas a medida que a complexidade dos ecossistemas organizaci-
onais cresce. Os Data Warehouses, por adotarem modelos de dados fixos previamente definidos
(schema-on-write), exigem que os dados sejam transformados e ajustados antes de serem ar-
mazenados. Isso implica que qualquer alteracdo no formato ou na estrutura dos dados, como a

12
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introducdo de uma nova coluna em uma tabela de vendas ou a inclusdo de um tipo de dado se-
miestruturado, requer modificagdes no esquema previamente estabelecido, demandando tempo
e esforco técnico considerdveis. Além disso, sua arquitetura centralizada dificulta a adaptagcao
rapida as novas necessidades analiticas dos dominios, limitando a escalabilidade e a agilidade
em contextos organizacionais dinamicos (FANG, 20135)). J4 os Data Lakes, embora promovam
maior flexibilidade por meio do armazenamento de dados em estado bruto (schema-on-read),
enfrentam desafios substanciais quanto a arquitetura, governanga, gerenciamento de metadados
e modelagem. Ainda ndo ha consenso sobre uma arquitetura ideal para Data Lakes, tampouco
diretrizes consolidadas para integrar aspectos como controle de qualidade, linhagem dos dados,
perfis de acesso e interoperabilidade entre ferramentas (GIEBLER ef al.| 2019). A auséncia de
uma estratégia de governanca clara e bem definida compromete a usabilidade e a confiabili-
dade desses repositorios, favorecendo o acimulo desordenado de dados invélidos, incoerentes
ou obsoletos, o chamado “pantano de dados” (data swamp), em que o valor potencial do data
lake se deteriora por falta de controle do ciclo de vida, da semantica e da integridade dos dados
(DERAKHSHANNIA et al.| 2020).

Diante das limitagdes das arquiteturas centralizadas, como a rigidez estrutural dos Data
Warehouses e a auséncia de controle e qualidade nos Data Lakes, surgiram propostas hibri-
das capazes de integrar o melhor de ambos os mundos. O Data Lakehouse, por exemplo,
busca combinar a governanga, a confiabilidade e o desempenho analitico dos Warehouses com
a flexibilidade e a escalabilidade dos Lakes, possibilitando processamento analitico direto so-
bre dados brutos, sem comprometer consisténcia ou performance (HARBY; ZULKERNINE,
2022). Em paralelo, o Data Fabric propde uma arquitetura de integracao inteligente baseada
em metadados ativos e conhecimento contextual, conectando automaticamente multiplas fon-
tes de dados heterogéneas, distribuidas e isoladas por meio de um tecido virtual unificado que
favorece descoberta, mapeamento e acesso continuo. Embora avance na virtualizagcdo e na au-
tomacdo de pipelines, o Data Fabric nao enderega por completo os desafios organizacionais
de descentralizacdo da governanca, autonomia dos dominios e escalabilidade da producdo de
dados, aspectos criticos em ecossistemas empresariais complexos (BLOHM et al., [2024).

Nesse cendrio, o Data Mesh desponta como alternativa arquitetural ao propor a descen-
tralizagdo da responsabilidade sobre os dados, delegando aos dominios de negdcio o papel de
manté-los como produtos interoperdveis e confidveis. Nas arquiteturas monoliticas, tipicas de
Data Warehouses e de muitos Data Lakes, todo o ciclo de ingestdo, transformac¢ao, modelagem
e disponibiliza¢dao de dados € concentrado em uma equipe ou plataforma central. Esse arranjo
cria um ponto Unico de controle, mas também de sobrecarga, ja que todos os fluxos precisam
atravessar a mesma estrutura técnica para chegar aos consumidores. Em contraste, o Data Mesh
distribui essas responsabilidades entre os proprios dominios que produzem e consomem os da-
dos, permitindo que cada um administre seu ciclo de ponta a ponta. Essa mudanga promove
escalabilidade organizacional, autonomia operacional e governancga federada, em contraposi-
¢ao aos modelos centralizados que frequentemente geram gargalos e dificultam a adaptacao as
necessidades especificas de cada area (KANAGARLA, [2024).

Conforme sistematizado por Dehghani e discutido na Secgdo [[.I] o Data Mesh apoia-se
em quatro pilares fundamentais que visam superar as limitagdes impostas pelos tradicionais
silos organizacionais e permitir que a escalabilidade do uso de dados acompanhe a estrutura
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descentralizada das organizacdes modernas.

O primeiro pilar, propriedade dos dados por dominio, confronta diretamente a l6gica das
arquiteturas monoliticas. Nessas arquiteturas, ¢ comum encontrar equipes hiperespecializadas
de dados posicionadas entre os dominios produtores (como times de produto) e os consumi-
dores (como times de recomendagdo ou relatérios executivos), sem conhecimento contextual
ou autonomia para responder rapidamente as demandas do negécio (DEHGHANI, 2022). Essa
fragmentacao gera silos organizacionais: a esquerda os produtores, a direita os consumidores
e, no centro, uma equipe de dados sobrecarregada que atua como gargalo. A Figura[2.1]ilustra
esse desalinhamento estrutural, no qual a concentraciao de responsabilidades compromete es-
calabilidade e tempo de resposta. Ao transferir a responsabilidade para os proprios dominios, o
Data Mesh rompe com essa centralizacao e garante que cada drea de negdcio assuma a gestao
dos dados que produz.

Equipes produtoras de dados Equipes centralizadoras Equipes consumidoras de dados
.’/m"\‘
{ |
M /"
- TN -
. . » / V".‘ »
Doominio de  Doominio de T‘mzfa‘:zzedct')zl'Z:?;:‘cfoecajozgfm Doominio de Doominio de Machine Learning
Finangas Marketing g consupmidoras quip Pagametos (estudos, desenvolvimento de
modelos)
Equipes centralizadoras ficam Equipes consumidoras ficam distantes da origem da
sobrecarregadas pela alta demanda, informagao, recebendo dados com atraso e sem contexto
tornando-se gargalo e limitando a de negdcio, o que reduz confiabilidade e agilidade.

escalabilidade dos dados.

Figura 2.1: Silos em pipelines centralizados: equipe de dados no centro vira gargalo entre
produtores e consumidores. Fonte: Dehghani (DEHGHANI, 2022).

O segundo pilar, dado como produto, implica que os dominios de negécio assumam res-
ponsabilidade integral pela concepg¢ao, qualidade, arquitetura e entrega dos dados que produ-
zem. Esse principio contrasta fortemente com arquiteturas tradicionais, nas quais as equipes
de tecnologia sdo organizadas em torno de etapas isoladas do ciclo de vida dos dados, inges-
tdo, transformagdo, modelagem e disponibiliza¢do. Como ilustrado na Figura[2.2] esse arranjo
gera uma decomposicdo orientada por atividades, em que cada equipe se responsabiliza apenas
por uma fracdo do processo. Para que um produto de dados seja disponibilizado, € necessario
atravessar multiplas camadas técnicas, envolvendo diferentes grupos altamente especializados.

Essa fragmentacao exige coordenacdo intensa entre equipes distintas, geralmente sem visao
completa do objetivo de negécio. Como consequéncia, o ciclo de valor dos dados torna-se lento
erigido: dependéncias se acumulam, pequenas alteracdes exigem longas negociagdes e o tempo
de resposta as demandas organizacionais cresce de forma desproporcional. O acoplamento
entre etapas, aliado a auséncia de autonomia dos dominios, transforma os pipelines em gargalos
permanentes, atrasando a entrega de valor e limitando a escalabilidade em contextos de rapido
crescimento.
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Equipes produtoras de dados Equipes centralizadoras Equipes consumidoras de dados
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Figura 2.2: Pipeline monolitico orientado por atividades; dependéncias entre etapas geram
atrasos e gargalos. Adaptado de Dehghani (DEHGHANI, 2022).

Em contraponto, o Data Mesh propde uma decomposicdo organizacional orientada por re-
sultados (outcomes), representada na Figura [2.3] correspondente ao pilar de dados como pro-
duto. Nesse modelo, cada equipe multidisciplinar passa a ser responsdvel de ponta a ponta
pelos seus proprios produtos de dados, incorporando desde a defini¢do de requisitos de negdcio
até a entrega para consumo. Na prética, isso significa que o mesmo time que antes limitava-se a
sustentagdo de seus sistemas operacionais, ou que atuava apenas como consumidor de relatérios
e dashboards, agora assume a responsabilidade integral pelo pipeline completo: coleta na fonte,
transformacao e integracao, e disponibilizacao final em camadas especializadas. Essa mudanca
nao € apenas técnica, mas cultural. Exige que os dominios incorporem préaticas de qualidade,
versionamento € documentacdo, tratando os dados com o mesmo rigor aplicado a produtos de
software. Com isso, o0 modelo busca alinhar os dados diretamente as necessidades especificas
de cada dominio, promovendo maior agilidade, escalabilidade e clareza de responsabilidades
na producao e no consumo de dados.

Equipes produtoras de dados Equipes consumidoras de dados

| . Ingestao Transformacgéa Modelag Disponibilizagdo Q .

Sistemas do produto

Consumo dos dados especializados
disponibilizados pelas equipes
Agora, todo pipeline de dados sdo de responsabilidade dos dominios produtores de dados. produtoras. E as proprias equipes
produtoras podem ser consumidoras
de seus dados.

Figura 2.3: Decomposi¢do orientada por resultados no Data Mesh: cada dominio opera seu
pipeline ponta a ponta com autonomia. Fonte: Dehghani (DEHGHANI, 2022).

O terceiro pilar, denominado plataforma de dados de autosservico, complementa esse ar-
ranjo organizacional e garante que a autonomia dos dominios seja factivel. Nesse pilar, a equipe
de plataforma (platform team) assume a responsabilidade por prover a infraestrutura comum,
normalmente baseada em ambientes de nuvem, capaz de padronizar funcdes essenciais como
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armazenamento escaldvel, processamento distribuido, versionamento de dados, catdlogos de
metadados, monitoramento e seguranga, conforme ilustrado na Figura [2.4] Essa camada de
autosservigo funciona como um alicerce compartilhado que reduz a complexidade técnica da
descentralizacdo, permitindo que equipes de negécio foquem no valor dos dados e nao na ma-
nutenc¢do da infraestrutura. Além disso, elimina a dependéncia de equipes centrais para tarefas
basicas, viabilizando que cada dominio projete, publique e mantenha seus fluxos de dados com
maior independéncia. Ao reduzir gargalos histéricos de comunicagdo e coordenacgao, esse pilar
transforma a descentralizagdo em prética sustentavel, assegurando que a escalabilidade organi-
zacional em larga escala seja alcangada sem abrir mao de governanga e confiabilidade.

Equipes de plataforma altamente especializada em infraestrutura

Catalogo de
metadados

PoE e

N TN N
\ ( )

Armazenamento Processamento Versionamento Seguranga

e “ o ; ‘

Equipe A Equipe B Equipe C Equipe D Equipe E

Disponibiliza a infraestrutura necessaria, geralmente em nuvem, para que os dominios
atuem de forma independete.

Figura 2.4: Plataforma de autosservigo: infraestrutura comum (armazenamento, processa-
mento, catdlogo, seguranga) para os dominios. Adaptado de Dehghani (DEHGHANTI, 2022).

Na pratica, diferentes provedores de nuvem ja oferecem recursos que materializam esse
pilar. O caso da Amazon Web Services (AWS) ilustra bem essa aplicacdo: como resumido
na Tabela [2.1] e ilustrado na Figura [2.5] servigos da AWS oferecem desde armazenamento
e processamento até descoberta, governanca e aprendizado de mdquina, permitindo que os
dominios atuem simultaneamente como produtores e consumidores de dados. Em conjunto,
esses servicos mitigam parte dos riscos associados a descentralizacdo, ao fornecer uma camada
comum que promove interoperabilidade e consisténcia entre os dominios, sem comprometer
sua autonomia .

1S Teles, Data Mesh: indo além do Data Lake e Data Warehouse, Blog da comunidade Data Hackers, 2021.
Disponivel em: <https://medium.com>, Acesso em: 6 out. 2025.
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Figura 2.5: Exemplo AWS do pilar de plataforma: Glue, DynamoDB e Lake Formation como
autosservigo para dominios. Fonte: Teles

Tabela 2.1: Servicos da AWS aplicados ao pilar de plataforma de autosservigo no Data Mesh.

Servico Descri¢io resumida Contribui¢io ao Data Mesh
Amazon S3 Armazenamento de objetos escaldvel e distribuido. Camada base para persisténcia e compartilhamento de dados entre dominios.
CloudFormation Infraestrutura como cédigo (IaC). Automatiza a criacdo de ambientes padronizados entre dominios.
Athena Consulta interativa em dados no S3 via SQL. Facilita o consumo direto de dados sem movimentagdo entre sistemas.
Crawler Varredura e catalogac@o automitica de dados. Detecta esquemas e metadados, promovendo descoberta e integraco.
AWS Glue Servigo de ETL gerenciado. Orquestra pipelines e integragdes entre dominios.
Neptune Banco de grafos gerenciado. Representa relagdes e dependéncias entre produtos de dados.
DynamoDB Banco NoSQL de baixa laténcia. Suporta aplicagdes e catdlogos distribuidos de dados.
DataBrew Ferramenta visual de preparagio de dados. Permite limpeza e transformagio por equipes de negdcio.
Elasticsearch (OpenSearch) Motor de busca e andlise. Facilita indexac@o e descoberta de produtos de dados.
SageMaker Plataforma de aprendizado de maquina. Permite criagdo e publicagdo de modelos de ML como produtos de dados.

O quarto pilar, denominado governanca federada computacional, busca responder a um dos
maiores desafios do Data Mesh: como manter coeréncia e confiabilidade em um cenério no qual
multiplos dominios atuam de forma autbnoma. Em arquiteturas descentralizadas, a liberdade
de cada dominio para modelar e operar seus produtos pode levar a fragmentacdo semantica, a
duplicacdo de métricas e a inconsisténcia na definicdo de regras de negécio. Por exemplo, o
conceito de "cliente"pode ser calculado de forma distinta por dois dominios, resultando em re-
latérios divergentes e em decisdes estratégicas baseadas em visdes incompativeis. Para mitigar
esse risco, como mostrado na Figura[2.6] a governanga federada estabelece um mecanismo de
coordenagdo no qual representantes de diferentes dominios definem, de forma colaborativa e
automatizada, politicas globais de nomenclatura, qualidade, seguranca, acesso e conformidade
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regulatéria. Assim, cada dominio preserva sua autonomia operacional, mas dentro de um con-
junto comum de diretrizes que garantem interoperabilidade e confianca nos dados em escala
organizacional.

Equipe de govenancga federada

Politicas Padroes de Gestao de acesso Adequacao as Padroes de
globais Qualidade aos dados leis vigentes seguranga
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Estabelece politicas de dados e monitora se estao sendo seguidas.

Figura 2.6: Pilar de governanca federada no Data Mesh: representantes de diferentes domi-
nios colaboram para definir e automatizar politicas globais de dados (qualidade, seguranca,
nomenclatura e compliance), garantindo interoperabilidade sem comprometer a autonomia lo-
cal. Fonte: Adaptada de Dehghani (DEHGHANI, 2022).

Apesar de sua proposta inovadora e dos avancos proporcionados pelos quatro pilares, a im-
plementacdo prética do Data Mesh ainda enfrenta desafios substanciais, tanto técnicos quanto
organizacionais. Entre eles, destacam-se a dificuldade de padronizar processos entre dominios
heterogéneos, a necessidade de maturidade tecnoldgica para garantir autonomia com respon-
sabilidade e o alto custo de manuten¢do de multiplos pipelines independentes. Cada dominio
passa a definir suas proprias estruturas de dados, regras de negdcio e modelos de transformacao,
0 que, embora promova flexibilidade e velocidade, também aumenta o risco de fragmentacao
semantica, inconsisténcia de métricas e sobreposicao de esfor¢os entre equipes. Em ecossiste-
mas complexos, nos quais dezenas de dominios coexistem, a auséncia de mecanismos automa-
ticos de controle e validag¢do interdominios pode levar a proliferacdo de tabelas estruturalmente
semelhantes, com nomes e propodsitos distintos, mas fungdes equivalentes, um fendmeno co-
nhecido como redundancia estrutural.

Esse tipo de redundancia, embora muitas vezes imperceptivel em estdgios iniciais, tende
a crescer exponencialmente a medida que novos produtos de dados sao criados de forma pa-
ralela e autbnoma. O resultado € um cendrio de governanca fragmentada, alto consumo de
recursos computacionais e dificuldade de rastreabilidade entre origens e derivadas de dados,
comprometendo a confiabilidade das andlises e a eficiéncia operacional do ecossistema como
um todo. Assim, o principal problema identificado nesta pesquisa decorre justamente dessa
lacuna: a falta de métodos sisteméticos e escaldveis para detectar, analisar e mitigar redundan-
cias estruturais em arquiteturas distribuidas orientadas a dominios. A secdo seguinte (2.1.1))
aprofunda essa discussdo, apresentando a visdo geral da metodologia proposta para identificar
tais redundancias com base na modelagem de tabelas como grafos e na aplicacio de algoritmos
de isomorfismo estrutural.
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A Figura apresenta uma visao simplificada do modelo operacional do Data Mesh, no
qual os dominios de negécio atuam de forma autdonoma e responsavel na criacdo de produtos de
dados (data products), impulsionando aplicacdes digitais orientadas por dados. Cada dominio
conta com equipes multifuncionais, combinando competéncias de negdcio, tecnologia e dados,
capazes de projetar, operar e evoluir seus proprios produtos. Esses dados sdo compartilhados
em um ambiente centralizado de plataforma, permitindo sua composi¢do e reutiliza¢do por ou-
tros dominios. Essa plataforma (self-serve data platform) é operada pelo time de tecnologia
(platform team), que prové servigos técnicos necessarios para suportar produgdo e consumo de
dados com autonomia. Complementando essa estrutura, um mecanismo de governanca fede-
rada, com representantes de multiplos dominios, define e automatiza politicas globais (nomen-
claturas, qualidade, seguranca e compliance), assegurando padrdes coerentes sem abrir mao
da descentralizacdo operacional. Esse modelo busca equilibrar liberdade local com coeréncia
organizacional, permitindo escalar a producdo e o consumo de dados de forma sustentdvel.
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Figura 2.7: Operagao simplificada do Data Mesh: dominios publicam produtos em plataforma
de autosservico com governanga federada. Adaptado de Dehghani (DEHGHANTI, 2022).

Assim, o Data Mesh ndo é apenas uma evolucdo técnica, mas uma reconfiguracio socio-
técnica que realinha o fluxo de dados com a estrutura de dominio da organizagao, favorecendo
agilidade, qualidade e valor no uso dos dados em larga escala.
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2.1.1 Representacao Pratica do Data Mesh

Com base nas figuras anteriores, a Figura [2.8] apresenta uma representagido simplificada de
uma arquitetura Data Mesh, destacando de forma pratica como os dominios de negdcio se
organizam. Cada dominio corresponde a uma drea especifica da organizagdo, como Marketing,
Financas, Pagamentos e Machine Learning, e assume a responsabilidade integral pelos dados
que produz. Esses dominios deixam de atuar de forma restrita como apenas consumidores
ou produtores e passam a operar como unidades autdbnomas, responsdveis por criar € manter
seus proprios produtos de dados, além de consumi-los internamente e também acessar dados
disponibilizados por ele e por outros dominios.

No exemplo ilustrado, cada dominio possui tabelas préprias, Marketing com A e B, Finan-
cas com C e D, Pagamentos com E e F, e Machine Learning com G e H. Todas essas tabelas
sdo disponibilizadas na infraestrutura em Data Mesh, tornando-se acessiveis a outros domi-
nios que delas necessitem. Essa descentralizacdo viabiliza escalabilidade e autonomia, ja que
cada drea administra seu ciclo de dados de ponta a ponta, desde a coleta até a disponibilizagdao
para consumo, como mostrado na Figura[2.3] Por outro lado, o modelo também evidencia um
risco central desta pesquisa: a possibilidade de redundancia estrutural. Diferentes dominios
podem criar tabelas semelhantes, com estruturas quase idénticas e finalidades sobrepostas, sem
que exista um mecanismo de coordenacao explicito. Esse cendrio compromete a governanca,
aumenta os custos de armazenamento e dificulta a rastreabilidade dos dados, problemas que
justificam a necessidade de metodologias especificas para detec¢do e mitigacdao dessas redun-
dancias.

.// Dominio de Marketing -\\ // Dominio Pagamentos -‘\\

""""""""""""

- / 8 - \- S
./ Dominio de Finangas \\ /{Dumfna Machine Learning\\

- v - /

Figura 2.8: Arquitetura Data Mesh simplificada com dominios (A-H) e compartilhamento
distribuido; autonomia pode gerar redundancias.
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2.1.1.1 Camadas Operacionais em Dominios de Data Mesh: SOR, SOT e SPEC

O modelo de dados em um dominio do Data Mesh sdo organizados em trés camadas principais
que estruturam o fluxo de origem (SOR), transformacao (SOT) e consumo de informagdes
(SPEC) H Quando nao ha padronizacdo ou mecanismos de validacdo cruzada, essa evolucao
pode favorecer o surgimento de estruturas redundantes, um problema ainda pouco discutido em
solugdes préticas de Data Mesh. Essa separacdo permite que cada dominio mantenha clareza
sobre o papel e o estdgio de maturidade de seus dados, além de favorecer a interoperabilidade
com outros dominios da organizagao.

* SOR (System of Record): Sdo os dados brutos capturados diretamente de sistemas ope-
racionais e transacionais, como ERPs, CRMs, sistemas de pagamento ou plataformas de
e-commerce. Por exemplo, o dominio de Pagamentos pode possuir um SOR com todas
as transacoes realizadas, contendo atributos como ID da compra, valor, data e método
de pagamento. Jd o dominio de Marketing pode manter um SOR com os registros de
campanhas, cliques e leads capturados em plataformas digitais. Esses conjuntos repre-
sentam a “fonte do sistema’” ou "base bruta"e formam a base do pipeline de dados de
cada dominio.

* SOT (System of Transformation): Nesta camada, os dados brutos sdo tratados, limpos
e combinados com outras fontes para gerar informagdes de negdcio mais estruturadas.
Continuando o exemplo anterior, o dominio de Pagamentos pode integrar seu SOR de
transacdes com o SOR de campanhas do dominio de Marketing, produzindo um SOT
que correlaciona campanhas publicitdrias com compras efetivadas, revelando a taxa de
conversdo por canal. Essa etapa inclui enriquecimentos, validagdes e jungdes, sendo
essencial para garantir a coeréncia e a rastreabilidade entre os dados de origem e os
resultados intermedidrios.

* SPEC (Specialized Processing Engines): Representa a camada de consumo especiali-
zado, na qual os dados j4 transformados sao utilizados para finalidades analiticas ou
operacionais. No mesmo cendrio, o0 dominio de Machine Learning pode consumir o SOT
gerado por Pagamentos e criar uma tabela SPEC usada em modelos de predi¢do de churn
ou de recomendacdo de produtos. Da mesma forma, o dominio de Finangas pode usar
um SPEC derivado para gerar relatérios contdbeis e dashboards executivos. Essa camada
garante que os dados estejam prontos para uso e expostos como verdadeiros produtos,
confiaveis, versionados e documentados.

Seguindo a modelagem da Figura a Figura exemplifica o funcionamento dessas
camadas dentro de um Data Mesh. No exemplo visual, os dominios de Marketing e Financas
geram suas tabelas SOR (B e D), que sdo consideradas as fontes primdrias de dados brutos. O
dominio de Pagamentos, ao consumir essas informacdes, cria uma tabela SOT (E) enriquecida,
que por sua vez origina uma tabela SPEC (F) voltada a andlises avancadas ou uso em APIs de
negocio. Esse fluxo evidencia como os dominios atuam simultaneamente como produtores e

2A. Hashimoto, SoR, SoT e Spec no contexto de Engenharia de Dados, Alura, 2024. Disponivel em: <https:
/fwww.alura.com.br/artigos/sor-sot-spec>. Acesso em: 6 out. 2025.
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consumidores, formando uma rede colaborativa de dados. Cada dominio mantém sua autono-
mia técnica e semantica, mas participa ativamente da construcio de valor coletivo dentro da
organizagao.

Essa estrutura hierdrquica de camadas, ao mesmo tempo simples e poderosa, é o que sus-
tenta a modularidade e a escalabilidade do Data Mesh. Contudo, ela também reforca um dos
desafios centrais desta pesquisa: quando multiplos dominios criam suas proprias camadas SOR,
SOT e SPEC sem uma visao global consolidada, surgem redundancias estruturais, diferentes
tabelas com esquemas semelhantes e propdsitos sobrepostos, que podem comprometer a efici-
éncia e a governanca do ecossistema de dados.

/ Dominio de Marketing \ / Dominio Pagamentos \
B

o / - /
/ Dominio de Financas \ / Domino Machine Learning\

O ONe
GAC
. / . /

Figura 2.9: Camadas SOR, SOT e SPEC: producao, transformacdo e consumo distribuidos
entre dominios.

s0T SPEC

2.1.1.2 Redundéancia Estrutural: Um Problema Emergente

A autonomia conferida pelo Data Mesh permite que cada dominio desenvolva seus proprios pi-
pelines de dados de forma independente, respondendo com agilidade as demandas especificas
de negdcio. Esse principio, embora essencial para a escalabilidade organizacional, traz con-
sigo um desafio crescente: a auséncia de mecanismos de coordenagdo e visibilidade entre os
dominios pode levar a criagdo de ativos redundantes, especialmente tabelas que compartilham
estrutura, semantica e propdsito semelhantes, mas sdo construidas de maneira isoladaE].

Em um cendrio tipico, diferentes equipes acessam as mesmas fontes de dados, recriando

3S. Teles, Data Mesh: indo além do Data Lake e Data Warehouse, Blog da comunidade Data Hackers, 2021.
Disponivel em: <https://medium.com>, Acesso em: 6 out. 2025.
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processos de transformacdo e modelagem que ja existem em outros dominios. Essa duplica-
¢do nao € fruto de descuido técnico, mas de um efeito colateral natural da descentralizagao,
onde cada dominio, buscando autonomia e velocidade, tende a reproduzir solucdes que aten-
dem a problemas locais, sem conhecimento das implementagdes jd existentes em outras dreas.
A auséncia de catdlogos de metadados consolidados, politicas de interoperabilidade ou valida-
¢Oes automaticas entre dominios amplifica esse fendmeno, que se torna progressivamente mais
dificil de detectar a medida que o ecossistema de dados cresce.

Essa redundancia estrutural afeta diretamente a governanga e a qualidade das informagdes,
elevando custos de armazenamento e processamento, além de introduzir riscos de inconsistén-
cia semantica entre tabelas que deveriam representar o mesmo conceito (JI et al.l 2012). Em
muitos casos, diferentes dominios partem das mesmas camadas SOR para gerar SOTs e SPECs
semelhantes, criando multiplas versdes de um mesmo indicador, como “receita liquida”, “nu-
mero de clientes ativos” ou “taxa de conversdo”, com ldégicas distintas e resultados incongru-
entes. Essa fragmenta¢do compromete a rastreabilidade (data lineage), dificulta auditorias e
reduz a confiabilidade dos produtos de dados corporativos.

A Figura 2.10]exemplifica esse problema. Nela, os dominios de Pagamentos e de Machine
Learning consomem, de forma independente, os mesmos dados brutos provenientes de Marke-
ting e Financgas para construir suas proprias tabelas intermediarias, denominadas SOT E e SOT
G. Embora sigam fluxos técnicos diferentes, ambas possuem estrutura e finalidade semelhantes,
representando andlises de desempenho transacional. Esse paralelismo revela uma sobreposi¢ao
de esforcos e um risco de divergéncia analitica entre dominios que, teoricamente, deveriam
compartilhar uma vis@o unificada sobre os mesmos fendmenos de negdcio.

/ Dominio de Marketing A Dominio Pagamemus
¢ Domino Machine Lgamning

Figura 2.10: Redundancia estrutural: dominios distintos criam SOTs semelhantes a partir das
mesmas fontes.

A proposta desta dissertacio busca enfrentar exatamente esse desafio: identificar e mitigar
estruturas redundantes criadas de forma paralela por diferentes dominios dentro de uma arqui-
tetura Data Mesh. Para isso, adota-se uma abordagem que combina principios de governanca
distribuida com modelagem formal, representando as tabelas como grafos direcionados, como
detalhado na Secdo [2.3.4] Essa representagdo permite capturar, de forma abstrata e compa-
ravel, os relacionamentos entre colunas, chaves e dependéncias, viabilizando a aplicacdo de
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algoritmos de isomorfismo de subgrafos para detectar padrdes estruturais equivalentes, ainda
que nomeados ou organizados de maneiras distintas (PATEL; DHARWA, [2017).

2.2 Fundamentos de Algebra Linear

A 4lgebra linear constitui um dos pilares fundamentais para a representacdo e manipulagdo de
estruturas relacionais e topoldgicas no ambito da ciéncia de dados. Por meio de representacoes
matriciais e transformacdes vetoriais, torna-se possivel modelar tabelas, fluxos de dados e co-
nexodes entre elementos em arquiteturas distribuidas, fornecendo uma base matemaética sélida
para andlises estruturais e inferéncias computacionais (STOLL, 2020). Esta secdo apresenta
os conceitos algébricos necessarios para compreender, posteriormente, a modelagem de dados
como grafos e a verificagdo de equivaléncias estruturais.

2.2.1 Espacos Vetoriais

Um espago vetorial € uma estrutura algébrica composta por um conjunto de vetores, sobre
0 qual estdo definidas operacdes de adi¢cao e multiplicacdo por escalares (GOODFELLOW;
BENGIO; COURVILLE, 2016). Em R", um vetor pode ser representado como uma n-upla
ordenada de nimeros reais:

V1

V2
, vieR.

<l
I

Vn

No contexto computacional, vetores sao amplamente utilizados para representar varidveis,
atributos, colunas de tabelas ou relagdes entre objetos. Em uma tabela de dados, por exemplo,
cada linha pode ser vista como um vetor que retine os valores das colunas correspondentes,
como identificador, tipo, tamanho ou relagdo com outras tabelas. Essa representacdo vetorial
permite traduzir estruturas de dados em formas numéricas, manipuldveis por operagdes mate-
madticas e algoritmos de aprendizado.

2.2.2 Operacoes com Vetores

A partir dessa representacdo, torna-se possivel aplicar operacdes algébricas sobre os vetores
que descrevem as entidades de um dominio de dados. Essas operagdes formam a espinha
dorsal de diversas técnicas e algoritmos de andlise estrutural, especialmente quando buscamos
identificar padrdes, semelhangas e redundancias entre tabelas. Duas operagdes fundamentais
sobre vetores sdo a adi¢do e a multiplicacio por escalar, as quais permitem combinar ou ajustar
proporcionalmente diferentes dimensdes de informacao.

* Adicao de Vetores: Dado dois vetores i,V € R", a operacdo de adi¢do € realizada ele-
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mento a elemento, resultando em um novo vetor w € R” tal que:

U +vp
Lo w2t
u+v=

Uy + vy

Esta operagdo é comutativa e associativa, permitindo combinag¢des lineares de vetores de
maneira consistente.

* Multiplicacdo por Escalar: Seja @ € R um escalar e v € R”, a multiplicag¢@o escalar
resulta em um vetor otV € R” cujos elementos sdo dados por:

(0A%]

Essa operacdo estica ou comprime o vetor original dependendo do valor absoluto de «,
e inverte sua direcdo se a < 0.

Essas operacdes bdsicas (adi¢do e multiplicacdo por escalar) fundamentam o conceito de
combinacdo linear, no qual vetores podem ser expressos como somas ponderadas de outros
vetores (GOODFELLOW; BENGIO; COURVILLE, 2016). Na prética, essa propriedade se
manifesta de maneira evidente na multiplicacdo entre um vetor e uma matriz, tema que sera
aprofundado na préxima subsec¢do, em que o resultado corresponde a uma combinacao linear
das colunas da matriz, com os coeficientes determinados pelos elementos do vetor multiplicador
(MITRAN, 2023)).

2.2.3 Matrizes

Uma matriz é uma extensao natural do conceito de vetor, podendo ser vista como uma estrutura
bidimensional que organiza informag¢des em linhas e colunas. Formalmente, uma matriz A €
R™ " possui m linhas e n colunas, sendo cada elemento a;; um valor real associado a posigdo

i,J:

al alp ... Qdip

ayr azp ... Ay
A=

aAml Awm2 ... Amp

Diferentemente dos vetores, que representam entidades individuais (como colunas de uma
tabela ou atributos isolados), as matrizes descrevem conjuntos de relagcdes. No contexto desta
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dissertacdo, elas sdo utilizadas para codificar estruturas de tabelas e seus relacionamentos, per-
mitindo representar, de forma numérica, como diferentes entidades de um dominio se conectam
entre si. Cada célula de uma matriz pode indicar a presenca, auséncia ou intensidade de uma
relagdo, por exemplo, a existéncia de uma chave estrangeira entre duas tabelas, uma corres-
pondéncia entre colunas com tipos de dados semelhantes ou uma dependéncia funcional entre
atributos. Essa capacidade de capturar multiplas conexdes simultaneamente torna as matrizes
o ponto de partida para a modelagem em grafos e para a andlise de equivaléncias estruturais.
Um exemplo pratico ajuda a compreender esse conceito. Considere o cendrio apresentado
na Figura [2.10| no qual o dominio de Pagamentos constr6i uma tabela intermedidria SOT E a
partir das fontes SOR B (Marketing) e SOR D (Finangas), representados nas Tabelas [2.2]e[2.3]

resultando posteriormente em uma tabela final SPEC F.

Tabela 2.2: Tabela SOR_B — Dominio de Marketing

id_produto nome_campanha

1 Verdo 2025
2 Inverno 2025
3 Black Friday

Tabela 2.3: Tabela SOR_D — Dominio de Finangas

id_produto valor_campanha (R$)

1 1200
2 800
3 1500

A tabela SOT_E € formada a partir de uma operacao de join entre as duas SORs com base
no campo id_produto, consolidando as informacdes de nome e valor de cada campanha, como
esta estruturado na Tabela E uma tabela intermedidra, conendo apenas um relacionamento,
sem sumarizacoes ou filtros, mas que ja pode ser consumida por completo por outros dominios.

Tabela 2.4: Tabela SOT_E — Dominio de Pagamentos

id_produto nome_campanha valor_campanha (R$)

1 Verio 2025 1200
2 Inverno 2025 800
3 Black Friday 1500
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Por fim, a tabela SPEC_F ¢ derivada da SOT_E por meio de uma transformacdo analitica,
na qual sdo calculadas as médias de valor por campanha (tabela [2.5). Essa etapa caracteriza
a camada SPEC, responsavel por consolidar informacdes agregadas e analiticas que servirdo
de base para relatérios, dashboards ou modelos preditivos. Nesse caso, a tabela de saida con-
tém apenas as colunas nome_campanha e media_campanha (R$), representando o valor médio
investido em cada campanha de marketing.

Tabela 2.5: Tabela SPEC_F — Dominio de Pagamentos

nome_campanha media_campanha (R$)

Verio 2025 1150,00
Inverno 2025 950,00
Black Friday 1600,00

De forma matricial, todo o fluxo descrito, desde a combinacao das fontes SOR_B e SOR_D
até a formacao da tabela analitica SPEC_F, pode ser interpretado como uma sequéncia de trans-
formacoes lineares. Cada etapa (join, agregacdo e cdlculo de média) corresponde a uma ope-
racdo que transforma um conjunto de entradas em uma nova estrutura derivada, mantendo a
coeréncia entre as relacdes de origem e destino.

Nesse contexto, em vez de representar diretamente os valores das tabelas, podemos re-
presentar as dependéncias entre elas. Considerando as quatro tabelas envolvidas no processo
(SOR_B, SOR_D, SOT_E e SPEC_F), arelacao entre elas pode ser codificada por meio de uma
matriz bindria, em que o valor 1 indica a existéncia de uma dependéncia direta (por exemplo,
quando uma tabela é gerada a partir de outra), e o valor 0 indica auséncia de relacao.

SOR_B SOR_D SOT_E SPEC_F]
SOR_B 0 0 1 0
M= | SOR_D 0 0 1 0
SOT_E 0 0 0 1
ISPEC_F 0 0 0 0 |

Assim, a modelagem matricial dessas relagdes pode ser expressa como uma matriz de ad-
Jjacéncia, que chamaremos de M. Essa matriz sintetiza, em formato numérico, as dependéncias
entre as tabelas de um dominio. Cada linha de M representa uma tabela de origem (que fornece
dados) e cada coluna representa uma tabela de destino (que consome dados).

Definimos o conjunto de tabelas T = {SOR_B,SOR_D,SOT_E,SPEC_F} e a matriz de
adjacéncia

1, se existe derivacao direta de i para j,

M:TxT—{0,1}, M(i,j):{ N
0, caso contrdrio.
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A matriz de adjacéncia resultante é:

o O O
S O O
S = =
- O O

0 00O

A interpretacdo da matriz M € direta: as entradas M(SOR_B, SOT_E) = 1 e M(SOR_D,
SOT_E) = 1 indicam que a tabela SOT_E ¢ derivada simultaneamente das tabelas SOR_B
e SOR_D. De forma andloga, M(SOT_E, SPEC_F) = 1 representa que a SPEC_F ¢ criada
a partir da SOT_E. As demais posi¢cdes da matriz mant€ém o valor 0, indicando auséncia de
dependéncia direta entre as tabelas correspondentes, ou seja, ndo hd fluxo de dados imediato
entre essas entidades.

Essa representacdo em forma de matriz sintetiza o comportamento estrutural do fluxo de
dados SOR — SOT — SPEC, permitindo que operagdes algébricas sejam aplicadas para iden-
tificar padrdes, redundancias e equivaléncias estruturais. Em outras palavras, essa modelagem
matricial constitui a base conceitual desta dissertacdo: traduzir a 16gica relacional entre tabelas
de um dominio em uma estrutura formal que possa ser analisada matematicamente e, posteri-
ormente, modelada como um grafo.

2.2.4 Operacoes com Matrizes

As operagdes matriciais constituem a base da dlgebra linear aplicada e permitem descrever, de
forma numérica e estruturada, as dependéncias entre entidades em um sistema de dados. Cada
operacdo, adi¢do, multiplicagcdo por escalar e multiplicacio entre matrizes, carrega proprieda-
des que tornam possivel representar transformacdes, composicdes e fluxos de informacao entre
tabelas dentro de um dominio do Data Mesh. Formalmente, seja A = (a;;)mxn Uma matriz real,
B = (bij)mxn outra matriz da mesma ordem e k € R um escalar (BOLDRINI et al., |1986), as
principais operagdes sdo definidas a seguir.

2.2.4.0.1 Adigdo e Subtragcdo Duas matrizes de mesma ordem podem ser somadas ou sub-
traidas elemento a elemento:

A+B = (aij+bij)mxn, A—B=(aij—bij)mxn

Essa operacdo permite comparar e combinar relagdes correspondentes, sendo ttil para avaliar
diferencas entre dependéncias estruturais de dois dominios ou para integrar fluxos semelhantes
de transformacao.

2.2.4.0.2 Multiplicacdo por um Escalar A multiplicacdo escalar consiste em multiplicar
todos os elementos de uma matriz por um numero real k:

kA = (ka,-j)mxn.

Essa operacdo altera proporcionalmente a intensidade das relagdes representadas na matriz,
podendo ser utilizada, por exemplo, para ponderar pesos de influéncia ou frequéncia de uso
entre tabelas interligadas.
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2.2.4.0.3 Multiplicagdo de Matrizes Dadas duas matrizes A = (a;j)mxn € B = (bjk)nxp, O
produto C = AB € definido como:

n
Cik = Za,-jbjk, parai=1,....mek=1,...,p.
Jj=1

Essa operacdo combina as relacdes diretas representadas em A com as de B, revelando conexdes
indiretas entre entidades, conceito fundamental na andlise de fluxos de dados e na modelagem
de grafos. A multiplica¢do matricial é associativa e distributiva, mas ndo comutativa (AB 7 BA),
o que ¢é particularmente relevante para representar dependéncias direcionadas.

2.2.4.0.4 Transposi¢do A transposta de uma matriz A = (a;;)mx, € a matriz AT = (@ji)nsxcms
obtida pela troca de linhas por colunas:

AT = (aji>n><m-

Essa operacdo € util para reorganizar estruturas, inverter a dire¢cdo de relacdes ou comparar
simetrias entre fluxos de dados.

2.2.4.0.5 Determinante O determinante € um nimero real associado a uma matriz quadrada
que sintetiza, em um unico valor, certas propriedades estruturais da matriz. Ele mede o quanto
uma transformacao linear representada por essa matriz altera o tamanho ou a escala do espago
em que atua, funcionando como um indicador de “preservacdo” ou ‘“colapso” das relacdes
internas entre varigveis.
Para uma matriz 2 x 2,
air ap

azp a2

o determinante € calculado por:
det(A) =ajiaxy —appaz.
No caso de uma matriz 3 x 3,

app; ap as
A= lay axn a3,

asy azx asj
o determinante € obtido:
det(A) = aj1axnasz +ainaxaszl +azax1a3 — a13a22a31 — A12a21433 — 11023032

De modo geral, o calculo do determinante envolve multiplicacdes diagonais e suas respecti-
vas subtracdes, e seu valor indica o grau de independéncia entre as linhas ou colunas da matriz.
Quando det(A) # 0, as linhas (ou colunas) sdo linearmente independentes, e a matriz representa
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uma transformagao reversivel. Por outro lado, se det(A) = 0, ocorre perda de informagao, as
linhas s@o combinagdes lineares umas das outras, e a transformagado “achata” o espaco em uma
dimensao inferior, tornando impossivel recuperar o estado original.

No contexto desta dissertacdo, o determinante pode ser interpretado como uma medida de
preservacgdo estrutural entre tabelas ou camadas de dados. Por exemplo, em uma matriz que
representa relacdes entre tabelas (SOR, SOT e SPEC), um determinante ndo nulo indicaria que
cada conjunto de relacdes contribui de forma tnica e independente para o fluxo de dados. Ja
um determinante igual a zero sugeriria redundancia, isto €, que uma ou mais dependéncias
sao combinagdes de outras ja existentes, o que, em termos praticos, reflete sobreposi¢ao de
pipelines ou duplicidade estrutural em um dominio do Data Mesh.

2.2.4.0.6 Matriz Inversa Uma matriz quadrada A € R™" ¢ dita inversivel quando o seu
determinante € diferente de zero. Nessa condi¢do, existe uma matriz A~ I chamada de inversa
de A, que satisfaz:

AAT =A"1A=1,.

A matriz inversa tem o papel de desfazer o efeito da transformacao realizada por A. Em ou-
tras palavras, se uma matriz representa uma transformacao de dados, sua inversa representa o
processo de recuperacao, ou reconstru¢do, das informagdes originais.

2.2.4.0.7 Matriz Identidade A matriz identidade I, ¢ uma matriz quadrada composta por 1s
na diagonal principal e Os em todas as demais posicoes:

1 0 ... 0

01 ...0
I, =

00 ... 1

Ela atua como o elemento neutro da multiplicagdo matricial, de modo que Al,, = I,A = A para
qualquer matriz A de dimensdo compativel. No contexto deste trabalho, o conceito de iden-
tidade pode ser interpretado como o estado de equilibrio de um sistema de dados, no qual
nenhuma transformacao altera a estrutura original. Essa analogia € ttil para compreender ope-
racdes reversiveis e a preservacao de consisténcia em pipelines de dados, isto é, quando o fluxo
de transformacao pode ser revertido sem perda de informacao.

A relagdo entre a matriz identidade e a inversa € direta: enquanto [, representa o ponto de
estabilidade, a inversa A~! representa o caminho de volta até ele. Formalmente, para o caso de
uma matriz 2 X 2, a inversa € obtida pela férmula:

_ 1 ay —ap
L , onde det(A) = ai1ax —ajpas-
det(A) | —ap an

Considere a matriz
2 1

=
I
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O primeiro passo € calcular o seu determinante:
det(A) =ajap—apa =2-1—-1-1=2—-1=1.

Como det(A) # 0, A é inversivel. Aplicando a férmula da inversa, temos:

an) —ain . 1 1 —1 . 1 -1

—ay an | l|-1 2] |-1 2|

Para verificar, multiplicamos A por A~ !:

a1 2 1 =1
1 -1 2|

2.2.4.0.8 Cdlculo da inversa de uma matriz, regra geral Para uma matriz quadrada A =
(aij)nxn, a inversa é dada por

1
~ det(A)

2-141-(=1)) (2-(=1)+1-2)
(- 141-(=1)) (1-(~1)+1-2)

. o
= derga) 2@

em que adj(A) € a transposta da matriz dos cofatores. Cada cofator C;; é calculado por

Cij = (1) det(M;j),

sendo M;; a submatriz obtida ao eliminar a linha i e a coluna j de A. Se det(A) = 0, a inversa
ndo existe.
Considere a matriz de adjacéncia ja apresentada na se¢do[2.2.3]

oS O O
S O O
S = =
- O O

0 00

O determinante de uma matriz 4 x 4 pode ser calculado pela expansao de Laplace.

o

2.2.4.0.9 Expansdo de Laplace A expansio de Laplace ¢ um método geral para calcular o
determinante de uma matriz de ordem n > 2. Ela consiste em decompor o determinante em uma
soma de produtos entre os elementos de uma linha (ou coluna) e seus respectivos cofatores. O
cofator C;; de um elemento a;; € dado por:

Cij = (—1)""/ det(M;)),

onde M;; é a submatriz obtida ao eliminar a linha i e a coluna j da matriz original.
Assim, o determinante de uma matriz A = (g; j) nxn pode ser calculado por:

n
det(A) = Z aUCij,
=1
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ou seja, expandindo pela linha i, ou de forma equivalente:
n
det(A) = ZaijC,-j,
i=1

ao expandir pela coluna j. Ambas as abordagens produzem o mesmo resultado.
Exemplo. Considere a matriz:

213
A=10 4 5
1 06

O célculo do determinante pode ser realizado por meio da expansdo de Laplace, que con-
siste em desenvolver o determinante em func¢io de uma linha ou coluna escolhida. Expandindo
pela primeira linha, a férmula geral é dada por:

3
det(A) = Y a1;Cij, com Cj;=(—1)"" det(My;),
=1

em que M ; representa a submatriz obtida pela eliminagdo da linha 1 e da coluna j de A, e Cy;
€ o cofator correspondente.
As submatrizes e seus respectivos determinantes sao:

45
M“Zlo 6]7 det(My;) = (4-6—0-5) =24, Cjj =(+1)-24=24.

Mlzzl(l) Z], det(M12)2(0-6—1-5):—5, C12:(—1)-(—5):5.

M13=[(1) 3], dettM3)=(0-0—1-4)=—-4, Cpz=(+1)-(—4)=—-4.

Substituindo os valores na féormula da expansao:
det(A) = a11C11 +a12Ci2 +a13Ci3,
det(A) =2(24)+1(5)+3(—4) =48+5—12=41.

Logo, det(A) = 41.

Esse procedimento ilustra o0 método da expansdo de Laplace, aplicdvel a matrizes de qual-
quer dimensdo n, em que o determinante € calculado de forma recursiva a partir dos determi-
nantes de submatrizes de ordem inferior.

Retomando a matriz M

S O O O
S O O O
S O = =
S = O O
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o objetivo € avaliar sua inversibilidade por meio do determinante.
O determinante de uma matriz 4 x 4 pode ser calculado pela expansao de Laplace. Expan-
dindo det(M) pela primeira linha (onde apenas o terceiro elemento é ndo nulo), tem-se:

det(M)=0-C;14+0-C;p+1-C;3+0-C14 =Cy3,

com Cj3 = (—1)!"3det(M;3) = (+1)det(M;3). A submatriz M3 é obtida removendo a pri-
meira linha e a terceira coluna:
0 00

Mi3=10 0 1
0 00

O determinante de M3 € zero, pois a matriz possui pelo menos duas linhas nulas e, portanto,
linhas linearmente dependentes:
det(M 13) =0.

Logo,
det(M) = det(M;3) = 0.

De forma alternativa, como M € estritamente triangular superior (grafo aciclico), trata-se de
uma matriz nilpotente (M* = 0 para algum k), o que também implica det(M) = 0.

Em termos simples, “estritamente triangular superior” significa que todos os elementos na
diagonal principal e abaixo dela sdo zero. Isso ocorre quando conseguimos numerar as tabelas
(ordenamento topoldgico) de modo que os dados sempre fluam da linha i para uma coluna j
com j > i, isto é, sem ciclos. Ja “nilpotente” significa que, ao elevar a matriz a uma certa
poténcia k, obtemos a matriz nula: MF¥ = 0. No contexto de matrizes de adjacéncia, as entradas
de M* contam quantos caminhos de comprimento k existem entre pares de tabelas; se, para
um k suficientemente grande, nio restam caminhos, entdo MF=0,0 que caracteriza um grafo
aciclico finito.

Uma matriz nilpotente tem todos os autovalores iguais a zero, € como o determinante € o
produto dos autovalores, segue det(M) = 0. Isso implica que M ndo € inversivel. No nosso
contexto, esse fato tem uma leitura intuitiva: em pipelines aciclicos ha agregagdes e direci-
onamentos de informacao, logo a transformacio “uma etapa adiante” ndo € bijetiva, e ndo €
possivel, por uma inversdo linear, recuperar de forma Unica todas as origens a partir dos desti-
nos.

Impacto prético: o determinante nulo sinaliza colapso de volume (perda de graus de liber-
dade), mas ndo localiza a redundancia. Por isso, para detectar onde a duplicidade acontece,
recorremos a ferramentas complementares: (i) poténcias de M (M>,M3,..) para revelar de-
pendéncias indiretas (alcancabilidade multi-etapas), e (ii) testes de equivaléncia estrutural por
permutacio, como B = PAP', que preservam a estrutura de origens e destinos e permitem
comparar padrdes de conexdes entre tabelas.

Em resumo prdtico para este trabalho: det(M) = 0 € esperado em fluxos aciclicos e, por
si sO, ndo prova duplicidade, pois mesmo sem duplicatas o determinante seria zero devido a
triangularidade. A ndo inversibilidade significa que ndo conseguimos, por operacdes lineares,
desfazer o fluxo para recuperar de forma tnica todas as origens a partir dos destinos, logo a
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estratégia para achar duplicidades precisa observar padrdes estruturais, por exemplo, colunas
iguais para duplicidades de destinos (duas SOT recebendo as mesmas entradas) e linhas iguais
para duplicidades de fontes (duas SOR apontando para os mesmos destinos).

Como det(M) = 0, a matriz M ndo é inversivel, isto é, ndo existe M —1 ta] que MM - 1.
Portanto, a matriz M ndo possui inversa.

Agora, se adicionarmos a SOT_G da Figura[2.10, do dominio de machine learning na matriz
M, teremos a matriz M’ dada por

[ SOR_B SOR D SOT E SOT G SPEC F|
SOR B 0 0 1 1 0
A |SORD 0 0 1 1 0
SOT.E 0 0 0 0 1
SOT.G 0 0 0 0 0
SPECF 0 0 0 0 0 |

Temos a nova matriz de adjacéncia M’ dada por

M =

S © O O
o O O O
S O O = =
S O O = o=
S O = O O

00

Neste caso, o det(M ! ) =0, ou seja, haem M "' uma dependéncia linear global, mas o determi-
nante nao indica a localiza¢do. Em particular, as colunas 3 e 4 (SOT_E, SOT_G) sdo idénticas,
pois recebem exatamente as mesmas entradas (SOR_B, SOR_D), indicando equivaléncia es-
trutural entre SOT_E e SOT_G. Observagdo: as linhas 1 e 2 (SOR_B, SOR_D) também sao
idénticas, refletindo destinos iguais.

O que mudou ao passar de 4 x 4 para 5 X 5?7 A matriz continuou representando um grafo
aciclico, portanto permaneceu estritamente triangular superior com diagonal nula, por isso o
determinante continuou igual a zero, algo esperado. Além disso, ao introduzirmos a SOT_G,
criamos deliberadamente uma coluna adicional igual a coluna da SOT_E, tornando visivel, nas
préprias colunas 3 e 4, a duplicidade de destinos, isto €, duas SOT geradas pelas mesmas fon-
tes. Em termos de diagndstico, o tamanho maior da matriz ndo altera o fato de o determinante
ser zero, mas fornece um “testemunho” observével da duplicidade, pois colunas idénticas lo-
calizam onde estd a redundancia, e isso pode ser confirmado formalmente por equivaléncia
estrutural via B = PAP'.

2.2.5 Matrizes de Permutacio e Interpretacio Estrutural

Uma matriz de permutagdo P € R"*" € uma matriz quadrada obtida a partir da matriz identidade
pela troca de linhas (ou colunas). Cada linha e cada coluna contém exatamente um elemento
igual a 1, e todos os demais sao 0.
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Formalmente, se I, ¢ a matriz identidade de ordem n, entdo qualquer permutacdo 7 dos
indices {1,2,...,n} gera uma matriz de permutagdo P tal que:

1, sej=m(i),
Pij:{ J=m(i)

0, caso contrdrio.

O produto PA reordena as linhas de A, enquanto AP reordena as colunas. Isso ocorre porque
a multiplicacio a esquerda por P altera a ordem das linhas de A, ao passo que a multiplicacao
a direita altera a ordem das colunas.

Para ilustrar, considere a matriz

apj; app aps
A= lay ax axn|,

asy dzz ass

e a matriz de permutacao

que troca a primeira e a segunda linhas (ou colunas) da matriz sobre a qual atua.

2.2.5.0.1 Reordenagdo de linhas (PA): passo a passo Sejam

010 ayily alz dais
P=11 0 0 e A= |ay axn ax
0 01 a3zl azp dadszs

Pela regra padrao de multiplicacdo matricial, cada elemento do produto é
3
(PA)ij =Y pia;.
k=1

Como cada linha de P tem exatamente um unico 1 e os demais termos iguais a 0, essa soma
reduz-se a selecionar uma tnica linha de A. Assim, cada linha de PA € uma cdpia de alguma
linha de A, determinada pela posi¢do do 1 na linha correspondente de P.

Primeira linha de P: [0 1 0]. Para todo j,

(PA)1j=0-a1j+1-a2;+0-a3; = ay;.

Logo, a 1* linha de PA é a 2* linha de A: [ay) ax az3].
Segunda linha de P: [1 0 0]. Para todo j,

(PA)2j=1-a1;4+0-a2;+0-a3; = ay;.
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Logo, a 2* linha de PA é a 1* linha de A: [a11 a12 a13].
Terceira linha de P: [0 O 1]. Para todo j,

(PA)3j=0-a1;+0-azj+1-a3; = as;.

Logo, a 3* linha de PA é a 3" linha de A: [a3; a3 ass].
Um exemplo pontual de elemento (via produto linha-coluna):

3

(PA)12 = Zplkakz =0-ap+1-axn+0-az =axn.
k=1

Portanto, o produto final é
az| azxp a3
PA= |ay ap ai3|,
as) asy dasj

mostrando claramente que P permuta as linhas 1 e 2 de A e mantém a linha 3 inalterada.

2.2.5.0.2 Reordenacdo de colunas (AP): passo a passo De forma andloga ao caso anterior,
a multiplicacdo de A a direita por P provoca uma reordenagdo de colunas. Cada elemento do
produto € obtido por:

3
(AP)ij =Y ai pxj-
=1

Aqui, cada coluna de AP é formada a partir de uma combinacdo linear das colunas de A, em
que os coeficientes vém da matriz P. Como cada coluna de P contém exatamente um tnico
1 e zeros nas demais posicdes, cada coluna de AP corresponde a uma coluna especifica de A,
determinada pela posicdo do 1 em P.

Dadas:
ap ap a 010
A= lay ax ap|, P=|1 0 0f,
az)y dazy ass 0 01

temos o seguinte raciocinio.

Primeira coluna de P: [0 1 0]7

. Logo,
(AP).1 =0-colj(A)+1-cola(A)+0-col3(A) =colp(A).

Portanto, a 1* coluna de AP é a 2° coluna de A: [ay2,a22,a3;]".
Segunda coluna de P: [1 0 0]7. Assim,

(AP)., =1-coli(A)+0-colr(A)+0-col3(A) = col; (A),

isto é, a 2 coluna de AP é a 1° coluna de A: [a1y,a01,a31]”.
Terceira coluna de P: [0 0 1]7. Logo,

(AP).3=0-colj(A)+0-coly(A) +1-col3(A) = col3(A),
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ou seja, a 3" coluna de AP permanece igual a 3* de A.
Assim, o produto resultante é:

ap ai ais
AP = |an ay ax

asy dazp ass

Conclui-se que P realiza a troca das colunas 1 e 2 de A, mantendo a coluna 3 inalterada, uma
reordenacao horizontal que preserva todas as relagdes internas entre as linhas.

2.2.5.1 Matrizes Isomorfas

Agora, considere a matriz M’ da Sec@o que expressa as relacdes entre tabelas de diferentes
dominios.

[ SOR_B SOR_D SOT_E SOT_G SPEC_F]
SOR B 0 0 1 1 0
i |SORD 0 0 1 1 0
SOT.E 0 0 0 0 1
SOT.G 0 0 0 0 0
SPECCF 0 0 0 0 0 |

Dessa matriz completa, podem ser extraidas duas matrizes de interesse:

SOR_B SOR_D SOT_E SOR_B SOR_D SOT_G
_[SORB 0 0 1 _[SORB 0 0 1
~ |SOR.D 0 0 1 |° 7 |SORD 0 0 1

SOTE 0 0 0 SOTG 0 0 0

As duas matrizes A e B apresentam a mesma estrutura relacional: em ambas, as tabelas
SOR_B e SOR_D funcionam como fontes de dados que alimentam uma terceira tabela (SOT_E
em A e SOT_G em B), sem que existam dependéncias adicionais. Isso significa que, do ponto
de vista estrutural, SOT_E e SOT_G exercem o mesmo papel dentro do dominio, configurando
uma duplicidade funcional.

Essa equivaléncia pode ser formalmente verificada por meio de uma matriz de permuta-
cdo P. Se existir P tal que B = PA, ou seja, se uma simples reordenacio das linhas de A for
capaz de gerar B, conclui-se que ambas as matrizes representam a mesma estrutura logica de
dependéncias. Na pratica, isso significa que as origens e relagdes de geragdao das SOT permane-
cem inalteradas, o que indica que SOT_E e SOT_G exercem fung¢des equivalentes, derivando
das mesmas fontes (SOR_B e SOR_D), caracterizando assim uma duplicidade estrutural no
contexto analisado.
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Por exemplo, se existir uma matriz de permutacdo P tal que:

~

I
S~ O
S O =
— O O

entdo B = PA reordena as linhas 1 e 2 de A, mantendo inalteradas as relacdes entre as tabelas de
origem e destino. Esse resultado mostra que, embora os identificadores ou nomes das tabelas
(como SOT_E e SOT_G) possam diferir, a estrutura relacional subjacente € idéntica.

Assim, a existéncia de uma matriz P que satisfaca B = PA confirma que as duas estrutu-
ras sdo estruturalmente equivalentes, isto €, B pode ser obtida a partir de A apenas por uma
reordenacao de linhas, sem alterar a 16gica de dependéncia entre as tabelas.

Aplicando B = PA, o resultado é:

010001 0 01
B=11 0 010 0 1| =10 0 1
0 0 1[0 0O 0 00

Essa estrutura numérica € idéntica a matriz A. Assim, A e B podem ser considerados dupli-
cados, uma vez que as linhas representam as origens de dados e as colunas os destinos. Mesmo
com a mudanca nos rétulos das tabelas, troca da primeira com a segunda linha, a estrutura de
dependéncia, isto é, as relacdes de origem e destino, permanece inalterada.

A relagdo B = PA permite apenas a reordenacao das linhas de A, isto é, altera as posi¢oes
das origens das relagdes, mas mantém fixas as colunas (os destinos). Em outras palavras, PA
reorganiza as fontes de dados, mas nao ajusta simultaneamente a ordem dos destinos corres-
pondentes, o que pode distorcer a estrutura relacional quando as dependéncias sdo simétricas
ou bidirecionais.

Para representar de forma completa uma reordenacao estrutural coerente, em que tanto as
origens (linhas) quanto os destinos (colunas) sdo permutados de maneira consistente, € neces-
sario incluir a multiplicagdo também a direita pela transposta de P.

Quando apenas PA € aplicado, a operagdo reordena exclusivamente as linhas de A, modifi-
cando apenas as origens das relagdes, mas mantendo fixos os destinos. Isso resultaria em uma
transformacao assimétrica, alterando a interpretacdo estrutural do sistema.

Por outro lado, a multiplicagiio pela transposta P a direita garante que as colunas (destinos)
sejam reordenadas de forma correspondente as linhas, mantendo a coeréncia entre as conexdes
de origem e destino. Dessa forma, cada permutacdo de linha é acompanhada pela permutagao
equivalente de coluna, preservando o significado relacional entre os elementos.

Assim, a formulagdo geral que assegura uma reordenacgdo estrutural completa é dada por:

B = PAP'.

Nessa operacdo, P reordena as linhas (origens) e P' reordena as colunas (destinos) de modo
equivalente, garantindo que a estrutura relacional permaneca inalterada, apenas com os rétulos
trocados.
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Mantemos B = PA como passo pedagdgico, por ser uma forma simples de visualizar a re-
ordenacdo de linhas antes de apresentar a forma completa B = PAP ", que realiza a permutagdo
coordenada de linhas e colunas.

Em termos praticos, B = PAP" assegura que a estrutura relacional subjacente de A seja
mantida, apenas com os rétulos reorganizados. Essa € justamente a propriedade necessaria
para detectar duplicidades estruturais entre tabelas ou dominios, garantindo que duas arquite-
turas distintas compartilhem o mesmo padrdo de conexdes entre suas entidades (TAKAPOUI;
BOYD, [2016).

Voltando ao exemplode A e B, A é

>

I
oS O O
oS O O
S = =

em que as duas primeiras linhas (SOR_B e SOR_D) apontam para a terceira linha (SOT_E).
Definindo a matriz de permutacao

~

I
oS = O
o O =
- O O

temos
B=PAP'.

Como P' = P para a matriz de troca utilizada e A’ = PA, entdo B = A’P'. A primeira
coluna de B € a segunda coluna de A’, a segunda coluna de B é a primeira coluna de A’ e a
terceira coluna de B € a terceira coluna de A’. Neste exemplo, as duas primeiras colunas de A
(e de A’) sdo nulas e a terceira coluna € [1, I,O]T; logo, a permutacao de colunas ndo altera o
resultado final.

Calculando, obtém-se:

001
B=10 0 1
000

Nesse caso, o resultado B é estruturalmente idéntico a A. O que ocorreu foi apenas a
troca dos rétulos das entidades SOR_B e SOR_D (linhas e colunas 1 e 2), mas a estrutura de
dependéncia foi preservada: ambas continuam alimentando a mesma tabela destino (SOT_E).

Esse exemplo mostra que, quando existe uma matriz P tal que B = PAP ', podemos afirmar
que A e B sdo estruturalmente equivalentes. Na prética, isso significa que SOT_E e uma even-
tual SOT_G gerada da mesma forma representam uma duplicidade na arquitetura, pois derivam
das mesmas fontes (SOR_B e SOR_D), apenas com rétulos diferentes.

O objetivo da metodologia proposta nesta dissertacio € justamente identificar, de forma sis-
tematica, uma matriz de permutacdo P que satisfaca a igualdade B = PAP". Quando tal matriz
existe, conclui-se que as estruturas A e B sdo isomorfas, isto é, equivalentes em termos de suas
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origens e destinos, indicando que ha uma duplicidade estrutural no Data Mesh. Essa verifi-
cacdo permite detectar, de forma algébrica, redundancias entre dominios distintos, garantindo
consisténcia e otimiza¢ao na modelagem distribuida de dados.

2.3 Teoria dos Grafos

A teoria dos grafos € um ramo consolidado da matematica discreta que fornece as ferramentas
necessarias para representar, modelar e analisar relacdes entre objetos. Em ciéncia de dados
e, especialmente, em arquiteturas distribuidas como Data Mesh como visto na secdo (1.1} a
modelagem por grafos permite expressar relacoes entre tabelas, transformacdes e dependéncias
de forma abstrata, formal e computacionalmente tratdvel (PATEL; DHARWA, 2017).

2.3.1 Definicoes e Notacao

Um grafo direcionado é um par ordenado
G=(V,E),

em que V € um conjunto finito e ndo vazio de vértices (ou nés) e E C V x V é um conjunto
de arestas direcionadas. Quando necessario, admitimos um multigrafo direcionado rotulado e
ponderado, denotado por

G: (V7E7€7W)7

No modelo geral, pode-se considerar um multigrafo dirigido rotulado e ponderado, G =
(V.E,l,w),emque {:VUE — £ anota nés/arestas e w : E — R~ atribui pesos. Nesta disser-
tacdo, entretanto, adotamos a forma minima: grafos dirigidos ndo rotulados e ndo ponderados,
isto é, trabalhamos com G = (V,E) sem as fungdes ¢ e w. Os vértices representam tabelas
(SOR/SOT/SPEC) e cada aresta indica unicamente a existéncia de uma dependéncia/transfor-
macao entre duas tabelas, sem tipificacdo semantica adicional nem peso associado.

Em contextos de modelagem de dados, € possivel representar tabelas como vértices e suas
inter-relagdes, como chaves estrangeiras ou dependéncias de transformacgdo, por meio de ares-
tas direcionadas (ROY-HUBARA et al., 20177). Nesta dissertacdo, essa representacdo € forma-
lizada ao modelar SOR, SOT e SPEC como subconjuntos disjuntos de V, isto €, uma particao
parcial do conjunto de vértices, enquanto E representa o conjunto de dependéncias entre essas
tabelas. Nao assumimos lagos (v,v) por padrao, tampouco dependéncias “de uma tabela em si
mesma’.

Antes de avangarmos para a secao de classes de grafos, retomamos o exemplo M apresen-
tado anteriormente e explicitamos que a Figura [2.10] pode ser representada por um grafo da
forma

G=(V,E),
V = {SOR_B, SOR_D, SOT_E, SPEC_F},
E = {(SOR_B,SOT_E), (SOR_D,SOT_E), (SOT_E,SPEC_F)}.
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Nesse grafo, o conjunto V representa as tabelas envolvidas no fluxo de dados: as tabelas
SOR_B e SOR_D sao as fontes de dados (origens), a tabela SOT_E corresponde a camada
intermedidria que realiza a transformacdo, e a tabela SPEC_F representa a camada analitica
de consumo. J4 o conjunto E descreve as dependéncias entre essas tabelas. Por exemplo,
a aresta (SOR_B,SOT_E) indica que existe uma relacdo direta de derivacdo entre a tabela
SOR_B e a SOT_E, isto é, SOT_E ¢ gerada a partir dos dados de SOR_B. O mesmo ocorre
para (SOR_D,SOT_E), enquanto a aresta (SOT_E, SPEC_F) representa a transformagao final
que produz a tabela analitica. No caso do exemplo M’, tem-se um novo grafo, denotado por
G’, que inclui a tabela SOT_G e, consequentemente, adiciona as arestas (SOR_B,SOT_G) e
(SOR_D,SOT_G).

2.3.2 Classes de Grafos

A diversidade de aplica¢des dos grafos em engenharia de dados torna essencial compreen-
der suas diferentes classificagdes, uma vez que cada tipo possui propriedades estruturais que
impactam diretamente a andlise, a modelagem e a execucao de algoritmos. No escopo desta
dissertacdo, que lida com a representacdo de arquiteturas de dados e a identificagcdo de redun-
dancias estruturais, algumas classes de grafos se destacam de forma especial, como mostrado
na Figura2.T1| (FILHO, 2017).

Grafo direcionado Grafo nao-direcionado DAG (Gréfo aciclico direcionado)
| A |—>| B | | A |—| B | A —)v’ B
\ / \ / ()
Grafo ponderado Grafo bipartido Grafo rotulado
— — N VR
N Ve Y { a ) (¢ ) T T

[ A ——1—— 58 | \_/ \_ ./ (soTa g—remuneragdo—{ SORA |
N pNY '*' o NS NS
\ / .

3 { b ) empresa
2 N
\/""'\./ — —

( c ) N 7

N/ B | E

Figura 2.11: RepresentacOes visuais dos principais tipos de grafos utilizados em ciéncia de
dados. Fonte: (FILHO, [2017)

* Grafo Direcionado: Um grafo orientado pode ser definido como G = (V,E), com E C
V x V, onde cada aresta possui uma direcio (FEOFILOFF; KOHAYAKAWA; WAKA-
BAYASHI, 2011). E amplamente utilizado para representar dependéncias unilaterais,
como a derivacdo de dados entre tabelas em pipelines.

* Grafo Nao Direcionado: Definido como G = (V,E), com E C {{u,v} |u,v € V}, ou
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seja, cada aresta representa uma relacdo simétrica. E comum em redes sociais ou cone-
x0es bidirecionais (STEEN|, 2010).

Grafo Direcionado Aciclico (DAG): Um DAG ¢é um grafo orientado G = (V,E) tal que
ndo contém ciclos, ou seja, ndo existe qualquer sequéncia de vértices vy, vy, ...,V com
k > 1 tal que (v;,vi+1) € E para todo i e vi = v;. Essa auséncia de ciclos assegura a
existéncia de uma ordenagdo topoldgica dos vértices, permitindo que tarefas ou trans-
formacdes associadas a cada né sejam executadas em sequéncia l6gica sem ambiguidade
ou retroalimentag¢do. Conforme demonstrado em (FEOFILOFF,2020), essa propriedade
torna os DAGs fundamentais na andlise de dependéncias e no agendamento de tarefas em
sistemas computacionais. Em arquiteturas analiticas modernas, como pipelines de dados
e estruturas de data lineage, os DAGs sao amplamente utilizados para garantir rastrea-
bilidade, consisténcia e controle de fluxo ao longo do ciclo de vida da informacdo. Em
nosso cendrio, ndo existe uma tabela sendo criada por ela mesma, ou seja, nao tem uma
SOR, SOT ou SPEC em que a origem sao elas mesmas.

Grafo Ponderado: Um grafo ponderado é definido como G = (V,E,w), onde w : E —
R™ associa a cada aresta um peso positivo. Em contextos distribuidos, um grafo direci-
onado € dito balanceado quando, para todo vértice v; € V, a soma dos pesos das arestas
que chegam em v; € igual a soma dos pesos das arestas que saem de v;. Grafos ponderados
sao amplamente empregados em aplicagdes como roteamento de dados, balanceamento
de carga e sincroniza¢do de tarefas em redes de agentes autonomos (RIKOS; HADJI-
COSTIS, 2018).

Grafo Bipartido: Um grafo bipartido é formalmente definido como G = (U UW,E),
onde U e W sdo conjuntos disjuntos de vértices e E C U X W, ou seja, as arestas ocor-
rem exclusivamente entre elementos de U e W, sem conexdes internas dentro de cada
conjunto. Essa estrutura € especialmente eficaz para modelar interacdes entre dois tipos
distintos de entidades. Um exemplo notédvel de aplica¢do dessa estrutura esta no trabalho
de (SOSA; URREGO-LOPEZ; PRIETO, 2024)), que analisaram uma rede bipartida com-
posta por usudrios e séries de anime. Utilizando técnicas de andlise textual e modelos
exponenciais aleatérios de grafos (ERGMs), os autores demonstraram que a frequéncia
de certos termos nas descrigdes das séries influencia diretamente a forma¢do de comuni-
dades entre os usudrios. O estudo mostra que descricdes com temas como aventura, mu-
sica ou vida estudantil tendem a promover maior conectividade na rede, enquanto topicos
como fic¢do cientifica ou guerra apresentam efeito oposto. Essa abordagem fornece in-
sights relevantes para aprimorar sistemas de recomendacdo e estratégias de engajamento
em plataformas de entretenimento digital.

Grafo Rotulado: Um grafo rotulado é formalmente representado como G = (V,E, (),
onde V € o conjunto de vértices, E CV x V € o conjunto de arestas,e ¢/ : VUE — L é uma
funcdo que atribui rétulos semanticos a vértices e/ou arestas, sendo L o conjunto de pos-
siveis rétulos. A rotulacdo permite codificar informagdes contextuais e semanticas sobre
os elementos do grafo, favorecendo andlises mais precisas e inferéncias automatizadas.
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No contexto de arquiteturas analiticas e data mesh, os rétulos nas arestas podem descre-
ver relacdes semanticas especificas entre tabelas e transformacdes, como, por exemplo,
“remuneracdo” ou “empresa’. Suponha-se que a tabela SOT_A seja derivada das ta-
belas SOR_A e SOR_B. Ao rotular a aresta SOR_A =+ SOT_A com ‘“‘remuneracdo’” e
SOR_B -+ SOT_A com “empresa’, torna-se possivel, por meio de mecanismos de busca
semantica, recuperar rapidamente todas as origens envolvidas na geracdo da informagao
presente em SOT_A, a partir de consultas por metadados que envolvam esses conceitos.
Essa abordagem é coerente com as diretrizes discutidas por (HOSEINI; THEISSEN-
LIPP; QUIX! 2024), que destacam a importancia da vinculacdo de metadados a grafos
de conhecimento (Knowledge Graphs).

A correta escolha da estrutura gréfica a ser utilizada ndo apenas influencia a expressividade
da modelagem, mas também impacta diretamente a complexidade dos algoritmos aplicaveis e
a viabilidade computacional de sua execucdo. No contexto do Data Mesh, a flexibilidade na
escolha do tipo de grafo é ainda mais critica, dado que os dominios sdo autdnomos, heterogé-
neos e dindmicos. Por essa razdo, esta dissertacdo prioriza o uso de grafos direcionados, por
serem os mais aderentes a realidade dos pipelines distribuidos que se busca modelar e otimizar.

Como ressalta Steen em sua introducao a teoria dos grafos, essa distincao € fundamental
para a correta modelagem e andlise de redes complexas (STEEN,|2010). Retomando o exemplo
apresentado anteriormente, o grafo resultante da matriz M’ pode ser formalmente classificado
da seguinte forma:

Gl — (V/,El),
V' = {SOR_B, SOR_D, SOT_E, SOT_G, SPEC_F},
E' = {(SOR_B,SOT_E), (SOR_D,SOT_E),
(SOR_B,SOT_G), (SOR_D,SOT_G), (SOT_E,SPEC_F) }.

Matematicamente, o grafo G’ é um grafo direcionado aciclico (DAG), pois cada aresta
(u,v) € E' representa uma dependéncia orientada entre duas tabelas sem formagio de ciclos.
Adicionalmente, trata-se de um grafo nao ponderado e ndo rotulado, ja que ndo ha pesos (w)
associados as arestas nem fungdes de rétulo (£) aplicadas a vértices ou conexdes. Por fim, é
possivel observar que G’ possui multiplas arestas distintas saindo das mesmas origens (SOR_B,
SOR_D), o que caracteriza um grafo com fan-out multiplo, em que uma mesma tabela de
origem alimenta mais de uma transformacao (neste caso, SOT_E e SOT_G).

Essa configuracao reforca a duplicidade estrutural analisada na Se¢do [2.2.5.1] evidenciando
como a representacdo gréafica permite identificar redundéancias formais em arquiteturas de dados
distribuidas.

2.3.3 Representacao Computacional de Grafos

Considere o grafo G = (V,E), com vértices V = {vy,v,,v3,v4 } e arestas: E = {e; = (vi,v]), eo =
(vi,v2), e3=(v1,v3), ea = (v3,v4), es = (v2,v3), €6 = (v2,v3), €7 = (v4,v4) } como mostrado na
Figura[2.12] Este grafo ¢ direcionado, pois todas as arestas t¢m uma dire¢io bem definida entre
vértices.
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Figura 2.12: Representacgdo do grafo G = (V, E) com miuiltiplas arestas e lagos.

As representacdes computacionais cldssicas para esse grafo sdo as seguintes:

 Lista de Adjacéncia: Cada vértice € associado a uma lista com os vértices que podem
ser alcancados a partir dele por meio de uma aresta direcionada (ou seja, os destinos das
arestas de saida):

|
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=
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»
S,

I
<
=~
1
<
el

Essa estrutura € eficiente em termos de espacgo, especialmente em grafos esparsos, ou
seja, grafos nos quais o nimero de arestas € significativamente menor que o nimero
méaximo possivel de conexdes entre os vértices.

* Matriz de Incidéncia: A matriz M € N**7_ com linhas representando vértices e colunas
representando arestas, € dada por:

2110000

0100110
M=

0011110

000T1O0QO02

O valor 2 indica um lago (como em e € e7). Os valores 1 indicam incidéncia simples: o
vértice estd conectado como origem ou destino daquela aresta.

» Matriz de Adjacéncia: Representa as conexdes entre os vértices de forma matricial:

S O O =
S O O =
S O o=
—- = O O



2.3 TEORIA DOS GRAFOS 45

Nesta notag¢do, A;; indica a quantidade de arestas direcionadas do vértice v; para o vértice
v;, refletindo explicitamente a orientagdo das conexdes no grafo. Essa forma matricial
¢ particularmente vantajosa para a aplica¢do de operacdes algébricas, além de facilitar a
andlise de propriedades estruturais. Por sua expressividade e aplicabilidade, adotaremos
essa representacdo ao longo desta dissertacao.

Voltando ao nosso exemplo M’, apresentado anteriormente, a estrutura de dependéncias
entre tabelas pode ser expressa por sua matriz de adjacéncia, denotada por A(M’):

AM') =

S O O o O
S O O O O
S O O = =
S O O = =
S O = O O

Formalmente, A(M’) corresponde a representagdo computacional do grafo G' = (V' E’),
em que cada linha representa uma tabela de origem (produtora de dados) e cada coluna, uma
tabela de destino (consumidora de dados). O valor A(M’); ;= l indica a existéncia de uma aresta
direcionada de v; para v;, ou seja, uma dependéncia direta entre as tabelas correspondentes.

Dessa forma, A(M’ ) sintetiza, em formato matricial, 0 mesmo conjunto de rela¢des repre-
sentado graficamente, permitindo que operagdes algébricas e transformagdes lineares sejam
aplicadas para identificar padrdes, redundéncias e equivaléncias estruturais em arquiteturas de
dados. Essa correspondéncia entre grafo e matriz reforca o caréter direcionado e aciclico da
estrutura analisada, servindo como base formal para as andlises desenvolvidas nas secodes se-
guintes.

2.3.4 Subgrafos e Equivaléncia Estrutural

Em teoria dos grafos, o conceito de subgrafo é fundamental para a analise modular de sistemas
complexos. Um subgrafo consiste em uma parte de um grafo maior, preservando apenas um
subconjunto de seus vértices e as arestas que conectam esses vértices entre si. Formalmente,
um subgrafo G' = (V',E’) de um grafo G = (V,E) é definido por:

vicv, E'CEN(V' xV').

Ou seja, V' contém apenas alguns vértices de V, e E’ contém todas as arestas que, no grafo
original, conectam pares de vértices pertencentes a V’. Essa defini¢do garante que o subgrafo
mantenha a coeréncia estrutural do grafo principal, representando um fragmento funcional-
mente consistente de sua topologia.

A identifica¢do e comparacao de subgrafos sdo operagdes essenciais em tarefas de anédlise
estrutural, pois permitem reconhecer mddulos, dependéncias locais e possiveis redundancias
em arquiteturas complexas. (MESSMER; BUNKE, 2000) propdem, por exemplo, uma técnica
baseada em decomposicao hierdrquica para deteccao eficiente de isomorfismos de subgrafos,
aplicavel em cendrios de reconhecimento estrutural e otimizacao de grafos de grande escala.
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Para ilustrar, considere:

G=V,E), V={vi,m,vz,wa}l, E={(vi,v2),(v2,v3),(v3,v4)}.

Um subgrafo possivel é:

G =(V,E), V ={v,n}, E={(,vm}

Esse subgrafo representa uma etapa intermediaria dentro de um fluxo maior de transforma-
¢oes, mantendo apenas a parte relevante da estrutura global, um conceito andlogo a extracao de
dependéncias parciais em um pipeline de dados.

A Figura[2.13]ilustra como pipelines compostos por tabelas (SOR, SOT, SPEC) podem ser
representados como vértices de um grafo, em que as transformagdes entre eles sdo modela-
das como arestas direcionadas. Essa representacdo torna explicita a linhagem dos dados e as
relagdes estruturais entre os componentes da arquitetura.

Dominio de Marketing Dominio Pagamentos
TN TN : e \
[SOR_A| [SOR_B | ySOT_E |---»SPEC_F

S~ SN

Y
-

(sorc) (sorR_Dp 1 $/S0T G|  [SPEC_H

Figura 2.13: Conversao de uma arquitetura de tabelas para grafo

A Figura apresenta a constru¢do resultante do grafo geral, evidenciando subgrafos
embutidos (como X e Y) e destacando a existéncia de caminhos equivalentes. Essa estrutura
grafo-orientada facilita tanto a visualizacdo quanto a andlise algébrica de possiveis duplicidades
na arquitetura.
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Grafo Geral

Subgrato X

TN
(sor_B)

Subgrafo Y

Matriz de Adjacéncia do Grafo Geral

SOR B

SOR_D

SOT G

SOT E

SPEC_F

SPEC H

SOR B

0

1

1

L]

0

SOR_D 0 0 1 1 ] 0
SOT_E ——»/SPEC_F—»SPEC H

(soT &
\ / SOT G 0 0 [ 0 ] 0

SOT_E 0 0 [ 0 1 0
SOR DJ

NS
. SPEC F 0 0 0 0 0 1

SPEC_H 0 0 [} 0 L] 0

Figura 2.14: Grafo resultante da modelagem das tabelas e subgrafos internos

Por fim, a Figura apresenta a matriz de adjacéncia correspondente ao grafo modelado.
Essa matriz € a base para a comparagdo entre subestruturas por meio de operacgoes algébricas,
como permutagdes, que permitem identificar equivaléncias formais entre partes distintas da
arquitetura.

Grafo Geral

Matriz de Adjacéncia do Grafo Geral

Sy SORB SORD SOT.G SOTE |SPEC_F |SPEC_H

N
|SOR B }

SOR_B 0 0 1 1 0 0

SOR_D 0 0 1 1 0 o
SOT_E ——»SPEC_F—»SPEC H

(soT_6
SoT_G 0 0 0 0 0 o

SOT_E 0 0 0 0 1 L]

{soR_DT

./
— SPEC_F 0 0 0 0 0 1

SPEC_H 0 0 0 0 0 [

Figura 2.15: Matriz de Adjacéncia associada ao grafo da arquitetura

Importancia para a Detec¢do de Redundéncias

A matriz de adjacéncia constitui o elo formal entre a representacio gréifica e a andlise algébrica
das estruturas de dados. Por meio dela, é possivel identificar equivaléncias estruturais entre
diferentes partes de um grafo, independentemente da ordem dos vértices ou da nomenclatura
adotada em cada dominio. Na pratica, essa anélise se traduz na detec¢do de subgrafos isomor-
fos, ou seja, fragmentos da arquitetura que compartilham a mesma estrutura de dependéncias
entre tabelas.

Retomando o exemplo do grafo G’ e de sua matriz de adjacéncia A(M'), apresentada an-
teriormente, quando decompomos A(M’) em duas submatrizes, conforme discutido na Se-
¢do [2.2.5.1] estamos, na verdade, isolando dois subgrafos do grafo original. Cada submatriz
representa um subconjunto de vértices (tabelas) e as respectivas arestas (dependéncias) entre
eles, permitindo comparar suas estruturas de derivacdo de forma independente.

No caso da matriz A(M"):
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AM') =

S O O O
S O O O
S O = =
S O = =
S = O O

00O0O00©O0

podemos extrair dois subgrafos principais, correspondentes as estruturas derivadas de SOT_E
e SOT_G:

A=

o o O

0 1 0
0 1], A2=10
00 0

o O O
O =

Ambas as matrizes representam subgrafos equivalentes:

G, = ({SOR_B,SOR_D, SOT_E},{(SOR_B,SOT_E), (SOR_D,SOT_E)}),

G, = ({SOR_B,SOR_D, SOT_G}, {(SOR_B,SOT_G), (SOR_D,SOT_G)}).

Esses dois subgrafos sdo estruturalmente idénticos, pois compartilham o mesmo padrao de
dependéncias. Formalmente, existe uma matriz de permutacdo P tal que:

A =PAP",

2.3.5 Isomorfismo de Grafos

Dando continuidade ao exemplo anterior, em que verificamos que os subgrafos G| e G, deri-
vados de A(M’) possuem a mesma estrutura de dependéncias, podemos formalizar essa equiva-
lIéncia por meio do conceito de isomorfismo de grafos. O isomorfismo expressa a ideia de que
dois grafos diferentes, em rétulos, nomes ou posi¢des, podem representar exatamente a mesma
estrutura de conectividade.

Formalmente, dois grafos G = (V,E) e G’ = (V',E’) s@o ditos isomorfos se existe uma
funcio bijetiva

f:v=v

tal que, para todo par de vértices (u,v) € E, a aresta correspondente (f(u), f(v)) pertence a
E'. Essa relagdo garante que a estrutura de conexdes € preservada, mesmo quando os vértices
de G e G’ apresentam nomes distintos ou posi¢des diferentes na representacéo.

No plano matricial, essa condicdo é expressa pela igualdade

B=PAP',



2.3 TEORIA DOS GRAFOS 49

em que A e B sdo as matrizes de adjacéncia dos grafos G e G, e P é uma matriz de permu-
tacdo que representa a reordenacdo dos vértices segundo a bijecdo f. Se tal matriz P existir,
entdo G e G’ sdo isomorfos, o que significa que compartilham a mesma topologia interna e as
mesmas relagdes de dependéncia.

Essa propriedade foi demonstrada na Secdo quando verificamos que as submatri-
zes Ay e A, correspondentes as tabelas SOT_E e SOT_G, satisfazem a relacdo A, = PA P,
comprovando que ambas representam estruturas equivalentes do ponto de vista estrutural.

Em termos conceituais, o isomorfismo de grafos permite reconhecer quando duas arquite-
turas, ainda que possuam vértices nomeados de maneira diferente, apresentam o mesmo padrao
de relacdes de dependéncia e fluxo de dados. No contexto desta dissertacdo, isso significa que
diferentes dominios da arquitetura Data Mesh podem conter pipelines estruturalmente idénti-
cos, como SOT_E e SOT_G, mesmo que tenham sido desenvolvidos de forma independente.

A verifica¢do de isomorfismo constitui, portanto, o niicleo l6gico do método proposto, pois
permite detectar redundancias estruturais, quantificar equivaléncias entre pipelines e promo-
ver o reuso de componentes ja validados, contribuindo para a otimizagdo e padronizacdo das
arquiteturas distribuidas de dados.

2.3.6 Aplicacoes Praticas

A teoria dos grafos encontra multiplas aplicacdes, particularmente em cendrios que envolvem a
modelagem e a compreensdo de estruturas relacionais complexas. Uma de suas aplicagdes mais
comuns ocorre no mapeamento de linhagem de dados, onde grafos direcionados sdo utilizados
para descrever o fluxo de origem e transformagdo dos dados ao longo dos pipelines, como
mencionado na se¢io[2.3.3] Essa abordagem permite rastreabilidade e auditoria precisa, sendo
amplamente adotada em arquiteturas de dados modernas.

Por exemplo, em ambientes de integra¢do de informagdes, os grafos auxiliam na modela-
gem dos processos de ETL (Extract, Transform, Load), em que os nds representam tabelas, e
as arestas expressam dependéncias e fluxos de dados entre etapas. Essa representacdo gréfica
€ especialmente valiosa na deteccdo de gargalos e redundancias, adotando a identificacao de
isomorfismos em subgrafos como estratégia para otimizagdo e deduplicagdo estrutural (MES-
SMER; BUNKE/ 2000).

Outro uso relevante da teoria dos grafos estd na organizacdo semantica de bases de conheci-
mento. (ROY-HUBARA et al., 2017), demonstram como grafos podem representar esquemas
de bancos de dados, onde vértices correspondem a entidades e arestas codificam relaciona-
mentos semanticos ou integracdes entre atributos. Essa representacdo grafica facilita tanto a
modelagem conceitual quanto a navegagdo por dados complexos.

Por fim, uma aplicagdo recente que ilustra bem o uso de grafos com redes neurais € a de-
teccdo de dados duplicados em bases heterogéneas. (LU et al., 2016) propdem um modelo
baseado em GNN (Graph Neural Networks) que utiliza a topologia do grafo para otimizar a
detec¢do de registros duplicados. Nesse modelo, os registros sao representados como nés, com
arestas indicando similaridades semanticas, e a rede aprende a classificar padrdes de duplici-
dade por meio de um processo supervisionado guiado por algoritmos genéticos. A abordagem
mostrou resultados superiores a modelos tradicionais, especialmente em termos de precisao e
robustez frente a inconsisténcias de sintaxe.
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Em todos esses casos, a modelagem em grafos atua como um recurso estratégico ao propor-
cionar uma visdo estruturada e abstrata dos sistemas. Conforme argumenta (NETTO, 2012),
os grafos fornecem uma linguagem matematica de alto poder expressivo, tornando visiveis pa-
drdes, relacdes e dependéncias que permanecem ocultos em abordagens tabulares tradicionais.
Essa capacidade de representar, comparar e transformar estruturas com precisdao formal € es-
pecialmente valiosa em arquiteturas modernas e distribuidas como o Data Mesh, nas quais a
complexidade organizacional dos dados tende a crescer continuamente.

2.4 Algoritmos

A deteccdo de estruturas redundantes em arquiteturas distribuidas pode ser formalizada como
um problema de isomorfismo de subgrafos como mencionado na se¢do Neste contexto,
diferentes algoritmos podem ser aplicados para identificar se duas estruturas distintas represen-
tam essencialmente a mesma topologia de dados. Para simplificacdo, esta dissertacdo avalia
trés abordagens: uma exata, uma heuristica e uma baseada em aprendizado de maquina.

24.1 VF2: Algoritmo Exato de Isomorfismo

O algoritmo VF2, proposto por (CORDELLA et al., 2004), é um dos métodos exatos mais
eficientes e reconhecidos na detecc@o de isomorfismo e subisomorfismo de grafos. Seu objetivo
¢ identificar, dados dois grafos direcionados G; = (N1,E]) e G, = (N, E»), se existe uma
funcdo de mapeamento entre os nos de G e os de G, preservando suas conexdes €, quando
especificado, seus rétulos e atributos.

Em termos formais, o algoritmo busca uma fun¢do de correspondéncia M : Ny — N, tal
que, para todo par de nés (n;,n;) € Ey, aimagem (M(n;),M(n;)) € E,, garantindo assim que a
estrutura do grafo G esteja contida em G, (subisomorfismo) ou seja estruturalmente idéntica
a ele (isomorfismo total).

Para alcancar esse objetivo, o VF2 constroéi o mapeamento passo a passo por meio de uma
representacio por espaco de estados. Cada estado parcial s € uma configuracdo atual da busca,
representando um subconjunto do mapeamento total M(s) C N; x N,. A cada nova expansao
do estado, um novo par (n,m) é adicionado a0 mapeamento, com n € Nj e m € N;, desde que
ainda nao tenham sido utilizados.

A funcdo que decide se um par (n,m) pode ser adicionado é chamada de fungdo de viabili-
dade:

F(s; n, m) = Festrutural(sa n, m) A Fsemﬁntica(& n, m)

A primeira condi¢@o, Fegrumral, Verifica se o par respeita as conexdes dos grafos: se os
predecessores e sucessores de n jd mapeados t€ém suas imagens coerentes com os predeces-
sores e sucessores de m. Ja Fiemantica Valida se os atributos dos nds e arestas envolvidos sao
compativeis, quando disponiveis.

As verificagdes estruturais incluem regras especificas como:

Rpred(s,n,m) < Vn' € Pred(n),3m’ € Pred(m) : (n',m’) € M(s)
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Rguce(s,n,m) < Vn' € Succ(n),Im’ € Succ(m) : (n',m’) € M(s)

Ou seja, para que a expansao do estado seja vélida, todo predecessor (ou sucessor) de um
né em G ja mapeado deve ter uma correspondéncia coerente no grafo G,. Isso garante que a
estrutura de conectividade local € preservada no mapeamento parcial em construcao.

A medida que esse processo de expansio prossegue , validando passo a passo as conexdes,
o algoritmo busca construir uma fun¢cdo de mapeamento M tal que todas as arestas presentes
em G sejam correspondidas por arestas equivalentes em G,. Quando isso € alcangado e todos
os nos de G foram emparelhados com nds de G, (no caso de isomorfismo total), ou um sub-
conjunto representativo foi mapeado (no caso de subisomorfismo), pode-se afirmar que G; e
G, sdo isomorfos.

Formalmente, isso equivale a dizer que existe uma matriz de permutacgao P tal que:

B = PAPT

onde A e B sdo as matrizes de adjacéncia dos grafos G e G», respectivamente. Essa equi-
valéncia matricial confirma que os dois grafos compartilham a mesma estrutura, ainda que os
rétulos dos nds sejam diferentes. Dessa forma, o algoritmo VF2 traduz a tarefa de identificacdo
de isomorfismo em uma sequéncia de verificagdes estruturais e semanticas que convergem para
um mapeamento globalmente consistente.

Considere os seguintes grafos direcionados simples:

hd G1 = (Nl,Bl), onde N1 = {A,B,C} 631 = {(A,B), (B,C)}

® G2 = (Nz,Bz), onde Ny = {X,Y,Z} e By = {(X,Y),(Y,Z)}

O algoritmo VF2 tentard construir um mapeamento entre os nés de G e G,, de modo a
preservar a estrutura de adjacéncia. Um possivel mapeamento valido seria:

M={(A—X),(B—Y),(C—2)}

Verificamos que:

-(A,B)€B1 = (X,Y)€By;- (B,C) € By = (Y,Z) € B,.

Ou seja, todas as conexdes entre os nds de G sdo preservadas na imagem correspondente
em G», o que satisfaz a condicdo de compatibilidade estrutural. Admitindo-se compatibilidade
entre os atributos dos nds e das arestas também sejam compativeis (compatibilidade semantica),
o VF2 concluira corretamente que G| e G sdo isomorfos.

(CORDELLA et al.,|2004)) testaram o VF2 em aplicacdes reais de reconhecimento gréafico,
como o processamento de plantas técnicas, simbolos em desenhos CAD e mapas cadastrais.
Nessas aplicacOes, o algoritmo superou o desempenho de outras abordagens. Essa vantagem
decorre do uso eficiente de memoria e filtragem que tornam o VF2 particularmente adequado
para tarefas de verificag¢do final em sistemas complexos e com grande nimero de vértices.
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2.4.2 Node Match: Filtro Estrutural Inicial por Equivaléncia de I/O

O algoritmo Node Match, desenvolvido nesta dissertacao e baseado nos estudos de (ZENG ef
al.,[2009) e (DU; CAO,[2017), tem como objetivo realizar uma filtragem inicial eficiente entre
subgrafos, selecionando apenas aqueles que compartilham caracteristicas externas compativeis.
Ao contrdrio de métodos exaustivos, como o VF2, o Node Match ndo explora o espaco completo
de mapeamentos possiveis. Em vez disso, opera como um mecanismo de pré-selecao baseado
na estrutura superficial dos grafos, especialmente seus pontos de entrada e saida.

Sejam dois subgrafos direcionados G| = (Vi,E}) e Gy = (Va, E»). O algoritmo Node Match
inicia identificando os nés com grau de entrada igual a zero, isto €, vértices que nao recebem
arestas de outros nds, € os nds com grau de saida igual a zero, ou seja, aqueles dos quais nao
partem arestas. Esses conjuntos representam, respectivamente, os pontos de entrada e saida de
cada subgrafo:

In(G)={veV|deg (v) =0}, Out(G)={veV]|deg(v)=0}

A etapa de filtragem estrutural verifica se os dois subgrafos compartilham o mesmo nu-
mero de nds de entrada e de saida, uma condicdo necessdria (ainda que ndo suficiente) para a
equivaléncia estrutural:

In(G1)| = [In(G2)| e [Out(Gy)| = [Out(Gy)]

Essa equivaléncia superficial permite descartar, de forma eficiente, pares de subgrafos es-
truturalmente incompativeis logo nas primeiras etapas, evitando a execucdo desnecessdria de
algoritmos exatos de isomorfismo em casos invidveis.

Além disso, sdo comparadas os rétulos ou nomes dos nds de entrada e saida. Caso os sub-
grafos apresentem esse padrdo de conectividade semelhante, em termos de direc@o e quantidade
de vértices de entrada e saida, sdo considerados potenciais equivalentes.

Apenas os subgrafos que atendem a essas condi¢des sdo encaminhados para a etapa de
verificacdo completa com o algoritmo VF2. Dessa forma, o Node Match atua como um filtro
seletivo, descartando antecipadamente comparagdes entre estruturas incompativeis e reduzindo
significativamente o espaco de busca.

Considere os seguintes grafos direcionados que representam pipelines de processamento de
dados:

» Grafo Gy = (Vy,Eq): onde V4 = {11, 15, T3} e Es = {(T1,T»), (T, T3) };

* Grafo Gg = (Vp,Ep): onde Vg = {S1,5,,53} e Eg = {(S1,52),(S2,53) }.

Ambos os grafos possuem:

1. Um tnico n6 de entrada: 77 em G4 e S| em Gg, ambos com grau de entrada igual a zero;
2. Um tnico no de saida: 73 em G4 e S3 em Gp, ambos com grau de saida igual a zero;

3. Trés vértices dispostos de forma linear, com dois arcos direcionados que formam uma
cadeia sequencial.
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Se houver compatibilidade entre os rétulos dos vértices ¢(T;) = ¢(S;) parai=1,2,3, o al-
goritmo Node Match identifica os dois grafos como estruturalmente equivalentes. Isso permite,
entdo, aplicar o algoritmo VF2 para a verifica¢do detalhada de isomorfismo entre G4 e Gp, bus-
cando confirmar que existe uma bijecdo entre V4 e Vp que preserva a estrutura de conectividade
e os rotulos das arestas.

Com isso, o algoritmo contribui diretamente para a escalabilidade da solug¢do proposta,
concentrando o esforco computacional apenas nos casos mais promissores.

2.4.3 Redes Neurais em Grafos (GNN

Este trabalho explora, como alternativa as abordagens classicas de detec¢do de isomorfismos
(baseadas em busca exaustiva ou heuristicas fixas), o uso de Graph Neural Networks (GNNs),
redes neurais projetadas para operar diretamente sobre grafos. Ao invés de aplicar regras deter-
ministicas para avaliar similaridade estrutural, o modelo baseado em GNN aprende, por meio
de exemplos rotulados, a reconhecer padroes isomorficos mesmo diante de pequenas variagoes
topoldgicas (LU et al., 2016).

Uma GNN ¢é uma arquitetura de rede neural projetada para operar diretamente sobre gra-
fos. Seu funcionamento consiste em aprender uma representagio vetorial para cada vértice,
chamada de embedding, com base na estrutura local do grafo. O processo ocorre de forma ite-
rativa: em cada camada da rede, cada n6 atualiza sua representagdo combinando suas préprias
informacdes com as de seus vizinhos imediatos. Essa atualizacdo € realizada por uma fun¢do
de agregacdo seguida de uma transformacao nao linear, denominada fungdo de ativagcdo (como
ReLU ou tanh), aplicada dentro de camadas ocultas da rede, como mostrado na Figura [2.16]
Ao longo das camadas, a GNN captura padroes estruturais de forma progressiva, acumulando
contexto: a primeira camada enxerga a vizinhanga direta, a segunda vé vizinhos dos vizinhos,
e assim por diant&ﬂ

Hidden layer Hidden layer
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Figura 2.16: Estrutura simplificada de uma GNN. Fonte: Gillis

Neste trabalho, a arquitetura implementada é baseada no modelo Graph Isomorphism Network

(GIN), derivada da GNN, proposto por (XU et al., 2019), que se destaca por sua expressividade

4A. S. Gillis, What are graph neural networks (GNNs)?, TechTarget / The Al Summer, 2024. Disponivel em:
<https://theaisummer.com/Graph_Neural_Networks/>. Acesso em: 23 jul. 2025.
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tedrica. A escolha do GIN se justifica por seu desempenho superior em tarefas de comparagdo
estrutural e sua capacidade de generalizacao.

Seja um grafo direcionado G = (V,E), onde V é o conjunto de vértices (ounds)e E CV xV
representa o conjunto de arestas (ligacdes entre os nés). Em arquiteturas neurais baseadas em

grafos, cada vértice v € V € inicialmente representado por um vetor denso de atributos hﬁ‘)) eR4,
chamado de embedding inicial.

No presente trabalho, para simplificacdo, assumimos que os vértices nao possuem atributos
semanticos explicitos, como tipo de dado, nome de tabela ou func¢do na arquitetura. Diante
disso, todos os nds recebem o mesmo vetor inicial constante:

W) —1erd, wev

onde 1 denota um vetor em R? cujas d componentes sdo iguais a 1. Essa estratégia tem
um proposito especifico: forcar o modelo a aprender exclusivamente a partir da topologia do
grafo, ou seja, das conexdes entre os nds, ja que o conteddo de cada nd individualmente é
indistinguivel dos demais na etapa inicial.

Caso os nos tivessem atributos semanticos relevantes, o vetor hﬁ(’) poderia ser definido com
base neles, o que permitiria a rede neural combinar tanto a estrutura do grafo quanto a seman-
tica local de cada vértice. No entanto, ao nivelar os vetores iniciais, o aprendizado torna-se
totalmente dependente da propagacao estrutural, o que € particularmente adequado para tarefas
de verificagao de isomorfismo estrutural.

A atualizacdo dos embeddings ao longo das camadas da rede segue o modelo do Graph
Isomorphism Network (GIN), proposto por (XU et all 2019). A férmula de propagacdo é
definida como:

h\(,l—H) — MLP(I) (1 + g(l)) h‘()l) + Z h,(ll) (2.1)
ueN (v)

onde:
. hy) eRYéo0 embedding do n6é v na camada /;
» ¥ (v) representa o conjunto de vizinhos imediatos de v;

e el eRéum parametro (fixo ou treindvel) que regula o peso da contribui¢ao do préprio
n6 em relagao a soma dos vizinhos;

« MLPY) : R — R? ¢ uma rede neural chamada Multi-Layer Perceptron, composta por
camadas totalmente conectadas com ativa¢cdo nao-linear, que transforma a soma agregada
em uma nova representacao vetorial.

Nas redes neurais aplicadas a grafos (GNNs), cada n6 é representado por um vetor (embed-
ding) que € atualizado a partir das informacdes de sua vizinhanca. Esse processo de atualizagdo
ocorre por meio de um mecanismo chamado agregacgao, responsavel por coletar os embeddings
dos nés vizinhos e combind-los com o embedding atual do né central. No caso do Graph
Isomorphism Network (GIN), essa operacao segue dois passos principais:
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1. Agregacao Local: realiza-se a soma dos embeddings dos vizinhos },c s () hg), adici-

onando também a representacdo do préprio nd, ponderada por um fator (1 + 6(1)) . hg),

onde ) é um parametro treindvel (ou fixo).

2. Transformacido Nao-Linear: o resultado dessa soma € entdo passado por uma MLP
(Multi-Layer Perceptron), que aprende uma nova representacdo vetorial para o nd, incor-
porando de forma ndo-linear as informacdes estruturais da vizinhanca.

Diferentemente de outras arquiteturas de GNN que utilizam médias normalizadas, o GIN
utiliza a soma pura como mecanismo de agregacdo. Essa abordagem foi fundamentada teorica-
mente por (XU et al.,2019), que demonstraram que a soma possui maior capacidade expressiva
para distinguir diferentes estruturas de vizinhanga. Isso significa que mesmo grafos com topo-
logias sutilmente distintas podem ser diferenciados com maior precisdo, o que torna o GIN
especialmente eficaz em tarefas de detec¢io de isomorfismo estrutural em grafos. Combinado
a aplicacdao de uma MLP com fun¢do de ativacdo nao-linear, como a ReLLU, o GIN consegue
produzir embeddings com alto poder discriminativo.

Ao final de K camadas de propagacdo, cada né v € V terd acumulado informagdes estru-
turais de até K passos de vizinhanga, representadas no vetor hSK). Para transformar todos os
embeddings nodais em uma representacdo tnica para o grafo como um todo, € aplicada uma
operacao de agregacao global:

6=y n 2.2)
vev

Esse vetor zg € R? é chamado de embedding global do grafo, e atua como um resumo
vetorial da topologia completa de G.

Para a classificacdo do isomorfismo entre estes grafos, dado dois subgrafos G| e G, repre-
sentados pelos embeddings globais z; e z,, a tarefa de verificacdo de isomorfismo estrutural
€ modelada como uma classificacdo bindria. Para isso, os dois vetores sdo concatenados e
processados por uma camada linear com ativagdo sigmoide:

y=0(W-[zi][z2] +b) (2.3)

onde:

[21]|z2] € R?? ¢ a concatenagio dos embeddings dos subgrafos;

W € R'*?? ¢ p € R sio os pardmetros do classificador denso;

» o(+) é a funcdo sigmoide, que retorna a probabilidade estimada de que G| = G».

O modelo € treinado supervisionadamente a partir de pares de subgrafos previamente rotu-
lados: pares positivos (y = 1) indicam estruturas isomorficas, enquanto pares negativos (y = 0)
correspondem a subgrafos estruturalmente distintos. Durante a etapa de inferéncia, a saida do
classificador corresponde a uma probabilidade, sobre a qual se aplica um limiar (threshold)
para decidir se o par deve ser considerado equivalente.
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Em sintese, o GNN opera como um mecanismo de predi¢do aprendida, capaz de identificar
similaridades estruturais com maior flexibilidade que os métodos tradicionais. Embora nao
substitua algoritmos formais, sua capacidade de generalizacao o torna particularmente valioso
em ambientes Data Mesh complexos, onde a escalabilidade, a adaptabilidade e a efici€éncia sdao
fatores criticos para a governanga de dados automatizada.

2.4.4 Comparacao Geral dos Algoritmos

Para orientar a selecio do modelo mais apropriado conforme o contexto, complexidade de
dados, acuricia e desempenho, organizamos os critérios-chave em um quadro sintético. A
Tabela [2.6]sintetiza essas dimensdes, facilitando a interpretagdo dos papéis complementares de
cada abordagem na pipeline de detec¢dao de isomorfismos.

Tabela 2.6: Comparativo entre os algoritmos de isomorfismo.

Critério VF2 Node Match GNN
Tipo Exato Hibrido Aprendizado Supervisionado
Complexidade Baixa Baixa Alta
Acurécia Baixa Baixa Alta
Desempenho Baixo Médio Alto
Uso ideal Validacdo final Pré-filtragem Predi¢cdo baseada em histérico

A comparacdo entre os trés algoritmos evidencia a complementaridade entre abordagens
formais, filtragens sintéticas e modelos baseados em aprendizado. O VF2 se destaca por sua
precisdo e fundamentacio tedrica, sendo ideal para etapas finais de verificagdo onde a garantia
formal de isomorfismo € indispensavel. No entanto, seu custo computacional elevado limita
sua aplicacdo a conjuntos reduzidos de comparagdes.

Por outro lado, o algoritmo Node Match propde uma solugdo mais leve, voltada a pré-
selecdo de candidatos com potencial equivaléncia estrutural. Seu principal mérito reside na
eficiéncia, pois elimina pares obviamente distintos com base em caracteristicas sintéticas, como
grau dos nds, atributos e conectividade direta. Porém, por utilizar o VF2 depois dessa filtragem,
seu custo computacional também é limitado a conjuntos de dados maiores.

A GNN, por sua vez, representa uma abordagem moderna e adaptativa, que aprende di-
retamente com os dados (aprendizado supervisionado) como reconhecer padrdes isomorficos.
Embora exija um custo computacional mais alto e infraestrutura adequada, ela se mostra al-
tamente eficaz em contextos com grande volume de dados, oferecendo predi¢des rdpidas e
escaldveis apds o treinamento inicial. Assim, cada técnica assume um papel distinto na pipe-
line metodolégica: Node Match como filtro inicial, GNN como acelerador inteligente e VF2
como verificador final.
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2.5 Meétricas de Avaliacao

A avaliacdo da eficdcia do método proposto baseia-se em trés métricas principais: acuricia
(ACC), tempo de execugdo (ET) e frequéncia de acertos (Success Frequency - SF). Cada mé-
trica mede um aspecto diferente da performance dos algoritmos aplicados (VF2, Node Match
e GNN), permitindo uma andlise equilibrada entre precisdo e eficiéncia computacional.

A avaliagdo de modelos classificadores supervisionados, como os utilizados nesta disser-
tacdo para detectar isomorfismo entre subgrafos, é fundamentada na andlise da matriz de con-
fusdao (HASNAIN et al., 2020). Essa matriz resume o desempenho do modelo ao organizar
os acertos e erros de classificagcdo em quatro categorias: Verdadeiros Positivos (VP), Falsos
Positivos (FP), Verdadeiros Negativos (VN) e Falsos Negativos (FN). A partir dessa estrutura,
derivam-se métricas cldssicas da aprendizagem supervisionada:

» Acurdcia: proporc¢do de classificacdes corretas entre todas as tentativas; adequada quando
ha equilibrio entre as classes e serve como métrica geral de desempenho.

* Precisdo: propor¢do de instancias classificadas como positivas que sao de fato positivas;
util quando o custo de falsos positivos € alto.

* Sensibilidade (ou recall): proporcdo de positivos reais que foram corretamente identifi-
cados; importante quando se deseja minimizar falsos negativos.

* F1-Score: média harmonica entre precisao e sensibilidade; equilibra os dois extremos em
cendrios desbalanceados.

A escolha pela acurdcia como métrica principal nesta dissertacao se justifica pela neces-
sidade de mensurar o desempenho global de um classificador supervisionado. No entanto,
quando nao se dispde de rétulos ou ndo se deseja formular o problema como uma tarefa de
classificagdo bindria, torna-se necessdrio recorrer a nogdes continuas ou ndo supervisionadas
de comparagdo estrutural.

Nesse contexto, a similaridade entre grafos refere-se ao grau em que duas estruturas com-
partilham padrdes topoldgicos. Em vez de fornecer uma decisao categérica (isomorfico ou ndo),
essas medidas atribuem um score que quantifica o quanto os grafos sdo semelhantes, mesmo
que ndo sejam idénticos. Essa abordagem € util em identificacdo de padrdes em grandes bases
de grafos.

Diversas técnicas podem ser empregadas para mensurar essa similaridade, incluindo:

* Graph Edit Distance (GED): calcula o custo minimo necessario para transformar um
grafo em outro por meio de operacdes bésicas (adi¢do, remocao ou substitui¢ao de nds e
arestas) (ZENG et al.|[2009)).

* Alinhamento Estrutural: busca maximizar a correspondéncia entre subestruturas dos gra-
fos, sendo amplamente utilizado em bioinformética e reconhecimento de padrdes (SHA-
RAN; IDEKER, 2006).
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* Kernels de Grafos: projetam os grafos em espagos vetoriais de alta dimensdo, utili-
zando funcdes especiais para medir similaridade em termos de subestruturas recorrentes
(SHERVASHIDZE et al.l, 2011).

* M¢étricas Espectrais: comparam os autovalores (espectros) das matrizes associadas aos
grafos (como a de adjacéncia ou a Laplaciana), assumindo que grafos semelhantes pos-
suem espectros semelhantes (WILSON; ZHU, 2008).

Essas métricas sdo particularmente uteis em tarefas como clustering de grafos, onde o obje-
tivo € agrupar estruturas similares sem conhecimento prévio de classes, e matching parcial, que
visa identificar sobreposicdes ou subestruturas comuns entre grafos maiores. Ambas as tarefas
nao exigem pares rotulados de grafos isomorficos, operando em contextos exploratorios.

Neste trabalho, o problema foi formulado explicitamente como uma tarefa de classificacao
bindria, cujo objetivo € prever se dois subgrafos sdo isomorfos (y = 1) ou ndo (y = 0) e, além
disso, por simplificacdo, optou-se por usar a acuricia.

Como fundamento operacional das métricas reportadas, a matriz de confusao organiza acer-
tos e erros em quatro categorias, permitindo visualizar assimetrias entre classes e embasar a
escolha de limiares. A Tabela apresenta essa estrutura sobre a qual derivamos a acuricia,
precisdo, sensibilidade e F1-Score decritos anteriormente.

Tabela 2.7: Matriz de Confusao para Isomorfismo de Subgrafos.

Classe Real / Predita Nao Isomorfo (0) Isomorfo (1)
Nao Isomorfo (0) Verdadeiro Negativo (TN) Falso Positivo (FP)
Isomorfo (1) Falso Negativo (FN) Verdadeiro Positivo (TP)

Verdadeiros Positivos (TP): pares isomorfos corretamente identificados como tal;

Falsos Positivos (FP): pares nao isomorfos classificados incorretamente como isomorfos;

Falsos Negativos (FN): pares isomorfos classificados incorretamente como nao isomor-
fos;

Verdadeiros Negativos (TN): pares ndo isomorfos corretamente identificados como tal.

2.5.1 Acuracia (ACC)

Com base na matriz de confusio, define-se a acuracia como a proporgao total de classificacdes
corretas (positivas e negativas) sobre o total de predi¢des feitas:

TP+TN
TP+FP+FN+TN
No contexto da identificagdao de isomorfismo estrutural entre subgrafos, essa métrica indica
a capacidade do algoritmo de distinguir corretamente entre estruturas duplicadas e distintas.

ACC =
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Uma acurdcia elevada sugere que o modelo estd realizando uma discriminagao eficaz, enquanto
valores baixos indicam presenca significativa de erros, sejam falsos positivos (detec¢do inde-
vida de duplicidade) ou falsos negativos (falha em identificar padrdes repetidos).

Essa métrica € particularmente relevante quando decisdes de governanga e integracdo de
dados sdo baseadas nos resultados do classificador, uma vez que erros podem gerar inconsis-
téncias analiticas ou redundancia operacional.

2.5.2 Tempo de Execucao (ET)

O tempo de execugdo representa o tempo necessdrio para que o algoritmo percorra todos os
pares de subgrafos e retorne suas predi¢des. E medido em segundos (s) e calculado com base
no tempo total da fun¢do de comparagao.

ET = Ifim — tincio
A métrica ET € essencial para avaliar a viabilidade prética dos algoritmos, sobretudo em

arquiteturas reais com milhares de tabelas distribuidas. Algoritmos com alta acurdcia mas
tempo de execugdo invidvel ndo sdo apropriados para ambientes produtivos com grande escala.

2.5.3 Success Frequency (SF): Frequéncia de sucesso

A métrica Success Frequency (SF) foi concebida neste trabalho como uma medida de eficiéncia
algoritmica que integra duas dimensoes criticas da avaliagao de modelos: a acurécia e o tempo
de execugdo. Sua proposta € simples, mas poderosa: quantificar o nimero de acertos totais pro-
duzidos por segundo de execugdo. Essa métrica torna-se especialmente relevante no contexto
de arquiteturas distribuidas e escaldveis, como o Data Mesh, em que tanto a qualidade quanto
a velocidade de decisdo sdo vitais.

Seja ACC a acurécia de um algoritmo, definida no intervalo [0,1], e Npares 0 total de pares
de subgrafos analisados durante o processo. Definindo ET como o tempo total de execu¢do
(em segundos), a Success Frequency (SF) € expressa como:

o ACC-N pares
- ET

SF

Unidade: acertos por segundo (s !)

A SF pode ser vista como a derivada do nimero de acertos em relacdo ao tempo, i.e.,

d(Acert . - . )
w, sob a hipétese de execucdo deterministica e tempo continuo. Ela assume que o0s

acertos sdo produzidos uniformemente durante a execugdo do algoritmo, permitindo uma inter-
pretacdo em termos de frequéncia de sucesso temporal.

« Se SF =25, o algoritmo gera, em média, dois pares corretamente identificados por
segundo.

* Se SF — 0, o algoritmo ou € impreciso, ou extremamente lento, ou ambos.

Ao contrdrio de métricas cldssicas como Acurécia (ACC) ou Tempo (ET) isoladamente, a
SF permite comparar algoritmos com diferentes comportamentos de execucio. Por exemplo:
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¢ Algoritmo A: ACC = 0.95, ET = 100, Npgres = 1000 resulta em SF = 9.5

¢ Algoritmo B: ACC = 0.80, ET = 20s, Npgres = 1000 resulta em SF = 40

Embora o algoritmo A tenha melhor acurécia, o algoritmo B tem maior eficiéncia operaci-
onal por segundo, podendo ser mais ttil em sistemas com alta demanda em tempo real.

No contexto do Isomera, a SF € utilizada como a principal métrica de escolha entre algorit-
mos:

1. Para cada execucdo do VF2, Node Match ou GNN, o sistema registra:

* O total de pares avaliados Njges;
* O tempo de execucdo total ET;

* O nimero de acertos confirmados por validacdo humana N,¢zos-

2. Calcula-se a acuracia ACC = IM;

N, pares

3. A SF € entdo computada automaticamente para todos os cendrios e algoritmos testados:

N, acertos _ ACC-N, pares
ET ET

SF =
4. Os resultados sdo organizados em tabelas e visualizacdes comparativas.

A SF permite a ferramenta Isomera recomendar o algoritmo mais apropriado conforme o
contexto:

* Cendrios com pouca complexidade e alta demanda por velocidade: preferir heuristicas
com alta SF mesmo com menor ACC;

* Cendrios criticos com alta exigéncia de precisdao: priorizar algoritmos com alta ACC,
mesmo com menor SF;

* Cenarios de benchmarking ou andlise hibrida: comparar modelos por SF permite avaliar
a capacidade de escalar com qualidade.

A Success Frequency atua como uma métrica integradora, balanceando desempenho com-
putacional com acerto 16gico. Ao adotar essa métrica como guia, 0 método proposto assume um
carater operacional realista e adaptavel, essencial para a maturidade de solu¢des em ambientes
de dados altamente distribuidos como o Data Mesh.



CAPITULO 3

Metodologia

Este capitulo apresenta a metodologia desenvolvida para identificar redundéncias estruturais
em arquiteturas baseadas no paradigma Data Mesh, por meio da modelagem dos esquemas
relacionais como grafos direcionados e da aplicacdo de algoritmos de deteccao de isomorfismo
estrutural entre dominios. Cada subse¢do representa uma etapa da metodologia, organizada
em termos de entradas (dados ou artefatos necessarios), acdes (operagdes executadas) e saidas
(resultados produzidos), garantindo clareza na descri¢do do processo e reprodutibilidade dos
procedimentos.

3.1 Metodologia Proposta

A metodologia proposta tem como propoésito identificar e validar redundancias estruturais em
arquiteturas de dados, por meio de um processo fundamentado em modelagem matematica,
detec¢do e valida¢do. Embora tenha sido concebida com foco em arquiteturas Data Mesh,
o método € aplicdvel a qualquer ambiente em que os elementos de uma arquitetura possam
ser modelados como grafos direcionados, incluindo Data Warehouses, Data Lakes e sistemas
hibridos. Em todos esses contextos, as tabelas, relacdes de transformacao e dependéncias entre
dominios podem ser representadas por vértices e arestas, tornando o processo de identificacao
de equivaléncias estruturais generalizdvel e reprodutivel.

A metodologia foi estruturada para manter um equilibrio entre rigor tedrico e aplicabili-
dade prética, permitindo que arquiteturas complexas sejam analisadas de forma sistemadtica e
transparente. Ela se apoia em conceitos de dlgebra linear e teoria dos grafos, descritos na Se-
¢d0 [2.3.4] e é composta por quatro etapas principais que se interligam de maneira iterativa:
modelagem conceitual da arquitetura, detec¢ao de isomorfismos estruturais, validagao supervi-
sionada das duplicidades e consolidacao dos resultados. Essa estrutura visa garantir reprodu-
tibilidade, clareza no fluxo de decisdo e consisténcia entre as analises tedricas e os resultados
obtidos empiricamente.

A Figura [3.1] apresenta uma visdo geral do processo metodolégico proposto, destacando
as quatro etapas centrais e seus fluxos de interacdo. O diagrama mostra que o processo se
inicia com a modelagem em grafos, a partir de trés possiveis origens: a geracao randomica de
grafos sintéticos, o uso de arquiteturas reais baseadas no benchmark TPC-DS ou a modelagem
personalizada definida pelo usudrio. Em seguida, a metodologia avanca para a fase de detec¢ao
de isomorfismo, onde sdo aplicados diferentes algoritmos (VF2, Node Match e GNN) com o
objetivo de identificar subgrafos estruturalmente equivalentes.

Os resultados dessa detec¢ao sdao entdo encaminhados a etapa de validagcdo supervisionada,
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na qual o especialista confirma ou rejeita as correspondéncias sugeridas pelos algoritmos. Caso
os pares validados ndo apresentem redundancias estruturais consistentes, 0 processo retorna a
etapa de modelagem, ajustando critérios ou parametros de geracao dos grafos, o que caracteriza
o cardter iterativo do método. Apds a validagdo, realiza-se a avaliagdo das métricas de desem-
penho (acurdcia, tempo de execucdo e frequéncia de sucesso), consolidando os resultados e
gerando como produto final um grafo otimizado, sem vértices duplicados, representando uma
arquitetura de dados mais enxuta e consistente.

Essa representagdo visual (Figura[3.1)) sintetiza o ciclo continuo de refinamento que orienta
a metodologia, destacando a retroalimentacgdo entre as fases e o alinhamento entre andlise algo-
ritmica e validacao humana. O fluxo apresentado refor¢a a natureza reprodutivel e expansivel
do processo, que pode ser aplicado a diferentes tipos de arquitetura de dados, sejam elas Data
Mesh, Data Warehouses ou Data Lakes, desde que suas estruturas possam ser expressas como
grafos direcionados.

Entendimento do
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Figura 3.1: Fluxo metodoldgico para deteccdo e validagdo de redundancias estruturais em ar-
quiteturas de dados.
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3.1.1 Entendimento do Sistema

A primeira fase consiste em compreender profundamente o sistema de dados sob andlise, identi-
ficando seus dominios, tabelas e fluxos de dependéncia. Essa etapa € fundamental para garantir
que o processo de detec¢do e validac¢do ocorra sobre uma representacao coerente da arquitetura,
evitando interpretacdes equivocadas das conexdes entre os elementos do sistema.

E ideal que, antes da execugio da metodologia, o pesquisador ji disponha de um mapea-
mento claro das relagdes entre as tabelas que deseja estudar, isto €, quais dependem de quais,
quais servem como origem e quais representam transformacgdes intermedidrias ou produtos
finais. Quando essa informag¢do ndo estd explicitamente documentada, torna-se necessario rea-
lizar o processo de transformagao da arquitetura em um grafo dirigido, atividade que demanda
a identificacdo manual das tabelas e de suas dependéncias logicas. Esse procedimento foi apli-
cado no presente trabalho utilizando o benchmark TPC-DS, que serd detalhado na Secao [5]
onde as tabelas foram segmentadas em dominios e classificadas de acordo com os papéis de
origem (SOR), transformacado (SOT) e consumo (SPEC).

Essa etapa inicial, portanto, ndo apenas define o escopo da modelagem como também de-
limita os limites de observacdo, assegurando que apenas as relacdes relevantes sejam conside-
radas no grafo resultante. O produto é um mapa conceitual estruturado, que serve como base
formal para a etapa seguinte de modelagem em grafos e posterior aplicacdo dos algoritmos de
deteccao de isomorfismo.

Como perspectiva futura, propde-se o desenvolvimento de um moédulo automatizado para
geracdo de grafos diretamente a partir de esquemas SQL ou modelos de dados relacionais exis-
tentes. Tal funcionalidade permitiria converter automaticamente as dependéncias entre tabelas
em representacdes graficas, eliminando a necessidade de mapeamento manual e ampliando a
escalabilidade da metodologia em ambientes reais. Embora ainda ndo implementada nesta dis-
sertacdo, essa capacidade representa um avanco natural do trabalho e o caminho ideal para
automatizar a fase inicial de compreensao do sistema.

3.1.2 Modelagem em Grafos

Nesta etapa, a arquitetura de dados é convertida em um grafo direcionado G = (V,E), em que
cada vértice v € V representa uma tabela (SOR, SOT, SPEC) e cada aresta e € E representa
uma relacdo de dependéncia/transformacao entre elas. Em paralelo, é gerada a matriz de adja-
céncia A, que codifica as conexdes de forma bindria e serve de base para as etapas de detec¢do
e validacdo. O objetivo € produzir uma representagdo coerente e verificivel, pronta para a
comparacdo entre subestruturas.
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Tabela 3.1: Entradas, a¢des e saidas da etapa de modelagem em grafos.

Categoria Descricao

Entradas Mapa conceitual do sistema (dominios, tabelas e relagdes de de-
pendéncia); fontes de dados estruturadas (JSON/CSV) ou bench-
mark (ex.: TPC-DS); parametros opcionais para geragdo sinté-
tica (nimero de dominios, limites de tabelas por dominio e pro-
porcdo entre SOR, SOT e SPEC); convengdes estruturais (DAG
sem ciclos, auséncia de auto-lacos e consisténcia na hierarquia
SOR—SOT—SPEC).

Acdes Normalizacdo das entradas e padroniza¢do dos papéis SOR, SOT
e SPEC; construgdo do grafo direcionado G = (V, E) utilizando a
biblioteca NetworkX; geracdo da matriz de adjacéncia A e dos
diciondrios de mapeamento entre vértices e indices; execugdo de
um procedimento de validacdo estrutural, que verifica e corrige
inconsisténcias topoldgicas.; por fim, os artefatos sdo persistidos
em JSON/CSV/PNG e disponibilizados para inspecao.

Saidas Grafo direcionado G = (V,E) consistente e pronto para andlise;
matriz de adjacéncia A € {0, 1}“/‘ *IVI com ordenacio indexada de
V; diciondrios de mapeamento (indice < tabela); relatério de veri-
ficagdo estrutural contendo: nimero total de n6s e arestas validos,
quantidade de anomalias detectadas, tipo de inconsisténcia e acao
aplicada.

3.1.2.0.1 Entradas. Partem de um mapa conceitual (dominios, tabelas e dependéncias) e de
uma fonte: arquivos JSON/CSV previamente estruturados, o benchmark TPC-DS, ou uma con-
figuracao sintética controlada por parametros (dominios e limites minimo/maximo de tabelas
por dominio, além da propor¢do SOR/SOT/SPEC). As conven¢des de nomenclatura asseguram
unicidade e identificacdo clara do papel de cada tabela.

3.1.2.0.2 Acdes. Apds normalizar nomes e papéis, o grafo € construido em NetworkX e
sua matriz de adjacéncia A é gerada com ordenacdo consistente de V. Em seguida, sdo executa-
das checagens de sanidade para capturar problemas com a topologia: (i) SPEC sem quaisquer
predecessores (isto €, “criadas do nada”); (i1) SOT sem origem; (iii)) SOR com entradas (por
exemplo, uma SOR derivada de outra SOR). Quando a arquitetura é gerada sinteticamente, 0s
nés/arestas que violam essas regras sao removidos automaticamente do grafo final. Quando
a arquitetura € importada, as ocorréncias sdo apenas registradas e exibidas ao usudrio, preser-
vando fielmente o insumo original. Por fim, os artefatos sdo persistidos (JSON/CSV/PNG) e
disponibilizados para inspecao.

3.1.2.0.3 Saidas. O resultado é um grafo G = (V,E) pronto para andlise, a matriz de adja-
céncia A bindria e os diciondrios de mapeamento indice<+vértice. Acompanha o conjunto um
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relatorio de checagens que detalha cada inconsisténcia detectada e a acao adotada (remocao
em geracdo sintética; sinalizacdo em importagdo), garantindo rastreabilidade e reprodutibili-
dade para as etapas seguintes de deteccdo e validacdo.

3.1.3 Deteccao de Isomorfismo

A etapa de deteccao constitui o nicleo analitico da metodologia, sendo responsavel por identi-
ficar subgrafos estruturalmente equivalentes em diferentes partes da arquitetura de dados. Dois
subgrafos G; = (V},E|) e G, = (V»,E3) sdo considerados isomorfos se existir uma bije¢do
f Vi = V, tal que, para todo par (u,v), vale a condi¢do (u,v) € E; = (f(u), f(v)) € E;. Em
termos matriciais, essa equivaléncia é expressa pela relacio B = PAP', em que A e B sdo as
matrizes de adjacéncia dos subgrafos e P € uma matriz de permutagdo, como discutido na Se-
¢do [2.3.5] Essa formulagio garante que a comparacdo entre estruturas seja independente da
ordenacdo dos vértices, permitindo avaliar a similaridade puramente estrutural entre diferentes
partes da arquitetura.

A metodologia proposta ndo define um algoritmo especifico para a detec¢do de isomor-
fismos, mas estabelece o processo pelo qual um algoritmo deve ser aplicado e avaliado. Ou
seja, a metodologia € agndstica em relacdo a técnica utilizada, podendo empregar tanto méto-
dos exatos quanto heuristicos ou baseados em aprendizado de mdquina. Neste trabalho, foram
implementadas e comparadas trés abordagens representativas: (i) o algoritmo VF2, voltado
a deteccdo exata de isomorfismo de subgrafos; (ii) o método Node Match, um algoritmo hi-
brido com pré-filtragem de atributos de nés antes da comparagdo topoldgica; e (iii) o modelo
GNN (Graph Neural Networks), voltado a predi¢do de isomorfismo estrutura por meio de re-
presentacdes vetoriais aprendidas. Essas abordagens foram escolhidas por cobrirem diferentes
dimensodes de andlise, precisdo, custo computacional e capacidade de generalizacdo, e podem
ser executadas de forma independente ou comparadas dentro da ferramenta Isomera.

A natureza modular da metodologia permite a inclus@o de novas técnicas de detec¢io con-
forme o avango da pesquisa. Outros algoritmos podem ser incorporados, como métodos pro-
babilisticos, estratégias baseadas em padrdes frequentistas ou modelos hibridos que combinem
aprendizado supervisionado e heuristicas estruturais. Além disso, hd um potencial promissor
para integrar abordagens de inteligéncia artificial generativa, capazes de propor representacoes
intermedidrias de grafos ou sugerir automaticamente pares candidatos a isomorfismo. Essas
extensoes estdo previstas como desdobramentos futuros, reforcando o carater evolutivo e adap-
tdvel da metodologia proposta a diferentes contextos analiticos e arquiteturais.

A seguir, a Tabela[3.2)apresenta um resumo técnico das entradas, agdes e saidas dessa etapa.
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Tabela 3.2: Entradas, ac¢des e saidas da etapa de deteccao de isomorfismo.

Categoria

Descricao

Entradas

Acdes

Saidas

Grafo dirigido G = (V,E) e matriz de adjacéncia; defini¢do dos
subgrafos de interesse (por dominio, tipo de tabela ou profundi-
dade); selecdao do algoritmo de deteccdo (VF2, Node Match ou
GNN); parametros de comparagdo, como limite de profundidade
e atributos considerados (grau, tipo, dominio).

1. Segmentagdo do grafo em subgrafos candidatos a redundancia;
2. Aplicacdo da técnica escolhida: - VF2: detec¢do exata de iso-
morfismo de subgrafos; - Node Match: algoritmo hibrido com pré-
filtragem por atributos e posterior verificacdo topoldgica; - GNN:
predicao de isomorfismo estrutural via embeddings aprendidos; 3.
Calculo das métricas parciais (nimero de pares, tempo e similari-
dade média); 4. Registro dos pares candidatos e salvamento do log
de execucdo.

Conjunto de pares de subgrafos potencialmente isomorficos; mé-
tricas de desempenho associadas (tempo médio de execucdo, taxa
de correspondéncia, confianca da predicdo); relatério de execucao
contendo parametros aplicados e estatisticas de correspondéncia
estrutural.

3.1.3.0.1 Entradas.

O processo inicia-se a partir do grafo dirigido gerado na etapa anterior

e da sua matriz de adjacéncia, utilizados como base para as comparagdes estruturais. Sao
definidos os subgrafos de interesse, por exemplo, grupos de tabelas pertencentes a0 mesmo
dominio ou com padrdes de ligacdo semelhantes, e escolhida a abordagem de deteccdao mais
adequada a andlise pretendida. Essas entradas determinam o escopo da busca e o grau de
detalhamento da comparacdo entre estruturas.

3.1.3.0.2 Acdes.

O sistema realiza uma segmentacao inicial do grafo e, em seguida, aplica

o algoritmo de deteccdo selecionado:

* VF2: realiza a detec¢do exata de isomorfismo de subgrafos, comparando todas as com-
binacdes de vértices e arestas. Ideal para cendrios de alta precisdo, embora mais custoso
computacionalmente.

* Node Match: aplica uma pré-filtragem baseada em atributos (como tipo da tabela, grau
de entrada/saida e dominio) antes da analise topoldgica, reduzindo o espaco de busca e o
tempo de execucdo. E indicado para arquiteturas com grande ndmero de nds e arestas.

* GNN: realiza a predi¢do de isomorfismo estrutural utilizando representacdes vetoriais
(embeddings) de cada subgrafo aprendidas por uma rede neural grafica. Essa abordagem
€ robusta a pequenas variagdes estruturais e Util para cendrios onde o isomorfismo nao é
estritamente exato.
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3.1.3.0.3 Saidas. Como resultado, obtém-se um conjunto de pares de subgrafos classifi-
cados como estruturalmente semelhantes, acompanhados de métricas quantitativas de desem-
penho e confianga. Esses pares s@o registrados em relatérios de execugdo e armazenados para
posterior andlise na fase de validagcdo, onde serdo avaliados quanto a sua equivaléncia funcional
e semantica.

3.1.4 Validacao Supervisionada

A validagdo supervisionada representa uma das fases mais criticas da metodologia, pois € nela
que o julgamento humano complementa e refina os resultados obtidos pelos algoritmos de de-
teccdo. Mesmo que dois subgrafos apresentem uma equivaléncia estrutural perfeita, isso nao
implica necessariamente que desempenhem a mesma fun¢ao dentro da arquitetura de dados.
Em contextos reais, especialmente em sistemas analiticos complexos, uma tabela pode ter o
mesmo formato e estrutura de outra, mas servir a propdsitos distintos, como dominios dife-
rentes, regras de filtragem especificas ou segmentacdes de negécio. Por isso, a intervengdo
manual € indispensdvel para evitar decisdes incorretas, como a exclusdo de tabelas relevantes
ou a fusdo indevida de estruturas que, embora semelhantes, ndo sdo redundantes do ponto de
vista funcional.

Durante esta etapa, o especialista analisa os pares de subgrafos identificados pelos algorit-
mos e decide, com base em sua compreensdo contextual da arquitetura, se a correspondéncia
representa uma duplicidade funcional real ou ndo. Essa andlise € conduzida diretamente na
ferramenta, que apresenta lado a lado os subgrafos candidatos, suas tabelas e dependéncias,
permitindo uma comparagao visual precisa e contextualizada.

Nesta fase, existem duas possibilidades principais de decisdo: (i) o usudrio confirma que
um dos pares € realmente duplicado, validando assim a predi¢ao feita pelo algoritmo, caracteri-
zando um caso de verdadeiro positivo (TP); ou (i1) o usudrio rejeita a sugestdo de duplicidade,
indicando que, embora estruturalmente semelhantes, os subgrafos exercem papéis distintos no
contexto da arquitetura, configurando um falso positivo (FP).

Além desses casos apresentados na interface, hd uma terceira situa¢do implicita: os pares
que sdo conhecidos como duplicados (por exemplo, na base de benchmark utilizada) mas que
ndo foram identificados automaticamente pelo algoritmo. Esses pares ndo sdo exibidos ao
usudrio durante a validagc@o, mas sdo registrados internamente na base de dados, compondo os
falsos negativos (FN) utilizados na etapa de cdlculo das métricas.

Dessa forma, a validacdo supervisionada nio se limita a simples confirmag¢do ou rejei¢ao
das predi¢des do algoritmo, mas atua como o ponto de integracio entre a detec¢ao automatica
e o julgamento humano. E a partir dessas decisdes que se constréi a base de verdade (ground
truth) da metodologia, a qual permitird, posteriormente, a avaliacido quantitativa de desempenho
dos algoritmos por meio da matriz de confusao.
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Tabela 3.3: Entradas, acdes e saidas da etapa de validagdo supervisionada.

Categoria Contetido

Entradas Conjunto de pares candidatos a isomorfismo estrutural, resultante
da etapa de deteccao; representagdes graficas e matriciais de cada
subgrafo

Acdes Apresentacdo dos pares candidatos ao usudrio na interface gra-

fica; andlise contextual de cada par, considerando tanto a estrutura
quanto a fungdo; classificacdo dos pares como duplicados (TP),
distintos (FP) ou falsos negativos (FN); registro das decisdes na
base de verdade (ground truth) e atualizacdo da matriz de confu-
sdo; escolha dos vértices a serem removidos em caso de duplici-
dade confirmada.

Saidas Base de verdade validada, contendo os rétulos atribuidos a cada par
analisado; matriz de confusao consolidada com os cenarios TP, FP,
FN e TN; grafo anotado com as decisdes de exclusdo ou preserva-
cdo; relatério de validagdo contendo as estatisticas e observagdes
do especialista.

3.1.4.0.1 Entradas. A validagcdo supervisionada recebe como entrada o conjunto de pares
de subgrafos gerados na fase de deteccdo. Cada par contém suas representacdes graficas e
matriciais, além de informacdes contextuais como o dominio de origem, o tipo de tabela (SOR,
SOT ou SPEC) e o grau de conectividade. Esses elementos sdo fundamentais para que o usudrio
possa compreender o significado funcional de cada estrutura antes de classificéd-la.

3.1.4.0.2 Acoes. As agdes executadas nesta etapa ocorrem de forma interativa, diretamente
na interface da ferramenta. Os pares sdo apresentados ao usudrio lado a lado, permitindo a
comparacdo visual e a andlise contextual. O avaliador classifica cada correspondéncia como
duplicada, distinta ou ndo detectada, decisdo que € registrada automaticamente na base de ver-
dade. A partir dessas classificagdes, a matriz de confusdo € atualizada, fornecendo a base
quantitativa necessdria para calcular as métricas de desempenho dos algoritmos. Quando uma
duplicidade é confirmada, o usudrio também pode selecionar qual né deve ser removido, ga-
rantindo a integridade da arquitetura final.

3.1.4.0.3 Saidas. O principal produto desta etapa € a base de verdade validada, que repre-
senta o resultado consolidado da interacao entre o algoritmo e o especialista. Essa base contém
todos os rétulos atribuidos aos pares analisados e alimenta diretamente a matriz de confusiao. O
sistema também gera um relatério de validagdo com estatisticas, observacdes e um grafo ano-
tado, destacando os pares confirmados como redundantes. Esses registros ndo apenas permitem
o célculo posterior de métricas como acurdcia, tempo e frequéncia de acertos, mas também ga-
rantem a reprodutibilidade e a rastreabilidade de todas as decisdes tomadas.

Por fim, a validagcdo supervisionada cumpre um papel central de controle de qualidade,
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assegurando que apenas redundancias reais sejam tratadas como isomorfismos vélidos. Essa
etapa protege a arquitetura de remogdes indevidas e preserva a coeréncia semantica e funcional
dos dados, funcionando como um elo essencial entre a andlise automatizada e o julgamento
humano. Ela traduz o equilibrio entre precisdo computacional e entendimento contextual, con-
solidando a metodologia como uma abordagem confidvel, auditdvel e adaptavel para o estudo
de arquiteturas de dados complexas.

Critérios e protocolo de validacao

Nesta dissertagdo, o autor atuou como Unico avaliador especializado, acumulando experién-
cia direta tanto sobre o conjunto de dados quanto sobre os cendrios simulados utilizados nos
experimentos. A presenga de um avaliador com conhecimento profundo do contexto é impres-
cindivel nesta etapa: a decisdo sobre duplicidade funcional exige interpretacao de nuances de
uso, escopo de dominio, regras de filtragem e consumidores, que ndo sdo plenamente captura-
das pela andlise estrutural automética. A opg¢ao por um tnico avaliador decorreu de restri¢des
de escopo e tempo, sendo mitigada por um protocolo explicito de decisao, registro breve de
justificativas e rastreabilidade integral no ground truth. Para trabalhos futuros, recomenda-se
incluir multiplos avaliadores. A seguir, sintetizam-se as diretrizes adotadas para garantir con-
sisténcia, auditabilidade e reprodutibilidade:

* Critério de equivaléncia funcional: a confirmacao de duplicidade requer, além da equi-
valéncia estrutural, a andlise de papel funcional (uso, regras de filtragem, consumidores)
do subgrafo no dominio.

* Desempate semantico: em casos de estruturas idénticas com finalidades distintas (por
exemplo, segmentacdes de negdcio), o par € rotulado como ndo redundante.

* Documentagdo da decisdo: cada decisdo registra justificativa breve e os identificadores
dos nés envolvidos, compondo o ground truth auditavel.

* Conflitos entre avaliadores: quando houver multiplos avaliadores, recomenda-se regra
de maioria simples; empates devem ser resolvidos por um terceiro avaliador com maior
senioridade. (Nao se aplica aos experimentos desta dissertacao.)

3.1.5 Avaliacdo das Métricas

A etapa de avaliacdo das métricas encerra o ciclo metodoldgico, quantificando a eficécia dos al-
goritmos utilizados na detec¢@o de isomorfismo a partir das classificagdes obtidas durante a fase
de validacdo. Seu objetivo é traduzir o julgamento humano, consolidado na base de verdade
(ground truth), em indicadores quantitativos que permitam comparar objetivamente diferentes
abordagens, identificando o equilibrio entre precisdo e eficiéncia computacional. Essa andlise
¢ fundamental para avaliar ndo apenas a qualidade das detec¢des realizadas, mas também o
custo operacional associado a cada algoritmo, oferecendo suporte a escolha do método mais
adequado para cada tipo de arquitetura ou volume de dados.
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Tabela 3.4: Entradas, acdes e saidas da etapa de avaliagdo das métricas.

Categoria Contetido

Entradas Base de verdade (ground truth) contendo decisdes do usuario (pa-
res confirmados e rejeitados); matriz de confusdo gerada a partir
das classificacdes TP, FP, FN e TN; tempos de execucdo registra-
dos para cada algoritmo testado.

Acdes Leitura e consolidacdo das decisdes de validacdo; atualiza¢do da
matriz de confusdo; célculo das métricas de desempenho (Acura-
cia, Tempo de Execucdo e Frequéncia de Sucesso); comparacao
cruzada entre algoritmos; geracdo de relatdrios e gréficos de de-
sempenho.

Saidas Indicadores quantitativos de desempenho; tabelas comparativas e
visualizacdes das métricas; relatorio de eficiéncia por algoritmo;
grafo final sem vértices redundantes, representando a arquitetura
otimizada.

3.1.5.0.1 Entradas. A avaliacdo inicia a partir da base de verdade consolidada na etapa an-
terior, composta pelas decisdes do usudrio sobre os pares de subgrafos analisados. Essas infor-
macodes sdo estruturadas em uma matriz de confusio, na qual se registram os casos de verda-
deiro positivo (TP), falso positivo (FP), falso negativo (FN) e verdadeiro negativo (TN). Além
disso, sdo utilizados os tempos de execu¢ao medidos durante a aplicacdo de cada algoritmo de
deteccao, garantindo que o desempenho seja avaliado tanto sob a ética da precisdo quanto da
eficiéncia.

3.1.5.0.2 Acodes. Primeiro, a metodologia realiza a leitura e a consolidac@o das decisdes de
valida¢do, atualizando a matriz de confusio de forma automatica. Com base nesses dados, sao
calculadas trés métricas principais: (i) Acurdcia (ACC), que representa a propor¢do de classi-
ficagOes corretas em relacdo ao total avaliado; (ii) Tempo de Execucdo (ET), correspondente
ao tempo médio gasto pelo algoritmo na andlise dos pares; e (iii) Frequéncia de Sucesso (SF),
métrica composta que expressa a razao entre o nimero de acertos e o tempo total de execugao,
combinando qualidade e velocidade. A seguir, sdo realizadas comparacdes cruzadas entre al-
goritmos, como VF2, Node Match e GNN —, permitindo analisar como diferentes estratégias
se comportam sob 0 mesmo conjunto de dados. Essas comparacdes sdo sintetizadas em tabelas
e graficos, auxiliando na interpretacdo dos resultados e na identificacdo da abordagem mais
eficiente para cada cendrio.

3.1.5.0.3 Saidas. O resultado final da avaliagdo consiste em um conjunto de indicadores
quantitativos que descrevem o desempenho dos algoritmos em termos de precisao e eficiéncia.
Essas métricas permitem ndo apenas comparar métodos distintos, mas também calibrar os pa-
rametros da metodologia para execucdes futuras. Com base nos resultados obtidos, o grafo é
reconstruido sem vértices redundantes, refletindo uma arquitetura otimizada e coerente com as
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decisdes validadas. O relatdrio final apresenta, de forma consolidada, as métricas calculadas, as
andlises comparativas e as visualizacdes correspondentes, permitindo uma interpretacio clara
e reprodutivel do desempenho de cada algoritmo.

3.1.5.0.4 Consideragoes Finais. Essa fase da metodologia ndo apenas quantifica resultados,
mas também reforca seu cardter cientifico e auditdvel. Ao integrar julgamento humano, anélise
algoritmica e métricas objetivas, o processo garante transparéncia e confiabilidade, possibili-
tando reproduzir experimentos, ajustar parametros e expandir o estudo para novas abordagens
de deteccao. Além disso, a estrutura modular adotada permite incorporar métricas adicionais,
como precisdo, revocacdo ou F1-Score —, ampliando a capacidade analitica da metodologia e
abrindo caminho para investigacdes futuras.

3.2 Grafo sem Vértices Duplicados

A tltima fase da metodologia consolida os resultados obtidos nas etapas anteriores, gerando
uma nova versao da arquitetura de dados na forma de um grafo orientado sem redundéncias
estruturais. Esse grafo representa o produto final do processo, no qual as duplicidades identifi-
cadas pelos algoritmos e confirmadas pelo usudrio durante a validagc@o sao removidas de forma
controlada e documentada. O resultado € uma arquitetura racionalizada, mais coesa € seman-
ticamente estdvel, que preserva apenas os fluxos de transformacdo e dependéncia efetivamente
validos, eliminando sobreposi¢cdes funcionais entre dominios ou camadas de dados.

Tabela 3.5: Entradas, acdes e saidas da etapa de consolidagao do grafo final.

Categoria Conteudo

Entradas Conjunto validado de pares duplicados (base de verdade); grafo
original G = (V, E); informagdes de dependéncia e metadados as-
sociados aos nds e arestas.

Acdes Remocao dos vértices redundantes identificados durante a valida-
¢do; reconstrugcdo das conexdes incidentes preservando a integri-
dade topoldgica; atualizacdo das relacdes entre dominios e cama-
das SOR/SOT/SPEC; geragdo do grafo otimizado G’ = (V' E’) e
exportacdo dos resultados (JSON/CSV/PNG); comparacao entre a
topologia original e a final para mensurar o ganho estrutural.

Saidas Grafo orientado G’ sem redundancias estruturais; relatério de mo-
dificacdes aplicadas (vértices removidos, arestas ajustadas e domi-
nios afetados); visualiza¢do comparativa entre G e G'; indicadores
de melhoria topoldgica (reducio de nos, densidade e conectividade
média).
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3.2.0.0.1 Entradas. A reconstru¢do do grafo parte da base de verdade consolidada, con-
tendo as duplicidades confirmadas pelo usudrio e registradas durante a validagdo supervisi-
onada. Essas informagdes sdo aplicadas sobre o grafo original G = (V,E), que contém os
vértices correspondentes as tabelas e as arestas representando suas relacdes de dependéncia.
Além disso, sdo consideradas informagdes auxiliares como o tipo da tabela (SOR, SOT ou
SPEC), o dominio de origem e o papel topoldgico de cada vértice, garantindo que a exclusdao
de redundancias preserve a coeréncia semantica do modelo.

3.2.0.0.2 Acgoes. O sistema executa a remo¢ao das duplicidades de forma controlada, eli-
minando apenas os vértices marcados como redundantes e realocando as arestas associadas
quando necessdrio. Essa reconstru¢do assegura que a estrutura permaneca um grafo direci-
onado aciclico (DAG), sem lacos indevidos ou desconexdes ndo intencionais. Em seguida,
o grafo otimizado G’ = (V',E’) é gerado e exportado em diferentes formatos (JSON, CSV e
PNG), acompanhado de um relatério detalhado das modificagdes realizadas, incluindo a conta-
gem de vértices removidos, arestas reconfiguradas e dominios impactados. Por fim, realiza-se
uma comparagdo entre a topologia original e a resultante, permitindo mensurar o ganho estru-
tural obtido em termos de reducdo de redundancias e melhoria da conectividade média.

3.2.0.0.3 Saidas. O produto final é o grafo otimizado G, livre de duplicidades e semantica-
mente consistente, representando uma versao consolidada e depurada da arquitetura de dados.
Além da estrutura visual e da matriz de adjacéncia correspondente, sdo gerados indicadores
quantitativos de melhoria, como redu¢do percentual de vértices e diminui¢cdo de densidade de
arestas, que demonstram o impacto direto da metodologia na racionalizacdo da arquitetura. Es-
ses resultados servem tanto para documentacdo e auditoria quanto para embasar decisdes de
reconfiguracio de pipelines e politicas de governancga de dados.

3.2.0.0.4 Andlise dos Resultados. A consolidacao do grafo final simboliza o fechamento
do ciclo metodolégico, unindo a precisdo algoritmica a curadoria humana. O modelo resul-
tante ndo apenas reflete a eliminacdo de redundancias estruturais, mas também materializa uma
visdo otimizada do sistema de dados, onde cada elemento existente tem um papel funcional
justificado. Além disso, a comparagdo entre o grafo original e o otimizado fornece evidéncias
quantitativas e visuais do impacto da metodologia, servindo como referéncia para ajustes futu-
ros, replicagdes experimentais e extensoes da abordagem em outros tipos de arquitetura, como
Data Warehouses e Data Lakes.



CAPITULO 4

Ferramental — Isomera

A ferramenta Isomera foi desenvolvida no contexto desta dissertacio como um artefato com-
putacional que dd suporte direto a metodologia de deteccao de redundancias estruturais em
arquiteturas Data Mesh. Seu propdsito é operacionalizar, de forma modular, interativa e re-
produtivel, as etapas de modelagem, comparagdo e validagdo de subgrafos que representam
dependéncias entre tabelas.

Neste capitulo, adotamos o nome Isomera para o artefato construido. A escolha remete a
ideia de isomeria e ao isomorfismo em grafos: estruturas que, embora nomeadas ou organizadas
de modo distinto, compartilham equivaléncia estrutural. O termo “Isomera” combina “Iso”,
derivado de isomorfismo, com “mera”, inspirado em isomeria na quimica, reforcando a nogao
de equivaléncia estrutural sob diferentes formas.

A concepgdo do Isomera surgiu da necessidade de um ambiente integrado que unificasse a
modelagem matemdtica apresentada nos capitulos anteriores, fundamentada em algebra linear
e teoria dos grafos, com uma implementagdo pratica e visual que permitisse executar e verificar,
passo a passo, os algoritmos propostos. Assim, a ferramenta atua como elo entre o arcabougo
tedrico e a aplicacdo empirica da metodologia, viabilizando desde a geracdo do grafo e da
matriz de adjacéncia até a comparacgdo entre algoritmos e a validacdo supervisionada.

4.1 Arquitetura Geral da Ferramenta

A Figura4.1|apresenta a arquitetura geral do Isomera, organizada em quatro blocos funcionais
que podem ser agrupados em duas grandes camadas: infraestrutura e aplica¢do. Essa estrutura
hierdrquica foi projetada para garantir modularidade, escalabilidade e reprodutibilidade, asse-
gurando que o sistema possa ser executado de forma consistente em qualquer ambiente com-
putacional compativel. A arquitetura do Isomera reflete um principio de design minimalista
e cientifico: manter o nucleo da aplicacao leve, portitil e autbnomo, de modo que o processo
de instalacdo, execugdo e andlise seja inteiramente reproduzivel por qualquer pesquisador sem
dependéncias externas complexas.

Um dos aspectos mais relevantes do projeto € a €nfase na reprodutibilidade dos experimen-
tos, principio essencial na pesquisa cientifica moderna. O Isomera foi desenvolvido de modo a
permitir que os mesmos resultados sejam obtidos em qualquer maquina que possua uma insta-
lacdo padrao de Python (versao 3.11), independentemente de variagdes no sistema operacional.
Isso é alcangado por meio de um controle automatizado de dependéncias, que garante que to-
das as bibliotecas utilizadas sejam instaladas localmente, com versdes fixadas, dentro de um
ambiente virtual isolado. Assim, a ferramenta elimina inconsisténcias que poderiam surgir em
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execucoes diferentes, além de permitir auditorias e comparagdes exatas entre experimentos, 0
que € crucial em estudos de desempenho de algoritmos e valida¢cdes empiricas.

Outro ponto de destaque € a leveza operacional da aplicacdo. O Isomera foi intencional-
mente projetado para ser eficiente em termos de recursos, tanto de processamento quanto de
armazenamento. Todas as operacdes sdo realizadas localmente, sem necessidade de servidores,
bancos de dados externos ou infraestrutura em nuvem. Os resultados, incluindo logs, matri-
zes de adjacéncia, métricas e grafos, sdo armazenados diretamente em disco, permitindo facil
acesso, replicacdo e transporte entre ambientes. Apesar de ser uma ferramenta cientifica com
componentes graficos e computacionais avancados, o sistema mantém um desempenho satis-
fatério mesmo em maquinas modestas, tornando-o ideal para uso em laboratérios académicos,
institui¢des de ensino e experimentos offline.
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Figura 4.1: Arquitetura em blocos da ferramenta Isomera.

Usuario

A camada de infraestrutura retine os elementos responsaveis por prover o ambiente de exe-
cucdo: hardware local (CPU e memdria), sistema operacional (Windows, Linux ou macOS) e a
madquina virtual Python (versao 3.11), que encapsula as dependéncias. Como o Isomera instala
automaticamente as bibliotecas necessarias antes da primeira execucdo, nao exige hardware de
alto desempenho nem armazenamento veloz. Toda a operacao é realizada de forma local, com
resultados gravados em disco e estrutura organizada em diretorios legiveis e padronizados. Em-
bora a biblioteca DearPyGui disponha de renderizacdao via GPU, essa funcionalidade ainda
nao foi habilitada na versao atual, pois os experimentos conduzidos nesta dissertacao nao de-
mandaram processamento grafico intensivo. Dessa forma, o foco recai sobre a compatibilidade,
a leveza e a autonomia de execucao: basta que o computador possua o Python instalado e uma
conexao inicial com a internet para baixar as dependéncias, sendo todo o processamento sub-
sequente independente de rede.

A camada de aplicacdo concentra o nucleo 16gico e funcional da ferramenta, composto pe-
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los médulos de modelagem em grafos, detec¢do de isomorfismo, validagcdo manual e avaliagdo
de métricas. Cada médulo representa uma etapa metodoldgica do processo de andlise, atuando
de forma encadeada dentro de um fluxo controlado pela interface grafica. Essa camada também
inclui um moédulo transversal de persisténcia local, responsdvel por salvar artefatos, logs e re-
sultados de cada execugdo, permitindo que o usudrio retome, revise ou replique experimentos
anteriores. A interface, construida com DearPyGui, centraliza toda a interagdo com o Sis-
tema, tornando o processo acessivel, visual e intuitivo, sem necessidade de executar scripts ou
editar codigo.

Em sintese, a arquitetura do Isomera foi desenhada para oferecer um equilibrio entre rigor
cientifico, eficiéncia computacional e usabilidade prética. Ela traduz os principios da metodo-
logia proposta em uma aplicacdo funcional, reprodutivel e extensivel, caracteristicas essenciais
para sua utiliza¢do tanto em ambientes académicos quanto em projetos de pesquisa aplicada
em engenharia de dados.

Camada de Infraestrutura

A arquitetura de execucdo foi projetada de modo a equilibrar simplicidade e robustez. A ferra-
menta utiliza o hardware local (CPU e memoéria RAM disponiveis) para processar as operagoes
de modelagem, comparacao e visualizacdo. Nao ha necessidade de GPU ou processadores
dedicados, uma vez que os algoritmos empregados sdo otimizados para execucdo em CPU e
operam sobre conjuntos de dados moderados, tipicos de andlises estruturais. Além disso, a ins-
talacdo € autdbnoma: na primeira execucao, o sistema cria uma mdaquina virtual Python (versao
3.11) e instala automaticamente as bibliotecas necessdrias, isolando-as do sistema principal.
Esse mecanismo evita conflitos de dependéncias e assegura a reprodutibilidade dos resultados,
um requisito fundamental para experimentos cientificos controlados.

Tabela 4.1: Resumo da camada de infraestrutura da ferramenta Isomera.

Componente Descricao e funcao

Hardware local Utiliza CPU e RAM disponiveis. O desempenho € suficiente para
execucdo local dos experimentos, sem exigir configura¢des avan-
cadas.

Sistema operacional Compativel com Windows, Linux e macOS, assegurando ampla

portabilidade e independéncia de plataforma.

Miéquina virtual Python 3.11 Ambiente principal de execucdo; instala e gerencia automatica-
mente todas as bibliotecas requeridas, garantindo isolamento e

estabilidade.

Renderizacao GPU Recurso oferecido pelo DearPyGui, mas ainda desativado nesta
versdo. A renderizagdo via CPU € suficiente para as simulacdes
conduzidas.

Dependéncias locais Instaladas automaticamente na primeira execucdo. Apds isso, 0

uso ¢é totalmente offline, favorecendo reprodutibilidade e controle
de versao.
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Em sintese, essa camada foi pensada para manter o Isomera leve, portatil e de facil replica-
¢do. Nao ha necessidade de servidores externos, bancos de dados dedicados ou configuracdes
avancadas. O usudrio precisa apenas ter o Python instalado e conexao inicial a internet para o
download das bibliotecas. A partir dai, todo o funcionamento se torna local e independente,
permitindo que os resultados sejam reproduzidos integralmente em qualquer ambiente acadé-
mico ou corporativo.

Camada da Aplicacao

A camada de aplicacdo representa o nucleo l6gico do Isomera. Nela, sdo implementadas as
etapas metodoldgicas descritas nesta dissertagdo, desde a modelagem em grafos até a avaliagdo
das métricas de desempenho. Cada médulo funciona como uma unidade funcional indepen-
dente, mas totalmente integrada por meio da interface grafica, que atua como um orquestrador
visual de todo o fluxo computacional.

Os moédulos foram concebidos com base nos principios de clareza, rastreabilidade e mo-
dularidade. Isso significa que cada parte da aplicagdo corresponde a um pseudocddigo formal,
apresentado nas secdes seguintes, descrevendo de forma transparente as operagdes realizadas.

Tabela 4.2: Resumo dos médulos principais da camada de aplicacao.

Médulo Descricao e responsabilidade

Modelagem em grafos Converte tabelas e dependéncias em grafos direcionados e matri-
zes de adjacéncia. Implementado com NetworkX, constitui a
base analitica da ferramenta.

Deteccao de isomorfismo Executa os algoritmos VF2, Node Match e GNN sobre subgrafos,
identificando padrdes estruturais equivalentes entre diferentes do-
minios. E o nucleo de processamento da aplicacgdo.

Validagao manual Exibe, via DearPyGui, os pares de subgrafos detectados, per-
mitindo que o usudrio confirme ou rejeite redundancias. Essa va-
lidagdo supervisionada cria a base de verdade para as métricas.

Avaliagdao de métricas Calcula acuricia (ACC), tempo de execugdo (ET) e frequéncia de
sucesso (SF), consolidando as decisdes do usudrio e exportando
os resultados em CSV.

Persisténcia local Armazena logs, grafos, matrizes e resultados em formatos JSON,
CSV e PNG, garantindo reprodutibilidade e rastreabilidade com-
pleta.

Essa camada foi desenhada para oferecer tanto poder analitico quanto transparéncia cien-
tifica. O usudrio pode acompanhar visualmente o avanco de cada etapa, inspecionar os grafos
gerados, verificar os pares identificados e avaliar o desempenho dos algoritmos em tempo real.
Além disso, a estrutura de persisténcia permite retomar experimentos anteriores, comparar re-
sultados e documentar todas as etapas do processo de forma auditdvel.
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Bibliotecas de Suporte

O Isomera fundamenta-se em um conjunto de bibliotecas cientificas do ecossistema Python,
amplamente reconhecidas por sua estabilidade, integragcdo e suporte a pesquisa aplicada. Essas
bibliotecas fornecem uma base técnica sdlida que combina desempenho, legibilidade e facil
manutencdo, permitindo que a ferramenta se mantenha compativel com praticas modernas de
ciéncia de dados.

Tabela 4.3: Bibliotecas utilizadas na implementacdo do Isomera.

Biblioteca Funcio principal

NetworkX Estruturacdo, manipulacio e andlise de grafos direcionados e mul-
tigrafos.

Pandas Organizacdo de matrizes de adjacéncia, transformagao de dados e

exportacdo de resultados tabulares.

DearPyGui Interface grafica interativa com suporte a visualizac¢do de grafos e
componentes dindmicos.

Matplotlib e Seaborn Criacdo de gréificos comparativos e visualizagdes analiticas de
métricas e tempos de execugao.

Torche Torch Geometric Implementagdo das redes neurais graficas (GNN) e treinamento
supervisionado de modelos baseados em embeddings estruturais.

A integracdo entre essas bibliotecas garante que o Isomera mantenha um equilibrio entre
precisdo algoritmica e facilidade de uso. Todas as dependéncias foram escolhidas de forma
criteriosa, considerando desempenho, suporte ativo da comunidade e compatibilidade entre
versoes, 0 que assegura longevidade e confiabilidade a ferramenta.

Intera¢io com o Usuario

A interagdo com o usudrio € inteiramente conduzida pela interface grafica desenvolvida com
a biblioteca DearPyGui. Essa interface foi projetada para oferecer uma experiéncia fluida,
intuitiva e cientificamente rastredvel, na qual cada acdo do pesquisador € refletida diretamente
no ambiente visual. O usudrio é capaz de realizar todo o fluxo metodoldgico, desde o carrega-
mento dos dados até a validacdo e exportacdo dos resultados, sem a necessidade de acessar o
codigo-fonte ou executar comandos externos.

A Figura e a Tabela [4.4] apresentam o fluxo geral de uso da ferramenta Isomera, que
organiza as etapas de execu¢do em uma sequéncia logica, permitindo compreender a progres-
sdo dos dados desde a entrada até a andlise final. O diagrama evidencia a modularidade do
sistema e a integracdo entre os algoritmos e a interface, assegurando clareza na execucio e
reprodutibilidade dos experimentos.



78 CAPITULO 4 FERRAMENTAL — ISOMERA
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Figura 4.2: Fluxo de uso da ferramenta [somera.

Tabela 4.4: Resumo das etapas do fluxo de uso da ferramenta Isomera.

Etapa Descricao resumida

Carregamento ou geracdo Importa arquivos JSON/CSV ou gera arquitetura sintética com
parametros ajustaveis.

Modelagem em grafos Converte tabelas e dependéncias em grafos direcionados e ma-
trizes de adjacéncia (NetworkX).

Execucao de algoritmos ~ Aplica VF2, Node Match ou GNN e registra os pares candidatos

a isomorfismo.

Validacao manual Usudrio confirma ou rejeita pares isomorficos; decisdes alimen-
tam a base de validacao.

Calculo das métricas Calcula ACC, ET e SF e exibe resultados em graficos compara-
tivos.

Exportagdo e persisténcia Salva grafos, métricas e logs em CSV, JSON e PNG.
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Durante a execugdo, o Isomera registra automaticamente todos os parametros definidos
pelo usudrio, as agdes realizadas e os resultados gerados em cada etapa do processo. Esses
registros formam um histérico completo e rastredvel de execucdo, assegurando que qualquer
experimento possa ser reproduzido ou auditado posteriormente com precisdo. O mecanismo
de registro inclui ndo apenas os valores de entrada e saida, mas também metadados como data
e hora de execucdo, versdo das bibliotecas utilizadas e configuragdes do ambiente computaci-
onal. Essa documentacdo automdtica elimina a necessidade de anotacdes manuais e garante
que toda informacao relevante para a reprodutibilidade esteja preservada de forma estruturada
e consultivel.

A leveza da ferramenta também € um aspecto central do seu design: todas as operagdes sao
processadas localmente, sem dependéncia de servidores externos, o que garante independén-
cia, privacidade e controle total sobre os dados. Mesmo com essa simplicidade operacional, o
Isomera mantém desempenho eficiente em CPU e armazenamento local, tornando-se adequado
tanto para uso em pesquisa aplicada quanto em atividades de ensino. Sua modularidade e trans-
paréncia reforcam o carater cientifico da aplicacdo, permitindo que resultados sejam facilmente
replicados, comparados e compartilhados.

Além disso, a organizagdo interna dos arquivos gerados segue uma estrutura padronizada e
intuitiva, facilitando a navegacdo e a posterior andlise dos dados produzidos. Cada execugdo
cria automaticamente um conjunto de artefatos que incluem grafos em formato visual, ma-
trizes numéricas, métricas consolidadas e logs detalhados, todos armazenados em diretorios
especificos que refletem a hierarquia 16gica do experimento. Essa estruturagdo permite que
o pesquisador localize rapidamente qualquer informac¢do relevante e mantenha organizado o
histérico de multiplas execugdes, contribuindo para a manutencao da integridade cientifica do
trabalho e para a clareza na apresentagdo dos resultados.

A interface do Isomera representa a materializagdo pratica da metodologia proposta, unindo
modelagem tedrica e experimentacao visual em um dnico ambiente. Desenvolvida integral-
mente com a biblioteca DearPyGui, ela oferece uma experi€ncia interativa e intuitiva, que
conduz o usudrio por todas as etapas, da geracdo da arquitetura a validagao e andlise dos re-
sultados, sem necessidade de interacao direta com o c6digo ou execucdo de comandos exter-
nos. Essa abordagem garante acessibilidade e reprodutibilidade, permitindo que o processo
de deteccao e validagc@o de redundancias estruturais seja realizado de forma simples, guiada e
transparente. O layout da interface segue a mesma légica sequencial da metodologia descrita
na dissertacao, apresentando os médulos de forma ordenada: modelagem, detec¢do, validagcao
e métricas, o que facilita a navegacdo e o entendimento do fluxo completo de andlise.

4.2 Interface e Visualizacao da Ferramenta

A seguir, sdo apresentadas as principais telas da ferramenta Isomera, em sequéncia légica,
acompanhando o mesmo fluxo metodoldgico proposto nesta dissertacdo. As imagens foram
organizadas para que o leitor possa compreender passo a passo como a ferramenta funciona
na prética, desde a geracdo do grafo até a visualizac@o final do resultado consolidado sem
redundancias estruturais.
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Figura 4.3: Visdo geral da ferramenta Isomera (DearPyGui).

A Figura[d.3] apresenta a visdo geral da ferramenta Isomera, exibindo o conjunto completo
de moédulos disponiveis na interface grafica. Nesta tela, o usudrio tem acesso aos principais
recursos da aplicacdo, modelagem de grafos, execucdo dos algoritmos de detec¢ao de isomor-
fismo, validacdo manual e andlise de métricas. Toda a interag@o € visual e intuitiva, permitindo
a configuracdo de experimentos, 0 acompanhamento do progresso e a exportagdo dos resulta-
dos, tudo dentro de um tnico ambiente gréfico.

A interface foi projetada de modo a guiar o pesquisador em uma jornada completa: do car-
regamento dos dados até a andlise dos resultados. Essa abordagem promove um uso acessivel
mesmo para usudrios sem familiaridade com programacao, tornando o Isomera uma ferramenta
didética e experimental ao mesmo tempo, adequada tanto para pesquisa cientifica quanto para
ensino de conceitos ligados a teoria dos grafos e as arquiteturas Data Mesh.

Figura 4.4: Modelagem como grafo e matriz de adjacéncia.
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A Figurad.4marca o inicio do exemplo pratico apresentado neste capitulo. Aqui, o usudrio
define os parametros de configuracdo do experimento, podendo importar uma arquitetura real
(como o benchmark TPC-DS) ou gerar automaticamente uma arquitetura sintética diretamente
pela interface. Os campos de entrada permitem controlar o nimero de tabelas, a quantidade
de dominios e os limites minimo e maximo de tabelas e linhas por dominio, parametros que
determinam a complexidade e densidade do grafo a ser estudado.

No exemplo exibido, os seguintes valores foram configurados para o experimento: 3 tabelas
de origem (SOR), 4 dominios, 6 tabelas por dominio (minimo e maximo), 10 linhas minimas e
20 linhas maximas por tabela. Esses parametros definem o tamanho e a conectividade inicial da
arquitetura simulada, influenciando diretamente a estrutura final do grafo e o comportamento
dos algoritmos de deteccao.

A direita da interface, observa-se a matriz de adjacéncia correspondente ao grafo gerado.
Ela representa, em formato numérico, as relacdes de dependéncia entre tabelas, permitindo ao
usudrio verificar visualmente se as conexdes foram geradas corretamente. Essa visualizacdo
reforca o principio de transparéncia da ferramenta, facilitando a compreensdo de como cada
aresta (transformacao) e cada n6 (tabela) se traduzem em relacdes matematicas dentro da ma-
triz.
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Figura 4.5: Detec¢do de isomorfismo (VF2).

Na Figura 4.5] o processo de detec¢do de isomorfismo € iniciado. O usudrio seleciona o
algoritmo desejado, neste caso, o VF2, e o sistema executa automaticamente a comparacao
entre os subgrafos gerados a partir da arquitetura modelada. Durante essa execugdo, o Isomera
analisa cada par de subestruturas e identifica padrdes equivalentes de conectividade, armaze-
nando os resultados intermedidrios em memoria € em disco. Essa etapa corresponde ao nucleo
computacional da ferramenta, onde a teoria dos grafos € aplicada diretamente a prética para
detectar redundancias estruturais.
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Figura 4.6: Validacdo manual de pares redundantes.

A Figura [4.6] apresenta a tela de validacdo manual, etapa essencial do processo. Apés a
execucdo dos algoritmos, os pares de subgrafos identificados como equivalentes sdo exibidos
para inspec¢do visual do usudrio. A partir dessa interface, o analista decide se as correspondén-
cias encontradas representam redundancias reais ou apenas semelhancas formais. Essa decisao
alimenta automaticamente a base de validacdo, que € usada nas proximas etapas para o calculo
das métricas de desempenho.
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Figura 4.7: Comparacio entre algoritmos (métrica SF).
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A Figura [d.7) mostra o painel de métricas, responsdvel por consolidar os resultados expe-
rimentais. Aqui, o sistema apresenta indicadores quantitativos como acurédcia (ACC), tempo
de execucdo (ET) e frequéncia de sucesso (SF). Essas métricas permitem comparar o desem-
penho dos algoritmos (VF2, Node Match e GNN) sob 0os mesmos parametros experimentais,
identificando qual abordagem apresenta o melhor equilibrio entre precisdo e eficiéncia.

Graph After Removing Isomorphic Subgraphs

o @am cus' address
N \

Figura 4.8: Grafo final sem tabelas duplicadas.

Por fim, a Figura[.8|apresenta o resultado consolidado do experimento: um grafo orientado
representando a arquitetura final sem redundancias estruturais. Essa visualizacdo sintetiza todo
o processo realizado, da modelagem inicial a validagdo, e evidencia como a aplicacao dos algo-
ritmos de isomorfismo contribui para identificar e remover duplicidades de forma sistematica.
O grafo resultante preserva as relacdes vélidas entre tabelas, a0 mesmo tempo em que elimina
estruturas equivalentes, resultando em uma representacao mais enxuta, coerente e otimizada da
arquitetura Data Mesh.

4.3 Detalhamento da Solucao

A ferramenta Isomera foi inteiramente desenvolvida em Python, escolhida por sua ampla ado-
¢do em ciéncia de dados, legibilidade e ecossistema cientifico consolidado. Essa escolha tam-
bém favoreceu a integracao entre os conceitos matematicos da metodologia e a implementagao
de algoritmos de grafos e aprendizado supervisionado.

As principais bibliotecas utilizadas sdo descritas a seguir.
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4.3.1 Escolha da Biblioteca NetworkX

A biblioteca NetworkX foi selecionada como nucleo da modelagem e andlise estrutural dos
grafos que representam as arquiteturas de dados. Segundo (SOUZA; GUEDES, 2023), a
NetworkX apresenta o melhor equilibrio entre flexibilidade, integracdo e estabilidade den-
tre as principais bibliotecas analisadas (Gephi, Pajek, iGraph e NetworkX).

Enquanto Gephi e Pajek sdo voltadas a visualizacdo, e iGraph oferece maior desempenho
porém menor flexibilidade, a NetworkX destacou-se pela capacidade de representar grafos
direcionados, multigrafos e estruturas com auto-lagos, além de conter implementacdes estdveis
de algoritmos como busca em profundidade, clusterizacdo e detec¢do de isomorfismos. A ferra-
menta aproveita especialmente o algoritmo VF2 nativo da biblioteca, amplamente referenciado
na literatura para verificacdo de equivaléncias estruturais.

4.3.2 Uso de DearPyGui para a Interface Grafica

A interface grafica foi construida com a biblioteca DearPyGui, escolhida por seu desempenho
grafico acelerado via GPU e suporte a interacdes em tempo real. De acordo com Langner
et al. (LANGNER et al., [2025), o DearPyGui é particularmente indicado para aplicacdes
cientificas que exigem visualizagdes de alta performance, como a manipulagdo de grafos e
matrizes de grande porte.

Sua arquitetura baseada em renderizacdo direta permite que o usudrio interaja com cada
etapa da metodologia, geracdo de grafos, execucdo de algoritmos e validacdo manual, sem
perda de desempenho. Além disso, a biblioteca permite criar painéis interativos para compara-
¢do de métricas e exportacao visual dos resultados.

4.3.3 Médulo de Modelagem em Grafos

O primeiro médulo da ferramenta € responsdvel por transformar tabelas e suas dependéncias em
uma estrutura de grafo direcionado, com vértices representando entidades (SOR, SOT e SPEC)
e arestas representando as relacdes de derivacdo. Essa modelagem formal constitui a base de
toda a metodologia, pois converte o problema de redundancia estrutural em um problema de
equivaléncia entre subgrafos.

O processo € automatizado por meio da fungio representada no pseudocédigo da Figura[d.9]
que cria o grafo, define as conexdes e gera a matriz de adjacéncia correspondente. A saida desse
modulo € utilizada diretamente na etapa de detec¢dao de isomorfismo.
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Algorithm 1 Generate Graph Structure with Mesh-Adaptive TPC-DS Op-
tion
1: Input: Use_TPCDS (boolean), number of domains D, number of SOR
nodes S, min/max tables (Tiin. Tinax)

2: Output: Directed graph G

3: if Use_.TPCDS = True then

4: Load adapted TPC-DS graph

5: Rename tables with prefixes SOR_, SOT_, SPEC.

6 Add domain-specific node grouping

T: Transform schema relationships into graph edges
8: return G

9: end if

10: Initialize directed graph G

11: Initialize lists: sor_nodes, sot_nodes, spec_nodes
12: ford=1to D do

13: for s=1to S do

14: Create node SOR_s_Dy
15: Add node to G

16: end for

17: end for

18: T « Random(Tmin, Tmax)

19: fort=1to T do

20: Select random domain d

21: Create node SOT_D; T

22: Add node to G

23: Connect to random SOR nodes
24: end for

25: for t = 1 to Random(1,T) do

26: Select random SOT node

27: Create node SPEC_T;

28: Add node to G

29: Connect to random SOT nodes
30: end for

31: return &

Figura 4.9: Pseudocddigo — mdédulo de modelagem em grafos.

Esse médulo permite tanto a importagcao de dados reais (ex.: TPC-DS, PostgreSQL, MySQL)
quanto a geracao de arquiteturas sintéticas, configuradas com paradmetros de complexidade de-
finidos pelo usudrio (nimero de dominios, nimero de tabelas e densidade de conexdes). A
matriz de adjacéncia gerada representa a estrutura formal que serd utilizada nas comparagdes
posteriores.
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4.3.4 Moédulo de Deteccao de Isomorfismo

O segundo moédulo executa o nucleo computacional da ferramenta, aplicando algoritmos de
deteccao de isomorfismo sobre os subgrafos extraidos. Essa etapa identifica pares de estruturas
topologicamente equivalentes, revelando redundancias entre diferentes dominios da arquite-

tura.

O pseudocddigo da Figura[d.10]apresenta o fluxo de execugdo deste médulo. Nele, o usudrio
seleciona o algoritmo desejado, VF2, Node Match ou GNN, e o sistema executa as compara-
coes, registrando os pares isomorficos e os resultados parciais.

Algorithm 2 Isomorphism Detection with Degree Filtering

AN

20):

22:
23:
24:
25:
26:
27:

Input: Directed graph G, Algorithm A € {VF2, Node Match}
Output: List of isomorphic subgraph pairs P
Initialize empty list P < [ ]
Initialize list of subgraphs S + [ ]
for each node n in G do
N + successors of n
gn + subgraph induced by {n} U N
dy, + degree of n
Append (n, g,.d,) to S

: end for
. for each pair (i,7) where i < j in S do

(ng, gi. d;) + Si]
(n},9;,d;) < 5[]
if d; # d; then
continue
end if
if A= VF2 then
if is_isomorphic(g;.g;) then
Append (n;,n;) to P
end if
else if A = Node Match then
if is_isomorphic(g;.g;, node_match = \z,y : == y) then
Append (n;,n;) to P
end if
end if
end for
return P

Figura 4.10: Pseudocédigo — mdédulo de detec¢do de isomorfismo.

O médulo é implementado de forma extensivel, permitindo que novos algoritmos sejam
incorporados futuramente. Atualmente, o Isomera combina a precisdo do algoritmo VF2, a
eficiéncia hibrida do Node Match e o poder de generalizagcao das redes neurais graficas (GNNs),
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possibilitando uma anélise balanceada entre desempenho e exatidao.

4.3.5 Moédulo de Validacdo Manual

O terceiro modulo incorpora a intervencdo humana no processo de detec¢do, garantindo que
as correspondéncias identificadas pelos algoritmos sejam analisadas em termos de contexto
e semantica. A validacdo manual € realizada diretamente na interface, onde o usudrio pode
confirmar ou rejeitar cada par de subgrafos sugerido como isomorfico.

A légica dessa etapa estd representada no pseudocddigo da Figura .11} Nele, o sistema
apresenta os pares detectados, registra as decisdes do usudrio e atualiza automaticamente a
base de validacdo que servird para o calculo das métricas.

Algorithm 3 User-Guided Isomorphism Validation
1: Input: List of detected pairs P
2: OQutput: Validated pairs P, .q
3: Initialize empty list P, ;4
1: for each (A, B) in P do
5: Display A, B to user

i decision < GetUserlnput(” Are these graphs isomorphic? [Y/N]")
T: if decision ==Y then

8: Append (A, B, Isomorphic) to P, 4

9: else

10: Append (A, B, Not [somorphic) to P,aq

11: end if

12: end for
13: return Pi.;q

Figura 4.11: Pseudocdédigo — moddulo de validacao manual.

Essa etapa garante que a andlise final considere ndo apenas a equivaléncia estrutural, mas
também a equivaléncia funcional e semantica das estruturas, o que é fundamental para evitar
falsos positivos em ambientes de dados complexos.

4.3.6 Moédulo de Avaliacao de Métricas

O quarto médulo € responsavel por consolidar quantitativamente os resultados obtidos nas eta-
pas anteriores. Com base nas decisdes registradas pelo usudrio, o sistema calcula automatica-
mente métricas de desempenho como acurédcia (ACC), tempo de execucdo (ET) e frequéncia
de sucesso (SF), apresentando os resultados de forma visual e comparativa.

A Figura .12 mostra o pseudocédigo que representa o funcionamento interno deste mé-
dulo.
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Algorithm 5 Metrics Evaluation for Isomorphism Detection
1: Input: Algorithm A, Mode € {GeneratedGraph, TPCDS}. Scenario
Parameters (D, S)
2: Output: Metrics (ACC,ER,ET,ETT)
3: Initialize TP + 0, TN « 0, FP « 0, FN « 0
4
5

: Initialize ET « 0
5 for i =1 to 1000 do
6: if Mode = GeneratedGraph then

7: Generate graph G; with D domains and S SOR tables
8 Pair, ., + obtained via user validation

9: else
10: Load TPC-DS benchmark graph G;
11: Pair,.q; + predefined benchmark mapping
12: end if
13: Start timer
14: Pairpreqice + RunAlgorithm(A, G;)
15:  Stop timer and record ET; < t*_, —t

16: Update ET « ET + ET,;
17: Compare Pairp,cgic: and Pair,.q; to update TP, TN, FP, FN
1%: end for

19: ET « % > Average execution time over 1000 runs
20: ACC « Lo T

TP+TN+FFP+FN

21: ER+ 1 - ACC
22: ETT « =£8
23: return (ACC.ER.ET.ETT)

Figura 4.12: Pseudoc6digo — moédulo de avaliagdo de métricas.

O modulo também exporta os resultados em formatos reutilizdveis (CSV, JSON, PNG),
assegurando a reprodutibilidade dos experimentos. Esses dados podem ser reaproveitados para
estudos comparativos, auditorias ou replica¢des futuras da pesquisa.

4.3.7 Modulo de Persisténcia Local

Por fim, o médulo de persisténcia garante que todas as informagdes processadas, grafos, matri-
zes, logs e resultados, sejam salvas localmente no ambiente de execucdo. Esse design elimina
dependéncias externas, refor¢ando a filosofia de reprodutibilidade e controle total dos dados.
Todos os artefatos podem ser carregados novamente em execugdes futuras, permitindo conti-
nuidade e rastreabilidade completa dos experimentos.



CAPITULO 5

Estudo de Caso e Avaliacao Experimental

Este capitulo apresenta os experimentos realizados para avaliar a eficidcia do método proposto
na deteccao de redundancias estruturais em arquiteturas Data Mesh, por meio da comparagdo
entre trés algoritmos de isomorfismo de grafos: VF2, Node Match e Graph Neural Network
(GNN). A avaliacdo se deu com base em métricas de acurécia, tempo de execucdo e frequéncia
de acertos, conforme definido na Secao

5.1 Transformacao do TPC-DS em Arquitetura em Grafo

Para fornecer uma base realista de validacdo, o benchmark analitico TPC-DS, mencionado na
Secdo [1.3] (NAMBIAR; POESS, [2006)), foi reinterpretado como uma arquitetura distribuida
baseada em dominios. O TPC-DS contém mais de 20 tabelas com relacionamentos complexos
e consultas analiticas tipicas de ambientes empresariais.

Embora o TPC-DS tenha sido originalmente concebido para avaliar arquiteturas analiti-
cas centralizadas (por exemplo, data warehouses), sua escolha nesta dissertacdo justifica-se
por trés razdes: (1) disponibilidade publica e ampla aceitacdo académica, o que favorece a re-
produtibilidade; (ii) riqueza estrutural de esquemas e relacionamentos, suficiente para emular
dependéncias e linhagens entre entidades; e (iii) possibilidade de agrupamento funcional em
dominios, permitindo sua adaptac@o ao contexto descentralizado do Data Mesh.

Para alinhd-lo a esse contexto, as tabelas foram particionadas em dominios tematicos e
organizadas segundo as camadas SOR, SOT e SPEC, o que viabiliza a anélise de redundancias
estruturais entre dominios sob um protocolo controlado.

Como limitagao, reconhece-se que o TPC-DS ndo contempla aspectos organizacionais e de
governanca tipicos de um ambiente Data Mesh real; ainda assim, sua estrutura fornece uma
base adequada para o estudo comparativo de algoritmos sob topologias complexas.

Nesta dissertagdo, as tabelas do benchmark TPC-DS foram agrupadas em cinco dominios
semanticos de negdcio, cada um representando uma area funcional distinta da arquitetura ana-
litica. Esse agrupamento foi definido com base na afinidade temdtica e no uso conjunto das
tabelas, resultando na seguinte estrutura de dominios:

* D1 — Customer: engloba dados de clientes, enderecos e demografia, com tabelas como
SOR_customer, SOR_customer_address e SOR_customer_demographics;

* D2 — Store: concentra informagdes geograficas e organizacionais, como SOR_store,
SOR_region, SOR_nation e SOR_call_center;

89
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* D3 —Catalog: abrange produtos e campanhas, com tabelas como SOR_item, SOR_promotion
e SOR_reason;

* D4 —Time: retine dados temporais de apoio a andlise, como SOR_date_dim e SOR_time_dim;

* D5 —Warehouse: trata da estrutura logistica, incluindo SOR_warehouse, SOR_ship_mode
e SOR_income_band.

Cada dominio foi modelado com trés tipos de tabelas, em conformidade com os principios
da arquitetura Data Mesh:

* SOR: representam as tabelas brutas extraidas diretamente do TPC-DS, utilizadas como
ponto de partida para a modelagem;

* SOT: sdo derivagdes intermedidrias obtidas por meio de transformacdes locais dentro de
cada dominio, estruturando os dados para consumo interno;

* SPEC: compdem visdes analiticas especializadas, que sintetizam informacdes a partir de
multiplos dominios ou camadas, promovendo o reuso e a integracao semantica.

A separacao hierdrquica entre SOR, SOT e SPEC possibilitou a geragdo de grafos dirigidos
em que os nds representam entidades (tabelas) e as arestas codificam transformacdes, deriva-
¢oes ou jungdes entre elas.

A construcdo desses grafos foi parametrizada quanto ao nimero de tabelas e dominios, per-
mitindo a geragdo automadtica de diferentes cendrios experimentais (ver codigo na Secdo [A.T).

A Figura [5.T]ilustra essa transformagdo do TPC-DS em um grafo de arquitetura de dados,
estruturado para fins de anélise de redundéncias e deteccdo de padrdes isomorfos.

TPC-DS Graph {with SOR, SOT, SPEC)
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Figura 5.1: Transformag¢do do TPC-DS em um grafo orientado por SOR, SOT e SPEC

Com essa estrutura, tornou-se possivel simular pipelines reais de dados, com diferentes
graus de acoplamento e redundéncia estrutural, possibilitando a aplicacdao dos algoritmos de
isomorfismo para avaliar duplicac¢des, similaridades e padrdes recorrentes.
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5.2 Modelagem de Arquiteturas Sintéticas com Isomera

Para complementar a avaliacdo com casos reais, foi desenvolvida na ferramenta a possibilidade
de gerar cendrios sintéticos com diferentes parametros e embasados no benchmark reinter-
pretado do TPC-DS. Essa funcionalidade permite simular arquiteturas com niveis variados de
complexidade estrutural, controlando aspectos como densidade de conexdes, nimero de enti-
dades e distribui¢ao entre dominios, o que viabiliza a andlise sistemdtica do comportamento
dos algoritmos sob diferentes condi¢des operacionais.

A geracdo sintética € essencial para validar a metodologia proposta sob condi¢des contro-
ladas, uma vez que ambientes reais raramente oferecem a diversidade estrutural e o controle
necessdario para uma analise comparativa robusta. Por meio dessa funcionalidade, torna-se pos-
sivel explorar desde arquiteturas simples e isoladas, com poucos dominios e baixa conectivi-
dade, até cendrios densamente interconectados que emulam ambientes corporativos complexos,
nos quais multiplos dominios compartilham dependéncias e transformacdes. A parametrizacdao
¢ realizada de forma flexivel, permitindo ao usudrio definir as seguintes caracteristicas estrutu-
rais da arquitetura a ser gerada:

Numero de dominios (de 1 a 5);

Quantidade de tabelas SOR por dominio;

* Faixa de variagdo para o numero de tabelas SOT e SPEC;

Probabilidade de conexdes inter e intra-dominios.

A partir desses parametros, o Isomera constréi um grafo direcionado com as seguintes
regras: SOR sdo os nés de origem em cada dominio, SOT conectam-se aleatoriamente a SOR,
SPEC derivam de SOT, podendo conectar-se entre dominios.

O resultado é uma matriz de adjacéncia e uma tabela de linhagem totalmente reprodutivel,
permitindo simular diferentes niveis de sobreposigdo estrutural. A Tabela [5.1] apresenta os
parametros utilizados e a simula¢iao de multiplos cendrios com diferentes complexidades.

Tabela 5.1: Cenarios de Experimento e suas Caracteristicas.

Cenario SOR Dominios Descri¢ao

1 2 las Arquiteturas leves com baixa duplicacao

2 4 la5s Sobreposi¢do moderada entre dominios

3 8 las Complexidade média com redundancias esperadas
4 16 las Arquiteturas densas com alto grau de duplicidade

A Figura[5.2]mostra exemplos visuais de grafos gerados a partir do TPC-DS e dos cendrios
sintéticos. Esses grafos foram posteriormente utilizados como entrada para os algoritmos de
comparagdo estrutural.
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Visualizagdo dos Grafos por SOR e Dominio
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Figura 5.2: Exemplos de grafos gerados por cada cendrio na ferramenta Isomera a partir de
benchmarks

5.3 Execucao dos Testes

Com os grafos gerados, tanto os oriundos da adaptacdo do TPC-DS quanto os sintetizados ar-
tificialmente, foi realizada uma etapa fundamental de validacdo manual, na qual cada subgrafo
representado visualmente na Figura [5.2) foi analisado para identificar pares isomorfos reais.
Esta identificacao prévia foi essencial para estabelecer um conjunto de referéncia (ground truth)
que pudesse ser utilizado nas métricas de benchmarking.

Ao adotar essa abordagem, o processo de validagao pdde ser automatizado nas execugdes
subsequentes, sem a necessidade de intervengao humana para cada novo teste. Isso garantiu
maior reprodutibilidade, robustez na comparag¢do e acelerou significativamente o ciclo de testes
da ferramenta Isomera.

Os testes foram entdo executados em ambiente controlado, dentro de uma mdquina virtual
com recursos computacionais padronizados, e cada algoritmo foi rodado 1000 vezes conse-
cutivas por cendrio. Esse nimero elevado de execucgdes teve como objetivo mitigar variagdes
naturais de tempo decorrentes de sobrecarga momentanea de CPU, memoria ou processos em
background, e garantir que o tempo final analisado representasse a média estavel de execucao.

Para a andlise comparativa, foram selecionados trés algoritmos: o VF2, o Node Match e



5.4 PROTOCOLO EXPERIMENTAL E REPRODUTIBILIDADE 93

a Graph Neural Network (GNN). A escolha desses algoritmos permite avaliar diferentes abor-
dagens para o problema de deteccdo de isomorfismo, desde métodos exatos e deterministicos
até técnicas baseadas em aprendizado de mdquina, possibilitando uma anélise abrangente de
desempenho sob multiplas perspectivas, incluindo precisdo, velocidade e capacidade de gene-
ralizagdo.

A execugdo seguiu 0s seguintes passos sistematicos:

1. Defini¢do do conjunto de pares de subgrafos extraidos dos cendrios sintetizados;
2. Aplicacdo dos algoritmos sobre cada grafo;

3. Registro dos tempos de execugao, predi¢cdes e comparacdo com os rétulos reais (definidos
previamente na valida¢do manual);

4. Calculo das métricas apresentadas na Segdo 2.5} acurdcia (ACC), tempo de execugdo
(ET) e frequéncia de acertos (SF).

A avaliacdo experimental foi estruturada em dois estudos de caso sequenciais, cada um
com objetivos especificos e complementares. Essa divisdo permitiu uma andlise progressiva e
incremental do desempenho dos algoritmos, partindo de abordagens cléssicas e evoluindo para
técnicas baseadas em aprendizado de mdquina.

O Estudo de Caso I focou na comparagio entre os algoritmos VF2 e Node Match, os quais
estavam inicialmente implementados na primeira versdo do Isomera. Os resultados dessa pri-
meira fase revelaram limitagdes de acurdcia em cendrios de maior complexidade estrutural,
especialmente quando o nimero de dominios e tabelas aumentava significativamente, o que
motivou a busca por abordagens mais sofisticadas capazes de capturar padrdes estruturais mais
complexos.

Em resposta a essas limitag¢des, o Estudo de Caso II introduziu o uso de uma Graph Neural
Network (GNN), treinada sobre os mesmos cendrios com pares previamente rotulados. Essa in-
troducao marcou uma evolucdo metodoldgica importante, ao alavancar técnicas de aprendizado
de mdquina para predicao supervisionada de isomorfismo, permitindo que o modelo capturasse
padrdes estruturais que algoritmos tradicionais ndo conseguiam generalizar. Os resultados ob-
tidos nas duas fases s@o apresentados nas se¢des seguintes, permitindo uma andlise critica da
aplicabilidade de cada abordagem em ambientes distribuidos e heterogéneos.

5.4 Protocolo Experimental e Reprodutibilidade

Para assegurar a reprodutibilidade dos experimentos realizados e permitir comparacdes futuras
sob as mesmas condig¢des, esta secao descreve de forma detalhada o ambiente, os parametros
de execucao, as repeticoes adotadas e as estratégias de controle de aleatoriedade empregadas
durante as simula¢des com a ferramenta Isomera.

Além de especificar o ambiente e os parametros, documentamos as defini¢des adotadas para
mensura¢do de tempo (ET), cdlculo de métricas e organizacao dos artefatos produzidos (arqui-
vos CSV/JISON e figuras). Essas informagdes permitem que terceiros repliquem integralmente
os experimentos e verifiquem os resultados a partir dos mesmos insumos e configuragdes.
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Ambiente de Execucao

Todos os testes foram conduzidos em ambiente controlado, dentro de uma méquina virtual
configurada especificamente para o estudo. A Tabela descreve as especificacdes técnicas
do ambiente experimental utilizado.

Tabela 5.2: Especificacdes do ambiente de execugdo dos experimentos.

Categoria Item Descricao

Sistema Sistema operacional ~ Linux Ubuntu 22.04 LTS (64 bits)

Hardware Processador Intel Core i7-12700H (14 nicleos, 3.5 GHz)
Hardware = Memoéria RAM 16 GB DDRS5

Software ~ Versao do Python 3.11.7 (ambiente virtual isolado)

Biblioteca NetworkX Modelagem e andlise de grafos em Python.
Biblioteca Pandas Manipulacgdo de dados tabulares (DataFrames) e CSV.
Biblioteca NumPy Arrays e operagdes numéricas vetorizadas.

Biblioteca Matplotlib Geracdo de figuras e graficos estaticos.

Biblioteca Seaborn Visualizacdes estatisticas com estilos aprimorados.
Biblioteca PyTorch Treinamento e inferéncia de redes neurais em CPU.
Biblioteca Torch Geometric Operadores e camadas para GNNs (ex.: GIN, pooling).

Execucdo Interface de execu¢do Aplicagdo local do Isomera, modo offline.

Os experimentos foram executados exclusivamente em CPU (sem GPU), em uma maquina
virtual dedicada e sem outras cargas concorrentes, com toda a execu¢do em modo offline. As
dependéncias foram isoladas em um ambiente virtual (venv) para fixar versdes. Os tempos
foram medidos com reldgio de alta resolucao do Python e ndo houve paralelizaciao explicita
nas rotinas de isomorfismo, facilitando a replicacdo em ambiente equivalente.

Parametros Experimentais

A configuracdo dos experimentos seguiu um conjunto padronizado de parametros, garantindo
que todos os testes pudessem ser reproduzidos de forma consistente. Esses pardmetros definem
o nimero de execugdes, as sementes aleatdrias utilizadas e a estrutura do conjunto de referéncia
(ground truth). A Tabela[S.3|apresenta o resumo dessas configuragdes.
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Tabela 5.3: Parametros experimentais e controles de reprodutibilidade.

Parametro

Descricao

Numero de repeti¢des

Sementes aleatdrias

Tipos de cendrio

Ground truth

Critério de execucao

Persisténcia dos resultados

Execuc¢ado em lote para todas as instincias de cada cendrio,
com repeti¢des controladas por um conjunto fixo de semen-
tes.

Valores e locais: random=42; NumPy=42;
PyTorch=42; geracdo/nomeacdo dos grafos (arquivos
.gml)=42; amostragem de negativos e embaralhamen-
tos=42.

TPC-DS com quatro niveis de complexidade (SOR € {2,
4,8, 16}).

Construida  manualmente na fase de  valida-
cdo supervisionada e armazenada em = JSON
(validations/real_pairs_x.Jjson).

Conjunto de instancias e nimero de repeti¢des definidos
previamente; ndo ha critério adaptativo de parada.

Artefatos gerados localmente: tempos
(execution_times.csv), métricas
(evaluation_metrics.csv), pares predi-

tos (predicted_pairs/*.json) e figuras
(img/*.png).

Adocgdes especificas para mensuracdo de tempo (ET): no Estudo de Caso I (VF2 e Node
Match), o ET corresponde ao tempo de processamento por par de grafos no algoritmo avaliado.
No Estudo de Caso II (GNN), o ET refere-se apenas ao tempo de inferéncia por par; o tempo de
treinamento € realizado uma tinica vez por cendrio e nao € contabilizado no ET das predi¢des.

Os artefatos e seus diretdrios estdo resumidos na Tabela [5.4 O formato GML (Graph
Modelling Language) é um formato textual legivel que representa grafos com nds/arestas e

atributos.

Tabela 5.4: Artefatos persistidos e diretérios de saida.

Recurso

Local

Grafos de entrada (.gml) benchmark_graphs/
Modelos GNN (.pk1) modelos_gnn/

Com base nesses artefatos, a Tabela[S.5|resume os conjuntos e hiperpardmetros fixados nas
execucoes de referéncia. Termos consagrados de aprendizado de maquina sdao mantidos em
inglés quando necessdrio e definidos brevemente no texto.
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Tabela 5.5: Conjuntos e hiperparametros fixos utilizados.

Item Valor/Descricao

SOR {2,4,8,16}

Dominios {1,2,3,4,5}

Semente (grafos/.gml) seed = 42

Repeticoes runs = 1000 (VF2, NodeMatch); runs = 1000
(GNN — inferéncia)

GNN — arquitetura 2 camadas GIN (64 unidades) + global mean pooling;

classificador denso (oculta = 128)

GNN — treinamento epochs = 50;1r = 0.01 (learning rate);
BCEWithLogitsLoss; otimizador Adam

GNN — limiares threshold de inferéncia = 0. 3; limiar de treino para
contagem de acerto=0.6

O limiar (threshold) é o ponto de decisdo aplicado a probabilidade para classificar um par
como duplicado. Como a duplicidade € rara no conjunto, usar 0.3 na inferéncia reduz a chance
de deixar de identificar duplica¢des verdadeiras, aceitando mais candidatos para verificagdo. Ja
0.6 € empregado somente como critério interno de contagem durante o treino, para uma leitura
mais conservadora da evolug@o por época; esse limiar ndo interfere na decisdo final do modelo.

Sobre o PyTorch Geometric, usamos essa biblioteca para construir a rede de grafos: o
modelo aprende representacdes dos subgrafos e, com base nelas, decide se hd duplicidade.
Em linhas gerais, combinamos camadas que capturam a estrutura do grafo com uma etapa de
agregacao (pooling) que resume o subgrafo em um vetor, seguida de um classificador simples.
Nos benchmarks, somente a inferéncia do modelo € considerada no tempo de execucdo (ET).

O learning rate (Ir) define o tamanho do passo nas atualizagdes dos pesos; adotamos 0.01
por oferecer progresso consistente sem oscilacdes. O Adam é um otimizador que combina
momento e ajuste adaptativo para cada pardmetro, o que costuma acelerar a convergéncia. A
BCEWithLogitsLoss € uma funcdo de custo para classificacdo bindria que opera diretamente
com logits e ja incorpora a sigmoid, trazendo estabilidade numérica.

A acuricia média de treinamento foi 74,31%, calculada como a média das acuracias finais
de cada cenario (D1-D5). Foi necessario treinar um modelo por cendrio e salvar um arquivo
.pkl para cada um, porque um unico modelo global ndo alcangou boa acuricia; os padrdes
estruturais variam por cendrio e o ajuste especifico por dominio trouxe resultados melhores. A
Tabela[5.6|apresenta os valores por cendrio e os respectivos modelos treinados.
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Tabela 5.6: Média de acurdcia final por cendrio (D1-D5) e respectivos modelos.

Cendrio (D) Média de Acuracia (%) Modelos Correspondentes

D1 72.99 graph_SOR2_D1, graph_SOR4_D1,
graph_SOR8_DI1, graph_SOR16_D1

D2 75.00 graph_SOR2_D2, graph_SOR4_D2,
graph_SOR8_D2, graph_SOR16_D2

D3 75.00 graph_SOR2_D3, graph_SOR4_D3,
graph_SOR8_D3, graph_SOR16_D3

D4 75.00 graph_SOR2_D4, graph_SOR4_DA4,
graph_SOR8_D4, graph_SOR16_D4

D5 73.81 graph_SOR2_D5, graph_SOR4_D5,

graph_SOR8_D5, graph_SOR16_D5

A adocido desses parametros assegura que qualquer pesquisador possa reproduzir integral-
mente os resultados apresentados nesta dissertacao, bastando replicar as mesmas configuracoes
experimentais e utilizar a versdo da ferramenta Isomera disponibilizada no repositério publico
do projeto.

5.5 Estudo de Casol

O primeiro estudo de caso foi conduzido com base nos quatro cendrios definidos na Se¢do[5.2]
utilizando grafos derivados de transformagdes estruturais sobre o benchmark TPC-DS. O prin-
cipal objetivo foi comparar o desempenho de dois algoritmos de deteccdo de isomorfismos,
VF2 e Node Match, frente a diferentes niveis de complexidade arquitetural, representados pelo
numero de tabelas de origem (SOR).

5.5.1 Metodologia

A avaliacdo foi realizada de forma sistemdtica, com a geracdo automatica de multiplas ins-
tancias para cada configuracdo de complexidade, controlando o nimero de SOR e o grau de
conectividade das estruturas de dados. Cada par de grafos foi submetido tanto ao algoritmo
VF2 quanto ao Node Match.

As métricas utilizadas para andlise, conforme definido na Sec¢ao foram:

* Tempo médio de execucao (ET)
e Acuracia (ACC);
* Frequéncia de Sucesso (SF).

A execucdo foi repetida com variacdes controladas de sementes aleatdrias para assegurar a
reprodutibilidade dos experimentos.
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5.5.2 Analise dos resultados

As Figuras [5.3] 5.4 e [5.5] apresentam, respectivamente, a distribui¢do dos tempos de execugio,
a acurdcia e a evolucdo da frequéncia de sucesso (SF) em funcdo da complexidade dos cendrios.

Distribuicdo do Tempo de Execugao (ET) por Algoritmo e SOR
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Figura 5.3: Tempo de execugdo (ET) para diferentes configuracdes de SOR.

A partir da andlise dos resultados, observa-se uma tendéncia consistente de queda no desem-
penho dos algoritmos a medida que a complexidade estrutural dos grafos aumenta, conforme
representado pelo ndmero de tabelas de origem (SOR).

No que diz respeito ao tempo médio de execucdo (ET), ambos os métodos apresentaram
tempos significativamente baixos nos cendrios mais simples. Para SOR = 2, o VF2 registrou
aproximadamente 1,10 segundos, enquanto o Node Match atingiu 1,11 segundos. Ja no cendrio
com SOR = 4, os tempos médios foram de 5,18 segundos para o VF2 e 4,61 segundos para o
Node Match. Com o aumento da complexidade, observa-se uma elevacao gradual nos tempos
de processamento: com SOR = 8, o VF2 alcangou 16,65 segundos e o Node Match 15,81
segundos; por fim, com SOR = 16, ambos os algoritmos convergiram para um tempo médio
proximo a 24 segundos (VF2: 23,57 s; Node Match: 23,76 s).

Em relag@o a acurdcia (ACC), os resultados foram baixos em todos os cendrios, especial-
mente no mais complexo. Com SOR = 16, tanto o VF2 quanto o Node Match atingiram valores
proximos de apenas 4% de acertos (4,04% e 4,29%, respectivamente), refletindo a limitagdo
dessas abordagens na identificacido de isomorfismos em arquiteturas altamente densas. Nos de-
mais cendrios, o Node Match apresentou desempenho superior ao VF2. Especificamente: para
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Distribuicdo de Acuracia (ACC) por Algoritmo e SOR
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Figura 5.4: Acuricia (ACC) para diferentes configuracdes de SOR.

SOR =2, o VF2 obteve 13,77% de acuricia, enquanto o Node Match alcancou 17,72%; com
SOR = 4, os valores foram de 16,83% (VF2) e 22,67% (Node Match); em SOR = 8, o VF2
obteve 14,77% e o Node Match 17,67%. Esses resultados sugerem que o Node Match, mesmo
sendo heuristico, ¢ mais resiliente diante de alteracdes estruturais em grafos moderadamente
complexos.

A métrica composta de frequéncia de sucesso (SF), que pondera tempo e acuricia, eviden-
cia com mais clareza a vantagem relativa do Node Match em cendrios com menor e média
complexidade. No caso de SOR = 2, o Node Match alcangou 168,64 acertos por segundo,
enquanto o VF2 registrou 143,65 acertos por segundo. Para SOR = 4, o ganho foi ainda mais
expressivo: o Node Match atingiu 358,52 acertos por segundo, contra 220,80 acertos por se-
gundo do VF2. Com SOR = 8, os valores também favoreceram o Node Match, com 220,42
acertos por segundo, frente a 161,91 acertos por segundo do VF2. Entretanto, no cendrio mais
complexo (SOR = 16), ambos os algoritmos apresentaram quedas drésticas na eficiéncia: o
Node Match obteve 26,16 acertos por segundo, enquanto o VF2 registrou 22,85 acertos por
segundo. Esses resultados reforcam que nenhuma das abordagens avaliadas é adequada para
lidar com estruturas de larga escala, evidenciando a necessidade de técnicas mais robustas e
escaldveis para contextos de maior densidade estrutural.

Esses achados reforcam ndo apenas a utilidade do framework proposto como ferramenta
de andlise comparativa, mas também a necessidade de incorporar novos algoritmos capazes de
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Frequéncia de Sucesso (SF) em Fungdo dos Dominios
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Figura 5.5: Evolucdo da frequéncia de sucesso (SF) conforme aumenta a complexidade.

lidar com grafos maiores e mais intrincados — o que motiva o aprofundamento explorado no
Estudo de Caso II.

5.5.3 Consideracoes Finais do Estudo de Caso I

Embora o desempenho dos algoritmos tenha sido limitado, este primeiro estudo de caso cumpre
seu papel como etapa metodoldgica fundamental. Ele permitiu validar o arcabougo de simu-
lagdo e avaliacdo proposto, além de evidenciar a necessidade de abordagens mais sofisticadas
para cendrios de alta complexidade. A partir dessa constatacdo, o préoximo estudo de caso
(Secdo[5.6) busca ampliar a andlise com a introduc¢@o de novos algoritmos, incluindo métodos
baseados em aprendizado supervisionado e técnicas mais modernas de embeddings estruturais.

5.6 Estudo de Caso 11

Dando continuidade a andlise iniciada no Estudo de Caso I, o segundo estudo de caso tem
como foco a inclusdo de um novo algoritmo baseado em aprendizado supervisionado: uma
rede neural grafica (GNN), como descrito na subse¢ao[2.4.3] A principal motivacdo desta etapa
¢ investigar se, em cendrios com maior complexidade estrutural, a abordagem supervisionada
pode oferecer ganhos de acuricia e custo-beneficio (SF), superando as limitacdes observadas
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nas técnicas classicas.

5.6.1 Metodologia

Para viabilizar a aplicacdo do GNN, foi necessdrio treinar um modelo para cada cendrio ex-
perimental, com base em exemplos reais de pares isomorfos. Inicialmente, cada grafo foi
decomposto em subgrafos locais, considerando um né central e seus vizinhos diretos. Os pa-
res de subgrafos rotulados como isomorfos (positivos) foram extraidos manualmente, enquanto
os pares negativos foram gerados de forma aleatdria, respeitando o balanceamento e evitando
sobreposicao com 0s positivos.

Cada subgrafo foi convertido para o formato PyTorch Geometric (PyG), com atributos cons-
tantes nos nos e arestas dirigidas. Durante o treinamento, a arquitetura GIN recebeu esses pares
como entrada, processando cada subgrafo com duas camadas convolucionais seguidas de mean
pooling. Os vetores gerados foram concatenados e passados por uma rede densa para prever a
probabilidade de isomorfismo. O treinamento foi supervisionado, utilizando funcdo de custo
BCEWithLogitsLoss e otimizador Adam, com 50 épocas de aprendizado por cendrio. Os mo-
delos resultantes foram salvos e empregados na fase de inferéncia com limiar de decisdo fixo.

Além das métricas de avaliagdo em teste, acompanhou-se a acurdcia de treinamento por
época para monitorar a convergéncia do modelo. A média da acuricia de treino ao longo das
épocas, agregada por cendrio, foi de 74,31%.

Mantendo a mesma configuragio experimental descrita na Sec¢do [5.2] os experimentos fo-
ram estendidos para incluir o GNN supervisionado, treinado com base em amostras reais de
isomorfismos presentes nos dados de entrada. O modelo foi avaliado sob 0os mesmos critérios
anteriores: tempo de execucdo (ET), acuriacia (ACC) e frequéncia de sucesso (SF), utilizando
0s mesmos cendrios com 2, 4, 8 e 16 tabelas de origem (SOR).

A adi¢do do GNN permite avaliar o potencial de generalizacdo do modelo em grafos ndo
vistos, bem como sua escalabilidade frente a complexidade arquitetural. O cédigo da Segao[A.2]
mostra o treinamento do GNN e a execucao do VF2 e Node Match.

5.6.2 Analise dos Resultados

As Figuras [5.6] e ilustram, respectivamente, a comparagdo entre os trés algoritmos
quanto ao tempo de execucdo, acuricia e frequéncia de sucesso, em cada configuracdo de SOR.

Em termos de tempo de execu¢do, o GNN apresentou desempenho inferior aos algoritmos
VF2 e Node Match, com tempos significativamente mais altos em todos os cendrios. Para SOR
= 2, o0 GNN registrou 0,17 segundos, contra 0,01 segundos de VF2 e Node Match. Em SOR
=4, o tempo aumentou para 0,58 segundos (GNN), enquanto o VF2 ficou em 0,05 segundos
e o Node Match em 0,04 segundos. Com SOR = 8, o tempo médio do GNN chegou a 1,75
segundos, frente a 0,16 segundos do VF2 e 0,15 segundos do Node Match. Finalmente, no
cendrio mais complexo (SOR = 16), o GNN atingiu 1,78 segundos, contra 0,23 segundos nos
dois algoritmos cldssicos.

Apesar da maior carga computacional, o GNN apresentou melhoria nas taxas de acerto
em cendrios complexos. Para SOR = 16, sua acuricia foi de 12,80%, superior aos 4,29% do
Node Match e 4,04% do VF2. Para SOR = 8, a acurdcia do GNN alcancgou 20,87%, frente a
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Distribuicdo do Tempo de Execucao (ET) por Algoritmo e SOR
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Figura 5.6: Tempo de execucdo (ET) para diferentes configuragdes de SOR com inclusao do
GNN.

17,67% (Node Match) e 14,77% (VF2). No entanto, nos cendrios mais simples, o GNN obteve
desempenho inferior: 7,27% de acuracia para SOR =2 e 15,76% para SOR = 4, ambos abaixo
dos resultados dos algoritmos cldssicos nesses mesmos cendrios.

A métrica de frequéncia de sucesso (SF), que pondera simultaneamente tempo e acuricia,
evidenciou o custo da abordagem supervisionada. O GNN teve SF de apenas 3,99 acertos por
segundo para SOR =2, 15,96 para SOR =4, 21,93 para SOR =8 e 11,17 para SOR = 16. Esses
valores sao significativamente menores que os obtidos pelos demais algoritmos: por exemplo,
com SOR =4, o0 Node Match atingiu 358,52 acertos por segundo, e 0 VF2, 220,80. Em SOR =
8, 0 Node Match chegou a 220,42, contra 21,93 do GNN, ainda que a acurdcia do GNN tenha
superado as demais em forma isolada.

5.7 Conclusao dos Estudos de Caso

A realizacdo dos estudos de caso permitiu validar a metodologia proposta para avalia¢io de al-
goritmos de deteccdo de redundancia estrutural em arquiteturas baseadas em grafos. Utilizando
uma base adaptada do benchmark TPC-DS, foi possivel estruturar cendrios com diferentes ni-

veis de complexidade representados pelo nimero de tabelas SOR e analisar o desempenho em
cada cendrio.
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Distribuicdo de Acuracia (ACC) por Algoritmo e SOR
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Figura 5.7: Acuracia (ACC) para diferentes configuracdes de SOR com inclusao do GNN.

No Estudo de Caso I, a comparacgdo entre os algoritmos VF2 e Node Match revelou que,
apesar de suas limitacdes em termos de acurdcia, ambos apresentaram bom desempenho com-
putacional nos cendrios de baixa complexidade. O Node Match destacou-se pela maior fre-
quéncia de sucesso (SF) em SOR menores, sugerindo sua utilidade como ferramenta de triagem
preliminar. No entanto, ambos os algoritmos demonstraram severa degradacdo de desempenho
a medida que a complexidade estrutural aumentava, tanto em termos de tempo quanto de acerto,
especialmente com SOR = 16.

Diante dessa limitacao, o Estudo de Caso II incorporou uma abordagem supervisionada ba-
seada em redes neurais (GNN), com o objetivo de investigar ganhos em acurécia nos cenarios
mais complexos. Os resultados indicaram que o GNN, de fato, obteve melhor desempenho em
termos de acuricia para SOR = 8 e SOR = 16, superando consistentemente os métodos ante-
riores nesse critério. Contudo, o custo computacional da inferéncia afetou negativamente sua
frequéncia de sucesso (SF), indicando que, embora promissora, a abordagem supervisionada
ainda demanda otimizagdes para aplicagdes em tempo real.

Do ponto de vista metodoldgico, os estudos confirmaram a efetividade do arcaboucgo pro-
posto. A geracdo automatica dos cendrios, a defini¢do precisa das métricas e a aplicacdo siste-
matica dos algoritmos garantiram reprodutibilidade e comparabilidade dos resultados. Mais do
que avaliar algoritmos isolados, a metodologia se mostrou eficaz como ferramenta de experi-
mentagao cientifica voltada a andlise da robustez, escalabilidade e custo-beneficio de diferentes
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Frequéncia de Sucesso (SF) em Fungdo dos Dominios
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Figura 5.8: Frequéncia de Sucesso (SF) para diferentes configuracdes de SOR com inclusao do
GNN.

estratégias de deteccao de redundancias.

Assim, os estudos de caso ndo apenas evidenciam limita¢cdes das abordagens tradicionais
em arquiteturas complexas, como também sinalizam caminhos para a evolugao da técnica, seja
por meio de métodos supervisionados otimizados, estratégias hibridas ou mecanismos adapta-
tivos de selecdo de algoritmos conforme o grau de complexidade da arquitetura em andlise.

5.8 Limitacoes e Ameacas a Validade

Como todo experimento empirico em ciéncia de dados, os estudos apresentados nesta disserta-
¢do estdo sujeitos a limitagdes que podem afetar a generalizacdo e a interpretacdo dos resulta-
dos. Esta subsec¢do discute as principais ameacas a validade do trabalho, concentrando-se em
trés dimensoes criticas: dependéncia de validacdo manual, escalabilidade e custo computacio-
nal, e generalizag@o dos resultados para ambientes Data Mesh reais.

Dependéncia de Validacao Manual

A principal limita¢dao da metodologia reside na necessidade de validagdo supervisionada por es-
pecialistas para confirmar se as duplicidades detectadas correspondem, de fato, a redundancias
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funcionais. Apesar de os algoritmos de isomorfismo — VF2, Node Match e GNN — serem
capazes de identificar similaridades estruturais com precisdo, nem sempre a equivaléncia topo-
l6gica implica equivaléncia semantica. Em ambientes corporativos, duas tabelas podem possuir
o mesmo formato e conexdes, mas desempenhar papéis distintos em contextos de negdcio es-
pecificos.

Por essa razdo, a interveng@o humana torna-se essencial para evitar a exclusio de entidades
legitimas e preservar a integridade l6gica do sistema. Essa dependéncia, entretanto, introduz
uma limitacdo prética: a escalabilidade do processo de validacdo. Em arquiteturas de larga
escala, a revisdo manual de pares de subgrafos torna-se custosa e demorada, podendo afetar o
tempo total de andlise. Nos trabalhos futuros, propde-se o uso de abordagens com IA gene-
rativa, de modo a reduzir o esforco manual e acelerar ou retirar o processo de confirmacio de
duplicidades.

Escalabilidade e Custo Computacional

Outra limitacdo relevante diz respeito ao custo computacional dos algoritmos de deteccao, es-
pecialmente quando aplicados a grafos de alta densidade. O algoritmo VF2, embora exato,
apresenta complexidade exponencial e torna-se invidvel em arquiteturas muito grandes. Mesmo
o Node Match, um algoritmo hibrido com pré-filtragem, e o modelo supervisionado GNN, com
melhor capacidade de generalizacdo, ainda demandam recursos computacionais significativos
quando o nimero de vértices e arestas cresce exponencialmente. Nos trabalhos futuros, propde-
se o0 uso de abordagens com IA generativa, de modo a reduzir o esforco manual e acelerar ou
até eliminar o processo de confirmagdo de duplicidades.

Durante os experimentos realizados, observou-se que o tempo médio de execu¢do aumen-
tava substancialmente em cendrios com mais de 16 tabelas de origem (SOR), o que evidencia
o impacto direto da complexidade estrutural sobre a eficiéncia dos métodos. Como mitigagao,
recomenda-se, em aplicagdes praticas, o uso de técnicas de paralelizacdo, particionamento de
grafos e indexagdo de subestruturas recorrentes, de forma a distribuir a carga de processamento
e tornar o processo de detec¢io mais escaldvel.

H4 a necessidade de mais estudos voltados a compreensao detalhada da complexidade com-
putacional envolvida na detec¢do de isomorfismos, considerando fatores como tamanho, den-
sidade e profundidade topoldgica dos grafos. Investigagdes adicionais podem contribuir para
o desenvolvimento de mecanismos de estimativa e controle de custo, bem como de técnicas
que reduzam o impacto da complexidade, como a decomposi¢do hierdrquica de componentes,
a compressao de subgrafos equivalentes e a adocao de heuristicas adaptativas para ajuste dina-
mico do nivel de busca. Essas abordagens podem ampliar a aplicabilidade da metodologia a
ambientes corporativos de larga escala, equilibrando precisdo analitica e desempenho compu-
tacional.

A Tabela[5.7|apresenta as principais ameagas a validade observadas nos estudos experimen-
tais e as respectivas estratégias de mitigacao consideradas no escopo desta dissertacao.
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Tabela 5.7:

CAPITULO 5 ESTUDO DE CASO E AVALIACAO EXPERIMENTAL

Sintese das ameacas a validade e estratégias de mitigagao

Categoria

Descricao da Limitacao

Mitigacao / Direcao de Aper-
feicoamento

Dependéncia de va-
lidaciao manual

Custo computacio-
nal

Generalizacao dos
resultados

Limitacoes do

ground truth

A metodologia requer interven-
¢ao humana para confirmar se
pares identificados pelos algorit-
mos representam realmente du-
plicidades funcionais. Essa de-
pendéncia limita a escalabili-
dade do processo e pode introdu-
zir vieses subjetivos, principal-
mente em arquiteturas muito ex-
tensas.

O tempo de execucgdo cresce de
forma nao linear com o nimero
de vértices e arestas, tornando o
processo invidvel para grafos de
alta densidade. Os algoritmos
exatos, como VF2, sofrem com
explosdo combinatdria, € mesmo
abordagens heuristicas e super-
visionadas demandam recursos
intensivos.

Os experimentos foram conduzi-
dos em cendrios controlados —
tanto sintéticos quanto baseados
no benchmark TPC-DS — que,
embora realistas, ndo abrangem
toda a diversidade de arquitetu-
ras corporativas.

A base de referéncia utilizada
para rotulagem contém apenas
pares previamente identificados
e validados, restringindo a di-
versidade de exemplos para trei-
namento e avaliacdo supervisio-
nada.

Integrar técnicas de IA genera-
tiva capazes de sugerir automa-
ticamente classificagdes prelimi-
nares de duplicidade com base
em padrdes histdricos.

Adocdo de estratégias de parale-
lizacdo, particionamento de gra-
fos e indexacdo de subestrutu-
ras recorrentes para distribuir a
carga de processamento. Estu-
dos adicionais sd3o necessarios
para mensurar e reduzir a com-
plexidade estrutural de grafos de
grande escala.

Aplicacdo e validacdo da me-
todologia em diferentes contex-
tos, incluindo arquiteturas reais
de Data Mesh, Data Lake e Data
Warehouse, garantindo maior ro-
bustez e capacidade de generali-
7acao.

Ampliacdo da base de pares vali-
dados e criagcdo de pipelines au-
tomaticos de geracdo e valida-
cdo cruzada entre dominios, com
monitoramento de consisténcia
semantica usando [A generativa.




CAPITULO 6

Conclusao e Trabalhos Futuros

Esta dissertac@o apresentou uma metodologia sistematica para a detec¢ao de redundancias es-
truturais em arquiteturas de dados distribuidas, com €nfase na aplicabilidade ao contexto de
Data Mesh. O principal foco deste trabalho nao foi o desempenho absoluto de um algoritmo es-
pecifico, mas sim o desenvolvimento de um arcabouc¢o metodolégico reprodutivel, compardvel
e extensivel, capaz de apoiar pesquisadores e profissionais na avaliacdo objetiva de diferentes
estratégias de deteccao.

A proposta foi operacionalizada por meio da ferramenta Isomera, construida para permitir
simulacdes automadticas, validacdes controladas e medi¢des padronizadas em arquiteturas mo-
deladas como grafos direcionados. A metodologia baseia-se em quatro etapas articuladas: (i)
geracdo de grafos estruturais a partir de cendrios sintéticos ou benchmarks realistas; (i1) aplica-
¢do de algoritmos de isomorfismo (VF2, Node Match ou GNN); (iii) validacao supervisionada
dos pares redundantes; e (iv) avaliacdo do desempenho com base em métricas objetivas como
tempo de execuc¢do, acurécia e frequéncia de sucesso (SF).

A realizacao de dois estudos de caso distintos demonstrou o valor da metodologia proposta.
O Estudo de Caso I comparou os algoritmos VF2 e Node Match em diferentes configuragdes de
complexidade, revelando limitagdes previsiveis nas abordagens cldssicas — sobretudo em ce-
ndrios densos, mas, mais importante, validando o funcionamento do arcabouco sob condi¢des
controladas e reprodutiveis. Ja o Estudo de Caso II introduziu uma rede neural grafica (GNN)
supervisionada como uma alternativa mais robusta para contextos de alta complexidade. Em-
bora o custo computacional tenha sido superior, 0 aumento de acuricia nos cenarios com 8 e 16
SOR mostrou que modelos de aprendizado supervisionado podem capturar padrdes estruturais
que escapam aos algoritmos tradicionais.

Em resposta as perguntas de pesquisa, demonstrou-se que € possivel aplicar algoritmos de
isomorfismo para detectar automaticamente estruturas redundantes em arquiteturas orientadas
a dados, desde que essas arquiteturas estejam representadas em forma de grafos com modela-
gem consistente. A comparagdo entre algoritmos cldssicos e modelos baseados em aprendizado
supervisionado revelou que diferentes técnicas apresentam vantagens distintas conforme a den-
sidade e o grau de sobreposi¢do entre os dominios. Além disso, observou-se que a intervencao
humana na etapa de validagdo € indispensével para evitar que pares estruturalmente equivalen-
tes, mas semanticamente distintos, sejam erroneamente classificados como duplicidade. Assim,
a metodologia proposta mostrou-se adequada para integrar automagao e julgamento humano de
forma complementar no processo de refinamento arquitetural.

Contudo, o maior resultado desta pesquisa ndo estd nos valores numéricos isolados, mas
na consolidac¢do de um processo experimental que une geracao sistematica de dados, aplicacdo
modular de algoritmos, supervisao de resultados e mensuracdo quantitativa. Ao estruturar esse
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ciclo completo, o trabalho oferece uma base confidvel para replicag¢do cientifica, comparagdo
entre métodos e avanco incremental no campo da engenharia de dados orientada a grafos.

Adicionalmente a metodologia, o trabalho contribuiu com o desenvolvimento de um arte-
fato computacional completo, escrito em Python, capaz de reproduzir todas as etapas propostas,
desde a geracdo dos grafos até a exportacdo dos pares detectados e das métricas de desempe-
nho. A ferramenta Isomera permite a integracado com benchmarks sintéticos (como o TPC-DS)
e viabiliza experimentos controlados com diferentes algoritmos e configuracdes. Seu codigo
modular e interface interativa contribuem ndo apenas para o uso pratico em ambientes corpo-
rativos, como também para o ensino, pesquisa e reprodutibilidade académica.

Por fim, espera-se que este trabalho inspire futuras investigagdes que combinem modelagem
algébrica, técnicas de aprendizado de maquina e representacao em grafos para o aprimoramento
da governanga de dados em ecossistemas complexos e descentralizados.

Trabalhos Futuros
Como desdobramentos naturais deste estudo, destacam-se as seguintes linhas de continuidade:

* Deteccao a nivel colunar: estender o modelo atual para identificar redundancias e equi-
valéncias estruturais também em nivel de colunas, permitindo uma anélise mais granular
das dependéncias entre atributos das tabelas;

* Geracao de grafos a partir de bases reais: implementar mecanismos automadticos de
construgdo de grafos diretamente a partir de esquemas e metadados de bancos de dados
relacionais (PostgreSQL, MySQL, Glue Catalog etc.), possibilitando a validacdo empi-
rica do método proposto;

» Aplicacdo em tempo real e batch: adaptar a metodologia para ambientes hibridos, per-
mitindo a execuc¢do continua de verificagdes de redundancia tanto em fluxos em tempo
real quanto em processamentos em lote;

* Aprimoramento semantico: expandir o modelo atual para incorporar ontologias ¢ me-
tadados semanticos, permitindo detectar redundancias conceituais além das estruturais;

» Testes com novos algoritmos de aprendizado: incluir abordagens supervisionadas e
ndo supervisionadas como autoencoders, graph transformers, e modelos de aprendizado
contrastivo;

* Exploracao de IA generativa: investigar a aplicacdo de modelos generativos (GNNs
generativos, LLMs com raciocinio estrutural) para propor agrupamentos e reducdes ar-
quiteturais de forma proativa;

* Integracido com metadados reais: habilitar a leitura direta de esquemas de bancos de
dados (PostgreSQL, MySQL, Glue Catalog etc.), facilitando a aplicacdo prética da me-
todologia em pipelines produtivos;
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Desenvolvimento colaborativo: evoluir a ferramenta Isomera para uma plataforma in-
terativa com validacdo distribuida, versionamento de testes e exportacao de relatérios;

Simulacdo de impacto operacional: integrar redes estocdsticas de Petri para avaliar
como a presenga ou remocao de redundancias afeta disponibilidade em arquiteturas Data
Mesh;

Estudo de custos computacionais e escalabilidade: investigar o comportamento de de-
sempenho e os custos computacionais associados a execugao dos algoritmos de detec¢ao
de isomorfismos e a manutencdo de pipelines em arquiteturas Data Mesh, analisando
tempo de execucdo, uso de memoria, variacdo com o aumento do nimero de vértices e
arestas, e limites praticos de escalabilidade em cendrios distribuidos;

Anadlise de complexidade computacional: realizar uma avaliacdo comparativa entre
diferentes algoritmos de isomorfismo de grafos considerando tempo de execucdo, es-
calabilidade e uso de memoria. Os resultados poderdo ser organizados em tabelas de
complexidade e benchmarks experimentais para diferentes topologias de grafos.
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APENDICE A

Codigos

A.1 Geracao de Grafos com Base no TPC-DS

O cédigo abaixo mostra a funcido desenvolvida em Python para gerar cendrios de benchmark
com diferentes quantidades de tabelas e dominios, utilizando dados do TPC-DS. A funcdo cria
grafos dirigidos representando arquiteturas Data Mesh simuladas.

Listing A.1: Fung¢do de geracdo de grafos baseada no TPC-DS

import networkx as nx
import random
import os

def build_tpcds_graph_scenario (sor_count=2, domain_count=1, seed=42,
save_gml=True, output_dir="benchmark_graphs"):
random. seed (seed)
G = nx.DiGraph ()

domain_templates = ({

"D1": {"label": "Customer", "SORs": ["SOR_customer", "
SOR_customer_address", "SOR_customer_demographics"]},

"D2": {"label": "Store", "SORs": ["SOR_store", "SOR_region", "
SOR_nation", "SOR_call center"]},

"D3": {"label": "Catalog", "SORs": ["SOR_item", "SOR_promotion", "
SOR_reason"]1},

"D4": {"label": "Time", "SORs": ["SOR_date_dim", "SOR_time_dim"]},

"D5": {"label": "Warehouse", "SORs": ["SOR_warehouse", "

SOR_ship_mode", "SOR_income_band"]}

all _sots = [
"SOT_customer_attr", "SOT_customer_orders", "SOT_store_sales",
SOT_catalog_sales",
"SOT_web_sales", "SOT_time_sales", "SOT_warehouse_stock"

n

sot_sor_template = {
"SOT_customer_attr": ["SOR_customer", "SOR_customer_address", "
SOR_customer_demographics"],
"SOT_customer_orders": ["SOR_customer", "SOR_item", "SOR_date_dim"
] 4
"SOT_store_sales": ["SOR_store", "SOR_region", "SOR_promotion"],
"SOT_catalog_sales": ["SOR_item", "SOR_promotion", "SOR_reason"],

116
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27 "SOT_web_sales": ["SOR_customer", "SOR_item", "SOR_time_dim"],
28 "SOT_time_sales": ["SOR_date_dim", "SOR_time_dim"7],
29 "SOT_warehouse_stock": ["SOR_warehouse", "SOR_ship_mode", "

SOR_income_band"]
30 }

31
32 all_specs = [

33 "SPEC_customer_summary", "SPEC_store_sales_summary", "
SPEC_catalog_performance",

34 "SPEC_web_sales_summary", "SPEC_time_analysis", "
SPEC_warehouse_logistics"

35 ]

36

37 spec_template_inputs = {

38 "SPEC_customer_summary": [

39 "SOT_customer_attr", "SOT_customer_orders",

40 "SPEC_store_sales_summary", "SPEC_catalog_performance"
41 1,

42 "SPEC_store_sales_summary": [

43 "SOT_store_sales", "SOT_customer_orders", "

SPEC_customer_summary"
44 1,

45 "SPEC_catalog_performance": [

46 "SOT_catalog_sales", "SOT_customer_attr", "SOT_store_sales"
47 1,

43 "SPEC_web_sales_summary": [

49 "SOT_web_sales", "SOT_customer_orders", "SPEC_customer_summary"
50 1,

51 "SPEC_time_analysis": [

52 "SOT_time_sales", "SOT_web_sales", "SOT_catalog_sales"

53 1,

54 "SPEC_warehouse_logistics": [

55 "SOT_warehouse_stock", "SOT_store_sales", "

SPEC_store_sales_summary"
56 ]
57 }

58

59 all_sor_nodes, all_sot_nodes, all_spec_nodes = [], [1, []
60 domain_sors_dict, domain_sots_dict = {}, {}

61

62 for d in range(l, domain_count + 1):

63 domain_key = f"D{d}"

64 template_sors = domain_templates[domain_key] ["SORs"]
65 selected_sors = []

66

67 if sor_count <= len(template_sors):

68 selected_sors = random.sample (template_sors, sor_count)
69 else:

70 selected_sors = template_sors.copy ()

71 extras_needed = sor_count - len(template_sors)

7 for 1 in range (extras_needed) :

73 selected_sors.append (f"SOR_extra_{i+1}")
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domain_sors = []

for sor in selected_sors:
node = f"{sor}_{domain_key}"
G.add_node (node, type="SOR")
domain_sors.append (node)
all_sor_nodes.append (node)

domain_sors_dict [domain_key] = domain_sors

domain_key, sor_nodes in domain_sors_dict.items() :

selected_sots = random.sample(all_sots, min(len(all_sots),
sor_count))

domain_sots = []

for sot in selected_sots:
node = f"{sot}_{domain_key}"
G.add_node (node, type="SOT")
domain_sots.append (node)
all_sot_nodes.append (node)

template = sot_sor_template.get (sot, [1])

matches = [f"{s}_{domain_key}" for s in template if f£"{s}_{
domain_key}" in sor_nodes]

edges = matches[:2] if len(matches) >= 2 else random.sample (

sor_nodes, min(2, len(sor_nodes)))

for target in edges:
G.add_edge (node, target)

domain_sots_dict[domain_key] = domain_sots

domain_key, domain_sots in domain_sots_dict.items () :
selected_specs = random.sample (all_specs, min(len(all_specs),
sor_count))
for spec in selected_specs:
node = f"{spec}_{domain_key}"
G.add_node (node, type="SPEC")
all_spec_nodes.append (node)

reuse_key = random.choice([k for k in domain_sots_dict if k !=
domain_key]l) \
if domain_count > 1 and random.random() < 0.3 else
domain_key

input_keys = spec_template_inputs.get (spec, [])

candidates = [f"{i}_{reuse_key}" for i in input_keys if £"{i}_{
reuse_key}" in all_sot_nodes + all_spec_nodes]

if not candidates:
candidates = random.sample(all_sot_nodes, 1)

for tgt in candidates:
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G.add_edge (node, tgt)

if save_gml:
os.makedirs (output_dir, exist_ok=True)
filename = f"{output_dir}/graph_SOR{sor_count}_D{domain_count}_seed
{seed}.gml"
nx.write_gml (G, filename)
print (f" Grafo salvo: {filename}")

return G
def generate_all_benchmark_graphs() :

for sor in [2, 4, 8, 16]:
for domain in [1, 2, 3, 4, 5]:

print (f"Gerando grafo para SOR = {sor}, Domain = {domain}")
build_tpcds_graph_scenario (sor_count=sor,domain_count=domain,
seed=42)

generate_all_benchmark_graphs()

A.2 Execucao dos algoritmos

Cddigo para execugdo dos algoritmos VF2, Node Match e GNN. Além do treinamento do
GNN.

Listing A.2: Treinamento GNN

import os

import Jjson

import time

import pickle

import random

import networkx as nx

import pandas as pd

from itertools import combinations

import torch

import torch.nn as nn

import torch.nn.functional as F

from torch_geometric.data import Data

from torch_geometric.nn import global_mean_pool

class GINLayer (nn.Module) :
def _ _init_ (self, in_channels, out_channels):
super (GINLayer, self).__init__ ()
self.eps = nn.Parameter (torch.zeros (1))
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25 self.mlp = nn.Sequential (

26 nn.Linear (in_channels, out_channels),
27 nn.RelU(),

28 nn.Linear (out_channels, out_channels)

31 def forward(self, x, edge_index):

32 row, col = edge_index

33 agg = torch.zeros_like (x)

34 agg.index_add_ (0, row, x[coll])

35 out = self.mlp((1 + self.eps) * x + agg)

36 return out

38 |class SubgraphGNN (nn.Module) :

39 def _ _init_ (self, in_channels=1, hidden_channels=64, out_channels=64):
40 super (SubgraphGNN, self).__init__ ()

41 self.ginl = GINLayer (in_channels, hidden_channels)

42 self.gin2 = GINLayer (hidden_channels, out_channels)

43

44 def forward(self, x, edge_index, batch):

45 x = self.ginl (x, edge_index)

46 x = F.relu(x)

47 x = self.gin2(x, edge_index)

48 return global_mean_pool (x, batch)

49
class PairClassifier (nn.Module) :

5(

51 def _ _init__ (self, emb_size=64):

52 super (PairClassifier, self).__init__ ()
53 self.fc = nn.Sequential (

54 nn.Linear (emb_size x 2, 128),
55 nn.RelLU(),

56 nn.Linear (128, 1)

57 )

58

59 def forward(self, embl, emb2):

60 embl = embl.view(1l, -1)

61 emb?2 = emb2.view(l, -1)

62 x = torch.cat ([embl, emb2], dim=1)

63 return self.fc(x) .squeeze(l)

o |def is_valid_pair(u, v):

70 """Retorna True apenas se ambos forem SPEC ou ambos forem SOT."""
71 return (

72 (str(u) .startswith ("SPEC") and str(v).startswith ("SPEC")) or
73 (str(u) .startswith ("SOT") and str(v).startswith("SOT"))

76 |def extract_subgraphs (G) :
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77 subgraphs = {}

78 for node in G.nodes:

79 neighbors = list (G.successors (node))

80 subgraphs[node] = G.subgraph([node] + neighbors) .copy ()
81 return subgraphs

83 |def graph_to_pyg_data (G_nx) :

84 mapping = {n: i for i, n in enumerate(G_nx.nodes) }

85 edge_index = torch.tensor ([ [mapping[u], mapping[v]] for u, v in G_nx.
edges], dtype=torch.long) .t ().contiguous/()

86 x = torch.ones((len(G_nx.nodes), 1))

87 return Data (x=x, edge_index=edge_index)

88
g0 |def create_datasets_by_scenario(graph_dir="benchmark_graphs",
validation_dir="validations") :

90 scenario_datasets = {}

91 for filename in os.listdir(validation_dir):

92 if filename.endswith(".json") and filename.startswith("real pairs_"

) :

93 scenario_id = filename.replace("real_pairs_", "").replace(".
json", "")

94 gml_path = os.path.join(graph_dir, f"{scenario_id}.gml")

95

96 with open(os.path.join(validation_dir, filename)) as f:

97 real_pairs = json.load(f)

98
99 G = nx.read_gml (gml_path)

100 subgraphs = extract_subgraphs (G)

101 nodes = list (subgraphs.keys())

102 real_set = set (tuple(sorted(p)) for p in real_pairs if
is_valid_pair(p[0], pl[1l1))

104 dataset = []

106 # Positivos (pares reais)

107 for u, v in real_set:

108 gl = graph_to_pyg_data (subgraphs[u])
109 g2 = graph_to_pyg_data (subgraphs[v])
110 dataset.append((gl, g2, 1.0))

112 num_positives = len(real_set)
113 num_negatives num_positives * 3

114

115 # Negativos (pares aleatorios nao—-isomorfos)
116 negative_set = set ()

117 attempts = 0

118 max_attempts = 5000

119 while len (negative_set) < num_negatives and attempts <
max_attempts:

120 u, v = random.sample (nodes, 2)

121 pair = tuple(sorted((u, v)))

122 if is_wvalid_pair(u, v) and pair not in real_set and pair
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not in negative_set:
123 gl = graph_to_pyg_data (subgraphs[u])

124 g2 = graph_to_pyg_data (subgraphs([v])

125 if gl.edge_index.numel () > 0 and g2.edge_index.numel ()
> 0:

126 dataset.append((gl, g2, 0.0))

127 negative_set.add(pair)

128 attempts += 1

129
130 print (f" Dataset para {scenario_id}: {len(real_set)} positivos,
{len(negative_set)} negativos")

131 scenario_datasets[scenario_id] = dataset

132
133 return scenario_datasets
134
135
136 |def train_and_save_gnn_model (dataset, model_path="modelos_gnn/gnn_model.pkl
", epochs=50, 1lr=0.01):

137 device = torch.device (’cuda’ if torch.cuda.is_available() else ’cpu’)

138 gnn = SubgraphGNN () .to (device)

139 clf = PairClassifier () .to(device)

140 optimizer = torch.optim.Adam(list (gnn.parameters()) + list(clf.

parameters()), lr=lr)

141 criterion = nn.BCEWithLogitsLoss ()

142

143 print (f" Treinando modelo: {model_path} com {len(dataset)} pares...")

144 for epoch in range (epochs) :

145 random.shuffle (dataset)

146 total_loss = 0

147 correct = 0

148 total = 0

149 for gl, g2, label in dataset:

150 gl, g2 = gl.to(device), g2.to(device)

151 gl.batch = torch.zeros(gl.num_nodes, dtype=torch.long) .to(
device)

152 g2.batch = torch.zeros(g2.num_nodes, dtype=torch.long).to(
device

153 embl = gnn(gl.x, gl.edge_index, gl.batch) .unsqueeze (0)

154 emb2 = gnn(g2.x, g2.edge_index, g2.batch).unsqueeze (0)

155 pred = clf (embl, emb2)

156 loss = criterion(pred, torch.tensor([label], dtype=torch.float,
device=device))

157 optimizer.zero_grad()

158 loss.backward()

159 optimizer.step ()

160 total_loss += loss.item()
161

162 # Acuracia simples

163 predicted_label = (torch.sigmoid(pred) .item() >= 0.6) #
threshold
164 if predicted_label == bool (label):

165 correct += 1
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total += 1

acc = 100 x* correct / total if total > 0 else 0.0
print (f"Epoca {epoch+1l}/{epochs} - Loss: {total_ loss:.4f} -
Acuracia: {acc:2f}%")

os.makedirs (os.path.dirname (model_path), exist_ok=True)
with open (model_path, "wb") as f:

pickle.dump ((gnn.cpu(), clf.cpu()), f)
print (f" Modelo salvo: {model_path}")

def train_and_save_models_by_scenario(datasets_dict, output_base_dir="
modelos_gnn_separados", epochs=2, 1lr=0.01):
os.makedirs (output_base_dir, exist_ok=True)
for scenario_id, dataset in datasets_dict.items{():
model_path = os.path.join (output_base_dir, f"{scenario_id}.pkl")
train_and_save_gnn_model (dataset, model_path=model_path, epochs=
epochs, lr=lr)

def predict_isomorphism_with_saved_gnn (G, model_path="modelos_gnn/gnn_model
.pkl", threshold=0.3):
if not os.path.exists (model_path):
raise FileNotFoundError (f"Modelo GNN ausente em: {model_path}")
with open (model_path, "rb") as f:
gnn, clf = pickle.load(f)

device = torch.device(’cuda’ if torch.cuda.is_available() else ’'cpu’)
gnn, clf = gnn.to(device), clf.to(device)

subgraphs = extract_subgraphs (G)
nodes = list (subgraphs.keys{())
isomorphic_pairs = []

for u, v in combinations (nodes, 2):
gl_data = graph_to_pyg_data (subgraphs(ul])
g2_data = graph_to_pyg_data (subgraphs|[v])

if gl_data.edge_index.dim() < 2 or gl_data.edge_index.shape[l] ==
0:
continue

if g2_data.edge_index.dim() < 2 or g2_data.edge_index.shape[l] ==
0:
continue

gl = gl_data.to(device)
g2 = g2_data.to(device)
gl.batch = torch.zeros(gl.num_nodes, dtype=torch.long).to(device)
g2.batch = torch.zeros(g2.num_nodes, dtype=torch.long).to(device)

with torch.no_grad() :
embl = gnn(gl.x, gl.edge_index, gl.batch).unsqueeze (0)
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212 emb2 = gnn(g2.x, g2.edge_index, g2.batch) .unsqueeze (0)

213 score = torch.sigmoid(clf (embl, emb2))

214 prinf (£" [DEBUG] {u} e {v}: score {score.item(}:.4f}")

215 if score.item() >= threshold:

216 isomorphic_pairs.append((u, Vv))

217

218 return isomorphic_pairs

219

20 |def predict_isomorphism_by_ scenario (G, scenario_id, model_dir="

modelos_gnn_separados", threshold=0.3):

21 model_path = os.path.join (model_dir, f"{scenario_id}.pkl")

222 return predict_isomorphism_with_ saved_gnn (G, model_path=model_path,
threshold=threshold)

223

24 |def run_isomorphism_on_benchmarks (

225 input_dir="benchmark_graphs",

226 output_dir="predicted_pairs",

227 algorithms=["VEF2", "NodeMatch", "GNN"],

228 runs=1000,

229 time_log="execution_times.csv"

230 | )

231 os.makedirs (output_dir, exist_ok=True)

232

233 for £ in os.listdir (output_dir):

234 os.remove (os.path. join (output_dir, f£f))

236 if "GNN" in algorithms:

237 datasets_by_scenario = create_datasets_by_scenario()

238 train_and_save_models_by_scenario(datasets_by_scenario)

239

240 execution_data = []

241 gml_files = [f for f in os.listdir(input_dir) if f.endswith(".gml")]

242

243 total_steps = len(gml_files) * len(algorithms)

244 current_step = 0

245

246 for gml_file in gml_files:

247 gml_path = os.path.join(input_dir, gml_file)

248 scenario_id = gml_file.replace(".gml", "")

249 G = nx.read_gml (gml_path)

250

251 for algo in algorithms:

252 current_step += 1

253 progress = (current_step / total_steps) * 100

254 print (f"\n Progresso: {progress:.2f}% ({current_step}/{

total_steps})")

255 print (f" Executando {algo} em {scenario_id}...")

256

257 total_time = 0

258 all pairs = set()

259

260 for _ in range(runs if algo != "GNN" else 1):
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start = time.time ()

if algo == "GNN":
pairs = predict_isomorphism_by_scenario (G, scenario_id)
else:
pairs = run_isomorphism (G, algorithm=algo)
end = time.time ()
total_time += (end - start)

all pairs.update(tuple(sorted(p)) for p in pairs)

avg_time = total_time / (1 if algo == "GNN" else runs)
filename = f"{output_dir}/pairs_{scenario_id}_{algo}.json"
with open(filename, "w") as f:

Jjson.dump (sorted(list (all_pairs)), £, indent=4)

execution_data.append ({

"scenario": scenario_id,
"algorithm": algo,
"runs": 1 if algo == "GNN" else runs,
"avg_time_seconds": round(avg_time, 6)

)

print (f"Resultado salvo: {filename} | tempo medio: {avg_time:.6
fis™)

df = pd.DataFrame (execution_data)

df.to_csv(time_log, index=False)
print (f"\n Tabela de tempos salva em: {time_log}")

def run_isomorphism(G, algorithm="VE2"):
subgraphs = [(node, G.subgraph([node] + list (G.successors(node)))) for
node in G.nodes]
isomorphic_pairs = []
for i in range (len (subgraphs)) :
for 7 in range(i + 1, len(subgraphs)):
if algorithm == "VF2":
if nx.is_isomorphic (subgraphs([i] [1], subgraphs([j][1l]):

isomorphic_pairs.append ( (subgraphs[i] [0], subgraphs]j

11001))
elif algorithm == "NodeMatch":
if nx.is_isomorphic (subgraphs[i][1], subgraphs[j][1l],

node_match=lambda x, y: x == y):

isomorphic_pairs.append ( (subgraphs[i] [0], subgraphs]j
1101))

return isomorphic_pairs
# Rodar

run_isomorphism_on_benchmarks ()
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