

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Luiz Gustavo da Rocha Charamba

**Providing Projective and Affine Invariance for Recognition
by Multi-Angle-Scale Vision Transformer**

Recife

2025

Luiz Gustavo da Rocha Charamba

**Providing Projective and Affine Invariance for Recognition
by Multi-Angle-Scale Vision Transformer**

Ph.D. Thesis presented to the Centro de Informática of the Universidade Federal de Pernambuco in partial fulfillment of the requirements for the degree of Doctorate of Computer Science.

Concentration Area: Media and Interaction

Supervisor: Silvio de Barros Melo

Co-Supervisor: Nivan Roberto Ferreira Júnior

Recife

2025

.Catalogação de Publicação na Fonte. UFPE - Biblioteca Central

Charamba, Luiz Gustavo da Rocha.

Providing Projective and Affine Invariance for Recognition by
Multi-Angle-Scale Vision Transformer / Luiz Gustavo da Rocha
Charamba. - Recife, 2025.

130f.: il.

Tese (Doutorado) - Universidade Federal de Pernambuco, Centro
de Informática, Programa de Pós-Graduação em Ciência da
Computação, 2025.

Orientação: Silvio de Barros Melo.

Coorientação: Nivan Roberto Ferreira Júnior.

Inclui Referências e Apêndices.

1. Affine Invariance; 2. Projective Invariance; 3. Geometric
Deep Learning; 4. Vision Transformer; 5. Computer Vision. I.
Melo, Silvio de Barros. II. Ferreira Júnior, Nivan Roberto. III.
Título.

UFPE-Biblioteca Central

SERVIÇO PÚBLICO FEDERAL
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA
Pós-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

A tese de doutorado intitulada **“Providing Projective and Affine Invariance for Recognition by Multi-Angle-Scale Vision Transformer”**, apresentada por **Luiz Gustavo da Rocha Charamba** em 28/08/2025, foi aprovada pela Banca Examinadora. Como exigência regimental para a obtenção do grau de doutor, o aluno deverá entregar a versão final do trabalho com as devidas correções propostas pelos examinadores, no prazo de 90 dias.

Recife, 28 de agosto de 2025

Prof. Dr. Rafael Dueire Lins
Centro de Informática / UFPE

Prof. Dr. Ricardo Martins de Abreu Silva
Centro de Informática / UFPE

Prof. Dr. Manuel Menezes de Oliveira Neto
Instituto de Informática / UFRGS

Prof. Dr. Sérgio de Carvalho Bezerra
Departamento de Computação Científica / UFPB

Prof. Dr. João Marcelo Xavier Natário Teixeira
Departamento de Eletrônica e Sistemas / UFPE

As correções solicitadas na defesa foram aprovadas pelo presidente da banca em:

Recife, 14 de novembro de 2025.

Dedico este trabalho à minha filha Aurora, à minha esposa Raissa, e à minha mãe Maria das Graças.

AGRADECIMENTOS

Este trabalho só foi possível graças à ajuda de Deus e ao apoio de pessoas pelas quais serei eternamente grato.

Agradeço profundamente à minha amada esposa, Raissa, pelo amor, compreensão e constante apoio, especialmente nos momentos mais difíceis. Agradeço também por ter me presenteado com nossa amada filha, Aurora, que veio ao mundo neste ano para iluminar nossas vidas. Sua chegada tornou ainda mais especial o momento de defender esta tese, permitindo-me viver a alegria de compartilhar essa conquista com a sua presença graciosa.

À minha querida mãe, Maria das Graças da Rocha, expresso minha eterna gratidão por sua sabedoria, paciência e amor incondicional. Foi ela quem me ensinou a enfrentar os desafios da vida com coragem e fé, sempre torcendo por mim em cada etapa do caminho. Sem o seu exemplo e dedicação, nada disso teria sido possível.

Sou também profundamente grato ao meu orientador, professor Sílvio Melo, por sua confiança, orientação e inspiração ao longo desta jornada. Sua competência e humanidade despertaram em mim grande admiração e respeito, e sinto-me honrado por ter sido seu aluno de doutorado. Agradeço igualmente ao meu coorientador, professor Nivan Ferreira, pelas valiosas sugestões, críticas construtivas e contribuições que ajudaram a aprimorar este trabalho.

Aos meus amigos próximos e familiares, que sempre acreditaram em mim e me incentivaram com palavras de apoio e gestos de carinho, deixo meus sinceros agradecimentos.

Por fim, estendo minha gratidão a todas as pessoas que, de alguma forma, contribuíram para a realização desta tese, seja com palavras de incentivo, colaboração acadêmica ou simples gestos de amizade e solidariedade.

“All models are wrong, but some are useful.” (BOX, 1976)

RESUMO

O reconhecimento de formas planares deformadas encontra aplicações em muitas áreas não relacionadas, tais como *marketing*, OCR e veículos autônomos. Um grande esforço tem sido dedicado a esse tema na literatura, baseado em abordagens geométricas diretas, embora com resultados ou desempenho limitados. Mais recentemente, várias abordagens de aprendizado de máquina foram propostas, mas com resultados satisfatórios apenas quando a deformação é, no máximo, uma transformação afim fraca. Esta tese apresenta o *Multi-Angle-Scale Vision Transformer*, MASViT, uma solução baseada em aprendizado profundo que supera os métodos do estado da arte no reconhecimento de imagens deformadas por afinidades e projetividades. Um ponto crucial em nossa proposta é a ausência de imagens deformadas durante a fase de treinamento. Nossa abordagem emprega filtros convolucionais 1D correspondentes a linhas retas que cruzam a forma no domínio polar, preservando a colinearidade, um invariante projetivo fundamental. As sequências angulares derivadas do domínio polar integram-se bem à arquitetura *Vision Transformer* (ViT), pois esses *patch embeddings* são geometricamente coerentes, aumentando a adequação ao codificador do *transformer*. Também introduzimos diversas técnicas de regularização para ampliar a capacidade de generalização do modelo. Para validar a abordagem, nós organizamos novos conjuntos de teste derivados do *German Traffic Sign Recognition Benchmark* (GTSRB). Por meio de extensos experimentos, demonstramos que essa abordagem supera os modelos do estado da arte, especialmente em cenários envolvendo imagens submetidas a severas deformações afins e projetivas.

Palavras-chaves: Invariância Afim; Invariância Projetiva; Aprendizagem Profunda Geométrica; Transformador de Visão; Visão Computacional.

ABSTRACT

The recognition of deformed planar shapes finds applications in many unrelated areas, such as marketing, OCR, and autonomous vehicles. An enormous effort has been devoted to this in the literature, based on direct geometric approaches, although with limited results or performance. More recently, many machine learning approaches have been proposed with satisfactory results only when the deformation is a weak affine at best. This thesis introduces the Multi-Angle-Scale Vision Transformer, MASViT, a deep-learning-based solution that outperforms state of the art methods in the recognition of affinely and projectively deformed images. A crucial point in our setting is the absence of deformed images during training phase. Our approach employs 1D convolutional filters corresponding to straight lines crossing the shape in the polar domain, preserving collinearity, a basic projective invariant. Angular sequences deriving from the polar domain integrate well with the Vision Transformer (ViT) architecture, as these patch embeddings are geometrically coherent, enhancing suitability for the transformer encoder. We also introduce several regularization techniques to boost the generalizability of model. To validate the approach, we curated new test datasets derived from the German Traffic Sign Recognition Benchmark (GTSRB). Through extensive experiments, we demonstrate that this approach surpasses state-of-the-art models, particularly when dealing with images subjected to severe affine and projective deformations.

Keywords: Affine Invariance; Projective Invariance; Geometric Deep Learning; Vision Transformer; Computer Vision.

SUMÁRIO

1	INTRODUCTION	12
1.1	MOTIVATION	13
1.2	OBJECTIVE	13
1.3	CONTRIBUTIONS	14
1.4	SCIENTIFIC PRODUCTION	15
1.5	ORGANIZATION OF THE THESIS	15
2	THEORETICAL BASIS	17
2.1	GEOMETRIC TRANSFORMATIONS BACKGROUND	17
2.2	ARTIFICIAL NEURAL NETWORKS	19
2.2.1	Multilayer Perceptron	20
2.2.1.1	<i>Artificial Neuron</i>	20
2.2.1.2	<i>Activation Functions</i>	21
2.2.1.2.1	Sigmoid	21
2.2.1.2.2	Hyperbolic Tangent	22
2.2.1.2.3	Rectified Linear	23
2.2.1.3	<i>Softmax Layer</i>	23
2.2.1.4	<i>MLP Architecture</i>	24
2.2.2	Convolutional Neural Network	25
2.2.2.1	<i>Convolution</i>	25
2.2.2.2	<i>Convolutional Layers</i>	26
2.2.2.3	<i>Pooling Layers</i>	27
2.2.2.4	<i>Fully-Connected Layers</i>	27
2.2.2.5	<i>CNN Architecture</i>	28
2.2.3	Vision Transformer	29
2.2.3.1	<i>Transformer Encoder</i>	30
2.2.3.1.1	Multi-Head Attention	31
2.2.3.1.2	Scaled Dot-Product Attention	32
2.3	LEARNING MECHANISM AND TRAINING	32
2.3.1	Error Functions	32
2.3.2	Gradient Descent and Backpropagation	33

2.3.3	Training	34
2.3.3.1	<i>Epoch and Batch</i>	34
2.3.3.2	<i>Underfitting and Overfitting</i>	35
2.3.3.3	<i>Regularization</i>	36
2.3.3.3.1	<i>L1 and L2 Regularization</i>	36
2.3.3.3.2	<i>Dropout</i>	37
2.3.3.3.3	<i>Data Augmentation</i>	37
2.3.3.3.4	<i>Batch Normalization</i>	37
2.3.3.3.5	<i>Weight Decay</i>	38
2.3.3.4	<i>Weight Initialization</i>	38
2.3.3.4.1	<i>Weight Initialization Algorithms</i>	38
2.4	EVALUATION OF CLASSIFIERS	39
2.4.1	Confusion Matrix	39
2.4.2	Evaluation Metrics	39
2.4.2.1	<i>Accuracy</i>	40
2.4.2.2	<i>Precision</i>	40
2.4.2.3	<i>Recall</i>	41
2.4.2.4	<i>Specificity</i>	41
2.4.2.5	<i>F1-Score</i>	42
2.5	DISCUSSION	42
3	RELATED WORKS	44
3.1	PLANAR SHAPE RECOGNITION BY SHAPE DESCRIPTORS	44
3.2	PLANAR SHAPE RECOGNITION BY NEURAL NETWORKS	46
3.3	DISCUSSION	48
4	DEVELOPMENT	50
4.1	MULTI-ANGLE-SCALE VISION TRANSFORMER	50
4.1.1	Polar Domain	50
4.1.2	MASViT Architecture	51
4.1.2.1	<i>Horizontal and Vertical Layers</i>	52
4.1.2.2	<i>Angle Dropout</i>	53
4.1.2.3	<i>Class Token and Positional Embeddings</i>	54
4.1.2.4	<i>Transformer Encoder and Classifier settings</i>	55
4.2	DATA AUGMENTATION IN POLAR DOMAIN	55

4.2.1	Cyclic-Angular Shifting	56
4.2.2	Right-Side Padding	56
4.3	POST TRAINING BOOST BY MAX SCORE	57
4.4	DISCUSSION	58
5	EXPERIMENTS	60
5.1	DATASETS	60
5.2	TRAINING	61
5.3	TESTING	63
5.4	DISCUSSION	67
6	CONCLUSION AND FUTURE WORK	69
	REFERENCES	71
	APÊNDICE A – APPENDIX	77
	APÊNDICE B – APPENDIX	85
	APÊNDICE C – APPENDIX	120
	APÊNDICE D – APPENDIX	129

1 INTRODUCTION

In image recognition tasks, objects can suffer from numerous types of perturbation, including deformations due to geometric transformations that are quite common in everyday human visual perception and in the field of computer vision, which tries to mimic the successful properties of human vision to some extent. One of the most fundamental needs of computer vision applications is to be robust to the types of transformations produced by most cameras, such as rotations, scales, affinities and projectivities.

When it comes to using neural networks for image recognition tasks, this robustness is usually achieved by training models with large volumes of data with naturally deformed samples or by data augmentation. However, there is often a shortage of data or a need to explain the model.

Deep learning models with translation invariance already exist, such as CNNs, where convolutional filters operate on the image pixels in different positions; in essence, these operations are equivariant in the sense that translating the input values and then convolving is the same as first convolving and then translating the response. Subsampling operations, such as pooling, transform this equivariance into invariance, so that translating the input signal does not change the response. Due to this power of invariance to translations, these architectures have become the industry standard for computer vision applications.

Geometric Deep Learning is a subfield of deep learning that studies neural networks capable of operating in domains with complex geometric structures, such as graphs, surfaces, and symmetry groups (BRONSTEIN et al., 2021). In this context, symmetry refers to properties that remain invariant to certain transformations in an object. Exploiting these principles to design models that respect the geometry of the data, going beyond regular structures such as images and sequences, going beyond the traditional way of representing these data. Instead of relying exclusively on data augmentation, Geometric Deep Learning incorporates these symmetries directly into the architecture, creating networks that are intrinsically invariant or equivariant to various transformations. This results in more robust models, with better generalization, less need for data augmentation, and greater fidelity to the structure of the problem - in many cases surpassing traditional approaches such as CNNs, which are invariant only to translation.

1.1 MOTIVATION

Image recognition is a problem in computer vision that has received a lot of attention from the research community due to its application in areas such as traffic signs recognition for autonomous vehicles (Houben et al., 2013), automatic extraction and recognition of logos (Bianco et al., 2017), pose estimation for augmented reality (Kendall; Grimes; Cipolla, 2015), among others. One common challenge in this context is to effectively perform recognition of objects when the target objects have been distorted from camera projections. These projections can significantly alter an image's appearance and pose challenges for standard recognition systems. For these reasons, building image recognition models that are robust to different classes of projective transformations is an important research problem.

Convolutional Neural Networks (CNNs) are famous for their translation invariance, however, traditional CNNs often struggle when faced with affinely distorted images (Lenc; Vedaldi, 2015). So, although CNN architectures are invariant to translations, many perturbations suffered by objects in the real world go far beyond simple translations.

More recent deep learning models based on Capsule Nets exhibited superior accuracy on affinely deformed images of the affNIST dataset (Sabour; Frosst; Hinton, 2017; Netzer et al., 2011), being trained on the non-deformed images of the MNIST dataset (LeCun et al., 1998), compared to a CNN with a similar number of parameters. Since then, this and other architectures have advanced to provide geometric invariance for deep models, particularly on the MNIST family of datasets.

1.2 OBJECTIVE

Motivated by the need to enhance the robustness of deep architectures against image distortions in computer vision tasks, this work proposes the development of a solution based on a projectively invariant neural network. Since projective transformations are among the most general forms of geometric transformations, a model invariant to them is also inherently invariant to translations, rotations, scaling, and affine transformations. Furthermore, the approach aims to reduce the reliance on data augmentation techniques involving geometric transformations.

1.3 CONTRIBUTIONS

This thesis offers the following major contributions:

1. **New Vision Transformer architecture is proposed:** In this work, we introduced the Multi-Angle-Scale Vision Transformer (MASViT), a deep-learning-based solution that is robust in recognizing images distorted by projective transformations, being **trained on undeformed ones**.
2. **Extracts projective-invariant features using 1D convolutions in the polar domain:** MASViT is a new Vision Transformer (ViT) model that takes as input an image in the polar domain, processes it satisfying the collinearity invariance by using 1D convolutional filters, and passes a sequence of angular patch embeddings to the Transformer Encoder.
3. **Proposal of regularization techniques adapted to the polar domain:** Adapted regularization techniques were used, referred to as:
 - *Cyclic-angular shift*: Which aids in rotation invariance;
 - *Right-side padding*: Which helps in scaling invariance;
 - *Angle dropout*: Which is a dropout layer that randomly inactivates entire rows of the tensor data.
4. **Post-training enhancement mechanism:** MASViT allows for a post-training boost through the variation of the center of the polar domain conversion. This enables an improvement in the post-training accuracy. This boost mechanism allows improvements in the final accuracy without the need for complete retraining.
5. **Development of two new datasets for robustness assessment:** To evaluate our solution, we first develop two new datasets based on the German Traffic Sign Recognition Benchmark (GTSRB) (STALLKAMP et al., 2012). These datasets, named aff-GTSRB and proj-GTRSB, include images created from the original ones by applying these deformations (affine and projective, respectively) with different levels of severity. These datasets simulate realistic conditions commonly encountered in applications like traffic signal recognition for autonomous vehicles and OCR.

By incorporating varying levels of deformation severity, they provide a comprehensive framework for evaluating robust recognition models, reflecting scenarios where cameras and planar objects interact at diverse and challenging viewing angles in real-world situations.

6. Comparative experimental evaluation with state-of-the-art methods: We have compared MASViT with two other state-of-the-art GTSRB recognition models based on Spatial Transformers (ARCOS-GARCÍA; ALVAREZ-GARCIA; SORIA-MORILLO, 2018) and Capsule networks (CHEN et al., 2024), which their architectures are designed for robust recognition of distorted shapes. Our experiments show that MASViT significantly outperforms the previously mentioned methods when considering images that suffered affine and projective transformations.

1.4 SCIENTIFIC PRODUCTION

During this doctorate, it was possible to publish a related work, which consists of the development of a planar shape descriptor based on cross-ratio arrays for recognition tasks robust to severe projective deformation and occlusions. This work was published in 2021 in the journal *Computers & Graphics* (CHARAMBA; MELO; LIMA, 2021). A second paper, more closely related to the development of MASViT, was also submitted to the journal *Neural Computing & Applications*, the article has been accepted and is currently in the publication process. The articles developed during this doctorate are briefly summarized in the following.

1. Luiz G. Charamba, Silvio Melo, Ullayne de Lima, **Cross ratio arrays: A descriptor invariant to severe projective deformation and robust to occlusion for planar shape recognition**, *Computers & Graphics*, Elsevier, Volume 100, Pag. 54-65, 2021, ISSN 0097-8493, <https://doi.org/10.1016/j.cag.2021.08.001>.
2. Luiz G. Charamba, Nivan Ferreira, Silvio Melo, **Providing Projective and Affine Invariance for Recognition by Multi-Angle-Scale Vision Transformer**, *Neural Computing & Applications*, Springer Nature, 2024 (Status: Accepted).

1.5 ORGANIZATION OF THE THESIS

The thesis is organized as follows:

Chapter 2: Presents the theoretical foundation necessary for the development of this work. The fundamental concepts of geometric transformations applied to images are covered; the principles of neural networks, from classical architectures to Transformers; neural network learning mechanisms; in addition to the main evaluation metrics used for classifiers.

Chapter 3: Reviews the works related to the problem addressed, with emphasis on approaches based on CNNs, capsule networks and spatial transformers.

Chapter 4: Describes the methodology proposed for the development of MASViT, including the network architecture, the new regularization techniques introduced in this work — *cyclic-angular shift*, *right-side padding* and *angle dropout* — as well as the post-training improvement mechanism based on the variation of the polar center by max score.

Chapter 5: Details the experiments performed, including the description of the datasets used for training and validation, the experimental configurations and hyperparameters adopted, as well as the results obtained.

Chapter 6: Presents the conclusions of the work, highlighting the contributions achieved, and proposes possible directions for future work.

2 THEORETICAL BASIS

2.1 GEOMETRIC TRANSFORMATIONS BACKGROUND

Geometric Deep Learning is the area dedicated to making deep learning models more robust to data variations by exploring their symmetries. Symmetry is a certain property of an object or system unchanged when subjected to a spatial transformation, which can be smooth, continuous, or discrete. Symmetries are prevalent in many machine-learning tasks. In computer vision, a category of objects may exhibit certain symmetries that can be explored in object recognition problems, and developing neural networks that can be invariant or equivariant under these transformations is a goal of geometric deep learning (BRONSTEIN et al., 2017; BRONSTEIN et al., 2021; GERKEN et al., 2023). Usually, the focus in this area is the set of deformations produced by conventional cameras called projectivities, i.e., projective transformations. The invariance to these transformations is associated with well-known quantities and properties such as distances, angles, areas, collinearity of points, and incidence relations.

The taxonomy of projective transformations is illustrated in Table 1. Planar projective transformations are non-singular linear mappings in homogeneous coordinates, i.e., may be represented by non-singular homogeneous 3×3 matrices. This table shows the hierarchy of projective transformations according to their mathematical group classification (the product/inverse of an element in a group is an element of that group), along with their degrees of freedom (DoF) and main invariants. The largest group, formed by all projectivities, can be parametrized with eight degrees of freedom (the nine scalars in a 3×3 matrix minus one due to the matrix homogeneity). Their invariants include concurrency of lines, collinearity of points, intersection and tangency between curves, inflections, discontinuities and cusps in curves, and cross-ratio (ratio of ratio of lengths). The most general projectivity can transform a square into an arbitrary quadrilateral.

An important subgroup of the projectivities is composed of the *affinities*, which are characterized by matrices whose last line possesses entries with values 0, 0, and 1 (or a nonzero scalar). They are parametrized with six degrees of freedom and their invariants include, besides those of general projectivities, parallelism of lines, ratio of areas and lengths measured in parallel lines. The most general affinity can transform a square into any parallelogram. A notorious subgroup of the affinities is that of the *similarities*, cha-

Tabela 1 – Taxonomy of projectivities: The hierarchy of projective transformations according to their mathematical group classification. They are represented by homogeneous matrices, and their degrees of freedom are indicated. Their invariants are represented in the table by the following letters: (a)-concurrency of lines, (b)-collinearity of points, (c)-intersection between curves, (d)-tangency between curves, (e)-inflections of curves, (f)-discontinuities of curves, (g)-cusps in curves, (h) cross-ratio, (i)-parallelism of lines, (j)-ratio of areas, (k)-ratio of lengths measured in parallel lines, (l)-angle, (m)-ratio of lengths, (n)-length, and (o)-area.

Group	Matrix	DoF	Minimum invariant properties
Isometry	$\begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix}$	3	a, b, c, d, e, f, g, h, i, j, k, l, m, n, o.
Similarity	$\begin{bmatrix} \sigma \cos \theta & -\sigma \sin \theta & t_x \\ \sigma \sin \theta & \sigma \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix}$	4	a, b, c, d, e, f, g, h, i, j, k, l, m.
Affinity	$\begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$	6	a, b, c, d, e, f, g, h, i, j, k.
Projectivity	$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$	8	a, b, c, d, e, f, g, h.

acterized by matrices whose leading 2×2 block corresponds to a scaled rotation, with angle θ and scale factor σ , and the last column includes the terms of translation t_x and t_y . They are, therefore, parametrized by four parameters, and their invariants include, besides those of the affinities: angles and ratio of lengths in arbitrary directions. The most general similarity can transform a square into an arbitrarily magnified, contracted, or rotated square. The family of isometries is the most restrictive projective group, parametrized with just three degrees of freedom: the angle of rotation θ and the translation terms t_x and t_y . Their invariants include those of the similarities, together with length and area. An isometry is a rigid transformation, preserving an object's shape and size, and can transform a square into a square of the same size, possibly rotated and translated (HARTLEY; ZISSERMAN, 2003). Fig. 1 shows a STOP sign subjected by these mentioned geometric transformations, illustrating the resulting deformations.

From their hierarchy of invariants, we can say that if the model is capable of recognizing samples distorted by projectivities, it will also be robust in recognizing samples distorted

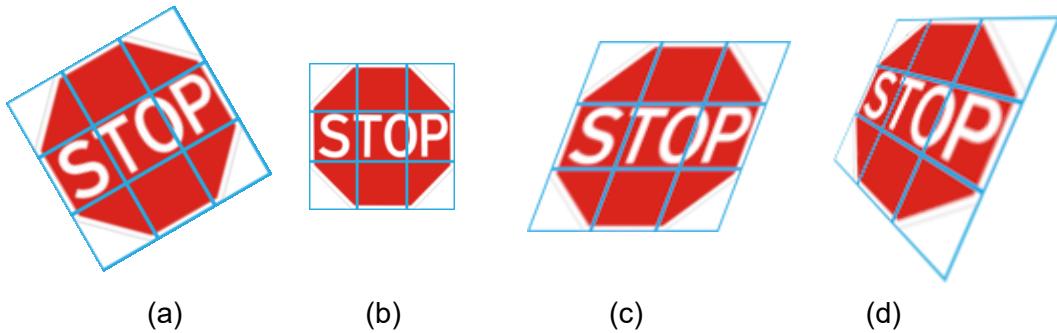


Figura 1 – A STOP sign undergoing four types of geometric transformations is illustrated: (a) **Rotation**, an isometric transformation, which preserves properties such as length and area; (b) **Scaling**, a similarity transformation, where proportions and angles remain intact; (c) **Shearing**, an affine transformation, which maintains parallelism of lines and preserves the ratio of lengths and ratio of areas; and (d) **Perspectivity**, a projective transformation, which preserves collinearity, concurrency, cross-ratio and other projective invariants. Source: The author.

by affinities, similarities, and isometries. The ability of deep learning models to handle different types of symmetries may depend on the nature of the geometric transformations inherent to the problem at hand.

2.2 ARTIFICIAL NEURAL NETWORKS

This section covers the theoretical foundations necessary to understand Artificial Neural Networks (ANN), including convolutional neural networks, also included are transformer architectures such as the Vision Transformer, both architectures are commonly used for image recognition applications.

An artificial neural network is a machine learning method used to solve regression, classification, and other problems, which presents a more simplified model based on the human brain structure and which obtains knowledge through learning.

Since 1943, a large number of models have been developed, some of which are quite realistic and of greater interest to neuroscientists. On the other hand, other scholars have delved deeper into the more abstract properties of neural networks, including distributed computing, tolerance to noisy inputs, and learning. (RUSSELL, 2010). Similar to biological neural networks, ANNs have processing units such as neurons, which have connections to other units, where they receive and send signals, just like in nerve synapses.

The simplified mathematical model of the neuron developed by (MCCULLOCH; PITTS,

1943) emits a signal at its output when a linear combination of its inputs exceeds some limits. This served as the basis for the Perceptron created in 1958 by (ROSENBLATT, 1958), a learning model consisting of sensory input units connected to a single layer of neurons. Rosenblatt stated that these networks can be trained to classify linearly separable patterns, functioning as a binary classifier. When dealing with non-linearly separable functions, the Perceptron cannot generate a hyperplane, and in the real world the data reported are linearly separable, making the Perceptron not very useful for problems of this nature. Figure 2 illustrates (a) sets of linearly separable patterns and (b) sets of non-linearly separable patterns.

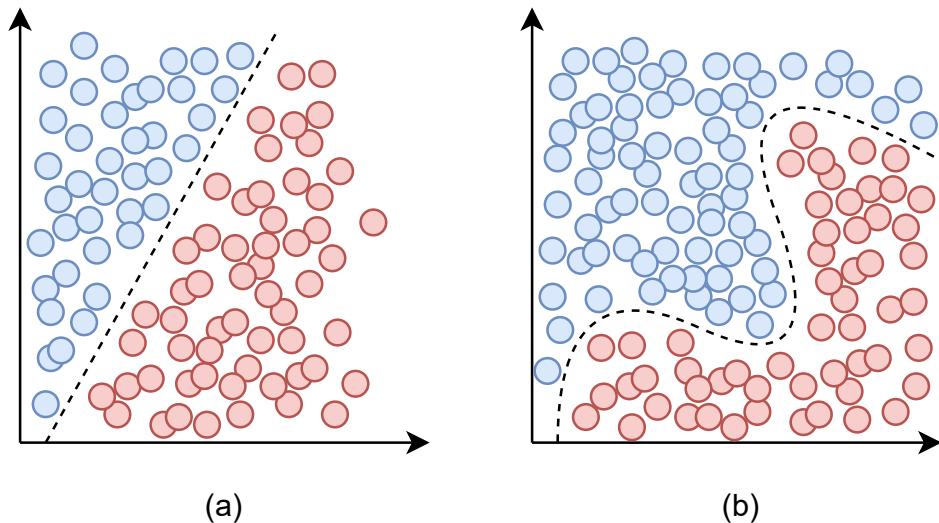


Figura 2 – Linearly separable pattern sets in (a) and non-linearly separable in (b). The Perceptron is able to correctly separate the classes illustrated in (a), but cannot do the same in (b). Source: The author.

2.2.1 Multilayer Perceptron

With the need to make a neural network capable of solving non-linear problems, the architecture of the Multilayer Perceptron (MLP) emerged. This is a neural network similar to the Perceptron, but has more than one layer of neurons. In cases where it is not possible to separate the patterns in a single line, it is possible to separate the elements using more than one line with the use of the MLP.

2.2.1.1 Artificial Neuron

An artificial neuron is the basic processing unit of an artificial neural network, composed of input connections that contain synaptic weights and an output that can be understood as the inner product of an input vector x with a vector w , which represents the synaptic weights, added to a bias θ . In order for the output of this neuron to contain a non-linear behavior that has an activation threshold, imitating the behavior of the biological neuron, a non-linear function is included that makes a composition with the input and bias, which is called the activation function. Figure 3 illustrates this model.

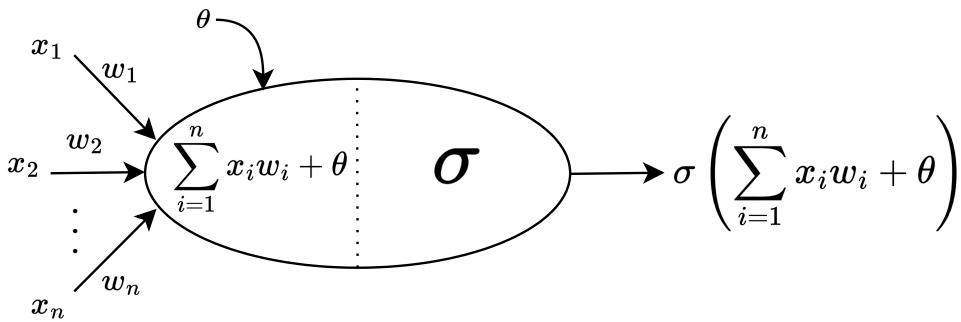


Figura 3 – Artificial neuron model: The neuron output signal is a composition of a nonlinear activation function σ with a sum of n inputs x_i multiplied by their respective synaptic weights w_i plus a bias θ . Source: The author.

2.2.1.2 Activation Functions

Activation functions determine the output of each neuron. Using linear functions as activation functions limits the power of ANNs to convex solutions; for non-convex solutions, non-linear functions are required. In other words, to learn complex patterns, it is necessary to use neurons that employ some type of non-linearity (BUDUMA; BUDUMA; PAPA, 2022).

The three main types of activation functions most commonly used in practice are:

1. Sigmoid
2. Hyperbolic Tangent
3. Rectified Linear

2.2.1.2.1 Sigmoid

The sigmoid activation function is expressed as follows:

$$f(z) = \frac{1}{1 + e^{-z}} \quad (2.1)$$

Intuitively, this means that when the sum of the weighted input values with the weights represented by the variable z is very small, the output of this function is very close to 0. When z is very large, the output is close to 1. The function takes the following S-shape, as shown in Figure 4.

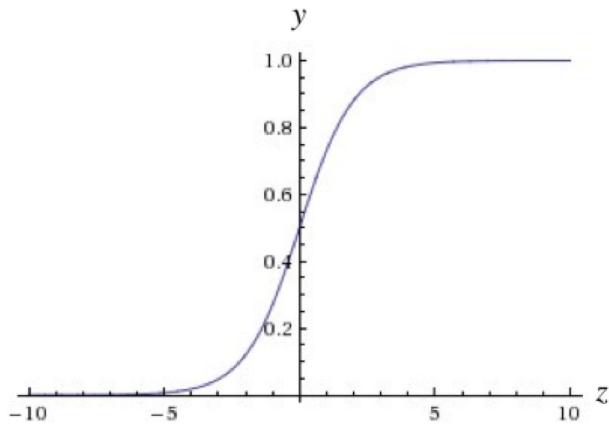


Figura 4 – Output of the sigmoid function as z varies. Source: Image taken from (BUDUMA; BUDUMA; PAPA, 2022).

2.2.1.2.2 Hyperbolic Tangent

The hyperbolic tangent activation function is expressed as follows in terms of z :

$$f(z) = \text{Tanh}(z) \quad (2.2)$$

The hyperbolic tangent (Tanh) activation function uses a type of nonlinearity very similar to the sigmoid, but instead of ranging from 0 to 1, the output ranges from -1 to 1, as illustrated in Figure 5. When S-shaped nonlinearities are used, the Tanh function is often preferred over the sigmoid function because it is centered at zero.

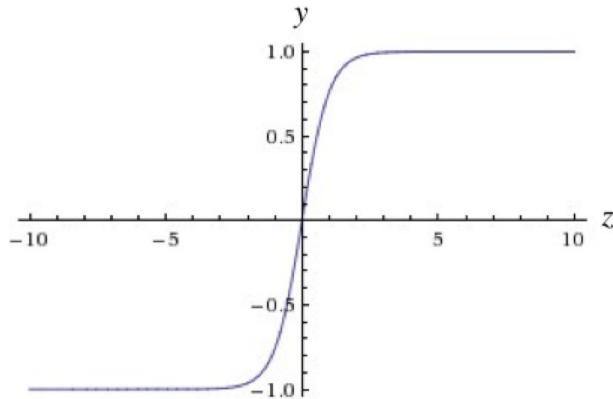


Figura 5 – Output of the Tanh function as z varies. Source: Image taken from (BUDUMA; BUDUMA; PAPA, 2022).

2.2.1.2.3 Rectified Linear

The rectified linear activation function is expressed as follows:

$$f(z) = \max(0, z) \quad (2.3)$$

A different type of nonlinearity is used in this activation function, as illustrated in Figure 6.

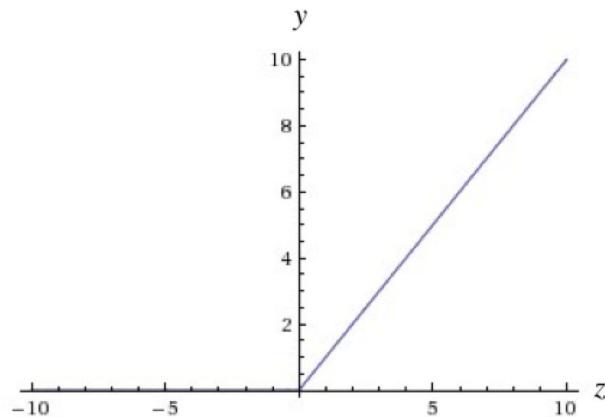


Figura 6 – Output of the rectified linear function as z varies. Source: Image taken from (BUDUMA; BUDUMA; PAPA, 2022).

Neurons that have rectified linear as their activation function in their outputs are called ReLU (Rectified Linear Units) and are easier to optimize because they are very similar to linear units. The difference is that in the ReLU output half of its domain is zero, which causes the derivatives to remain large whenever the activation function is operating in the active part ($z > 0$). The gradients are not only large, but also consistent. The second derivative of the function is 0 almost everywhere, and the first derivative of

the rectification operation is 1 everywhere the unit is active. This means that the direction of the gradient is much more useful for learning than it would be with activation functions that introduce second-order effects (GOODFELLOW; BENGIO; COURVILLE, 2016).

2.2.1.3 Softmax Layer

For classification tasks, it is desirable that the network's output vector be a probability distribution over a set of mutually exclusive labels. That is, for K classes there would be K corresponding vectors, and it would be difficult for the network to recognize the objects with 100% confidence. The use of a probability distribution indicates how confident the predictions are. As a result, the output vector would have the following form:

$$[p_0, p_1, \dots, p_{K-1}], \quad (2.4)$$

where the sum of the probabilities of all outputs is expressed by:

$$\sum_{i=0}^{K-1} p_i = 1 \quad (2.5)$$

One way to achieve this behavior is to use a special output layer, called a Softmax layer. Unlike other types of layer, the output of a neuron in a softmax layer depends on the outputs of all other neurons in its layer. This is because the sum of all outputs must be equal to 1. This normalization can be achieved as follows:

$$y_i = \frac{e^{z_i}}{\sum_{j=0}^{K-1} e^{z_j}}, \quad (2.6)$$

where z_i is the value of the i -th neuron in the output layer before the normalization calculation, and K is the total number of classes.

A strong prediction would have a single vector component close to 1, while the remaining components would be close to 0. A weak prediction would have multiple possibilities, and the vector components would have close values, more or less equally likely (BUDUMA; BUDUMA; PAPA, 2022).

2.2.1.4 MLP Architecture

The MLP consists of three or more layers. Since an MLP is a fully connected network, each neuron in a layer connects its output to the input of other neurons in the next layer by multiplying their output values with the input synaptic weights of those other neurons. Figure 7 shows this architecture, also known as a feedforward architecture. The goal of a *feedforward* network is to approximate some function f' . For example, a classifier $y = f'(x)$ maps an input x to a category y . A feedforward network defines a mapping $y = f(x; w; \theta)$ and learns the values of the parameters that best approximate this function (GOODFELLOW; BENGIO; COURVILLE, 2016).

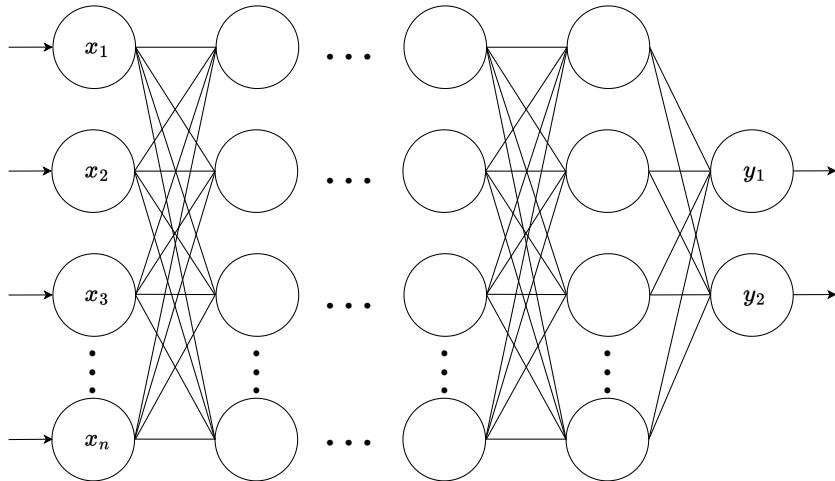


Figura 7 – Multilayer Perceptron Architecture: the first layer is responsible for receiving the input signals x_i , the last layer emits the output signals y_i , and the intermediate layers are also known as hidden layers. Source: The author.

2.2.2 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a specialized type of neural network architecture commonly used for signal and image processing, which can individually process sections of data at regular intervals, in a one-dimensional format, in the case of time series, or in a two-dimensional format, in the case of images, these are just a few examples of use.

This processing is done by filters (temporal or spatial, depending on the data domain) that slide over the data. These filters are also known as masks, kernels, templates and win-

dows, names inherited from the area of signal and image processing (GONZALEZ; WOODS, 2006).

In (LECUN et al., 1989), backpropagation was used to learn the coefficients of the convolution kernel directly from images of handwritten numbers.

The filters employ a mathematical operation called convolution, which is a type of linear operator. CNNs are simply neural networks that use convolution instead of multiplying the weight matrix with the data (input, or output from a previous layer) in at least one of their layers (GOODFELLOW; BENGIO; COURVILLE, 2016).

2.2.2.1 Convolution

Convolution is defined as the integral of the product of one function by a translated and inverted copy of the second function. The convolution of two continuous functions f and g can be written as:

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau).g(t - \tau)d\tau, \quad (2.7)$$

where t is the independent variable and τ is the variable that defines the displacement. The discrete-domain version of the convolution is expressed as follows:

$$(f * g)[n] = \sum_{k=0}^K f[k].g[n - k], \quad (2.8)$$

where f and g are discrete functions that, in practice, are finite numerical sequences of equal or different sizes, and n is the independent variable and k is the variable that defines the displacement.

A version of convolution for discrete functions in two dimensions (widely used in digital image processing) is given as follows:

$$(f * w)[x, y] = \sum_{i=0}^N \sum_{j=0}^M f[i, j].w[x - i, y - j], \quad (2.9)$$

where f and w are discrete bounded functions of size M and N respectively, which vary with x and y , with i and j being the displacement variables. The practical effect of convolutions of this type can be expressed as feature extractors that can operate on the image generating new resulting images.

2.2.2.2 Convolutional Layers

Convolutional layers are responsible for extracting features from the input data. The process of extracting these features is done through convolutional filters (which are generally smaller than the data), where the filters traverse the input data in width, height and depth (channels), performing the convolution operation on the data.

With each input processing in the network training period, the filters are adjusted in such a way that they trigger when the input contains a certain detected feature that was learned by the filters, such as edges, colors, etc. In the following convolutional layers, the filters learn increasingly complex structures. In short, the more filters and convolutional layers, the more features it is possible to extract from the data.

2.2.2.3 Pooling Layers

Pooling layers aims to reduce the size of the data (only in the width and height dimensions). The best-known pooling operations are max-pooling and average-pooling. Max-pooling reduces the subparts of the data by the maximum value found in these areas; in an analogous way, average-pooling does this reduction using the average of the values of these areas, Figure 8 illustrates these operations.

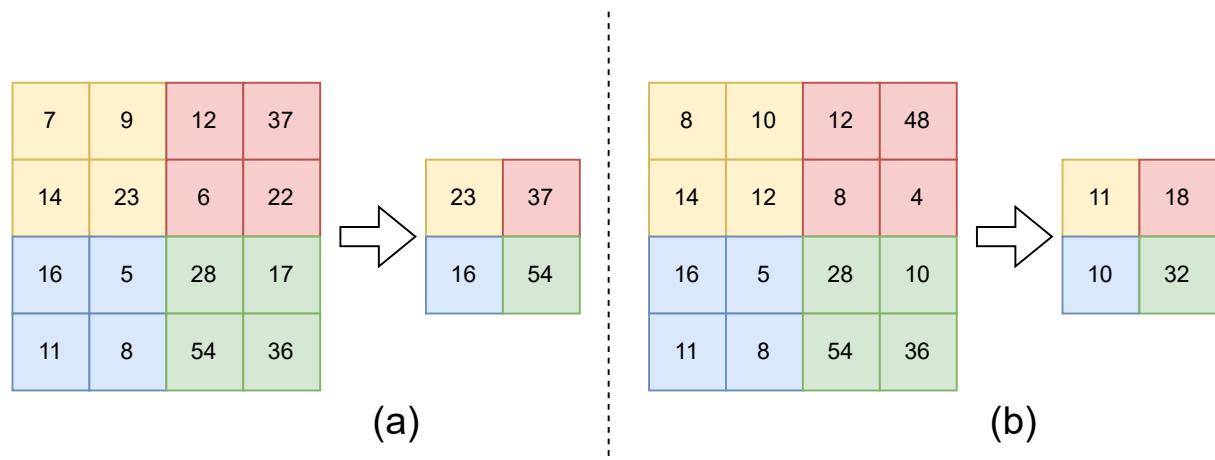


Figura 8 – Examples of masked pooling operations in the form 2×2 : Max-pooling in (a) and Average-pooling in (b). Source: The author.

2.2.2.4 Fully-Connected Layers

Fully-connected (FC) layers are usually located at the end of the network. In these layers, the features extracted in the previous convolution layers are passed to these layers, which will act as the network's classifier. The architecture of a CNN (which aims to recognize images) can be basically divided between feature extraction and classification. The operation of FC layers is similar to that of MLP layers, with no distinction. Below, in Figure 9, a FC layer is shown receiving a vector with three inputs and two output neurons, and its calculations in matrix format.

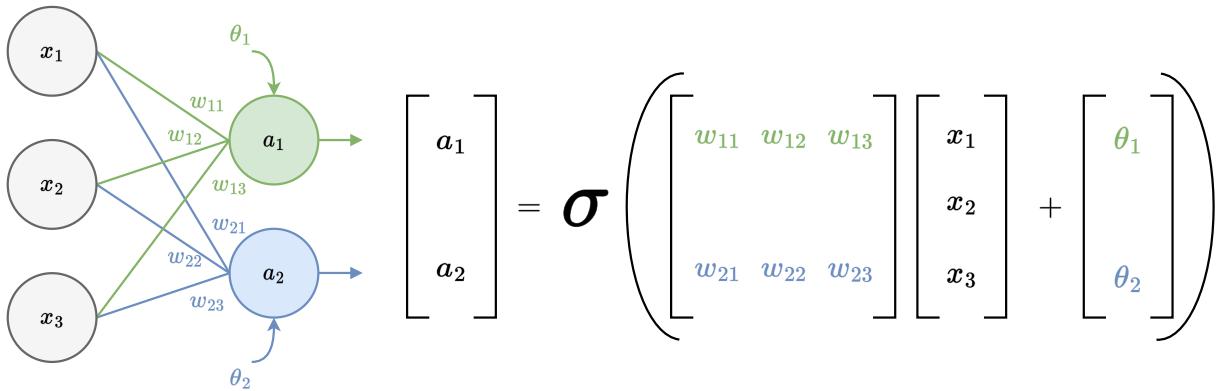


Figura 9 – A fully-connected layer with three inputs and two output neurons, where the input vector $(x_1, x_2, x_3)^T$ is multiplied by the weights w_{ij} through the weight matrix and added with the biases by the vector $(\theta_1, \theta_2)^T$, and the values a_1 and a_2 are the output responses of these neurons after the composition of the activation function σ with all this matrix calculation. Source: The author.

2.2.2.5 CNN Architecture

All of these layers are commonly used in CNN architectures. In short, convolutional layers act as feature extractors, pooling layers reduce data, and fully connected layers perform classification. An example of a CNN architecture comprising the three aforementioned layers (convolutional, pooling, and fully connected) is illustrated in Fig. 10. This architecture, known as LeNet, was the first convolutional neural network trained using backpropagation and was introduced by (LECUN et al., 1989).

In addition to the layers previously described, similar to MLP networks, CNN-based architectures also include activation functions, which are responsible for introducing non-linearity to the model, allowing it to learn more complex representations. Additionally,

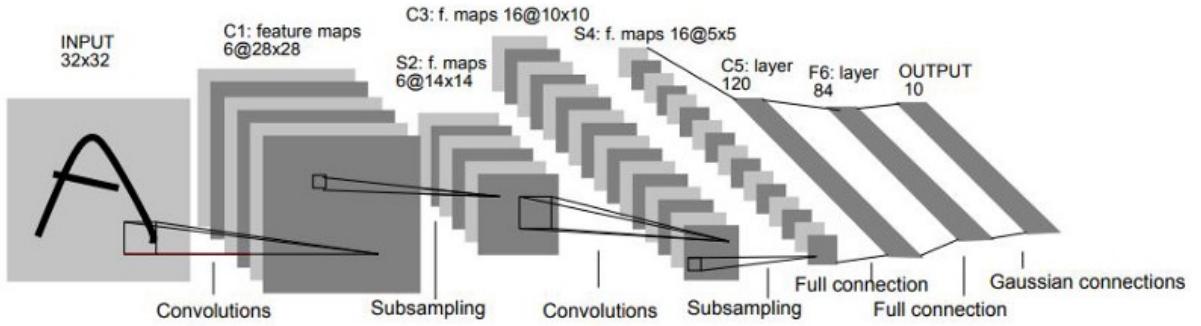


Figura 10 – Example of LeNet architecture. Source: Image taken from (LECUN et al., 1989).

when used for classification tasks, these networks usually end with a Softmax layer, which transforms the network outputs into probabilities associated with each class, reflecting the degree of confidence of the prediction.

2.2.3 Vision Transformer

A Vision Transformer is a deep learning architecture that uses the principles of Transformers, which are commonly used in natural language processing (NLP), and has now been adapted for computer vision tasks. Instead of using convolutions as in traditional image models, ViT divides the image into patches and treats them as tokens, although a hybrid architecture using convolutional filters is also allowed according to the original ViT paper (DOSOVITSKIY et al., 2020) in the **Hybrid Architecture** section:

“As an alternative to raw image patches, the input sequence can be formed from feature maps of a CNN (LECUN et al., 1989). In this hybrid model, the patch embedding projection E (Eq. 1) is applied to patches extracted from a CNN feature map. As a special case, the patches can have spatial size 1×1 , which means that the input sequence is obtained by simply flattening the spatial dimensions of the feature map and projecting to the Transformer dimension. The classification input embedding and position embeddings are added as described above.”

After processing the image patches (using convolutional or FC layers), this sequence of patches is concatenated with a trainable class token and added with trainable positioning parameters and are passed to a Transformer Encoder that will process this entire sequence

of tokens and return the first token that will be used in an MLP network that will classify the image.

In summary, a Vision Transformer operates with the following steps:

1. **Patch Division:** The input image is segmented into fixed-size patches, which are treated as individual tokens.
2. **Embedding:** Each patch is linearly flattened and further passed through a Fully-connected layers (or convolutional layers, in hybrid architecture) with a linear activation function transforming the patches into feature vectors (patch embeddings), to which it is concatenated with a learnable class token, whose final state captures the aggregated information for classification. Through attention layers, this token learns to summarize the global features of the image. To preserve the spatial structure of the patches, a one-dimensional positional embedding is added, since Transformers by themselves are permutation invariant and cannot infer the order of the input tokens.
3. **Transformer Encoding:** The sequence of tokens is processed by a Transformer encoder, which uses self-attention mechanisms to capture complex relationships between the different patches.
4. **Classification (or other tasks):** For image classification tasks, a special classification token is added to the beginning of the sequence, and the corresponding output is used to predict the class of the image.

Figure 11 shows the architecture of ViT and these steps, from patch division to classification.

2.2.3.1 *Transformer Encoder*

The Transformer Encoder (TE) is an important ViT module, and was initially designed for NLP tasks (VASWANI et al., 2017). The architecture of TE is composed of several stacks of identical blocks. Each block contains a Multi-Head Attention layer, followed by a Feed-Forward Network. In both sublayers, there are residual connections, followed by a Layer Normalization. All sublayers, as well as the embedding layers of the model, maintain an output dimension equal to the input, as shown in Fig. 11.

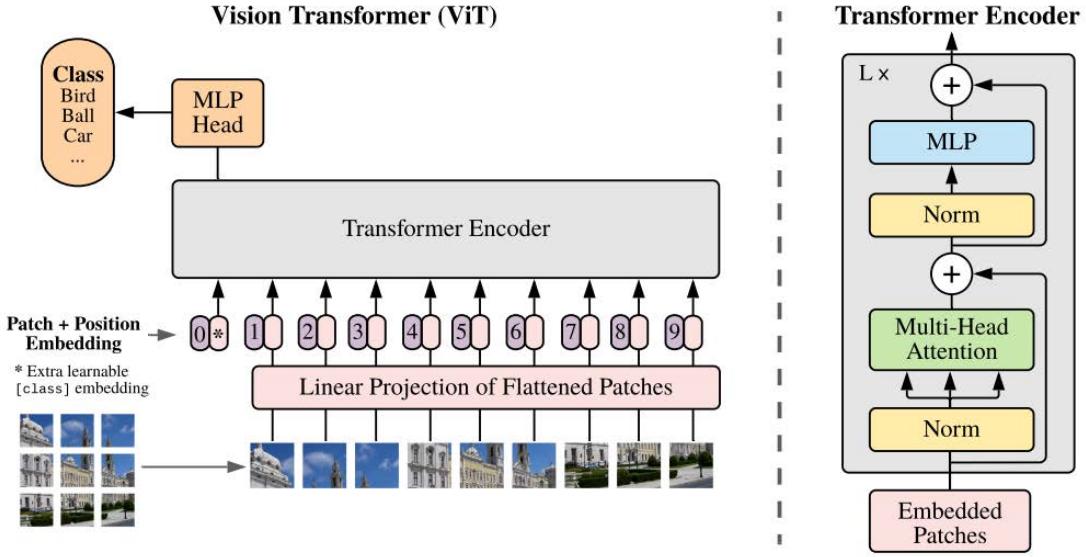


Figura 11 – Vision Transformer architecture and Transformer Encoder. Source: Image taken from (DO-SOVITSKIY et al., 2020)

2.2.3.1.1 **Multi-Head Attention**

The Transformer Encoder includes a self-attention mechanism known as Multi-Head Attention. In this mechanism, each input embedding x (representing an image patch or a word, depending on the task) is linearly projected into three distinct vectors: query (q), key (k), and value (v), using learnable weight matrices. This process simulates a retrieval operation, where a query vector interacts with all keys (including its own) to determine the relevance of each input token. When generalizing to matrix form, the individual projections q , k , and v for each token are stacked to form the matrices Q , K , and V , respectively. The Multi-Head Attention mechanism performs this self-attention operation in parallel across multiple "heads", each using its own set of learned projection matrices Q , K , and V , these are concatenated and once again projected. This enables the model to capture diverse relationships and dependencies from different subspaces of the input representation. By attending to different positions and features simultaneously, the model can learn richer contextual representations (VASWANI et al., 2017). Fig. 12 illustrates this mechanism.

2.2.3.1.2 **Scaled Dot-Product Attention**

The main component of a Multi-Head Attention unit is the Scaled Dot-Product Attention. At first, the input vectors are duplicated three times and multiplied by weights

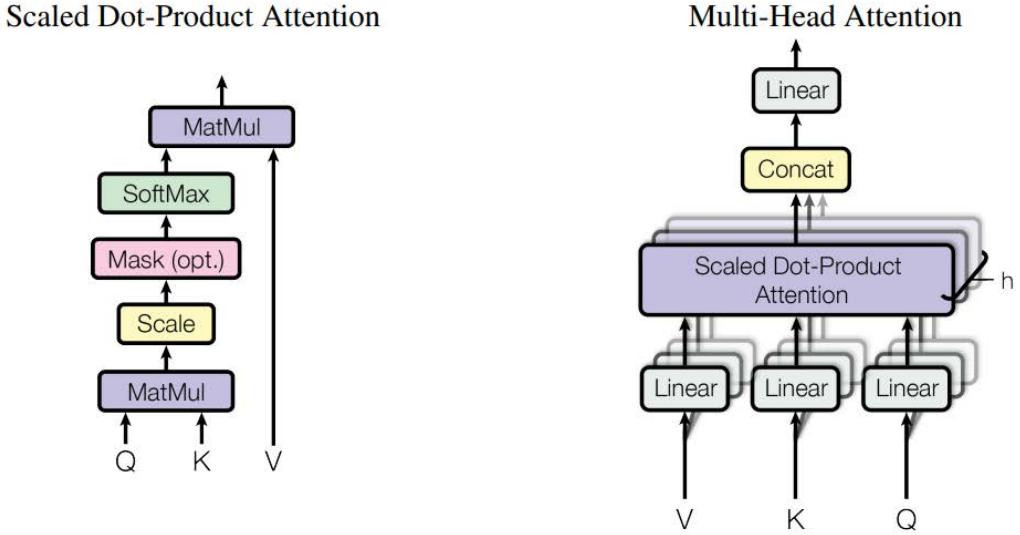


Figura 12 – Scaled Dot-Product and Multi-Head Attention mechanisms. Source: Image taken from (VASWANI et al., 2017)

W_q , W_k , and W_v , to get the **Queries** (Q), **Keys** (K), and **Values** (V) respectively. The **Queries** (Q) are then multiplied by the transposed **Keys** (K^T), and the result is divided by the square root of the dimension, $\sqrt{d_k}$, to avoid the vanishing gradient problem. The resulting matrix is subjected to a Softmax operation, which converts the scores into attention weights. These weights are subsequently multiplied by the **Values** (V) matrix, as described in the following equation.

$$\text{Attention}(Q, K, V) = \text{softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right) V \quad (2.10)$$

2.3 LEARNING MECHANISM AND TRAINING

This section covers topics necessary to understand the ANN learning mechanism, such as: Error Functions, Gradient Descent and Backpropagation. And the process to train neural networks.

2.3.1 Error Functions

Artificial neural networks learn through the process of adjusting the weights of the inputs in each layer. To adjust these weights, it is necessary to define a metric of how close a result is to the expected one. This metric is called the error function. Some well-

known error functions are: Means Square Error (MSE), commonly used for regression problems, and cross-entropy, which is more commonly used for classification problems. In the following equations 2.11 and 2.12, the calculations of these cost functions are shown.

The MSE can be calculated as:

$$MSE(Y, Y') = \frac{1}{N} \sum_{i=1}^N (Y_i - Y'_i)^2, \quad (2.11)$$

where N is the number of training samples, Y_i and Y'_i represent the expected and predicted output of the i -th sample, respectively.

To calculate cross-entropy, we have:

$$CE(Y, Y') = -\frac{1}{N} \sum_{i=1}^N \left(Y_i \log Y'_i + (1 - Y_i) \log(1 - Y'_i) \right), \quad (2.12)$$

where N is the number of training samples, Y_i and Y'_i represent the expected and predicted output of the i -th sample, respectively.

2.3.2 Gradient Descent and Backpropagation

For the network to achieve the desired result, it is necessary to adjust the weights, and the most widely used algorithm to perform this task is Backpropagation with Gradient Descent.

Gradient Descent is an iterative optimization algorithm that aims to find a local (or global) minimum of a function, in which each iteration takes the negative direction of the gradient. For training neural networks, gradient descent is used to minimize the error function in relation to the weight parameters w and biases θ .

Backpropagation was developed in (RUMELHART; HINTON; WILLIAMS, 1986) and is an algorithm that updates the network weights in order to optimize them during training. It calculates the gradient of the error function in relation to the network weights for a single or multiple input and output examples and performs it efficiently, unlike a direct calculation of the gradient in relation to each weight individually. This efficiency makes it feasible to use gradient methods for training multilayer networks, updating the weights to minimize losses.

In short, the weight values are changed by backpropagation iteratively, where the gradient is multiplied by a value known as **learning rate** that can be fixed throughout

training, or governed by a decay policy. The goal of gradient descent is to minimize the error function to the lowest possible error.

Figure 13 illustrates this iterative process, and equation 2.13 shows how the weights are updated using the sampling rate. For the purpose of didactic simplification, a case is being shown where there is only one weight variable w , which is an impractical situation when dealing with neural networks that usually have at least dozens of parameters to be optimized.

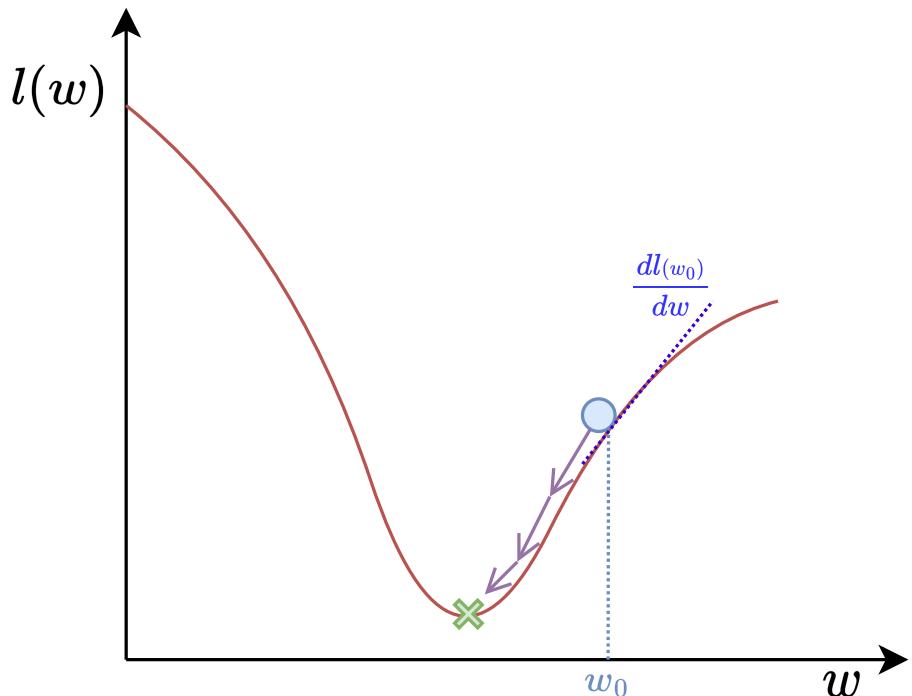


Figura 13 – The graph shows the error function l as a function of a weight variable w . The gradient descent algorithm starts from an initial value $l(w_0)$ and tries to minimize this error through the slope obtained by calculating the derivative at each instant of the iteration, getting closer and closer to the local minimum signaled by \mathbf{x} . The blue dashed line, tangent to the error function curve, is the derivative at the initial weight value, $\frac{dl(w_0)}{dw}$. The arrows pointing to the minimum are the displacements obtained in each iteration of the algorithm, which have their value attenuated or amplified by the sampling rate. Source: The author.

$$w_{t+1} = w_t - \alpha \frac{dl(w_t)}{dw}, \quad (2.13)$$

where the next weight value w_{t+1} will be calculated from the weight variable in the current iteration w_t subtracted from the second term, consisting of the sampling rate α that multiplies the derivative term, where α plays the role of the ratio of the step sizes during the iterations.

2.3.3 Training

2.3.3.1 Epoch and Batch

The training of an ANN is iterative as already discussed, data samples are passed to the network, where each batch of data can be updated using the backpropagation algorithm. It is important to distinguish two concepts: Epoch and Batch.

- **Epoch:** An Epoch is an iteration where all samples were passed to an ANN during training, this process is repeated for several epochs.
- **Batch:** A Batch is a subset of the total data samples within an Epoch, where at the end of each Batch the weights are updated via backpropagation.

The batch size is varied, it is possible to use just a single sample per batch during training, or the entire dataset per batch, or an intermediate number of samples.

2.3.3.2 Underfitting and Overfitting

During training, it is recommended to use a dataset for training that is different from the validation and/or test dataset, in order to assess whether the network is able to generalize well beyond the training data. Two undesirable situations can occur related to training: underfitting and overfitting.

- **Underfitting:** It is a situation where the model cannot even have a good fit to the training data. This problem is easier to identify, being the worst case scenario.
- **Overfitting:** It is when the network can fit well to the training data, but cannot generalize well to the validation data.

The possible reasons why an ANN-based model is suffering from **underfitting** are listed below:

- Model with low complexity for the data: not very powerful for learning, it is possible to amplify the power of the model by increasing the number of parameters (more layers, more units per layer).

- Non-representative features: in this case, it may be that the features we are using to train the model are not representative (they are not related to each other or are not important for the model).
- Model with too many restriction parameters: the model becomes inflexible, restricted, and cannot adequately fit the data.

Some of the main causes of **overfitting** can be:

- Model too complex for the data: we can simplify our model by choosing a simpler model, with fewer parameters.
- Little training data: it may be necessary to collect more data to train the model, or use data augmentation.
- Noise in the training data: If there is any type of noise, extreme values or even incorrect values in the data, if the model learns from this type of data, it can lead to overfitting. Adequate preprocessing of the training data would be necessary.

2.3.3.3 *Regularization*

Regularization is a set of techniques used in machine learning and neural networks to improve a model's generalization, i.e., its ability to perform well on data not seen during training. It works by penalizing the complexity of the model or introducing controlled noise during training, reducing the risk of overfitting, when the model overfits the training data and fails to generalize.

In general, regularization seeks to find a balance between learning capacity and model simplicity, encouraging solutions that are flexible enough to capture patterns in the data, but not so complex that they memorize noise or particularities of the training set (GOODFELLOW; BENGIO; COURVILLE, 2016). Below are some classic examples of regularization techniques.

2.3.3.3.1 ***L1 and L2 Regularization***

These techniques penalize large weight values by adding a regularization term to the loss function.

L1 regularization: adds the sum of the absolute values of the weights, encouraging sparsity in the model parameters (TIBSHIRANI, 1996):

$$\mathcal{L}_{\text{new}} = \mathcal{L}_{\text{original}} + \lambda \sum_i |w_i| \quad (2.14)$$

L2 regularization: adds the sum of the squared values of the weights, discouraging large weights but without driving many to zero (HOERL; KENNARD, 1970):

$$\mathcal{L}_{\text{new}} = \mathcal{L}_{\text{original}} + \lambda \sum_i w_i^2 \quad (2.15)$$

In both cases, $\mathcal{L}_{\text{original}}$ denotes the original loss function (e.g., cross-entropy or mean squared error), w_i are the model's parameters, and λ is a regularization coefficient that controls the strength of the penalty, and \mathcal{L}_{new} corresponds to the modified loss after regularization is applied.

2.3.3.3.2 Dropout

Dropout randomly deactivates neurons during training, preventing co-adaptation of features and encouraging the network to learn redundant and robust representations that generalize better to unseen data (SRIVASTAVA et al., 2014).

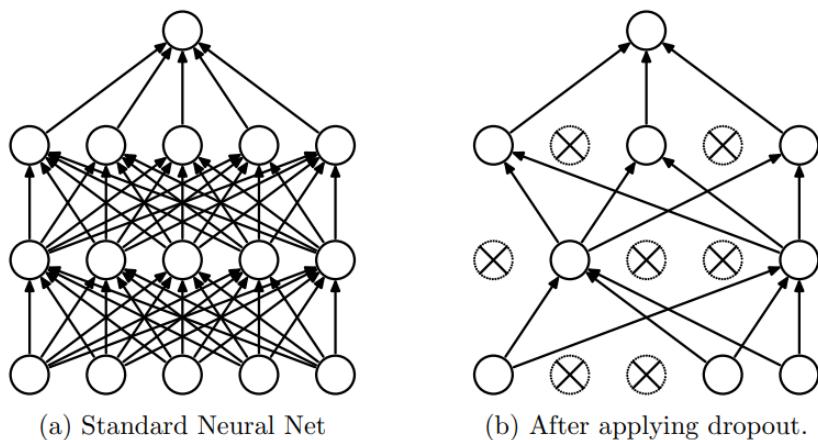


Figura 14 – Dropout Neural Network: Standard neural network in (a) with two hidden layers. Thinned network after applying dropout in (b), crossed units represent dropped neurons. Source: Image taken from (SRIVASTAVA et al., 2014).

2.3.3.3.3 Data Augmentation

Data Augmentation generates new training samples from modifications to the original samples, through geometric transformations (e.g. rotations, translations, scales),

variation of brightness, contrast and color (pixel augmentation), and addition of noise (Krizhevsky; Sutskever; Hinton, 2012).

2.3.3.3.4 *Batch Normalization*

This regularization technique normalizes the output of each layer by adjusting and scaling the activations. Specifically, it standardizes the inputs to a layer for each mini-batch such that they have zero mean and unit variance. This normalization helps reduce internal covariate shift (the change in the distribution of layer inputs during training) thereby stabilizing and accelerating convergence (Ioffe; Szegedy, 2015).

2.3.3.3.5 *Weight Decay*

It is a regularization technique used directly in optimizers. It can be understood as a variant of L2 regularization, but applied directly in the weight update process, instead of as an explicit additional term in the loss function. The Weight Decay penalizes high values in the network weights, encouraging solutions with lower complexity and promoting better generalization. This is done by adding a fraction of the weights themselves to the gradient during the update, causing them to decay slowly over the course of training (Loshchilov; Hutter, 2019).

2.3.3.4 *Weight Initialization*

In deep neural networks, proper initialization of weights is essential to ensure successful training. Initializing weights with inappropriate values can cause two main problems:

- **Exploding gradients:** when gradients increase exponentially during backpropagation, leading to numerical instability.
- **Vanishing gradients:** when gradients tend to zero, preventing weights from being updated, especially in the initial layers of the network.

These problems affect signal propagation and error backpropagation, making learning difficult or even impossible. Initialization algorithms help preserve signal variance between layers, allowing for more stable and efficient training.

2.3.3.4.1 **Weight Initialization Algorithms**

It is listed below some common weight initialization algorithms.

- **Zero Initialization:** Initialize all weights to zero: In general, it is not recommended, as all units learn the same weights (the symmetry problem).
- **Random Initialization:** Weights are sampled from uniform or normal distributions with small variance. It can work for very shallow networks, but does not guarantee stability in deep networks.
- **Xavier (Glorot) Initialization** (GLOROT; BENGIO, 2010): Ideal for symmetric activation functions like tanh and sigmoid. Keeps the activation variance constant across layers.

2.4 EVALUATION OF CLASSIFIERS

This section presents some issues considered in the evaluation of classification models, such as the confusion matrix and its metrics.

2.4.1 **Confusion Matrix**

The Confusion Matrix is a tool widely used to evaluate classification models, determining values that will be important for other metrics. The confusion matrix records the number of false positives, false negatives, true positives and true negatives. These concepts are briefly explained below:

- **True Positive** (TP): The class being searched for was predicted correctly.
- **True Negative** (TN): The class not being searched for was predicted correctly.
- **False Negative** (FN): The class not being searched for was predicted incorrectly.
- **False Positive** (FP): The class being searched for was predicted incorrectly.

The class of elements of interest during classification is treated as positive and the other class as negative. From these values, many important metrics for evaluating classifiers can be obtained. Table 2 and Fig. 15 help illustrate these concepts.

Tabela 2 – Confusion Matrix

		Predict Value	
		Yes	No
Real Value	Yes	True Positive (TP)	False Negative (FN)
	No	False Positive (FP)	True Negative (TN)

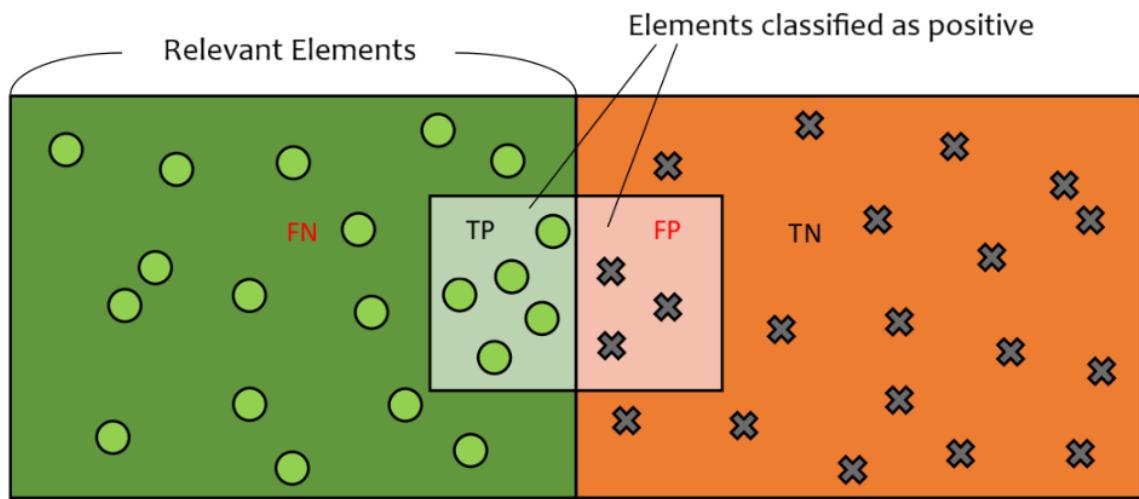


Figura 15 – Example of Classification. Source: The author.

2.4.2 Evaluation Metrics

The classification metrics extracted from the confusion matrix are:

- Accuracy
- Precision
- Recall
- Specificity
- F1-Score

2.4.2.1 Accuracy

It evaluates the percentage of hits of the classifier, obtained by the ratio between the number of hits ($TP + TN$) and the total number of samples ($TP + FP + FN + TN$), as shown in Fig. 16.

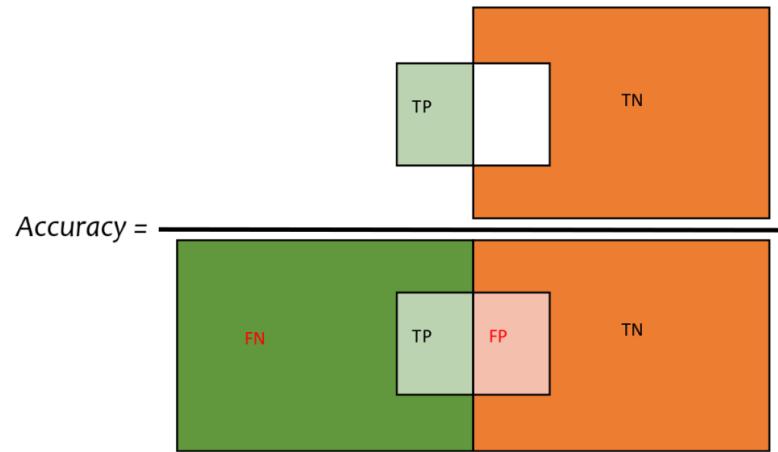


Figura 16 – $Accuracy = \frac{(TP+TN)}{(TP+FP+FN+TN)}$. Source: The author.

2.4.2.2 Precision

It evaluates how many selected elements are relevant by the classifier, it is obtained by the ratio of the number of true positives (TP) to the sum of all values detected as positive by the model ($TP + FP$), as shown in Fig. 17.

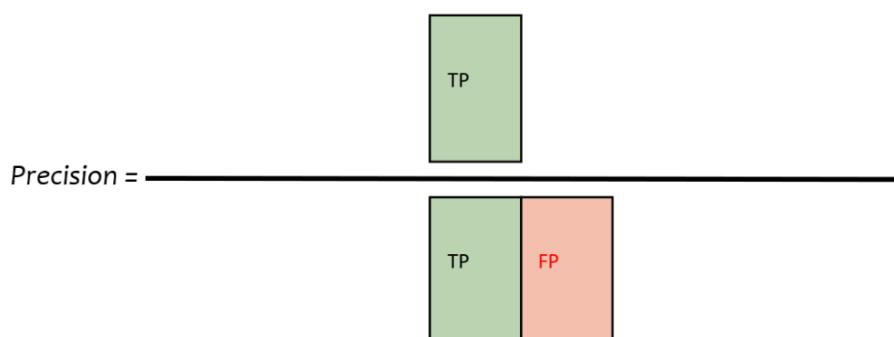


Figura 17 – $Precision = \frac{TP}{(TP+FP)}$. Source: The author.

2.4.2.3 Recall

It evaluates how many relevant elements were selected by the classifier, it is obtained by the ratio of true positives (TP) to all elements labeled as positive, relevant (TP + FN), as shown in Fig. 18.

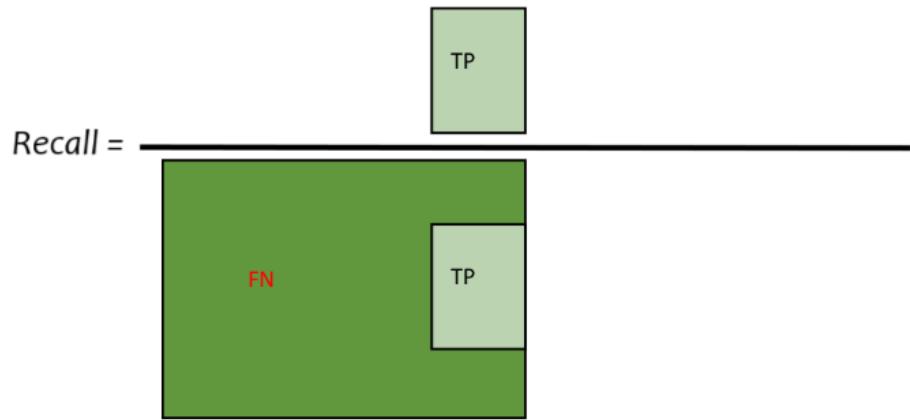


Figura 18 – $Recall = \frac{TP}{TP+FN}$. Source: The author.

2.4.2.4 Specificity

It evaluates the ability of the classifier to detect negative results, obtained by the ratio of true negatives (TN) to the total number of samples labeled as negative (TN + FP), as shown in Fig. 19.

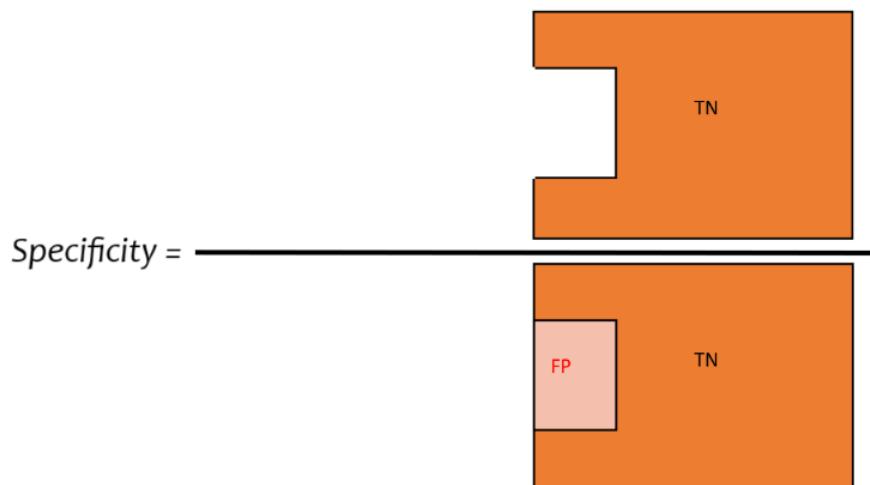


Figura 19 – $Specificity = \frac{TN}{TN+FP}$. Source: The author.

2.4.2.5 *F1-Score*

It is a harmonic mean calculated based on precision and recall. It is obtained based on the equation:

$$F1 = 2 \times \frac{precision \times recall}{precision + recall} \quad (2.16)$$

2.5 DISCUSSION

This chapter presents a concise overview of the hierarchy of geometric transformations and their associated geometric invariants. It also introduces the operating principles of Artificial Neural Networks, covering the evolution from basic artificial neurons to advanced architectures such as MLPs, CNNs, and ViTs, along with their respective layers and operations. In addition, the chapter addresses the learning mechanisms underlying neural networks. Finally, it details the classification evaluation metrics that will be used to assess the model developed in this work.

3 RELATED WORKS

This Chapter presents different techniques for description and classification of planar shapes, divided between two major approaches: Planar Shape Recognition by Handcrafted Shape Descriptors and by Artificial Neural Networks. A historical review is made and works more directly related to the recognition of these shapes with robustness are also shown.

3.1 PLANAR SHAPE RECOGNITION BY SHAPE DESCRIPTORS

This Section reviews and discusses some works related to the description and classification of planar shapes; classical works from the literature and more recent works directly linked to the problem of recognizing planar objects with projective deformations are mentioned.

Some research works on shape descriptors, such as (ZHANG; LU, 2004), (LONCARIC, 1998), classify various descriptors by the following properties:

- Contour-Based \times Region-Based
- Global \times Structural (Local)
- Spatial Domain \times Transform Domain

Region-based methods use information from the interior of the object, such as color and/or texture; unlike contour-based methods, which consider only the edges of the object, neglecting information from the interior of the shape (KAZMI; YOU; ZHANG, 2013). Both Global and Structural methods are subdivided into contour-based and region-based approaches. There are several approaches that propose to describe shape characteristics for planar objects that are invariant to rotation, translation and scale and even more general transformations such as *affinities* and *projectivities*. An example of a classical descriptor invariant to scale and Euclidean transformations is the Generalized Hough Transform (BALLARD, 1981), an algorithm that uses object edge information, such as gradient vectors, to define a mapping in a space of parameter accumulators referring to rotation angle θ , location (x, y) of the centroid and scale S of the object, constituting a descriptor invariant to *similarity*. Fourier descriptors are used in the recognition of shapes

invariant to *affinities*, these descriptors work with information in the frequency domain of a closed planar curve, lower frequency components are responsible for approximating the shape of the curve, while higher frequencies describe the finer details of the shape to be represented.

Typical approaches for symbol (planar shape) recognition are texture, color, and shape. In the past decades, significant efforts have been devoted to texture features, among which the SIFT descriptor (LOWE, 2004) and its variants, e.g., SURF (BAY et al., 2008) and PCA-SIFT (KE; SUKTHANKAR, 2004), have gained great success. These descriptors are mainly derived based on local texture information (JIA et al., 2014). *Scale-Invariant Feature Transform* (SIFT) is a local affine-invariant descriptor that describes a local region around a *key point*. A SIFT descriptor is robust to occlusion and does not require segmentation. The comparative evaluation of region-based local descriptors tested in (MIKOLAJCZYK; SCHMID, 2005) showed that the SIFT descriptor performs significantly better than other descriptors in the same category. In (ROUTRAY; RAY; MISHRA, 2017), some descriptors based on intensity information are explored, where tests are carried out with the SIFT, SURF and HOG descriptors in noisy images. SIFT proved to be the best, obtaining the maximum number of feature points and associated points.

However, there are numerous practical scenarios in image recognition where richer textures are not always available, but only distinct geometric features, especially for the recognition of artificial symbols, such as characters, traffic signs and logos. More recent studies in symbol recognition (planar shapes) (LI; TAN, 2010) have shown that a SIFT descriptor has low discrimination while contour-based descriptors discriminate better (JIA et al., 2014). In mid-2010, a global contour-based shape descriptor was released, which makes use of rectilinear trajectories that start from points on the edges of a convex polygon that surrounds the object; such trajectories intersect with the edges of the object forming collinear points; only four of these points are chosen to calculate a cross-ratio value for each trajectory; as seen in section 2.1, the cross-ratio is the most fundamental projective invariant; this descriptor proposed by Li and Tan (LI; TAN, 2010) groups several cross-ratio values into spectra. The method was dubbed CRS, for *Cross Ratio Spectrum* (CRS). CRS has been successful in representing simple planar shapes, such as characters, that have suffered severe projective deformations. A representation for planar objects invariant to projective transformations, based on approximations of parts of the object's contour in pairs of conics, was presented in (SRESTASATHIERN; YILMAZ, 2011). The method proved

to be quite robust, but was only tested on planar shapes that did not present internal structures, only the silhouette. In (LUO et al., 2013) a method similar to CRS was proposed in the use of trajectories that cut the object to calculate a new geometric invariant called the characteristic number (*characteristic number*, CN) and a new shape descriptor based on CN values calculated from collinear points was presented, with the advantage of using more collinear points to obtain a single CN value, increasing the descriptive power including more information to calculate the invariant. A compact shape descriptor called *Hierarchical Characteristic Number Context* (HCNC) was shown in (JIA et al., 2016) and was robust to perspective deformations. This descriptor makes use of the same invariant already mentioned in (LUO et al., 2013), the characteristic number (CN); the descriptor is built on a coarse-to-fine strategy that combines the global geometry given by projective invariants and local contextual information in a hierarchical feature descriptor.

In (CHARAMBA; MELO; LIMA, 2021), we proposed a method that extracts projective invariant features through the casting of rays emitted by different points of a convex hull that surrounds the object, these rays cut the planar shape generating collinear edge points where it is possible to calculate cross-ratio values that can be stored in vectors linked to each ray, generating a hierarchical descriptor that can be used to calculate a dissimilarity distance based on the *matching* of rays by these cross-ratio vectors, *Cross-ratio Arrays* (CRA) and backprojection error, with this distance obtained between descriptors it is possible to classify the projectively deformed planar shapes, following a nearest neighbor approach. Comparative experiments showed that CRA was able to outperform HCNC on a dataset containing planar shapes that have rich interior structure, such as logos and traffic signs, and that it maintained a good degree of robustness for recognition as the degree of projective deformation became more severe.

3.2 PLANAR SHAPE RECOGNITION BY NEURAL NETWORKS

Significant advances have been made using capsule networks to handle this invariance issue. For example, (HINTON; KRIZHEVSKY; WANG, 2011) addressed this gap by proposing Capsule Nets, which take advantage of the neuron grouping models' better handling of variations concerning position, scale, lighting, and orientation. The Routing-CapsNet exhibited high robustness on the affinely deformed images of the affNIST dataset (NETZER et al., 2011), being trained on the non-deformed images of the MNIST dataset (LECUN

et al., 1998), outperforming equivalent CNNs by (SABOUR; FROSST; HINTON, 2017). Other Capsule Nets variations emerged like GE-CapsNet by (LENSSEN; FEY; LIBUSCHEWSKI, 2018), showing proven equivariance and invariance properties in tests with the MNIST and affNIST datasets. Aff-CapsNets, introduced by (GU; TRESP, 2020), are robust to affine transformations, achieving high accuracy being affNIST-tested/MNIST-trained. The Capsule Nets' routing algorithm was modified by (RIBEIRO; LEONTIDIS; KOLLIAS, 2020) to incorporate global context, resulting in a 97.69% accuracy on the affNIST dataset after training on the original MNIST dataset. Additionally, (MACDONALD; RAMASINGHE; LUCEY, 2022) introduced a mathematical framework for convolutional neural networks over Lie groups, which was tested on datasets such as affNIST and homNIST, achieving accuracy rates of 95.08% and 95.71%, respectively, also using MNIST for training.

Another type of neural network architecture that provides invariance to some geometric transformations is the Spatial Transformer (ST). In their original paper, (JADERBERG et al., 2015) proposed a mechanism for neural networks to learn the transformation parameters from the input data. ST consists of three main components: the *localization network*, predicting transformation parameters from input features; the *grid generator*, creating a sampling grid; and the *sampler*, applying the grid to the input feature map to produce the transformed output. The Polar Transformer Network (PTN), designed by (ESTEVES et al., 2018b), combines ideas from the ST and canonical coordinate representations. The result is a network invariant to translation and equivariant to rotation and scale. The PTN is trained end-to-end and is composed of three distinct stages: A polar origin predictor, a transformer module, and a classifier. The Equivariant Transformer (ET) network was proposed by (TAI; BAILIS; VALIANT, 2019) which, similarly to ST, builds in prior knowledge on the continuous transformation invariances of its input domain. By encapsulating equivariant functions within an image-to-image mapping, unlike traditional STs, Equivariant Transformers incorporate additional structure in the functions used to predict transformations.

A considerable effort has been devoted to advancing techniques based on CNNs (Convolutional Neural Networks). (KUMAR; SHARMA; GOECKE, 2020) proposed a method to address rotations by augmenting feature maps rather than data. (MARCOS; VOLPI; TUIA, 2016) introduced a scheme for explicitly learning rotation-invariant by rotatable filters to avoid data augmentation in texture recognition. (NOORD; POSTMA, 2017) developed a multi-scale method using an ensemble of networks specializing in different image resolu-

ons to learn scale-variant and scale-invariant features. However, these approaches attempt to enhance CNN robustness through ensembles, feature map augmentations, and filter modifications, which are computationally expensive and introduce additional complexity. Despite these efforts, achieving true invariance to simple geometric transformations, such as rotations and scaling, remains a challenge for these models. They lack robustness to nonlinear geometric changes, impairing performance in tasks involving severe deformations. (COHEN; WELLING, 2016) highlighted that CNNs fail to guarantee invariance or equivariance to transformations like rotations and scaling, proposing group-equivariant convolutional networks to address this limitation. (ESTEVES et al., 2018a) demonstrated that traditional CNNs perform poorly in tasks involving 3D transformations like rotations, relying heavily on data augmentation to improve results. Furthermore, (MARCOS et al., 2017) showed that while augmentation may partially mitigate the issue, CNNs still lack true equivariance to geometric transformations. (AZULAY; WEISS, 2019) revealed that convolutional architectures do not guarantee even the simplest transformation invariance, as they ignore the classical sampling theorem, even small translations or rescalings of the input image can significantly alter the network's prediction, and data augmentation alone cannot achieve true invariance, these findings were supported through evaluations of well-known architectures, including ResNet, VGG, InceptionResNet, and DenseNet; although convolutional filters are translation-equivariant, CNNs as a whole do not inherently guarantee translation invariance by default as explained by (BISCIONE; BOWERS, 2021). These studies emphasize the limitations of CNNs in handling even basic geometric transformations, underlining the need for specialized architectures to tackle these challenges effectively. This limitation makes CNNs less suitable for problems requiring robustness to complex geometric deformations like affinities and projectivities, justifying the exploration of alternatives like Capsule Networks, Spatial Transformers, and the approach proposed in this work.

3.3 DISCUSSION

This chapter presents a bibliographic review of classical approaches to shape description, aiming to describe them with characteristics that are invariant to various geometric transformations, from the simplest, such as rotation and scale, to the most complex, such as affinities and projectivities, for classification tasks. The same was done for more mo-

dern approaches, with the use of deep learning, where most of the most recent advances are based on spatial transformers and capsule networks and their experiments carried out for the recognition of images of handwritten digits deformed by affine and projective transformations.

It was also seen that for image recognition tasks, CNNs are popularly used, which extract features from images through their convolutional filters, which are basically sliding windows that perform linear operations in a weighted manner on the pixels as they pass through the image. A technical limitation of these filters is that they can only provide translation invariance.

In this work, we propose using ViT to process images in the polar domain. ViT, a Transformer-based model, treats images as sequences of patches, leveraging multi-head attention to capture relationships and learn hierarchical representations as demonstrated in (DOSOVITSKIY et al., 2020). Unlike previous works, our approach addresses the recognition of deformed images from undeformed GTSRB images under various severity levels of affine and projective deformation.

4 DEVELOPMENT

The solution proposed in this work is based on exploring collinearity, which is a projective invariant, through the use of 1D convolutional filters in the initial layers of images in the polar domain. This process generates patch embeddings that feed into a Transformer Encoder to classify the GTRSB images deformed by affinities and projectivities. This chapter provides a detailed explanation of the proposed ViT model architecture, the regularization techniques and the other decisions made to achieve the goals of this work.

4.1 MULTI-ANGLE-SCALE VISION TRANSFORMER

Our approach begins by converting the images into the polar domain as a preprocessing phase. Subsequently, it augments the data for MASViT's training by applying certain transformations in the polar domain. Post-training, the model can be tested and its performance is further improved using Max Score. This chapter discusses these steps in detail along with the model architecture.

4.1.1 Polar Domain

The conversion of an image from the Euclidean domain into the polar domain can be done by remapping points from the Cartesian coordinate system (x, y) to the polar coordinate system (ρ, θ) as follows:

$$\rho = \sqrt{(x - x_c)^2 + (y - y_c)^2}, \quad (4.1)$$

$$\theta = \arctan\left(\frac{y - y_c}{x - x_c}\right) \quad (4.2)$$

where the center of the transform in the image is (x_c, y_c) , θ is the angle between the vector $(x - x_c, y - y_c)$ and the horizontal line, and ρ is the size of the vector. For training, we are using the image's center as the polar conversion origin. Some works demonstrate the benefits of rotation invariance for recognition by neural networks using images in polar and log-polar domains (ESTEVES et al., 2018b), (AMORIM et al., 2018), (REMMELZWAAL; MISHRA; ELLIS, 2020), and it is guaranteed by the preservation of collinearity, which is a

more fundamental invariant, thanks to the 1D patches that are processed by convolutional filters with format $1 \times K$ (ignoring the channel dimension), where K is the horizontal size of the filter. These filters, working in the polar domain, are more powerful than the traditional squared filters in the Euclidean domain, as they make the filters not only translation equivariant, but also rotation equivariant. Patterns identified by a filter at different angles tend to result in the same correlation because changing the angle just requires moving the filter to a different row in the polar domain.

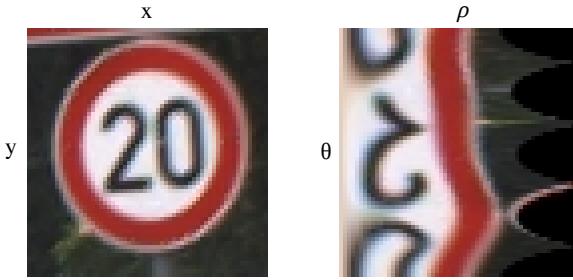


Figura 20 – A GTSRB sample in Euclidean and Polar domains. Source: The author.

Two potential issues may arise from the mapping between Euclidean and polar domains: numerical errors due to pixel value truncation, and the fact that equidistant points can be mapped to the same ρ value. Regarding the first, the truncation introduces only minor and uniform approximations that do not significantly affect collinearity. Since the method relies on global consistency rather than absolute pointwise precision, the overall impact on the results is negligible. Concerning the second, although equidistant points along the central line collapse to the same ρ , this does not pose a practical problem, as such points are geometrically equivalent with respect to the center. Furthermore, the implementation addresses this case deterministically, ensuring no ambiguity in the representation.

4.1.2 MASViT Architecture

Similarly to any ViT architecture, the MASViT uses a Transformer Encoder that receives as input a 1D sequence of token embeddings, each one corresponding to a W -pixel-wide patch of a polar image with H such patches, i.e., its dimensions are $H \times W \times C$ (C channels), with the angles varying in H dimension. That means that each patch has $1 \times W \times C$ format, and is processed by 1D convolutional filters in several layers, generating

a sequence of embeddings representing a natural angle sequence.

This process is illustrated in Fig. 21: The model is fed with 48×48 -RGB polar images partitioned in $48 1 \times 48$ -RGB rows. These are processed initially by a set of four convolutional layers and a pooling layer (oriented horizontally), the latter set with kernel format $1 \times W$, which generates $48 \times 1 \times 512$ -tensor data. Next, it follows a set of four convolutional layers and a pooling layer with kernel format $H \times 1$ (oriented vertically). This last set of layers was designed to reduce the height dimension of the tensor data, delivering to the Transformer Encoder a sequence of 9 embeddings instead of 49, as it turns out a smaller sequence of embeddings generalizes better, according to the results obtained in our training phase. Between the layers, there are also activation functions (ReLU) and batch normalization layers, which are better detailed in Table 3.

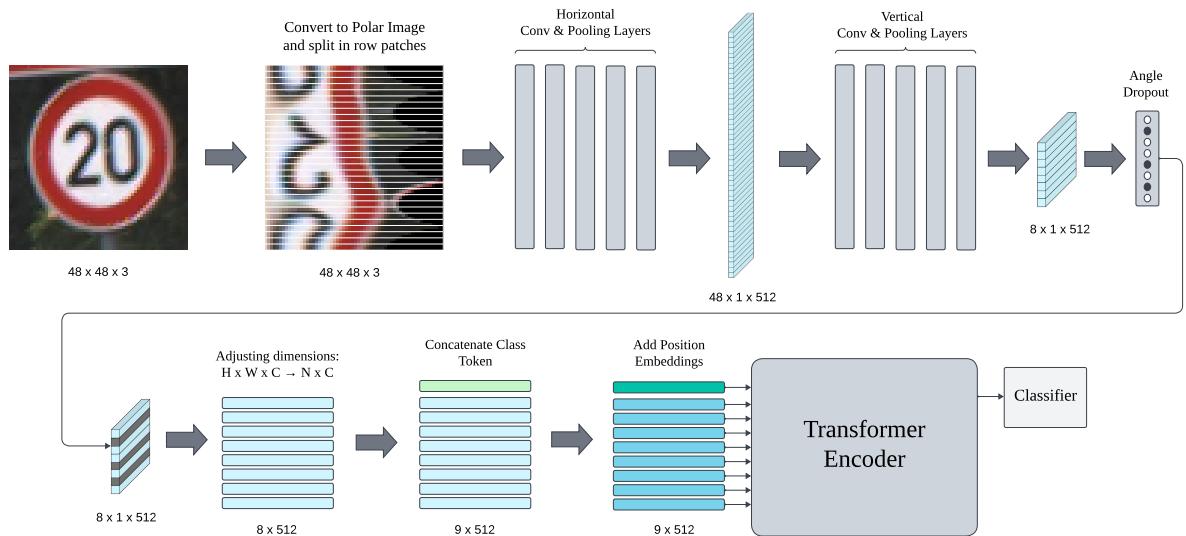


Figura 21 – An overview of the MASViT architecture. Source: The author.

4.1.2.1 Horizontal and Vertical Layers

Table 3 describes the Horizontal and Vertical layers of MASViT. The Horizontal layers contain convolutional and max-pooling layers with kernels of size $(1, w)$, similarly the Vertical layers contain same layers with kernels of size $(h, 1)$. Each convolutional layer is followed by a batch normalization layer and a ReLU activation function. ReLU is widely preferred because of its simplicity, its non-saturating behavior for positive inputs, and its effectiveness in mitigating the vanishing gradient problem.

Tabela 3 – Horizontal and Vertical Layers Settings

Layer	Kernel	Stride	In Channel	Out Channel
Conv2D	(1,1)	(1,1)	3	64
BatchNorm2D	–	–	64	64
ReLU	–	–	64	64
Conv2D	(1,3)	(1,1)	64	128
BatchNorm2D	–	–	128	128
ReLU	–	–	128	128
Conv2D	(1,5)	(1,1)	128	256
BatchNorm2D	–	–	256	256
ReLU	–	–	256	256
MaxPool2D	(1,7)	(1,7)	256	256
Conv2D	(1,6)	(1,6)	256	512
BatchNorm2D	–	–	512	512
ReLU	–	–	512	512
Conv2D	(3,1)	(1,1)	512	512
BatchNorm2D	–	–	512	512
ReLU	–	–	512	512
Conv2D	(3,1)	(1,1)	512	512
BatchNorm2D	–	–	512	512
ReLU	–	–	512	512
Conv2D	(3,1)	(1,1)	512	512
BatchNorm2D	–	–	512	512
ReLU	–	–	512	512
MaxPool2D	(5,1)	(5,1)	512	512

4.1.2.2 Angle Dropout

The Angle Dropout layer is a regularization technique introduced in this work. This module, which follows the vertical convolutional/pooling layers, implements a specific type of dropout that randomly selects certain angles or segments of the input tensors along the height dimension and sets them to zero based on a dropout probability p (we use $p = 0.5$). This can be useful for introducing robustness or regularization during the training of Transformer models, especially in scenarios where the sequence data structure

has a dimension that can be interpreted as meaningful "angles" or "segments".

Note that the angle dropout and traditional dropout are not the same operation, the angle dropout is a custom implementation of dropout that zeros out elements along the height dimension of an input tensor. Unlike traditional dropout, which zeros elements independently, angle dropout specifically regularizes along one dimension. Compared to spatial dropout, angle dropout introduces a distinct geometric inductive bias. Although it may superficially resemble masking along lines as in spatial dropout, angle dropout operates on oblique directions rather than axis-aligned ones. This angular masking effectively simulates geometric distortions in feature space, something standard spatial dropout does not capture. As a result, angle dropout not only provides regularization, but also functions as a structured form of feature-level augmentation, better aligning the model with the geometric variations encountered in real-world data. Angle Dropout pseudocode is shown in Algorithm 1, where B is the batch size dimension.

Algorithm 1 Angle Dropout - Pseudocode

Require: Input Tensor x with shape (B, C, H, W) ,
 number of angles $A = \text{num_angles}$,
 dropout probability p

Ensure: Tensor with dropout applied along the height

- 1: **if** training mode **then**
- 2: Get $(B, C, H, W) \leftarrow \text{shape}(x)$
- 3: Create mask mask_angle with shape $(B, 1, A, 1)$
 where each input has probability p of being zero
- 4: Repeat mask_angle along channels:
 $\text{mask_angle} \leftarrow \text{repeat}(1, C, 1, 1)$
- 5: Expand mask along width:
 $\text{mask_data} \leftarrow \text{expand}(B, C, A, W)$
- 6: Repeat blocks of height to cover H :
 $\text{mask_data} \leftarrow \text{repeat}(1, 1, 1, H/A)$
 $\text{mask_data} \leftarrow \text{reshape}(B, C, H, W)$
- 7: Apply mask:
 $x \leftarrow x \cdot \text{mask_data}$
- 8: **end if**
- 9: **return** x

4.1.2.3 Class Token and Positional Embeddings

Similarly to what the authors use in the original ViT paper (DOSOVITSKIY et al., 2020), we use a class token and positional embeddings, the class token is a learnable

special vector inserted into the input of the Vision Transformer that, after processing, serves as a global representation of the image and is used for the final classification. After the patch embeddings are generated and their dimensions adjusted from $H \times W \times C$ to $N \times C$, where N is the embeddings sequence length; a class token tensor of size 1×512 is concatenated with a sequence of embeddings in the first position to perform classification during processing within the Transformer Encoder; these resulting patch embeddings are summed with positional embeddings tensor of the same size (9×512) to retain spatial information. These extra learnable parameters work together to help the ViT models provide complete image information.

4.1.2.4 Transformer Encoder and Classifier settings

Our Transformer Encoder (TE) supports patches of size 512 for a sequence of embeddings with 9 elements. The TE contains 256 attention heads, MLPs with 512 neurons with Gaussian error linear units (GELU) as activation functions (HENDRYCKS; GIMPEL, 2016), and MLP dropout set to 50%. The number of transformer layers is eight. Following processing within the TE, the processed class token feeds into the Classifier, which consists of a Layer Norm followed by a Linear layer with an input size of 512 and an output size of 43 (number of GTSRB classes).

4.2 DATA AUGMENTATION IN POLAR DOMAIN

Although we are processing the image with convolutional filters in a one-dimensional format, satisfying the collinearity invariance, it is still necessary to use data augmentation concerning scaling, as convolutional filters are equivariant to translation, but not to scale. There is also a need for cyclic variation in polar domain of the sequences passed to the TE, as this module does not present cyclic invariance properties. This operation would be equivalent to a rotation in an Euclidean space. The purpose of this unconventional data augmentation method is to emulate a rotation and a scale, but using fewer transformation parameters and variation values.

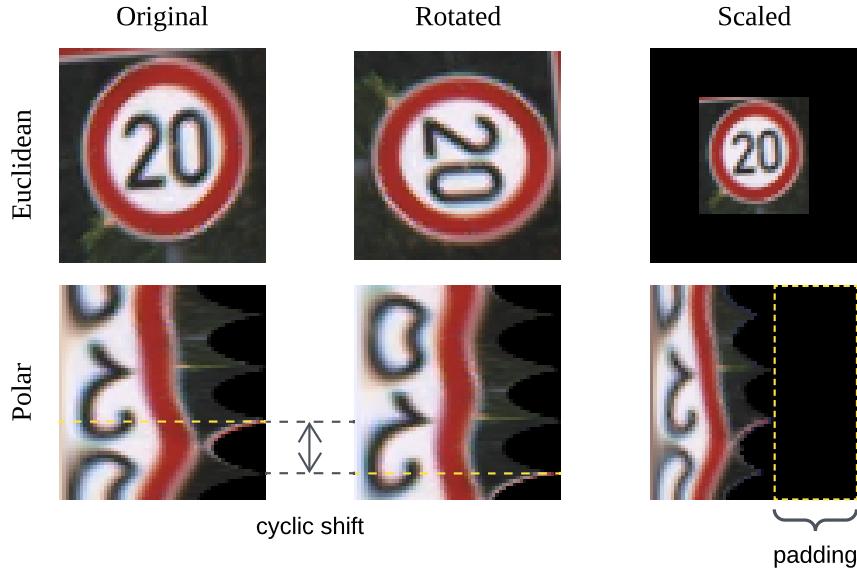


Figura 22 – Rotation in the Euclidean domain causes a cyclic shift in the θ axis in the Polar domain, and a change of scale in the Euclidean domain causes a change of scale in the ρ axis in the Polar domain. A similar effect can be obtained by padding blanks on the right side of the polar image and re-dimensioning it back to the original size. Source: The author.

4.2.1 Cyclic-Angular Shifting.

This operation performs a circular shift vertically in the input image, which means that it varies angles cyclically in polar domain. It is equivalent to a rotation in the Euclidean domain, as shown in Fig. 22. It generates a random integer h_s , between 0 and $h - 1$, where h is the height of the image, and shifts the content of the polar image cyclically along the height dimension by h_s . This Cyclic-Shift operation uses only one integer parameter (h_s) which, in our case, $h_s \in \{0, 1, \dots, 47\}$.

4.2.2 Right-Side Padding

This operation pads blanks on the right side of the polar images, with different padding sizes randomly chosen (w_p). After padding, the function resizes the image back to its original dimensions. This is equivalent to scaling in the Euclidean domain as shown in Fig. 22. This operation resizes the ρ variable in the polar coordinates, i.e., it operates horizontally in the polar image, which is equivalent to a radial resize in the Euclidean domain. The Right-Side Padding in the polar image uses only one integer parameter (w_p) which, in our case, $w_p \in \{0, 1, \dots, 40\}$.

Performing data augmentation with fewer parameters that take discrete values is, whe-

never applicable, preferable if compared to using transformations that have more degrees of freedom, each one allowing a much wider range of variations. In this case, isometries, similarities, affinities, and projectivities have respectively three, four, six, and eight continuously varying parameters, most of them unlimited. This adopted data augmentation in the polar domain, allied to a model that explores the collinearity invariance, reduces it to just two parameters with limited discrete ranges.

4.3 POST TRAINING BOOST BY MAX SCORE

We present a novel technique designed to enhance the accuracy of our post-training model. As discussed earlier, our model takes polar images as input, requiring a specified center of transformation, (x_c, y_c) . During training, we use the center of the original image for this purpose. However, to further explore model inference, we can generate polar images using different transformation centers, referred to as *centroids*.

This approach allows us to create multiple polar images from a single $H \times W$ image in the Euclidean domain, through centering the polar conversion in various centroids. This multitude of polar images (specifically 48×48 images) is subsequently fed into the model for inference. Each polar image generated from a unique centroid yields a score vector, with each entry in the vector related to a class in the model's classification (totaling 43 classes). Consequently, this results in 43 score maps for each original Euclidean domain image, Fig.23 show this process.

The significance of this technique lies in its ability to provide diverse perspectives on the same scene, enabling the identification of regions of high scores within each classification map. Ultimately, by analyzing these score maps, we can select the point of maximum score across the 43 maps as the optimal model inference for the given scene. This approach enhances the robustness and accuracy of our model by leveraging multiple viewpoints derived from a single input image.

This multi-centroid approach is more robust than just a single polar image with a fixed centroid, as deformed objects (ex.: traffic signs) hardly have their original centers coinciding with the center of their images. By training the model with polar images whose conversion is centered in different centroids, it is expected that the max-score centroid will be the closest to the actual center of the object, regardless of the deformation suffered by the input image. Therefore, there are two approaches: One that uses a single polar image

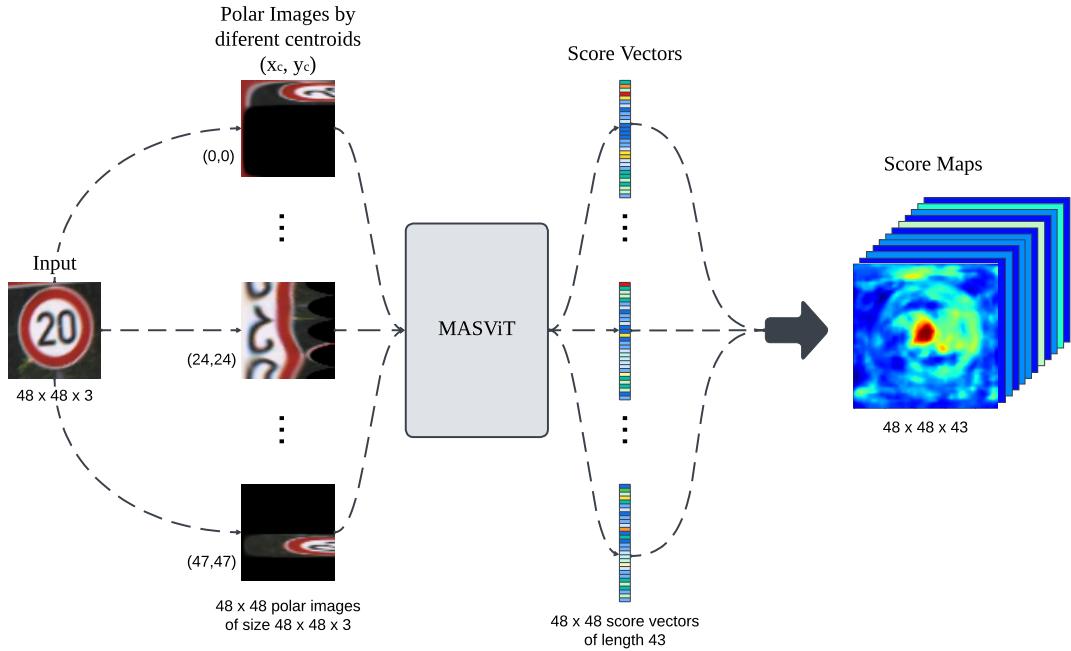


Figura 23 – Score Maps Generation. Source: The author.

through a fixed centroid, where a single score vector returned by the model is verified; and the one that makes inferences based on the maximum score by analyzing the score maps generated by spatial exploration based on different centroids.

4.4 DISCUSSION

In this chapter, we presented the development of the proposed approach, which allows a Vision Transformer to offer invariance to affine and projective transformations in classification tasks. The network receives as input images transformed to the polar domain, which, combined with the use of one-dimensional convolutional filters, facilitates the extraction of features invariant to projections, such as collinearity.

The architecture of MASViT was detailed, addressing the creation of patch embeddings through unidimensional convolutional and pooling layers, the introduction of the Angle Dropout module, and the use of class tokens and positional embeddings. All this processing is then passed to the Transformer Encoder, followed by a final classification step, as is common in ViTs aimed at classification tasks. We adopted a dropout rate of 50% for both the Angle Dropout and the standard Dropout, as this value is a widely accepted default for fully connected layers. It provides a good balance between underfitting and overfitting, encouraging robust feature learning and effectively reducing overfitting,

as demonstrated in the original Dropout paper (SRIVASTAVA et al., 2014). Implementation details of MASViT and the Angle Dropout module are provided in Appendix A. The code was developed in Python using the PyTorch framework.

The use of data augmentation in the polar domain was also discussed, in which two techniques aimed at scale and rotation variations were proposed. These techniques benefit from the fact that they operate in discrete domains, which reduces the number of variation parameters. It is important to highlight that this work did not use data augmentation based on affine or projective geometric transformations. Instead, it adopted simpler transformations, emulated through the Cyclic-Angular Shifting and Right-Side Padding techniques.

Finally, a post-training boost mechanism was introduced, based on the variation of the center of the conversion to the polar domain. This procedure consists of selecting the version of the image whose classification output obtained the highest score, promoting accuracy improvements without the need for reprocessing or complete retraining of the network.

5 EXPERIMENTS

In this chapter, we detail the experiments conducted, including descriptions of the datasets used for training, validation, and testing. The two test datasets consist of images distorted by affine and projective transformations at varying levels of severity. We also present the experimental setup and hyperparameters adopted, along with the results obtained using two MASViT configurations: fixed-centroid and max-score. Finally, we compare the results against two state-of-the-art models based on capsule networks and spatial transformers.

5.1 DATASETS

In this study, we utilized the GTSRB introduced by (STALLKAMP et al., 2012) for training and validation. The original GTSRB Train set comprised 39,209 samples for training, and the original GTSRB Test set comprised 12,630 samples for validation. To evaluate MASViT’s robustness for recognizing affine and projective deformations across different severity levels, we introduced aff-GTSRB and proj-GTSRB datasets groups, each representing distinct deformation categories.

The generation of these test datasets with incremental deformation levels followed the methodology outlined in (LI; TAN, 2010) and (CHARAMBA; MELO; LIMA, 2021), which consists of each planar shape being captured by a camera whose projection plane orientation is controlled by adjustments in the elevation (*el*) and azimuth (*az*) angles. These adjustments produce deformations with different levels of severity. The datasets aff-GTSRB and proj-GTSRB were derived similarly, with each dataset subgroup stemming from the original GTSRB Test samples and categorized according to four elevation angles: 90°, 60°, 45°, and 30°. Each subgroup was further subdivided into eight partitions according to the following azimuth angle variations: 0°, 15°, 45°, 60°, 90°, 120°, 190°, and 275°. Consequently, each new dataset produced a total of $12,630 \times 8 = 101,040$ images derived from the original test samples. Figure 24 illustrates examples of the new samples generated from an original test traffic sign (50) with varied elevation and azimuth angles within the aff-GTSRB and proj-GTSRB groups.

The distinction between the two dataset groups lies in the type of camera employed.

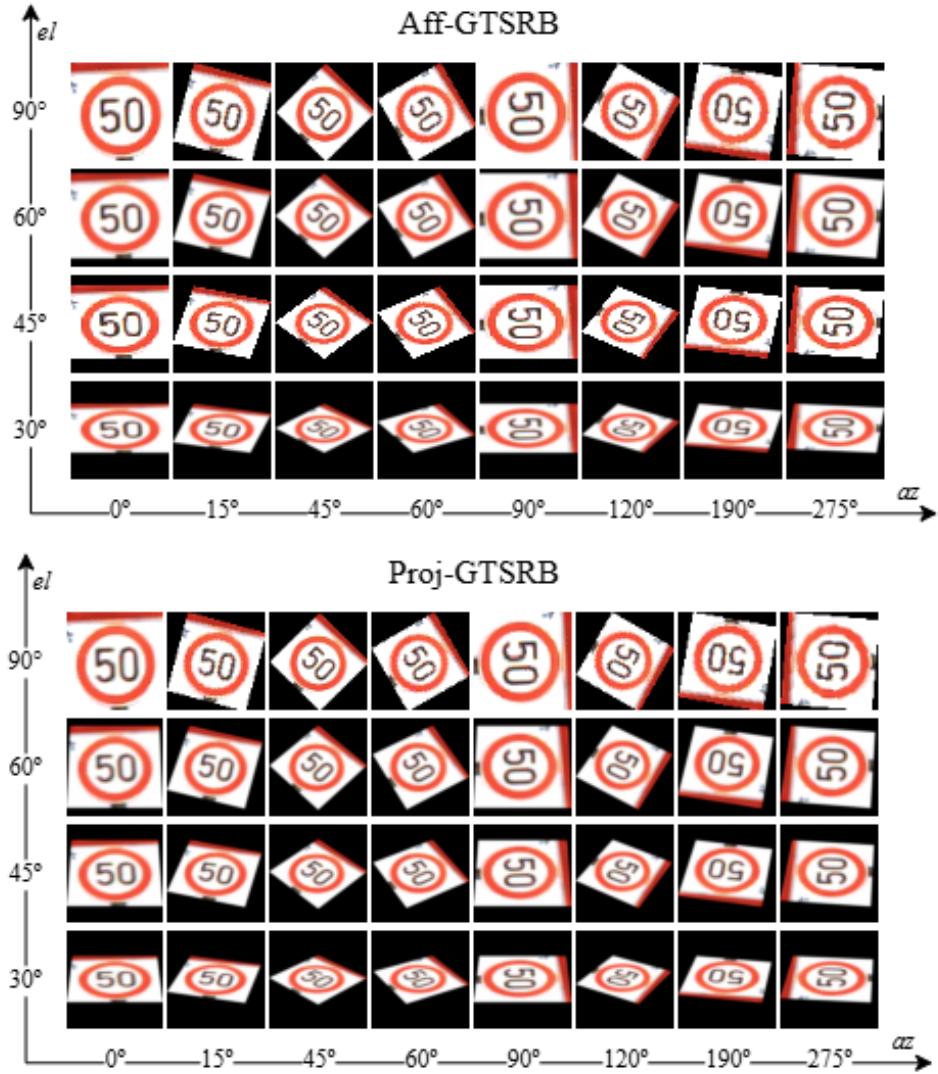


Figura 24 – Aff-GTSRB and Proj-GTSRB: The new datasets were obtained from original GTSRB Test samples by view point angle variations (elevation and azimuth); and the two groups differ in terms of camera projection (orthographic and perspective). Source: The author.

The aff-GTSRB dataset utilizes orthographic projection from an affine camera, whereas the proj-GTSRB dataset employs conventional perspective projection. One notable difference is that samples from the first group maintain parallel lines, whereas in the projective version, this is not the case.

5.2 TRAINING

We trained MASViT using the original GTSRB Train samples converted to the polar domain centered at (24,24) and applied data augmentation techniques within this domain that correspond to varying scale and rotation severity in Euclidean space, as explained

in section 4.2. Therefore, there are no affine or projective deformations in this data augmentation. Additionally, we performed pixel-level augmentation by randomly adjusting the brightness, contrast, and saturation of the images.

We used the Adam optimizer, known for its ability to handle sparse gradients and accelerate convergence (RUDER, 2016). The initial learning rate was set to 10^{-4} with an exponential decay factor of 0.99. These choices were based on the work of (KINGMA; BA, 2015), where the Adam optimizer was introduced, suggesting that typical learning rates range from 10^{-3} to 10^{-4} . The authors also claim that exponential decay helps adjust the learning rate over time, improving convergence stability.

We used Cross Entropy as the loss function, which is effective for classification tasks according to (GOODFELLOW; BENGIO; COURVILLE, 2016). Samples were fed into the model in batches of size 16 over 300 epochs. We chose small batches because it has been observed in practice that while larger batches can be efficient for training, they often result in poor generalization, as demonstrated in (KESKAR et al., 2016) and (HOFFER; HUBARA; SOUDRY, 2017).

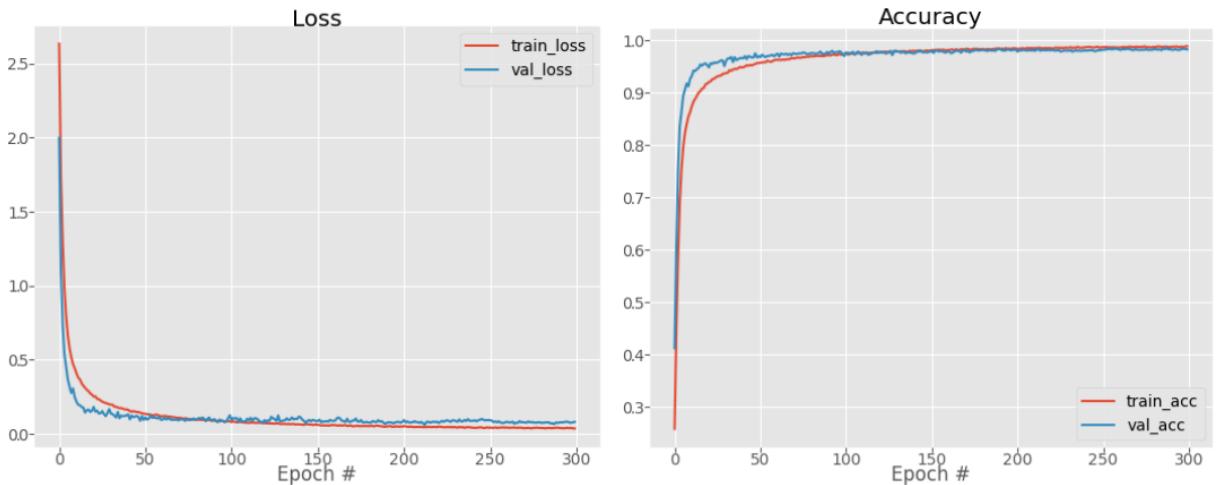


Figura 25 – Loss and Accuracy curves for training (in red) and validation (in blue) data. Source: The author.

During training, we employed the original GTSRB Test dataset for validation purposes, monitoring both accuracy and loss values. The model achieved a validation accuracy of 98.31% in the final epoch. Fig. 25 depicts the plots illustrating the curves of loss and classification accuracy values.

5.3 TESTING

By comparing MASViT to other state-of-the-art GTSRB classifier models, we assessed its performance against models like the one by Arcos-García et al. (ARCOS-GARCÍA; ALVAREZ-GARCIA; SORIA-MORILLO, 2018), which utilizes a CNN that alternates convolutional and Spatial Transformer modules, achieving an accuracy of 99.71%; and the one by Chen et al. (CHEN et al., 2024), based on capsules that use a global routing mechanism, boasting the highest accuracy of the original test samples at 99.96% in their experiments. Additionally, we tested MASViT for GTSRB Test also, using two distinct approaches: Fixed Centroid and Max score, as discussed in Section 4.3. The resulting accuracy values were 98.31% and 97.95%, respectively.

Regarding the Max Score approach, there is an assumption we took advantage of to improve the performance: The centers of the planar shapes in the GTSRB data are not far from the center of the images. Thus, we constrained the positioning of the tested centroids to a neighborhood of the image center. We used a 7×7 grid to generate 49 polar images per Euclidean image instead of all 48×48 pixels. This was an important assumption given the multiplicative cost each new polar domain imposes on our method.

Working with the results from the GTSRB test samples as a starting point, we conducted tests with aff-GTSRB and proj-GTSRB datasets. Table 4 displays the accuracy values of all tested models for the two groups of datasets, subdivided according to the elevation angle. It is important to note that at $el = 90^\circ$, it represents a frontal view, where the camera projection plane is parallel to the planar shape, resulting in no shape transformation other than rotations. Therefore, the aff-GTSRB $el = 90^\circ$ and proj-GTSRB $el = 90^\circ$ datasets are identical, thus producing identical results, as observed in the two columns with this elevation angle.

As the elevation angle decreases, deformations become more severe, negatively impacting the performance of the different tested methods. For elevation angles below 90° , a difference between the two dataset groups begins to be noticed, with the negative impact in the performance being slightly greater in the proj-GTSRB datasets, due to the higher generality of the projective transformations.

Analyzing the different methods, the models proposed in (ARCOS-GARCÍA; ALVAREZ-GARCIA; SORIA-MORILLO, 2018) and (CHEN et al., 2024) did not perform well, despite achieving excellent results when confronted with original GTSRB Test samples. Even

for the mildest case of transformation ($el = 90^\circ$), the results were significantly below expectations. At this elevation, images are distorted only by azimuth variations, resulting in simple rotations. Although designed to handle spatial transformations, Capsule Networks and Spatial Transformers still do not guarantee more severe transformations without having seen such levels of deformations during training. Capsule Nets can encode pose information and generalize better than standard CNNs, but their local part–whole relationships tend to break under strong distortions, especially those not observed during training. Spatial Transformers, in turn, learn global alignment functions and can normalize moderate variations, but they only compensate for transformations that are present in the training data, offering no intrinsic invariance. In both cases, robustness depends on encountering representative distortions during learning. MASViT overcomes these limitations by leveraging polar-domain representations and 1D convolutional filters that preserve the collinearity, a projective invariant, thus enabling generalization even to unseen affine and projective deformations.

About the two MASViT approaches, Fixed Centroid and Max Score, in the original GTSRB Test and $el = 90^\circ$ (for aff-GTSRB and proj-GTSRB) the Fixed Centroid approach had better performance than Max score in these situations, but when the elevation angle is decreased the Max score approach becomes a better approach, although the Max Score technique searches a 7×7 neighborhood around the image center, its lower accuracy compared to the Fixed Centroid is due to sensitivity to local fluctuations or spurious activations. Max Score selects the position with the highest score value, which can occasionally misinterpret local maxima, whereas the Fixed Centroid relies on a stable geometric center, which in datasets like original GTSRB and its deformed variants in elevation 90° is typically well aligned with front-view traffic signs, providing more consistent and accurate results in these situations. In the most severe deformation ($el = 30^\circ$), where the biggest difference between the approaches occurs, the Max Score overcomes the Fixed Centroid by approximately 10 percentage points in the two transformation groups.

By employing the Max Score approach, the score maps can be visualized, offering deeper insights into the underlying behavior and decision process of the method. Fig. 26 illustrates several test images (six for each group) at different elevation angles and randomly chosen azimuth angles of different categories, along with their score maps and an overlapped representation of these images. It can be observed that the maximum value tends to concentrate at the center of the signs in most cases. Examples of mismatches can

Tabela 4 – Accuracy of Methods in percentage values.

(*) (ARCOS-GARCÍA; ALVAREZ-GARCIA; SORIA-MORILLO, 2018)

(**)(CHEN et al., 2024)

Methods	Aff-GTSRB					Proj-GTSRB			
	el=90°	el=60°	el=45°	el=30°	el=90°	el=60°	el=45°	el=30°	
MASViT (fixed centroid)	97.27	95.81	93.16	66.71	97.27	95.58	91.79	64.04	
MASViT (max score)	97.11	96.00	94.49	76.68	97.11	95.67	93.76	73.93	
CNN + 3 Spatial Transformers *	38.46	35.39	32.38	21.47	38.46	34.76	29.75	19.79	
Global Routing CapsNet **	33.40	29.48	25.47	12.32	33.40	28.68	22.34	11.06	

also be observed in Fig.27: the score maps for the true and predicted classes are illustrated. In the case of the “turn left” traffic sign, the true score map presents maximum activation concentrated near the center of the sign; however, the predicted class shows a stronger and more diffuse activation in another region of its score map, ultimately leading to misclassification.

In addition to Table 4, which only shows the accuracy, there are several tables in the Appendix B that show in detail the precision, recall and F1-score per class of the two MASViT approaches, for all datasets of test. These tables are in **Classification Reports**, Section B.1. Analyzing these tables, it becomes evident that certain classes, such as the first and 15th, experience a more pronounced decline in recall compared to other categories as distortions increase (e.g., elevation = 30°). This low recall can be primarily attributed to the class imbalance in the GTSRB dataset. Several classes are substantially underrepresented in the training set, which restricts the model’s ability to generalize under severe deformations. For instance, the 15th category, class 14 (STOP), has only 780 training samples, and class 0 just 210, whereas high-recall classes such as class 2 have more than 2000. This disparity likely explains the poorer performance of minority classes, particularly under challenging conditions such as elevation equals to 30°. Moreover, the scarcity of training samples may have reduced the effectiveness of the model’s regularization and generalization mechanisms, further amplifying the decline in recall for these underrepresented classes.

In addition to the Classification Reports, there are also several tables describing the Confusion Matrices of the test experiments exhibited in Section C.

And in Section D.1, **Computing Infrastructures for Experiments**, of Appendix D, the hardware specifications used for all experiments (training and testing) carried out in this work are presented, along with the corresponding execution times, and number of parameters and inference times for all models.

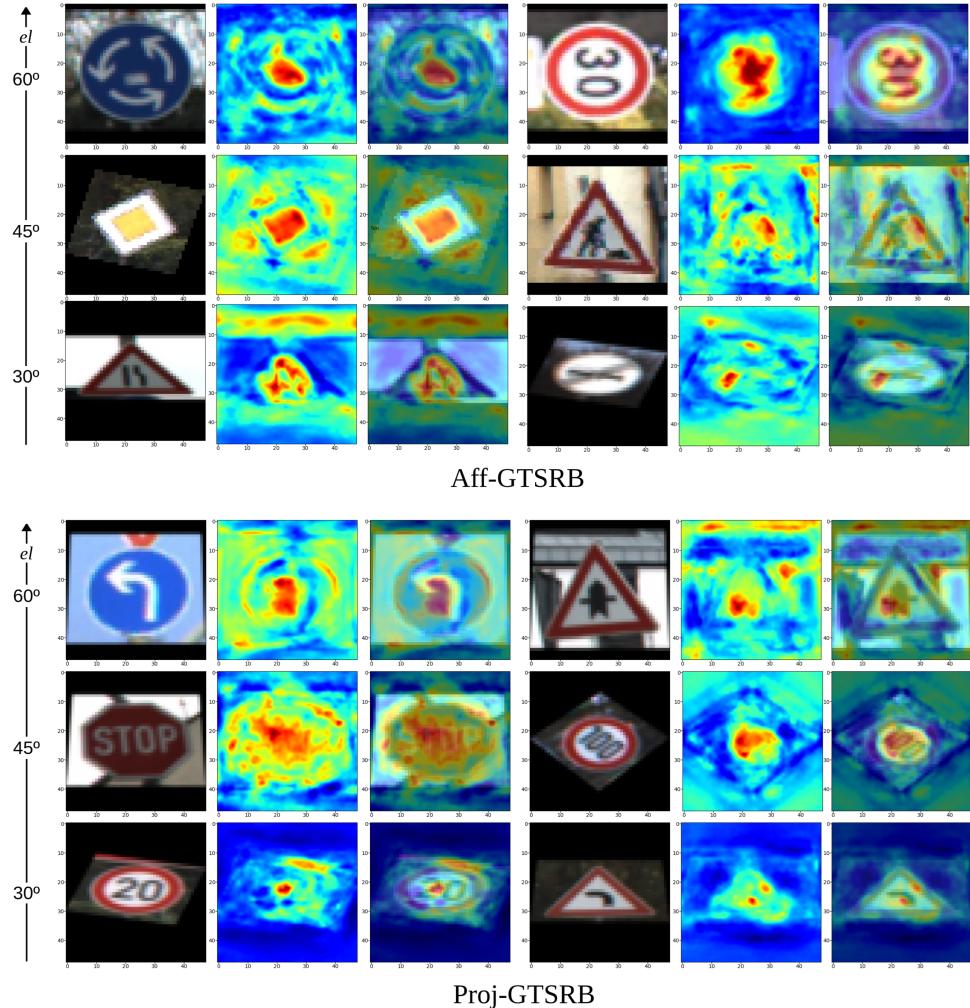


Figura 26 – Some samples from the datasets (Aff-GTSRB and Proj-GTSRB) at different elevation and azimuth angles, next to each test image there is a score map specific to the sign category and an overlaid representation of the map over the test image. Source: The author.

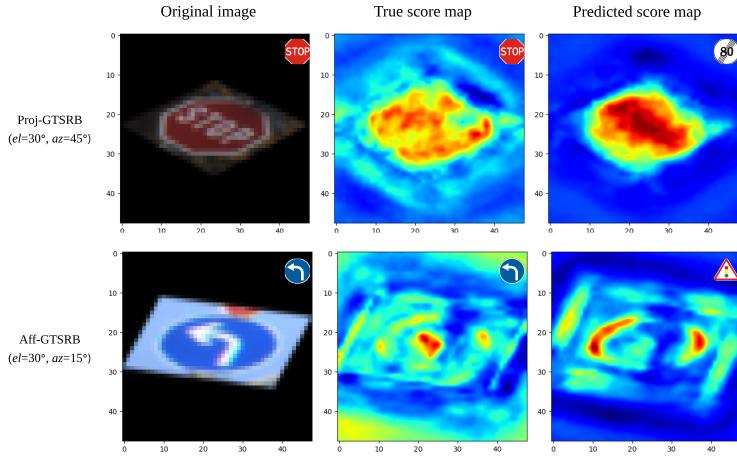


Figura 27 – Mismatch examples and their corresponding score maps. The left column presents a sample from each test dataset group (Aff-GTSRB and Proj-GTSRB) at an elevation of 30° ; the middle column displays the true score maps; while the right column presents the predicted ones. Each image and score map includes a traffic sign icon in the upper-right corner, corresponding to its class.

5.4 DISCUSSION

To evaluate MASViT’s robustness to geometric deformations in this study, the aff-GTSRB and proj-GTSRB test sets were introduced, derived from the original GTSRB by applying affine and projective transformations. These were generated using controlled variations in elevation and azimuth angles, simulating increasing deformation severity. While aff-GTSRB uses orthographic projection, proj-GTSRB introduces more complex distortions via perspective projection. This setup allows a systematic assessment of model performance under realistic, challenging conditions.

The training procedure adopted prioritized robustness to rotation and scale by performing data augmentation directly in the polar domain, which naturally encodes such transformations as translations. This decision enabled MASViT to learn invariant features without the need for explicit affine or projective augmentations. The use of pixel-level adjustments, such as brightness, contrast, and saturation, contributed to enhancing the model’s generalization under different lighting conditions, while the small batch training strategy favored better generalization.

Despite not achieving top-tier accuracy on the original GTSRB Test dataset compared to capsule- and spatial transformer-based models, MASViT demonstrated remarkable resilience under geometric distortions, especially in the presence of affine and projective transformations. When tested on aff-GTSRB and proj-GTSRB datasets, MASViT main-

tained competitive performance where other models significantly degraded. This result highlights MASViT’s core strength: its robustness to shape-preserving and perspective deformations, which is crucial for real-world traffic sign recognition scenarios where camera viewpoints may vary widely.

A key insight emerged from the comparison between the two post-training strategies: Fixed Centroid and Max Score. The Fixed Centroid approach performed better under ideal or near-ideal conditions, such as the original GTSRB and $el = 90^\circ$ datasets, where signs are centered and minimally distorted. However, in more challenging scenarios with increased deformation (lower elevation angles), the Max Score strategy proved to be significantly more effective. This adaptive behavior underscores the importance of allowing the model to explore multiple centroids, especially when signs are displaced or severely deformed due to camera perspective.

6 CONCLUSION AND FUTURE WORK

This work introduced an innovative deep-learning-based solution, the Multi-Angle-Scale Vision Transformer, designed to enhance robustness in image recognition tasks influenced by projective and affine transformations. It is based upon a ViT architecture that leverages collinearity as a geometric invariant to affinities and projectivities across different angles and scales within images. Additionally, modifications to the transformer architecture and two new GTSRB-based datasets were introduced, offering new references for future work.

Our evaluation of MASViT against state-of-the-art GTSRB classifier models showcased its robust performance across various deformation scenarios. While the concurrent models demonstrated high accuracy on original GTSRB test samples, their performance significantly declined when exposed to deformed images, particularly those with severe deformations, it is important to highlight that these models, based on Spatial Transformers and Capsules, they have architectures that are also designed for invariance to geometric transformations, to enhance the recognition of distorted shapes; however, they underperformed. Our analysis revealed that MASViT, employing both Fixed Centroid and Max Score approaches, exhibited promising adaptability to deformation challenges. Notably, the Fixed Centroid approach showed slightly superior performance on original GTSRB test samples and mild deformations, while the Max Score approach was proved more effective as the severity of deformations increased, outperforming the Fixed Centroid with a large difference in the most severe deformation scenarios, at the cost of a longer processing time. In summary, the Max Score method, while more flexible, is sensitive to local fluctuations and may misinterpret spurious activations, while the stable geometric center of Fixed Centroid aligns better with the traffic signals in front, producing more consistent accuracy in front view samples.

In summary, MASViT demonstrates robustness in handling diverse deformation cases, with a training phase based on non-deformed images, with respect to affinities and projectivities. This showcases its potential for real-world applications where image recognition must contend with varying degrees of affine and projective distortions. The concentration of maximum values in the center of the traffic signs, as observed in score maps, further underscores the efficacy of MASViT in capturing relevant features despite deformation

challenges, highlighting its significance in advancing the field of image recognition under adverse conditions.

In terms of application scope, MASViT is a model built upon the ViT architecture and therefore inherits both its strengths and limitations. While the original ViT was primarily designed for image classification, MASViT was also initially developed with this goal in mind. Nevertheless, as ViT variants have been successfully extended beyond classification through architectural modifications, MASViT could similarly be adapted for tasks such as object detection and semantic segmentation, albeit requiring additional adjustments. Regarding the datasets used in this thesis, although MASViT was evaluated exclusively on GTSRB and its geometrically deformed variants (aff-GTSRB and proj-GTSRB), its applicability extends beyond traffic sign recognition to the broader recognition of planar shapes, including characters, logos, and other visual patterns.

MASViT opens up a range of possibilities for future works including an investigation into methods for incorporating scale invariance during patch embedding via convolutional filters. This would eliminate the necessity for scaling variations in the data. Proposing a new Transformer Encoder that is intrinsically cyclically invariant removes the need for circular shifts in the data. Although using a single centroid during training is sufficient to achieve a robustness to recognize deformed samples, future studies can explore the impact of varying the number of centroids on performance. Another room for improvement may be the refinement of the Max Score approach to enable the identification of better regions beyond just the maximum score point, enhancing robustness. This score maps approach can also be used to infer the projectivity matrix that produced the image deformation: At least four MASViT networks can be trained with images in polar domains based on different centroids. Given an image to be tested, its distinct maximum points on the corresponding score maps can be taken as the key points' correspondences to the used centroids, allowing us to infer the projectivity matrix entries. This may be used in several applications, including those that benefit from using a traffic sign as a base to infer other planar shapes present in the scene.

REFERENCES

AMORIM, M.; BORTOLOTI, F.; CIARELLI, P. M.; OLIVEIRA, E. de; SOUZA, A. F. de. Analysing rotation-invariance of a log-polar transformation in convolutional neural networks. In: IEEE. *2018 International Joint Conference on Neural Networks (IJCNN)*. [S.l.], 2018. p. 1–6.

ARCOS-GARCÍA, Á.; ALVAREZ-GARCIA, J. A.; SORIA-MORILLO, L. M. Deep neural network for traffic sign recognition systems: An analysis of spatial transformers and stochastic optimisation methods. *Neural Networks*, Elsevier, v. 99, p. 158–165, 2018.

AZULAY, A.; WEISS, Y. Why do deep convolutional networks generalize so poorly to small image transformations? *Journal of Machine Learning Research*, v. 20, n. 184, p. 1–25, 2019.

BALLARD, D. Generalizing the hough transform to detect arbitrary shapes. *Pattern Recognition*, v. 13, n. 2, p. 111 – 122, 1981. ISSN 0031-3203. Available at: <<http://www.sciencedirect.com/science/article/pii/0031320381900091>>.

BAY, H.; ESS, A.; TUYTELAARS, T.; GOOL, L. V. Speeded-up robust features (surf). *Computer Vision and Image Understanding*, v. 110, n. 3, p. 346 – 359, 2008. ISSN 1077-3142. Similarity Matching in Computer Vision and Multimedia. Available at: <<http://www.sciencedirect.com/science/article/pii/S1077314207001555>>.

BIANCO, S.; BUZZELLI, M.; MAZZINI, D.; SCHETTINI, R. Deep learning for logo recognition. *Neurocomputing*, Elsevier, v. 245, p. 23–30, 2017.

BISCIONE, V.; BOWERS, J. S. Convolutional neural networks are not invariant to translation, but they can learn to be. *Journal of Machine Learning Research*, v. 22, n. 229, p. 1–28, 2021.

BOX, G. E. Science and statistics. *Journal of the American Statistical Association*, Taylor & Francis, v. 71, n. 356, p. 791–799, 1976.

BRONSTEIN, M. M.; BRUNA, J.; COHEN, T.; VELIČKOVIĆ, P. Geometric deep learning: Grids, groups, graphs, geodesics, and gauges. *arXiv preprint arXiv:2104.13478*, 2021.

BRONSTEIN, M. M.; BRUNA, J.; LECUN, Y.; SZLAM, A.; VANDERGHEYNST, P. Geometric deep learning: going beyond euclidean data. *IEEE Signal Processing Magazine*, IEEE, v. 34, n. 4, p. 18–42, 2017.

BUDUMA, N.; BUDUMA, N.; PAPA, J. *Fundamentals of deep learning: Designing next-generation machine intelligence algorithms*. [S.l.]: "O'Reilly Media, Inc.", 2022.

CHARAMBA, L. G.; MELO, S.; LIMA, U. de. Cross ratio arrays: A descriptor invariant to severe projective deformation and robust to occlusion for planar shape recognition. *Computers & Graphics*, Elsevier, v. 100, p. 54–65, 2021.

CHEN, R.; SHEN, H.; ZHAO, Z.-Q.; YANG, Y.; ZHANG, Z. Global routing between capsules. *Pattern Recognition*, Elsevier, v. 148, p. 110142, 2024.

COHEN, T.; WELLING, M. Group equivariant convolutional networks. In: PMLR. *International conference on machine learning*. [S.l.], 2016. p. 2990–2999.

DOSOVITSKIY, A.; BEYER, L.; KOLESNIKOV, A.; WEISSENBORN, D.; ZHAI, X.; UNTERTHINER, T.; DEHGHANI, M.; MINDERER, M.; HEIGOLD, G.; GELLY, S. et al. An image is worth 16x16 words: Transformers for image recognition at scale. In: *International Conference on Learning Representations*. [S.l.: s.n.], 2020.

ESTEVES, C.; ALLEN-BLANCHETTE, C.; MAKADIA, A.; DANIILIDIS, K. Learning so (3) equivariant representations with spherical cnns. In: *Proceedings of the European Conference on Computer Vision (ECCV)*. [S.l.: s.n.], 2018. p. 52–68.

ESTEVES, C.; ALLEN-BLANCHETTE, C.; ZHOU, X.; DANIILIDIS, K. Polar transformer networks. In: *6th International Conference on Learning Representations, ICLR 2018*. [S.l.: s.n.], 2018.

GERKEN, J. E.; ARONSSON, J.; CARLSSON, O.; LINANDER, H.; OHLSSON, F.; PETERSSON, C.; PERSSON, D. Geometric deep learning and equivariant neural networks. *Artificial Intelligence Review*, Springer, v. 56, n. 12, p. 14605–14662, 2023.

GLOROT, X.; BENGIO, Y. Understanding the difficulty of training deep feedforward neural networks. In: JMLR WORKSHOP AND CONFERENCE PROCEEDINGS. *Proceedings of the thirteenth international conference on artificial intelligence and statistics*. [S.l.], 2010. p. 249–256.

GONZALEZ, R. C.; WOODS, R. E. *Digital Image Processing (3rd Edition)*. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2006. ISBN 013168728X.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. *Deep learning*. [S.l.]: MIT press, 2016.

GU, J.; TRESP, V. Improving the robustness of capsule networks to image affine transformations. In: *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. [S.l.: s.n.], 2020. p. 7285–7293.

HARTLEY, R.; ZISSEMAN, A. *Multiple view geometry in computer vision*. UK: Cambridge university press, 2003.

HENDRYCKS, D.; GIMPEL, K. Gaussian error linear units (gelus). *arXiv preprint arXiv:1606.08415*, 2016.

HINTON, G. E.; KRIZHEVSKY, A.; WANG, S. D. Transforming auto-encoders. In: SPRINGER. *Artificial Neural Networks and Machine Learning–ICANN 2011: 21st International Conference on Artificial Neural Networks, Espoo, Finland, June 14–17, 2011, Proceedings, Part I 21*. [S.l.], 2011. p. 44–51.

HOERL, A. E.; KENNARD, R. W. Ridge regression: Biased estimation for nonorthogonal problems. *Technometrics*, Taylor & Francis, v. 12, n. 1, p. 55–67, 1970.

HOFFER, E.; HUBARA, I.; SOUDRY, D. Train longer, generalize better: closing the generalization gap in large batch training of neural networks. *Advances in neural information processing systems*, v. 30, 2017.

Houben, S.; Stallkamp, J.; Salmen, J.; Schlippling, M.; Igel, C. Detection of traffic signs in real-world images: The german traffic sign detection benchmark. In: IEEE. *The 2013 international joint conference on neural networks (IJCNN)*. [S.l.], 2013. p. 1–8.

Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: PMLR. *International conference on machine learning*. [S.l.], 2015. p. 448–456.

Jaderberg, M.; Simonyan, K.; Zisserman, A. et al. Spatial transformer networks. *Advances in neural information processing systems*, v. 28, 2015.

Jia, F.; Liu, Y.; Li, H.; Lu, Z.; Guo, H. Hierarchical projective invariant contexts for shape recognition. *Pattern Recognition*, v. 52, p. 358 – 374, 2016. ISSN 0031-3203.

Jia, Q.; Fan, X.; Lu, Z.; Liu, Y.; Guo, H. A new geometric descriptor for symbols with affine deformations. *Pattern Recognition Letters*, v. 40, p. 128 – 135, 2014. ISSN 0167-8655. Available at: <<http://www.sciencedirect.com/science/article/pii/S0167865513004261>>.

Kazmi, I. K.; You, L.; Zhang, J. J. A survey of 2d and 3d shape descriptors. In: *2013 10th International Conference Computer Graphics, Imaging and Visualization*. [S.l.: s.n.], 2013. p. 1–10.

Ke, Y.; Sukthankar, R. Pca-sift: A more distinctive representation for local image descriptors. In: *Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition*. Washington, DC, USA: IEEE Computer Society, 2004. (CVPR'04), p. 506–513. Available at: <<http://dl.acm.org/citation.cfm?id=1896300.1896374>>.

Kendall, A.; Grimes, M.; Cipolla, R. Posenet: A convolutional network for real-time 6-dof camera relocalization. In: *Proceedings of the IEEE international conference on computer vision*. [S.l.: s.n.], 2015. p. 2938–2946.

Keskar, N. S.; Mudigere, D.; Nocedal, J.; Smelyanskiy, M.; Tang, P. T. P. On large-batch training for deep learning: Generalization gap and sharp minima. In: *International Conference on Learning Representations*. [S.l.: s.n.], 2016.

Kingma, D. P.; Ba, J. Adam: A method for stochastic optimization. In: *3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings*. [s.n.], 2015. Available at: <<http://arxiv.org/abs/1412.6980>>.

Krizhevsky, A.; Sutskever, I.; Hinton, G. E. Imagenet classification with deep convolutional neural networks. In: *Advances in neural information processing systems*. [S.l.: s.n.], 2012. v. 25, p. 1097–1105.

Kumar, D.; Sharma, D.; Goecke, R. Feature map augmentation to improve rotation invariance in convolutional neural networks. In: SPRINGER. *Advanced Concepts for Intelligent Vision Systems: 20th International Conference, ACIVS 2020, Auckland, New Zealand, February 10–14, 2020, Proceedings 20*. [S.l.], 2020. p. 348–359.

LECUN, Y.; BOSER, B.; DENKER, J. S.; HENDERSON, D.; HOWARD, R. E.; HUBBARD, W.; JACKEL, L. D. Backpropagation applied to handwritten zip code recognition. *Neural computation*, MIT Press, v. 1, n. 4, p. 541–551, 1989.

LECUN, Y.; BOTTOU, L.; BENGIO, Y.; HAFFNER, P. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, IEEE, v. 86, n. 11, p. 2278–2324, 1998. Available at: <<http://yann.lecun.com/exdb/mnist/>>.

LENC, K.; VEDALDI, A. Understanding image representations by measuring their equivariance and equivalence. In: *Proceedings of the IEEE conference on computer vision and pattern recognition*. [S.l.: s.n.], 2015. p. 991–999.

LENSSEN, J. E.; FEY, M.; LIBUSCHEWSKI, P. Group equivariant capsule networks. *Advances in neural information processing systems*, v. 31, 2018.

LI, L.; TAN, C. L. Recognizing planar symbols with severe perspective deformation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, v. 32, n. 4, p. 755–762, April 2010. ISSN 0162-8828.

LONCARIC, S. A survey of shape analysis techniques. *Pattern Recognition*, v. 31, p. 983–1001, 1998.

LOSHCHILOV, I.; HUTTER, F. Decoupled weight decay regularization. In: *International Conference on Learning Representations*. [s.n.], 2019. Available at: <<https://openreview.net/forum?id=Bkg6RiCqY7>>.

LOWE, D. G. Distinctive image features from scale-invariant keypoints. *International Journal of Computer Vision*, v. 60, n. 2, p. 91–110, Nov 2004. ISSN 1573-1405. Available at: <<https://doi.org/10.1023/B:VISI.0000029664.99615.94>>.

LUO, Z.; LUO, D.; FAN, X.; ZHOU, X.; JIA, Q. A shape descriptor based on new projective invariants. In: *2013 IEEE International Conference on Image Processing*. [S.l.: s.n.], 2013. p. 2862–2866. ISSN 1522-4880.

MACDONALD, L. E.; RAMASINGHE, S.; LUCEY, S. Enabling equivariance for arbitrary lie groups. In: *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. [S.l.: s.n.], 2022. p. 8183–8192.

MARCOS, D.; VOLPI, M.; KOMODAKIS, N.; TUIA, D. Rotation equivariant vector field networks. In: *Proceedings of the IEEE International Conference on Computer Vision*. [S.l.: s.n.], 2017. p. 5048–5057.

MARCOS, D.; VOLPI, M.; TUIA, D. Learning rotation invariant convolutional filters for texture classification. In: *IEEE. 2016 23rd International Conference on Pattern Recognition (ICPR)*. [S.l.], 2016. p. 2012–2017.

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous activity. *The bulletin of mathematical biophysics*, Springer, v. 5, n. 4, p. 115–133, 1943.

MIKOLAJCZYK, K.; SCHMID, C. A performance evaluation of local descriptors. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, v. 27, n. 10, p. 1615–1630, Oct 2005. ISSN 0162-8828.

NETZER, Y.; WANG, T.; COATES, A.; BISSACCO, A.; WU, B.; NG, A. Y. Reading digits in natural images with unsupervised feature learning. In: *NIPS Workshop on Deep Learning and Unsupervised Feature Learning*. [S.l.: s.n.], 2011.

NOORD, N. V.; POSTMA, E. Learning scale-variant and scale-invariant features for deep image classification. *Pattern Recognition*, Elsevier, v. 61, p. 583–592, 2017.

REMMELZWAAL, L. A.; MISHRA, A. K.; ELLIS, G. F. Human eye inspired log-polar pre-processing for neural networks. In: IEEE. *2020 International SAUPEC/RobMech-/PRASA Conference*. [S.l.], 2020. p. 1–6.

RIBEIRO, F. D. S.; LEONTIDIS, G.; KOLLIAS, S. Introducing routing uncertainty in capsule networks. *Advances in Neural Information Processing Systems*, v. 33, p. 6490–6502, 2020.

ROSENBLATT, F. The perceptron: a probabilistic model for information storage and organization in the brain. *Psychological review*, American Psychological Association, v. 65, n. 6, p. 386, 1958.

ROUTRAY, S.; RAY, A. K.; MISHRA, C. Analysis of various image feature extraction methods against noisy image: Sift, surf and hog. In: *2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT)*. [S.l.: s.n.], 2017. p. 1–5.

RUDER, S. An overview of gradient descent optimization algorithms. *arXiv preprint arXiv:1609.04747*, 2016.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning representations by back-propagating errors. *nature*, Nature Publishing Group UK London, v. 323, n. 6088, p. 533–536, 1986.

RUSSELL, P. N. Artificial intelligence: A modern approach by stuart. *Russell and Peter Norvig contributing writers, Ernest Davis...[et al.]*, 2010.

SABOUR, S.; FROSST, N.; HINTON, G. E. Dynamic routing between capsules. *Advances in neural information processing systems*, v. 30, 2017.

SRESTASATHIERN, P.; YILMAZ, A. Planar shape representation and matching under projective transformation. *Computer Vision and Image Understanding*, v. 115, n. 11, p. 1525 – 1535, 2011. ISSN 1077-3142. Available at: <<http://www.sciencedirect.com/science/article/pii/S107731421100169X>>.

SRIVASTAVA, N.; HINTON, G.; KRIZHEVSKY, A.; SUTSKEVER, I.; SALAKHUT-DINOV, R. Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine learning research*, JMLR. org, v. 15, n. 1, p. 1929–1958, 2014.

STALLKAMP, J.; SCHLIPSING, M.; SALMEN, J.; IGEL, C. Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition. *Neural networks*, Elsevier, v. 32, p. 323–332, 2012.

TAI, K. S.; BAILIS, P.; VALIANT, G. Equivariant transformer networks. In: PMLR. *International Conference on Machine Learning*. [S.l.], 2019. p. 6086–6095.

TIBSHIRANI, R. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society: Series B (Methodological)*, Wiley, v. 58, n. 1, p. 267–288, 1996.

VASWANI, A.; SHAZER, N.; PARMAR, N.; USZKOREIT, J.; JONES, L.; GOMEZ, A. N.; KAISER, Ł.; POLOSUKHIN, I. Attention is all you need. *Advances in neural information processing systems*, v. 30, 2017.

ZHANG, D.; LU, G. Review of shape representation and description techniques. *Pattern Recognition*, v. 37, n. 1, p. 1 – 19, 2004. ISSN 0031-3203. Available at: <<http://www.sciencedirect.com/science/article/pii/S0031320303002759>>.

APÊNDICE A – APPENDIX

A.1 IMPLEMENTATION

This section presents the code implementation of the MASViT network and the Angle Dropout module to provide a clearer understanding of the architecture. The implementation was developed in Python 3 using the PyTorch framework. Alternatively, the full code can also be found in the following GitHub repository: github.com/Charamba/MASViT.

A.1.1 MASViT Implementation

The MASViT network was implemented as a Python class that inherits from `nn.Module`, PyTorch’s base class for neural network modules. The class defines an initialization method (`__init__`) where several arguments are specified. These include the convolutional layer parameters: `input_channel`, `hidden_channel` (1, 2, and 3), and `output_channel`, which define the number of channels for the vertical and horizontal 1D convolutions. In addition, the Transformer Encoder settings are defined through arguments such as:

- `num_patches`: Number of input patches embeddings;
- `num_heads`: Number of attention heads in the multi-head attention mechanism;
- `mlp_size`: Dimension of the MLP hidden layer;
- `mlp_dropout`: Dropout probability applied within the MLP layers;
- `embedding_dropout`: Dropout probability applied to the input patches embeddings;
- `num_transformer_layers`: Number of encoder sub-layers (Transformer blocks).

The class also takes arguments for `angle_dropout` and `num_classes`. Still within the `__init__` method, the network weights are initialized using the Xavier algorithm (GLO-ROT; BENGIO, 2010) with uniform distribution, through the method `init_weights_xavier`. Finally, the `forward` method implements the entire data flow of the MASViT architecture as described in Section 4.1.2: it includes the creation of patch embeddings, application of the Angle Dropout module, concatenation of the class token, addition of positional embeddings, and forwarding the sequence to the TE, followed by classification using the

final MLP applied to the class token. The following presents the full code implementation of the MASViT architecture:

```

    vert_conv1, vert_conv2, vert_conv3, vert_conv4 (nn.Conv2d):
    Vertical convolutional layers for feature extraction.

29    flatten (nn.Flatten): Layer to flatten the feature maps.

    class_embedding (nn.Parameter): Learnable class token embedding.

31    position_embedding (nn.Parameter): Learnable position embedding.

    transformer_encoder (nn.TransformerEncoder): Transformer encoder
    composed of multiple layers.

33    classifier (nn.Sequential): Classification head consisting of a
    layer normalization and a linear layer.

    bn_conv1, bn_conv2, bn_conv3, bn_conv4 (nn.BatchNorm2d): Batch
    normalization layers for the convolutional layers.

35    bn_vert_conv1, bn_vert_conv2, bn_vert_conv3, bn_vert_conv4 (nn.
    BatchNorm2d): Batch normalization layers for the vertical
    convolutional layers.

    embedding_dropout (nn.Dropout): Dropout layer for embeddings.

37    angle_dropout (AngleDropout): Dropout layer that applies angle-
    based dropout.

    """
39

40    def __init__(self,
41                  input_channel,
42                  hidden_channel_1,
43                  hidden_channel_2,
44                  hidden_channel_3,
45                  output_channel,
46                  num_patches,
47                  num_heads,
48                  mlp_size,
49                  mlp_dropout,
50                  embedding_dropout,
51                  angle_dropout,
52                  num_transformer_layers,
53                  num_classes):
54        super().__init__()

55        # Convolutional layers
56        self.conv1 = nn.Conv2d(
57            input_channel, hidden_channel_1, kernel_size=(1, 1))
58        self.conv2 = nn.Conv2d(
59

```



```

95                         batch_first=True,
96                         norm_first=True)
97
98         self.transformer_encoder = nn.TransformerEncoder(
99             encoder_layer, num_layers=num_transformer_layers)
100
101     # Classifier head
102     self.classifier = nn.Sequential(
103         nn.LayerNorm(normalized_shape=self.embedding_dim),
104         nn.Linear(in_features=self.embedding_dim,
105                   out_features=num_classes))
106
107     # Batch Normalization layers
108     self.bn_conv1 = nn.BatchNorm2d(hidden_channel_1)
109     self.bn_conv2 = nn.BatchNorm2d(hidden_channel_2)
110     self.bn_conv3 = nn.BatchNorm2d(hidden_channel_3)
111     self.bn_conv4 = nn.BatchNorm2d(output_channel)
112
113     self.bn_vert_conv1 = nn.BatchNorm2d(output_channel)
114     self.bn_vert_conv2 = nn.BatchNorm2d(output_channel)
115     self.bn_vert_conv3 = nn.BatchNorm2d(output_channel)
116     self.bn_vert_conv4 = nn.BatchNorm2d(output_channel)
117
118     # Dropout
119     self.embedding_dropout = nn.Dropout(embedding_dropout)
120
121     self.angle_dropout = AngleDropout(num_patches, angle_dropout)
122
123     # Initializing weights
124     self.apply(self.init_weights_xavier)
125
126     def init_weights_xavier(self, module):
127         """
128             Initialize the weights of the module using Xavier uniform
129             distribution.
130
131             Args:
132                 module (nn.Module): The module to initialize.
133             """

```

```

133     if isinstance(module, nn.Linear):
134         nn.init.xavier_uniform_(module.weight)
135         module.bias.data.fill_(0.01)
136
137     def forward(self, x):
138         """
139             Forward pass of the model.
140
141             Args:
142                 x (torch.Tensor): Input tensor of shape (batch_size, input_channel,
143                                 height, width).
144
145             Returns:
146                 torch.Tensor: Output tensor of shape (batch_size, num_classes)
147                                 containing the class scores.
148
149             # Create class token embedding and expand it to match the batch size
150             batch_size = x.shape[0]
151             class_token = self.class_embedding.expand(batch_size, -1, -1)
152
153             # Conv Layers (create patch embedding)
154             x = relu(self.bn_conv1(self.conv1(x)))           # (48,48) --> (48,48)
155             x = relu(self.bn_conv2(self.conv2(x)))           # (48,48) --> (48,46)
156             x = relu(self.bn_conv3(self.conv3(x)))           # (48,46) --> (48,42)
157             x = nn.MaxPool2d((1, 7), stride=(1, 7))(x)     # (48,42) --> (48,6)
158             x = relu(self.bn_conv4(self.conv4(x)))           # (48,6)  --> (48,1)
159
160             x = relu(self.bn_vert_conv1(self.vert_conv1(x))) # (48,1) --> (46,1)
161             x = relu(self.bn_vert_conv2(self.vert_conv2(x))) # (46,1) --> (44,1)
162             x = relu(self.bn_vert_conv3(self.vert_conv3(x))) # (44,1) --> (42,1)
163             x = relu(self.bn_vert_conv4(self.vert_conv4(x))) # (42,1) --> (40,1)
164             x = nn.MaxPool2d((5, 1), stride=(5, 1))(x)      # (40,1) --> (8,1)
165
166             # Performs angle dropout
167             x = self.angle_dropout(x)
168
169             # Adjust so the embedding is on the final dimension:
170             # [batch_size, row_patches*C, N] -> [batch_size, N, row_patches*C]
171             x = self.flatten(x)

```

```
171     x = x.permute(0, 2, 1)

173     # Concat class embedding and patch embedding
174     x = torch.cat((class_token, x), dim=1)

175     # Add position embedding to patch embedding
176     x = self.position_embedding + x

177     # Run embedding dropout (optional)
178     x = self.embedding_dropout(x)

181     # Pass patch, position and class embedding through transformer
182     # encoder layers
183     x = self.transformer_encoder(x)

185     # Put 0 index logit through classifier
186     # run on each sample in a batch at 0 index
187     x = self.classifier(x[:, 0])

188     return x
```

A.1.2 Angle Dropout Implementation

The Angle Dropout module was implemented as a Python class that inherits from `nn.Module`, PyTorch’s base class for neural network modules. The class defines an initialization method (`__init__`) where two arguments are specified: `num_angles` (number of angles) and `p` (dropout probability). Finally, the `forward` method implements the Angle Dropout algorithm described in Alg. 1. The following presents the full code implementation of the Angle Dropout:

```
 1 import torch
 2 import torch.nn.functional as F
 3
 4
 5 class AngleDropout(nn.Module):
 6     """
 7
 8         Applies a dropout that randomly selects certain rows of the
 9         input tensors (B,C,H,W) along the height dimension and sets
10
11
12
13
14
15
16
17
18
19
19
20
21
22
23
24
25
26
27
28
29
29
30
31
32
33
34
35
36
37
38
39
39
40
41
42
43
44
45
46
47
48
49
49
50
51
52
53
54
55
56
57
58
59
59
60
61
62
63
64
65
66
67
68
69
69
70
71
72
73
74
75
76
77
78
79
79
80
81
82
83
84
85
86
87
87
88
89
89
90
91
92
93
94
95
96
97
97
98
99
99
100
101
102
103
104
105
106
107
108
109
109
110
111
112
113
114
115
116
117
118
119
119
120
121
122
123
124
125
126
127
128
129
129
130
131
132
133
134
135
136
137
138
139
139
140
141
142
143
144
145
146
147
148
149
149
150
151
152
153
154
155
156
157
158
159
159
160
161
162
163
164
165
166
167
168
169
169
170
171
172
173
174
175
176
177
178
178
179
179
180
181
182
183
184
185
186
187
187
188
188
189
189
190
191
192
193
194
195
196
197
197
198
198
199
199
200
201
202
203
204
205
206
207
207
208
208
209
209
210
211
212
213
214
215
216
216
217
217
218
218
219
219
220
221
222
223
224
225
226
227
227
228
228
229
229
230
231
232
233
234
235
236
237
237
238
238
239
239
240
241
242
243
244
245
246
247
247
248
248
249
249
250
251
252
253
254
255
256
257
257
258
258
259
259
260
261
262
263
264
265
266
267
267
268
268
269
269
270
271
272
273
274
275
276
277
277
278
278
279
279
280
281
282
283
284
285
286
287
287
288
288
289
289
290
291
292
293
294
295
296
297
297
298
298
299
299
300
301
302
303
304
305
306
307
307
308
308
309
309
310
311
312
313
314
315
316
317
317
318
318
319
319
320
321
322
323
324
325
326
327
327
328
328
329
329
330
331
332
333
334
335
336
337
337
338
338
339
339
340
341
342
343
344
345
346
347
347
348
348
349
349
350
351
352
353
354
355
356
357
357
358
358
359
359
360
361
362
363
364
365
366
367
367
368
368
369
369
370
371
372
373
374
375
376
377
377
378
378
379
379
380
381
382
383
384
385
386
387
387
388
388
389
389
390
391
392
393
394
395
396
397
397
398
398
399
399
400
401
402
403
404
405
406
407
407
408
408
409
409
410
411
412
413
414
415
416
416
417
417
418
418
419
419
420
421
422
423
424
425
426
427
427
428
428
429
429
430
431
432
433
434
435
436
437
437
438
438
439
439
440
441
442
443
444
445
446
447
447
448
448
449
449
450
451
452
453
454
455
456
457
457
458
458
459
459
460
461
462
463
464
465
466
467
467
468
468
469
469
470
471
472
473
474
475
476
477
477
478
478
479
479
480
481
482
483
484
485
486
487
487
488
488
489
489
490
491
492
493
494
495
496
497
497
498
498
499
499
500
501
502
503
504
505
506
507
507
508
508
509
509
510
511
512
513
514
515
516
517
517
518
518
519
519
520
521
522
523
524
525
526
527
527
528
528
529
529
530
531
532
533
534
535
536
537
537
538
538
539
539
540
541
542
543
544
545
546
547
547
548
548
549
549
550
551
552
553
554
555
556
557
557
558
558
559
559
560
561
562
563
564
565
566
567
567
568
568
569
569
570
571
572
573
574
575
576
577
577
578
578
579
579
580
581
582
583
584
585
586
587
587
588
588
589
589
590
591
592
593
594
595
596
597
597
598
598
599
599
600
601
602
603
604
605
606
607
607
608
608
609
609
610
611
612
613
614
615
616
616
617
617
618
618
619
619
620
621
622
623
624
625
626
627
627
628
628
629
629
630
631
632
633
634
635
636
637
637
638
638
639
639
640
641
642
643
644
645
646
647
647
648
648
649
649
650
651
652
653
654
655
656
657
657
658
658
659
659
660
661
662
663
664
665
666
667
667
668
668
669
669
670
671
672
673
674
675
676
677
677
678
678
679
679
680
681
682
683
684
685
686
687
687
688
688
689
689
690
691
692
693
694
695
696
697
697
698
698
699
699
700
701
702
703
704
705
706
707
707
708
708
709
709
710
711
712
713
714
715
716
716
717
717
718
718
719
719
720
721
722
723
724
725
726
727
727
728
728
729
729
730
731
732
733
734
735
736
737
737
738
738
739
739
740
741
742
743
744
745
746
747
747
748
748
749
749
750
751
752
753
754
755
756
757
757
758
758
759
759
760
761
762
763
764
765
766
767
767
768
768
769
769
770
771
772
773
774
775
776
777
777
778
778
779
779
780
781
782
783
784
785
786
787
787
788
788
789
789
790
791
792
793
794
795
796
797
797
798
798
799
799
800
801
802
803
804
805
806
807
807
808
808
809
809
810
811
812
813
814
815
816
816
817
817
818
818
819
819
820
821
822
823
824
825
826
827
827
828
828
829
829
830
831
832
833
834
835
836
837
837
838
838
839
839
840
841
842
843
844
845
846
847
847
848
848
849
849
850
851
852
853
854
855
856
857
857
858
858
859
859
860
861
862
863
864
865
866
867
867
868
868
869
869
870
871
872
873
874
875
876
877
877
878
878
879
879
880
881
882
883
884
885
886
887
887
888
888
889
889
890
891
892
893
894
895
896
896
897
897
898
898
899
899
900
901
902
903
904
905
906
907
907
908
908
909
909
910
911
912
913
914
915
916
916
917
917
918
918
919
919
920
921
922
923
924
925
926
927
927
928
928
929
929
930
931
932
933
934
935
936
937
937
938
938
939
939
940
941
942
943
944
945
946
947
947
948
948
949
949
950
951
952
953
954
955
956
957
957
958
958
959
959
960
961
962
963
964
965
966
967
967
968
968
969
969
970
971
972
973
974
975
976
977
977
978
978
979
979
980
981
982
983
984
985
986
987
987
988
988
989
989
990
991
992
993
994
995
995
996
996
997
997
998
998
999
999
1000
1000
1001
1001
1002
1002
1003
1003
1004
1004
1005
1005
1006
1006
1007
1007
1008
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1016
1017
1017
1018
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1026
1027
1027
1028
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1036
1037
1037
1038
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1046
1047
1047
1048
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1056
1057
1057
1058
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1066
1067
1067
1068
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1076
1077
1077
1078
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1086
1087
1087
1088
1088
1089
1089
1090
1091
1092
1093
1094
1095
1095
1096
1096
1097
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1105
1106
1106
1107
1107
1108
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1116
1117
1117
1118
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1126
1127
1127
1128
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1136
1137
1137
1138
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1146
1147
1147
1148
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1156
1157
1157
1158
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1166
1167
1167
1168
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1176
1177
1177
1178
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1186
1187
1187
1188
1188
1189
1189
1190
1191
1192
1193
1194
1195
1195
1196
1196
1197
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1205
1206
1206
1207
1207
1208
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1216
1217
1217
1218
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1226
1227
1227
1228
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1236
1237
1237
1238
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1246
1247
1247
1248
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1256
1257
1257
1258
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1266
1267
1267
1268
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1276
1277
1277
1278
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1286
1287
1287
1288
1288
1289
1289
1290
1291
1292
1293
1294
1295
1295
1296
1296
1297
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1305
1306
1306
1307
1307
1308
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1316
1317
1317
1318
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1326
1327
1327
1328
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1336
1337
1337
1338
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1346
1347
1347
1348
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1356
1357
1357
1358
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1366
1367
1367
1368
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1376
1377
1377
1378
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1386
1387
1387
1388
1388
1389
1389
1390
1391
1392
1393
1394
1395
1395
1396
1396
1397
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1405
1406
1406
1407
1407
1408
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1416
1417
1417
1418
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1426
1427
1427
1428
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1436
1437
1437
1438
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1446
1447
1447
1448
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1456
1457
1457
1458
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1466
1467
1467
1468
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1476
1477
1477
1478
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1486
1487
1487
1488
1488
1489
1489
1490
1491
1492
1493
1494
1495
1495
1496
1496
1497
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1505
1506
1506
1507
1507
1508
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1516
1517
1517
1518
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1526
1527
1527
1528
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1536
1537
1537
1538
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1546
1547
1547
1548
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1556
1557
1557
1558
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1566
1567
1567
1568
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1576
1577
1577
1578
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1586
1587
1587
1588
1588
1589
1589
1590
1591
1592
1593
1594
1595
1595
1596
1596
1597
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1605
1606
1606
1607
1607
1608
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1616
1617
1617
1618
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1626
1627
1627
1628
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1636
1637
1637
1638
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1646
1647
1647
1648
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1656
1657
1657
1658
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1666
1667
1667
1668
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1676
1677
1677
1678
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1686
1687
1687
1688
1688
1689
1689
1690
1691
1692
1693
1694
1695
1695
1696
1696
1697
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1705
1706
1706
1707
1707
1708
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1716
1717
1717
1718
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1726
1727
1727
1728
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1736
1737
1737
1738
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1746
1747
1747
1748
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1756
1757
1757
1758
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1766
1767
1767
1768
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1776
1777
1777
1778
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1786
1787
1787
1788
1788
1789
1789
1790
1791
1792
1793
1794
1795
1795
1796
1796
1797
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1805
1806
1806
1807
1807
1808
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1816
1817
1817
1818
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1826
1827
1827
1828
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1836
1837
1837
1838
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1846
1847
1847
1848
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1856
1857
1857
1858
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1866
1867
1867
1868
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1876
1877
1877
1878
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1886
1887
1887
1888
1888
1889
1889
1890
1891
1892
1893
1894
1895
1895
1896
1896
1897
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1905
1906
1906
1907
1907
1908
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1916
1917
1917
1918
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1926
1927
1927
1928
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1936
1937
1937
1938
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1946
1947
1947
1948
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1956
1957
1957
1958
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1966
1967
1967
1968
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1976
1977
1977
1978
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1986
1987
1987
1988
1988
1989
1989
1990
1991
1992
1993
1994
1995
1995
1996
1996
1997
1997
1998
1998
1999
1999
2000
2001
2002
2003
2004
2005
2005
2006
2006
2007
2007
2008
2008
2009
2009
2010
2011
2012
2013
2014
2015
2016
2016
2017
2017
2018
2018
2019
2019
2020
2021
2022
2023
2024
2025
2026
2026
2027
2027
2028
2028
```

```
    them to zero based on a dropout probability p

10

11     Args:
12         num_angles (int): Number of angles (rows) of the input tensor
13         p (float): Probability of dropout
14         """
15
16     def __init__(self, num_angles: int, p: float = 0.5):
17         super().__init__()
18         self.num_angles = num_angles
19         self.p = p # probability
20
21     def forward(self, x: Tensor) -> Tensor:
22         """
23             Forward pass of the AngleDropout layer.
24
25             Args:
26                 x (Tensor): Input tensor of shape (B, C, H, W).
27
28             Returns:
29                 Tensor: Output tensor with dropout applied along the height
30                 dimension.
31                 """
32
33         if self.training:
34             b, c, h, w = x.shape
35             # dropout angles randomly
36             mask_angle = F.dropout(torch.ones(b, 1, self.num_angles, 1).cuda(),
37             p=self.p, training=self.training)
38             # repeat in c dimensions
39             mask_angle = mask_angle.repeat(1, c, 1, 1)
40
41             mask_data = mask_angle.expand(b, c, self.num_angles, w)
42
43             mask_data = mask_data.repeat(1, 1, 1, int(
44                 h/self.num_angles)).reshape(b, c, h, w)
45             x = mask_data * x
46
47     return x
```

APÊNDICE B – APPENDIX

B.1 CLASSIFICATION REPORTS

We present all classification metrics for each test dataset, encompassing Precision, Recall, F1-score per class, and the Accuracy of all MASViT experiments utilizing two methodologies: fixed centroid and max score, spanning across several tables. There are a total of 16 tables: two for GTSRB Test, two for elevation angle 90° (Aff-GTSRB / Proj-GTSRB), six for Aff-GTSRB with elevation angles 30°, 45°, and 60°, and finally, six more for Proj-GTSRB with elevation angles 30°, 45°, and 60°.

B.1.1 GTSRB Test

The tables 5 and 6 show the report of tests in GTSRB Test dataset using fixed centroid and max score approaches, respectively.

Tabela 5 – GTSRB Test - MASViT (fixed centroid)

Class	Precision	Recall	F1-score	Support
20	1.0000	1.0000	1.0000	60
30	0.9874	0.9778	0.9826	720
50	0.9720	0.9985	0.9851	660
60	0.9858	0.9952	0.9905	420
70	0.9970	0.9623	0.9794	690
80	0.9863	0.9986	0.9924	720
80	1.0000	1.0000	1.0000	270
100	1.0000	0.9905	0.9952	210
120	1.0000	0.9933	0.9967	150
no	0.9972	1.0000	0.9986	360
no	0.9846	0.9846	0.9846	390

Continued on next page

Tabela 5 – continuation

Class	Precision	Recall	F1-score	Support
	0.9677	1.0000	0.9836	60
	0.9842	0.9987	0.9914	750
	0.9375	1.0000	0.9677	90
	0.9750	0.8667	0.9176	90
	0.9916	0.9833	0.9874	120
	0.9867	0.9867	0.9867	150
	1.0000	0.9667	0.9831	90
	0.9979	0.9792	0.9884	480
	0.9871	0.8500	0.9134	180
	1.0000	0.9833	0.9916	60
	0.9932	0.9800	0.9866	150
	0.9677	1.0000	0.9836	90
	0.9932	0.9667	0.9797	450
	0.9730	0.9600	0.9664	150
	1.0000	0.9852	0.9925	270
	0.9836	1.0000	0.9917	60
	0.9857	0.9857	0.9857	210
	1.0000	0.9917	0.9958	120
	0.9923	0.9974	0.9949	390
	0.9737	0.9250	0.9487	120
	0.9032	0.9333	0.9180	60
	0.9477	0.9986	0.9725	690
	0.9855	0.7556	0.8553	90
	0.9984	0.9758	0.9870	660

Continued on next page

Tabela 5 – continuation

Class	Precision	Recall	F1-score	Support
↑	0.8713	0.9778	0.9215	90
↑↑	0.8824	1.0000	0.9375	60
↔	0.9468	0.9889	0.9674	90
↙	0.9617	0.9968	0.9790	630
↙↙	0.9797	0.9667	0.9732	150
⟳	0.9933	0.9933	0.9933	450
⟲	0.9955	0.9933	0.9944	450
⟲⟳	0.9856	1.0000	0.9928	480
Accuracy			0.9831	12630
Macro avg	0.9779	0.9741	0.9752	12630
Weighted avg	0.9835	0.9831	0.9829	12630

Tabela 6 – GTSRB Test - MASViT (max score)

Class	Precision	Recall	F1-score	Support
20	1.0000	1.0000	1.0000	60
30	0.9916	0.9819	0.9867	720
50	0.9836	1.0000	0.9917	660
60	0.9976	0.9952	0.9964	420
70	0.9955	0.9638	0.9794	690
80	0.9903	0.9958	0.9931	720
80	0.9926	1.0000	0.9963	270
100	1.0000	0.9905	0.9952	210
120	0.9551	0.9933	0.9739	150

Continued on next page

Tabela 6 – continuation

Class	Precision	Recall	F1-score	Support
	0.9972	0.9972	0.9972	360
	0.9719	0.9744	0.9731	390
	0.8955	1.0000	0.9449	60
	0.9907	0.9907	0.9907	750
	0.9091	1.0000	0.9524	90
	1.0000	0.6667	0.8000	90
	0.9917	0.9917	0.9917	120
	0.9868	1.0000	0.9934	150
	0.9885	0.9556	0.9718	90
	0.9958	0.9896	0.9927	480
	0.9770	0.9444	0.9605	180
	0.9831	0.9667	0.9748	60
	1.0000	0.9800	0.9899	150
	0.9783	1.0000	0.9890	90
	0.9714	0.9800	0.9757	450
	0.9931	0.9533	0.9728	150
	1.0000	1.0000	1.0000	270
	0.9677	1.0000	0.9836	60
	0.9673	0.9857	0.9764	210
	0.7532	0.9917	0.8561	120
	0.9717	0.9692	0.9705	390
	1.0000	0.9417	0.9700	120
	1.0000	0.9833	0.9916	60
	0.9442	0.9565	0.9503	690

Continued on next page

Tabela 6 – continuation

Class	Precision	Recall	F1-score	Support
⟳	0.9825	0.6222	0.7619	90
⟲	0.9985	0.9848	0.9916	660
↑	0.8544	0.9778	0.9119	90
↑↓	0.7945	0.9667	0.8722	60
↗	0.8878	0.9667	0.9255	90
↖	0.9873	0.9905	0.9889	630
↙	1.0000	0.9267	0.9619	150
⟲⟳	0.9912	0.9978	0.9945	450
⟲⟲	0.9912	0.9978	0.9945	450
⟲⟲⟲	0.9938	1.0000	0.9969	480
Accuracy			0.9795	12630
Macro avg	0.9679	0.9667	0.9647	12630
Weighted avg	0.9808	0.9795	0.9793	12630

B.1.2 Aff-GTSRB / Proj-GTSRB (el=90°)

In elevation angle equals to 90°, there aren't not difference between affinity and projectivity. So, there are here two classification report tables, using the two MASViT approaches: fixed centroid in Table 7 and max score in Table 8.

Tabela 7 – Aff-GTSRB / Proj-GTSRB (el=90°) - MASViT (fixed centroid)

Class	Precision	Recall	F1-score	Support
20	0.9957	0.9542	0.9745	480

Continued on next page

Tabela 7 – continuation

Class	Precision	Recall	F1-score	Support
30	0.9710	0.9821	0.9765	5760
50	0.9794	0.9973	0.9883	5280
60	0.9702	0.9872	0.9786	3360
70	0.9940	0.9609	0.9772	5520
80	0.9559	0.9938	0.9745	5760
80	0.9727	0.9903	0.9814	2160
100	1.0000	0.8780	0.9350	1680
120	0.9992	0.9892	0.9941	1200
120	0.9968	0.9691	0.9827	2880
120	0.9865	0.9622	0.9742	3120
13	0.9467	1.0000	0.9726	480
14	0.9712	0.9952	0.9830	6000
15	0.8997	0.9972	0.9460	720
STOP	0.9547	0.7903	0.8647	720
0	0.9924	0.9583	0.9751	960
16	0.9386	0.9808	0.9593	1200
17	0.9697	0.9792	0.9744	720
18	0.9900	0.9552	0.9723	3840
19	0.9741	0.8896	0.9299	1440
20	0.9488	0.8875	0.9171	480
21	0.9507	0.9800	0.9651	1200
22	0.9676	0.9944	0.9808	720
23	0.9878	0.9661	0.9768	3600
24	0.9591	0.9575	0.9583	1200

Continued on next page

Tabela 7 – continuation

Class	Precision	Recall	F1-score	Support
	0.9920	0.9815	0.9867	2160
	0.9856	1.0000	0.9928	480
	0.9923	0.9179	0.9536	1680
	0.9695	0.9917	0.9804	960
	0.9709	0.9946	0.9826	3120
	0.9605	0.9365	0.9483	960
	0.9134	0.9667	0.9393	480
	0.9376	0.9746	0.9558	5520
	0.9683	0.7639	0.8540	720
	0.9973	0.9616	0.9791	5280
	0.8014	0.9861	0.8842	720
	0.8762	0.9729	0.9220	480
	0.9413	0.9583	0.9498	720
	0.9668	0.9891	0.9778	5040
	0.9905	0.9592	0.9746	1200
	0.9846	0.9919	0.9882	3600
	0.9925	0.9861	0.9893	3600
	0.9748	0.9992	0.9869	3840
Accuracy			0.9727	101040
Macro avg	0.9648	0.9611	0.9618	101040
Weighted avg	0.9735	0.9727	0.9726	101040

Tabela 8 – Aff-GTSRB / Proj-GTSRB (el=90°) - MASViT (max score)

Class	Precision	Recall	F1-score	Support
20	0.9958	0.9812	0.9885	480
30	0.9805	0.9861	0.9833	5760
50	0.9899	1.0000	0.9949	5280
60	0.9939	0.9771	0.9854	3360
70	0.9948	0.9641	0.9792	5520
80	0.9686	0.9965	0.9824	5760
80	0.9724	0.9963	0.9842	2160
100	1.0000	0.9054	0.9503	1680
120	0.9835	0.9958	0.9896	1200
→	0.9965	0.9785	0.9874	2880
↔	0.9617	0.9571	0.9594	3120
⚠	0.9619	1.0000	0.9806	480
◆	0.9833	0.9825	0.9829	6000
▽	0.8955	1.0000	0.9449	720
STOP	0.9468	0.7917	0.8623	720
○	0.9979	0.9823	0.9900	960
➡	0.9615	1.0000	0.9804	1200
➡	0.9804	0.9736	0.9770	720
⚠	0.9966	0.9810	0.9887	3840
⚠	0.9744	0.9771	0.9757	1440
⚠	0.9799	0.8146	0.8896	480
⚠	0.9949	0.9733	0.9840	1200
⚠	0.9559	0.9931	0.9741	720

Continued on next page

Tabela 8 – continuation

Class	Precision	Recall	F1-score	Support
	0.9248	0.9869	0.9549	3600
	0.9597	0.9525	0.9561	1200
	0.9995	0.9954	0.9974	2160
	0.9836	1.0000	0.9917	480
	0.8787	0.9833	0.9281	1680
	0.6990	0.9990	0.8225	960
	0.9747	0.9510	0.9627	3120
	0.9955	0.9156	0.9539	960
	0.9875	0.9875	0.9875	480
	0.9451	0.9098	0.9271	5520
	0.9346	0.6750	0.7839	720
	0.9969	0.9752	0.9859	5280
	0.8410	0.9847	0.9072	720
	0.7689	0.9979	0.8685	480
	0.9249	0.9583	0.9413	720
	0.9913	0.9454	0.9678	5040
	0.9957	0.9617	0.9784	1200
	0.9863	0.9972	0.9917	3600
	0.9903	0.9953	0.9928	3600
	0.9927	0.9979	0.9953	3840
Accuracy			0.9711	101040
Macro avg	0.9590	0.9623	0.9584	101040
Weighted avg	0.9731	0.9711	0.9712	101040

B.1.3 Aff-GTSRB el={60°, 45°, 30°}

The tables 9, 10, 11, 12, 13 and 14 show the report of tests in aff-GTSRB datasets for elevation degrees 60°, 45° and 30°, alternating between fixed centroid and max score approaches.

Tabela 9 – Aff-GTSRB (el=60°) - MASViT (fixed centroid)

Class	Precision	Recall	F1-score	Support
20	0.9655	0.7583	0.8495	480
30	0.9438	0.9599	0.9518	5760
50	0.9643	0.9968	0.9803	5280
60	0.9793	0.9708	0.9750	3360
70	0.9979	0.9612	0.9792	5520
80	0.9485	0.9969	0.9721	5760
80	0.9894	0.9917	0.9905	2160
100	1.0000	0.8750	0.9333	1680
120	0.9958	0.9808	0.9882	1200
→	0.9972	0.9889	0.9930	2880
↔	0.9868	0.9321	0.9586	3120
↑	0.9462	0.9896	0.9674	480
◆	0.9483	0.9790	0.9634	6000
▽	0.8043	0.9931	0.8888	720
STOP	0.9370	0.6819	0.7894	720
○	0.9903	0.9531	0.9713	960
✉	0.9667	0.9692	0.9680	1200
▬	0.9670	0.9361	0.9513	720
⚠	0.9729	0.9732	0.9731	3840

Continued on next page

Tabela 9 – continuation

Class	Precision	Recall	F1-score	Support
	0.9522	0.8708	0.9097	1440
	0.8873	0.7542	0.8153	480
	0.9410	0.9708	0.9557	1200
	0.9505	0.9611	0.9558	720
	0.9844	0.9306	0.9567	3600
	0.9224	0.9117	0.9170	1200
	0.9716	0.9662	0.9689	2160
	0.9231	1.0000	0.9600	480
	0.9633	0.9518	0.9575	1680
	0.8989	0.9542	0.9257	960
	0.9855	0.9612	0.9732	3120
	0.8830	0.8885	0.8858	960
	0.8781	0.8104	0.8429	480
	0.9132	0.9817	0.9462	5520
	0.9284	0.6125	0.7381	720
	0.9912	0.9350	0.9623	5280
	0.8690	0.9861	0.9239	720
	0.7780	0.9417	0.8520	480
	0.8537	0.9889	0.9163	720
	0.9142	0.9833	0.9475	5040
	0.9871	0.8942	0.9383	1200
	0.9756	0.9872	0.9814	3600
	0.9763	0.9444	0.9601	2400

Continued on next page

Tabela 9 – continuation

Class	Precision	Recall	F1-score	Support
0	0.9325	0.9458	0.9391	720
Accuracy			0.9581	101040
Macro avg	0.9445	0.9321	0.9356	101040
Weighted avg	0.9594	0.9581	0.9576	101040

Tabela 10 – Aff-GTSRB (el=60°) - MASViT (max score)

Class	Precision	Recall	F1-score	Support
20	0.9855	0.9896	0.9875	480
30	0.9838	0.9814	0.9826	5760
50	0.9780	1.0000	0.9889	5280
60	0.9974	0.9095	0.9514	3360
70	0.9985	0.9563	0.9770	5520
80	0.9581	0.9972	0.9773	5760
80	0.9953	0.9907	0.9930	2160
100	1.0000	0.8780	0.9350	1680
120	0.9975	0.9883	0.9929	1200
no	0.9914	0.9962	0.9938	2880
no	0.9895	0.9397	0.9640	3120
+	0.9776	1.0000	0.9887	480
yellow	0.9866	0.9810	0.9838	6000
red	0.7059	1.0000	0.8276	720
STOP	0.9499	0.7903	0.8628	720
0	0.9947	0.9750	0.9847	960

Continued on next page

Tabela 10 – continuation

Class	Precision	Recall	F1-score	Support
🚫	0.9463	0.9992	0.9720	1200
▬	0.9659	0.9847	0.9752	720
⚠	0.9918	0.9797	0.9857	3840
⚠	0.9843	0.9590	0.9715	1440
⚠	0.9870	0.7937	0.8799	480
⚠	0.9816	0.9800	0.9808	1200
⚠	0.9571	0.9917	0.9741	720
⚠	0.9615	0.9844	0.9728	3600
⚠	0.9128	0.9425	0.9274	1200
⚠	0.9977	0.9921	0.9949	2160
⚠	0.9658	1.0000	0.9826	480
⚠	0.6852	0.9887	0.8095	1680
⚠	0.5596	0.9823	0.7130	960
⚠	0.9774	0.9426	0.9597	3120
⚠	0.9891	0.8500	0.9143	960
⚠	0.9936	0.9771	0.9853	480
⌚	0.9492	0.7755	0.8536	5520
⌚	0.9545	0.7861	0.8621	720
⌚	0.9988	0.9797	0.9892	5280
⬆	0.8375	0.9736	0.9004	720
⬆	0.6907	0.9771	0.8093	480
⬆	0.8285	0.9931	0.9033	720
⌚	0.9841	0.9720	0.9780	5040
⌚	0.9937	0.9150	0.9527	1200

Continued on next page

Tabela 10 – continuation

Class	Precision	Recall	F1-score	Support
↻	0.9768	0.9958	0.9862	3600
◐	0.9895	0.9958	0.9927	3600
◓	0.9922	0.9896	0.9909	3840
Accuracy			0.9600	101040
Macro avg	0.9428	0.9552	0.9444	101040
Weighted avg	0.9670	0.9600	0.9611	101040

Tabela 11 – Aff-GTSRB (el=45°) - MASViT (fixed centroid)

Class	Precision	Recall	F1-score	Support
20	0.9746	0.5604	0.7116	480
30	0.9059	0.9243	0.9150	5760
50	0.9742	0.9860	0.9800	5280
60	0.9442	0.9518	0.9480	3360
70	0.9948	0.9625	0.9784	5520
80	0.9491	0.9936	0.9708	5760
80	0.9325	0.9907	0.9607	2160
100	0.9987	0.8815	0.9365	1680
120	0.9732	0.9700	0.9716	1200
◐	0.9978	0.9455	0.9709	2880
◓	0.9695	0.8971	0.9319	3120
↑	0.9252	0.9792	0.9514	480
◆	0.8777	0.9565	0.9154	6000
▽	0.7654	0.9833	0.8608	720

Continued on next page

Tabela 11 – continuation

Class	Precision	Recall	F1-score	Support
	0.8759	0.6861	0.7695	720
	0.9931	0.8979	0.9431	960
	0.8127	0.9617	0.8809	1200
	0.9456	0.7972	0.8651	720
	0.9507	0.9591	0.9549	3840
	0.9490	0.8660	0.9056	1440
	0.8242	0.5958	0.6917	480
	0.8939	0.9333	0.9132	1200
	0.8870	0.9375	0.9115	720
	0.9360	0.8697	0.9017	3600
	0.8577	0.8892	0.8732	1200
	0.9815	0.9356	0.9580	2160
	0.9693	0.9854	0.9773	480
	0.9404	0.9107	0.9253	1680
	0.8730	0.9094	0.8908	960
	0.9816	0.9208	0.9502	3120
	0.8824	0.7812	0.8287	960
	0.7930	0.7583	0.7753	480
	0.8676	0.9808	0.9207	5520
	0.9548	0.5569	0.7035	720
	0.9901	0.8727	0.9277	5280
	0.8275	0.9861	0.8999	720
	0.8410	0.8812	0.8606	480
	0.9281	0.8958	0.9117	720

Continued on next page

Tabela 11 – continuation

Class	Precision	Recall	F1-score	Support
↙	0.8658	0.9435	0.9030	5040
↗	0.9731	0.9342	0.9532	1200
↻	0.9388	0.9678	0.9531	3600
🚧	0.9543	0.9275	0.9407	3600
⚠	0.9512	0.9888	0.9696	3840
Accuracy			0.9316	101040
Macro avg	0.9214	0.8957	0.9038	101040
Weighted avg	0.9344	0.9316	0.9309	101040

Tabela 12 – Aff-GTSRB (el=45°) - MASViT (max score)

Class	Precision	Recall	F1-score	Support
20	0.9898	0.8104	0.8912	480
30	0.9607	0.9557	0.9582	5760
50	0.9878	0.9987	0.9932	5280
60	0.9804	0.9402	0.9599	3360
70	0.9925	0.9592	0.9756	5520
80	0.9610	0.9964	0.9783	5760
80	0.9361	0.9903	0.9624	2160
100	0.9987	0.8863	0.9391	1680
120	0.9734	0.9775	0.9755	1200
➡	0.9938	0.9535	0.9732	2880
➡	0.9594	0.9327	0.9459	3120
⚠	0.9756	1.0000	0.9877	480

Continued on next page

Tabela 12 – continuation

Class	Precision	Recall	F1-score	Support
◆	0.9485	0.9733	0.9608	6000
▽	0.7756	0.9986	0.8731	720
STOP	0.9101	0.8292	0.8677	720
○	0.9978	0.9302	0.9628	960
■	0.8721	1.0000	0.9317	1200
▬	0.9517	0.9583	0.9550	720
⚠	0.9850	0.9734	0.9792	3840
↗	0.9736	0.9715	0.9725	1440
⚡	0.9599	0.5979	0.7368	480
⚡	0.9676	0.9700	0.9688	1200
⚠	0.9288	0.9972	0.9618	720
⚠	0.8809	0.9653	0.9211	3600
⚠	0.9374	0.9367	0.9371	1200
⚠	0.9972	0.9815	0.9893	2160
⚠	0.9856	1.0000	0.9928	480
⚠	0.6937	0.9720	0.8096	1680
⚠	0.5421	0.9583	0.6925	960
⚠	0.9698	0.8865	0.9263	3120
*	0.9962	0.8198	0.8994	960
⚠	0.9832	0.9729	0.9780	480
⌚	0.9204	0.7837	0.8466	5520
⟳	0.9916	0.6542	0.7883	720
⟲	0.9930	0.9430	0.9674	5280
↑	0.6822	0.9778	0.8037	720

Continued on next page

Tabela 12 – continuation

Class	Precision	Recall	F1-score	Support
↑	0.8114	0.9771	0.8866	480
↗	0.9306	0.9306	0.9306	720
↖	0.9823	0.8810	0.9289	5040
↙	0.9914	0.9583	0.9746	1200
↻	0.9350	0.9908	0.9621	3600
⌚	0.9648	0.9897	0.9771	3600
⌚⌚	0.9782	0.9951	0.9866	3840
Accuracy			0.9449	101040
Macro avg	0.9337	0.9343	0.9281	101040
Weighted avg	0.9519	0.9449	0.9457	101040

Tabela 13 – Aff-GTSRB (el=30°) - MASViT (fixed centroid)

Class	Precision	Recall	F1-score	Support
20	0.4344	0.2208	0.2928	480
30	0.7211	0.5422	0.6190	5760
50	0.9123	0.8172	0.8621	5280
60	0.7833	0.6714	0.7231	3360
70	0.9974	0.9121	0.9529	5520
80	0.7231	0.9726	0.8295	5760
80	0.9176	0.9537	0.9353	2160
100	0.9816	0.1268	0.2246	1680
120	0.9807	0.7217	0.8315	1200
120	0.9771	0.9174	0.9463	2880

Continued on next page

Tabela 13 – continuation

Class	Precision	Recall	F1-score	Support
	0.7625	0.4641	0.5770	3120
	0.7517	0.4729	0.5806	480
	0.5726	0.6198	0.5953	6000
	0.3307	0.5778	0.4206	720
	0.3853	0.2333	0.2907	720
	0.8414	0.7073	0.7685	960
	0.4800	0.7292	0.5789	1200
	0.4378	0.4056	0.4211	720
	0.5764	0.8414	0.6842	3840
	0.7643	0.7139	0.7382	1440
	0.2749	0.2417	0.2572	480
	0.3543	0.6517	0.4591	1200
	0.3906	0.7583	0.5156	720
	0.5273	0.5039	0.5153	3600
	0.3704	0.7108	0.4870	1200
	0.6978	0.7472	0.7217	2160
	0.7837	0.9812	0.8714	480
	0.7132	0.6750	0.6936	1680
	0.5459	0.3594	0.4334	960
	0.8669	0.2442	0.3811	3120
	0.6047	0.3187	0.4175	960
	0.4549	0.2208	0.2973	480
	0.5276	0.9045	0.6664	5520
	0.3985	0.2917	0.3368	720

Continued on next page

Tabela 13 – continuation

Class	Precision	Recall	F1-score	Support
↻	0.9297	0.3805	0.5400	5280
↑	0.5829	0.8597	0.6947	720
↑↓	0.4641	0.2021	0.2816	480
↑↓←	0.4769	0.7444	0.5813	720
↖	0.4992	0.7631	0.6036	5040
↙	0.8751	0.6658	0.7563	1200
↔	0.7634	0.5969	0.6700	3600
↔↑	0.5811	0.6547	0.6157	3600
↔↑↓	0.9368	0.6867	0.7925	3840
Accuracy			0.6671	101040
Macro avg	0.6500	0.5996	0.5921	101040
Weighted avg	0.7145	0.6671	0.6597	101040

Tabela 14 – Aff-GTSRB (el=30°) - MASViT (max score)

Class	Precision	Recall	F1-score	Support
20	0.5866	0.4938	0.5362	480
30	0.8988	0.6045	0.7229	5760
50	0.8972	0.9652	0.9299	5280
60	0.9106	0.7336	0.8126	3360
70	0.9963	0.8710	0.9294	5520
80	0.7735	0.9778	0.8637	5760
80	0.8597	0.9560	0.9053	2160
100	0.9962	0.1571	0.2715	1680

Continued on next page

Tabela 14 – continuation

Class	Precision	Recall	F1-score	Support
	0.9951	0.8500	0.9169	1200
	0.8781	0.9479	0.9117	2880
	0.9301	0.5885	0.7208	3120
	0.9331	0.6104	0.7380	480
	0.7783	0.7810	0.7796	6000
	0.4387	0.7958	0.5656	720
	0.6863	0.3889	0.4965	720
	0.9048	0.6833	0.7786	960
	0.6454	0.7433	0.6909	1200
	0.5860	0.6958	0.6362	720
	0.6444	0.9039	0.7524	3840
	0.9096	0.9437	0.9264	1440
	0.4218	0.2979	0.3492	480
	0.4469	0.8025	0.5741	1200
	0.3749	0.9597	0.5392	720
	0.8069	0.6711	0.7328	3600
	0.4235	0.7775	0.5483	1200
	0.7521	0.8162	0.7829	2160
	0.6316	1.0000	0.7742	480
	0.5608	0.7988	0.6590	1680
	0.4287	0.6729	0.5237	960
	0.9347	0.3397	0.4984	3120
	0.9686	0.5781	0.7241	960
	0.8199	0.6354	0.7160	480

Continued on next page

Tabela 14 – continuation

Class	Precision	Recall	F1-score	Support
∅	0.6718	0.8420	0.7473	5520
↶	0.7644	0.4778	0.5880	720
↷	0.9831	0.6500	0.7826	5280
↑	0.4761	0.7889	0.5938	720
↑↑	0.4307	0.3042	0.3565	480
↖	0.4482	0.8583	0.5889	720
↙	0.7771	0.8224	0.7991	5040
↙↑	0.8559	0.7625	0.8065	1200
↺	0.7813	0.7622	0.7717	3600
∅∅	0.7678	0.8944	0.8263	3600
∅∅∅	0.9849	0.7964	0.8806	3840
Accuracy			0.7668	101040
Macro avg	0.7386	0.7209	0.6988	101040
Weighted avg	0.8087	0.7668	0.7645	101040

B.1.4 Proj-GTSRB el={60°, 45°, 30°}

The tables 15, 16, 17, 18, 19 and 20 show the report of tests in aff-GTSRB datasets for elevation degrees 60°, 45° and 30°, alternating between fixed centroid and max score approaches.

Tabela 15 – Proj-GTSRB (el=60°) - MASViT (fixed centroid)

Class	Precision	Recall	F1-score	Support
20	0.9658	0.7646	0.8535	480
30	0.9401	0.9592	0.9496	5760
50	0.9634	0.9962	0.9795	5280
60	0.9795	0.9688	0.9741	3360
70	0.9976	0.9627	0.9798	5520
80	0.9452	0.9964	0.9701	5760
80	0.9875	0.9912	0.9894	2160
100	0.9993	0.8726	0.9317	1680
120	0.9949	0.9817	0.9883	1200
→	0.9965	0.9889	0.9927	2880
↔	0.9877	0.9256	0.9557	3120
↑	0.9481	0.9896	0.9684	480
◆	0.9467	0.9778	0.9620	6000
▽	0.8016	0.9931	0.8871	720
STOP	0.9312	0.6764	0.7836	720
○	0.9902	0.9437	0.9664	960
➡	0.9580	0.9683	0.9631	1200
➡	0.9654	0.9292	0.9469	720
⚠	0.9691	0.9729	0.9710	3840

Continued on next page

Tabela 15 – continuation

Class	Precision	Recall	F1-score	Support
	0.9529	0.8701	0.9096	1440
	0.8848	0.7521	0.8131	480
	0.9356	0.9692	0.9521	1200
	0.9502	0.9542	0.9522	720
	0.9833	0.9325	0.9572	3600
	0.9198	0.9075	0.9136	1200
	0.9684	0.9639	0.9661	2160
	0.9125	1.0000	0.9543	480
	0.9597	0.9494	0.9545	1680
	0.8861	0.9479	0.9160	960
	0.9855	0.9571	0.9711	3120
	0.8649	0.8740	0.8694	960
	0.8727	0.7854	0.8268	480
	0.9085	0.9799	0.9428	5520
	0.9163	0.5931	0.7201	720
	0.9909	0.9316	0.9604	5280
	0.8676	0.9833	0.9219	720
	0.7809	0.9208	0.8451	480
	0.8426	0.9889	0.9099	720
	0.9114	0.9819	0.9454	5040
	0.9843	0.8875	0.9334	1200
	0.9744	0.9850	0.9797	3600
	0.9809	0.9569	0.9688	3600

Continued on next page

Tabela 15 – continuation

Class	Precision	Recall	F1-score	Support
0	0.9798	0.9831	0.9814	3840
Accuracy			0.9558	101040
Macro avg	0.9414	0.9282	0.9320	101040
Weighted avg	0.9572	0.9558	0.9553	101040

Tabela 16 – Proj-GTSRB (el=60°) - MASViT (max score)

Class	Precision	Recall	F1-score	Support
20	0.9814	0.9917	0.9865	480
30	0.9816	0.9795	0.9805	5760
50	0.9751	1.0000	0.9874	5280
60	0.9984	0.9054	0.9496	3360
70	0.9985	0.9558	0.9767	5520
80	0.9559	0.9970	0.9760	5760
80	0.9944	0.9903	0.9923	2160
100	1.0000	0.8762	0.9340	1680
120	0.9975	0.9850	0.9912	1200
→	0.9907	0.9958	0.9932	2880
■	0.9925	0.9301	0.9603	3120
↑	0.9816	1.0000	0.9907	480
◆	0.9862	0.9792	0.9827	6000
▽	0.6936	1.0000	0.8191	720
STOP	0.9397	0.8014	0.8651	720
○	0.9979	0.9677	0.9825	960

Continued on next page

Tabela 16 – continuation

Class	Precision	Recall	F1-score	Support
🚫	0.9456	0.9992	0.9716	1200
▬	0.9633	0.9847	0.9739	720
⚠	0.9892	0.9797	0.9844	3840
⚠	0.9857	0.9604	0.9729	1440
⚠	0.9894	0.7812	0.8731	480
⚠	0.9800	0.9825	0.9813	1200
⚠	0.9649	0.9931	0.9788	720
⚠	0.9505	0.9858	0.9678	3600
⚠	0.9095	0.9383	0.9237	1200
⚠	0.9977	0.9912	0.9944	2160
⚠	0.9562	1.0000	0.9776	480
⚠	0.6569	0.9881	0.7892	1680
⚠	0.5382	0.9823	0.6954	960
⚠	0.9749	0.9337	0.9538	3120
⚠	0.9887	0.8219	0.8976	960
⚠	0.9894	0.9750	0.9822	480
⌚	0.9451	0.7542	0.8389	5520
⌚	0.9449	0.7625	0.8440	720
⌚	0.9988	0.9780	0.9883	5280
⬆	0.8312	0.9708	0.8956	720
⬆	0.6784	0.9667	0.7973	480
⬆	0.8197	0.9917	0.8975	720
⌚	0.9856	0.9655	0.9754	5040
⌚	0.9936	0.9083	0.9491	1200

Continued on next page

Tabela 16 – continuation

Class	Precision	Recall	F1-score	Support
↻	0.9755	0.9956	0.9854	3600
◐	0.9898	0.9958	0.9928	3600
◓	0.9908	0.9867	0.9888	3840
Accuracy			0.9567	101040
Macro avg	0.9395	0.9518	0.9404	101040
Weighted avg	0.9647	0.9567	0.9579	101040

Tabela 17 – Proj-GTSRB (el=45°) - MASViT (fixed centroid)

Class	Precision	Recall	F1-score	Support
20	0.9126	0.5437	0.6815	480
30	0.8802	0.9094	0.8945	5760
50	0.9543	0.9883	0.9710	5280
60	0.9554	0.8985	0.9261	3360
70	0.9977	0.9513	0.9739	5520
80	0.9398	0.9943	0.9663	5760
80	0.9878	0.9782	0.9830	2160
100	0.9980	0.8887	0.9402	1680
120	0.9597	0.9717	0.9656	1200
◐	0.9915	0.9764	0.9839	2880
◐	0.9728	0.8481	0.9062	3120
↑	0.9613	0.9313	0.9460	480
◆	0.8827	0.9283	0.9050	6000
▽	0.6861	0.9806	0.8073	720

Continued on next page

Tabela 17 – continuation

Class	Precision	Recall	F1-score	Support
	0.8373	0.6292	0.7185	720
	0.9851	0.8979	0.9395	960
	0.8999	0.9592	0.9286	1200
	0.8973	0.7889	0.8396	720
	0.9204	0.9604	0.9400	3840
	0.9344	0.8708	0.9015	1440
	0.7500	0.6125	0.6743	480
	0.8742	0.9383	0.9051	1200
	0.8978	0.9153	0.9065	720
	0.9530	0.8383	0.8920	3600
	0.8091	0.8583	0.8330	1200
	0.9488	0.9444	0.9466	2160
	0.8587	1.0000	0.9240	480
	0.9059	0.9167	0.9112	1680
	0.7998	0.8781	0.8371	960
	0.9802	0.8574	0.9147	3120
	0.7989	0.7448	0.7709	960
	0.7740	0.6208	0.6890	480
	0.8384	0.9679	0.8985	5520
	0.8613	0.5347	0.6598	720
	0.9849	0.8629	0.9198	5280
	0.8124	0.9681	0.8834	720
	0.7920	0.7854	0.7887	480
	0.7437	0.9792	0.8453	720

Continued on next page

Tabela 17 – continuation

Class	Precision	Recall	F1-score	Support
↙	0.8233	0.9633	0.8878	5040
↗	0.9796	0.8392	0.9039	1200
↻	0.9499	0.9542	0.9521	3600
↔	0.9356	0.9239	0.9297	3600
◐	0.9783	0.9633	0.9707	3840
Accuracy			0.9179	101040
Macro avg	0.8978	0.8782	0.8828	101040
Weighted avg	0.9220	0.9179	0.9174	101040

Tabela 18 – Proj-GTSRB (el=45°) - MASViT (max score)

Class	Precision	Recall	F1-score	Support
20	0.9604	0.9104	0.9348	480
30	0.9535	0.9535	0.9535	5760
50	0.9593	1.0000	0.9792	5280
60	0.9884	0.8851	0.9339	3360
70	0.9981	0.9350	0.9655	5520
80	0.9594	0.9962	0.9774	5760
80	0.9842	0.9810	0.9826	2160
100	1.0000	0.8940	0.9441	1680
120	0.9991	0.9733	0.9861	1200
→	0.9715	0.9927	0.9820	2880
↔	0.9910	0.8776	0.9308	3120
↑	0.9938	0.9979	0.9958	480

Continued on next page

Tabela 18 – continuation

Class	Precision	Recall	F1-score	Support
◆	0.9693	0.9630	0.9661	6000
▽	0.6492	1.0000	0.7873	720
STOP	0.9151	0.7931	0.8497	720
○	0.9920	0.9083	0.9483	960
■	0.9011	0.9867	0.9419	1200
▬	0.9670	0.9764	0.9717	720
⚠	0.9684	0.9724	0.9704	3840
↗	0.9776	0.9715	0.9746	1440
⚡	0.9529	0.5896	0.7284	480
⚡	0.9421	0.9758	0.9587	1200
⚠	0.9545	0.9903	0.9721	720
⚠	0.9309	0.9614	0.9459	3600
⚠	0.8603	0.9183	0.8884	1200
⚠	0.9836	0.9736	0.9786	2160
⚠	0.8556	1.0000	0.9222	480
⚠	0.6267	0.9762	0.7633	1680
⚠	0.4997	0.9771	0.6613	960
⚠	0.9806	0.8423	0.9062	3120
*	0.9779	0.8313	0.8986	960
⚠	0.9784	0.9417	0.9597	480
⌚	0.9036	0.7467	0.8177	5520
⟳	0.9479	0.7069	0.8099	720
⟲	0.9972	0.9491	0.9725	5280
↑	0.7593	0.9333	0.8374	720

Continued on next page

Tabela 18 – continuation

Class	Precision	Recall	F1-score	Support
↑	0.6340	0.8625	0.7308	480
↗	0.7593	0.9903	0.8596	720
↖	0.9647	0.9381	0.9512	5040
↙	0.9813	0.8767	0.9261	1200
↻	0.9399	0.9867	0.9627	3600
⌚	0.9681	0.9933	0.9805	3600
⌚⌚	0.9854	0.9656	0.9754	3840
Accuracy			0.9376	101040
Macro avg	0.9182	0.9278	0.9159	101040
Weighted avg	0.9478	0.9376	0.9393	101040

Tabela 19 – Proj-GTSRB (el=30°) - MASViT (fixed centroid)

Class	Precision	Recall	F1-score	Support
20	0.3620	0.1667	0.2282	480
30	0.6704	0.4844	0.5624	5760
50	0.9051	0.8093	0.8545	5280
60	0.7710	0.6324	0.6949	3360
70	0.9972	0.9071	0.9500	5520
80	0.7124	0.9698	0.8214	5760
80	0.8937	0.9537	0.9227	2160
100	0.9850	0.1173	0.2096	1680
120	0.9702	0.7050	0.8166	1200
120	0.9732	0.9090	0.9400	2880

Continued on next page

Tabela 19 – continuation

Class	Precision	Recall	F1-score	Support
	0.7471	0.4385	0.5526	3120
	0.8074	0.4104	0.5442	480
	0.5307	0.5832	0.5557	6000
	0.3062	0.5597	0.3959	720
	0.3753	0.2111	0.2702	720
	0.7822	0.6958	0.7365	960
	0.4761	0.6817	0.5607	1200
	0.4276	0.3611	0.3916	720
	0.5576	0.8344	0.6685	3840
	0.7249	0.6972	0.7108	1440
	0.2246	0.1979	0.2104	480
	0.3525	0.6275	0.4514	1200
	0.4009	0.7528	0.5232	720
	0.4871	0.4367	0.4605	3600
	0.3402	0.6750	0.4524	1200
	0.7148	0.6963	0.7054	2160
	0.7564	0.9833	0.8551	480
	0.7050	0.6315	0.6662	1680
	0.5000	0.3250	0.3939	960
	0.8233	0.1881	0.3063	3120
	0.5763	0.2990	0.3937	960
	0.4388	0.1792	0.2544	480
	0.4973	0.8833	0.6364	5520
	0.3298	0.2625	0.2923	720

Continued on next page

Tabela 19 – continuation

Class	Precision	Recall	F1-score	Support
20	0.8934	0.3366	0.4889	5280
30	0.5352	0.8236	0.6488	720
40	0.4175	0.1792	0.2507	480
50	0.4554	0.7083	0.5543	720
60	0.4567	0.7554	0.5693	5040
70	0.8753	0.6200	0.7259	1200
80	0.7418	0.5683	0.6436	3600
90	0.5275	0.6206	0.5703	3600
100	0.9366	0.6805	0.7882	3840
Accuracy			0.6404	101040
Macro avg	0.6270	0.5711	0.5635	101040
Weighted avg	0.6907	0.6404	0.6313	101040

Tabela 20 – Proj-GTSRB (el=30°) - MASViT (max score)

Class	Precision	Recall	F1-score	Support
20	0.4680	0.4271	0.4466	480
30	0.8780	0.5286	0.6599	5760
40	0.8816	0.9559	0.9172	5280
50	0.9032	0.7051	0.7919	3360
60	0.9954	0.8611	0.9234	5520
70	0.7613	0.9719	0.8538	5760
80	0.8352	0.9569	0.8919	2160
100	0.9950	0.1179	0.2108	1680

Continued on next page

Tabela 20 – continuation

Class	Precision	Recall	F1-score	Support
120	0.9980	0.8375	0.9107	1200
130	0.8555	0.9417	0.8965	2880
140	0.9206	0.5423	0.6825	3120
150	0.9223	0.5437	0.6841	480
160	0.7365	0.7592	0.7476	6000
170	0.3952	0.7597	0.5200	720
STOP	0.6651	0.3972	0.4974	720
180	0.8859	0.6875	0.7742	960
190	0.6215	0.7333	0.6728	1200
200	0.5460	0.6181	0.5798	720
210	0.6337	0.8812	0.7373	3840
220	0.8978	0.9215	0.9095	1440
230	0.2971	0.2562	0.2752	480
240	0.4172	0.7833	0.5445	1200
250	0.3574	0.9361	0.5173	720
260	0.7774	0.5994	0.6769	3600
270	0.4234	0.7650	0.5451	1200
280	0.7312	0.7694	0.7498	2160
290	0.6218	1.0000	0.7668	480
300	0.5596	0.7577	0.6437	1680
310	0.3991	0.6323	0.4893	960
320	0.9211	0.2881	0.4390	3120
*	0.9625	0.5344	0.6872	960
340	0.8239	0.6042	0.6971	480

Continued on next page

Tabela 20 – continuation

Class	Precision	Recall	F1-score	Support
∅	0.6382	0.8205	0.7179	5520
↶	0.7293	0.4639	0.5671	720
↷	0.9749	0.5960	0.7398	5280
↑	0.4089	0.7792	0.5363	720
↑↑	0.3971	0.2896	0.3349	480
↖	0.3991	0.8181	0.5364	720
↙	0.7132	0.8171	0.7616	5040
↙↑	0.8261	0.7442	0.7830	1200
↺	0.7755	0.7506	0.7628	3600
∅∅	0.7235	0.8772	0.7930	3600
∅∅∅	0.9827	0.7701	0.8635	3840
Accuracy			0.7393	101040
Macro avg	0.7129	0.6930	0.6683	101040
Weighted avg	0.7871	0.7393	0.7357	101040

APÊNDICE C – APPENDIX

C.1 CONFUSION MATRICES

We present the confusion matrices for each test dataset for MASViT experiments utilizing the fixed centroid approach, spanning across several tables. There are a total of eight tables: one for GTSRB Test, one for elevation angle 90° (Aff-GTSRB / Proj-GTSRB), three for Aff-GTSRB with elevation angles 30°, 45°, and 60°, and finally, three more for Proj-GTSRB with elevation angles 30°, 45°, and 60°. The confusion matrices were rotated and resized to accommodate their large dimensions (48 × 48) and fit properly on the pages and are presented in the (True × Predicted) format.

C.1.1 GTSRB Test

The table 21 describes the confusion matrix for GTSRB Test dataset using fixed centroid approach.

C.1.2 Aff-GTSRB / Proj-GTSRB (el=90°)

In elevation angle equals to 90°, there aren't not difference between affinity and projectivity. So, there are here one confusion matrix, using the fixed centroid approach described in Table 22.

C.1.3 Aff-GTSRB el={60°, 45°, 30°}

The tables 23, 24 and 25 show the confusion matrices of tests in aff-GTSRB datasets for elevation degrees 60°, 45° and 30° using the fixed centroid approach.

C.1.4 Proj-GTSRB el={60°, 45°, 30°}

The tables 26, 27 and 28 show the confusion matrices of tests in proj-GTSRB datasets for elevation degrees 60°, 45° and 30° using the fixed centroid approach.

Tabela 21 – GTSRB Test - MASViT (fixed centroid) - Confusion Matrix (True \times Predicted)

Tabela 22 – Aff-GTSRB / Proj-GTSRB (el=90°) - MASViT (fixed centroid) - Confusion Matrix (True × Predicted)

| True | Pred | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 | 376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 | 426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 | 451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 | 476 | 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 | 500 | 501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 | 524 | 525 | 526 | 527 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543 | 544 | 545 | 546 | 547 | 548 | 549 | 550 | 551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 | 559 | 560 | 561 | 562 | 563 | 564 | 565 | 566 | 567 | 568 | 569 | 570 | 571 | 572 | 573 | 574 | 575 | 576 | 577 | 578 | 579 | 580 | 581 | 582 | 583 | 584 | 585 | 586 | 587 | 588 | 589 | 590 | 591 | 592 | 593 | 594 | 595 | 596 | 597 | 598 | 599 | 600 | 601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 | 610 | 611 | 612 | 613 | 614 | 615 | 616 | 617 | 618 | 619 | 620 | 621 | 622 | 623 | 624 | 625 | 626 | 627 | 628 | 629 | 630 | 631 | 632 | 633 | 634 | 635 | 636 | 637 | 638 | 639 | 640 | 641 | 642 | 643 | 644 | 645 | 646 | 647 | 648 | 649 | 650 | 651 | 652 | 653 | 654 | 655 | 656 | 657 | 658 | 659 | 660 | 661 | 662 | 663 | 664 | 665 | 666 | 667 | 668 | 669 | 670 | 671 | 672 | 673 | 674 | 675 | 676 | 677 | 678 | 679 | 680 | 681 | 682 | 683 | 684 | 685 | 686 | 687 | 688 | 689 | 690 | 691 | 692 | 693 | 694 | 695 | 696 | 697 | 698 | 699 | 700 | 701 | 702 | 703 | 704 | 705 | 706 | 707 | 708 | 709 | 710 | 711 | 712 | 713 | 714 | 715 | 716 | 717 | 718 | 719 | 720 | 721 | 722 | 723 | 724 | 725 | 726 | 727 | 728 | 729 | 730 | 731 | 732 | 733 | 734 | 735 | 736 | 737 | 738 | 739 | 740 | 741 | 742 | 743 | 744 | 745 | 746 | 747 | 748 | 749 | 750 | 751 | 752 | 753 | 754 | 755 | 756 | 757 | 758 | 759 | 760 | 761 | 762 | 763 | 764 | 765 | 766 | 767 | 768 | 769 | 770 | 771 | 772 | 773 | 774 | 775 | 776 | 777 | 778 | 779 | 780 | 781 | 782 | 783 | 784 | 785 | 786 | 787 | 788 | 789 | 790 | 791 | 792 | 793 | 794 | 795 | 796 | 797 | 798 | 799 | 800 | 801 | 802 | 803 | 804 | 805 | 806 | 807 | 808 | 809 | 8010 | 8011 | 8012 | 8013 | 8014 | 8015 | 8016 | 8017 | 8018 | 8019 | 8020 | 8021 | 8022 | 8023 | 8024 | 8025 | 8026 | 8027 | 8028 | 8029 | 8030 | 8031 | 8032 | 8033 | 8034 | 8035 | 8036 | 8037 | 8038 | 8039 | 8040 | 8041 | 8042 | 8043 | 8044 | 8045 | 8046 | 8047 | 8048 | 8049 | 8050 | 8051 | 8052 | 8053 | 8054 | 8055 | 8056 | 8057 | 8058 | 8059 | 8060 | 8061 | 8062 | 8063 | 8064 | 8065 | 8066 | 8067 | 8068 | 8069 | 8070 | 8071 | 8072 | 8073 | 8074 | 8075 | 8076 | 8077 | 8078 | 8079 | 8080 | 8081 | 8082 | 8083 | 8084 | 8085 | 8086 | 8087 | 8088 | 8089 | 8090 | 8091 | 8092 | 8093 | 8094 | 8095 | 8096 | 8097 | 8098 | 8099 | 80100 | 80101 | 80102 | 80103 | 80104 | 80105 | 80106 | 80107 | 80108 | 80109 | 80110 | 80111 | 80112 | 80113 | 80114 | 80115 | 80116 | 80117 | 80118 | 80119 | 80120 | 80121 | 80122 | 80123 | 80124 | 80125 | 80126 | 80127 | 80128 | 80129 | 80130 | 80131 | 80132 | 80133 | 80134 | 80135 | 80136 | 80137 | 80138 | 80139 | 80140 | 80141 | 80142 | 80143 | 80144 | 80145 | 80146 | 80147 | 80148 | 80149 | 80150 | 80151 | 80152 | 80153 | 80154 | 80155 | 80156 | 80157 | 80158 | 80159 | 80160 | 80161 | 80162 | 80163 | 80164 | 80165 | 80166 | 80167 | 80168 | 80169 | 80170 | 80171 | 80172 | 80173 | 80174 | 80175 | 80176 | 80177 | 80178 | 80179 | 80180 | 80181 | 80182 | 80183 | 80184 | 80185 | 80186 | 80187 | 80188 | 80189 | 80190 | 80191 | 80192 | 80193 | 80194 | 80195 | 80196 | 80197 | 80198 | 80199 | 80200 | 80201 | 80202 | 80203 | 80204 | 80205 | 80206 | 80207 | 80208 | 80209 | 80210 | 80211 | 80212 | 80213 | 80214 | 80215 | 80216 | 80217 | 80218 | 80219 | 80220 | 80221 | 80222 | 80223 | 80224 | 80225 | 80226 | 80227 | 80228 | 80229 | 80230 | 80231 | 80232 | 80233 | 80234 | 80235 | 80236 | 80237 | 80238 | 80239 | 80240 | 80241 | 80242 | 80243 | 80244 | 80245 | 80246 | 80247 | 80248 | 80249 | 80250 | 80251 | 80252 | 80253 | 80254 | 80255 | 80256 | 80257 | 80258 | 80259 | 80260 | 80261 | 80262 | 80263 | 80264 | 80265 | 80266 | 80267 | 80268 | 80269 | 80270 | 80271 | 80272 | 80273 | 80274 | 80275 | 80276 | 80277 | 80278 | 80279 | 80280 | 80281 | 80282 | 80283 | 80284 | 80285 | 80286 | 80287 | 80288 | 80289 | 80290 | 80291 | 80292 | 80293 | 80294 | 80295 | 80296 | 80297 | 80298 | 80299 | 80300 | 80301 | 80302 | 80303 | 80304 | 80305 | 80306 | 80307 | 80308 | 80309 | 80310 | 80311 | 80312 | 80313 | 80314 | 80315 | 80316 | 80317 | 80318 | 80319 | 80320 | 80321 | 80322 | 80323 | 80324 | 80325 | 80326 | 80327 | 80328 | 80329 | 80330 | 80331 | 80332 | 80333 | 80334 | 80335 | 80336 | 80337 | 80338 | 80339 | 80340 | 80341 | 80342 | 80343 | 80344 | 80345 | 80346 | 80347 | 80348 | 80349 | 80350 | 80351 | 80352 | 80353 | 80354 | 80355 | 80356 | 80357 | 80358 | 80359 | 80360 | 80361 | 80362 | 80363 | 80364 | 80365 | 80366 | 80367 | 80368 | 80369 | 80370 | 80371 | 80372 | 80373 | 80374 | 80375 | 80376 | 80377 | 80378 | 80379 | 80380 | 80381 | 80382 | 80383 | 80384 | 80385 | 80386 | 80387 | 80388 | 80389 | 80390 | 80391 | 80392 | 80393 | 80394 | 80395 | 80396 | 80397 | 80398 | 80399 | 80400 | 80401 | 80402 | 80403 | 80404 | 80405 | 80406 | 80407 | 80408 | 80409 | 80410 | 80411 | 80412 | 80413 | 80414 | 80415 | 80416 | 80417 | 80418 | 80419 | 80420 | 80421 | 80422 | 80423 | 80424 | 80425 | 80426 | 80427 | 80428 | 80429 | 80430 | 80431 | 80432 | 80433 | 80434 | 80435 | 80436 | 80437 | 80438 | 80439 | 80440 | 80441 | 80442 | 80443 | 80444 | 80445 | 80446 | 80447 | 80448 | 80449 | 80450 | 80451 | 80452 | 80453 | 80454 | 80455 | 80456 | 80457 | 80458 | 80459 | 80460 | 80461 | 80462 | 80463 | 80464 | 80465 | 80466 | 80467 | 80468 | 80469 | 80470 | 80471 | 80472 | 80473 | 80474 | 80475 | 80476 | 80477 | 80478 | 80479 | 80480 | 80481 | 80482 | 80483 | 80484 |<
| --- |

Tabela 23 – Aff-GTSRB (el=60°) - MASViT (fixed centroid) - Confusion Matrix (True × Predicted)

Tabela 24 – Aff-GTSRB (el=45°) - MASViT (fixed centroid) - Confusion Matrix (True × Predicted)

Tabela 25 – Aff-GTSRB (el=30°) - MASViT (fixed centroid) - Confusion Matrix (True × Predicted)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	600	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	656	657	658	659	660	661	662	663	664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679	680	681	682	683	684	685	686	687	688	689	690	691	692	693	694	695	696	697	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807	808	809	8010	8011	8012	8013	8014	8015	8016	8017	8018	8019	8020	8021	8022	8023	8024	8025	8026	8027	8028	8029	8030	8031	8032	8033	8034	8035	8036	8037	8038	8039	8040	8041	8042	8043	8044	8045	8046	8047	8048	8049	8050	8051	8052	8053	8054	8055	8056	8057	8058	8059	8060	8061	8062	8063	8064	8065	8066	8067	8068	8069	8070	8071	8072	8073	8074	8075	8076	8077	8078	8079	8080	8081	8082	8083	8084	8085	8086	8087	8088	8089	8090	8091	8092	8093	8094	8095	8096	8097	8098	8099	80100	80101	80102	80103	80104	80105	80106	80107	80108	80109	80110	80111	80112	80113	80114	80115	80116	80117	80118	80119	80120	80121	80122	80123	80124	80125	80126	80127	80128	80129	80130	80131	80132	80133	80134	80135	80136	80137	80138	80139	80140	80141	80142	80143	80144	80145	80146	80147	80148	80149	80150	80151	80152	80153	80154	80155	80156	80157	80158	80159	80160	80161	80162	80163	80164	80165	80166	80167	80168	80169	80170	80171	80172	80173	80174	80175	80176	80177	80178	80179	80180	80181	80182	80183	80184	80185	80186	80187	80188	80189	80190	80191	80192	80193	80194	80195	80196	80197	80198	80199	80200	80201	80202	80203	80204	80205	80206	80207	80208	80209	80210	80211	80212	80213	80214	80215	80216	80217	80218	80219	80220	80221	80222	80223	80224	80225	80226	80227	80228	80229	80230	80231	80232	80233	80234	80235	80236	80237	80238	80239	80240	80241	80242	80243	80244	80245	80246	80247	80248	80249	80250	80251	80252	80253	80254	80255	80256	80257	80258	80259	80260	80261	80262	80263	80264	80265	80266	80267	80268	80269	80270	80271	80272	80273	80274	80275	80276	80277	80278	80279	80280	80281	80282	80283	80284	80285	80286	80287	80288	80289	80290	80291	80292	80293	80294	80295	80296	80297	80298	80299	80300	80301	80302	80303	80304	80305	80306	80307	80308	80309	80310	80311	80312	80313	80314	80315	80316	80317	80318	80319	80320	80321	80322	80323	80324	80325	80326	80327	80328	80329	80330	80331	80332	80333	80334	80335	80336	80337	80338	80339	80340	80341	80342	80343	80344	80345	80346	80347	80348	80349	80350	80351	80352	80353	80354	80355	80356	80357	80358	80359	80360	80361	80362	80363	80364	80365	80366	80367	80368	80369	80370	80371	80372	80373	80374	80375	80376	80377	80378	80379	80380	80381	80382	80383	80384	80385	80386	80387	80388	80389	80390	80391	80392	80393	80394	80395	80396	80397	80398	80399	80400	80401	80402	80403	80404	80405	80406	80407	80408	80409	80410	80411	80412	80413	80414	80415	80416	80417	80418	80419	80420	80421	80422	80423	80424	80425	80426	80427	80428	80429	80430	80431	80432	80433	80434	80435	80436	80437	80438	80439	80440	80441	80442	80443	80444	80445	80446	80447	80448	80449	80450	80451	80452	80453	80454	80455	80456	80457	80458	80459	80460	80461	80462	80463	80464	80465	80466	80467	80468	80469	80470	80471	80472	80473	80474	80475	80476	80477	80478	80479	80480	80481	80482	80483	80484	80485	80486

Tabela 26 – Proj-GTSRB (el=60°) - MASViT (fixed centroid) - Confusion Matrix (True × Predicted)

Tabela 27 – Proj-GTSRB (el=45°) - MASViT (fixed centroid) - Confusion Matrix (True × Predicted)

Tabela 28 – Proj-GTSRB (el=30°) - MASViT (fixed centroid) - Confusion Matrix (True × Predicted)

APÊNDICE D – APPENDIX

D.1 COMPUTING INFRASTRUCTURE FOR EXPERIMENTS

In our experiments, we used a machine running Ubuntu/Linux equipped with an AMD Ryzen 9 3900X 12-Core Processor, 64 GB of RAM, and a NVIDIA GeForce RTX 3070 Ti with 8 GB of GPU memory. The model and experiments were implemented in Python 3.8.10 using the PyTorch framework, which leverages the NVIDIA GPU via the CUDA library.

For training and validation, we used a batch size of 16 samples, resulting in a maximum GPU memory usage of 1.4 GB. Each training epoch took an average of 138.57 seconds, totaling approximately 11.5 hours over 300 epochs, using the original GTSRB train and test samples for training and validation, respectively.

For all tests with the fixed centroid approach, we used a batch size of 768 samples, which occupied 7.8 GB of GPU memory. In the test experiments, for each aff-GTSRB and proj-GTSRB dataset using the fixed centroid approach, the time spent was around 24.28 seconds, totaling 2 minutes and 50 seconds. For the GTSRB test, the time spent was 4.93 seconds.

For the max score approach tests, we used a single sample at a time, which occupied 0.7 GB of GPU memory. We limited the number of centroids for polar transformations by choosing local pixels around the center. We used a 7×7 grid to generate 49 polar images per Euclidean image instead of 48×48 . Even so, the average time spent was 5 hours and 25 minutes per dataset, totaling in 37 hours and 55 minutes for all aff-GTSRB and proj-GTSRB datasets. For the GTSRB test, the time spent was 1 hour.

The Table 29 shows the times spent in each experiment category, the number of used datasets, batch sizes, and the occupied GPU memory. The total computation time was approximately 50 hours and 28 minutes. The maximum GPU memory used was 7.8 GB in Tests with fixed centroid, but the values smaller of memory can to be used in this Tests, using smaller batch size values, it will is not to affect the performance reproducible of this tests experiments. There are here only the amount of compute of latest relevant experiments to replicate the same results, the compute resources used in entire research was bigger than the reported.

Table 30 presents the number of parameters and the average inference times for MAS-

Tabela 29 – MASViT Experiment Times

Experiments	# Datasets	Batch Size	Occupied GPU Mem. (GB)	Execution Time (hh:mm:ss)
Training & Validation	2	16	1.4	11:30:00
Tests (fixed centroid)	8	768	7.8	00:02:55
Tests (max score)	8	1	0.7	38:55:00
Total				50:27:55

ViT and the concurrent models proposed by (ARCOS-GARCÍA; ALVAREZ-GARCIA; SORIA-MORILLO, 2018) and (CHEN et al., 2024). Inference times were measured by computing the elapsed time required for a single forward pass of the model using one data sample (or batch), since the models perform computations in parallel, the inference time remains the same whether processing a single sample or an entire batch. MASViT exhibits the highest number of model parameters and the lowest average inference time processing.

Tabela 30 – Number of parameters and average inference time of models

(*) (ARCOS-GARCÍA; ALVAREZ-GARCIA; SORIA-MORILLO, 2018)

(**)(CHEN et al., 2024)

Models	# Parameters	Avg. Inference Time
MASViT	16,781,867	≈ 3 ms
CNN + 3 Spatial Transformers *	14,678,561	≈ 9 ms
Global Routing CapsNet **	608,656	≈ 26 ms