
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Luiz Gustavo da Rocha Charamba

Providing Projective and Affine Invariance for Recognition
by Multi-Angle-Scale Vision Transformer

Recife

2025



Luiz Gustavo da Rocha Charamba

Providing Projective and Affine Invariance for Recognition
by Multi-Angle-Scale Vision Transformer

Ph.D. Thesis presented to the Centro de Informá-
tica of the Universidade Federal de Pernambuco
in partial fulfillment of the requirements for the
degree of Doctorate of Computer Science.

Concentration Area: Media and Interaction

Supervisor: Silvio de Barros Melo

Co-Supervisor: Nivan Roberto Ferreira Júnior

Recife

2025



Charamba, Luiz Gustavo da Rocha.
   Providing Projective and Affine Invariance for Recognition by
Multi-Angle-Scale Vision Transformer / Luiz Gustavo da Rocha
Charamba. - Recife, 2025.
   130f.: il.

   Tese (Doutorado) - Universidade Federal de Pernambuco, Centro
de Informática, Programa de Pós-Graduação em Ciência da
Computação, 2025.
   Orientação: Silvio de Barros Melo.
   Coorientação: Nivan Roberto Ferreira Júnior.
   Inclui Referências e Apêndices.

   1. Affine Invariance; 2. Projective Invariance; 3. Geometric
Deep Learning; 4. Vision Transformer; 5. Computer Vision. I.
Melo, Silvio de Barros. II. Ferreira Júnior, Nivan Roberto. III.
Título.

UFPE-Biblioteca Central

.Catalogação de Publicação na Fonte. UFPE - Biblioteca Central



 
SERVIÇO PÚBLICO FEDERAL 

UNIVERSIDADE FEDERAL DE PERNAMBUCO 
CENTRO DE INFORMÁTICA 

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO 
 

​  
 
                                                            

                                                                       A tese de doutorado intitulada “Providing Projective 
and Affine Invariance for Recognition by Multi-Angle-Scale Vision Transformer”, apresentada 

por Luiz Gustavo da Rocha Charamba em 28/08/2025, foi aprovada pela Banca Examinadora. 

Como exigência regimental para a obtenção do grau de doutor, o aluno deverá entregar a versão 

final do trabalho com as devidas correções propostas pelos examinadores, no prazo de 90 dias. 

 

                                                                                                       Recife, 28 de agosto de 2025 
 
 
 
 
 
 
 
_______________________________________ 
Prof. Dr. Rafael Dueire Lins 
Centro de Informática / UFPE 
 
 
 
 
________________________________________ 
Prof. Dr. Manuel Menezes de Oliveira Neto 
Instituto de Informática / UFRGS​
 
 
 
 
________________________________________ 
Prof. Dr. João Marcelo Xavier Natário Teixeira 
Departamento de Eletrônica e Sistemas / UFPE

 
 
 
 
_____________________________________ 
Prof. Dr. Ricardo Martins de Abreu Silva 
Centro de Informática / UFPE 
 
 
 
 
_______________________________________ 
Prof. Dr. Sérgio de Carvalho Bezerra 
Departamento de Computação Científica / UFPB 

 
 
 
 
 
 
 
 
 
As correções solicitadas na defesa foram 
aprovadas pelo presidente da banca em: 
 
Recife, 14 de novembro de 2025. 



Dedico este trabalho à minha filha Aurora, à minha esposa Raissa, e à minha mãe

Maria das Graças.



AGRADECIMENTOS

Este trabalho só foi possível graças à ajuda de Deus e ao apoio de pessoas pelas quais

serei eternamente grato.

Agradeço profundamente à minha amada esposa, Raissa, pelo amor, compreensão e

constante apoio, especialmente nos momentos mais difíceis. Agradeço também por ter me

presenteado com nossa amada filha, Aurora, que veio ao mundo neste ano para iluminar

nossas vidas. Sua chegada tornou ainda mais especial o momento de defender esta tese,

permitindo-me viver a alegria de compartilhar essa conquista com a sua presença graciosa.

À minha querida mãe, Maria das Graças da Rocha, expresso minha eterna gratidão

por sua sabedoria, paciência e amor incondicional. Foi ela quem me ensinou a enfrentar os

desafios da vida com coragem e fé, sempre torcendo por mim em cada etapa do caminho.

Sem o seu exemplo e dedicação, nada disso teria sido possível.

Sou também profundamente grato ao meu orientador, professor Sílvio Melo, por sua

confiança, orientação e inspiração ao longo desta jornada. Sua competência e humanidade

despertaram em mim grande admiração e respeito, e sinto-me honrado por ter sido seu

aluno de doutorado. Agradeço igualmente ao meu coorientador, professor Nivan Ferreira,

pelas valiosas sugestões, críticas construtivas e contribuições que ajudaram a aprimorar

este trabalho.

Aos meus amigos próximos e familiares, que sempre acreditaram em mim e me incen-

tivaram com palavras de apoio e gestos de carinho, deixo meus sinceros agradecimentos.

Por fim, estendo minha gratidão a todas as pessoas que, de alguma forma, contribuíram

para a realização desta tese, seja com palavras de incentivo, colaboração acadêmica ou

simples gestos de amizade e solidariedade.



“All models are wrong, but some are useful.” (BOX, 1976)



RESUMO

O reconhecimento de formas planares deformadas encontra aplicações em muitas

áreas não relacionadas, tais como marketing, OCR e veículos autônomos. Um grande

esforço tem sido dedicado a esse tema na literatura, baseado em abordagens geométri-

cas diretas, embora com resultados ou desempenho limitados. Mais recentemente, várias

abordagens de aprendizado de máquina foram propostas, mas com resultados satisfató-

rios apenas quando a deformação é, no máximo, uma transformação afim fraca. Esta tese

apresenta o Multi-Angle-Scale Vision Transformer, MASViT, uma solução baseada em

aprendizado profundo que supera os métodos do estado da arte no reconhecimento de

imagens deformadas por afinidades e projetividades. Um ponto crucial em nossa proposta

é a ausência de imagens deformadas durante a fase de treinamento. Nossa abordagem

emprega filtros convolucionais 1D correspondentes a linhas retas que cruzam a forma

no domínio polar, preservando a colinearidade, um invariante projetivo fundamental. As

sequências angulares derivadas do domínio polar integram-se bem à arquitetura Vision

Transformer (ViT), pois esses patch embeddings são geometricamente coerentes, aumen-

tando a adequação ao codificador do transformer. Também introduzimos diversas técnicas

de regularização para ampliar a capacidade de generalização do modelo. Para validar a

abordagem, nós organizamos novos conjuntos de teste derivados do German Traffic Sign

Recognition Benchmark (GTSRB). Por meio de extensos experimentos, demonstramos

que essa abordagem supera os modelos do estado da arte, especialmente em cenários

envolvendo imagens submetidas a severas deformações afins e projetivas.

Palavras-chaves: Invariância Afim; Invariância Projetiva; Aprendizagem Profunda Ge-

ométrica; Transformador de Visão; Visão Computacional.



ABSTRACT

The recognition of deformed planar shapes finds applications in many unrelated areas,

such as marketing, OCR, and autonomous vehicles. An enormous effort has been devoted

to this in the literature, based on direct geometric approaches, although with limited

results or performance. More recently, many machine learning approaches have been pro-

posed with satisfactory results only when the deformation is a weak affine at best. This

thesis introduces the Multi-Angle-Scale Vision Transformer, MASViT, a deep-learning-

based solution that outperforms state of the art methods in the recognition of affinely and

projectively deformed images. A crucial point in our setting is the absence of deformed

images during training phase. Our approach employs 1D convolutional filters correspond-

ing to straight lines crossing the shape in the polar domain, preserving collinearity, a basic

projective invariant. Angular sequences deriving from the polar domain integrate well with

the Vision Transformer (ViT) architecture, as these patch embeddings are geometrically

coherent, enhancing suitability for the transformer encoder. We also introduce several reg-

ularization techniques to boost the generalizability of model. To validate the approach, we

curated new test datasets derived from the German Traffic Sign Recognition Benchmark

(GTSRB). Through extensive experiments, we demonstrate that this approach surpasses

state-of-the-art models, particularly when dealing with images subjected to severe affine

and projective deformations.

Keywords: Affine Invariance; Projective Invariance; Geometric Deep Learning; Vision

Transformer; Computer Vision.



SUMÁRIO

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 OBJECTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 SCIENTIFIC PRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 ORGANIZATION OF THE THESIS . . . . . . . . . . . . . . . . . . . . . 15

2 THEORETICAL BASIS . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 GEOMETRIC TRANSFORMATIONS BACKGROUND . . . . . . . . . . . 17

2.2 ARTIFICIAL NEURAL NETWORKS . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1.1 Artificial Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1.2 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1.2.1 Sigmoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1.2.2 Hyperbolic Tangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1.2.3 Rectified Linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1.3 Softmax Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1.4 MLP Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2.2 Convolutional Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2.3 Pooling Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2.4 Fully-Connected Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2.5 CNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.3 Vision Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.3.1 Transformer Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3.1.1 Multi-Head Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.3.1.2 Scaled Dot-Product Attention . . . . . . . . . . . . . . . . . . . . . . 32

2.3 LEARNING MECHANISM AND TRAINING . . . . . . . . . . . . . . . . . 32

2.3.1 Error Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Gradient Descent and Backpropagation . . . . . . . . . . . . . . . . . 33



2.3.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.3.1 Epoch and Batch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.3.2 Underfitting and Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.3.3 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3.3.1 L1 and L2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3.3.2 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.3.3.3 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.3.3.4 Batch Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.3.3.5 Weight Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.3.4 Weight Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.3.4.1 Weight Initialization Algorithms . . . . . . . . . . . . . . . . . . . . . 38

2.4 EVALUATION OF CLASSIFIERS . . . . . . . . . . . . . . . . . . . . . . 39

2.4.1 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.2.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.2.2 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.2.3 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.2.4 Specificity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.2.5 F1-Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 PLANAR SHAPE RECOGNITION BY SHAPE DESCRIPTORS . . . . . . 44

3.2 PLANAR SHAPE RECOGNITION BY NEURAL NETWORKS . . . . . . . 46

3.3 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 DEVELOPMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 MULTI-ANGLE-SCALE VISION TRANSFORMER . . . . . . . . . . . . . . 50

4.1.1 Polar Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.2 MASViT Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.2.1 Horizontal and Vertical Layers . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.2.2 Angle Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2.3 Class Token and Positional Embeddings . . . . . . . . . . . . . . . . . . . 54

4.1.2.4 Transformer Encoder and Classifier settings . . . . . . . . . . . . . . . . . 55

4.2 DATA AUGMENTATION IN POLAR DOMAIN . . . . . . . . . . . . . . . 55



4.2.1 Cyclic-Angular Shifting. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Right-Side Padding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 POST TRAINING BOOST BY MAX SCORE . . . . . . . . . . . . . . . . 57

4.4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 DATASETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 TRAINING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 TESTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . 69

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

APÊNDICE A – APPENDIX . . . . . . . . . . . . . . . . . . . . . . 77

APÊNDICE B – APPENDIX . . . . . . . . . . . . . . . . . . . . . . 85

APÊNDICE C – APPENDIX . . . . . . . . . . . . . . . . . . . . . . 120

APÊNDICE D – APPENDIX . . . . . . . . . . . . . . . . . . . . . . 129



12

1 INTRODUCTION

In image recognition tasks, objects can suffer from numerous types of perturbation,

including deformations due to geometric transformations that are quite common in every-

day human visual perception and in the field of computer vision, which tries to mimic the

successful properties of human vision to some extent. One of the most fundamental needs

of computer vision applications is to be robust to the types of transformations produced

by most cameras, such as rotations, scales, affinities and projectivities.

When it comes to using neural networks for image recognition tasks, this robustness is

usually achieved by training models with large volumes of data with naturally deformed

samples or by data augmentation. However, there is often a shortage of data or a need to

explain the model.

Deep learning models with translation invariance already exist, such as CNNs, where

convolutional filters operate on the image pixels in different positions; in essence, these

operations are equivariant in the sense that translating the input values and then con-

volving is the same as first convolving and then translating the response. Subsampling

operations, such as pooling, transform this equivariance into invariance, so that transla-

ting the input signal does not change the response. Due to this power of invariance to

translations, these architectures have become the industry standard for computer vision

applications.

Geometric Deep Learning is a subfield of deep learning that studies neural networks

capable of operating in domains with complex geometric structures, such as graphs, sur-

faces, and symmetry groups (BRONSTEIN et al., 2021). In this context, symmetry refers to

properties that remain invariant to certain transformations in an object. Exploiting these

principles to design models that respect the geometry of the data, going beyond regular

structures such as images and sequences, going beyond the traditional way of representing

these data. Instead of relying exclusively on data augmentation, Geometric Deep Lear-

ning incorporates these symmetries directly into the architecture, creating networks that

are intrinsically invariant or equivariant to various transformations. This results in more

robust models, with better generalization, less need for data augmentation, and greater

fidelity to the structure of the problem - in many cases surpassing traditional approaches

such as CNNs, which are invariant only to translation.



13

1.1 MOTIVATION

Image recognition is a problem in computer vision that has received a lot of attention

from the research community due to its application in areas such as traffic signs recognition

for autonomous vehicles (HOUBEN et al., 2013), automatic extraction and recognition of

logos (BIANCO et al., 2017), pose estimation for augmented reality (KENDALL; GRIMES;

CIPOLLA, 2015), among others. One common challenge in this context is to effectively

perform recognition of objects when the target objects have been distorted from camera

projections. These projections can significantly alter an image’s appearance and pose

challenges for standard recognition systems. For these reasons, building image recognition

models that are robust to different classes of projective transformations is an important

research problem.

Convolutional Neural Networks (CNNs) are famous for their translation invariance,

however, traditional CNNs often struggle when faced with affinely distorted images (LENC;

VEDALDI, 2015). So, although CNN architectures are invariant to translations, many

perturbations suffered by objects in the real world go far beyond simple translations.

More recent deep learning models based on Capsule Nets exhibited superior accuracy

on affinely deformed images of the affNIST dataset (SABOUR; FROSST; HINTON, 2017;

NETZER et al., 2011), being trained on the non-deformed images of the MNIST data-

set (LECUN et al., 1998), compared to a CNN with a similar number of parameters. Since

then, this and other architectures have advanced to provide geometric invariance for deep

models, particularly on the MNIST family of datasets.

1.2 OBJECTIVE

Motivated by the need to enhance the robustness of deep architectures against image

distortions in computer vision tasks, this work proposes the development of a solution

based on a projectively invariant neural network. Since projective transformations are

among the most general forms of geometric transformations, a model invariant to them

is also inherently invariant to translations, rotations, scaling, and affine transformations.

Furthermore, the approach aims to reduce the reliance on data augmentation techniques

involving geometric transformations.



14

1.3 CONTRIBUTIONS

This thesis offers the following major contributions:

1. New Vision Transformer architecture is proposed: In this work, we intro-

duced the Multi-Angle-Scale Vision Transformer (MASViT), a deep-learning-based

solution that is robust in recognizing images distorted by projective transformations,

being trained on undeformed ones.

2. Extracts projective-invariant features using 1D convolutions in the polar

domain: MASViT is a new Vision Transformer (ViT) model that takes as input

an image in the polar domain, processes it satisfying the collinearity invariance by

using 1D convolutional filters, and passes a sequence of angular patch embeddings

to the Transformer Encoder.

3. Proposal of regularization techniques adapted to the polar domain: Adap-

ted regularization techniques were used, referred to as:

• Cyclic-angular shift: Which aids in rotation invariance;

• Right-side padding: Which helps in scaling invariance;

• Angle dropout: Which is a dropout layer that randomly inactivates entire rows

of the tensor data.

4. Post-training enhancement mechanism: MASViT allows for a post-trainning

boost through the variation of the center of the polar domain conversion. This

enables an improvement in the post-training accuracy. This boost mechanism allows

improvements in the final accuracy without the need for complete retraining.

5. Development of two new datasets for robustness assessment: To evaluate

our solution, we first develop two new datasets based on the German Traffic Sign

Recognition Benchmark (GTSRB) (STALLKAMP et al., 2012). These datasets, na-

med aff-GTSRB and proj-GTRSB, include images created from the original ones

by applying these deformations (affine and projective, respectively) with different

levels of severity. These datasets simulate realistic conditions commonly encounte-

red in applications like traffic signal recognition for autonomous vehicles and OCR.



15

By incorporating varying levels of deformation severity, they provide a comprehen-

sive framework for evaluating robust recognition models, reflecting scenarios where

cameras and planar objects interact at diverse and challenging viewing angles in

real-world situations.

6. Comparative experimental evaluation with state-of-the-art methods: We

have compared MASViT with two other state-of-the-art GTSRB recognition models

based on Spatial Transformers (ARCOS-GARCÍA; ALVAREZ-GARCIA; SORIA-MORILLO,

2018) and Capsule networks (CHEN et al., 2024), which their architectures are desig-

ned for robust recognition of distorted shapes. Our experiments show that MASViT

significantly outperforms the previously mentioned methods when considering ima-

ges that suffered affine and projective transformations.

1.4 SCIENTIFIC PRODUCTION

During this doctorate, it was possible to publish a related work, which consists of the

development of a planar shape descriptor based on cross-ratio arrays for recognition tasks

robust to severe projective deformation and occlusions. This work was published in 2021

in the journal Computers & Graphics (CHARAMBA; MELO; LIMA, 2021). A second paper,

more closely related to the development of MASViT, was also submitted to the journal

Neural Computing & Applications, the article has been accepted and is currently in the

publication process. The articles developed during this doctorate are briefly summarized

in the following.

1. Luiz G. Charamba, Silvio Melo, Ullayne de Lima, Cross ratio arrays: A descrip-

tor invariant to severe projective deformation and robust to occlusion for

planar shape recognition, Computers & Graphics, Elsevier, Volume 100, Pag. 54-

65, 2021, ISSN 0097-8493, https://doi.org/10.1016/j.cag.2021.08.001.

2. Luiz G. Charamba, Nivan Ferreira, Silvio Melo, Providing Projective and Af-

fine Invariance for Recognition by Multi-Angle-Scale Vision Transformer,

Neural Computing & Applications, Springer Nature, 2024 (Status: Accepted).



16

1.5 ORGANIZATION OF THE THESIS

The thesis is organized as follows:

Chapter 2: Presents the theoretical foundation necessary for the development of this

work. The fundamental concepts of geometric transformations applied to images are co-

vered; the principles of neural networks, from classical architectures to Transformers;

neural network learning mechanisms; in addition to the main evaluation metrics used for

classifiers.

Chapter 3: Reviews the works related to the problem addressed, with emphasis on

approaches based on CNNs, capsule networks and spatial transformers.

Chapter 4: Describes the methodology proposed for the development of MASViT, inclu-

ding the network architecture, the new regularization techniques introduced in this work

— cyclic-angular shift, right-side padding and angle dropout — as well as the post-training

improvement mechanism based on the variation of the polar center by max score.

Chapter 5: Details the experiments performed, including the description of the datasets

used for training and validation, the experimental configurations and hyperparameters

adopted, as well as the results obtained.

Chapter 6: Presents the conclusions of the work, highlighting the contributions achieved,

and proposes possible directions for future work.



17

2 THEORETICAL BASIS

2.1 GEOMETRIC TRANSFORMATIONS BACKGROUND

Geometric Deep Learning is the area dedicated to making deep learning models more

robust to data variations by exploring their symmetries. Symmetry is a certain property

of an object or system unchanged when subjected to a spatial transformation, which can

be smooth, continuous, or discrete. Symmetries are prevalent in many machine-learning

tasks. In computer vision, a category of objects may exhibit certain symmetries that can

be explored in object recognition problems, and developing neural networks that can be

invariant or equivariant under these transformations is a goal of geometric deep learning

(BRONSTEIN et al., 2017; BRONSTEIN et al., 2021; GERKEN et al., 2023). Usually, the focus in

this area is the set of deformations produced by conventional cameras called projectivities,

i.e., projective transformations. The invariance to these transformations is associated with

well-known quantities and properties such as distances, angles, areas, collinearity of points,

and incidence relations.

The taxonomy of projective transformations is illustrated in Table 1. Planar projective

transformations are non-singular linear mappings in homogeneous coordinates, i.e., may

be represented by non-singular homogeneous 3 × 3 matrices. This table shows the hie-

rarchy of projective transformations according to their mathematical group classification

(the product/inverse of an element in a group is an element of that group), along with

their degrees of freedom (DoF) and main invariants. The largest group, formed by all

projectivities, can be parametrized with eight degrees of freedom (the nine scalars in a

3× 3 matrix minus one due to the matrix homogeneity). Their invariants include concur-

rency of lines, collinearity of points, intersection and tangency between curves, inflections,

discontinuities and cusps in curves, and cross-ratio (ratio of ratio of lengths). The most

general projectivity can transform a square into an arbitrary quadrilateral.

An important subgroup of the projectivities is composed of the affinities, which are

characterized by matrices whose last line possesses entries with values 0, 0, and 1 (or

a nonzero scalar). They are parametrized with six degrees of freedom and their invari-

ants include, besides those of general projectivities, parallelism of lines, ratio of areas and

lengths measured in parallel lines. The most general affinity can transform a square into

any parallelogram. A notorious subgroup of the affinities is that of the similarities, cha-



18

Tabela 1 – Taxonomy of projectivities: The hierarchy of projective transformations according to their
mathematical group classification. They are represented by homogeneous matrices, and their
degrees of freedom are indicated. Their invariants are represented in the table by the following
letters: (a)-concurrency of lines, (b)-collinearity of points, (c)-intersection between curves, (d)-
tangency between curves, (e)-inflections of curves, (f)-discontinuities of curves, (g)-cusps in
curves, (h) cross-ratio, (i)-parallelism of lines, (j)-ratio of areas, (k)-ratio of lengths measured
in parallel lines, (l)-angle, (m)-ratio of lengths, (n)-length, and (o)-area.

Group Matrix DoF Minimum invariant properties

Isometry

⎡⎢⎢⎣
cos 𝜃 − sin 𝜃 𝑡𝑥

sin 𝜃 cos 𝜃 𝑡𝑦

0 0 1

⎤⎥⎥⎦ 3 a, b, c, d, e, f, g, h, i, j, k, l, m, n, o.

Similarity

⎡⎢⎢⎣
𝜎 cos 𝜃 −𝜎 sin 𝜃 𝑡𝑥

𝜎 sin 𝜃 𝜎 cos 𝜃 𝑡𝑦

0 0 1

⎤⎥⎥⎦ 4 a, b, c, d, e, f, g, h, i, j, k, l, m.

Affinity

⎡⎢⎢⎣
𝑎11 𝑎12 𝑡𝑥

𝑎21 𝑎22 𝑡𝑦

0 0 1

⎤⎥⎥⎦ 6 a, b, c, d, e, f, g, h, i, j, k.

Projectivity

⎡⎢⎢⎣
ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

⎤⎥⎥⎦ 8 a, b, c, d, e, f, g, h.

racterized by matrices whose leading 2 × 2 block corresponds to a scaled rotation, with

angle 𝜃 and scale factor 𝜎, and the last column includes the terms of translation 𝑡𝑥 and

𝑡𝑦. They are, therefore, parametrized by four parameters, and their invariants include,

besides those of the affinities: angles and ratio of lengths in arbitrary directions. The

most general similarity can transform a square into an arbitrarily magnified, contracted,

or rotated square. The family of isometries is the most restrictive projective group, para-

metrized with just three degrees of freedom: the angle of rotation 𝜃 and the translation

terms 𝑡𝑥 and 𝑡𝑦. Their invariants include those of the similarities, together with length

and area. An isometry is a rigid transformation, preserving an object’s shape and size,

and can transform a square into a square of the same size, possibly rotated and translated

(HARTLEY; ZISSERMAN, 2003). Fig. 1 shows a STOP sign subjected by these mentioned

geometric transformations, illustrating the resulting deformations.

From their hierarchy of invariants, we can say that if the model is capable of recognizing

samples distorted by projectivities, it will also be robust in recognizing samples distorted



19

(a) (b) (c) (d)

Figura 1 – A STOP sign undergoing four types of geometric transformations is illustrated: (a) Rotation,
an isometric transformation, which preserves properties such as length and area; (b) Scaling, a
similarity transformation, where proportions and angles remain intact; (c) Shearing, an affine
transformation, which maintains parallelism of lines and preserves the ratio of lengths and ratio
of areas; and (d) Perspectivity, a projective transformation, which preserves collinearity,
concurrency, cross-ratio and other projective invariants. Source: The author.

by affinities, similarities, and isometries. The ability of deep learning models to handle

different types of symmetries may depend on the nature of the geometric transformations

inherent to the problem at hand.

2.2 ARTIFICIAL NEURAL NETWORKS

This section covers the theoretical foundations necessary to understand Artificial Neu-

ral Networks (ANN), including convolutional neural networks, also included are transfor-

mer architectures such as the Vision Transformer, both architectures are commonly used

for image recognition applications.

An artificial neural network is a machine learning method used to solve regression,

classification, and other problems, which presents a more simplified model based on the

human brain structure and which obtains knowledge through learning.

Since 1943, a large number of models have been developed, some of which are quite

realistic and of greater interest to neuroscientists. On the other hand, other scholars have

delved deeper into the more abstract properties of neural networks, including distributed

computing, tolerance to noisy inputs, and learning. (RUSSELL, 2010). Similar to biological

neural networks, ANNs have processing units such as neurons, which have connections to

other units, where they receive and send signals, just like in nerve synapses.

The simplified mathematical model of the neuron developed by (MCCULLOCH; PITTS,



20

1943) emits a signal at its output when a linear combination of its inputs exceeds some

limits. This served as the basis for the Perceptron created in 1958 by (ROSENBLATT,

1958), a learning model consisting of sensory input units connected to a single layer of

neurons. Rosenblatt stated that these networks can be trained to classify linearly separable

patterns, functioning as a binary classifier. When dealing with non-linearly separable

functions, the Perceptron cannot generate a hyperplane, and in the real world the data

reported are linearly separable, making the Perceptron not very useful for problems of

this nature. Figure 2 illustrates (a) sets of linearly separable patterns and (b) sets of

non-linearly separable patterns.

(a) (b)

Figura 2 – Linearly separable pattern sets in (a) and non-linearly separable in (b). The Perceptron is
able to correctly separate the classes illustrated in (a), but cannot do the same in (b). Source:
The author.

2.2.1 Multilayer Perceptron

With the need to make a neural network capable of solving non-linear problems, the

architecture of the Multilayer Perceptron (MLP) emerged. This is a neural network similar

to the Perceptron, but has more than one layer of neurons. In cases where it is not possible

to separate the patterns in a single line, it is possible to separate the elements using more

than one line with the use of the MLP.



21

2.2.1.1 Artificial Neuron

An artificial neuron is the basic processing unit of an artificial neural network, com-

posed of input connections that contain synaptic weights and an output that can be

understood as the inner product of an input vector 𝑥 with a vector 𝑤, which represents

the synaptic weights, added to a bias 𝜃. In order for the output of this neuron to contain

a non-linear behavior that has an activation threshold, imitating the behavior of the bio-

logical neuron, a non-linear function is included that makes a composition with the input

and bias, which is called the activation function. Figure 3 illustrates this model.

. . .
Figura 3 – Artificial neuron model: The neuron output signal is a composition of a nonlinear activation

function 𝜎 with a sum of 𝑛 inputs 𝑥𝑖 multiplied by their respective synaptic weights 𝑤𝑖 plus
a bias 𝜃. Source: The author.

2.2.1.2 Activation Functions

Activation functions determine the output of each neuron. Using linear functions as

activation functions limits the power of ANNs to convex solutions; for non-convex so-

lutions, non-linear functions are required. In other words, to learn complex patterns, it

is necessary to use neurons that employ some type of non-linearity (BUDUMA; BUDUMA;

PAPA, 2022).

The three main types of activation functions most commonly used in practice are:

1. Sigmoid

2. Hyperbolic Tangent

3. Rectified Linear



22

2.2.1.2.1 Sigmoid

The sigmoid activation function is expressed as follows:

𝑓(𝑧) = 1
1 + 𝑒−𝑧

(2.1)

Intuitively, this means that when the sum of the weighted input values with the weights

represented by the variable 𝑧 is very small, the output of this function is very close to 0.

When 𝑧 is very large, the output is close to 1. The function takes the following S-shape,

as shown in Figure 4.

Figura 4 – Output of the sigmoid function as 𝑧 varies. Source: Image taken from (BUDUMA; BUDUMA;
PAPA, 2022).

2.2.1.2.2 Hyperbolic Tangent

The hyperbolic tangent activation function is expressed as follows in terms of 𝑧:

𝑓(𝑧) = 𝑇𝑎𝑛ℎ(𝑧) (2.2)

The hyperbolic tangent (Tanh) activation function uses a type of nonlinearity very

similar to the sigmoid, but instead of ranging from 0 to 1, the output ranges from -1 to

1, as illustrated in Figure 5. When S-shaped nonlinearities are used, the Tanh function is

often preferred over the sigmoid function because it is centered at zero.



23

Figura 5 – Output of the Tanh function as 𝑧 varies. Source: Image taken from (BUDUMA; BUDUMA;
PAPA, 2022).

2.2.1.2.3 Rectified Linear

The rectified linear activation function is expressed as follows:

𝑓(𝑧) = 𝑚𝑎𝑥(0, 𝑧) (2.3)

A different type of nonlinearity is used in this activation function, as illustrated in

Figure 6.

Figura 6 – Output of the rectified linear function as 𝑧 varies. Source: Image taken from (BUDUMA;
BUDUMA; PAPA, 2022).

Neurons that have rectified linear as their activation function in their outputs are

called ReLU (Rectified Linear Units) and are easier to optimize because they are very

similar to linear units. The difference is that in the ReLU output half of its domain is

zero, which causes the derivatives to remain large whenever the activation function is

operating in the active part (𝑧 > 0). The gradients are not only large, but also consistent.

The second derivative of the function is 0 almost everywhere, and the first derivative of



24

the rectification operation is 1 everywhere the unit is active. This means that the direction

of the gradient is much more useful for learning than it would be with activation functions

that introduce second-order effects (GOODFELLOW; BENGIO; COURVILLE, 2016).

2.2.1.3 Softmax Layer

For classification tasks, it is desirable that the network’s output vector be a probability

distribution over a set of mutually exclusive labels. That is, for 𝐾 classes there would be

𝐾 corresponding vectors, and it would be difficult for the network to recognize the objects

with 100% confidence. The use of a probability distribution indicates how confident the

predictions are. As a result, the output vector would have the following form:

[𝑝0, 𝑝1, ...𝑝𝐾−1], (2.4)

where the sum of the probabilities of all outputs is expressed by:

𝐾−1∑︁
𝑖=0

𝑝𝑖 = 1 (2.5)

One way to achieve this behavior is to use a special output layer, called a Softmax

layer. Unlike other types of layer, the output of a neuron in a softmax layer depends on

the outputs of all other neurons in its layer. This is because the sum of all outputs must

be equal to 1. This normalization can be achieved as follows:

𝑦𝑖 = 𝑒𝑧𝑖∑︀𝐾−1
𝑗=0 𝑒𝑧𝑗

, (2.6)

where 𝑧𝑖 is the value of the 𝑖-th neuron in the output layer before the normalization

calculation, and 𝐾 is the total number of classes.

A strong prediction would have a single vector component close to 1, while the remai-

ning components would be close to 0. A weak prediction would have multiple possibilities,

and the vector components would have close values, more or less equally likely (BUDUMA;

BUDUMA; PAPA, 2022).



25

2.2.1.4 MLP Architecture

The MLP consists of three or more layers. Since an MLP is a fully connected network,

each neuron in a layer connects its output to the input of other neurons in the next

layer by multiplying their output values with the input synaptic weights of those other

neurons. Figure 7 shows this architecture, also known as a feedforward architecture. The

goal of a feedforward network is to approximate some function 𝑓 ′ . For example, a classifier

𝑦 = 𝑓 ′(𝑥) maps an input 𝑥 to a category 𝑦. A feedforward network defines a mapping

𝑦 = 𝑓(𝑥; 𝑤; 𝜃) and learns the values of the parameters that best approximate this function

(GOODFELLOW; BENGIO; COURVILLE, 2016).

. . .

. . .

. . .

. . .

. .
 .

. .
 .

. .
 .

. .
 .

Figura 7 – Multilayer Perceptron Architecture: the first layer is responsible for receiving the input signals
𝑥𝑖, the last layer emits the output signals 𝑦𝑖, and the intermediate layers are also known as
hidden layers. Source: The author.

2.2.2 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a specialized type of neural network archi-

tecture commonly used for signal and image processing, which can individually process

sections of data at regular intervals, in a one-dimensional format, in the case of time series,

or in a two-dimensional format, in the case of images, these are just a few examples of

use.

This processing is done by filters (temporal or spatial, depending on the data domain)

that slide over the data. These filters are also known as masks, kernels, templates and win-



26

dows, names inherited from the area of signal and image processing (GONZALEZ; WOODS,

2006).

In (LECUN et al., 1989), backpropagation was used to learn the coefficients of the

convolution kernel directly from images of handwritten numbers.

The filters employ a mathematical operation called convolution, which is a type of

linear operator. CNNs are simply neural networks that use convolution instead of mul-

tiplying the weight matrix with the data (input, or output from a previous layer) in at

least one of their layers (GOODFELLOW; BENGIO; COURVILLE, 2016).

2.2.2.1 Convolution

Convolution is defined as the integral of the product of one function by a translated

and inverted copy of the second function. The convolution of two continuous functions 𝑓

and 𝑔 can be written as:

(𝑓 * 𝑔)(𝑡) =
∫︁ ∞

−∞
𝑓(𝜏).𝑔(𝑡− 𝜏)𝑑𝜏, (2.7)

where 𝑡 is the independent variable and 𝜏 is the variable that defines the displacement.

The discrete-domain version of the convolution is expressed as follows:

(𝑓 * 𝑔)[𝑛] =
𝑘∑︁

𝑛=0
𝑓 [𝑘].𝑔[𝑛− 𝑘], (2.8)

where 𝑓 and 𝑔 are discrete functions that, in practice, are finite numerical sequences

of equal or different sizes, and 𝑛 is the independent variable and 𝑘 is the variable that

defines the displacement.

A version of convolution for discrete functions in two dimensions (widely used in digital

image processing) is given as follows:

(𝑓 * 𝑤)[𝑥, 𝑦] =
𝑁∑︁

𝑖=0

𝑀∑︁
𝑗=0

𝑓 [𝑖, 𝑗].𝑤[𝑥− 𝑖, 𝑦 − 𝑗], (2.9)

where 𝑓 and 𝑤 are discrete bounded functions of size 𝑀 and 𝑁 respectively, which

vary with 𝑥 and 𝑦, with 𝑖 and 𝑗 being the displacement variables. The practical effect of

convolutions of this type can be expressed as feature extractors that can operate on the

image generating new resulting images.



27

2.2.2.2 Convolutional Layers

Convolutional layers are responsible for extracting features from the input data. The

process of extracting these features is done through convolutional filters (which are ge-

nerally smaller than the data), where the filters traverse the input data in width, height

and depth (channels), performing the convolution operation on the data.

With each input processing in the network training period, the filters are adjusted in

such a way that they trigger when the input contains a certain detected feature that was

learned by the filters, such as edges, colors, etc. In the following convolutional layers, the

filters learn increasingly complex structures. In short, the more filters and convolutional

layers, the more features it is possible to extract from the data.

2.2.2.3 Pooling Layers

Pooling layers aims to reduce the size of the data (only in the width and height

dimensions). The best-known pooling operations are max-pooling and average-pooling.

Max-pooling reduces the subparts of the data by the maximum value found in these

areas; in an analogous way, average-pooling does this reduction using the average of the

values of these areas, Figure 8 illustrates these operations.

7 9

14 23

12 37

6 22

16 5

11 8

28 17

54 36

23 37

16 54

8 10

14 12

12 48

8 4

16 5

11 8

28 10

54 36

11 18

10 32

(a) (b)

Figura 8 – Examples of masked pooling operations in the form 2× 2: Max-pooling in (a) and Average-
pooling in (b). Source: The author.



28

2.2.2.4 Fully-Connected Layers

Fully-connected (FC) layers are usually located at the end of the network. In these

layers, the features extracted in the previous convolution layers are passed to these layers,

which will act as the network’s classifier. The architecture of a CNN (which aims to

recognize images) can be basically divided between feature extraction and classification.

The operation of FC layers is similar to that of MLP layers, with no distinction. Below,

in Figure 9, a FC layer is shown receiving a vector with three inputs and two output

neurons, and its calculations in matrix format.

Figura 9 – A fully-connected layer with three inputs and two output neurons, where the input vector
(𝑥1, 𝑥2, 𝑥3)𝑇 is multiplied by the weights 𝑤𝑖𝑗 through the weight matrix and added with the
biases by the vector (𝜃1, 𝜃2)𝑇 , and the values 𝑎1 and 𝑎2 are the output responses of these
neurons after the composition of the activation function 𝜎 with all this matrix calculation.
Source: The author.

2.2.2.5 CNN Architecture

All of these layers are commonly used in CNN architectures. In short, convolutional

layers act as feature extractors, pooling layers reduce data, and fully connected layers

perform classification. An example of a CNN architecture comprising the three aforemen-

tioned layers (convolutional, pooling, and fully connected) is illustrated in Fig. 10. This

architecture, known as LeNet, was the first convolutional neural network trained using

backpropagation and was introduced by (LECUN et al., 1989).

In addition to the layers previously described, similar to MLP networks, CNN-based

architectures also include activation functions, which are responsible for introducing non-

linearity to the model, allowing it to learn more complex representations. Additionally,



29

Figura 10 – Example of LeNet architecture. Source: Image taken from (LECUN et al., 1989).

when used for classification tasks, these networks usually end with a Softmax layer, which

transforms the network outputs into probabilities associated with each class, reflecting

the degree of confidence of the prediction.

2.2.3 Vision Transformer

A Vision Transformer is a deep learning architecture that uses the principles of Trans-

formers, which are commonly used in natural language processing (NLP), and has now

been adapted for computer vision tasks. Instead of using convolutions as in traditional

image models, ViT divides the image into patches and treats them as tokens, although

a hybrid architecture using convolutional filters is also allowed according to the original

ViT paper (DOSOVITSKIY et al., 2020) in the Hybrid Architecture section:

“As an alternative to raw image patches, the input sequence can be formed

from feature maps of a CNN (LECUN et al., 1989). In this hybrid model, the

patch embedding projection E (Eq. 1) is applied to patches extracted from a

CNN feature map. As a special case, the patches can have spatial size 1 × 1,

which means that the input sequence is obtained by simply flattening the spatial

dimensions of the feature map and projecting to the Transformer dimension.

The classification input embedding and position embeddings are added as des-

cribed above.”

After processing the image patches (using convolutional or FC layers), this sequence of

patches is concatenated with a trainable class token and added with trainable positioning

parameters and are passed to a Transformer Encoder that will process this entire sequence



30

of tokens and return the first token that will be used in an MLP network that will classify

the image.

In summary, a Vision Transformer operates with the following steps:

1. Patch Division: The input image is segmented into fixed-size patches, which are

treated as individual tokens.

2. Embedding: Each patch is linearly flattened and further passed through a Fully-

connected layers (or convolutional layers, in hybrid architecture) with a linear acti-

vation function transforming the patches into feature vectors (patch embeddings), to

which it is concatenated with a learnable class token, whose final state captures the

aggregated information for classification. Through attention layers, this token learns

to summarize the global features of the image. To preserve the spatial structure of

the patches, a one-dimensional positional embedding is added, since Transformers

by themselves are permutation invariant and cannot infer the order of the input

tokens.

3. Transformer Encoding: The sequence of tokens is processed by a Transformer

encoder, which uses self-attention mechanisms to capture complex relationships

between the different patches.

4. Classification (or other tasks): For image classification tasks, a special classifica-

tion token is added to the beginning of the sequence, and the corresponding output

is used to predict the class of the image.

Figure 11 shows the architecture of ViT and these steps, from patch division to clas-

sification.

2.2.3.1 Transformer Encoder

The Transformer Encoder (TE) is an important ViT module, and was initially designed

for NLP tasks (VASWANI et al., 2017). The architecture of TE is composed of several stacks

of identical blocks. Each block contains a Multi-Head Attention layer, followed by a Feed-

Forward Network. In both sublayers, there are residual connections, followed by a Layer

Normalization. All sublayers, as well as the embedding layers of the model, maintain an

output dimension equal to the input, as shown in Fig. 11.



31

Figura 11 – Vision Transformer architecture and Transformer Encoder. Source: Image taken from (DO-
SOVITSKIY et al., 2020)

2.2.3.1.1 Multi-Head Attention

The Transformer Encoder includes a self-attention mechanism known as Multi-Head

Attention. In this mechanism, each input embedding 𝑥 (representing an image patch or

a word, depending on the task) is linearly projected into three distinct vectors: query

(𝑞), key (𝑘), and value (𝑣), using learnable weight matrices. This process simulates a

retrieval operation, where a query vector interacts with all keys (including its own) to

determine the relevance of each input token. When generalizing to matrix form, the indi-

vidual projections 𝑞, 𝑘, and 𝑣 for each token are stacked to form the matrices 𝑄, 𝐾, and 𝑉 ,

respectively. The Multi-Head Attention mechanism performs this self-attention operation

in parallel across multiple "heads", each using its own set of learned projection matrices

𝑄, 𝐾, and 𝑉 , these are concatenated and once again projected. This enables the model

to capture diverse relationships and dependencies from different subspaces of the input

representation. By attending to different positions and features simultaneously, the model

can learn richer contextual representations (VASWANI et al., 2017). Fig. 12 illustrates this

mechanism.

2.2.3.1.2 Scaled Dot-Product Attention

The main component of a Multi-Head Attention unit is the Scaled Dot-Product At-

tention. At first, the input vectors are duplicated three times and multiplied by weights



32

Figura 12 – Scaled Dot-Product and Multi-Head Attention mechanisms. Source: Image taken from
(VASWANI et al., 2017)

𝑊𝑞, 𝑊𝑘, and 𝑊𝑣, to get the Queries (𝑄), Keys (𝐾), and Values (𝑉 ) respectively. The

Queries (𝑄) are then multiplied by the transposed Keys (𝐾𝑇 ), and the result is divi-

ded by the square root of the dimension,
√

𝑑𝑘, to avoid the vanishing gradient problem.

The resulting matrix is subjected to a Softmax operation, which converts the scores into

attention weights. These weights are subsequently multiplied by the Values (𝑉 ) matrix,

as described in the following equation.

Attention(𝑄, 𝐾, 𝑉 ) = softmax
(︃

𝑄𝐾𝑇

√
𝑑𝑘

)︃
𝑉 (2.10)

2.3 LEARNING MECHANISM AND TRAINING

This section covers topics necessary to understand the ANN learning mechanism, such

as: Error Functions, Gradient Descent and Backpropagation. And the process to train

neural networks.

2.3.1 Error Functions

Artificial neural networks learn through the process of adjusting the weights of the

inputs in each layer. To adjust these weights, it is necessary to define a metric of how

close a result is to the expected one. This metric is called the error function. Some well-



33

known error functions are: Means Square Error (MSE), commonly used for regression

problems, and cross-entropy, which is more commonly used for classification problems. In

the following equations 2.11 and 2.12, the calculations of these cost functions are shown.

The MSE can be calculated as:

𝑀𝑆𝐸(𝑌, 𝑌 ′) = 1
𝑁

𝑁∑︁
𝑖=1

(𝑌𝑖 − 𝑌 ′
𝑖 )2

, (2.11)

where 𝑁 is the number of training samples, 𝑌𝑖 and 𝑌 ′
𝑖 represent the expected and

predicted output of the 𝑖-th sample, respectively.

To calculate cross-entropy, we have:

𝐶𝐸(𝑌, 𝑌 ′) = − 1
𝑁

𝑁∑︁
𝑖=1

(︁
𝑌𝑖 log 𝑌 ′

𝑖 + (1− 𝑌𝑖) log(1− 𝑌 ′
𝑖 )
)︁
, (2.12)

where 𝑁 is the number of training samples, 𝑌𝑖 and 𝑌 ′
𝑖 represent the expected and

predicted output of the 𝑖-th sample, respectively.

2.3.2 Gradient Descent and Backpropagation

For the network to achieve the desired result, it is necessary to adjust the weights, and

the most widely used algorithm to perform this task is Backpropagation with Gradient

Descent.

Gradient Descent is an iterative optimization algorithm that aims to find a local (or

global) minimum of a function, in which each iteration takes the negative direction of

the gradient. For training neural networks, gradient descent is used to minimize the error

function in relation to the weight parameters 𝑤 and biases 𝜃.

Backpropagation was developed in (RUMELHART; HINTON; WILLIAMS, 1986) and is an

algorithm that updates the network weights in order to optimize them during training.

It calculates the gradient of the error function in relation to the network weights for a

single or multiple input and output examples and performs it efficiently, unlike a direct

calculation of the gradient in relation to each weight individually. This efficiency makes

it feasible to use gradient methods for training multilayer networks, updating the weights

to minimize losses.

In short, the weight values are changed by backpropagation iteratively, where the

gradient is multiplied by a value known as learning rate that can be fixed throughout



34

training, or governed by a decay policy. The goal of gradient descent is to minimize the

error function to the lowest possible error.

Figure 13 illustrates this iterative process, and equation 2.13 shows how the weights

are updated using the sampling rate. For the purpose of didactic simplification, a case is

being shown where there is only one weight variable 𝑤, which is an impractical situation

when dealing with neural networks that usually have at least dozens of parameters to be

optimized.

Figura 13 – The graph shows the error function 𝑙 as a function of a weight variable 𝑤. The gradient
descent algorithm starts from an initial value 𝑙(𝑤0) and tries to minimize this error through
the slope obtained by calculating the derivative at each instant of the iteration, getting closer
and closer to the local minimum signaled by x. The blue dashed line, tangent to the error
function curve, is the derivative at the initial weight value, 𝑑𝑙(𝑤0)

𝑑𝑤 . The arrows pointing to
the minimum are the displacements obtained in each iteration of the algorithm, which have
their value attenuated or amplified by the sampling rate. Source: The author.

𝑤𝑡+1 = 𝑤𝑡 − 𝛼
𝑑𝑙(𝑤𝑡)

𝑑𝑤
, (2.13)

where the next weight value 𝑤𝑡+1 will be calculated from the weight variable in the

current iteration 𝑤𝑡 subtracted from the second term, consisting of the sampling rate 𝛼

that multiplies the derivative term, where 𝛼 plays the role of the ratio of the step sizes

during the iterations.



35

2.3.3 Training

2.3.3.1 Epoch and Batch

The training of an ANN is iterative as already discussed, data samples are passed

to the network, where each batch of data can be updated using the backpropagation

algorithm. It is important to distinguish two concepts: Epoch and Batch.

• Epoch: An Epoch is an iteration where all samples were passed to an ANN during

training, this process is repeated for several epochs.

• Batch: A Batch is a subset of the total data samples within an Epoch, where at

the end of each Batch the weights are updated via backpropagation.

The batch size is varied, it is possible to use just a single sample per batch during

training, or the entire dataset per batch, or an intermediate number of samples.

2.3.3.2 Underfitting and Overfitting

During training, it is recommended to use a dataset for training that is different from

the validation and/or test dataset, in order to assess whether the network is able to

generalize well beyond the training data. Two undesirable situations can occur related to

training: underfitting and overfitting.

• Underfitting: It is a situation where the model cannot even have a good fit to the

training data. This problem is easier to identify, being the worst case scenario.

• Overfitting: It is when the network can fit well to the training data, but cannot

generalize well to the validation data.

The possible reasons why an ANN-based model is suffering from underfitting are

listed below:

• Model with low complexity for the data: not very powerful for learning, it is possible

to amplify the power of the model by increasing the number of parameters (more

layers, more units per layer).



36

• Non-representative features: in this case, it may be that the features we are using

to train the model are not representative (they are not related to each other or are

not important for the model).

• Model with too many restriction parameters: the model becomes inflexible, restric-

ted, and cannot adequately fit the data.

Some of the main causes of overfitting can be:

• Model too complex for the data: we can simplify our model by choosing a simpler

model, with fewer parameters.

• Little training data: it may be necessary to collect more data to train the model, or

use data augmentation.

• Noise in the training data: If there is any type of noise, extreme values or even

incorrect values in the data, if the model learns from this type of data, it can lead

to overfitting. Adequate preprocessing of the training data would be necessary.

2.3.3.3 Regularization

Regularization is a set of techniques used in machine learning and neural networks to

improve a model’s generalization, i.e., its ability to perform well on data not seen during

training. It works by penalizing the complexity of the model or introducing controlled noise

during training, reducing the risk of overfitting, when the model overfits the training data

and fails to generalize.

In general, regularization seeks to find a balance between learning capacity and model

simplicity, encouraging solutions that are flexible enough to capture patterns in the data,

but not so complex that they memorize noise or particularities of the training set (GOOD-

FELLOW; BENGIO; COURVILLE, 2016). Below are some classic examples of regularization

techniques.

2.3.3.3.1 L1 and L2 Regularization

These techniques penalize large weight values by adding a regularization term to the

loss function.



37

L1 regularization: adds the sum of the absolute values of the weights, encouraging

sparsity in the model parameters (TIBSHIRANI, 1996):

ℒnew = ℒoriginal + 𝜆
∑︁

𝑖

|𝑤𝑖| (2.14)

L2 regularization: adds the sum of the squared values of the weights, discouraging

large weights but without driving many to zero (HOERL; KENNARD, 1970):

ℒnew = ℒoriginal + 𝜆
∑︁

𝑖

𝑤2
𝑖 (2.15)

In both cases, ℒoriginal denotes the original loss function (e.g., cross-entropy or mean

squared error), 𝑤𝑖 are the model’s parameters, and 𝜆 is a regularization coefficient that

controls the strength of the penalty, and ℒnew corresponds to the modified loss after

regularization is applied.

2.3.3.3.2 Dropout

Dropout randomly deactivates neurons during training, preventing co-adaptation of

features and encouraging the network to learn redundant and robust representations that

generalize better to unseen data (SRIVASTAVA et al., 2014).

Figura 14 – Dropout Neural Network: Standard neural network in (a) with two hidden layers. Thinned
network after applying dropout in (b), crossed units represent dropped neurons. Source:
Image taken from (SRIVASTAVA et al., 2014).

2.3.3.3.3 Data Augmentation

Data Augmentation generates new training samples from modifications to the ori-

ginal samples, through geometric transformations (e.g. rotations, translations, scales),



38

variation of brightness, contrast and color (pixel augmentation), and addition of noise

(KRIZHEVSKY; SUTSKEVER; HINTON, 2012).

2.3.3.3.4 Batch Normalization

This regularization technique normalizes the output of each layer by adjusting and

scaling the activations. Specifically, it standardizes the inputs to a layer for each mini-

batch such that they have zero mean and unit variance. This normalization helps reduce

internal covariate shift (the change in the distribution of layer inputs during training)

thereby stabilizing and accelerating convergence (IOFFE; SZEGEDY, 2015).

2.3.3.3.5 Weight Decay

It is a regularization technique used directly in optimizers. It can be understood as

a variant of L2 regularization, but applied directly in the weight update process, instead

of as an explicit additional term in the loss function. The Weight Decay penalizes high

values in the network weights, encouraging solutions with lower complexity and promoting

better generalization. This is done by adding a fraction of the weights themselves to the

gradient during the update, causing them to decay slowly over the course of training

(LOSHCHILOV; HUTTER, 2019).

2.3.3.4 Weight Initialization

In deep neural networks, proper initialization of weights is essential to ensure successful

training. Initializing weights with inappropriate values can cause two main problems:

• Exploding gradients: when gradients increase exponentially during backpropaga-

tion, leading to numerical instability.

• Vanishing gradients: when gradients tend to zero, preventing weights from being

updated, especially in the initial layers of the network.

These problems affect signal propagation and error backpropagation, making learning

difficult or even impossible. Initialization algorithms help preserve signal variance between

layers, allowing for more stable and efficient training.



39

2.3.3.4.1 Weight Initialization Algorithms

It is listed below some common weight initialization algorithms.

• Zero Initialization: Initialize all weights to zero: In general, it is not recommended,

as all units learn the same weights (the symmetry problem).

• Random Initialization: Weights are sampled from uniform or normal distributions

with small variance. It can work for very shallow networks, but does not guarantee

stability in deep networks.

• Xavier (Glorot) Initialization (GLOROT; BENGIO, 2010): Ideal for symmetric

activation functions like tanh and sigmoid. Keeps the activation variance constant

across layers.

2.4 EVALUATION OF CLASSIFIERS

This section presents some issues considered in the evaluation of classification models,

such as the confusion matrix and its metrics.

2.4.1 Confusion Matrix

The Confusion Matrix is a tool widely used to evaluate classification models, deter-

mining values that will be important for other metrics. The confusion matrix records the

number of false positives, false negatives, true positives and true negatives. These concepts

are briefly explained below:

• True Positive (TP): The class being searched for was predicted correctly.

• True Negative (TN): The class not being searched for was predicted correctly.

• False Negative (FN): The class not being searched for was predicted incorrectly.

• False Positive (FP): The class being searched for was predicted incorrectly.

The class of elements of interest during classification is treated as positive and the other

class as negative. From these values, many important metrics for evaluating classifiers can

be obtained. Table 2 and Fig. 15 help illustrate these concepts.



40

Tabela 2 – Confusion Matrix

Predict Value
Yes No

V
al

ue

Yes True Positive
(TP)

False Negative
(FN)

R
ea

l
No False Positive

(FP)
True Negative

(TN)

Figura 15 – Example of Classification. Source: The author.

2.4.2 Evaluation Metrics

The classification metrics extracted from the confusion matrix are:

• Accuracy

• Precision

• Recall

• Specificity

• F1-Score



41

2.4.2.1 Accuracy

It evaluates the percentage of hits of the classifier, obtained by the ratio between the

number of hits (TP + TN) and the total number of samples (TP + FP + FN + TN), as

shown in Fig. 16.

Figura 16 – 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇 𝑃 +𝑇 𝑁)
(𝑇 𝑃 +𝐹 𝑃 +𝐹 𝑁+𝑇 𝑁) . Source: The author.

2.4.2.2 Precision

It evaluates how many selected elements are relevant by the classifier, it is obtained

by the ratio of the number of true positives (TP) to the sum of all values detected as

positive by the model (TP + FP), as shown in Fig. 17.

Figura 17 – 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
(𝑇 𝑃 +𝐹 𝑃 ) . Source: The author.



42

2.4.2.3 Recall

It evaluates how many relevant elements were selected by the classifier, it is obtained

by the ratio of true positives (TP) to all elements labeled as positive, relevant (TP +

FN), as shown in Fig. 18.

Figura 18 – 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃
(𝑇 𝑃 +𝐹 𝑁) . Source: The author.

2.4.2.4 Specificity

It evaluates the ability of the classifier to detect negative results, obtained by the ratio

of true negatives (TN) to the total number of samples labeled as negative (TN + FP), as

shown in Fig. 19.

Figura 19 – 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇 𝑁
(𝑇 𝑁+𝐹 𝑃 ) . Source: The author.



43

2.4.2.5 F1-Score

It is a harmonic mean calculated based on precision and recall. It is obtained based

on the equation:

𝐹1 = 2× 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛× 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(2.16)

2.5 DISCUSSION

This chapter presents a concise overview of the hierarchy of geometric transformations

and their associated geometric invariants. It also introduces the operating principles of

Artificial Neural Networks, covering the evolution from basic artificial neurons to advanced

architectures such as MLPs, CNNs, and ViTs, along with their respective layers and

operations. In addition, the chapter addresses the learning mechanisms underlying neural

networks. Finally, it details the classification evaluation metrics that will be used to assess

the model developed in this work.



44

3 RELATED WORKS

This Chapter presents different techniques for description and classification of planar

shapes, divided between two major approaches: Planar Shape Recognition by Handcrafted

Shape Descriptors and by Artificial Neural Networks. A historical review is made and

works more directly related to the recognition of these shapes with robustness are also

shown.

3.1 PLANAR SHAPE RECOGNITION BY SHAPE DESCRIPTORS

This Section reviews and discusses some works related to the description and clas-

sification of planar shapes; classical works from the literature and more recent works

directly linked to the problem of recognizing planar objects with projective deformations

are mentioned.

Some research works on shape descriptors, such as (ZHANG; LU, 2004), (LONCARIC,

1998), classify various descriptors by the following properties:

• Contour-Based × Region-Based

• Global × Structural (Local)

• Spatial Domain × Transform Domain

Region-based methods use information from the interior of the object, such as color

and/or texture; unlike contour-based methods, which consider only the edges of the ob-

ject, neglecting information from the interior of the shape (KAZMI; YOU; ZHANG, 2013).

Both Global and Structural methods are subdivided into contour-based and region-based

approaches. There are several approaches that propose to describe shape characteristics

for planar objects that are invariant to rotation, translation and scale and even more

general transformations such as affinities and projectivities. An example of a classical

descriptor invariant to scale and Euclidean transformations is the Generalized Hough

Transform (BALLARD, 1981), an algorithm that uses object edge information, such as

gradient vectors, to define a mapping in a space of parameter accumulators referring to

rotation angle 𝜃, location (𝑥, 𝑦) of the centroid and scale 𝑆 of the object, constituting a

descriptor invariant to similarity. Fourier descriptors are used in the recognition of shapes



45

invariant to affinities, these descriptors work with information in the frequency domain

of a closed planar curve, lower frequency components are responsible for approximating

the shape of the curve, while higher frequencies describe the finer details of the shape to

be represented.

Typical approaches for symbol (planar shape) recognition are texture, color, and shape.

In the past decades, significant efforts have been devoted to texture features, among which

the SIFT descriptor (LOWE, 2004) and its variants, e.g., SURF (BAY et al., 2008) and

PCA-SIFT (KE; SUKTHANKAR, 2004), have gained great success. These descriptors are

mainly derived based on local texture information (JIA et al., 2014). Scale-Invariant Feature

Transform (SIFT) is a local affine-invariant descriptor that describes a local region around

a key point. A SIFT descriptor is robust to occlusion and does not require segmentation.

The comparative evaluation of region-based local descriptors tested in (MIKOLAJCZYK;

SCHMID, 2005) showed that the SIFT descriptor performs significantly better than other

descriptors in the same category. In (ROUTRAY; RAY; MISHRA, 2017), some descriptors

based on intensity information are explored, where tests are carried out with the SIFT,

SURF and HOG descriptors in noisy images. SIFT proved to be the best, obtaining the

maximum number of feature points and associated points.

However, there are numerous practical scenarios in image recognition where richer

textures are not always available, but only distinct geometric features, especially for the

recognition of artificial symbols, such as characters, traffic signs and logos. More recent

studies in symbol recognition (planar shapes) (LI; TAN, 2010) have shown that a SIFT

descriptor has low discrimination while contour-based descriptors discriminate better (JIA

et al., 2014). In mid-2010, a global contour-based shape descriptor was released, which ma-

kes use of rectilinear trajectories that start from points on the edges of a convex polygon

that surrounds the object; such trajectories intersect with the edges of the object forming

collinear points; only four of these points are chosen to calculate a cross-ratio value for

each trajectory; as seen in section 2.1, the cross-ratio is the most fundamental projective

invariant; this descriptor proposed by Li and Tan (LI; TAN, 2010) groups several cross-

ratio values into spectra. The method was dubbed CRS, for Cross Ratio Spectrum (CRS).

CRS has been successful in representing simple planar shapes, such as characters, that

have suffered severe projective deformations. A representation for planar objects invariant

to projective transformations, based on approximations of parts of the object’s contour in

pairs of conics, was presented in (SRESTASATHIERN; YILMAZ, 2011). The method proved



46

to be quite robust, but was only tested on planar shapes that did not present internal

structures, only the silhouette. In (LUO et al., 2013) a method similar to CRS was propo-

sed in the use of trajectories that cut the object to calculate a new geometric invariant

called the characteristic number (characteristic number, CN) and a new shape descriptor

based on CN values calculated from collinear points was presented, with the advantage of

using more collinear points to obtain a single CN value, increasing the descriptive power

including more information to calculate the invariant. A compact shape descriptor called

Hierarchical Characteristic Number Context (HCNC) was shown in (JIA et al., 2016) and

was robust to perspective deformations. This descriptor makes use of the same invariant

already mentioned in (LUO et al., 2013), the characteristic number (CN); the descriptor is

built on a coarse-to-fine strategy that combines the global geometry given by projective

invariants and local contextual information in a hierarchical feature descriptor.

In (CHARAMBA; MELO; LIMA, 2021), we proposed a method that extracts projective

invariant features through the casting of rays emitted by different points of a convex hull

that surrounds the object, these rays cut the planar shape generating collinear edge points

where it is possible to calculate cross-ratio values that can be stored in vectors linked to

each ray, generating a hierarchical descriptor that can be used to calculate a dissimilarity

distance based on the matching of rays by these cross-ratio vectors, Cross-ratio Arrays

(CRA) and backprojection error, with this distance obtained between descriptors it is

possible to classify the projectively deformed planar shapes, following a nearest neighbor

approach. Comparative experiments showed that CRA was able to outperform HCNC on

a dataset containing planar shapes that have rich interior structure, such as logos and

traffic signs, and that it maintained a good degree of robustness for recognition as the

degree of projective deformation became more severe.

3.2 PLANAR SHAPE RECOGNITION BY NEURAL NETWORKS

Significant advances have been made using capsule networks to handle this invariance

issue. For example, (HINTON; KRIZHEVSKY; WANG, 2011) addressed this gap by propo-

sing Capsule Nets, which take advantage of the neuron grouping models’ better handling

of variations concerning position, scale, lighting, and orientation. The Routing-CapsNet

exhibited high robustness on the affinely deformed images of the affNIST dataset (NET-

ZER et al., 2011), being trained on the non-deformed images of the MNIST dataset (LECUN



47

et al., 1998), outperforming equivalent CNNs by (SABOUR; FROSST; HINTON, 2017). Other

Capsule Nets variations emerged like GE-CapsNet by (LENSSEN; FEY; LIBUSCHEWSKI,

2018), showing proven equivariance and invariance properties in tests with the MNIST

and affNIST datasets. Aff-CapsNets, introduced by (GU; TRESP, 2020), are robust to af-

fine transformations, achieving high accuracy being affNIST-tested/MNIST-trained. The

Capsule Nets’ routing algorithm was modified by (RIBEIRO; LEONTIDIS; KOLLIAS, 2020)

to incorporate global context, resulting in a 97.69% accuracy on the affNIST dataset af-

ter training on the original MNIST dataset. Additionally, (MACDONALD; RAMASINGHE;

LUCEY, 2022) introduced a mathematical framework for convolutional neural networks

over Lie groups, which was tested on datasets such as affNIST and homNIST, achieving

accuracy rates of 95.08% and 95.71%, respectively, also using MNIST for training.

Another type of neural network architecture that provides invariance to some geome-

tric transformations is the Spatial Transformer (ST). In their original paper, (JADERBERG

et al., 2015) proposed a mechanism for neural networks to learn the transformation pa-

rameters from the input data. ST consists of three main components: the localization

network, predicting transformation parameters from input features; the grid generator,

creating a sampling grid; and the sampler, applying the grid to the input feature map

to produce the transformed output. The Polar Transformer Network (PTN), designed by

(ESTEVES et al., 2018b), combines ideas from the ST and canonical coordinate represen-

tations. The result is a network invariant to translation and equivariant to rotation and

scale. The PTN is trained end-to-end and is composed of three distinct stages: A polar ori-

gin predictor, a transformer module, and a classifier. The Equivariant Transformer (ET)

network was proposed by (TAI; BAILIS; VALIANT, 2019) which, similarly to ST, builds

in prior knowledge on the continuous transformation invariances of its input domain. By

encapsulating equivariant functions within an image-to-image mapping, unlike traditional

STs, Equivariant Transformers incorporate additional structure in the functions used to

predict transformations.

A considerable effort has been devoted to advancing techniques based on CNNs (Con-

volutional Neural Networks). (KUMAR; SHARMA; GOECKE, 2020) proposed a method to

address rotations by augmenting feature maps rather than data. (MARCOS; VOLPI; TUIA,

2016) introduced a scheme for explicitly learning rotation-invariant by rotatable filters

to avoid data augmentation in texture recognition. (NOORD; POSTMA, 2017) developed a

multi-scale method using an ensemble of networks specializing in different image resoluti-



48

ons to learn scale-variant and scale-invariant features. However, these approaches attempt

to enhance CNN robustness through ensembles, feature map augmentations, and filter

modifications, which are computationally expensive and introduce additional complexity.

Despite these efforts, achieving true invariance to simple geometric transformations, such

as rotations and scaling, remains a challenge for these models. They lack robustness to

nonlinear geometric changes, impairing performance in tasks involving severe deforma-

tions. (COHEN; WELLING, 2016) highlighted that CNNs fail to guarantee invariance or

equivariance to transformations like rotations and scaling, proposing group-equivariant

convolutional networks to address this limitation. (ESTEVES et al., 2018a) demonstrated

that traditional CNNs perform poorly in tasks involving 3D transformations like rotati-

ons, relying heavily on data augmentation to improve results. Furthermore, (MARCOS et

al., 2017) showed that while augmentation may partially mitigate the issue, CNNs still

lack true equivariance to geometric transformations. (AZULAY; WEISS, 2019) revealed that

convolutional architectures do not guarantee even the simplest transformation invariance,

as they ignore the classical sampling theorem, even small translations or rescalings of

the input image can significantly alter the network’s prediction, and data augmentation

alone cannot achieve true invariance, these findings were supported through evaluations

of well-known architectures, including ResNet, VGG, InceptionResNet, and DenseNet;

although convolutional filters are translation-equivariant, CNNs as a whole do not inhe-

rently guarantee translation invariance by default as explained by (BISCIONE; BOWERS,

2021). These studies emphasize the limitations of CNNs in handling even basic geome-

tric transformations, underlining the need for specialized architectures to tackle these

challenges effectively. This limitation makes CNNs less suitable for problems requiring ro-

bustness to complex geometric deformations like affinities and projectivities, justifying the

exploration of alternatives like Capsule Networks, Spatial Transformers, and the approach

proposed in this work.

3.3 DISCUSSION

This chapter presents a bibliographic review of classical approaches to shape descrip-

tion, aiming to describe them with characteristics that are invariant to various geometric

transformations, from the simplest, such as rotation and scale, to the most complex, such

as affinities and projectivities, for classification tasks. The same was done for more mo-



49

dern approaches, with the use of deep learning, where most of the most recent advances

are based on spatial transformers and capsule networks and their experiments carried

out for the recognition of images of handwritten digits deformed by affine and projective

transformations.

It was also seen that for image recognition tasks, CNNs are popularly used, which

extract features from images through their convolutional filters, which are basically sliding

windows that perform linear operations in a weighted manner on the pixels as they pass

through the image. A technical limitation of these filters is that they can only provide

translation invariance.

In this work, we propose using ViT to process images in the polar domain. ViT, a

Transformer-based model, treats images as sequences of patches, leveraging multi-head

attention to capture relationships and learn hierarchical representations as demonstrated

in (DOSOVITSKIY et al., 2020). Unlike previous works, our approach addresses the recog-

nition of deformed images from undeformed GTSRB images under various severity levels

of affine and projective deformation.



50

4 DEVELOPMENT

The solution proposed in this work is based on exploring collinearity, which is a pro-

jective invariant, through the use of 1D convolutional filters in the initial layers of images

in the polar domain. This process generates patch embeddings that feed into a Trans-

former Encoder to classify the GTRSB images deformed by affinities and projectivities.

This chapter provides a detailed explanation of the proposed ViT model architecture, the

regularization techniques and the other decisions made to achieve the goals of this work.

4.1 MULTI-ANGLE-SCALE VISION TRANSFORMER

Our approach begins by converting the images into the polar domain as a prepro-

cessing phase. Subsequently, it augments the data for MASViT’s training by applying

certain transformations in the polar domain. Post-training, the model can be tested and

its performance is further improved using Max Score. This chapter discusses these steps

in detail along with the model architecture.

4.1.1 Polar Domain

The conversion of an image from the Euclidean domain into the polar domain can

be done by remapping points from the Cartesian coordinate system (𝑥, 𝑦) to the polar

coordinate system (𝜌, 𝜃) as follows:

𝜌 =
√︁

(𝑥− 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2, (4.1)

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛
(︂

𝑦 − 𝑦𝑐

𝑥− 𝑥𝑐

)︂
(4.2)

where the center of the transform in the image is (𝑥𝑐, 𝑦𝑐), 𝜃 is the angle between the

vector (𝑥−𝑥𝑐, 𝑦− 𝑦𝑐) and the horizontal line, and 𝜌 is the size of the vector. For training,

we are using the image’s center as the polar conversion origin. Some works demonstrate

the benefits of rotation invariance for recognition by neural networks using images in polar

and log-polar domains (ESTEVES et al., 2018b), (AMORIM et al., 2018), (REMMELZWAAL;

MISHRA; ELLIS, 2020), and it is guaranteed by the preservation of collinearity, which is a



51

more fundamental invariant, thanks to the 1D patches that are processed by convolutional

filters with format 1×𝐾 (ignoring the channel dimension), where 𝐾 is the horizontal size

of the filter. These filters, working in the polar domain, are more powerful than the

traditional squared filters in the Euclidean domain, as they make the filters not only

translation equivariant, but also rotation equivariant. Patterns identified by a filter at

different angles tend to result in the same correlation because changing the angle just

requires moving the filter to a different row in the polar domain.

x

y

r

q

Figura 20 – A GTSRB sample in Euclidean and Polar domains. Source: The author.

Two potential issues may arise from the mapping between Euclidean and polar do-

mains: numerical errors due to pixel value truncation, and the fact that equidistant points

can be mapped to the same 𝜌 value. Regarding the first, the truncation introduces only

minor and uniform approximations that do not significantly affect collinearity. Since the

method relies on global consistency rather than absolute pointwise precision, the overall

impact on the results is negligible. Concerning the second, although equidistant points

along the central line collapse to the same 𝜌, this does not pose a practical problem,

as such points are geometrically equivalent with respect to the center. Furthermore, the

implementation addresses this case deterministically, ensuring no ambiguity in the repre-

sentation.

4.1.2 MASViT Architecture

Similarly to any ViT architecture, the MASViT uses a Transformer Encoder that

receives as input a 1D sequence of token embeddings, each one corresponding to a 𝑊 -

pixel-wide patch of a polar image with 𝐻 such patches, i.e., its dimensions are 𝐻×𝑊 ×𝐶

(𝐶 channels), with the angles varying in 𝐻 dimension. That means that each patch has

1×𝑊×𝐶 format, and is processed by 1D convolutional filters in several layers, generating



52

a sequence of embeddings representing a natural angle sequence.

This process is illustrated in Fig. 21: The model is fed with 48×48-RGB polar images

partitioned in 48 1× 48-RGB rows. These are processed initially by a set of four convolu-

tional layers and a pooling layer (oriented horizontally), the latter set with kernel format

1 ×𝑊 , which generates 48 × 1 × 512-tensor data. Next, it follows a set of four convolu-

tional layers and a pooling layer with kernel format 𝐻 × 1 (oriented vertically). This last

set of layers was designed to reduce the height dimension of the tensor data, delivering

to the Transformer Encoder a sequence of 9 embeddings instead of 49, as it turns out a

smaller sequence of embeddings generalizes better, according to the results obtained in

our training phase. Between the layers, there are also activation functions (ReLU) and

batch normalization layers, which are better detailed in Table 3.

Angle 
Dropout

Concatenate Class 
Token

Add Position 
Embeddings

Transformer 
Encoder

Classifier

Horizontal 
Conv & Pooling Layers

Vertical 
Conv & Pooling LayersConvert to Polar Image 

and split in row patches

48 x 1 x 512

8 x 1 x 512

8 x 1 x 512
8 x 512

Adjusting dimensions: 
H x W x C ?  N x C

9 x 512 9 x 512

48 x 48 x 348 x 48 x 3

Figura 21 – An overview of the MASViT architecture. Source: The author.

4.1.2.1 Horizontal and Vertical Layers

Table 3 describes the Horizontal and Vertical layers of MASViT. The Horizontal layers

contain convolutional and max-pooling layers with kernels of size (1, 𝑤), similarly the

Vertical layers contain same layers with kernels of size (ℎ, 1). Each convolutional layer is

followed by a batch normalization layer and a ReLU activation function. ReLU is widely

preferred because of its simplicity, its non-saturating behavior for positive inputs, and its

effectiveness in mitigating the vanishing gradient problem.



53

Tabela 3 – Horizontal and Vertical Layers Settings

Layer Kernel Stride In Channel Out Channel

Conv2D (1,1) (1,1) 3 64
BatchNorm2D – – 64 64

ReLU – – 64 64
Conv2D (1,3) (1,1) 64 128

BatchNorm2D – – 128 128
ReLU – – 128 128

Conv2D (1,5) (1,1) 128 256
BatchNorm2D – – 256 256

ReLU – – 256 256
MaxPool2D (1,7) (1,7) 256 256

Conv2D (1,6) (1,6) 256 512
BatchNorm2D – – 512 512

ReLU – – 512 512
Conv2D (3,1) (1,1) 512 512

BatchNorm2D – – 512 512
ReLU – – 512 512

Conv2D (3,1) (1,1) 512 512
BatchNorm2D – – 512 512

ReLU – – 512 512
Conv2D (3,1) (1,1) 512 512

BatchNorm2D – – 512 512
ReLU – – 512 512

Conv2D (3,1) (1,1) 512 512
BatchNorm2D – – 512 512

ReLU – – 512 512
MaxPool2D (5,1) (5,1) 512 512

4.1.2.2 Angle Dropout

The Angle Dropout layer is a regularization technique introduced in this work. This

module, which follows the vertical convolutional/pooling layers, implements a specific

type of dropout that randomly selects certain angles or segments of the input tensors

along the height dimension and sets them to zero based on a dropout probability 𝑝 (we

use 𝑝 = 0.5). This can be useful for introducing robustness or regularization during the

training of Transformer models, especially in scenarios where the sequence data structure



54

has a dimension that can be interpreted as meaningful "angles"or "segments".

Note that the angle dropout and traditional dropout are not the same operation, the

angle dropout is a custom implementation of dropout that zeros out elements along the

height dimension of an input tensor. Unlike traditional dropout, which zeros elements

independently, angle dropout specifically regularizes along one dimension. Compared to

spatial dropout, angle dropout introduces a distinct geometric inductive bias. Although it

may superficially resemble masking along lines as in spatial dropout, angle dropout ope-

rates on oblique directions rather than axis-aligned ones. This angular masking effectively

simulates geometric distortions in feature space, something standard spatial dropout does

not capture. As a result, angle dropout not only provides regularization, but also functions

as a structured form of feature-level augmentation, better aligning the model with the

geometric variations encountered in real-world data. Angle Dropout pseudocode is shown

in Algorithm 1, where 𝐵 is the batch size dimension.

Algorithm 1 Angle Dropout - Pseudocode
Require: Input Tensor 𝑥 with shape (𝐵, 𝐶, 𝐻, 𝑊 ),

number of angles 𝐴 = num_angles,
dropout probability 𝑝

Ensure: Tensor with dropout applied along the height
1: if training mode then
2: Get (𝐵, 𝐶, 𝐻, 𝑊 )← shape(𝑥)
3: Create mask mask_angle with shape (𝐵, 1, 𝐴, 1)

where each input has probability 𝑝 of being zero
4: Repeat mask_angle along channels:

mask_angle← repeat(1, 𝐶, 1, 1)
5: Expand mask along width:

mask_data← expand(𝐵, 𝐶, 𝐴, 𝑊 )
6: Repeat blocks of height to cover 𝐻:

mask_data← repeat(1, 1, 1, 𝐻/𝐴)
mask_data← reshape(𝐵, 𝐶, 𝐻, 𝑊 )

7: Apply mask:
𝑥← 𝑥 · mask_data

8: end if
9: return 𝑥

4.1.2.3 Class Token and Positional Embeddings

Similarly to what the authors use in the original ViT paper (DOSOVITSKIY et al.,

2020), we use a class token and positional embeddings, the class token is a learnable



55

special vector inserted into the input of the Vision Transformer that, after processing,

serves as a global representation of the image and is used for the final classification. After

the patch embeddings are generated and their dimensions adjusted from 𝐻 ×𝑊 × 𝐶 to

𝑁 ×𝐶, where 𝑁 is the embeddings sequence length; a class token tensor of size 1× 512 is

concatenated with a sequence of embeddings in the first position to perform classification

during processing within the Transformer Encoder; these resulting patch embeddings are

summed with positional embeddings tensor of the same size (9 × 512) to retain spatial

information. These extra learnable parameters work together to help the ViT models

provide complete image information.

4.1.2.4 Transformer Encoder and Classifier settings

Our Transformer Encoder (TE) supports patches of size 512 for a sequence of em-

beddings with 9 elements. The TE contains 256 attention heads, MLPs with 512 neurons

with Gaussian error linear units (GELU) as activation functions (HENDRYCKS; GIMPEL,

2016), and MLP dropout set to 50%. The number of transformer layers is eight. Following

processing within the TE, the processed class token feeds into the Classifier, which con-

sists of a Layer Norm followed by a Linear layer with an input size of 512 and an output

size of 43 (number of GTSRB classes).

4.2 DATA AUGMENTATION IN POLAR DOMAIN

Although we are processing the image with convolutional filters in a one-dimensional

format, satisfying the collinearity invariance, it is still necessary to use data augmentation

concerning scaling, as convolutional filters are equivariant to translation, but not to scale.

There is also a need for cyclic variation in polar domain of the sequences passed to the

TE, as this module does not present cyclic invariance properties. This operation would be

equivalent to a rotation in an Euclidean space. The purpose of this unconventional data

augmentation method is to emulate a rotation and a scale, but using fewer transformation

parameters and variation values.



56

E
uc

lid
ea

n
Po

la
r

Original Rotated Scaled

cyclic shift
padding

Figura 22 – Rotation in the Euclidean domain causes a cyclic shift in the 𝜃 axis in the Polar domain,
and a change of scale in the Euclidean domain causes a change of scale in the 𝜌 axis in the
Polar domain. A similar effect can be obtained by padding blanks on the right side of the
polar image and re-dimensioning it back to the original size. Source: The author.

4.2.1 Cyclic-Angular Shifting.

This operation performs a circular shift vertically in the input image, which means that

it varies angles cyclically in polar domain. It is equivalent to a rotation in the Euclidean

domain, as shown in Fig. 22. It generates a random integer ℎ𝑠, between 0 and ℎ−1, where

ℎ is the height of the image, and shifts the content of the polar image cyclically along the

height dimension by ℎ𝑠. This Cyclic-Shift operation uses only one integer parameter (ℎ𝑠)

which, in our case, ℎ𝑠 ∈ {0, 1, ..., 47}.

4.2.2 Right-Side Padding

This operation pads blanks on the right side of the polar images, with different padding

sizes randomly chosen (𝑤𝑝). After padding, the function resizes the image back to its

original dimensions. This is equivalent to scaling in the Euclidean domain as shown in

Fig. 22. This operation resizes the 𝜌 variable in the polar coordinates, i.e., it operates

horizontally in the polar image, which is equivalent to a radial resize in the Euclidean

domain. The Right-Side Padding in the polar image uses only one integer parameter (𝑤𝑝)

which, in our case, 𝑤𝑝 ∈ {0, 1, ..., 40}.

Performing data augmentation with fewer parameters that take discrete values is, whe-



57

never applicable, preferable if compared to using transformations that have more degrees

of freedom, each one allowing a much wider range of variations. In this case, isometries,

similarities, affinities, and projectivities have respectively three, four, six, and eight con-

tinuously varying parameters, most of them unlimited. This adopted data augmentation

in the polar domain, allied to a model that explores the collinearity invariance, reduces it

to just two parameters with limited discrete ranges.

4.3 POST TRAINING BOOST BY MAX SCORE

We present a novel technique designed to enhance the accuracy of our post-training

model. As discussed earlier, our model takes polar images as input, requiring a specified

center of transformation, (𝑥𝑐, 𝑦𝑐). During training, we use the center of the original image

for this purpose. However, to further explore model inference, we can generate polar

images using different transformation centers, referred to as centroids.

This approach allows us to create multiple polar images from a single 𝐻×𝑊 image in

the Euclidean domain, through centering the polar conversion in various centroids. This

multitude of polar images (specifically 48× 48 images) is subsequently fed into the model

for inference. Each polar image generated from a unique centroid yields a score vector,

with each entry in the vector related to a class in the model’s classification (totaling 43

classes). Consequently, this results in 43 score maps for each original Euclidean domain

image, Fig.23 show this process.

The significance of this technique lies in its ability to provide diverse perspectives on

the same scene, enabling the identification of regions of high scores within each classifica-

tion map. Ultimately, by analyzing these score maps, we can select the point of maximum

score across the 43 maps as the optimal model inference for the given scene. This appro-

ach enhances the robustness and accuracy of our model by leveraging multiple viewpoints

derived from a single input image.

This multi-centroid approach is more robust than just a single polar image with a

fixed centroid, as deformed objects (ex.: traffic signs) hardly have their original centers

coinciding with the center of their images. By training the model with polar images whose

conversion is centered in different centroids, it is expected that the max-score centroid will

be the closest to the actual center of the object, regardless of the deformation suffered by

the input image. Therefore, there are two approaches: One that uses a single polar image



58

MASViT

...
...

...
...

Polar Images by 
diferent centroids

(xc, yc) Score Vectors

Score Maps(0,0)

48 x 48 x 43

48 x 48 score vectors 
of length 43

48 x 48 polar images 
of size 48 x 48 x 3 

(24,24)

(47,47)

48 x 48 x 3

Input

Figura 23 – Score Maps Generation. Source: The author.

through a fixed centroid, where a single score vector returned by the model is verified;

and the one that makes inferences based on the maximum score by analyzing the score

maps generated by spatial exploration based on different centroids.

4.4 DISCUSSION

In this chapter, we presented the development of the proposed approach, which al-

lows a Vision Transformer to offer invariance to affine and projective transformations in

classification tasks. The network receives as input images transformed to the polar do-

main, which, combined with the use of one-dimensional convolutional filters, facilitates

the extraction of features invariant to projections, such as collinearity.

The architecture of MASViT was detailed, addressing the creation of patch embed-

dings through unidimensional convolutional and pooling layers, the introduction of the

Angle Dropout module, and the use of class tokens and positional embeddings. All this

processing is then passed to the Transformer Encoder, followed by a final classification

step, as is common in ViTs aimed at classification tasks. We adopted a dropout rate of

50% for both the Angle Dropout and the standard Dropout, as this value is a widely ac-

cepted default for fully connected layers. It provides a good balance between underfitting

and overfitting, encouraging robust feature learning and effectively reducing overfitting,



59

as demonstrated in the original Dropout paper (SRIVASTAVA et al., 2014). Implementation

details of MASViT and the Angle Dropout module are provided in Appendix A. The code

was developed in Python using the PyTorch framework.

The use of data augmentation in the polar domain was also discussed, in which two

techniques aimed at scale and rotation variations were proposed. These techniques be-

nefit from the fact that they operate in discrete domains, which reduces the number of

variation parameters. It is important to highlight that this work did not use data aug-

mentation based on affine or projective geometric transformations. Instead, it adopted

simpler transformations, emulated through the Cyclic-Angular Shifting and Right-Side

Padding techniques.

Finally, a post-training boost mechanism was introduced, based on the variation of

the center of the conversion to the polar domain. This procedure consists of selecting the

version of the image whose classification output obtained the highest score, promoting

accuracy improvements without the need for reprocessing or complete retraining of the

network.



60

5 EXPERIMENTS

In this chapter, we detail the experiments conducted, including descriptions of the

datasets used for training, validation, and testing. The two test datasets consist of images

distorted by affine and projective transformations at varying levels of severity. We also

present the experimental setup and hyperparameters adopted, along with the results

obtained using two MASViT configurations: fixed-centroid and max-score. Finally, we

compare the results against two state-of-the-art models based on capsule networks and

spatial transformers.

5.1 DATASETS

In this study, we utilized the GTSRB introduced by (STALLKAMP et al., 2012) for

training and validation. The original GTSRB Train set comprised 39,209 samples for

training, and the original GTSRB Test set comprised 12,630 samples for validation. To

evaluate MASViT’s robustness for recognizing affine and projective deformations across

different severity levels, we introduced aff-GTSRB and proj-GTSRB datasets groups, each

representing distinct deformation categories.

The generation of these test datasets with incremental deformation levels followed the

methodology outlined in (LI; TAN, 2010) and (CHARAMBA; MELO; LIMA, 2021), which con-

sists of each planar shape being captured by a camera whose projection plane orientation

is controlled by adjustments in the elevation (𝑒𝑙) and azimuth (𝑎𝑧) angles. These adjust-

ments produce deformations with different levels of severity. The datasets aff-GTSRB and

proj-GTSRB were derived similarly, with each dataset subgroup stemming from the origi-

nal GTSRB Test samples and categorized according to four elevation angles: 90∘, 60∘, 45∘,

and 30∘. Each subgroup was further subdivided into eight partitions according to the

following azimuth angle variations: 0∘, 15∘, 45∘, 60∘, 90∘, 120∘, 190∘, and 275∘. Consequen-

tly, each new dataset produced a total of 12, 630 × 8 = 101, 040 images derived from

the original test samples. Figure 24 illustrates examples of the new samples generated

from an original test traffic sign (50) with varied elevation and azimuth angles within the

aff-GTSRB and proj-GTSRB groups.

The distinction between the two dataset groups lies in the type of camera employed.



61

Figura 24 – Aff-GTSRB and Proj-GTSRB: The new datasets were obtained from original GTSRB Test
samples by view point angle variations (elevation and azimuth); and the two groups differ in
terms of camera projection (orthographic and perspective). Source: The author.

The aff-GTSRB dataset utilizes orthographic projection from an affine camera, whereas

the proj-GTSRB dataset employs conventional perspective projection. One notable diffe-

rence is that samples from the first group maintain parallel lines, whereas in the projective

version, this is not the case.

5.2 TRAINING

We trained MASViT using the original GTSRB Train samples converted to the polar

domain centered at (24,24) and applied data augmentation techniques within this domain

that correspond to varying scale and rotation severity in Euclidean space, as explained



62

in section 4.2. Therefore, there are no affine or projective deformations in this data aug-

mentation. Additionally, we performed pixel-level augmentation by randomly adjusting

the brightness, contrast, and saturation of the images.

We used the Adam optimizer, known for its ability to handle sparse gradients and

accelerate convergence (RUDER, 2016). The initial learning rate was set to 10−4 with an

exponential decay factor of 0.99. These choices were based on the work of (KINGMA; BA,

2015), where the Adam optimizer was introduced, suggesting that typical learning rates

range from 10−3 to 10−4. The authors also claim that exponential decay helps adjust the

learning rate over time, improving convergence stability.

We used Cross Entropy as the loss function, which is effective for classification tasks

according to (GOODFELLOW; BENGIO; COURVILLE, 2016). Samples were fed into the model

in batches of size 16 over 300 epochs. We chose small batches because it has been observed

in practice that while larger batches can be efficient for training, they often result in poor

generalization, as demonstrated in (KESKAR et al., 2016) and (HOFFER; HUBARA; SOUDRY,

2017).

Figura 25 – Loss and Accuracy curves for training (in red) and validation (in blue) data. Source: The
author.

During training, we employed the original GTSRB Test dataset for validation purpo-

ses, monitoring both accuracy and loss values. The model achieved a validation accuracy

of 98.31% in the final epoch. Fig. 25 depicts the plots illustrating the curves of loss and

classification accuracy values.



63

5.3 TESTING

By comparing MASViT to other state-of-the-art GTSRB classifier models, we asses-

sed its performance against models like the one by Arcos-García et al. (ARCOS-GARCÍA;

ALVAREZ-GARCIA; SORIA-MORILLO, 2018), which utilizes a CNN that alternates convolu-

tional and Spatial Transformer modules, achieving an accuracy of 99.71%; and the one by

Chen et al. (CHEN et al., 2024), based on capsules that use a global routing mechanism,

boasting the highest accuracy of the original test samples at 99.96% in their experiments.

Additionally, we tested MASViT for GTSRB Test also, using two distinct approaches:

Fixed Centroid and Max score, as discussed in Section 4.3. The resulting accuracy values

were 98.31% and 97.95%, respectively.

Regarding the Max Score approach, there is an assumption we took advantage of to

improve the performance: The centers of the planar shapes in the GTSRB data are not far

from the center of the images. Thus, we constrained the positioning of the tested centroids

to a neighborhood of the image center. We used a 7× 7 grid to generate 49 polar images

per Euclidean image instead of all 48×48 pixels. This was an important assumption given

the multiplicative cost each new polar domain imposes on our method.

Working with the results from the GTSRB test samples as a starting point, we con-

ducted tests with aff-GTSRB and proj-GTSRB datasets. Table 4 displays the accuracy

values of all tested models for the two groups of datasets, subdivided according to the

elevation angle. It is important to note that at 𝑒𝑙 =90º, it represents a frontal view, where

the camera projection plane is parallel to the planar shape, resulting in no shape transfor-

mation other than rotations. Therefore, the aff-GTSRB 𝑒𝑙 =90º and proj-GTSRB 𝑒𝑙 =90º

datasets are identical, thus producing identical results, as observed in the two columns

with this elevation angle.

As the elevation angle decreases, deformations become more severe, negatively impac-

ting the performance of the different tested methods. For elevation angles below 90º, a

difference between the two dataset groups begins to be noticed, with the negative impact

in the performance being slightly greater in the proj-GTSRB datasets, due to the higher

generality of the projective transformations.

Analyzing the different methods, the models proposed in (ARCOS-GARCÍA; ALVAREZ-

GARCIA; SORIA-MORILLO, 2018) and (CHEN et al., 2024) did not perform well, despite

achieving excellent results when confronted with original GTSRB Test samples. Even



64

for the mildest case of transformation (𝑒𝑙 =90º), the results were significantly below

expectations. At this elevation, images are distorted only by azimuth variations, resul-

ting in simple rotations. Although designed to handle spatial transformations, Capsule

Networks and Spatial Transformers still do not guarantee more severe transformations

without having seen such levels of deformations during training. Capsule Nets can encode

pose information and generalize better than standard CNNs, but their local part–whole

relationships tend to break under strong distortions, especially those not observed du-

ring training. Spatial Transformers, in turn, learn global alignment functions and can

normalize moderate variations, but they only compensate for transformations that are

present in the training data, offering no intrinsic invariance. In both cases, robustness

depends on encountering representative distortions during learning. MASViT overcomes

these limitations by leveraging polar-domain representations and 1D convolutional filters

that preserve the collinearity, a projective invariant, thus enabling generalization even to

unseen affine and projective deformations.

About the two MASViT approaches, Fixed Centroid and Max Score, in the original

GTSRB Test and 𝑒𝑙 =90º (for aff-GTSRB and proj-GTSRB) the Fixed Centroid appro-

ach had better performance than Max score in these situations, but when the elevation

angle is decreased the Max score approach becomes a better approach, although the Max

Score technique searches a 7×7 neighborhood around the image center, its lower accuracy

compared to the Fixed Centroid is due to sensitivity to local fluctuations or spurious

activations. Max Score selects the position with the highest score value, which can occasi-

onally misinterpret local maxima, whereas the Fixed Centroid relies on a stable geometric

center, which in datasets like original GTSRB and its deformed variants in elevation 90∘ is

typically well aligned with front-view traffic signs, providing more consistent and accurate

results in these situations. In the most severe deformation (𝑒𝑙 =30°), where the biggest

difference between the approaches occurs, the Max Score overcomes the Fixed Centroid

by approximately 10 percentage points in the two transformation groups.

By employing the Max Score approach, the score maps can be visualized, offering

deeper insights into the underlying behavior and decision process of the method. Fig.

26 illustrates several test images (six for each group) at different elevation angles and

randomly chosen azimuth angles of different categories, along with their score maps and

an overlapped representation of these images. It can be observed that the maximum value

tends to concentrate at the center of the signs in most cases. Examples of mismatches can



65

Tabela 4 – Accuracy of Methods in percentage values.
(*) (ARCOS-GARCÍA; ALVAREZ-GARCIA; SORIA-MORILLO, 2018)
(**)(CHEN et al., 2024)

Aff-GTSRB | Proj-GTSRB

Methods el=90º el=60º el=45º el=30º el=90º el=60º el=45º el=30º

MASViT
(fixed centroid)

97.27 95.81 93.16 66.71 97.27 95.58 91.79 64.04

MASViT
(max score)

97.11 96.00 94.49 76.68 97.11 95.67 93.76 73.93

CNN + 3 Spatial
Transformers *

38.46 35.39 32.38 21.47 38.46 34.76 29.75 19.79

Global Routing
CapsNet **

33.40 29.48 25.47 12.32 33.40 28.68 22.34 11.06

also be observed in Fig.27: the score maps for the true and predicted classes are illustrated.

In the case of the “turn left” traffic sign, the true score map presents maximum activation

concentrated near the center of the sign; however, the predicted class shows a stronger

and more diffuse activation in another region of its score map, ultimately leading to

misclassification.

In addition to Table 4, which only shows the accuracy, there are several tables in

the Appendix B that show in detail the precision, recall and F1-score per class of the

two MASViT approaches, for all datasets of test. These tables are in Classification

Reports, Section B.1. Analyzing these tables, it becomes evident that certain classes,

such as the first and 15th, experience a more pronounced decline in recall compared to

other categories as distortions increase (e.g., elevation = 30∘). This low recall can be

primarily attributed to the class imbalance in the GTSRB dataset. Several classes are

substantially underrepresented in the training set, which restricts the model’s ability to

generalize under severe deformations. For instance, the 15th category, class 14 (STOP),

has only 780 training samples, and class 0 just 210, whereas high-recall classes such as

class 2 have more than 2000. This disparity likely explains the poorer performance of

minority classes, particularly under challenging conditions such as elevation equals to

30∘. Moreover, the scarcity of training samples may have reduced the effectiveness of the

model’s regularization and generalization mechanisms, further amplifying the decline in

recall for these underrepresented classes.



66

In addition to the Classification Reports, there are also several tables describing the

Confusion Matrices of the test experiments exhibited in Section C.

And in Section D.1, Computing Infrastructures for Experiments, of Appendix

D, the hardware specifications used for all experiments (training and testing) carried out

in this work are presented, along with the corresponding execution times, and number of

parameters and inference times for all models.

Figura 26 – Some samples from the datasets (Aff-GTSRB and Proj-GTSRB) at different elevation and
azimuth angles, next to each test image there is a score map specific to the sign category
and an overlaid representation of the map over the test image. Source: The author.



67

True score map Predicted score mapOriginal image

Proj-GTSRB 

(el=30°, az=45°)

Aff-GTSRB 

(el=30°, az=15°)

Figura 27 – Mismatch examples and their corresponding score maps. The left column presents a sample
from each test dataset group (Aff-GTSRB and Proj-GTSRB) at an elevation of 30∘; the
middle column displays the true score maps; while the right column presents the predicted
ones. Each image and score map includes a traffic sign icon in the upper-right corner, cor-
responding to its class.

5.4 DISCUSSION

To evaluate MASViT’s robustness to geometric deformations in this study, the aff-

GTSRB and proj-GTSRB test sets were introduced, derived from the original GTSRB

by applying affine and projective transformations. These were generated using controlled

variations in elevation and azimuth angles, simulating increasing deformation severity.

While aff-GTSRB uses orthographic projection, proj-GTSRB introduces more complex

distortions via perspective projection. This setup allows a systematic assessment of model

performance under realistic, challenging conditions.

The training procedure adopted prioritized robustness to rotation and scale by per-

forming data augmentation directly in the polar domain, which naturally encodes such

transformations as translations. This decision enabled MASViT to learn invariant featu-

res without the need for explicit affine or projective augmentations. The use of pixel-level

adjustments, such as brightness, contrast, and saturation, contributed to enhancing the

model’s generalization under different lighting conditions, while the small batch training

strategy favored better generalization.

Despite not achieving top-tier accuracy on the original GTSRB Test dataset compa-

red to capsule- and spatial transformer-based models, MASViT demonstrated remarkable

resilience under geometric distortions, especially in the presence of affine and projective

transformations. When tested on aff-GTSRB and proj-GTSRB datasets, MASViT main-



68

tained competitive performance where other models significantly degraded. This result

highlights MASViT’s core strength: its robustness to shape-preserving and perspective

deformations, which is crucial for real-world traffic sign recognition scenarios where ca-

mera viewpoints may vary widely.

A key insight emerged from the comparison between the two post-training strategies:

Fixed Centroid and Max Score. The Fixed Centroid approach performed better under

ideal or near-ideal conditions, such as the original GTSRB and 𝑒𝑙 = 90∘ datasets, where

signs are centered and minimally distorted. However, in more challenging scenarios with

increased deformation (lower elevation angles), the Max Score strategy proved to be sig-

nificantly more effective. This adaptive behavior underscores the importance of allowing

the model to explore multiple centroids, especially when signs are displaced or severely

deformed due to camera perspective.



69

6 CONCLUSION AND FUTURE WORK

This work introduced an innovative deep-learning-based solution, the Multi-Angle-

Scale Vision Transformer, designed to enhance robustness in image recognition tasks in-

fluenced by projective and affine transformations. It is based upon a ViT architecture

that leverages collinearity as a geometric invariant to affinities and projectivities across

different angles and scales within images. Additionally, modifications to the transformer

architecture and two new GTSRB-based datasets were introduced, offering new references

for future work.

Our evaluation of MASViT against state-of-the-art GTSRB classifier models show-

cased its robust performance across various deformation scenarios. While the concurrent

models demonstrated high accuracy on original GTSRB test samples, their performance

significantly declined when exposed to deformed images, particularly those with severe

deformations, it is important to highlight that these models, based on Spatial Trans-

formers and Capsules, they have architectures that are also designed for invariance to

geometric transformations, to enhance the recognition of distorted shapes; however, they

underperformed. Our analysis revealed that MASViT, employing both Fixed Centroid

and Max Score approaches, exhibited promising adaptability to deformation challenges.

Notably, the Fixed Centroid approach showed slightly superior performance on original

GTSRB test samples and mild deformations, while the Max Score approach was proved

more effective as the severity of deformations increased, outperforming the Fixed Centroid

with a large difference in the most severe deformation scenarios, at the cost of a longer

processing time. In summary, the Max Score method, while more flexible, is sensitive to

local fluctuations and may misinterpret spurious activations, while the stable geometric

center of Fixed Centroid aligns better with the traffic signals in front, producing more

consistent accuracy in front view samples.

In summary, MASViT demonstrates robustness in handling diverse deformation cases,

with a training phase based on non-deformed images, with respect to affinities and projec-

tivities. This showcases its potential for real-world applications where image recognition

must contend with varying degrees of affine and projective distortions. The concentration

of maximum values in the center of the traffic signs, as observed in score maps, further

underscores the efficacy of MASViT in capturing relevant features despite deformation



70

challenges, highlighting its significance in advancing the field of image recognition under

adverse conditions.

In terms of application scope, MASViT is a model built upon the ViT architecture and

therefore inherits both its strengths and limitations. While the original ViT was primarily

designed for image classification, MASViT was also initially developed with this goal in

mind. Nevertheless, as ViT variants have been successfully extended beyond classification

through architectural modifications, MASViT could similarly be adapted for tasks such

as object detection and semantic segmentation, albeit requiring additional adjustments.

Regarding the datasets used in this thesis, although MASViT was evaluated exclusively

on GTSRB and its geometrically deformed variants (aff-GTSRB and proj-GTSRB), its

applicability extends beyond traffic sign recognition to the broader recognition of planar

shapes, including characters, logos, and other visual patterns.

MASViT opens up a range of possibilities for future works including an investigation

into methods for incorporating scale invariance during patch embedding via convolutional

filters. This would eliminate the necessity for scaling variations in the data. Proposing a

new Transformer Encoder that is intrinsically cyclically invariant removes the need for

circular shifts in the data. Although using a single centroid during training is sufficient to

achieve a robustness to recognize deformed samples, future studies can explore the impact

of varying the number of centroids on performance. Another room for improvement may

be the refinement of the Max Score approach to enable the identification of better regions

beyond just the maximum score point, enhancing robustness. This score maps approach

can also be used to infer the projectivity matrix that produced the image deformation:

At least four MASViT networks can be trained with images in polar domains based on

different centroids. Given an image to be tested, its distinct maximum points on the

corresponding score maps can be taken as the key points’ correspondences to the used

centroids, allowing us to infer the projectivity matrix entries. This may be used in several

applications, including those that benefit from using a traffic sign as a base to infer other

planar shapes present in the scene.



71

REFERENCES

AMORIM, M.; BORTOLOTI, F.; CIARELLI, P. M.; OLIVEIRA, E. de; SOUZA, A. F.
de. Analysing rotation-invariance of a log-polar transformation in convolutional neural
networks. In: IEEE. 2018 International Joint Conference on Neural Networks (IJCNN).
[S.l.], 2018. p. 1–6.

ARCOS-GARCÍA, Á.; ALVAREZ-GARCIA, J. A.; SORIA-MORILLO, L. M. Deep
neural network for traffic sign recognition systems: An analysis of spatial transformers
and stochastic optimisation methods. Neural Networks, Elsevier, v. 99, p. 158–165, 2018.

AZULAY, A.; WEISS, Y. Why do deep convolutional networks generalize so poorly to
small image transformations? Journal of Machine Learning Research, v. 20, n. 184, p.
1–25, 2019.

BALLARD, D. Generalizing the hough transform to detect arbitrary shapes.
Pattern Recognition, v. 13, n. 2, p. 111 – 122, 1981. ISSN 0031-3203. Available at:
<http://www.sciencedirect.com/science/article/pii/0031320381900091>.

BAY, H.; ESS, A.; TUYTELAARS, T.; GOOL, L. V. Speeded-up robust features
(surf). Computer Vision and Image Understanding, v. 110, n. 3, p. 346 – 359, 2008.
ISSN 1077-3142. Similarity Matching in Computer Vision and Multimedia. Available at:
<http://www.sciencedirect.com/science/article/pii/S1077314207001555>.

BIANCO, S.; BUZZELLI, M.; MAZZINI, D.; SCHETTINI, R. Deep learning for logo
recognition. Neurocomputing, Elsevier, v. 245, p. 23–30, 2017.

BISCIONE, V.; BOWERS, J. S. Convolutional neural networks are not invariant to
translation, but they can learn to be. Journal of Machine Learning Research, v. 22,
n. 229, p. 1–28, 2021.

BOX, G. E. Science and statistics. Journal of the American Statistical Association,
Taylor & Francis, v. 71, n. 356, p. 791–799, 1976.

BRONSTEIN, M. M.; BRUNA, J.; COHEN, T.; VELIČKOVIĆ, P. Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478,
2021.

BRONSTEIN, M. M.; BRUNA, J.; LECUN, Y.; SZLAM, A.; VANDERGHEYNST,
P. Geometric deep learning: going beyond euclidean data. IEEE Signal Processing
Magazine, IEEE, v. 34, n. 4, p. 18–42, 2017.

BUDUMA, N.; BUDUMA, N.; PAPA, J. Fundamentals of deep learning: Designing
next-generation machine intelligence algorithms. [S.l.]: "O’Reilly Media, Inc.", 2022.

CHARAMBA, L. G.; MELO, S.; LIMA, U. de. Cross ratio arrays: A descriptor invariant
to severe projective deformation and robust to occlusion for planar shape recognition.
Computers & Graphics, Elsevier, v. 100, p. 54–65, 2021.

CHEN, R.; SHEN, H.; ZHAO, Z.-Q.; YANG, Y.; ZHANG, Z. Global routing between
capsules. Pattern Recognition, Elsevier, v. 148, p. 110142, 2024.

http://www.sciencedirect.com/science/article/pii/0031320381900091
http://www.sciencedirect.com/science/article/pii/S1077314207001555


72

COHEN, T.; WELLING, M. Group equivariant convolutional networks. In: PMLR.
International conference on machine learning. [S.l.], 2016. p. 2990–2999.

DOSOVITSKIY, A.; BEYER, L.; KOLESNIKOV, A.; WEISSENBORN, D.; ZHAI, X.;
UNTERTHINER, T.; DEHGHANI, M.; MINDERER, M.; HEIGOLD, G.; GELLY, S.
et al. An image is worth 16x16 words: Transformers for image recognition at scale. In:
International Conference on Learning Representations. [S.l.: s.n.], 2020.

ESTEVES, C.; ALLEN-BLANCHETTE, C.; MAKADIA, A.; DANIILIDIS, K. Learning
so (3) equivariant representations with spherical cnns. In: Proceedings of the European
Conference on Computer Vision (ECCV). [S.l.: s.n.], 2018. p. 52–68.

ESTEVES, C.; ALLEN-BLANCHETTE, C.; ZHOU, X.; DANIILIDIS, K. Polar
transformer networks. In: 6th International Conference on Learning Representations,
ICLR 2018. [S.l.: s.n.], 2018.

GERKEN, J. E.; ARONSSON, J.; CARLSSON, O.; LINANDER, H.; OHLSSON, F.;
PETERSSON, C.; PERSSON, D. Geometric deep learning and equivariant neural
networks. Artificial Intelligence Review, Springer, v. 56, n. 12, p. 14605–14662, 2023.

GLOROT, X.; BENGIO, Y. Understanding the difficulty of training deep feedforward
neural networks. In: JMLR WORKSHOP AND CONFERENCE PROCEEDINGS.
Proceedings of the thirteenth international conference on artificial intelligence and
statistics. [S.l.], 2010. p. 249–256.

GONZALEZ, R. C.; WOODS, R. E. Digital Image Processing (3rd Edition). Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 2006. ISBN 013168728X.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep learning. [S.l.]: MIT press,
2016.

GU, J.; TRESP, V. Improving the robustness of capsule networks to image affine
transformations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. [S.l.: s.n.], 2020. p. 7285–7293.

HARTLEY, R.; ZISSERMAN, A. Multiple view geometry in computer vision. UK:
Cambridge university press, 2003.

HENDRYCKS, D.; GIMPEL, K. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

HINTON, G. E.; KRIZHEVSKY, A.; WANG, S. D. Transforming auto-encoders. In:
SPRINGER. Artificial Neural Networks and Machine Learning–ICANN 2011: 21st
International Conference on Artificial Neural Networks, Espoo, Finland, June 14-17,
2011, Proceedings, Part I 21. [S.l.], 2011. p. 44–51.

HOERL, A. E.; KENNARD, R. W. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, Taylor & Francis, v. 12, n. 1, p. 55–67, 1970.

HOFFER, E.; HUBARA, I.; SOUDRY, D. Train longer, generalize better: closing
the generalization gap in large batch training of neural networks. Advances in neural
information processing systems, v. 30, 2017.



73

HOUBEN, S.; STALLKAMP, J.; SALMEN, J.; SCHLIPSING, M.; IGEL, C. Detection
of traffic signs in real-world images: The german traffic sign detection benchmark. In:
IEEE. The 2013 international joint conference on neural networks (IJCNN). [S.l.], 2013.
p. 1–8.

IOFFE, S.; SZEGEDY, C. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In: PMLR. International conference on machine
learning. [S.l.], 2015. p. 448–456.

JADERBERG, M.; SIMONYAN, K.; ZISSERMAN, A. et al. Spatial transformer
networks. Advances in neural information processing systems, v. 28, 2015.

JIA; FAN, X.; LIU, Y.; LI, H.; LUO, Z.; GUO, H. Hierarchical projective invariant
contexts for shape recognition. Pattern Recognition, v. 52, p. 358 – 374, 2016. ISSN
0031-3203.

JIA, Q.; FAN, X.; LUO, Z.; LIU, Y.; GUO, H. A new geometric descriptor for symbols with
affine deformations. Pattern Recognition Letters, v. 40, p. 128 – 135, 2014. ISSN 0167-8655.
Available at: <http://www.sciencedirect.com/science/article/pii/S0167865513004261>.

KAZMI, I. K.; YOU, L.; ZHANG, J. J. A survey of 2d and 3d shape descriptors. In:
2013 10th International Conference Computer Graphics, Imaging and Visualization.
[S.l.: s.n.], 2013. p. 1–10.

KE, Y.; SUKTHANKAR, R. Pca-sift: A more distinctive representation for
local image descriptors. In: Proceedings of the 2004 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. Washington, DC,
USA: IEEE Computer Society, 2004. (CVPR’04), p. 506–513. Available at:
<http://dl.acm.org/citation.cfm?id=1896300.1896374>.

KENDALL, A.; GRIMES, M.; CIPOLLA, R. Posenet: A convolutional network
for real-time 6-dof camera relocalization. In: Proceedings of the IEEE international
conference on computer vision. [S.l.: s.n.], 2015. p. 2938–2946.

KESKAR, N. S.; MUDIGERE, D.; NOCEDAL, J.; SMELYANSKIY, M.; TANG, P.
T. P. On large-batch training for deep learning: Generalization gap and sharp minima.
In: International Conference on Learning Representations. [S.l.: s.n.], 2016.

KINGMA, D. P.; BA, J. Adam: A method for stochastic optimization. In: 3rd
International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings. [s.n.], 2015. Available at:
<http://arxiv.org/abs/1412.6980>.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification with deep
convolutional neural networks. In: Advances in neural information processing systems.
[S.l.: s.n.], 2012. v. 25, p. 1097–1105.

KUMAR, D.; SHARMA, D.; GOECKE, R. Feature map augmentation to improve
rotation invariance in convolutional neural networks. In: SPRINGER. Advanced Concepts
for Intelligent Vision Systems: 20th International Conference, ACIVS 2020, Auckland,
New Zealand, February 10–14, 2020, Proceedings 20. [S.l.], 2020. p. 348–359.

http://www.sciencedirect.com/science/article/pii/S0167865513004261
http://dl.acm.org/citation.cfm?id=1896300.1896374
http://arxiv.org/abs/1412.6980


74

LECUN, Y.; BOSER, B.; DENKER, J. S.; HENDERSON, D.; HOWARD, R. E.;
HUBBARD, W.; JACKEL, L. D. Backpropagation applied to handwritten zip code
recognition. Neural computation, MIT Press, v. 1, n. 4, p. 541–551, 1989.

LECUN, Y.; BOTTOU, L.; BENGIO, Y.; HAFFNER, P. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, IEEE, v. 86, n. 11, p.
2278–2324, 1998. Available at: <http://yann.lecun.com/exdb/mnist/>.

LENC, K.; VEDALDI, A. Understanding image representations by measuring their
equivariance and equivalence. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. [S.l.: s.n.], 2015. p. 991–999.

LENSSEN, J. E.; FEY, M.; LIBUSCHEWSKI, P. Group equivariant capsule networks.
Advances in neural information processing systems, v. 31, 2018.

LI, L.; TAN, C. L. Recognizing planar symbols with severe perspective deformation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 32, n. 4, p. 755–762,
April 2010. ISSN 0162-8828.

LONCARIC, S. A survey of shape analysis techniques. Pattern Recognition, v. 31, p.
983–1001, 1998.

LOSHCHILOV, I.; HUTTER, F. Decoupled weight decay regularization. In:
International Conference on Learning Representations. [s.n.], 2019. Available at:
<https://openreview.net/forum?id=Bkg6RiCqY7>.

LOWE, D. G. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, v. 60, n. 2, p. 91–110, Nov 2004. ISSN 1573-1405. Available
at: <https://doi.org/10.1023/B:VISI.0000029664.99615.94>.

LUO, Z.; LUO, D.; FAN, X.; ZHOU, X.; JIA, Q. A shape descriptor based on new
projective invariants. In: 2013 IEEE International Conference on Image Processing. [S.l.:
s.n.], 2013. p. 2862–2866. ISSN 1522-4880.

MACDONALD, L. E.; RAMASINGHE, S.; LUCEY, S. Enabling equivariance for
arbitrary lie groups. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. [S.l.: s.n.], 2022. p. 8183–8192.

MARCOS, D.; VOLPI, M.; KOMODAKIS, N.; TUIA, D. Rotation equivariant vector
field networks. In: Proceedings of the IEEE International Conference on Computer
Vision. [S.l.: s.n.], 2017. p. 5048–5057.

MARCOS, D.; VOLPI, M.; TUIA, D. Learning rotation invariant convolutional filters
for texture classification. In: IEEE. 2016 23rd International Conference on Pattern
Recognition (ICPR). [S.l.], 2016. p. 2012–2017.

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, Springer, v. 5, n. 4, p. 115–133, 1943.

MIKOLAJCZYK, K.; SCHMID, C. A performance evaluation of local descriptors. IEEE
Transactions on Pattern Analysis and Machine Intelligence, v. 27, n. 10, p. 1615–1630,
Oct 2005. ISSN 0162-8828.

http://yann.lecun.com/exdb/mnist/
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1023/B:VISI.0000029664.99615.94


75

NETZER, Y.; WANG, T.; COATES, A.; BISSACCO, A.; WU, B.; NG, A. Y. Reading
digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep
Learning and Unsupervised Feature Learning. [S.l.: s.n.], 2011.

NOORD, N. V.; POSTMA, E. Learning scale-variant and scale-invariant features for
deep image classification. Pattern Recognition, Elsevier, v. 61, p. 583–592, 2017.

REMMELZWAAL, L. A.; MISHRA, A. K.; ELLIS, G. F. Human eye inspired log-polar
pre-processing for neural networks. In: IEEE. 2020 International SAUPEC/RobMech/-
PRASA Conference. [S.l.], 2020. p. 1–6.

RIBEIRO, F. D. S.; LEONTIDIS, G.; KOLLIAS, S. Introducing routing uncertainty
in capsule networks. Advances in Neural Information Processing Systems, v. 33, p.
6490–6502, 2020.

ROSENBLATT, F. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, American Psychological Association,
v. 65, n. 6, p. 386, 1958.

ROUTRAY, S.; RAY, A. K.; MISHRA, C. Analysis of various image feature extraction
methods against noisy image: Sift, surf and hog. In: 2017 Second International
Conference on Electrical, Computer and Communication Technologies (ICECCT). [S.l.:
s.n.], 2017. p. 1–5.

RUDER, S. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning representations by
back-propagating errors. nature, Nature Publishing Group UK London, v. 323, n. 6088,
p. 533–536, 1986.

RUSSELL, P. N. Artificial intelligence: A modern approach by stuart. Russell and Peter
Norvig contributing writers, Ernest Davis...[et al.], 2010.

SABOUR, S.; FROSST, N.; HINTON, G. E. Dynamic routing between capsules.
Advances in neural information processing systems, v. 30, 2017.

SRESTASATHIERN, P.; YILMAZ, A. Planar shape representation and matching
under projective transformation. Computer Vision and Image Understanding,
v. 115, n. 11, p. 1525 – 1535, 2011. ISSN 1077-3142. Available at: <http:
//www.sciencedirect.com/science/article/pii/S107731421100169X>.

SRIVASTAVA, N.; HINTON, G.; KRIZHEVSKY, A.; SUTSKEVER, I.; SALAKHUT-
DINOV, R. Dropout: a simple way to prevent neural networks from overfitting. The
journal of machine learning research, JMLR. org, v. 15, n. 1, p. 1929–1958, 2014.

STALLKAMP, J.; SCHLIPSING, M.; SALMEN, J.; IGEL, C. Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition. Neural networks,
Elsevier, v. 32, p. 323–332, 2012.

TAI, K. S.; BAILIS, P.; VALIANT, G. Equivariant transformer networks. In: PMLR.
International Conference on Machine Learning. [S.l.], 2019. p. 6086–6095.

http://www.sciencedirect.com/science/article/pii/S107731421100169X
http://www.sciencedirect.com/science/article/pii/S107731421100169X


76

TIBSHIRANI, R. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), Wiley, v. 58, n. 1, p. 267–288, 1996.

VASWANI, A.; SHAZEER, N.; PARMAR, N.; USZKOREIT, J.; JONES, L.; GOMEZ,
A. N.; KAISER, Ł.; POLOSUKHIN, I. Attention is all you need. Advances in neural
information processing systems, v. 30, 2017.

ZHANG, D.; LU, G. Review of shape representation and description techniques.
Pattern Recognition, v. 37, n. 1, p. 1 – 19, 2004. ISSN 0031-3203. Available at:
<http://www.sciencedirect.com/science/article/pii/S0031320303002759>.

http://www.sciencedirect.com/science/article/pii/S0031320303002759


77

APÊNDICE A – APPENDIX

A.1 IMPLEMENTATION

This section presents the code implementation of the MASViT network and the Angle

Dropout module to provide a clearer understanding of the architecture. The implementa-

tion was developed in Python 3 using the PyTorch framework. Alternatively, the full code

can also be found in the following GitHub repository: github.com/Charamba/MASViT.

A.1.1 MASViT Implementation

The MASViT network was implemented as a Python class that inherits from nn.Module,

PyTorch’s base class for neural network modules. The class defines an initialization

method (__init__) where several arguments are specified. These include the convolutional

layer parameters: input_channel, hidden_channel (1, 2, and 3), and output_channel,

which define the number of channels for the vertical and horizontal 1D convolutions. In

addition, the Transformer Encoder settings are defined through arguments such as:

• num_patches: Number of input patches embeddings;

• num_heads: Number of attention heads in the multi-head attention mechanism;

• mlp_size: Dimension of the MLP hidden layer;

• mlp_dropout: Dropout probability applied within the MLP layers;

• embedding_dropout: Dropout probability applied to the input patches embeddings;

• num_transformer_layers: Number of encoder sub-layers (Transformer blocks).

The class also takes arguments for angle_dropout and num_classes. Still within the

__init__ method, the network weights are initialized using the Xavier algorithm (GLO-

ROT; BENGIO, 2010) with uniform distribution, through the method init_weights_xavier.

Finally, the forward method implements the entire data flow of the MASViT architecture

as described in Section 4.1.2: it includes the creation of patch embeddings, application

of the Angle Dropout module, concatenation of the class token, addition of positional

embeddings, and forwarding the sequence to the TE, followed by classification using the

https://github.com/Charamba/MASViT


78

final MLP applied to the class token. The following presents the full code implementation

of the MASViT architecture:

1 import torch

import torch.nn as nn

3 from torch import relu

from angle_dropout import AngleDropout

5

7 class MultiAngleScaleVisionTransformer(nn.Module):

"""

9 A Multi -Angle -Scale Vision Transformer implementation for image

classification tasks.

11 Args:

input_channel (int): Number of input channels in the images.

13 hidden_channel_1 (int): Number of output channels for the first

convolutional layer.

hidden_channel_2 (int): Number of output channels for the second

convolutional layer.

15 hidden_channel_3 (int): Number of output channels for the third

convolutional layer.

output_channel (int): Number of output channels for the final

convolutional layer.

17 num_patches (int): Number of patches to divide the input image into

.

num_heads (int): Number of attention heads in the Transformer

encoder.

19 mlp_size (int): Size of the feedforward layer in the Transformer

encoder.

mlp_dropout (float): Dropout rate for the MLP layers in the

Transformer encoder.

21 embedding_dropout (float): Dropout rate for the embedding layer.

angle_dropout (float): Dropout rate for the angle dropout layer.

23 num_transformer_layers (int): Number of Transformer encoder layers.

num_classes (int): Number of output classes for classification.

25

Attributes:

27 conv1 , conv2 , conv3 , conv4 (nn.Conv2d): Convolutional layers for

patch embedding.



79

vert_conv1 , vert_conv2 , vert_conv3 , vert_conv4 (nn.Conv2d):

Vertical convolutional layers for feature extraction.

29 flatten (nn.Flatten): Layer to flatten the feature maps.

class_embedding (nn.Parameter): Learnable class token embedding.

31 position_embedding (nn.Parameter): Learnable position embedding.

transformer_encoder (nn.TransformerEncoder): Transformer encoder

composed of multiple layers.

33 classifier (nn.Sequential): Classification head consisting of a

layer normalization and a linear layer.

bn_conv1 , bn_conv2 , bn_conv3 , bn_conv4 (nn.BatchNorm2d): Batch

normalization layers for the convolutional layers.

35 bn_vert_conv1 , bn_vert_conv2 , bn_vert_conv3 , bn_vert_conv4 (nn.

BatchNorm2d): Batch normalization layers for the vertical

convolutional layers.

embedding_dropout (nn.Dropout): Dropout layer for embeddings.

37 angle_dropout (AngleDropout): Dropout layer that applies angle -

based dropout.

"""

39

def __init__(self ,

41 input_channel ,

hidden_channel_1 ,

43 hidden_channel_2 ,

hidden_channel_3 ,

45 output_channel ,

num_patches ,

47 num_heads ,

mlp_size ,

49 mlp_dropout ,

embedding_dropout ,

51 angle_dropout ,

num_transformer_layers ,

53 num_classes):

super().__init__ ()

55

# Convolutional layers

57 self.conv1 = nn.Conv2d(

input_channel , hidden_channel_1 , kernel_size =(1, 1))

59 self.conv2 = nn.Conv2d(



80

hidden_channel_1 , hidden_channel_2 , kernel_size =(1, 3))

61 self.conv3 = nn.Conv2d(

hidden_channel_2 , hidden_channel_3 , kernel_size =(1, 5))

63 self.conv4 = nn.Conv2d(

hidden_channel_3 , output_channel , kernel_size =(1, 6), stride =(1, 6)

)

65

self.vert_conv1 = nn.Conv2d(

67 output_channel , output_channel , kernel_size =(3, 1))

self.vert_conv2 = nn.Conv2d(

69 output_channel , output_channel , kernel_size =(3, 1))

self.vert_conv3 = nn.Conv2d(

71 output_channel , output_channel , kernel_size =(3, 1))

self.vert_conv4 = nn.Conv2d(

73 output_channel , output_channel , kernel_size =(3, 1))

75 # only flatten the feature map dimensions into a single vector

self.flatten = nn.Flatten(start_dim=2,

77 end_dim =3)

79 self.num_patches = num_patches

self.embedding_dim = output_channel

81

# Class token embedding

83 self.class_embedding = nn.Parameter(data=torch.randn(1, 1, self.

embedding_dim),

requires_grad=True)

85

# Position token embedding

87 self.position_embedding = nn.Parameter(data=torch.randn(1, self.

num_patches +1, self.embedding_dim),

requires_grad=True)

89 # Transformer Encoder

encoder_layer = nn.TransformerEncoderLayer(d_model=self.embedding_dim

,

91 nhead=num_heads ,

dim_feedforward=mlp_size ,

93 dropout=mlp_dropout ,

activation="gelu",



81

95 batch_first=True ,

norm_first=True)

97

self.transformer_encoder = nn.TransformerEncoder(

99 encoder_layer , num_layers=num_transformer_layers)

101 # Classifier head

self.classifier = nn.Sequential(

103 nn.LayerNorm(normalized_shape=self.embedding_dim),

nn.Linear(in_features=self.embedding_dim ,

105 out_features=num_classes))

107 # Batch Normalization layers

self.bn_conv1 = nn.BatchNorm2d(hidden_channel_1)

109 self.bn_conv2 = nn.BatchNorm2d(hidden_channel_2)

self.bn_conv3 = nn.BatchNorm2d(hidden_channel_3)

111 self.bn_conv4 = nn.BatchNorm2d(output_channel)

113 self.bn_vert_conv1 = nn.BatchNorm2d(output_channel)

self.bn_vert_conv2 = nn.BatchNorm2d(output_channel)

115 self.bn_vert_conv3 = nn.BatchNorm2d(output_channel)

self.bn_vert_conv4 = nn.BatchNorm2d(output_channel)

117

# Dropout

119 self.embedding_dropout = nn.Dropout(embedding_dropout)

121 self.angle_dropout = AngleDropout(num_patches , angle_dropout)

123 # Initializing weights

self.apply(self.init_weights_xavier)

125

def init_weights_xavier(self , module):

127 """

Initialize the weights of the module using Xavier uniform

distribution.

129

Args:

131 module (nn.Module): The module to initialize.

"""



82

133 if isinstance(module , nn.Linear):

nn.init.xavier_uniform_(module.weight)

135 module.bias.data.fill_ (0.01)

137 def forward(self , x):

"""

139 Forward pass of the model.

141 Args:

x (torch.Tensor): Input tensor of shape (batch_size , input_channel ,

height , width).

143

Returns:

145 torch.Tensor: Output tensor of shape (batch_size , num_classes)

containing the class scores.

"""

147 # Create class token embedding and expand it to match the batch size

batch_size = x.shape [0]

149 class_token = self.class_embedding.expand(batch_size , -1, -1)

151 # Conv Layers (create patch embedding)

x = relu(self.bn_conv1(self.conv1(x))) # (48 ,48) --> (48 ,48)

153 x = relu(self.bn_conv2(self.conv2(x))) # (48 ,48) --> (48 ,46)

x = relu(self.bn_conv3(self.conv3(x))) # (48 ,46) --> (48 ,42)

155 x = nn.MaxPool2d ((1, 7), stride =(1, 7))(x) # (48 ,42) --> (48,6)

x = relu(self.bn_conv4(self.conv4(x))) # (48,6) --> (48,1)

157

x = relu(self.bn_vert_conv1(self.vert_conv1(x))) # (48,1) --> (46,1)

159 x = relu(self.bn_vert_conv2(self.vert_conv2(x))) # (46,1) --> (44,1)

x = relu(self.bn_vert_conv3(self.vert_conv3(x))) # (44,1) --> (42,1)

161 x = relu(self.bn_vert_conv4(self.vert_conv4(x))) # (42,1) --> (40,1)

x = nn.MaxPool2d ((5, 1), stride =(5, 1))(x) # (40,1) --> (8,1)

163

# Performs angle dropout

165 x = self.angle_dropout(x)

167 # Adjust so the embedding is on the final dimension:

# [batch_size , row_patches*C, N] -> [batch_size , N, row_patches*C]

169 x = self.flatten(x)



83

x = x.permute(0, 2, 1)

171

# Concat class embedding and patch embedding

173 x = torch.cat(( class_token , x), dim=1)

175 # Add position embedding to patch embedding

x = self.position_embedding + x

177

# Run embedding dropout (optional)

179 x = self.embedding_dropout(x)

181 # Pass patch , position and class embedding through transformer

encoder layers

x = self.transformer_encoder(x)

183

# Put 0 index logit through classifier

185 # run on each sample in a batch at 0 index

x = self.classifier(x[:, 0])

187

return x

A.1.2 Angle Dropout Implementation

The Angle Dropout module was implemented as a Python class that inherits from

nn.Module, PyTorch’s base class for neural network modules. The class defines an initia-

lization method (__init__) where two arguments are specified: num_angles (number of

angles) and p (dropout probability). Finally, the forward method implements the Angle

Dropout algorithm described in Alg. 1. The following presents the full code implementa-

tion of the Angle Dropout:

import torch

2 import torch.nn.functional as F

from torch import nn, Tensor

4

class AngleDropout(nn.Module):

6 """

Applies a dropout that randomly selects certain rows of the

8 input tensors (B,C,H,W) along the height dimension and sets



84

them to zero based on a dropout probability p

10

Args:

12 num_angles (int): Number of angles (rows) of the input tensor

p (float): Probability of dropout

14 """

16 def __init__(self , num_angles: int , p: float = 0.5):

super().__init__ ()

18 self.num_angles = num_angles

self.p = p # probability

20

def forward(self , x: Tensor) -> Tensor:

22 """

Forward pass of the AngleDropout layer.

24

Args:

26 x (Tensor): Input tensor of shape (B, C, H, W).

28 Returns:

Tensor: Output tensor with dropout applied along the height

dimension.

30 """

if self.training:

32 b, c, h, w = x.shape

# dropout angles randomly

34 mask_angle = F.dropout(torch.ones(b, 1, self.num_angles , 1).cuda(),

p=self.p, training=self.training)

# repeat in c dimensions

36 mask_angle = mask_angle.repeat(1, c, 1, 1)

38 mask_data = mask_angle.expand(b, c, self.num_angles , w)

40 mask_data = mask_data.repeat(1, 1, 1, int(

h/self.num_angles)).reshape(b, c, h, w)

42 x = mask_data * x

44 return x



85

APÊNDICE B – APPENDIX

B.1 CLASSIFICATION REPORTS

We present all classification metrics for each test dataset, encompassing Precision,

Recall, F1-score per class, and the Accuracy of all MASViT experiments utilizing two

methodologies: fixed centroid and max score, spanning across several tables. There are

a total of 16 tables: two for GTSRB Test, two for elevation angle 90° (Aff-GTSRB /

Proj-GTSRB), six for Aff-GTSRB with elevation angles 30°, 45°, and 60°, and finally, six

more for Proj-GTSRB with elevation angles 30°, 45°, and 60°.

B.1.1 GTSRB Test

The tables 5 and 6 show the report of tests in GTSRB Test dataset using fixed centroid

and max score approaches, respectively.

Tabela 5 – GTSRB Test - MASViT (fixed centroid)

Class Precision Recall F1-score Support

1.0000 1.0000 1.0000 60

0.9874 0.9778 0.9826 720

0.9720 0.9985 0.9851 660

0.9858 0.9952 0.9905 420

0.9970 0.9623 0.9794 690

0.9863 0.9986 0.9924 720

1.0000 1.0000 1.0000 270

1.0000 0.9905 0.9952 210

1.0000 0.9933 0.9967 150

0.9972 1.0000 0.9986 360

0.9846 0.9846 0.9846 390

Continued on next page



86

Tabela 5 – continuation

Class Precision Recall F1-score Support

0.9677 1.0000 0.9836 60

0.9842 0.9987 0.9914 750

0.9375 1.0000 0.9677 90

0.9750 0.8667 0.9176 90

0.9916 0.9833 0.9874 120

0.9867 0.9867 0.9867 150

1.0000 0.9667 0.9831 90

0.9979 0.9792 0.9884 480

0.9871 0.8500 0.9134 180

1.0000 0.9833 0.9916 60

0.9932 0.9800 0.9866 150

0.9677 1.0000 0.9836 90

0.9932 0.9667 0.9797 450

0.9730 0.9600 0.9664 150

1.0000 0.9852 0.9925 270

0.9836 1.0000 0.9917 60

0.9857 0.9857 0.9857 210

1.0000 0.9917 0.9958 120

0.9923 0.9974 0.9949 390

0.9737 0.9250 0.9487 120

0.9032 0.9333 0.9180 60

0.9477 0.9986 0.9725 690

0.9855 0.7556 0.8553 90

0.9984 0.9758 0.9870 660

Continued on next page



87

Tabela 5 – continuation

Class Precision Recall F1-score Support

0.8713 0.9778 0.9215 90

0.8824 1.0000 0.9375 60

0.9468 0.9889 0.9674 90

0.9617 0.9968 0.9790 630

0.9797 0.9667 0.9732 150

0.9933 0.9933 0.9933 450

0.9955 0.9933 0.9944 450

0.9856 1.0000 0.9928 480

Accuracy 0.9831 12630

Macro avg 0.9779 0.9741 0.9752 12630

Weighted avg 0.9835 0.9831 0.9829 12630

Tabela 6 – GTSRB Test - MASViT (max score)

Class Precision Recall F1-score Support

1.0000 1.0000 1.0000 60

0.9916 0.9819 0.9867 720

0.9836 1.0000 0.9917 660

0.9976 0.9952 0.9964 420

0.9955 0.9638 0.9794 690

0.9903 0.9958 0.9931 720

0.9926 1.0000 0.9963 270

1.0000 0.9905 0.9952 210

0.9551 0.9933 0.9739 150

Continued on next page



88

Tabela 6 – continuation

Class Precision Recall F1-score Support

0.9972 0.9972 0.9972 360

0.9719 0.9744 0.9731 390

0.8955 1.0000 0.9449 60

0.9907 0.9907 0.9907 750

0.9091 1.0000 0.9524 90

1.0000 0.6667 0.8000 90

0.9917 0.9917 0.9917 120

0.9868 1.0000 0.9934 150

0.9885 0.9556 0.9718 90

0.9958 0.9896 0.9927 480

0.9770 0.9444 0.9605 180

0.9831 0.9667 0.9748 60

1.0000 0.9800 0.9899 150

0.9783 1.0000 0.9890 90

0.9714 0.9800 0.9757 450

0.9931 0.9533 0.9728 150

1.0000 1.0000 1.0000 270

0.9677 1.0000 0.9836 60

0.9673 0.9857 0.9764 210

0.7532 0.9917 0.8561 120

0.9717 0.9692 0.9705 390

1.0000 0.9417 0.9700 120

1.0000 0.9833 0.9916 60

0.9442 0.9565 0.9503 690

Continued on next page



89

Tabela 6 – continuation

Class Precision Recall F1-score Support

0.9825 0.6222 0.7619 90

0.9985 0.9848 0.9916 660

0.8544 0.9778 0.9119 90

0.7945 0.9667 0.8722 60

0.8878 0.9667 0.9255 90

0.9873 0.9905 0.9889 630

1.0000 0.9267 0.9619 150

0.9912 0.9978 0.9945 450

0.9912 0.9978 0.9945 450

0.9938 1.0000 0.9969 480

Accuracy 0.9795 12630

Macro avg 0.9679 0.9667 0.9647 12630

Weighted avg 0.9808 0.9795 0.9793 12630

B.1.2 Aff-GTSRB / Proj-GTSRB (el=90°)

In elevation angle equals to 90°, there aren’t not difference between affinity and pro-

jectivity. So, there are here two classification report tables, using the two MASViT ap-

proaches: fixed centroid in Table 7 and max score in Table 8.

Tabela 7 – Aff-GTSRB / Proj-GTSRB (el=90°) - MASViT (fixed

centroid)

Class Precision Recall F1-score Support

0.9957 0.9542 0.9745 480

Continued on next page



90

Tabela 7 – continuation

Class Precision Recall F1-score Support

0.9710 0.9821 0.9765 5760

0.9794 0.9973 0.9883 5280

0.9702 0.9872 0.9786 3360

0.9940 0.9609 0.9772 5520

0.9559 0.9938 0.9745 5760

0.9727 0.9903 0.9814 2160

1.0000 0.8780 0.9350 1680

0.9992 0.9892 0.9941 1200

0.9968 0.9691 0.9827 2880

0.9865 0.9622 0.9742 3120

0.9467 1.0000 0.9726 480

0.9712 0.9952 0.9830 6000

0.8997 0.9972 0.9460 720

0.9547 0.7903 0.8647 720

0.9924 0.9583 0.9751 960

0.9386 0.9808 0.9593 1200

0.9697 0.9792 0.9744 720

0.9900 0.9552 0.9723 3840

0.9741 0.8896 0.9299 1440

0.9488 0.8875 0.9171 480

0.9507 0.9800 0.9651 1200

0.9676 0.9944 0.9808 720

0.9878 0.9661 0.9768 3600

0.9591 0.9575 0.9583 1200

Continued on next page



91

Tabela 7 – continuation

Class Precision Recall F1-score Support

0.9920 0.9815 0.9867 2160

0.9856 1.0000 0.9928 480

0.9923 0.9179 0.9536 1680

0.9695 0.9917 0.9804 960

0.9709 0.9946 0.9826 3120

0.9605 0.9365 0.9483 960

0.9134 0.9667 0.9393 480

0.9376 0.9746 0.9558 5520

0.9683 0.7639 0.8540 720

0.9973 0.9616 0.9791 5280

0.8014 0.9861 0.8842 720

0.8762 0.9729 0.9220 480

0.9413 0.9583 0.9498 720

0.9668 0.9891 0.9778 5040

0.9905 0.9592 0.9746 1200

0.9846 0.9919 0.9882 3600

0.9925 0.9861 0.9893 3600

0.9748 0.9992 0.9869 3840

Accuracy 0.9727 101040

Macro avg 0.9648 0.9611 0.9618 101040

Weighted avg 0.9735 0.9727 0.9726 101040



92

Tabela 8 – Aff-GTSRB / Proj-GTSRB (el=90°) - MASViT (max

score)

Class Precision Recall F1-score Support

0.9958 0.9812 0.9885 480

0.9805 0.9861 0.9833 5760

0.9899 1.0000 0.9949 5280

0.9939 0.9771 0.9854 3360

0.9948 0.9641 0.9792 5520

0.9686 0.9965 0.9824 5760

0.9724 0.9963 0.9842 2160

1.0000 0.9054 0.9503 1680

0.9835 0.9958 0.9896 1200

0.9965 0.9785 0.9874 2880

0.9617 0.9571 0.9594 3120

0.9619 1.0000 0.9806 480

0.9833 0.9825 0.9829 6000

0.8955 1.0000 0.9449 720

0.9468 0.7917 0.8623 720

0.9979 0.9823 0.9900 960

0.9615 1.0000 0.9804 1200

0.9804 0.9736 0.9770 720

0.9966 0.9810 0.9887 3840

0.9744 0.9771 0.9757 1440

0.9799 0.8146 0.8896 480

0.9949 0.9733 0.9840 1200

0.9559 0.9931 0.9741 720

Continued on next page



93

Tabela 8 – continuation

Class Precision Recall F1-score Support

0.9248 0.9869 0.9549 3600

0.9597 0.9525 0.9561 1200

0.9995 0.9954 0.9974 2160

0.9836 1.0000 0.9917 480

0.8787 0.9833 0.9281 1680

0.6990 0.9990 0.8225 960

0.9747 0.9510 0.9627 3120

0.9955 0.9156 0.9539 960

0.9875 0.9875 0.9875 480

0.9451 0.9098 0.9271 5520

0.9346 0.6750 0.7839 720

0.9969 0.9752 0.9859 5280

0.8410 0.9847 0.9072 720

0.7689 0.9979 0.8685 480

0.9249 0.9583 0.9413 720

0.9913 0.9454 0.9678 5040

0.9957 0.9617 0.9784 1200

0.9863 0.9972 0.9917 3600

0.9903 0.9953 0.9928 3600

0.9927 0.9979 0.9953 3840

Accuracy 0.9711 101040

Macro avg 0.9590 0.9623 0.9584 101040

Weighted avg 0.9731 0.9711 0.9712 101040



94

B.1.3 Aff-GTSRB el={60°, 45°, 30°}

The tables 9, 10, 11, 12, 13 and 14 show the report of tests in aff-GTSRB datasets

for elevation degrees 60∘, 45∘ and 30∘, alternating between fixed centroid and max score

approaches.

Tabela 9 – Aff-GTSRB (el=60°) - MASViT (fixed centroid)

Class Precision Recall F1-score Support

0.9655 0.7583 0.8495 480

0.9438 0.9599 0.9518 5760

0.9643 0.9968 0.9803 5280

0.9793 0.9708 0.9750 3360

0.9979 0.9612 0.9792 5520

0.9485 0.9969 0.9721 5760

0.9894 0.9917 0.9905 2160

1.0000 0.8750 0.9333 1680

0.9958 0.9808 0.9882 1200

0.9972 0.9889 0.9930 2880

0.9868 0.9321 0.9586 3120

0.9462 0.9896 0.9674 480

0.9483 0.9790 0.9634 6000

0.8043 0.9931 0.8888 720

0.9370 0.6819 0.7894 720

0.9903 0.9531 0.9713 960

0.9667 0.9692 0.9680 1200

0.9670 0.9361 0.9513 720

0.9729 0.9732 0.9731 3840

Continued on next page



95

Tabela 9 – continuation

Class Precision Recall F1-score Support

0.9522 0.8708 0.9097 1440

0.8873 0.7542 0.8153 480

0.9410 0.9708 0.9557 1200

0.9505 0.9611 0.9558 720

0.9844 0.9306 0.9567 3600

0.9224 0.9117 0.9170 1200

0.9716 0.9662 0.9689 2160

0.9231 1.0000 0.9600 480

0.9633 0.9518 0.9575 1680

0.8989 0.9542 0.9257 960

0.9855 0.9612 0.9732 3120

0.8830 0.8885 0.8858 960

0.8781 0.8104 0.8429 480

0.9132 0.9817 0.9462 5520

0.9284 0.6125 0.7381 720

0.9912 0.9350 0.9623 5280

0.8690 0.9861 0.9239 720

0.7780 0.9417 0.8520 480

0.8537 0.9889 0.9163 720

0.9142 0.9833 0.9475 5040

0.9871 0.8942 0.9383 1200

0.9756 0.9872 0.9814 3600

0.9763 0.9444 0.9601 2400

Continued on next page



96

Tabela 9 – continuation

Class Precision Recall F1-score Support

0.9325 0.9458 0.9391 720

Accuracy 0.9581 101040

Macro avg 0.9445 0.9321 0.9356 101040

Weighted avg 0.9594 0.9581 0.9576 101040

Tabela 10 – Aff-GTSRB (el=60°) - MASViT (max score)

Class Precision Recall F1-score Support

0.9855 0.9896 0.9875 480

0.9838 0.9814 0.9826 5760

0.9780 1.0000 0.9889 5280

0.9974 0.9095 0.9514 3360

0.9985 0.9563 0.9770 5520

0.9581 0.9972 0.9773 5760

0.9953 0.9907 0.9930 2160

1.0000 0.8780 0.9350 1680

0.9975 0.9883 0.9929 1200

0.9914 0.9962 0.9938 2880

0.9895 0.9397 0.9640 3120

0.9776 1.0000 0.9887 480

0.9866 0.9810 0.9838 6000

0.7059 1.0000 0.8276 720

0.9499 0.7903 0.8628 720

0.9947 0.9750 0.9847 960

Continued on next page



97

Tabela 10 – continuation

Class Precision Recall F1-score Support

0.9463 0.9992 0.9720 1200

0.9659 0.9847 0.9752 720

0.9918 0.9797 0.9857 3840

0.9843 0.9590 0.9715 1440

0.9870 0.7937 0.8799 480

0.9816 0.9800 0.9808 1200

0.9571 0.9917 0.9741 720

0.9615 0.9844 0.9728 3600

0.9128 0.9425 0.9274 1200

0.9977 0.9921 0.9949 2160

0.9658 1.0000 0.9826 480

0.6852 0.9887 0.8095 1680

0.5596 0.9823 0.7130 960

0.9774 0.9426 0.9597 3120

0.9891 0.8500 0.9143 960

0.9936 0.9771 0.9853 480

0.9492 0.7755 0.8536 5520

0.9545 0.7861 0.8621 720

0.9988 0.9797 0.9892 5280

0.8375 0.9736 0.9004 720

0.6907 0.9771 0.8093 480

0.8285 0.9931 0.9033 720

0.9841 0.9720 0.9780 5040

0.9937 0.9150 0.9527 1200

Continued on next page



98

Tabela 10 – continuation

Class Precision Recall F1-score Support

0.9768 0.9958 0.9862 3600

0.9895 0.9958 0.9927 3600

0.9922 0.9896 0.9909 3840

Accuracy 0.9600 101040

Macro avg 0.9428 0.9552 0.9444 101040

Weighted avg 0.9670 0.9600 0.9611 101040

Tabela 11 – Aff-GTSRB (el=45°) - MASViT (fixed centroid)

Class Precision Recall F1-score Support

0.9746 0.5604 0.7116 480

0.9059 0.9243 0.9150 5760

0.9742 0.9860 0.9800 5280

0.9442 0.9518 0.9480 3360

0.9948 0.9625 0.9784 5520

0.9491 0.9936 0.9708 5760

0.9325 0.9907 0.9607 2160

0.9987 0.8815 0.9365 1680

0.9732 0.9700 0.9716 1200

0.9978 0.9455 0.9709 2880

0.9695 0.8971 0.9319 3120

0.9252 0.9792 0.9514 480

0.8777 0.9565 0.9154 6000

0.7654 0.9833 0.8608 720

Continued on next page



99

Tabela 11 – continuation

Class Precision Recall F1-score Support

0.8759 0.6861 0.7695 720

0.9931 0.8979 0.9431 960

0.8127 0.9617 0.8809 1200

0.9456 0.7972 0.8651 720

0.9507 0.9591 0.9549 3840

0.9490 0.8660 0.9056 1440

0.8242 0.5958 0.6917 480

0.8939 0.9333 0.9132 1200

0.8870 0.9375 0.9115 720

0.9360 0.8697 0.9017 3600

0.8577 0.8892 0.8732 1200

0.9815 0.9356 0.9580 2160

0.9693 0.9854 0.9773 480

0.9404 0.9107 0.9253 1680

0.8730 0.9094 0.8908 960

0.9816 0.9208 0.9502 3120

0.8824 0.7812 0.8287 960

0.7930 0.7583 0.7753 480

0.8676 0.9808 0.9207 5520

0.9548 0.5569 0.7035 720

0.9901 0.8727 0.9277 5280

0.8275 0.9861 0.8999 720

0.8410 0.8812 0.8606 480

0.9281 0.8958 0.9117 720

Continued on next page



100

Tabela 11 – continuation

Class Precision Recall F1-score Support

0.8658 0.9435 0.9030 5040

0.9731 0.9342 0.9532 1200

0.9388 0.9678 0.9531 3600

0.9543 0.9275 0.9407 3600

0.9512 0.9888 0.9696 3840

Accuracy 0.9316 101040

Macro avg 0.9214 0.8957 0.9038 101040

Weighted avg 0.9344 0.9316 0.9309 101040

Tabela 12 – Aff-GTSRB (el=45°) - MASViT (max score)

Class Precision Recall F1-score Support

0.9898 0.8104 0.8912 480

0.9607 0.9557 0.9582 5760

0.9878 0.9987 0.9932 5280

0.9804 0.9402 0.9599 3360

0.9925 0.9592 0.9756 5520

0.9610 0.9964 0.9783 5760

0.9361 0.9903 0.9624 2160

0.9987 0.8863 0.9391 1680

0.9734 0.9775 0.9755 1200

0.9938 0.9535 0.9732 2880

0.9594 0.9327 0.9459 3120

0.9756 1.0000 0.9877 480

Continued on next page



101

Tabela 12 – continuation

Class Precision Recall F1-score Support

0.9485 0.9733 0.9608 6000

0.7756 0.9986 0.8731 720

0.9101 0.8292 0.8677 720

0.9978 0.9302 0.9628 960

0.8721 1.0000 0.9317 1200

0.9517 0.9583 0.9550 720

0.9850 0.9734 0.9792 3840

0.9736 0.9715 0.9725 1440

0.9599 0.5979 0.7368 480

0.9676 0.9700 0.9688 1200

0.9288 0.9972 0.9618 720

0.8809 0.9653 0.9211 3600

0.9374 0.9367 0.9371 1200

0.9972 0.9815 0.9893 2160

0.9856 1.0000 0.9928 480

0.6937 0.9720 0.8096 1680

0.5421 0.9583 0.6925 960

0.9698 0.8865 0.9263 3120

0.9962 0.8198 0.8994 960

0.9832 0.9729 0.9780 480

0.9204 0.7837 0.8466 5520

0.9916 0.6542 0.7883 720

0.9930 0.9430 0.9674 5280

0.6822 0.9778 0.8037 720

Continued on next page



102

Tabela 12 – continuation

Class Precision Recall F1-score Support

0.8114 0.9771 0.8866 480

0.9306 0.9306 0.9306 720

0.9823 0.8810 0.9289 5040

0.9914 0.9583 0.9746 1200

0.9350 0.9908 0.9621 3600

0.9648 0.9897 0.9771 3600

0.9782 0.9951 0.9866 3840

Accuracy 0.9449 101040

Macro avg 0.9337 0.9343 0.9281 101040

Weighted avg 0.9519 0.9449 0.9457 101040

Tabela 13 – Aff-GTSRB (el=30°) - MASViT (fixed centroid)

Class Precision Recall F1-score Support

0.4344 0.2208 0.2928 480

0.7211 0.5422 0.6190 5760

0.9123 0.8172 0.8621 5280

0.7833 0.6714 0.7231 3360

0.9974 0.9121 0.9529 5520

0.7231 0.9726 0.8295 5760

0.9176 0.9537 0.9353 2160

0.9816 0.1268 0.2246 1680

0.9807 0.7217 0.8315 1200

0.9771 0.9174 0.9463 2880

Continued on next page



103

Tabela 13 – continuation

Class Precision Recall F1-score Support

0.7625 0.4641 0.5770 3120

0.7517 0.4729 0.5806 480

0.5726 0.6198 0.5953 6000

0.3307 0.5778 0.4206 720

0.3853 0.2333 0.2907 720

0.8414 0.7073 0.7685 960

0.4800 0.7292 0.5789 1200

0.4378 0.4056 0.4211 720

0.5764 0.8414 0.6842 3840

0.7643 0.7139 0.7382 1440

0.2749 0.2417 0.2572 480

0.3543 0.6517 0.4591 1200

0.3906 0.7583 0.5156 720

0.5273 0.5039 0.5153 3600

0.3704 0.7108 0.4870 1200

0.6978 0.7472 0.7217 2160

0.7837 0.9812 0.8714 480

0.7132 0.6750 0.6936 1680

0.5459 0.3594 0.4334 960

0.8669 0.2442 0.3811 3120

0.6047 0.3187 0.4175 960

0.4549 0.2208 0.2973 480

0.5276 0.9045 0.6664 5520

0.3985 0.2917 0.3368 720

Continued on next page



104

Tabela 13 – continuation

Class Precision Recall F1-score Support

0.9297 0.3805 0.5400 5280

0.5829 0.8597 0.6947 720

0.4641 0.2021 0.2816 480

0.4769 0.7444 0.5813 720

0.4992 0.7631 0.6036 5040

0.8751 0.6658 0.7563 1200

0.7634 0.5969 0.6700 3600

0.5811 0.6547 0.6157 3600

0.9368 0.6867 0.7925 3840

Accuracy 0.6671 101040

Macro avg 0.6500 0.5996 0.5921 101040

Weighted avg 0.7145 0.6671 0.6597 101040

Tabela 14 – Aff-GTSRB (el=30°) - MASViT (max score)

Class Precision Recall F1-score Support

0.5866 0.4938 0.5362 480

0.8988 0.6045 0.7229 5760

0.8972 0.9652 0.9299 5280

0.9106 0.7336 0.8126 3360

0.9963 0.8710 0.9294 5520

0.7735 0.9778 0.8637 5760

0.8597 0.9560 0.9053 2160

0.9962 0.1571 0.2715 1680

Continued on next page



105

Tabela 14 – continuation

Class Precision Recall F1-score Support

0.9951 0.8500 0.9169 1200

0.8781 0.9479 0.9117 2880

0.9301 0.5885 0.7208 3120

0.9331 0.6104 0.7380 480

0.7783 0.7810 0.7796 6000

0.4387 0.7958 0.5656 720

0.6863 0.3889 0.4965 720

0.9048 0.6833 0.7786 960

0.6454 0.7433 0.6909 1200

0.5860 0.6958 0.6362 720

0.6444 0.9039 0.7524 3840

0.9096 0.9437 0.9264 1440

0.4218 0.2979 0.3492 480

0.4469 0.8025 0.5741 1200

0.3749 0.9597 0.5392 720

0.8069 0.6711 0.7328 3600

0.4235 0.7775 0.5483 1200

0.7521 0.8162 0.7829 2160

0.6316 1.0000 0.7742 480

0.5608 0.7988 0.6590 1680

0.4287 0.6729 0.5237 960

0.9347 0.3397 0.4984 3120

0.9686 0.5781 0.7241 960

0.8199 0.6354 0.7160 480

Continued on next page



106

Tabela 14 – continuation

Class Precision Recall F1-score Support

0.6718 0.8420 0.7473 5520

0.7644 0.4778 0.5880 720

0.9831 0.6500 0.7826 5280

0.4761 0.7889 0.5938 720

0.4307 0.3042 0.3565 480

0.4482 0.8583 0.5889 720

0.7771 0.8224 0.7991 5040

0.8559 0.7625 0.8065 1200

0.7813 0.7622 0.7717 3600

0.7678 0.8944 0.8263 3600

0.9849 0.7964 0.8806 3840

Accuracy 0.7668 101040

Macro avg 0.7386 0.7209 0.6988 101040

Weighted avg 0.8087 0.7668 0.7645 101040



107

B.1.4 Proj-GTSRB el={60°, 45°, 30°}

The tables 15, 16, 17, 18, 19 and 20 show the report of tests in aff-GTSRB datasets

for elevation degrees 60°, 45° and 30°, alternating between fixed centroid and max score

approaches.

Tabela 15 – Proj-GTSRB (el=60°) - MASViT (fixed centroid)

Class Precision Recall F1-score Support

0.9658 0.7646 0.8535 480

0.9401 0.9592 0.9496 5760

0.9634 0.9962 0.9795 5280

0.9795 0.9688 0.9741 3360

0.9976 0.9627 0.9798 5520

0.9452 0.9964 0.9701 5760

0.9875 0.9912 0.9894 2160

0.9993 0.8726 0.9317 1680

0.9949 0.9817 0.9883 1200

0.9965 0.9889 0.9927 2880

0.9877 0.9256 0.9557 3120

0.9481 0.9896 0.9684 480

0.9467 0.9778 0.9620 6000

0.8016 0.9931 0.8871 720

0.9312 0.6764 0.7836 720

0.9902 0.9437 0.9664 960

0.9580 0.9683 0.9631 1200

0.9654 0.9292 0.9469 720

0.9691 0.9729 0.9710 3840

Continued on next page



108

Tabela 15 – continuation

Class Precision Recall F1-score Support

0.9529 0.8701 0.9096 1440

0.8848 0.7521 0.8131 480

0.9356 0.9692 0.9521 1200

0.9502 0.9542 0.9522 720

0.9833 0.9325 0.9572 3600

0.9198 0.9075 0.9136 1200

0.9684 0.9639 0.9661 2160

0.9125 1.0000 0.9543 480

0.9597 0.9494 0.9545 1680

0.8861 0.9479 0.9160 960

0.9855 0.9571 0.9711 3120

0.8649 0.8740 0.8694 960

0.8727 0.7854 0.8268 480

0.9085 0.9799 0.9428 5520

0.9163 0.5931 0.7201 720

0.9909 0.9316 0.9604 5280

0.8676 0.9833 0.9219 720

0.7809 0.9208 0.8451 480

0.8426 0.9889 0.9099 720

0.9114 0.9819 0.9454 5040

0.9843 0.8875 0.9334 1200

0.9744 0.9850 0.9797 3600

0.9809 0.9569 0.9688 3600

Continued on next page



109

Tabela 15 – continuation

Class Precision Recall F1-score Support

0.9798 0.9831 0.9814 3840

Accuracy 0.9558 101040

Macro avg 0.9414 0.9282 0.9320 101040

Weighted avg 0.9572 0.9558 0.9553 101040

Tabela 16 – Proj-GTSRB (el=60°) - MASViT (max score)

Class Precision Recall F1-score Support

0.9814 0.9917 0.9865 480

0.9816 0.9795 0.9805 5760

0.9751 1.0000 0.9874 5280

0.9984 0.9054 0.9496 3360

0.9985 0.9558 0.9767 5520

0.9559 0.9970 0.9760 5760

0.9944 0.9903 0.9923 2160

1.0000 0.8762 0.9340 1680

0.9975 0.9850 0.9912 1200

0.9907 0.9958 0.9932 2880

0.9925 0.9301 0.9603 3120

0.9816 1.0000 0.9907 480

0.9862 0.9792 0.9827 6000

0.6936 1.0000 0.8191 720

0.9397 0.8014 0.8651 720

0.9979 0.9677 0.9825 960

Continued on next page



110

Tabela 16 – continuation

Class Precision Recall F1-score Support

0.9456 0.9992 0.9716 1200

0.9633 0.9847 0.9739 720

0.9892 0.9797 0.9844 3840

0.9857 0.9604 0.9729 1440

0.9894 0.7812 0.8731 480

0.9800 0.9825 0.9813 1200

0.9649 0.9931 0.9788 720

0.9505 0.9858 0.9678 3600

0.9095 0.9383 0.9237 1200

0.9977 0.9912 0.9944 2160

0.9562 1.0000 0.9776 480

0.6569 0.9881 0.7892 1680

0.5382 0.9823 0.6954 960

0.9749 0.9337 0.9538 3120

0.9887 0.8219 0.8976 960

0.9894 0.9750 0.9822 480

0.9451 0.7542 0.8389 5520

0.9449 0.7625 0.8440 720

0.9988 0.9780 0.9883 5280

0.8312 0.9708 0.8956 720

0.6784 0.9667 0.7973 480

0.8197 0.9917 0.8975 720

0.9856 0.9655 0.9754 5040

0.9936 0.9083 0.9491 1200

Continued on next page



111

Tabela 16 – continuation

Class Precision Recall F1-score Support

0.9755 0.9956 0.9854 3600

0.9898 0.9958 0.9928 3600

0.9908 0.9867 0.9888 3840

Accuracy 0.9567 101040

Macro avg 0.9395 0.9518 0.9404 101040

Weighted avg 0.9647 0.9567 0.9579 101040

Tabela 17 – Proj-GTSRB (el=45°) - MASViT (fixed centroid)

Class Precision Recall F1-score Support

0.9126 0.5437 0.6815 480

0.8802 0.9094 0.8945 5760

0.9543 0.9883 0.9710 5280

0.9554 0.8985 0.9261 3360

0.9977 0.9513 0.9739 5520

0.9398 0.9943 0.9663 5760

0.9878 0.9782 0.9830 2160

0.9980 0.8887 0.9402 1680

0.9597 0.9717 0.9656 1200

0.9915 0.9764 0.9839 2880

0.9728 0.8481 0.9062 3120

0.9613 0.9313 0.9460 480

0.8827 0.9283 0.9050 6000

0.6861 0.9806 0.8073 720

Continued on next page



112

Tabela 17 – continuation

Class Precision Recall F1-score Support

0.8373 0.6292 0.7185 720

0.9851 0.8979 0.9395 960

0.8999 0.9592 0.9286 1200

0.8973 0.7889 0.8396 720

0.9204 0.9604 0.9400 3840

0.9344 0.8708 0.9015 1440

0.7500 0.6125 0.6743 480

0.8742 0.9383 0.9051 1200

0.8978 0.9153 0.9065 720

0.9530 0.8383 0.8920 3600

0.8091 0.8583 0.8330 1200

0.9488 0.9444 0.9466 2160

0.8587 1.0000 0.9240 480

0.9059 0.9167 0.9112 1680

0.7998 0.8781 0.8371 960

0.9802 0.8574 0.9147 3120

0.7989 0.7448 0.7709 960

0.7740 0.6208 0.6890 480

0.8384 0.9679 0.8985 5520

0.8613 0.5347 0.6598 720

0.9849 0.8629 0.9198 5280

0.8124 0.9681 0.8834 720

0.7920 0.7854 0.7887 480

0.7437 0.9792 0.8453 720

Continued on next page



113

Tabela 17 – continuation

Class Precision Recall F1-score Support

0.8233 0.9633 0.8878 5040

0.9796 0.8392 0.9039 1200

0.9499 0.9542 0.9521 3600

0.9356 0.9239 0.9297 3600

0.9783 0.9633 0.9707 3840

Accuracy 0.9179 101040

Macro avg 0.8978 0.8782 0.8828 101040

Weighted avg 0.9220 0.9179 0.9174 101040

Tabela 18 – Proj-GTSRB (el=45°) - MASViT (max score)

Class Precision Recall F1-score Support

0.9604 0.9104 0.9348 480

0.9535 0.9535 0.9535 5760

0.9593 1.0000 0.9792 5280

0.9884 0.8851 0.9339 3360

0.9981 0.9350 0.9655 5520

0.9594 0.9962 0.9774 5760

0.9842 0.9810 0.9826 2160

1.0000 0.8940 0.9441 1680

0.9991 0.9733 0.9861 1200

0.9715 0.9927 0.9820 2880

0.9910 0.8776 0.9308 3120

0.9938 0.9979 0.9958 480

Continued on next page



114

Tabela 18 – continuation

Class Precision Recall F1-score Support

0.9693 0.9630 0.9661 6000

0.6492 1.0000 0.7873 720

0.9151 0.7931 0.8497 720

0.9920 0.9083 0.9483 960

0.9011 0.9867 0.9419 1200

0.9670 0.9764 0.9717 720

0.9684 0.9724 0.9704 3840

0.9776 0.9715 0.9746 1440

0.9529 0.5896 0.7284 480

0.9421 0.9758 0.9587 1200

0.9545 0.9903 0.9721 720

0.9309 0.9614 0.9459 3600

0.8603 0.9183 0.8884 1200

0.9836 0.9736 0.9786 2160

0.8556 1.0000 0.9222 480

0.6267 0.9762 0.7633 1680

0.4997 0.9771 0.6613 960

0.9806 0.8423 0.9062 3120

0.9779 0.8313 0.8986 960

0.9784 0.9417 0.9597 480

0.9036 0.7467 0.8177 5520

0.9479 0.7069 0.8099 720

0.9972 0.9491 0.9725 5280

0.7593 0.9333 0.8374 720

Continued on next page



115

Tabela 18 – continuation

Class Precision Recall F1-score Support

0.6340 0.8625 0.7308 480

0.7593 0.9903 0.8596 720

0.9647 0.9381 0.9512 5040

0.9813 0.8767 0.9261 1200

0.9399 0.9867 0.9627 3600

0.9681 0.9933 0.9805 3600

0.9854 0.9656 0.9754 3840

Accuracy 0.9376 101040

Macro avg 0.9182 0.9278 0.9159 101040

Weighted avg 0.9478 0.9376 0.9393 101040

Tabela 19 – Proj-GTSRB (el=30°) - MASViT (fixed centroid)

Class Precision Recall F1-score Support

0.3620 0.1667 0.2282 480

0.6704 0.4844 0.5624 5760

0.9051 0.8093 0.8545 5280

0.7710 0.6324 0.6949 3360

0.9972 0.9071 0.9500 5520

0.7124 0.9698 0.8214 5760

0.8937 0.9537 0.9227 2160

0.9850 0.1173 0.2096 1680

0.9702 0.7050 0.8166 1200

0.9732 0.9090 0.9400 2880

Continued on next page



116

Tabela 19 – continuation

Class Precision Recall F1-score Support

0.7471 0.4385 0.5526 3120

0.8074 0.4104 0.5442 480

0.5307 0.5832 0.5557 6000

0.3062 0.5597 0.3959 720

0.3753 0.2111 0.2702 720

0.7822 0.6958 0.7365 960

0.4761 0.6817 0.5607 1200

0.4276 0.3611 0.3916 720

0.5576 0.8344 0.6685 3840

0.7249 0.6972 0.7108 1440

0.2246 0.1979 0.2104 480

0.3525 0.6275 0.4514 1200

0.4009 0.7528 0.5232 720

0.4871 0.4367 0.4605 3600

0.3402 0.6750 0.4524 1200

0.7148 0.6963 0.7054 2160

0.7564 0.9833 0.8551 480

0.7050 0.6315 0.6662 1680

0.5000 0.3250 0.3939 960

0.8233 0.1881 0.3063 3120

0.5763 0.2990 0.3937 960

0.4388 0.1792 0.2544 480

0.4973 0.8833 0.6364 5520

0.3298 0.2625 0.2923 720

Continued on next page



117

Tabela 19 – continuation

Class Precision Recall F1-score Support

0.8934 0.3366 0.4889 5280

0.5352 0.8236 0.6488 720

0.4175 0.1792 0.2507 480

0.4554 0.7083 0.5543 720

0.4567 0.7554 0.5693 5040

0.8753 0.6200 0.7259 1200

0.7418 0.5683 0.6436 3600

0.5275 0.6206 0.5703 3600

0.9366 0.6805 0.7882 3840

Accuracy 0.6404 101040

Macro avg 0.6270 0.5711 0.5635 101040

Weighted avg 0.6907 0.6404 0.6313 101040

Tabela 20 – Proj-GTSRB (el=30°) - MASViT (max score)

Class Precision Recall F1-score Support

0.4680 0.4271 0.4466 480

0.8780 0.5286 0.6599 5760

0.8816 0.9559 0.9172 5280

0.9032 0.7051 0.7919 3360

0.9954 0.8611 0.9234 5520

0.7613 0.9719 0.8538 5760

0.8352 0.9569 0.8919 2160

0.9950 0.1179 0.2108 1680

Continued on next page



118

Tabela 20 – continuation

Class Precision Recall F1-score Support

0.9980 0.8375 0.9107 1200

0.8555 0.9417 0.8965 2880

0.9206 0.5423 0.6825 3120

0.9223 0.5437 0.6841 480

0.7365 0.7592 0.7476 6000

0.3952 0.7597 0.5200 720

0.6651 0.3972 0.4974 720

0.8859 0.6875 0.7742 960

0.6215 0.7333 0.6728 1200

0.5460 0.6181 0.5798 720

0.6337 0.8812 0.7373 3840

0.8978 0.9215 0.9095 1440

0.2971 0.2562 0.2752 480

0.4172 0.7833 0.5445 1200

0.3574 0.9361 0.5173 720

0.7774 0.5994 0.6769 3600

0.4234 0.7650 0.5451 1200

0.7312 0.7694 0.7498 2160

0.6218 1.0000 0.7668 480

0.5596 0.7577 0.6437 1680

0.3991 0.6323 0.4893 960

0.9211 0.2881 0.4390 3120

0.9625 0.5344 0.6872 960

0.8239 0.6042 0.6971 480

Continued on next page



119

Tabela 20 – continuation

Class Precision Recall F1-score Support

0.6382 0.8205 0.7179 5520

0.7293 0.4639 0.5671 720

0.9749 0.5960 0.7398 5280

0.4089 0.7792 0.5363 720

0.3971 0.2896 0.3349 480

0.3991 0.8181 0.5364 720

0.7132 0.8171 0.7616 5040

0.8261 0.7442 0.7830 1200

0.7755 0.7506 0.7628 3600

0.7235 0.8772 0.7930 3600

0.9827 0.7701 0.8635 3840

Accuracy 0.7393 101040

Macro avg 0.7129 0.6930 0.6683 101040

Weighted avg 0.7871 0.7393 0.7357 101040



120

APÊNDICE C – APPENDIX

C.1 CONFUSION MATRICES

We present the confusion matrices for each test dataset for MASViT experiments

utilizing the fixed centroid approach, spanning across several tables. There are a total

of eight tables: one for GTSRB Test, one for elevation angle 90° (Aff-GTSRB / Proj-

GTSRB), three for Aff-GTSRB with elevation angles 30°, 45°, and 60°, and finally, three

more for Proj-GTSRB with elevation angles 30°, 45°, and 60°. The confusion matrices were

rotated and resized to accommodate their large dimensions (48× 48) and fit properly on

the pages and are presented in the (True × Predicted) format.

C.1.1 GTSRB Test

The table 21 describes the confusion matrix for GTSRB Test dataset using fixed

centroid approach.

C.1.2 Aff-GTSRB / Proj-GTSRB (el=90°)

In elevation angle equals to 90°, there aren’t not difference between affinity and projec-

tivity. So, there are here one confusion matrix, using the fixed centroid approach described

in Table 22.

C.1.3 Aff-GTSRB el={60°, 45°, 30°}

The tables 23, 24 and 25 show the confusion matrices of tests in aff-GTSRB datasets

for elevation degrees 60∘, 45∘ and 30∘ using the fixed centroid approach.

C.1.4 Proj-GTSRB el={60°, 45°, 30°}

The tables 26, 27 and 28 show the confusion matrices of tests in proj-GTSRB datasets

for elevation degrees 60∘, 45∘ and 30∘ using the fixed centroid approach.



121

Tabela 21 – GTSRB Test - MASViT (fixed centroid) - Confusion Matrix (True × Predicted)

60
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

704
0

0
0

0
0

0
0

0
0

0
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
7

0
3

0
0

0
0

659
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

418
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

664
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

13
0

0
11

0
0

0
0

0
0

0
0

0
0

0
1

719
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

270
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

208
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

149
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

360
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
2

0
0

0
0

384
0

0
0

0
0

0
0

0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

60
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

749
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

90
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

0
0

0
0

0
0

0
2

0
0

78
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

118
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

148
0

0
0

0
0

0
0

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

0
0

0
0

1
0

87
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

0
0

0
0

0
0

0
0

0
1

2
0

1
0

470
0

0
1

0
0

1
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
18

0
0

4
0

0
0

0
1

0
0

0
0

0
0

0
0

153
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
4

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

59
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

147
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

90
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

0
0

435
0

0
0

0
0

0
0

0
0

0
0

0
0

0
12

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
3

0
0

1
0

0
0

0
0

0
1

144
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
0

0
0

0
0

0
0

0
0

0
0

266
0

0
0

0
0

0
0

0
0

0
0

0
0

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

60
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

207
0

2
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

119
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

389
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

111
4

2
0

0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

1
2

56
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

689
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
22

68
0

0
0

0
0

0
0

0
0

0
9

0
0

0
0

0
0

0
0

0
0

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

644
0

0
0

3
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

88
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

60
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

89
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

628
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

4
0

145
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

447
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

0
0

447
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

480



122

Tabela 22 – Aff-GTSRB / Proj-GTSRB (el=90°) - MASViT (fixed centroid) - Confusion Matrix (True
× Predicted)

458
11

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

4
0

0
0

0
0

0
5

0
0

5658
0

0
0

0
0

0
0

0
0

0
38

0
0

0
0

1
0

0
0

0
0

3
1

0
0

0
0

0
0

0
0

0
5

0
0

0
33

0
20

1
0

0
0

5266
0

0
2

0
0

0
0

0
0

0
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

1
1

3317
0

0
0

0
0

2
9

0
0

2
4

0
1

2
1

0
0

7
0

0
11

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
2

0
0

5304
23

0
0

0
0

0
0

7
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

77
0

0
105

0
0

0
0

0
0

0
0

0
0

0
9

5724
0

0
0

0
2

1
1

0
0

0
0

0
2

0
1

2
0

0
0

0
0

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
16

0
1

0
1

4
1

2139
0

0
6

2
0

0
0

0
0

0
0

1
0

0
0

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

1
0

0
2

0
0

182
0

1475
0

1
3

0
0

0
0

0
0

0
0

7
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
10

0
0

1
0

0
0

0
0

1187
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

12
2

5
5

0
1

6
56

0
0

2792
1

0
0

2
1

1
1

0
0

0
0

0
0

0
0

0
0

3
0

0
0

0
1

0
0

0
2

1
0

0
0

0
0

0
0

0
6

0
21

1
0

0
0

3002
2

0
4

0
0

1
9

4
19

6
29

0
1

1
0

4
0

0
2

0
0

0
0

0
0

2
5

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

480
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
23

0
0

0
0

0
0

0
0

0
0

5971
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

5
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

718
0

0
1

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

0
40

6
0

0
0

0
0

5
21

0
0

569
0

4
0

1
1

0
1

0
0

5
13

0
0

0
0

0
0

0
0

0
0

51
0

0
0

0
0

0
0

0
0

0
0

12
0

0
0

0
0

1
0

0
1

920
5

1
16

0
0

0
0

0
0

2
0

0
0

0
0

0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

0
0

0
0

1177
0

0
0

0
0

0
0

20
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
0

0
0

0
5

0
0

0
1

5
0

705
0

0
0

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
34

0
2

0
0

1
0

3
0

0
8

18
1

52
0

3668
0

10
16

1
0

9
0

0
1

0
0

1
0

15
0

0
0

0
0

0
0

0
0

0
0

0
92

4
0

8
0

0
0

0
2

0
0

0
0

0
0

0
0

1281
5

0
0

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
45

0
0

0
6

0
0

0
0

0
0

5
0

19
0

0
0

0
8

8
3

426
2

0
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
1

1
1

0
0

1176
19

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

717
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

7
6

0
0

0
0

0
0

0
0

0
16

0
0

0
0

0
0

0
0

0
0

3478
0

0
0

0
0

1
0

0
0

0
0

0
0

0
92

0
0

0
0

0
0

0
2

0
0

2
0

0
0

2
0

0
27

0
0

4
0

0
2

0
0

1
8

1149
0

0
0

0
0

0
0

1
0

0
0

0
0

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

25
0

0
5

0
3

1
0

0
0

0
1

2120
0

0
0

0
0

0
0

0
0

0
0

0
0

5
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

480
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1542
9

52
22

0
55

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

952
0

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
12

3103
0

0
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
5

0
0

900
33

20
0

0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

7
5

464
4

0
0

0
0

0
0

0
0

0
0

0
0

0
9

1
0

0
0

0
0

0
0

0
0

2
0

2
0

0
0

0
0

0
0

0
0

0
0

7
30

7
1

5380
16

0
65

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
168

550
0

0
0

0
0

0
0

0
0

0
107

1
0

0
0

0
0

0
0

1
0

61
0

0
0

0
0

0
1

1
0

0
6

0
0

0
0

0
0

0
0

0
0

5077
1

0
0

19
0

3
1

1
0

0
0

0
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

3
2

0
0

710
0

0
0

0
0

0
0

0
0

0
0

5
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

467
2

0
1

0
0

4
0

0
0

0
2

0
0

0
0

0
0

0
0

5
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
10

690
0

5
7

0
0

0
4

0
0

0
0

0
0

0
0

0
0

23
0

0
0

0
0

0
0

0
0

0
11

0
0

0
0

0
0

0
0

0
0

5
0

0
0

4985
0

10
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
0

0
0

0
0

0
0

0
0

0
0

0
3

1
0

0
2

6
1

0
0

0
0

34
0

1151
0

0
0

0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

9
0

3571
18

0
0

3
0

0
0

0
0

0
0

0
0

0
12

0
0

0
0

0
0

0
0

2
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
9

0
16

3550
0

0
0

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3837



123

Tabela 23 – Aff-GTSRB (el=60°) - MASViT (fixed centroid) - Confusion Matrix (True × Predicted)

364
78

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

0
0

0
0

0
0

0
0

0
0

23
0

0
0

0
0

0
13

0
0

5529
0

0
0

0
0

0
0

0
0

0
70

0
0

0
0

1
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
1

0
0

0
93

0
60

3
1

0
0

5263
0

0
1

1
0

0
2

4
0

0
3

0
0

0
0

0
1

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4
0

0
1

3262
0

0
0

0
0

2
12

1
0

3
1

0
3

8
9

0
0

12
0

0
45

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
5

1
0

5306
30

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

2
0

0
1

1
0

88
0

0
79

1
2

0
2

0
0

0
0

0
0

0
4

5742
0

0
0

2
1

0
1

0
0

0
0

0
2

0
0

0
0

0
0

0
1

0
1

0
0

0
2

0
0

0
0

1
0

0
0

0
3

0
0

0
0

0
0

2142
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

17
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

202
0

1470
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

7
0

0
0

0
0

1177
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

15
9

0
1

0
1

0
18

0
0

2848
0

0
0

0
0

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

0
1

0
23

0
0

0
0

2908
5

0
11

12
0

0
3

11
50

32
21

0
2

0
0

5
0

0
1

0
0

4
0

0
0

7
20

1
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

475
0

0
0

0
1

0
0

0
0

0
0

0
0

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
75

0
0

0
0

0
0

0
0

0
0

5874
0

0
0

0
0

0
0

0
0

0
4

0
0

0
0

0
0

0
0

0
0

6
0

0
0

40
0

0
1

0
0

0
0

0
0

0
0

0
0

0
1

0
0

715
0

0
0

0
1

0
0

0
0

0
0

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
23

0
0

0
0

2
0

7
17

2
1

491
0

13
0

1
1

6
2

0
0

7
29

0
0

0
0

0
0

0
0

0
0

118
0

0
0

0
0

0
0

0
0

0
0

9
0

0
0

0
0

0
0

0
0

915
1

2
20

1
0

1
0

0
0

0
0

0
0

0
0

0
5

6
0

0
0

0
0

0
0

0
0

0
0

0
1

0
2

0
0

0
0

0
2

0
2

2
0

1163
0

0
0

0
2

0
0

10
14

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
0

0
0

0
0

3
0

0
0

0
8

2
0

0
1

4
0

674
7

1
2

8
0

0
10

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4
1

0
12

0
0

0
0

0
0

2
0

0
22

10
0

12
1

3737
1

1
14

0
1

8
2

0
4

0
0

1
0

5
2

0
0

0
0

0
0

0
0

0
0

0
120

3
0

17
0

0
0

0
0

0
0

1
0

0
0

0
1

1254
5

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
36

0
0

0
18

0
0

0
0

0
0

0
0

19
6

5
0

3
0

41
1

362
0

0
0

0
6

0
0

0
0

0
0

0
0

0
0

0
0

19
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

1
0

0
0

7
2

0
0

1165
17

0
7

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
19

0
0

0
0

0
0

0
0

0
1

0
1

2
0

0
1

692
0

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

17
3

0
0

0
0

0
0

1
2

0
47

0
0

0
0

0
0

1
0

0
0

3350
0

0
0

0
0

0
0

0
0

0
3

0
0

0
168

0
2

4
2

0
0

7
3

0
1

2
0

0
0

2
0

0
59

0
0

2
0

1
4

0
6

1
1

1094
2

0
1

0
1

0
0

2
0

0
2

0
0

9
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

55
0

1
1

0
1

2
0

0
1

0
0

2087
0

0
0

0
0

0
0

0
0

0
0

0
0

10
0

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

480
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1599
1

16
29

1
33

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

916
3

0
0

41
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

36
59

2999
1

0
25

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
6

16
1

853
43

22
0

0
19

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3
0

11
72

389
5

0
0

0
0

0
0

0
0

0
0

0
1

0
7

0
0

0
0

0
0

0
0

0
0

0
0

3
0

1
0

0
2

0
0

0
0

2
8

26
10

6
4

5419
26

0
5

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
278

441
0

0
0

0
0

0
0

0
0

0
143

1
0

0
0

0
0

0
0

0
0

90
0

0
0

0
0

2
0

0
0

0
8

0
0

0
0

0
0

0
0

0
0

4937
0

0
0

79
0

3
7

10
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

2
0

0
1

1
4

0
0

710
0

0
0

0
0

0
0

0
0

0
0

2
4

0
0

0
0

0
0

0
0

2
0

0
0

0
0

0
0

0
0

0
0

4
0

0
0

0
0

1
0

0
0

452
13

0
2

0
0

0
0

0
0

0
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

0
0

0
0

0
0

0
0

1
1

712
0

0
0

0
0

0
1

2
0

0
0

0
0

0
0

0
0

33
1

0
0

0
0

1
0

0
0

0
22

0
0

0
0

0
0

0
0

0
0

3
0

0
0

4956
0

7
14

0
0

0
0

0
0

0
0

0
0

0
0

0
0

9
0

0
0

0
0

0
0

0
0

0
0

0
23

1
0

0
2

5
0

0
0

0
1

86
0

1073
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

0
0

0
0

0
0

0
0

0
0

2
0

0
0

21
0

3554
20

0
0

6
0

0
0

0
2

0
0

0
0

0
57

0
0

0
0

0
0

0
0

2
0

9
0

0
0

0
0

0
0

0
0

0
6

0
0

0
34

0
16

3468
0

0
0

52
0

0
0

0
0

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3785



124

Tabela 24 – Aff-GTSRB (el=45°) - MASViT (fixed centroid) - Confusion Matrix (True × Predicted)

269
163

0
0

0
0

0
0

0
0

0
0

5
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

21
0

0
0

0
0

0
21

0
2

5324
0

1
0

0
0

0
1

0
1

0
229

0
0

0
0

0
1

0
1

1
0

6
0

0
0

0
0

0
0

0
0

0
4

0
0

0
110

0
69

3
7

0
0

5207
0

0
0

2
0

10
4

3
0

0
11

0
0

0
0

0
1

0
2

1
3

0
2

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
4

29
0

1
2

3197
0

0
0

0
0

1
7

3
0

23
2

0
16

2
30

0
0

15
0

0
60

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
3

0
0

5313
33

0
0

0
0

0
0

9
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3
1

0
0

76
0

0
81

0
0

0
1

0
0

0
0

0
0

0
6

5723
0

0
0

0
2

0
0

3
2

0
3

1
0

3
0

2
0

0
0

2
0

1
0

0
0

0
4

0
0

1
0

0
0

0
0

0
7

0
0

0
1

0
0

2140
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

19
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

169
0

1481
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

0
0

0
0

0
0

0
27

0
0

7
0

0
0

0
0

1165
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

25
0

0
5

0
2

2
138

0
0

2723
0

0
0

0
3

1
1

0
0

0
0

0
0

0
0

2
0

0
0

0
0

0
3

0
0

0
0

0
0

0
0

0
0

2
4

1
15

0
29

1
0

1
0

2799
3

0
19

25
0

13
13

29
42

45
41

1
11

5
0

3
0

0
1

0
0

0
0

0
1

6
5

1
1

1
1

1
0

0
0

0
0

0
0

0
0

0
0

470
0

1
0

0
0

0
1

0
0

1
0

0
0

7
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
94

0
0

0
0

0
0

0
0

0
0

5738
0

0
0

0
0

0
0

0
0

0
57

0
0

0
0

0
0

0
0

0
0

3
0

0
0

102
0

0
2

4
0

1
0

3
0

0
0

0
0

0
0

0
0

708
0

0
5

0
1

0
0

1
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

2
69

1
1

0
0

9
0

9
24

0
0

495
0

44
0

0
2

1
3

1
0

12
14

0
0

0
0

0
0

0
0

0
0

31
0

0
0

0
0

1
0

0
0

2
0

23
5

0
0

0
1

0
0

2
5

862
20

3
14

8
0

2
1

0
0

0
0

0
0

0
0

0
3

4
0

0
0

0
0

0
0

3
2

0
0

0
0

0
0

0
0

0
0

0
8

0
2

1
0

1154
0

0
0

0
6

1
0

24
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
0

0
0

1
0

3
0

0
0

0
27

0
0

0
3

1
7

574
49

5
0

19
5

0
21

2
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
2

2
3

0
21

0
0

2
0

0
0

2
0

0
13

11
3

59
3

3683
1

3
9

1
2

10
0

0
5

0
0

1
0

3
1

0
0

0
0

2
0

0
0

0
0

0
79

6
0

25
0

0
0

0
6

0
0

0
0

0
2

1
5

1247
6

3
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
59

0
0

0
50

0
0

2
0

0
0

22
0

1
6

7
0

48
0

34
1

286
6

0
2

2
0

0
0

0
0

0
0

0
0

0
0

0
0

13
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

0
0

4
1

0
1

7
8

0
3

1120
35

0
12

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
14

0
0

0
0

0
0

0
0

0
1

2
0

1
0

0
7

675
0

20
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

25
3

0
0

0
0

1
0

1
4

0
158

0
0

0
0

0
0

0
0

0
2

3131
0

0
0

0
0

0
0

0
0

0
2

0
0

0
241

0
14

16
2

0
0

5
8

1
0

3
0

0
0

2
0

0
45

0
0

21
1

8
3

0
13

3
0

1067
5

0
0

0
0

0
0

2
0

0
0

0
0

11
0

0
0

2
1

0
0

0
0

0
0

0
0

0
0

0
0

77
3

0
12

0
6

1
1

1
13

0
7

2021
0

0
0

0
0

0
1

0
0

0
0

0
2

9
0

5
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

473
0

0
0

0
0

0
0

0
0

7
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1530
0

20
26

3
100

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

873
0

2
1

84
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

46
81

2873
8

1
108

0
0

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
20

9
2

750
75

73
0

0
31

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

6
0

16
53

364
38

3
0

0
0

0
0

0
0

0
0

0
2

0
2

0
0

0
0

0
0

0
0

0
0

4
0

7
0

1
0

0
0

0
0

0
0

1
8

32
11

6
2

5413
11

0
19

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4
0

3
0

0
312

401
0

0
0

0
0

0
0

0
0

0
229

0
0

1
0

0
0

1
0

1
0

215
2

1
0

2
2

1
0

1
0

1
17

0
0

1
0

0
0

0
0

0
0

4607
5

0
0

137
0

13
22

21
0

0
0

0
3

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
5

0
0

710
0

0
0

0
0

0
0

0
0

1
2

5
5

0
0

1
0

0
0

0
0

2
0

1
0

0
0

0
0

0
0

0
0

2
0

1
0

0
1

2
0

0
4

423
13

1
14

0
0

2
0

0
0

0
9

0
0

0
0

0
0

0
0

2
0

0
0

0
0

0
0

0
0

0
0

0
5

1
0

0
1

0
5

0
0

2
35

645
0

6
9

0
0

0
8

1
0

0
1

0
0

0
0

0
0

109
0

0
0

0
0

2
0

0
0

1
89

1
0

0
0

0
0

0
0

0
0

3
0

0
0

4755
0

42
28

0
0

0
0

0
0

2
0

0
0

0
0

0
0

6
0

0
0

0
0

0
0

0
0

0
1

0
3

6
0

0
3

12
6

0
0

0
0

32
7

1121
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

2
0

0
0

0
0

0
0

0
0

1
5

0
0

0
0

0
0

0
0

0
0

2
0

0
0

53
0

3484
53

0
0

19
0

0
0

0
2

1
0

0
0

0
73

0
0

0
0

0
0

0
0

1
0

21
1

0
0

0
0

0
0

0
0

0
9

0
0

0
55

0
78

3339
1

0
0

32
0

0
0

0
0

10
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

3797



125

Tabela 25 – Aff-GTSRB (el=30°) - MASViT (fixed centroid) - Confusion Matrix (True × Predicted)
106

169
0

0
0

1
0

0
0

0
0

0
35

0
0

0
2

11
13

0
0

15
7

10
0

3
0

0
0

0
0

0
0

0
45

0
0

0
13

0
0

50
0

6
3123

1
4

1
22

2
0

0
0

0
0

1171
0

2
0

13
36

88
0

1
74

86
208

18
0

0
0

0
0

0
0

2
0

9
2

0
0

425
0

362
97

7
0

0
4315

28
0

62
23

0
1

28
65

2
0

63
0

0
6

1
79

120
2

15
6

53
174

85
0

0
0

0
0

0
22

0
4

0
0

13
100

0
1

7
5

1
1

2
2256

0
0

0
0

0
5

7
1

0
135

13
0

97
7

295
0

0
110

0
0

363
0

0
0

0
0

0
0

2
0

0
0

13
44

3
2

2
1

0
2

5
1

0
5035

95
0

0
0

12
0

0
4

0
0

6
0

0
0

2
0

0
0

0
0

0
0

0
0

0
0

0
280

0
0

59
0

17
0

2
0

0
0

0
0

22
0

7
5602

0
3

0
5

26
0

2
1

4
13

4
1

13
3

0
0

0
0

0
1

11
0

0
0

0
0

16
0

0
5

0
2

0
0

0
0

19
0

0
0

0
0

4
2060

0
0

1
0

0
0

0
0

0
0

0
2

0
0

0
86

0
7

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
1446

0
213

0
0

0
0

0
2

0
11

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

6
0

0
2

107
0

0
0

0
866

0
77

0
0

0
0

0
3

0
10

1
2

0
0

0
80

46
0

1
0

0
0

0
0

0
0

0
0

3
1

0
0

0
1

9
0

5
2

0
21

91
0

0
2642

0
0

4
4

3
5

12
0

5
0

0
0

4
0

0
12

0
0

0
0

0
0

45
0

0
0

0
16

0
0

0
0

0
18

13
1

48
0

54
8

0
2

5
1448

1
0

112
84

2
19

131
533

55
173

91
0

5
85

20
43

0
0

3
0

0
16

0
0

4
34

101
1

0
6

2
2

0
0

1
26

0
4

0
0

0
0

1
227

0
8

15
0

1
0

61
31

1
19

0
0

24
52

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

9
11

493
0

2
0

4
29

0
0

0
0

0
3719

0
2

0
191

1
56

1
0

85
121

635
0

3
0

0
0

0
0

0
5

0
2

3
0

0
576

0
17

25
19

2
3

0
6

0
0

0
0

0
0

5
0

0
416

13
0

16
1

81
3

0
120

2
0

1
39

0
0

0
0

0
0

0
0

0
0

6
2

0
4

0
0

0
0

1
0

157
0

2
0

0
4

0
41

19
1

34
168

0
75

0
25

23
20

29
1

1
13

79
0

0
0

0
0

0
0

0
0

0
20

0
0

0
4

3
0

1
0

1
1

0
43

10
0

0
0

1
0

0
12

11
679

46
3

39
0

0
55

4
0

0
0

0
0

0
0

1
0

12
5

0
0

1
0

1
0

0
0

34
1

4
0

48
0

4
0

0
0

0
4

26
0

2
20

0
875

2
62

0
0

36
1

0
45

70
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

0
5

0
5

0
0

0
0

3
0

0
0

3
0

17
292

122
1

10
180

22
0

50
0

0
0

0
0

0
0

0
1

0
0

0
0

5
0

1
0

1
8

5
1

69
0

3
0

0
0

0
4

0
0

55
13

1
112

8
3231

1
6

174
12

6
69

10
0

2
0

0
0

2
34

0
0

0
0

3
7

1
1

1
1

0
1

72
7

0
40

1
0

0
3

5
4

1
14

2
53

2
13

94
1028

9
28

4
0

4
36

0
0

0
0

0
0

4
0

0
0

0
0

1
0

0
0

14
0

0
0

52
0

0
2

0
0

0
10

0
4

30
4

0
68

1
134

1
116

32
1

18
4

2
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

5
0

0
13

0
2

1
0

0
0

0
0

1
9

3
0

20
35

232
0

0
782

47
2

32
10

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
6

0
12

0
0

0
0

6
0

0
0

0
1

0
0

7
0

27
14

11
18

0
0

62
546

0
10

6
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

24
82

2
1

0
20

2
1

0
1

1
0

329
3

0
1

22
3

150
0

0
48

190
1814

38
0

0
1

0
3

0
0

4
0

1
0

0
0

696
0

37
118

8
0

2
3

4
0

6
0

0
0

0
0

0
1

86
0

0
9

6
39

5
0

93
29

0
853

40
0

0
0

0
0

1
11

1
0

1
0

1
3

5
0

1
0

10
0

1
2

0
35

0
0

0
0

3
6

0
213

3
8

39
19

40
14

16
56

12
0

35
1614

0
0

0
0

0
0

4
0

0
0

0
6

0
15

0
9

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
471

0
0

0
0

0
0

0
0

2
0

7
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1134

3
16

59
5

368
21

0
73

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
345

2
21

0
510

2
0

78
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
253

194
762

38
16

1759
72

0
23

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

78
10

0
306

44
395

15
0

111
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
13

0
0

52
106

272
28

0
9

0
0

0
0

0
0

0
0

0
0

17
1

12
0

0
0

0
0

0
0

0
24

0
3

0
9

0
0

0
0

0
0

0
0

75
76

61
16

31
4993

139
0

62
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
22

1
32

0
0

455
210

0
0

0
0

0
0

0
0

0
4

328
12

2
0

20
13

0
0

0
8

0
361

6
33

0
48

61
58

1
63

63
16

216
51

2
0

0
0

0
1

0
20

0
2009

3
1

3
1095

0
128

603
51

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

45
0

0
619

1
50

0
2

0
0

0
0

0
2

3
0

9
0

0
0

2
15

0
0

24
7

0
8

4
1

6
1

0
0

0
3

16
68

3
0

0
0

5
17

0
9

0
97

143
2

31
0

4
0

0
0

0
11

3
0

0
0

0
0

0
0

0
0

5
0

0
0

2
0

0
0

0
0

3
3

3
0

2
0

1
3

51
1

0
6

33
536

0
51

5
1

0
4

28
2

3
0

24
3

0
0

0
0

0
357

5
0

0
31

1
35

1
1

7
127

317
64

0
0

1
0

0
0

0
6

0
2

0
0

0
3846

0
61

114
0

0
0

0
0

0
25

0
0

0
0

0
0

0
7

0
0

0
0

0
0

0
0

0
0

1
7

4
5

1
0

11
19

95
32

0
2

2
175

7
799

1
7

0
1

3
0

0
0

8
0

0
0

0
0

0
105

0
0

0
5

0
4

0
1

1
37

11
219

0
0

0
0

0
0

0
1

0
0

0
0

0
446

0
2149

609
0

18
59

0
0

0
58

0
0

0
0

0
0

367
1

0
1

5
18

4
0

0
13

23
121

50
4

0
1

0
0

0
0

18
0

29
0

0
0

417
0

35
2357

1
0

9
284

6
0

109
0

0
10

0
174

16
32

9
4

0
60

1
70

48
0

19
13

23
7

153
0

0
0

0
0

0
2

0
51

0
1

0
56

0
5

41
2637



126

Tabela 26 – Proj-GTSRB (el=60°) - MASViT (fixed centroid) - Confusion Matrix (True × Predicted)

367
82

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

18
0

0
0

0
0

0
12

0
0

5525
0

0
0

0
0

0
0

0
0

0
67

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
3

0
0

0
101

0
61

1
0

0
0

5260
0

0
2

2
0

0
3

4
0

0
3

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4
0

0
1

3255
0

0
0

0
0

2
13

1
0

5
1

0
2

8
11

0
0

9
0

0
51

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
4

1
0

5314
29

0
0

0
1

0
0

2
0

0
0

0
0

0
0

0
0

0
0

0
0

2
0

1
2

1
0

82
0

0
78

0
2

0
1

0
0

0
0

0
0

0
6

5739
0

0
0

2
1

0
0

0
0

0
0

0
2

0
0

0
0

0
0

0
1

0
1

0
0

0
3

0
0

1
0

1
0

0
0

0
3

0
0

0
0

0
1

2141
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

17
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

207
0

1466
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
7

0
0

7
0

0
0

0
0

1178
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

14
7

0
1

0
0

0
21

0
0

2848
0

0
0

0
0

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

0
3

0
31

0
0

0
1

2888
5

0
14

16
0

0
4

14
49

31
21

0
2

0
0

8
0

0
0

0
0

3
0

0
0

7
18

1
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

475
0

0
0

0
1

0
0

0
0

0
0

0
0

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
82

0
0

0
0

0
0

0
0

0
0

5867
0

0
0

0
0

0
0

0
0

0
6

0
0

0
0

0
0

0
0

0
0

8
0

0
0

35
0

0
2

0
0

0
0

0
0

0
0

0
0

0
1

0
0

715
0

0
0

0
1

0
0

0
0

0
0

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
27

0
0

0
0

3
0

5
16

2
0

487
0

14
0

1
4

5
3

0
0

6
32

0
0

0
0

0
0

0
0

0
0

115
0

0
0

0
0

0
0

0
0

0
0

9
0

0
0

0
0

0
0

0
0

906
3

3
22

0
0

3
0

0
0

0
0

0
0

0
0

0
8

6
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

0
0

0
0

0
2

0
2

1
0

1162
0

0
0

0
2

0
0

9
18

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
0

0
0

0
0

3
0

0
0

0
7

2
0

0
1

3
0

669
11

0
3

12
0

0
9

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

6
1

0
10

0
0

0
0

0
0

3
0

0
21

12
0

12
1

3736
1

2
11

1
1

8
3

0
3

0
0

2
0

5
1

0
0

0
0

0
0

0
0

0
0

0
115

4
0

21
1

0
0

0
0

0
0

1
0

0
0

0
1

1253
5

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
37

0
0

0
16

0
0

0
0

0
0

0
0

14
7

3
0

10
0

42
1

361
0

0
0

0
5

0
0

0
0

0
0

0
0

0
0

0
0

21
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

1
0

1
0

7
3

0
0

1163
16

0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
21

0
0

0
0

0
0

0
0

0
1

1
0

2
0

0
5

687
0

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

18
3

0
0

0
0

1
0

1
1

0
44

0
0

0
0

0
0

1
0

0
0

3357
0

0
0

0
0

0
0

0
0

0
3

0
0

0
162

0
3

5
1

0
0

6
2

0
1

2
0

0
0

1
0

0
59

0
0

4
1

1
3

0
9

1
2

1089
3

0
1

0
0

0
0

5
0

0
2

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

56
0

1
1

0
1

2
0

0
1

0
0

2082
0

0
0

0
0

0
0

0
0

0
0

0
0

13
0

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

480
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1595
2

14
36

1
31

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

910
3

1
0

46
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

38
63

2986
2

0
31

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
7

18
2

839
44

30
0

0
20

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4
0

13
80

377
6

0
0

0
0

0
0

0
0

0
0

0
2

0
5

0
0

0
0

0
0

0
0

0
0

0
0

2
0

3
0

0
2

0
0

0
0

1
10

30
10

6
3

5409
32

0
5

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
291

427
0

0
0

0
0

0
0

0
0

0
150

0
0

0
0

0
0

0
0

0
0

95
0

0
0

0
0

2
0

1
0

0
8

0
0

0
0

0
0

0
0

0
0

4919
0

0
0

87
0

2
8

8
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

2
2

0
1

1
4

0
0

708
0

0
0

0
0

0
0

0
0

0
0

3
4

0
0

0
0

0
0

0
1

2
0

0
0

0
0

0
0

0
0

0
0

7
0

0
0

0
0

0
0

0
0

442
17

0
3

0
0

1
0

0
0

0
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
4

0
0

0
0

0
0

0
0

1
0

712
0

0
0

0
0

0
1

4
0

0
0

0
0

0
0

0
0

35
1

0
0

0
0

1
0

0
0

0
24

0
0

0
0

0
0

0
0

0
0

4
0

0
0

4949
0

6
15

0
0

0
0

0
0

1
0

0
0

0
0

0
0

6
0

0
0

0
0

0
0

0
0

0
0

0
23

1
0

0
2

6
0

0
0

0
1

95
0

1065
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

3
0

0
0

29
0

3546
21

0
0

9
0

0
0

0
1

0
0

0
0

0
71

0
0

0
0

0
0

0
0

0
0

11
0

0
0

0
0

0
0

0
0

0
6

0
0

0
37

0
20

3445
0

0
0

62
0

0
0

0
0

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3775



127

Tabela 27 – Proj-GTSRB (el=45°) - MASViT (fixed centroid) - Confusion Matrix (True × Predicted)

261
158

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
2

0
0

0
0

0
0

0
0

0
1

32
0

0
0

0
0

0
25

0
1

5238
0

0
0

0
0

0
0

0
0

0
224

0
0

0
0

0
0

0
1

1
0

3
2

0
0

0
0

0
0

0
0

0
2

0
0

0
163

0
118

7
0

0
0

5218
0

0
3

3
0

13
16

4
0

0
5

0
0

0
0

0
0

0
1

0
2

3
3

0
0

0
0

0
0

2
0

0
0

0
0

0
0

0
0

7
0

1
1

3019
0

0
0

0
0

2
10

1
0

47
1

0
7

7
84

0
1

27
0

0
141

0
0

0
0

0
0

0
0

0
0

0
6

5
0

0
0

0
0

0
2

0
0

5251
41

0
0

0
1

0
0

5
0

0
0

0
0

0
0

0
0

0
0

0
0

2
0

0
0

0
0

110
0

0
95

0
11

0
2

0
0

0
0

2
1

0
5

5727
0

0
0

2
6

0
0

0
0

0
0

0
1

2
0

1
0

0
0

0
2

0
1

0
0

0
5

0
1

2
0

0
0

0
0

0
2

0
0

0
0

0
0

2113
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

37
0

7
0

0
0

0
0

0
0

0
0

0
0

0
0

2
0

1
0

0
0

0
0

0
0

177
0

1493
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
9

0
0

19
4

0
0

0
0

1166
0

1
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

0
5

0
0

0
22

0
0

2812
0

0
0

0
1

1
1

0
1

0
0

0
0

0
0

7
0

0
0

0
0

0
15

0
0

0
0

5
0

0
2

0
0

3
6

3
11

0
45

0
0

0
2

2646
5

0
17

56
1

4
34

38
51

60
27

0
1

2
1

19
0

0
2

0
0

4
0

1
0

26
44

5
0

1
1

4
0

0
0

4
0

0
0

0
0

0
0

447
0

1
1

0
1

1
0

4
0

0
0

0
1

20
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
216

0
0

0
0

0
0

0
0

0
0

5570
0

0
0

0
0

0
0

0
0

0
56

0
0

0
0

0
0

0
0

0
0

7
0

0
0

147
0

0
3

0
0

0
0

1
0

0
0

0
0

0
2

0
0

706
0

0
0

0
2

0
0

2
0

0
1

4
0

0
0

0
0

0
0

0
0

0
0

2
0

0
0

0
0

0
4

0
43

0
1

0
0

0
0

33
9

8
1

453
0

29
0

2
10

19
2

0
0

6
38

0
0

0
0

0
0

0
0

0
0

62
0

0
0

0
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

3
3

862
14

4
25

1
1

6
2

0
0

0
0

0
0

0
1

0
11

6
0

0
1

0
0

0
0

0
4

0
0

0
1

0
2

0
0

0
0

1
0

0
3

3
0

1151
0

1
0

0
7

0
0

5
26

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
0

6
0

0
0

0
12

0
0

0
1

1
2

568
60

2
1

25
1

0
38

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

6
1

0
24

0
2

0
0

0
0

3
0

0
35

7
2

22
2

3688
3

6
11

0
1

11
7

0
2

0
0

1
1

5
0

0
0

0
0

0
0

0
0

0
0

0
96

4
0

28
0

0
0

0
1

2
0

3
0

0
0

1
3

1254
8

1
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
37

0
0

0
29

0
0

0
0

0
0

1
0

9
11

4
0

32
0

67
4

294
15

0
2

1
0

0
0

0
0

0
0

0
0

7
0

0
0

2
0

0
2

0
1

0
0

1
0

1
0

0
0

0
0

0
0

6
0

0
0

15
12

0
0

1126
22

0
13

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

1
0

2
0

0
0

0
22

0
0

0
0

0
0

0
0

0
8

3
0

3
0

0
14

659
0

9
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

53
3

0
0

1
0

2
0

1
0

0
141

0
0

0
1

0
0

2
0

0
0

3018
0

0
0

0
0

0
0

0
0

0
8

0
0

0
328

0
9

30
2

0
1

12
7

0
4

0
0

0
0

0
0

0
93

0
0

3
0

3
1

0
21

5
2

1030
2

0
1

0
0

0
0

7
0

0
2

0
0

5
1

0
0

0
2

0
0

0
0

0
0

0
0

0
0

0
0

82
1

0
5

0
3

7
0

0
4

0
1

2040
0

0
0

0
0

0
1

0
0

0
0

0
0

10
0

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

480
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1540
4

8
40

3
79

4
0

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

843
0

6
0

109
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

81
128

2675
9

0
227

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
37

18
2

715
58

80
0

0
50

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

12
1

17
114

298
30

8
0

0
0

0
0

0
0

0
0

0
0

0
6

0
2

0
0

0
0

0
0

0
0

6
0

1
0

3
0

0
1

0
0

0
0

0
22

52
16

7
11

5343
41

0
9

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3
0

9
0

0
323

385
0

0
0

0
0

0
0

0
0

0
244

1
0

0
0

0
0

0
0

0
0

152
1

2
0

2
1

9
0

1
0

0
11

0
0

0
0

0
0

0
0

1
0

4556
0

0
0

229
0

17
44

9
0

0
0

1
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
7

0
0

2
9

0
0

697
1

0
0

0
0

0
0

0
0

3
3

4
10

0
0

0
0

0
1

0
3

2
0

0
0

0
0

0
0

0
0

0
0

20
0

0
0

0
0

0
0

0
0

377
47

2
8

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
3

0
0

0
0

0
5

0
0

1
3

705
0

0
1

0
0

0
4

2
0

0
1

0
0

0
0

0
0

61
5

0
0

0
0

2
0

0
0

4
56

1
0

0
0

0
0

0
0

0
0

5
0

0
0

4855
0

9
35

0
0

0
0

0
0

5
0

0
0

0
0

0
0

5
0

0
0

0
0

0
0

0
0

0
0

0
33

1
0

0
1

12
6

0
0

0
0

129
0

1007
0

1
0

0
2

1
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
3

0
0

0
0

0
0

0
0

0
0

2
0

0
0

82
0

3435
74

0
0

19
0

0
0

0
1

1
0

0
0

0
138

0
0

0
0

0
0

0
0

0
0

10
1

0
0

0
0

0
0

0
1

0
5

0
0

0
75

0
23

3326
0

0
0

103
0

0
0

0
0

36
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

3699



128

Tabela 28 – Proj-GTSRB (el=30°) - MASViT (fixed centroid) - Confusion Matrix (True × Predicted)
80

191
0

0
0

1
1

0
0

0
0

0
44

0
0

0
1

7
12

0
0

10
6

13
0

2
0

0
0

0
0

0
0

0
39

0
0

0
15

0
1

57
0

9
2790

1
4

1
22

2
0

0
0

0
0

1376
1

2
0

8
37

71
0

0
52

84
178

13
0

0
0

0
0

1
0

3
0

19
2

0
0

544
0

402
126

12
0

0
4273

16
0

84
33

0
1

25
75

1
0

47
0

0
8

1
96

118
1

14
5

47
184

83
0

0
0

0
0

0
26

0
2

0
0

15
109

0
4

7
5

1
1

6
2125

0
0

0
0

3
6

8
0

1
173

6
0

83
13

322
1

1
128

0
1

407
0

0
0

0
0

0
0

0
0

0
0

8
56

5
1

3
1

0
0

13
1

0
5007

98
0

0
0

15
0

0
5

2
0

6
0

0
0

2
0

0
0

0
0

0
1

0
0

0
0

0
301

1
0

45
1

18
1

3
0

0
0

0
0

26
0

5
5586

0
2

0
7

23
0

2
1

2
27

5
0

12
4

0
0

0
0

0
1

15
0

0
0

0
0

18
0

3
6

0
1

0
0

1
0

13
0

0
0

0
0

5
2060

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
89

0
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

1
1459

0
197

0
0

0
0

0
1

0
13

0
0

1
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

6
0

0
3

117
0

0
0

0
846

0
90

0
0

1
0

0
3

0
14

1
1

0
0

0
83

30
0

3
0

0
0

0
0

0
0

0
0

3
0

0
0

1
4

8
0

3
4

0
19

101
0

0
2618

0
0

3
4

4
6

10
0

5
0

0
0

2
0

0
11

0
0

0
0

0
0

67
0

0
0

0
15

0
0

0
0

0
17

18
2

54
0

67
7

0
1

11
1368

1
0

146
77

4
17

92
548

57
193

101
2

3
90

13
53

0
0

2
0

0
17

0
0

4
33

111
2

0
7

0
2

0
0

1
33

0
3

0
0

0
0

6
197

0
11

17
0

1
1

71
35

0
19

1
0

24
49

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

11
13

555
0

0
0

7
44

1
0

0
0

0
3499

0
3

0
122

1
52

1
1

51
115

639
0

2
0

0
0

0
0

0
3

0
10

2
0

0
784

0
18

53
24

4
4

0
5

0
0

1
0

0
0

6
0

0
403

17
0

26
1

76
2

1
121

0
0

0
38

0
0

0
0

0
0

0
0

0
0

6
2

0
5

0
1

1
0

1
0

146
0

0
0

0
5

0
37

16
1

28
152

0
79

0
45

26
30

32
2

1
14

75
0

0
0

0
0

0
0

0
0

0
20

0
2

0
4

4
0

3
0

1
1

0
47

13
0

0
0

1
0

0
15

9
668

54
1

37
0

0
59

3
0

0
0

0
0

0
0

1
0

14
5

0
0

0
0

1
0

0
0

27
1

3
0

57
0

6
0

0
0

0
9

11
0

0
29

0
818

7
93

3
2

36
1

0
63

56
0

0
0

0
0

0
3

0
0

0
0

0
1

0
0

1
0

0
2

0
6

0
4

1
0

0
0

2
0

1
3

5
1

13
260

135
0

8
198

21
1

50
0

0
0

0
0

0
0

0
1

1
0

0
0

4
0

1
1

1
11

6
1

56
0

7
0

0
0

1
7

0
1

66
13

1
111

5
3204

4
7

172
14

9
78

12
0

2
0

0
2

1
33

1
0

2
0

6
3

2
0

1
1

0
0

85
12

0
41

0
0

0
3

2
4

1
16

0
69

9
18

87
1004

5
26

2
0

4
34

0
0

0
0

0
0

3
0

0
0

0
0

2
0

0
0

13
0

0
0

50
0

0
3

0
0

0
7

0
1

39
3

0
83

0
144

5
95

18
2

22
4

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

1
1

6
2

0
9

0
4

2
0

0
0

0
1

2
8

3
0

27
47

226
0

0
753

54
6

35
10

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
5

0
12

2
0

0
0

8
0

0
0

0
2

0
0

4
0

36
4

10
23

0
0

65
542

1
3

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

21
97

2
0

0
23

1
0

0
1

2
0

373
2

0
0

24
3

157
0

0
48

160
1572

38
0

0
0

0
0

0
0

7
0

3
0

0
0

859
0

29
168

10
4

3
2

14
0

4
0

0
0

0
1

0
1

87
0

0
14

6
49

4
1

93
38

0
810

38
0

0
0

0
0

1
16

0
0

1
0

2
5

6
0

0
0

11
0

1
1

0
43

1
0

0
0

3
2

0
204

2
20

42
22

71
50

14
60

13
0

51
1504

0
0

0
0

0
0

11
0

0
0

1
7

1
13

0
12

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
472

0
0

0
0

0
0

0
0

2
0

6
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1061

6
20

49
5

433
22

0
83

0
1

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

2
312

1
17

0
531

4
0

91
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
208

197
587

39
8

1938
121

0
20

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

71
9

0
287

30
423

10
0

129
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
17

0
0

66
86

276
20

0
15

0
0

0
0

0
0

0
0

0
0

23
0

11
0

0
0

0
0

0
0

0
25

1
4

0
4

0
0

0
0

0
0

0
0

100
96

75
15

40
4876

155
0

95
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
32

1
28

1
0

469
189

0
0

0
0

0
0

0
0

0
5

330
22

1
0

24
25

0
0

0
8

0
382

4
26

0
45

43
58

2
53

36
17

227
45

1
0

0
0

0
1

0
22

1
1777

6
0

5
1225

0
125

721
43

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

76
0

0
593

1
46

0
1

1
0

0
0

0
1

4
3

15
0

0
2

3
12

0
0

29
7

0
7

1
0

10
6

0
0

1
3

16
69

2
0

0
0

7
16

1
12

0
86

133
3

26
0

5
0

0
0

0
12

3
0

0
0

0
0

0
0

0
0

2
0

0
0

2
0

0
0

0
0

2
3

7
0

2
0

1
5

62
1

0
8

43
510

0
49

7
1

0
7

32
1

3
0

30
6

0
0

0
1

0
352

9
0

0
30

4
31

1
1

7
113

319
73

0
0

0
0

0
1

0
9

0
1

0
0

0
3807

0
72

129
1

0
0

0
0

0
27

0
0

0
0

0
0

0
5

0
0

0
0

0
0

0
0

0
0

3
3

5
7

1
0

17
13

117
41

0
4

6
183

19
744

0
5

0
1

7
0

0
0

12
0

0
0

0
0

0
107

0
0

0
9

0
4

0
3

0
30

17
236

0
0

0
0

0
0

0
1

0
0

0
0

0
499

0
2046

626
2

6
95

0
0

0
68

2
0

0
0

1
0

412
0

0
0

3
25

9
0

0
13

23
149

56
5

0
0

0
0

0
0

27
0

51
0

0
0

393
0

28
2234

0
0

10
289

2
0

115
2

0
14

0
160

11
28

7
1

2
58

3
87

55
0

24
12

21
6

109
0

0
0

0
0

0
6

0
71

0
1

0
49

0
9

75
2613



129

APÊNDICE D – APPENDIX

D.1 COMPUTING INFRASTRUCTURE FOR EXPERIMENTS

In our experiments, we used a machine running Ubuntu/Linux equipped with an AMD

Ryzen 9 3900X 12-Core Processor, 64 GB of RAM, and a NVIDIA GeForce RTX 3070

Ti with 8 GB of GPU memory. The model and experiments were implemented in Python

3.8.10 using the PyTorch framework, which leverages the NVIDIA GPU via the CUDA

library.

For training and validation, we used a batch size of 16 samples, resulting in a maximum

GPU memory usage of 1.4 GB. Each training epoch took an average of 138.57 seconds,

totaling approximately 11.5 hours over 300 epochs, using the original GTSRB train and

test samples for training and validation, respectively.

For all tests with the fixed centroid approach, we used a batch size of 768 samples,

which occupied 7.8 GB of GPU memory. In the test experiments, for each aff-GTSRB

and proj-GTSRB dataset using the fixed centroid approach, the time spent was around

24.28 seconds, totaling 2 minutes and 50 seconds. For the GTSRB test, the time spent

was 4.93 seconds.

For the max score approach tests, we used a single sample at a time, which occupied

0.7 GB of GPU memory. We limited the number of centroids for polar transformations

by choosing local pixels around the center. We used a 7 × 7 grid to generate 49 polar

images per Euclidean image instead of 48 × 48. Even so, the average time spent was 5

hours and 25 minutes per dataset, totaling in 37 hours and 55 minutes for all aff-GTSRB

and proj-GTSRB datasets. For the GTSRB test, the time spent was 1 hour.

The Table 29 shows the times spent in each experiment category, the number of used

datasets, batch sizes, and the occupied GPU memory. The total computation time was

approximately 50 hours and 28 minutes. The maximum GPU memory used was 7.8 GB

in Tests with fixed centroid, but the values smaller of memory can to be used in this

Tests, using smaller batch size values, it will is not to affect the performance reproducible

of this tests experiments. There are here only the amount of compute of latest relevant

experiments to replicate the same results, the compute resources used in entire research

was bigger than the reported.

Table 30 presents the number of parameters and the average inference times for MAS-



130

Tabela 29 – MASViT Experiment Times

Experiments # Datasets
Batch
Size

Occupied
GPU Mem.

(GB)

Execution Time
(hh:mm:ss)

Training &
Validation

2 16 1.4 11:30:00

Tests
(fixed centroid)

8 768 7.8 00:02:55

Tests
(max score)

8 1 0.7 38:55:00

Total 50:27:55

ViT and the concurrent models proposed by (ARCOS-GARCÍA; ALVAREZ-GARCIA; SORIA-

MORILLO, 2018) and (CHEN et al., 2024). Inference times were measured by computing

the elapsed time required for a single forward pass of the model using one data sample

(or batch), since the models perform computations in parallel, the inference time remains

the same whether processing a single sample or an entire batch. MASViT exhibits the

highest number of model parameters and the lowest average inference time processing.

Tabela 30 – Number of parameters and average inference time of models
(*) (ARCOS-GARCÍA; ALVAREZ-GARCIA; SORIA-MORILLO, 2018)
(**)(CHEN et al., 2024)

Models # Parameters Avg. Inference Time

MASViT 16,781,867 ≈ 3 ms

CNN + 3 Spatial
Transformers *

14,678,561 ≈ 9 ms

Global Routing
CapsNet **

608,656 ≈ 26 ms


	Folha de rosto
	
	Agradecimentos
	Resumo
	Abstract
	Introduction
	Motivation
	Objective
	Contributions
	Scientific Production
	Organization of the thesis

	Theoretical Basis
	Geometric Transformations Background
	ARTIFICIAL NEURAL NETWORKS
	Multilayer Perceptron
	Artificial Neuron
	Activation Functions
	Sigmoid
	Hyperbolic Tangent
	Rectified Linear

	Softmax Layer
	MLP Architecture

	Convolutional Neural Network
	Convolution
	Convolutional Layers
	Pooling Layers
	Fully-Connected Layers
	CNN Architecture

	Vision Transformer
	Transformer Encoder
	Multi-Head Attention
	Scaled Dot-Product Attention



	Learning Mechanism and Training
	Error Functions
	Gradient Descent and Backpropagation
	Training
	Epoch and Batch
	Underfitting and Overfitting
	Regularization
	L1 and L2 Regularization
	Dropout
	Data Augmentation
	Batch Normalization
	Weight Decay

	Weight Initialization
	Weight Initialization Algorithms



	Evaluation of Classifiers
	Confusion Matrix
	Evaluation Metrics
	Accuracy
	Precision
	Recall
	Specificity
	F1-Score


	Discussion

	Related Works
	Planar Shape Recognition by Shape Descriptors
	PLANAR SHAPE RECOGNITION BY Neural Networks
	Discussion

	Development
	Multi-Angle-Scale Vision Transformer
	Polar Domain
	MASViT Architecture
	Horizontal and Vertical Layers
	Angle Dropout
	Class Token and Positional Embeddings
	Transformer Encoder and Classifier settings


	Data Augmentation in Polar Domain
	Cyclic-Angular Shifting.
	Right-Side Padding

	Post Training Boost by Max Score
	Discussion

	Experiments
	Datasets
	Training
	Testing
	Discussion

	Conclusion and Future Work
	References
	Appendix
	Implementation
	MASViT Implementation
	Angle Dropout Implementation


	Appendix
	Classification Reports
	GTSRB Test
	Aff-GTSRB / Proj-GTSRB (el=90°) 
	Aff-GTSRB el={60°, 45°, 30°}
	Proj-GTSRB el={60°, 45°, 30°}


	Appendix
	Confusion Matrices
	GTSRB Test
	Aff-GTSRB / Proj-GTSRB (el=90°) 
	Aff-GTSRB el={60°, 45°, 30°}
	Proj-GTSRB el={60°, 45°, 30°}


	Appendix
	Computing Infrastructure for Experiments


