
UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE TECNOLOGIA E GEOCIÊNCIAS

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

CURSO DE GRADUAÇÃO EM ENGENHARIA ELÉTRICA

LUIZ HENRIQUE ALMEIDA DE ARAUJO

PLATAFORMA WEB PARA O GERENCIAMENTO DE TRABALHOS DE CONCLUSÃO

DE CURSO

Recife
2025

LUIZ HENRIQUE ALMEIDA DE ARAUJO

PLATAFORMA WEB PARA O GERENCIAMENTO DE TRABALHOS DE
CONCLUSÃO DE CURSO

Trabalho de Conclusão de Curso apresentado
ao Departamento de Engenharia Elétrica da
Universidade Federal de Pernambuco, como
requisito parcial para obtenção do grau de
Bacharel em Engenharia Elétrica.

Orientador(a): Prof. Dr. Márcio Rodrigo Santos de Carvalho

Recife
2025

Ficha de identificação da obra elaborada pelo autor,
 através do programa de geração automática do SIB/UFPE

Araujo, Luiz Henrique Almeida de.
 Plataforma web para o gerenciamento de trabalhos de conclusão de curso /
Luiz Henrique Almeida de Araujo. - Recife, 2025.
 95 p. : il., tab.

 Orientador(a): Márcio Rodrigo Santos de Carvalho
 Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de
Pernambuco, Centro de Tecnologia e Geociências, Engenharia Elétrica -
Bacharelado, 2025.
 Inclui referências.

 1. Automação de procedimentos. 2. Plataforma web. 3. Engenharia de
software. I. Carvalho, Márcio Rodrigo Santos de. (Orientação). II. Título.

 620 CDD (22.ed.)

LUIZ HENRIQUE ALMEIDA DE ARAUJO

PLATAFORMA WEB PARA O GERENCIAMENTO DE TRABALHOS DE
CONCLUSÃO DE CURSO

Trabalho de Conclusão de Curso apresentado
ao Departamento de Engenharia Elétrica da
Universidade Federal de Pernambuco, como
requisito parcial para obtenção do grau de
Bacharel em Engenharia Elétrica.

Aprovado em: 15/12/2025

BANCA EXAMINADORA

__
Prof. Dr. Márcio Rodrigo Santos de Carvalho (Orientador)

Universidade Federal de Pernambuco

Prof. Dr. Artur Muniz Szpak Furtado (Examinador Interno)

Universidade Federal de Pernambuco

Prof. Msc. Ericles Mauricio Barbosa (Examinador Interno)
Universidade Federal de Pernambuco

RESUMO

O Trabalho de Conclusão de Curso é uma etapa fundamental na formação do

aluno, envolvendo requisitos formais, múltiplos participantes, prazos definidos e

procedimentos de avaliação sequenciais. Em diversas instituições de ensino superior,

a execução dos processos que incluem suas etapas é efetuada manualmente e de

forma descentralizada, por meio de ferramentas dispersas em diversos canais, o que

compromete a eficiência administrativa e gera dificuldade no monitoramento dos

processos. Com o objetivo de superar essas limitações, este trabalho descreve a

criação de uma plataforma web voltada para a gestão integrada dos Trabalhos de

Conclusão de Curso do Departamento de Engenharia Elétrica da Universidade

Federal de Pernambuco, projetada para centralizar informações, realizar os

procedimentos derivados de cada etapa, padronizar e acompanhar os processos. A

solução foi elaborada com base em uma arquitetura cliente-servidor, de modo que o

frontend segue os paradigmas da Single Page Application desenvolvida em React e

TypeScript. O backend é implementado por meio do Django e Django REST

Framework, interconectados por uma API REST com autenticação via JSON Web

Token. O sistema abrange ainda o controle de acesso baseado em papéis, uma

máquina de estados para representação do ciclo de vida do Trabalho de Conclusão

de Curso, versionamento de documentos, registro de avaliações, gestão de bancas e

um calendário acadêmico configurável. Os resultados evidenciam que a plataforma

diminui a dependência de controles manuais, aprimora a rastreabilidade do fluxo,

padroniza procedimentos e facilita a administração por parte da coordenação,

assegurando maior clareza para alunos e orientadores em relação às etapas, prazos

e documentos requeridos.

Palavras-chave: Automação de procedimentos; Plataforma web; Engenharia de
software.

ABSTRACT

This work presents the development of a web platform designed to support the

integrated management of the Final Graduation Project (Trabalho de Conclusão de

Curso – TCC) of the Department of Electrical Engineering at the Federal University of

Pernambuco. In many higher education institutions, TCC-related procedures are still

carried out manually and in a decentralized manner, using disparate tools distributed

across multiple channels. This fragmentation compromises administrative efficiency

and hinders consistent monitoring of the process. This work describes the creation of

a web platform aimed at the integrated management of the Final Course Projects of

the Electrical Engineering Department at UFPE, designed to centralize information,

perform the procedures derived from each stage, standardize and monitor the

processes. The solution was developed based on a client-server architecture, so that

the frontend follows the paradigms of the Single Page Application developed in React

and TypeScript. The backend is implemented through Django and Django REST

Framework, interconnected by a REST API with authentication via JSON Web Tokens.

The system includes role-based access control, a state machine for representing the

thesis lifecycle, document versioning, evaluation registration, panel management, and

a configurable academic calendar. The results indicate that the system reduces

dependency on manual controls, improves process traceability, standardizes

procedures, and facilitates administrative tasks performed by the coordination team,

providing greater clarity to students and supervisors regarding required stages,

deadlines and documentation.

Keywords: Procedure Automation; Web platform; Software engineering.

LISTA DE ILUSTRAÇÕES

Figura 1 – Arquitetura em três camadas de uma aplicação web. 19

Figura 2 – Estrutura cliente-servidor adotada em aplicações web. 20

Figura 3 – Funcionamento de uma Single Page Application (SPA). 21

Figura 4 – Processamento de requisições em arquiteturas Stateless e Stateful. 22

Figura 5 – Estrutura do padrão MTV no framework Django. 23

Figura 6 – Integração entre React, Django REST Framework e Django ORM.......... 24

Figura 7 – Conversão de objetos Python em declarações SQL por meio do ORM. .. 25

Figura 8 – Roteamento client-side em aplicações SPA. .. 30

Figura 9 – Principais vulnerabilidades de segurança em aplicações web. 31

Figura 10 – Fluxo de autenticação JWT. ... 32

Figura 11 – Modelo de atribuição de papéis e permissões no modelo RBAC. 33

Figura 12 – Exemplo de relações de acesso no modelo RBAC. 34

Figura 13 – Exemplo de máquina de estados finita (FSM). 36

Figura 14 – Arquitetura Cliente-Servidor da Plataforma. ... 39

Figura 15 – Fluxo de Requisições no Padrão MTV do Django. 41

Figura 16 – Módulos do backend da plataforma. .. 46

Figura 17 – Arquitetura de integração via API REST. ... 48

Figura 18 – Fluxo de estados do Trabalho de Conclusão de Curso. 51

Figura 19 – Exemplo de notificação interna. ... 54

Figura 20 – Preferências de E-mail do perfil do discente. ... 55

Figura 21 – Cartão de calendário acadêmico interno. ... 56

Figura 22 – Configuração de datas e pontuações parte 1. .. 57

Figura 23 – Configuração de datas e pontuações parte 2. .. 58

Figura 24 – Exemplo de divisão de estados do fluxo de TCCs. 61

Figura 25 – Visão de tela principal de funcionalidades do perfil do aluno. 63

Figura 26 – Visão de tela principal de funcionalidades do perfil do professor. 64

Figura 27 – Visão de tela principal de funcionalidades do perfil do coordenador. 65

Figura 28 – Visão de tela principal de funcionalidades do perfil do coordenador. 66

Figura 29 – Diagrama ER da aplicação. .. 70

Figura 30 – Diagrama relacional de TCC e bancas avaliadoras. 72

Figura 31 – Processo de hashing de senhas com PBKDF2 e salt. 76

Figura 32 – Fluxo de segurança de comunicação em requisições HTTP na API. 80

Figura 33 – Fluxograma de fluxo da aplicação. ... 83

Figura 34 – Tela de login. .. 84

Figura 35 – Opções de perfis para cadastro. .. 84

Figura 36 – Telas de cadastro. .. 85

Figura 37 – Tela inicial do aluno. ... 85

Figura 38 – Tela de solicitação de orientação. .. 86

Figura 39 – Tela do aluno, após envio de solicitação. ... 87

Figura 40 – Notificação de solicitação de orientação no perfil do coordenador. 87

Figura 41 – Tela de avaliação de solicitação de orientação. 88

Figura 42 – Tela de envio de TCC. ... 88

Figura 43 – Notificação de envio de TCC no perfil do orientador. 89

Figura 44 – Tela de aprovação de TCC. ... 89

Figura 45 – Tela de confirmação de continuidade. .. 90

Figura 46 – Tela de termo de solicitação de avaliação. .. 90

Figura 47 – Tela de formação de banca. ... 91

Figura 48 – Tela de participação de banca do professor. ... 91

Figura 49 – Tela de avaliação da Fase I. .. 92

Figura 50 – Tela de agendamento de defesa. ... 92

Figura 51 – Tela de finalização do fluxo de TCC. .. 93

LISTA DE TABELAS

Tabela 1 – Exemplo de mapeamento ORM. ... 26

Tabela 2 – Exemplo de operações. ... 26

Tabela 3 – Códigos de status HTTP. .. 42

LISTA DE ABREVIATURAS E SIGLAS

API Application Programming Interface

CRUD Create, Read, Update, Delete

CSRF Cross-Site Request Forgery

CORS Cross-Origin Resource Sharing

CSS Cascading Style Sheets

DOM Document Object Model

DRF Django REST Framework

FSM Finite State Machine

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

JSON JavaScript Object Notation

JWT JSON Web Token

MVC Model-View-Controller

MTV Model-Template-View

ORM Object-Relational Mapping

OWASP Open Web Application Security Project

REST Representational State Transfer

RFC Request for Comments

SMTP Simple Mail Transfer Protocol

SPA Single Page Application

SQL Structured Query Language

TCC Trabalho de Conclusão de Curso

URL Uniform Resource Locator

URI Uniform Resource Identifier

ACID Atomicity, Consistency, Isolation, Durability

HTML HyperText Markup Language

DB Database

SUMÁRIO

1 INTRODUÇÃO ... 14

1.1 OBJETIVOS ... 16

1.1.1 Geral ... 16
1.1.2 Específicos ... 16

1.2 ORGANIZAÇÃO DO TRABALHO... 17

2 FUNDAMENTAÇÃO TEÓRICA ... 18

2.1 ARQUITETURAS DE SOFTWARE PARA APLICAÇÕES WEB 18

2.1.1 Arquitetura em camadas ... 18
2.1.2 Arquitetura REST (Representational State Transfer).................................... 19
2.1.3 Single Page Applications (SPA) ... 20
2.1.4 Comunicação Stateless e Autenticação ... 21

2.2 FRAMEWORK DJANGO .. 22

2.2.1 Framework Django e padrão MTV (Model-Template-View) 22
2.2.2 Django REST Framework ... 23
2.2.3 Mapeamento Objeto-Relacional (ORM) .. 24
2.2.4 Sistema de sinais e padrão observer .. 26

2.3 BIBLIOTECA REACT ... 27

2.3.1 React e estrutura fundamentada em componentes 27
2.3.2 TypeScript e tipagem estática em JavaScript ... 27
2.3.3 Gerenciamento de estado .. 28
2.3.4 Roteamento client-side ... 29

2.4 SEGURANÇA EM APLICAÇÕES WEB .. 30

2.4.1 OWASP Top 10 e vulnerabilidades críticas .. 30
2.4.2 Autenticação JWT: tokens, renovação e revogação 31
2.4.3 Controle de Acesso Baseado em Papéis (RBAC) .. 33
2.4.4 Proteções CORS, CSRF e validação de dados .. 34

2.5 APLICAÇÃO DA ENGENHARIA DE SOFTWARE EM SISTEMAS DE
GESTÃO ... 35

2.5.1 Máquinas de Estado Finito (FSM) .. 35
2.5.2 Validação em múltiplas camadas ... 36
2.5.3 Padrões de projeto em aplicações web .. 37
2.5.4 Arquitetura modular e separação de responsabilidades 37

3 DESENVOLVIMENTO DO TRABALHO .. 39

3.1 VISÃO GERAL ... 39

3.1.1 Estrutura Cliente-Servidor .. 39
3.1.2 Padrão de Comunicação .. 41
3.1.3 Tecnologias Empregadas ... 43
3.1.4 Circulação de Dados e Integração.. 44

3.2 BACKEND .. 45

3.2.1 Estrutura modular do Django .. 45

3.2.2 Interface de Programação de Aplicação REST .. 47
3.2.3 Autenticação e autorização .. 48
3.2.4 Máquina de estados ... 50
3.2.5 Sistema de arquivos ... 51
3.2.6 Método de avaliação ... 52
3.2.7 Mecanismos de notificações ... 53
3.2.8 Gestão de prazos e calendário ... 56

3.3 FRONTEND .. 58

3.3.1 Arquitetura de componentes ... 58
3.3.2 Roteamento e navegação ... 59
3.3.3 Gerenciamento de estado .. 60
3.3.4 Comunicação com backend ... 61
3.3.5 Funcionalidades por perfil ... 62
3.3.6 Sistema de temas visuais ... 65
3.3.7 Responsividade .. 67
3.3.8 Validações e feedback ao usuário .. 67

3.4 BANCO DE DADOS ... 68

3.4.1 Modelo Entidade-Relacionamento .. 69
3.4.2 Relacionamentos .. 71
3.4.3 Modelo de usuários customizado ... 73

3.5 SEGURANÇA ... 75

3.5.1 Segurança de autenticação .. 75
3.5.2 Segurança de autorização .. 76
3.5.3 Segurança de dados ... 78
3.5.4 Segurança de comunicação ... 79
3.5.5 Prevenção contra vulnerabilidades comuns ... 81

4 RESULTADOS ... 83

5 CONCLUSÕES E PROPOSTAS DE CONTINUIDADE 94

REFERÊNCIAS .. 95

14

1 INTRODUÇÃO

O Trabalho de Conclusão de Curso (TCC) constitui uma etapa fundamental na

graduação, de forma a caracterizar o momento em que o estudante integra os

conhecimentos teóricos e práticos assimilados durante a formação acadêmica (11). O

TCC representa não apenas um requisito formal, mas também uma ocasião propícia

para o aprimoramento do senso crítico, a aplicação de habilidades de pesquisa e o

desenvolvimento da autonomia intelectual (16). Dessa forma, a estruturação e o

monitoramento dos Trabalhos de Conclusão de Curso alcançam significativa

relevância para as instituições de ensino superior e devem ser administrados de

maneira eficiente, dado que implicam prazos severos, diversos participantes e

procedimentos formais de avaliação. A execução dessa etapa depende de um

processo administrativo organizado, composto por etapas sequenciais, prazos

definidos e avaliação formal de documentos e procedimentos (3). Cada participante

assume responsabilidades específicas, de modo que estudantes realizam entregas e

cumprem prazos, orientadores validam o progresso, avaliadores analisam o trabalho

apresentado e a coordenação garante que o fluxo siga o regulamento estabelecido.

Em diversas instituições de ensino superior, a gestão dos TCCs é

predominantemente realizada de maneira manual, com o auxílio de formulários

digitais, planilhas eletrônicas e plataformas como o Google Classroom. Embora úteis

de forma isolada, essas ferramentas não foram projetadas para controlar todas as

etapas do TCC. Essa fragmentação do processo torna-o vulnerável a falhas

operacionais, pois as informações ficam dispersas em diversos canais de acesso,

gerando uma dificuldade de consolidação da visão do fluxo de trabalho e tornando

todos os processos dependentes de controles manuais executados pelo coordenador

do curso (12). Essa dinâmica pode ser agravada pelo fato de que um único

coordenador pode ter sob sua responsabilidade uma elevada quantidade de fluxos de

acompanhamento simultâneos, com cada uma delas encontrando-se em estágios

distintos, acompanhadas de documentação e prazos específicos.

A ausência de um sistema integrado para a gestão dos Trabalhos de Conclusão

de Curso provoca dificuldades práticas que comprometem tanto a eficiência

administrativa quanto a qualidade do processo acadêmico (3). Além disso, a falta de

15

padronização pode levar a tratamentos distintos para situações semelhantes, visto

que as interações ficam distribuídas em diferentes meios de comunicação.

Diante desse cenário, a implementação de um sistema digital integrado

configura-se como uma alternativa viável para resolver essas limitações (12). Um

portal desenvolvido para gestão dos fluxos de TCC pode centralizar informações,

organizar documentos, registrar histórico de ações, automatizar notificações e

oferecer visão clara sobre a situação de cada trabalho. Dessa forma, é possível

diminuir a dependência de processos manuais e descentralizados, aumentando a

eficiência da gestão dos fluxos.

Além de melhorar a organização, a utilização de um sistema integrado reduz

retrabalho, evita perda de prazos e facilita a tomada de decisões (15). Desse modo,

estudantes passam a saber exatamente o que deve ser feito em cada etapa de forma

mais clara, orientadores acompanham seus orientandos de modo mais estruturado e

a coordenação obtém visão consolidada do semestre, eliminando grande parte das

consultas repetitivas realizadas em diferentes canais.

A solução proposta neste trabalho busca equilibrar as necessidades dos

diferentes participantes envolvidos, de modo a implementar um fluxo de trabalho que

seja ao mesmo tempo robusto, flexível e intuitivo, contribuindo assim para a melhoria

contínua da execução de procedimentos institucionais.

16

1.1 Objetivos

1.1.1 Geral

Desenvolver uma plataforma web destinada à gestão dos fluxos de Trabalhos de

Conclusão de Curso, de modo a contemplar desde solicitação de orientação até a

conclusão final do trabalho.

1.1.2 Específicos

• Estabelecer um sistema de controle de acesso fundamentado em papéis, a fim

de garantir a distinção de permissões e funcionalidades entre estudantes,

orientadores, coordenadores e avaliadores externos;

• Criar uma máquina de estados que possa representar formalmente o ciclo de

vida do Trabalho de Conclusão de Curso (TCC), assegurando que as

transições aconteçam estritamente de acordo com as normas institucionais e

com registros de rastreabilidade;

• Estabelecer um sistema de notificações internas na interface e comunicação

via e-mail;

• Instituir sistema de versionamento de documentos que preserve o histórico de

pareceres, assegurando integridade e auditoria do processo;

• Desenvolver um módulo para a formação de bancas e a realização de

avaliações, abordando o cálculo automático das pontuações e a consolidação

das notas finais;

• Elaborar um sistema adaptável para a administração de prazos, baseado em

um calendário acadêmico personalizável;

• Implementar medidas de segurança e privacidade em múltiplas camadas,

utilizando autenticação por tokens, permissões granulares e proteções em

conformidade com às recomendações da OWASP.

17

1.2 Organização do Trabalho

Este trabalho está estruturado em quatro capítulos principais:

• Fundamentação teórica: aborda os conceitos utilizados no desenvolvimento,

abrangendo arquitetura para aplicações web, API RESTful, autenticação

stateless e segurança (JWT, RBAC, OWASP), além de princípios de

engenharia de software aplicados ao domínio da solução.

• Desenvolvimento: descreve a solução proposta, contemplando a visão geral da

arquitetura e os módulos backend, frontend e banco de dados implementados,

além dos aspectos de segurança e principais linhas de fluxos do sistema

• Resultados: apresenta o modo de funcionamento a partir das linhas de fluxo.

• Conclusões e propostas de continuidade: sintetiza as contribuições do trabalho

e direções de evolução institucional.

18

2 FUNDAMENTAÇÃO TEÓRICA

2.1 Arquiteturas de software para aplicações web

2.1.1 Arquitetura em camadas

A arquitetura de três camadas constitui um padrão amplamente utilizado em

aplicações empresariais devido à implementação da divisão de responsabilidades do

sistema em módulos autônomos, como exemplificado na Figura 1. Esse modelo

favorece a manutenção, realização de testes e a evolução do sistema durante seu

ciclo de vida (15), organizando o software em três componentes fundamentais:

• A camada de apresentação é responsável pela interação com o usuário.

Tem o foco exclusivo nos elementos referentes à interface, evitando a

inclusão de lógica de negócio ou acesso direto à base de dados (17). Essa

segmentação permite a execução de modificações visuais sem impacto

no domínio da aplicação, possibilitando manter a base lógica na

elaboração de interfaces para diferentes tipos de dispositivos.

• A camada de lógica de negócio gerencia a implementação das regras,

validações e o processamento dos dados. Ela organiza as normas e os

procedimentos que definem o domínio da aplicação de forma a assegurar

a uniformidade na implementação das diretrizes, independentemente da

interface empregada (7).

• A camada de persistência (ou camada de dados) é encarregada pelo

armazenamento e recuperação de informações. Ela mantém a

independência em relação a sistemas gerenciadores de banco de dados

e assegura a portabilidade entre diferentes tecnologias por meio da

abstração de informações (15).

19

Figura 1 – Arquitetura em três camadas de uma aplicação web.

Fonte: autor, 2025.

2.1.2 Arquitetura REST (Representational State Transfer)

O modelo REST é um estilo arquitetural proposto por Roy Thomas Fielding em

sua tese de doutorado em 2000 (5), com o objetivo de orientar o desenvolvimento de

sistemas distribuídos baseados em serviços web escaláveis e desacoplados. Nesse

sistema, a identificação dos recursos ocorre por meio de URIs únicas e a manipulação

é realizada por operações padronizadas sobre o protocolo HTTP, que é a base para

a comunicação entre cliente e servidor, dinâmica ilustrada na Figura 2. Seis restrições

fundamentais são estabelecidas pelo autor:

• Cliente-servidor;

• Comunicação stateless;

• Uso de cache;

• Interface uniforme;

• Arquitetura em camadas;

• Código sob demanda.

A aplicação dessas restrições tem como consequência a geração de sistemas

que apresentam simplicidade, elevado desempenho, maior escalabilidade e

confiabilidade operacional.

O princípio de comunicação stateless é fundamental na arquitetura, pois

dispensa a necessidade de que o servidor mantenha o estado atual da sessão entre

20

requisições consecutivas por intermédio da determinação de que cada requisição

contenha todas informações necessárias para seu processamento (5). Como

consequência, o processamento torna-se independente de contexto e as requisições

podem ser distribuídas para qualquer instância disponível, de forma a favorecer

balanceamento de carga e escalabilidade. Além disso, respostas REST podem ser

cacheadas quando acompanhadas de metadados apropriados, reduzindo a

quantidade de requisições e a latência percebida. O princípio da restrição de interface

uniforme resulta na simplificação da arquitetura, independentemente da tecnologia

utilizada no cliente ou no servidor à medida que padroniza a dinâmica de interação

dos componentes (5).

Figura 2 – Estrutura cliente-servidor adotada em aplicações web.

Fonte: autor, 2025.

2.1.3 Single Page Applications (SPA)

As Aplicações de Página Única (Single Page Applications – SPA) constituem um

modelo de desenvolvimento web baseado no carregamento em um único documento

HTML da totalidade da aplicação, o qual se mantém inalterado durante toda a

interação com o usuário. São baseadas na manipulação do Document Object Model

(DOM) e realização de requisições assíncronas ao servidor, de forma a possibilitar

que a atualização dos elementos de interface ocorra dinamicamente (15), como

demonstrado na Figura 3. Essa dinâmica possibilita uma experiência mais fluida e

responsiva, semelhantes a aplicações desktop, pois as transições entre telas são

renderizadas diretamente no navegador (1).

21

A divisão clara entre o frontend e o backend favorece a evolução independente

dos componentes e permite que diferentes clientes consumam a mesma API de forma

padronizada, de modo que o cliente é responsável pela apresentação, reservando ao

servidor apenas a disponibilização da API RESTful, sem necessidade da lógica de

interface (17).

Figura 3 – Funcionamento de uma Single Page Application (SPA).

Fonte: autor, 2025.

2.1.4 Comunicação Stateless e Autenticação

Em arquiteturas REST, a autenticação necessita de execução sem dependência

de sessão no servidor, visto que o modelo stateless não preserva contexto entre

requisições (5), diferente da comunicação stateful que permite sessões persistentes e

continuidade entre ações do usuário, porém dificulta a escalabilidade horizontal,

possui maior custo de infraestrutura e aumenta o acoplamento servidor-cliente. Diante

desse cenário, uma abordagem amplamente adotada consiste na utilização de tokens

autossuficientes que realizam a incorporação de informações sobre a autenticação e

autorização do usuário, dessa forma os JSON Web Tokens (JWT) tornaram-se o

modelo predominante. A comparação entre as dinâmicas está ilustrada na Figura 4.

O JWT é formado por três partes, cabeçalho (indica o algoritmo de assinatura),

Payload (contém as informações do usuário, como identificação e data de expiração)

e assinatura criptográfica (gerada com uma chave secreta), todas codificadas em

22

base64 e funcionamento é baseado na verificação local da assinatura, com o servidor

realizando a validação do token sem a necessidade de acesso ao banco de dados,

desse modo contribui-se para redução da latência e maior escalabilidade do sistema,

mesmo sob alto volume de requisições (10).

Figura 4 – Processamento de requisições em arquiteturas Stateless e Stateful.

Fonte: autor, 2025.

2.2 Framework Django

2.2.1 Framework Django e padrão MTV (Model-Template-View)

Django é um framework web desenvolvido em linguagem Python e oferece um

conjunto de funcionalidades nativas, como ORM, sistema de autenticação, painel

administrativo e mecanismos de segurança contra as vulnerabilidades mais

conhecidas. Ele estabelece convenções para a estrutura de projeto, administra o

código e fluxo de requisições, além disso também reduz a quantidade de decisões

arquiteturais e promove consistência entre aplicações desenvolvidas com Django, o

que favorece a manutenção a longo prazo (1).

23

Figura 5 – Estrutura do padrão MTV no framework Django.

Fonte: autor, 2025.

A sua estrutura arquitetônica adota o padrão MTV, que é uma versão adaptada

do modelo MVC para o ambiente web. Nesse modelo, representado na Figura 5, o

Model elucida a organização dos dados e a lógica de negócio por meio de classes em

Python que são mapeadas para tabelas no banco de dados. O Template especifica a

apresentação das informações mediante uma linguagem de marcação com

capacidade para conteúdo dinâmico. A View desempenha a função de componente

de controle, além de processar solicitações HTTP e coordenando a interação entre

Models e Templates (1). O framework também oferece views genéricas

fundamentadas em classes, que sistematizam operações frequentes, como a

listagem, criação e modificação de registros, essa dinâmica contribui para diminuição

da quantidade de código redundante exigida para a implementação das

funcionalidades de CRUD.

2.2.2 Django REST Framework

Desenvolvido por Christie em 2011, o Django REST Framework amplia as

funcionalidades do Django, promovendo a criação de APIs web que aderem aos

princípios REST. Este framework oferece componentes especializados que tornam

mais simples a serialização de dados, a validação de entradas, a autenticação e

autorização, a paginação de resultados e a documentação automática dos endpoints.

24

Como resultado, ele se firmou como o padrão estabelecido para o desenvolvimento

de APIs dentro do ecossistema Django, graças à sua abordagem equilibrada entre

produtividade e flexibilidade.

Serializadores são elementos fundamentais que realizam a tradução bidirecional

entre representações complexas de dados, englobando instâncias de modelos Django

e tipos de dados nativos da linguagem Python, os quais podem ser facilmente

convertidos para o formato JSON (2). Os ViewSets constituem uma abstração que

integra a lógica de diversas views relacionadas em uma única classe, geralmente

implementando operações completas de CRUD por meio de métodos que se

correspondem a ações padrão do REST, como listar, recuperar, criar, atualizar e

destruir. Simultaneamente, os roteadores criam automaticamente a configuração de

URLs, dispensando a necessidade de definir manualmente cada endpoint e

assegurando que as URLs estejam em conformidade com convenções REST

consistentes (2).

Figura 6 – Integração entre React, Django REST Framework e Django ORM.

Fonte: autor, 2025.

2.2.3 Mapeamento Objeto-Relacional (ORM)

O mapeamento objeto-relacional (ORM) cria uma equivalência entre as classes

da aplicação e as estruturas do banco de dados, de modo a possibilitar a execução

de operações de persistência através do paradigma orientado a objetos. Essa

dinâmica permite dispensar a necessidade de elaboração de consultas SQL

25

manualmente. Essa abstração, representada na Figura 7, permite o desenvolvimento

de um código mais simples e favorece a portabilidade, de forma a evitar a dependência

de dialetos específicos de SQL (7). Um benefício de utilização é a segurança, pois as

consultas parametrizadas reduzem as vulnerabilidades associadas à injeção de

comandos.

Figura 7 – Conversão de objetos Python em declarações SQL por meio do ORM.

Fonte: autor, 2025.

No Django, o ORM representa as entidades do domínio por meio de classes

Python que são derivadas da classe Model, cujos atributos especificam os campos da

tabela, incluindo os tipos de dados, as restrições e os relacionamentos. A estrutura é

elaborada de forma singular no código e empregada tanto para a geração

automatizada do esquema, por meio das migrações, quanto para a validação durante

a execução. A interface de programação de aplicações (API) para consultas possibilita

a criação de operações sofisticadas por meio do encadeamento de métodos, incluindo

filtros, ordenações e agregações. A segurança contra injeções SQL é implementada

automaticamente por meio da utilização de parâmetros, assegurando que os dados

inseridos pelos usuários sejam processados de maneira distinta da estrutura da

consulta (1). As tabelas 1 e 2 apresentam exemplos de mapeamentos e operações

ORM nas duas formas de representação.

26

Tabela 1 – Exemplo de mapeamento ORM.

PYTHON (Orientado a Objetos) SQL (Relacional)

class TCC(models.Model) CREATE TABLE tccs

titulo = CharField titulo VARCHAR(300)

aluno = ForeignKey aluno_id INTEGER FK

nota = DecimalField nota DECIMAL(9,7)

Fonte: autor, 2025.

Tabela 2 – Exemplo de operações.

PYTHON (Orientado a Objetos) SQL (Relacional)

TCC.objects.filter(...) SELECT * FROM tccs WHERE...

tcc.save() INSERT INTO tccs / UPDATE

tcc.delete() DELETE FROM tccs WHERE...

TCC.objects.create(...) INSERT INTO tccs WHERE...

Fonte: autor, 2025.

2.2.4 Sistema de sinais e padrão observer

O Padrão Observer estabelece uma relação do tipo um-para-muitos entre os

objetos, na qual qualquer modificação de estado no objeto que está sendo observado

notifica automaticamente todos os objetos que atuam como observadores registrados.

Tal dinâmica possibilita que múltiplos componentes reagem a eventos sem um

acoplamento direto entre o emissor do evento e os receptores que a ele respondem,

facilitando a extensibilidade por meio da inclusão de novos comportamentos que

respondem a eventos preexistentes, sem a exigência de modificar o código

responsável pela geração dos eventos.

O Django incorporou um sistema de sinais que segue o padrão Observer,

permitindo que os componentes da aplicação recebam notificações quando certas

ações acontecem, particularmente durante o ciclo de vida dos modelos, momento em

que os sinais são ativados antes e depois de operações de salvamento e exclusão

(1). As aplicações comuns incluem auditoria por meio da geração automática de

registros de log, os quais identificam quem modificou os dados e em que momento,

sincronização, mediante a propagação de alterações para sistemas interconectados,

notificações, por meio do envio automático de e-mails quando ocorrem eventos

27

significativos e inicialização, através da criação automática de objetos relacionados

quando um novo objeto principal é estabelecido (1).

2.3 Biblioteca React

2.3.1 React e estrutura fundamentada em componentes

React é uma biblioteca JavaScript voltada para o desenvolvimento de interfaces

de usuário e é baseada no paradigma de componentes, que reúnem estrutura, lógica

e estado em unidades que podem ser reutilizadas e compostas. O React, criado pelo

Facebook e lançado como código aberto em 2013, permite que os desenvolvedores

criem interfaces complexas por meio da composição hierárquica de componentes

mais simples. Esses componentes têm responsabilidades bem definidas e podem ser

desenvolvidos, testados e mantidos de maneira independente (4).

O Virtual DOM é uma otimização que funciona com React mantendo uma

representação em memória da estrutura de DOM desejada e realizando a comparação

da versão atual com a versão anterior, sempre que um componente é re-renderizado.

Por meio de um algoritmo de reconciliação eficiente, esse processo possibilita a

determinação do conjunto mínimo de operações necessárias para atualizar o DOM

real. Essa metodologia permite que os desenvolvedores escrevam código como se a

interface inteira fosse re-renderizada a cada mudança de estado, um paradigma que

é significativamente mais fácil de compreender. Ao mesmo tempo, o React garante

que apenas as partes que realmente mudaram sejam atualizadas no DOM real (1).

Nesse cenário, a composição surge como um princípio essencial, no qual

elementos complexos são criados por meio da combinação de elementos mais

simples, ao invés de recorrer à herança.

2.3.2 TypeScript e tipagem estática em JavaScript

TypeScript constitui um superconjunto de JavaScript, elaborado pela Microsoft,

que introduz um sistema de tipos estático opcional. Este sistema possibilita que os

28

desenvolvedores especifiquem tipos para variáveis, parâmetros de funções e valores

de retorno, que são verificados durante o tempo de compilação. Desenvolvido por

Anders Hejlsberg e disponibilizado em 2012, o TypeScript identifica erros frequentes,

como o acesso a propriedades ausentes ou a passagem de argumentos de tipos

inadequados, antes da execução do código, por meio de uma análise estática que

complementa a natureza dinâmica do JavaScript, oferecendo uma rede de segurança

durante o processo de desenvolvimento (13).

O sistema de tipos do TypeScript é caracterizado como estrutural, em contraste

com o nominal, o que implica que a compatibilidade é definida pela estrutura ao invés

de uma declaração explícita de tipo. Essa abordagem está em conformidade com a

natureza do duck typing presente no JavaScript (1). A inferência de tipos possibilita

ao TypeScript deduzir automaticamente tipos com base na forma como são utilizados,

de modo a possibilitar a redução da quantidade de anotações explícitas requeridas. O

desenvolvedor precisa anotar tipos apenas em pontos de fronteira, como nos

parâmetros de função, enquanto o TypeScript dissemina as informações ao longo do

código.

2.3.3 Gerenciamento de estado

Um desafio essencial em aplicações frontend complexas é a gestão do estado,

na qual vários componentes precisam compartilhar e sincronizar dados, responder de

forma consistente a mudanças e manter a interface atualizada para refletir o estado

atual da aplicação. O React disponibiliza primitivas essenciais para o gerenciamento

de estado de forma local em componentes, além de possibilitar o compartilhamento

desse estado através da hierarquia por meio da Context API. Isso possibilita a

implementação de padrões de gerenciamento que se adaptam a aplicações que

variam de simples a complexas (1).

Hooks consistem em funções singulares apresentadas no React 16.8 que

permitem a componentes funcionais acessar estado e outros recursos que

anteriormente eram restritos a componentes de classe, oferecendo uma interface de

programação mais ergonômica para a gestão de comportamentos por meio de

funções simples (4). O hook useEffect possibilita a execução de efeitos colaterais,

29

como a inscrição em fontes de dados externas ou a realização de operações que

devem ser efetuadas em resposta a uma renderização. Ele aceita uma função de

efeito, a qual é chamada após a renderização e um array de dependências, que define

o momento em que o efeito deve ser reexecutado. A Context API disponibiliza uma

ferramenta para disseminar valores ao longo da hierarquia de componentes, o que

elimina a exigência de transmitir props em todos os níveis, solucionando, dessa forma,

a questão do prop drilling (1).

2.3.4 Roteamento client-side

O roteamento no lado do cliente possibilita que aplicações de página única

realizem a navegação entre distintas visualizações sem a necessidade de recarregar

o documento HTML completo do servidor, de modo a gerenciar a sincronização entre

a URL apresentada no navegador e os componentes renderizados através da

manipulação da History API. Essa abordagem facilita transições instantâneas, além

de permitir que o estado de aplicações que seriam comprometidas em um

recarregamento total possa ser mantido e possibilitar implementar animações de

transição entre visões (1).

O React Router configura uma biblioteca padrão que disponibiliza componentes

declarativos, de modo a permitir estabelecer a correspondência entre URLs e os

componentes que devem ser exibidos. Essa ferramenta administra a sincronização

bidirecional, na qual alterações na URL ocasionam a renderização correspondente,

enquanto a navegação programática altera a URL sem a necessidade de recarregar

a página (1). A proteção de rotas é realizada através de componentes wrapper que

realizam a verificação de autorização antes de exibir a rota protegida, de forma a

redirecionar usuários não autenticados, enquanto o carregamento sob demanda de

rotas possibilita a carga do código apenas no momento em que a rota é acessada,

como demonstrado na Figura 8, diminuindo o tamanho do bundle inicial por meio da

divisão de código.

30

Figura 8 – Roteamento client-side em aplicações SPA.

Fonte: autor, 2025.

2.4 Segurança em aplicações web

2.4.1 OWASP Top 10 e vulnerabilidades críticas

O OWASP Top 10 é uma lista que inclui as vulnerabilidades de segurança mais

críticas e comuns em aplicações web e é atualizada regularmente. Essa compilação

é feita pelo Open Web Application Security Project, que utiliza informações sobre a

ocorrência de vulnerabilidades identificadas em aplicações reais, combinadas com

estimativas de exploitabilidade, detectabilidade e impacto técnico (14). Este conjunto

de diretrizes atua como um referencial essencial para que desenvolvedores e

instituições direcionem suas iniciativas de segurança, concentrando-se nos riscos

mais relevantes que impactam as aplicações web, como representado na Figura 9.

Alguns exemplos de vulnerabilidades comuns são:

• Injeção: uma categoria em que informações não confiáveis, fornecidas pelo

usuário, são enviadas ao interpretador como parte de um comando ou consulta.

Desse modo um invasor pode executar comandos não previstos ou acessar

dados sem autorização através de uma entrada maliciosa que modifica a lógica

do comando;

31

• Cross-Site Scripting (XSS): classificado como um tipo de injeção, possibilita

que invasores insiram scripts prejudiciais em páginas da web acessadas por

outros usuários e execute JavaScript dentro do contexto da sessão da vítima,

o que possibilita o furto de cookies ou a realização de ações em nome do

usuário;

• Cross-Site Request Forgery (CSRF): considerado como categoria falhas de

identificação e autenticação, nesse caso é explorada a confiança que um site

deposita no navegador de um usuário autenticado, induzindo a vítima a enviar

uma solicitação maliciosa, resultando na execução de uma ação não

intencional (14).

Figura 9 – Principais vulnerabilidades de segurança em aplicações web.

Fonte: autor, 2025.

2.4.2 Autenticação JWT: tokens, renovação e revogação

Os JWT configuram um padrão aberto, de acordo com o estipulado pela RFC

7519, que define um formato conciso e autossuficiente para a troca de informações

entre as partes, apresentando-se na forma de um objeto JSON assinado digitalmente,

sendo utilizados predominantemente para fins de autenticação e troca de

informações. A configuração de um JWT é formada por três partes codificadas em

Base64, divididas por pontos: um cabeçalho que define o algoritmo de assinatura, um

payload que abriga as claims sobre o usuário, incluindo seu identificador e o

32

timestamp de expiração e uma assinatura que é criada através da utilização de um

algoritmo criptográfico com uma chave secreta (10).

A validação do JWT no servidor está representada na Figura 11 e envolve a

verificação da assinatura ao recalcular o hash do cabeçalho e do corpo (payload), de

forma a utilizar a mesma chave secreta e comparação com a assinatura que

acompanha o token. Esse processo garante que o token foi gerado por um servidor

confiável e que não foi alterado. Subsequentemente, realiza-se a verificação das

claims, com destaque para a claim "exp", a fim de assegurar que o token não tenha

perdido a validade. A renovação de tokens trata do desafio de equilibrar a segurança,

por meio de tokens de curta duração e a usabilidade, realizada com a inclusão de

access tokens de curta duração nas requisições de API e refresh tokens de longa

duração, os quais são utilizados unicamente para a obtenção de novos access tokens.

Por outro lado, a revogação é realizada por meio de uma blacklist mantida em cache,

que contém identificadores de tokens revogados com um tempo de vida (TTL) igual

ao tempo restante para a expiração natural (10).

Figura 10 – Fluxo de autenticação JWT.

Fonte: autor, 2025.

33

2.4.3 Controle de Acesso Baseado em Papéis (RBAC)

O controle de acesso fundamentado em papéis constitui uma estratégia para

administrar autorizações em que as permissões são vinculadas a papéis, em vez de

a usuários específicos. Os usuários, por sua vez, são designados a papéis

compatíveis com suas funções, como ilustrado nas figuras 11 e 12. Uma forma de

gerenciar o processo é a utilização de um modelo padrão do NIST para o Controle de

Acesso Baseado em Papéis (RBAC), o qual facilita a administração das permissões

em sistemas que possuem um grande número de usuários, por meio da gestão de um

grupo reduzido de papéis, em vez de configurar as permissões individualmente para

cada usuário. Esse modelo reflete a estrutura organizacional, na qual usuários que

desempenham funções semelhantes costumam necessitar do mesmo conjunto de

permissões.

Figura 11 – Modelo de atribuição de papéis e permissões no modelo RBAC.

Fonte: autor, 2025.

Os papéis são definidos de acordo com as funções laborais, cada um reunindo

um conjunto de permissões relacionadas que representam as atividades que os

usuários atribuídos a esse papel devem ser aptos a executar, apresentando uma

granularidade que varia desde papéis abrangentes, como o de administrador, até

aqueles específicos de domínio. A verificação de autorização ocorre em diversas

camadas: a camada de apresentação é responsável por ocultar funcionalidades que

o usuário não está autorizado a acessar, o que melhora a usabilidade, a camada de

lógica de negócios analisa as permissões antes de efetuar operações essenciais,

34

garantindo a segurança e a camada de dados pode filtrar as consultas para

disponibilizar apenas os registros que possuem autorização, implementando, assim,

a segregação de dados.

Figura 12 – Exemplo de relações de acesso no modelo RBAC.

Fonte: autor, 2025.

2.4.4 Proteções CORS, CSRF e validação de dados

A Política de Mesma Origem constitui uma importante restrição de segurança

aplicada por navegadores, a qual impede que scripts em execução em uma página de

uma origem acessem dados de uma página de origem distinta. Nesse contexto, a

origem é definida como a combinação de esquema, domínio e porta. Essa política tem

como objetivo proteger contra ataques nos quais um site malicioso tenta obter

informações confidenciais de outros sites, aproveitando-se do fato de que o navegador

insere cookies automaticamente nas solicitações (14). O mecanismo de Cross-Origin

Resource Sharing (CORS) proporciona uma forma controlada de flexibilizar essa

política, de modo a permitir que os servidores especifiquem quais origens têm

permissão para acessar seus recursos por meio de cabeçalhos HTTP.

A validação de dados em várias camadas é uma técnica de defesa em

profundidade, na qual os dados passam por processos de validação no cliente,

35

servidor e banco de dados. A validação feita no lado do cliente pode ser contornada

por invasores, apesar de proporcionar um retorno imediato, melhorando assim a

experiência do usuário (15). Por outro lado, a validação no lado do servidor é

fundamental para a segurança, uma vez que não pode ser comprometida e deve

rejeitar toda entrada inválida. Além disso, as restrições impostas pelo banco de dados

constituem a última linha de defesa, assegurando a integridade dos dados, mesmo

que as validações anteriores não tenham sido efetivas.

2.5 Aplicação da engenharia de software em sistemas de gestão

2.5.1 Máquinas de Estado Finito (FSM)

As máquinas de estados finitos constituem um modelo computacional que

abrange um conjunto limitado de estados, transições entre esses estados

fundamentadas em eventos ou condições, além das regras que definem o estado

inicial e os estados finais, como exemplificado na Figura 13. Esse formalismo é

especialmente efetivo na modelagem de processos de negócios e fluxos de trabalho

em que uma entidade avança por uma sequência de estados claramente definidos,

desde a sua criação até a conclusão. As transições representam as ações que

deslocam a entidade entre os estados, enquanto as regras de transição asseguram

que apenas progressões válidas sejam permitidas (17).

Uma definição precisa dos estados exige a explicitação de todas as condições

possíveis que uma entidade pode assumir ao longo de seu ciclo de vida, de modo a

evitar estados ambíguos que podem resultar em comportamentos inconsistentes.

Além disso, a implementação geralmente se utiliza de um campo de estado em um

modelo de dados, que armazena o estado atual como um enum ou string, contando

com métodos de transição que validam se a troca de estado é permitida, executam a

lógica de negócios necessária, atualizam o campo de estado e registram a transição

em um log de auditoria (15).

36

Figura 13 – Exemplo de máquina de estados finita (FSM).

Fonte: autor, 2025.

2.5.2 Validação em múltiplas camadas

A validação em múltiplas camadas aplica o princípio de defesa em profundidade,

no qual os dados são conferidos em cada camada da aplicação que manipula ou

armazena informações. Essa estratégia reconhece que nenhuma camada isolada é

totalmente segura e que múltiplas camadas independentes proporcionam

redundância, essa dinâmica torna significativamente mais difícil a inserção de dados

inválidos ou maliciosos. Dessa forma, procura-se um equilíbrio entre as preocupações

com a experiência do usuário, por meio da validação no lado do cliente, que oferece

retorno imediato, a segurança, por meio da validação no lado do servidor, que é

incontestável e a integridade, por meio de restrições no banco de dados (15).

A validação no lado do servidor estabelece uma camada fundamental que deve

tratar toda a entrada recebida como não confiável, a despeito das validações

executadas no lado do cliente. Nesta fase, tipos, formatos, intervalos e regras de

negócio complexas são verificados antes que os dados sejam processados ou

armazenados. A possibilidade de acessar um contexto amplo da aplicação permite

executar validações mais sofisticadas, como a checagem da unicidade de valores ou

a confirmação de permissões (15). Restrições em bancos de dados representam a

última linha de defesa ao implementar regras de integridade de forma direta no

esquema, por meio de restrições como NOT NULL, UNIQUE, CHECK e chaves

estrangeiras, que são aplicadas independentemente do código da aplicação. Tais

37

restrições são especialmente relevantes para evitar a corrupção de dados ocasionada

por problemas de controle de ordem (17).

2.5.3 Padrões de projeto em aplicações web

Os padrões de projeto constituem soluções reaproveitáveis para questões

recorrentes em design de software, as quais são identificadas e registradas a partir da

experiência coletiva de programadores. Esses padrões oferecem um vocabulário

compartilhado para transmitir arquiteturas e decisões de design, ao mesmo tempo em

que codificam práticas recomendadas que previnem armadilhas reconhecidas. As

aplicações web contemporâneas frequentemente implementam múltiplos padrões que

operam em conjunto, sendo que cada um deles contempla um aspecto específico do

design (8).

O padrão Observer estabelece um sistema de publicação e assinatura no qual

objetos que demonstram interesse em determinados eventos podem se inscrever

como observadores de um sujeito. Este, por sua vez, notifica automaticamente todos

os observadores cadastrados sempre que ocorre uma alteração, favorecendo o baixo

acoplamento pela eliminação de dependências diretas. O repositório abstrai o acesso

a dados ao oferecer uma interface análoga a uma coleção para a interação com

objetos de domínio, ao mesmo tempo em que encobre a lógica de consultas,

separando a lógica de negócios dos aspectos relacionados à persistência (7). Por

outro lado, o padrão Strategy estabelece uma família de algoritmos, encapsulando

cada um em uma classe distinta, permitindo sua intercambialidade por meio de uma

interface comum (8).

2.5.4 Arquitetura modular e separação de responsabilidades

A arquitetura modular organiza o software em módulos autônomos, em que cada

módulo reúne um conjunto de funcionalidades interconectadas e oferece uma

interface bem delimitada, enquanto oculta os detalhes de implementação. Este

princípio permite o desenvolvimento, a testagem e a manutenção autônoma de

módulos, os quais se conectam por meio de interfaces consistentes que definem

38

acordos entre os componentes. Essa abordagem baseia-se na distribuição de

responsabilidades, garantindo que cada módulo tenha uma única responsabilidade

claramente delineada, evitando a formação de módulos que busquem englobar

múltiplas funções, o que os torna complexos para serem compreendidos (17).

A coesão avalia o quão interligadas e concentradas estão as responsabilidades

de um módulo, de forma que uma alta coesão sugere que seus elementos colaboram

para um único propósito e resulta em módulos que são facilmente compreensíveis,

modificáveis e reutilizáveis. Por outro lado, o acoplamento examina o nível de

interdependência entre os módulos, um baixo acoplamento indica que os módulos

possuem dependências mínimas entre si, por meio de interfaces bem definidas, o que

permite modificações sem que sejam necessárias alterações em cascata em todo o

sistema (15). O acoplamento é administrado por meio do encapsulamento, que oculta

detalhes de implementação atrás de interfaces públicas, pela injeção de

dependências, que fornece as dependências a módulos, em vez de permitir que estes

criem as dependências de forma direta e pela utilização de abstrações, que

possibilitam a substituição de implementações concretas sem impactar o código que

delas depende (17).

39

3 DESENVOLVIMENTO DO TRABALHO

3.1 Visão geral

3.1.1 Estrutura Cliente-Servidor

O sistema foi implementado seguindo padrão arquitetural cliente-servidor de três

camadas, de forma que cada um dos componentes possui distintas responsabilidades

e comunica-se através de interfaces normalizadas no sistema, como demonstrado na

Figura 14. Dessa forma, é possível estabelecer uma organização adequada, baseada

na divisão de funções bem definidas, de modo que a camada apresentação

(executada no cliente) tem o foco na interação com o usuário, a camada lógica de

negócio (centralizada no servidor) é responsável pela implementação das regras e a

camada persistência gerencia o armazenamento das informações.

Figura 14 – Arquitetura Cliente-Servidor da Plataforma.

Fonte: autor, 2025.

40

Camada de apresentação

A aplicação foi criada como uma SPA (Single Page Application) usando a

biblioteca React 19 juntamente com a linguagem TypeScript. Seu funcionamento é

fundamentado na execução completa no navegador, de modo a necessitar

encarregar-se apenas pela renderização da interface, registro das interações e

exibição visual dos dados. Não há acesso direto ao banco de dados e toda

comunicação com o servidor é feita por meio de requisições HTTP assíncronas à

interface REST. Essa metodologia permite que a navegação seja realizada sem a

necessidade de recarregamento completo. Nesse processo, o gerenciamento de

estado local é feito pelo React, o que possibilita atualizações parciais apenas nos

componentes que sofreram alterações.

Camada de lógica de negócio

Foi desenvolvida com Django 4.2.16 e Django REST Framework 3.14, de modo

a concentrar a implementação de regras de negócio complexas, como por exemplo

validações de prazos fundamentadas no calendário acadêmico, controle detalhado de

permissões, cálculos automáticos de notas, gerenciamento de máquina de estados

com transições automatizadas e orquestração de fluxos de trabalho de avaliação. O

backend disponibiliza funcionalidades através de uma interface REST, de forma em

que cada endpoint corresponde a uma operação sobre um recurso do domínio. Essa

abordagem stateless possibilita a escalabilidade horizontal sem a necessidade de

sincronização de sessão. A separação arquitetural permite que equipes

especializadas desenvolvam paralelamente e facilita a adição de clientes alternativos,

como aplicativos móveis e simplifica os testes por meio do isolamento total das

camadas.

Camada de persistência

A camada de persistência utiliza o SQLite e tem suporte configurado para

migração para PostgreSQL. O ORM (Object Relational Mapper) do Django oculta as

variações entre os sistemas gerenciadores, de modo a possibilitar que os modelos

sejam estabelecidos uma única vez e convertidos automaticamente para o dialeto

SQL adequado. Essa camada é acessada apenas pelo backend e não contém acesso

direto pelo frontend. Assegura-se a consistência, independentemente do fluxo de

41

execução, por meio de validações de integridade, restrições de unicidade e índices

estabelecidos no nível do modelo, assim como exemplificado na Figura 15.

Figura 15 – Fluxo de Requisições no Padrão MTV do Django.

Fonte: autor, 2025.

3.1.2 Padrão de Comunicação

A interação entre o frontend e o backend foi realizada em conformidade com os

princípios da arquitetura REST, adotando o protocolo HTTP como camada de

transporte e o formato JSON para a serialização de dados. A interface foi elaborada

em conformidade com restrições essenciais, englobando a separação entre cliente e

servidor, a comunicação sem estado (stateless), a possibilidade de respostas que

podem ser armazenadas em cache, a uniformidade da interface e a organização em

camadas do sistema. Cada recurso do domínio é disponibilizado por meio de uma

URL exclusiva, enquanto as operações estão associadas a métodos HTTP

padronizados: GET, POST, PUT e PATCH para a atualização e DELETE para a

eliminação. URLs aderem à convenção RESTful e empregam substantivos no plural

para representar coleções e identificadores para recursos específicos, além de ações

customizadas que fogem do padrão CRUD, utilizando sufixos verbais descritivos.

42

O JSON foi selecionado como formato de serialização em virtude de sua leveza,

facilidade de leitura por humanos e ampla aceitação e compatibilidade nativa com

JavaScript. Os serializadores do Django REST Framework realizam a conversão

automática entre objetos Python e sua representação em JSON, mantendo os tipos

de dados e possibilitando a serialização de relacionamentos, por meio de

identificadores numéricos ou através de objetos aninhados completos.

A autenticação foi realizada por meio da utilização de tokens JWT em lugar de

sessões armazenadas no servidor. Após a realização de um login bem-sucedido, o

backend envia um token de acesso válido por 60 minutos, além de um token de

atualização que possui validade de 7 dias. O token de acesso é inserido no cabeçalho

de autorização das requisições (utilizando o esquema portador) e o backend realiza a

validação através da verificação da assinatura criptográfica, da expiração e das

declarações, de modo a dispensar necessidade de consultar o banco de dados a cada

requisição. Quando o token de acesso expira, o frontend utiliza automaticamente o

token de atualização para obter um novo par, de modo a dispensar que seja

necessária uma nova autenticação. Os tokens de atualização são renovados a cada

uso, o que resulta na criação de um novo token e na inclusão do token anterior em

uma lista de revogação, com o intuito de impedir a reutilização de tokens que possam

estar comprometidos, restringindo assim a janela de vulnerabilidade.

A interface faz uso de códigos de estado HTTP semânticos, como demonstrado

na Tabela 3. As respostas de erro são estruturadas de maneira padronizada,

retornando mensagens descritivas ou objetos de validação que relacionam campos a

erros específicos, assim é possível um tratamento centralizado via interceptadores.

Tabela 3 – Códigos de status HTTP.

Código Status Descrição

200 Ok Sucesso

201 Created Recurso criado

204 No Content Sucesso sem corpo

400 Bad Request Erro de validação

401 Unauthorized Token ausente ou expirado

403 Forbidden Permissão negada

404 Not Found Recurso não encontrado

500 Internal Server Error Falha no servidor

Fonte: autor, 2025.

43

3.1.3 Tecnologias Empregadas

A escolha das tecnologias fundamentou-se em critérios como maturidade,

qualidade da documentação, engajamento da comunidade e conformidade técnica em

relação aos requisitos do projeto.

O React 19 foi utilizado para o desenvolvimento da interface em função de seu

funcionamento se basear em uma abordagem fundamentada em componentes,

possibilitando a criação de interfaces complexas utilizando da composição hierárquica

de componentes reutilizáveis. O sistema de hooks simplifica a gestão de estado e de

efeitos colaterais, resultando em um código mais conciso e passível de testes,

enquanto a reconciliação virtual aprimora as atualizações ao calcular as mínimas

diferenças. TypeScript incorpora um sistema de tipos estático, o que possibilita

autocompletar de forma inteligente, identificação antecipada de erros, refatoração

segura e aprimoramento da documentação por meio de interfaces. O React Router

DOM 7 administra a navegação ao associar URLs a componentes, possibilitando rotas

com parâmetros dinâmicos, navegação programática e rotas protegidas que realizam

a verificação de autenticação. Axios atua como um cliente HTTP e proporciona uma

interface prática, realizando a transformação automática de JSON. Desse modo é

possível a utilização de interceptadores para a manipulação de requisições e

respostas, além de possibilitar o cancelamento de solicitações. O TailwindCSS

disponibiliza classes utilitárias que permite a criação ágil de interfaces, de modo a

resultar em um arquivo CSS final reduzido, ao eliminar estilos que não são utilizados.

Vite foi selecionado como empacotador devido à sua capacidade de proporcionar

inicialização imediata, substituição de módulo extremamente ágil e compilações

otimizadas.

O Django 4.2 foi escolhido como o framework web devido à sua capacidade de

fornecer um mapeamento objeto-relacional eficaz, um sistema automático de

migrações, um painel administrativo integrado, um sistema de autenticação sólido e

um ecossistema abrangente.

O Django REST Framework estende as funcionalidades do Django, de modo a

disponibilizar conjuntos de visualizações que implementam operações CRUD com um

código reduzido e serializadores que realizam a conversão entre os modelos e o

JSON. Inclui também um sistema de permissões granulares, paginação automática e

44

filtros. O djangorestframework-simplejwt fornece autenticação baseada em tokens

web JSON, suporte a listas de revogação, personalização de declarações e rotação

automática. O SQLite é utilizado como sistema de gerenciamento durante o

desenvolvimento devido à sua leveza e à ausência da necessidade de um servidor

separado, enquanto o PostgreSQL pode ser utilizado para o ambiente de produção,

de modo a dar suporte integral ao ACID (propriedades fundamentais de transações

em bancos de dados) e tipos de dados avançados e excelente desempenho.

3.1.4 Circulação de Dados e Integração

O fluxo de dados adota um padrão unidirecional consistente, no qual toda a

comunicação entre as camadas transita pela interface REST, criando um ponto de

integração singular com regras centralizadas. Ao interagir com a interface, o usuário

realiza a validação dos dados no frontend através de algumas verificações de

segurança e transmite uma requisição HTTP com o token JWT no cabeçalho. O

backend recebe uma requisição, valida o token através de middleware que extrai o

identificador do usuário e verifica as permissões através de classes personalizadas

que analisam o tipo de usuário e seus relacionamentos. Em seguida, a lógica de

negócio é executada consultando ou alterando o banco de dados através do

mapeamento objeto-relacional e retornando uma resposta em formato JSON com o

código de estado apropriado. O frontend processa a resposta, modifica o estado por

meio de hooks e da Context API e re-renderiza automaticamente os componentes

impactados, apresentando mensagens ao usuário por meio de notificações

temporárias ou alertas embutidos.

Interceptadores do Axios acompanham as respostas ao examinar os códigos de

status. Quando o backend emite um código 401, sinalizando que o token expirou, o

interceptador interrompe o processamento e executa o procedimento de renovação,

enviando uma requisição ao endpoint designado para atualização, utilizando um token

de renovação válido. Uma nova resposta, contendo um par de tokens, é processada

por meio da atualização do armazenamento local e do contexto de autenticação. Após

uma renovação bem-sucedida, a solicitação original é reexecutada de maneira

automática com um novo token e a resposta é encaminhada ao código que a iniciou,

45

como se nenhum erro tivesse acontecido, assegurando uma experiência sem

interrupções, sem exigir um novo login.

O sistema implementa uma camada dupla de notificações: notificações internas,

que são armazenadas no banco de dados e estão relacionadas ao destinatário e um

TCC opcional, que são carregadas periodicamente pelo frontend por meio de

consultas realizadas a cada 30 segundos, atualizando contadores e listagens, por sua

vez, as notificações via correio eletrônico são enviadas pelo backend mediante um

sistema configurado com servidor SMTP, respeitando três níveis de controle, incluindo

uma flag global que indica a ativação do envio, preferências detalhadas por tipo que

são configuradas individualmente e a validação do endereço cadastrado. Os sinais do

Django, integrados aos modelos principais, automatizam a geração de notificações

sempre que eventos significativos ocorrem, como alterações de estado, aprovações e

conclusões, assegurando uma comunicação uniforme, independentemente do fluxo

de execução.

3.2 Backend

3.2.1 Estrutura modular do Django

O backend foi elaborado de acordo com a arquitetura modular do Django, de

modo que a aplicação é segmentada em quatro módulos autônomos, assim como

apresentado na Figura 16, sendo cada um responsável por um domínio particular do

sistema. Essa divisão fundamenta-se no modelo de alocação de responsabilidades, o

que simplifica a manutenção e possibilita a realização de testes unitários

independentes para cada componente.

46

Figura 16 – Módulos do backend da plataforma.

Fonte: autor, 2025.

O módulo inicial, users, desenvolve um modelo de usuário personalizado que

amplia as classes fundamentais de autenticação do Django, trocando o identificador

convencional por um endereço de e-mail. Adicionando ao modelo principal, foram

desenvolvidos modelos auxiliares que abordam preferências visuais e de notificação,

estabelecendo vínculos um-para-um com o usuário, os quais asseguram informações

específicas para cada perfil.

O módulo tccs engloba os modelos de domínio primário, de modo a abranger o

TCC e suas entidades associadas, tais como solicitações de orientação, documentos,

comissões, avaliações, agendamentos e histórico de eventos. Para gerenciar o

acesso a esses recursos, o módulo desenvolve classes de permissão personalizadas,

as quais ampliam o sistema de permissões do DRF. Ademais, emprega o sistema de

sinais do Django para automatizar processos que devem ser ativados em decorrência

de alterações nos dados.

O módulo de notificações opera em colaboração com o módulo TCCs, de modo

a implementar estruturas para o armazenamento de avisos internos e das preferências

de correio eletrônico dos usuários. A geração de notificações é realizada de forma

automatizada através de sinais vinculados aos eventos do módulo TCCS e assegura

que os usuários sejam avisados sobre alterações significativas. A transmissão de e-

47

mails é efetuada por meio do sistema de correio do Django, o qual possui um backend

SMTP que pode ser configurado.

Por fim, o módulo de definições concentra as configurações do sistema que

podem ser modificadas pelo coordenador, mediante modelos que armazenam o

calendário acadêmico, códigos de cadastro, documentos de referência e parâmetros

de e-mail. Este módulo também faz uso de sinais para a implementação dinâmica de

configurações e dispensa a reinicialização do servidor, esse dinâmica possibilita que

as modificações sejam imediatamente refletidas no sistema.

3.2.2 Interface de Programação de Aplicação REST

A API REST foi desenvolvida empregando o DRF, com a implementação de

grupos de views fundamentados em recursos que realizam o mapeamento automático

de operações CRUD para endpoints HTTP. Essa metodologia possibilita que cada

elemento do domínio (TCCs, usuários, notificações, entre outros) seja disponibilizado

por meio de URLs normatizadas, todas organizadas sob o prefixo /api/ através do

sistema de roteamento do framework.

A camada de serialização funciona como um elo entre as representações

internas em Python e o formato JSON empregado na API. Os serializadores de

modelo realizam a conversão automática de objetos provenientes do banco de dados

para o formato JSON (ou no sentido inverso) e implementam métodos de validação

personalizados, de modo que aplicam regras de negócio particulares durante esse

procedimento. Os serializadores incorporam campos calculados que oferecem dados

aninhados e ajustam a estrutura da resposta conforme o contexto de uso. Para

operações de listagem, são fornecidas versões resumidas visando a eficiência,

enquanto as visualizações individuais contêm informações mais detalhadas. As

validações intricadas consultam modelos correlatos e o calendário acadêmico a fim

de verificar prazos e imposições antes de autorizar as operações.

Além das validações de dados, o sistema de permissões regula o acesso de

cada usuário a diferentes recursos. Foram implementadas classes personalizadas que

ampliam o sistema de permissões do framework, realizando a verificação da

autenticação do usuário e de seu relacionamento particular com os recursos

48

requisitados. Essas análises avaliam a classificação do usuário e exploram as

interações por meio de chaves estrangeiras para identificar, por exemplo, se um

docente atua como orientador de um determinado TCC. As permissões são

implementadas nos grupos de views e podem ser modificadas para operações

específicas através de decoradores. Assim, é possível obter um controle detalhado

sobre cada endpoint.

A estruturação dos endpoints emprega roteadores que criam automaticamente

URLs fundamentadas nos recursos estabelecidos, em conformidade com as

convenções RESTful, com a dinâmica ilustrada na Figura 17. Além das operações

padrão de CRUD, ações específicas do domínio são disponibilizadas por meio de

ações personalizadas, sinalizadas por decoradores, como a formação de bancas, o

envio de avaliações e a aprovação de documentos, cada uma possuindo suas próprias

normas de permissão e validação.

Figura 17 – Arquitetura de integração via API REST.

Fonte: autor, 2025.

3.2.3 Autenticação e autorização

A autenticação foi realizada por meio da implementação da biblioteca

djangorestframework-simplejwt, a qual amplia as funcionalidades do DRF,

49

proporcionando suporte a JWT. Essa estratégia sem estado se ajusta à arquitetura

com frontend desacoplado, removendo a exigência de conservação de sessões no

servidor. Os tokens de acesso têm validade de 60 minutos e são usados para validar

requisições. Já os tokens de atualização duram 7 dias e permitem renovar o acesso

sem necessidade de nova autenticação.

A criação de tokens emprega uma visualização personalizada que substitui o

procedimento convencional da biblioteca, a fim de incorporar dados suplementares no

payload, como a categoria de usuário e as preferências estéticas. Assim, o frontend

obtém os tokens e também informações fundamentais para a configuração inicial da

interface. Os tokens são autenticados pelo algoritmo HS256 e incorporam

reivindicações padrão de JWT (identificador, marcas de tempo de emissão e

expiração), além de campos personalizados.

Com o intuito de assegurar a segurança, mesmo após o logout ou a possível

violação de tokens, foi estabelecido um sistema de invalidação que utiliza um modelo

de lista negra, o qual registra identificadores únicos de tokens revogados. No processo

de logout, o token de atualização é inserido na lista por meio de um método específico,

tornando-se permanentemente inválido. Adicionalmente, a rotação automática foi

ajustada para criar novos tokens de atualização a cada renovação, colocando o token

anterior na lista negra de forma automática, o que diminui consideravelmente as

janelas de vulnerabilidade, caso algum token seja capturado.

O sistema de autorização opera em parceria com a autenticação e emprega um

campo que indica o tipo de usuário no modelo principal, associado ao sistema de

permissões do framework. As views realizam a filtragem personalizada de objetos com

base no tipo de usuário autenticado, consultando relacionamentos de chave

estrangeira para verificar a propriedade e a participação em recursos. Os alunos têm

acesso apenas aos seus respectivos trabalhos de conclusão de curso, os professores

podem visualizar os TCCs dos quais são orientadores, enquanto os coordenadores

dispõem de uma visão abrangente, tudo gerenciado por meio dessa filtragem

dinâmica.

50

3.2.4 Máquina de estados

A máquina de estados foi desenvolvida para gerenciar o ciclo de vida integral do

TCC através de um campo textual no modelo que registra o estado corrente. Os

valores admissíveis estão estabelecidos em um módulo de constantes, o qual abrange

5 etapas, representadas na Figura 18, divididas em 14 estados diferentes, entre os

quais se encontram três estados terminais que simbolizam conclusões definitivas do

processo. A centralização em um módulo de constantes facilita a manutenção e

assegura a consistência em todo o sistema.

As transições entre estados são executadas por meio de métodos nas

visualizações que avaliam de forma criteriosa o estado presente antes de autorizar

alterações. Essas validações empregam lógica condicional, a qual analisa não apenas

o valor do estado, mas também campos de controle associados que atuam como pré-

requisitos para determinadas transições. A autorização para a avaliação exige que

determinadas flags estejam ativadas, assegurando que as etapas intermediárias

foram devidamente realizadas. Certas transições são automatizadas por meio do

sistema de sinais do Django: ao serem vinculados aos modelos de avaliação, os sinais

verificam se todas as avaliações foram finalizadas e atualizam o estado

automaticamente, dispensando a necessidade de intervenção manual.

Foi desenvolvido um comando de gerenciamento no Django que é executado

periodicamente através de um agendador de tarefas, para realizar transições que

dependem do tempo. Esse comando verifica os agendamentos de defesa, aplicando

filtros por data e situação atual e realiza automaticamente a transição para a fase de

apresentação assim que o momento agendado é alcançado.

Além do campo referente ao estado principal, o modelo TCC apresenta diversos

campos booleanos que atuam como controles complementares do fluxo que

englobam indicadores para a aprovação de continuidade, autorização para avaliação

e restrição de edições durante o processo de análise. Esses campos possibilitam um

controle detalhado, desvinculado do estado presente. Adicionalmente, foram

introduzidos campos de autorização manual que possibilitam ao coordenador outorgar

exceções aos prazos do cronograma para TCCs específicos, sem comprometer o

cronograma geral. Todas essas alterações de estado e indicadores geram

51

automaticamente registros de eventos por meio de sinalizações, estabelecendo um

rastreamento abrangente de auditoria que registra toda a evolução do TCC.

Figura 18 – Fluxo de estados do Trabalho de Conclusão de Curso.

Fonte: autor, 2025.

3.2.5 Sistema de arquivos

A gestão de documentos emprega campos de arquivos do Django,

acompanhados por funções personalizadas de upload, as quais definem a localização

e a maneira de armazenamento dos arquivos. Essas funções criam caminhos

organizados de forma hierárquica, estabelecendo uma estrutura na qual cada TCC

possui uma pasta exclusiva, dividida por gênero documental. Para assegurar a

singularidade dos nomes e prevenir conflitos, identificadores exclusivos são gerados

de forma automática e adicionados ao nome de cada arquivo, enquanto o nome

original fornecido pelo usuário é mantido em um campo distinto para apresentação.

A validação dos uploads foi realizada em três níveis que operam de maneira

integrada para assegurar a integridade. No que tange ao modelo, os validadores

conferem as extensões de arquivo aceitas e o tamanho máximo, rejeitando de

imediato arquivos que sejam inadequados. No âmbito do serializador, validações

particulares asseguram que a extensão é adequada para o tipo de documento que

está sendo enviado. Por exemplo, monografias devem obrigatoriamente estar em

formato PDF, enquanto outros tipos de documentos aceitam formatos adicionais. Por

fim, no âmbito das visualizações, as verificações de permissão analisam o calendário

52

acadêmico e os campos de liberação manual para estabelecer se o envio ocorre

dentro do prazo permitido para o respectivo tipo de documento e usuário.

O controle de versões foi estabelecido por meio de um campo numérico no

modelo de documento, o qual é calculado automaticamente no momento da sua

criação. O sistema registra documentos anteriores do mesmo modelo para o TCC em

questão e fornece o próximo número sequencial, elaborando um histórico abrangente

de revisões. Restrições de unicidade em diversos campos asseguram que não

existam versões replicadas para a mesma combinação de TCC e categoria

documental.

O gerenciamento do ciclo de vida dos documentos é realizado por meio de um

campo de status que apresenta três valores distintos: pendente, aprovado e rejeitado,

além de um campo textual destinado a fornecer um feedback detalhado. Alterações

no status geram imediatamente sinais que produzem automaticamente registros de

eventos na linha do tempo do TCC e notificações para o estudante, instaurando um

modelo de observador, no qual diversos componentes respondem a essas

modificações sem um acoplamento direto entre eles.

3.2.6 Método de avaliação

A avaliação foi instaurada por meio de dois modelos fundamentais que se

relacionam com as etapas do processo. Cada modelo dispõe de cinco campos

numéricos com precisão decimal, destinados aos critérios de avaliação

correspondentes à fase, junto a um campo calculado que resulta na soma das notas

dos critérios. A distinção dos modelos possibilita que as etapas apresentem critérios

variados, ao mesmo tempo em que conservam uma estrutura semelhante. Os limites

máximos autorizados para cada critério são armazenados no modelo de calendário

acadêmico em campos decimais, possibilitando à instituição uma flexibilidade na

estipulação da importância relativa de cada elemento.

A verificação das notas acontece em diversos momentos para assegurar a

consistência. Nos serializadores, os métodos de validação analisam o calendário em

vigor e confirmam se cada nota individual não ultrapassa o peso estabelecido para tal

critério na fase pertinente e o modelo de calendário conta com uma validação que

53

assegura que a soma dos pesos atinja exatamente 10,0, gerando um erro em

situações de configuração inconsistente.

A determinação das notas é realizada por meio de propriedades computadas nos

modelos, que promovem os cálculos exigidos no momento de seu acesso. A

pontuação final de cada avaliador é calculada por meio da soma dos cinco critérios

estabelecidos. As notas finais de cada etapa (NF1 e NF2) são determinadas por meio

de características no modelo de TCC que realizam agregações médias nas avaliações

pertinentes, assegurando que o cálculo sempre represente o estado atual. A média

final é determinada por um processo análogo e é calculada de forma automática com

base nas duas notas finais.

Para viabilizar a avaliação em duplo-cega, foi estabelecido um campo de arquivo

opcional no modelo da banca que possibilita o upload da versão anonimizada da

monografia. O serializador implementa uma lógica condicional que verifica se o

arquivo existe e retorna apenas ele em vez do documento original na representação

de dados para os avaliadores, de modo a ocultar a identificação do aluno e do

orientador.

O desfecho do processo é estabelecido automaticamente por meio de um sinal

interligado ao modelo de avaliação da segunda etapa. Ao registrar a última avaliação,

o sistema verifica se a média final atinge o patamar mínimo exigido para aprovação e

atualiza o campo referente ao resultado final no TCC correspondente, essa dinâmica

dispensa a necessidade de cálculos ou determinações manuais.

3.2.7 Mecanismos de notificações

O sistema de notificações foi concebido em duas camadas que se

complementam e atuam em conjunto, a fim de assegurar que os usuários recebam

informações sobre eventos pertinentes. A camada inicial é composta por notificações

internas organizadas em um modelo de banco de dados que inclui campos para tipo,

título, mensagem, prioridade, URL de ação, estado de leitura e uma referência

opcional ao TCC correspondente. Essa configuração possibilita a apresentação de

notificações na interface web, como apresentado na Figura 19, além de estar

diretamente associada aos recursos citados. Com o objetivo de aumentar a eficiência

54

do desempenho, foram elaborados índices de banco de dados que combinam campos

frequentemente acessados, como por exemplo nos casos do destinatário e o estado

de leitura. Essa dinâmica possibilita agilizar as pesquisas por notificações não lidas.

Figura 19 – Exemplo de notificação interna.

Fonte: autor, 2025.

A segunda camada realiza o envio de e-mails por meio da plataforma de correio

do Django, empregando configurações SMTP guardadas em um modelo de banco de

dados em vez de utilizar arquivos de configuração fixos. Essa metodologia possibilita

ao coordenador realizar ajustes nos parâmetros de conexão, como servidor, porta e

credenciais, por meio da interface administrativa, dispensando a necessidade de

acesso ao código-fonte ou de reestruturação do sistema. Os parâmetros são

recuperados de forma dinâmica do banco de dados sempre que há a necessidade de

enviar um e-mail.

55

Figura 20 – Preferências de E-mail do perfil do discente.

Fonte: autor, 2025.

Com o intuito de respeitar as preferências pessoais, foi instituído um modelo de

preferências de e-mail, exemplificados na Figura 20, que contém campos booleanos

distintos para cada categoria de notificação, categorizados conforme o tipo de usuário.

Assim, cada perfil possui alternativas pertinentes às suas necessidades, sem ser

inundado com preferências inadequadas. O mecanismo de envio analisa três

condições por meio de consultas antes de enviar cada e-mail: a ativação global do

envio nas configurações do sistema, a autorização do usuário específico para aquele

tipo de notificação em suas preferências e a existência de um endereço de e-mail

válido registrado. O e-mail é enviado de forma efetiva somente quando todas as

condições são atendidas.

A total automação do sistema é realizada por meio de sinais do Django que estão

interligados aos modelos centrais do sistema. Esses sinais acompanham ocorrências

como alterações de estado em TCCs, validação de documentos e envio de avaliações.

Quando um evento significativo acontece, os receptores de sinal analisam as

alterações ao confrontar o estado atual com o anterior e acionam uma camada de

serviços encarregada de gerar notificações. A arquitetura fundamentada em eventos

garante a consistência de funcionamento devido ao fato de que as notificações são

56

geradas de forma independente da localização no código em que a ação foi realizada.

Esse dinamismo permite eliminar a chance de que notificações sejam omitidas em um

determinado fluxo específico.

3.2.8 Gestão de prazos e calendário

O calendário acadêmico foi estabelecido através de um modelo que centraliza a

gestão temporal do sistema para possibilitar ao coordenador estabelecer um único

calendário por semestre, assim como demonstrado na Figura 21. Os campos de data

registram prazos referentes a cada fase do processo, de forma que todos os campos

de data são opcionais, de modo a possibilitar uma configuração flexível que se adapte

às exigências de cada período letivo.

Figura 21 – Cartão de calendário acadêmico interno.

Fonte: autor, 2025.

57

A fim de assegurar a observância desses prazos, foram introduzidas validações

temporais nos serializadores por meio de métodos que verificam o calendário vigente

assim como demonstrado na Figura 22 e na Figura 23. Essas validações realizam a

comparação entre a data presente e o campo relacionado à operação em curso,

bloqueando ações que estejam fora do intervalo autorizado. Por exemplo, ao realizar

a validação do envio de uma monografia, o sistema procura o prazo determinado para

essa categoria de documento e confere se a tentativa se realiza dentro do intervalo

aceitável. Uma verificação suplementar analisa campos de liberação manual no

modelo TCC através de uma lógica alternativa, possibilitando que as operações

avancem, mesmo fora do prazo estipulado, desde que o coordenador tenha concedido

uma exceção individual.

A consistência dos pesos utilizados na avaliação é assegurada através da

validação no modelo de calendário. O método de limpeza compila todos os valores de

peso de cada etapa e verifica se a soma resultante satisfaz o resultado da soma total

ser 10, caso esse requisito não seja cumprido, uma notificação de erro é gerada ao

tentar salvar a configuração. Essa verificação é realizada de forma independente para

cada etapa e assegura que elas apresentem uma alocação correta de pontos. Os

pesos aprovados são empregados nas validações de notas e nos cálculos das notas

finais, essa dinâmica permite que o sistema de avaliação cumpra a configuração

adequada.

Figura 22 – Configuração de datas e pontuações parte 1.

Fonte: autor, 2025.

58

Figura 23 – Configuração de datas e pontuações parte 2.

Fonte: autor, 2025.

O sistema de liberação individual acrescenta ao calendário global diversos

campos booleanos no modelo TCC, com cada campo representando um tipo particular

de prazo. Quando acionados pelo coordenador, esses campos possibilitam que o

referido TCC realize operações mesmo além dos prazos estabelecidos no calendário.

As validações nos serializadores estabelecem uma lógica alternativa que analisa

tanto o prazo do calendário quanto a situação desses campos de liberação,

autorizando a operação caso alguma das condições seja verdadeira. Essa estrutura

dual oferece a flexibilidade necessária para situações excepcionais, sem prejudicar o

controle temporal abrangente do sistema.

3.3 Frontend

3.3.1 Arquitetura de componentes

A estrutura do frontend foi elaborada com base nos princípios de

componentização do React, de modo a organizar a interface em uma hierarquia de

quatro níveis, cada um com responsabilidades gradativamente mais específicas. O

primeiro nível abarca componentes essenciais que englobam elementos primordiais,

como botões, campos de texto e etiquetas, de forma a assegurar uma consistência

visual via variáveis CSS compartilhadas. O segundo nível introduz elementos

59

pertencentes a domínios específicos, como uma linha do tempo horizontal para a

visualização de fases, uma linha do tempo vertical para eventos cronológicos, além

de painéis de alertas de prazos que contêm uma lógica de negócio integrada, a qual

consulta o calendário acadêmico e realiza o cálculo de estados visuais. O terceiro

nível é composto por fluxos complexos que envolvem modais de upload com

validação, formulários de avaliação que realizam validação dinâmica das notas de

acordo com os pesos estabelecidos e o cálculo em tempo real dos totais. O quarto

nível compreende layouts integrais organizados por perfil, os quais incluem cabeçalho

personalizado, menu lateral contextual, painel de notificações e área de conteúdo,

tudo conforme o padrão de composição.

A biblioteca é composta por 28 componentes reutilizáveis organizados em um

diretório específico, além de contar com 11 componentes de estrutura. Uma linha do

tempo horizontal apresenta 14 estados organizados em 7 grupos visuais, com

indicadores distintos por meio de colorações, ícones e uma animação pulsante que

sinaliza a etapa atual, utilizando um cálculo dinâmico para o posicionamento. A versão

vertical apresenta eventos em ordem cronológica e metadados oriundos do campo

JSON, de modo a utilizar virtualização para aprimorar a renderização de históricos

extensos. Todos os elementos respeitam um padrão de construção através de

características de seus descendentes e a aplicação de variáveis CSS personalizadas

via atributos de dados no elemento raiz. Essa dinâmica assegura a adaptação

automática ao tema escolhido e elimina a necessidade de propagação manual das

propriedades.

3.3.2 Roteamento e navegação

A implementação do sistema de roteamento foi realizada por meio do React

Router DOM na versão 7, englobando cerca de 35 rotas organizadas

hierarquicamente em quatro perfis, conforme o contexto funcional. Todas as rotas

funcionais são resguardadas por um componente que implementa três camadas de

validação sequenciais: a verificação de autenticação, que redireciona para a página

de login na ausência de tokens, a validação do tipo de usuário em relação a uma lista

de tipos permitidos, que realiza um redirecionamento contextual para a rota padrão do

perfil quando o acesso não é autorizado e a gestão de estados de carregamento, que

60

apresenta um indicador visual durante a validação do token JWT e o carregamento do

perfil.

As rotas foram estruturadas com prefixos distintos de acordo com cada perfil:

para os alunos, são disponibilizados recursos como dashboard, visualização de

trabalho e gerenciamento de documentos, para os professores, são oferecidas rotas

parametrizadas destinadas a orientandos específicos, coorientações e bancas, os

coordenadores empregam caminhos administrativos que abrangem gestão de

trabalhos com visualização parametrizada, gerenciamento de solicitações,

administração de usuários, os avaliadores restringem-se a um cronograma de

avaliações e à submissão de pareceres. Um sistema de contagem numérica de

badges foi incorporado aos itens do menu, mostrando contadores de ações não

concluídas que são atualizados de forma dinâmica por meio de hooks personalizados,

os quais consultam o status de trabalhos, documentos e avaliações. A detecção da

rota ativa é realizada com a aplicação de destaque visual por meio de classes CSS

condicionais.

3.3.3 Gerenciamento de estado

A gestão de estado foi realizada através da Context API do React através de

contextos específicos para autenticação, notificações e tema. O contexto de

autenticação concentra tokens JWT, informações integrais do usuário e estados de

carregamento, de modo a implementar um fluxo de login que realiza uma requisição

ao endpoint de autenticação, armazena os tokens no armazenamento local, obtém o

perfil completo (incluindo preferências, sincroniza com o contexto de tema) e

redireciona de forma automática. O logout realiza a invalidação formal do token

através de uma solicitação ao backend, elimina o armazenamento local, restabelece

o estado e efetua o redirecionamento. A persistência entre sessões é estabelecida por

meio de um efeito que verifica a existência de tokens, realizando a busca automática

do perfil durante a montagem. Isso ocorre com uma sincronização bidirecional entre o

armazenamento local, o cliente HTTP e o estado do React, por meio de um callback

registrado que notifica o contexto quando os tokens são renovados de forma

automática.

61

O contexto de notificações administra um conjunto de objetos, computa o total

de mensagens não lidas por meio de filtragem e implementa o carregamento inicial

por meio de requisições simultâneas, além de possibilitar a marcação, de forma

individual ou em grupo, como lidas e a exclusão mediante confirmação. A atualização

periódica, efetuada através de polling a cada 30 segundos, realiza a busca automática

por novas notificações, de modo a adotar uma estratégia de atualizações que altera o

estado local imediatamente, antes da validação pelo backend. O contexto temático se

mantém vigente entre quatro alternativas, com tamanhos de fonte organizados em

três categorias e três opções de família tipográfica. É organizado implementando a

persistência dupla no armazenamento local do navegador e no backend através de

um endpoint específico. Uma aplicação prática emprega atributos de dados HTML no

elemento principal e possibilitando a seleção de grupos de variáveis CSS através de

seletores de atributo que possui sincronização automática utilizando uma

funcionalidade definida para observar alterações e acionar requisições ao backend,

assim como apresentado no caso da divisão de estados do fluxo de TCCs no painel

do coordenador, apresentado na Figura 24.

Figura 24 – Exemplo de divisão de estados do fluxo de TCCs.

Fonte: autor, 2025.

3.3.4 Comunicação com backend

A comunicação foi realizada utilizando o Axios, que conta com uma instância

personalizada dotada de interceptadores. Isto permite a injeção automática de

62

autenticação, a renovação automática de tokens expirados e um tratamento

padronizado de erros. A instância foi estabelecida com uma URL base através de uma

variável de ambiente, possibilitando a troca entre diferentes ambientes sem a

necessidade de alteração no código.

O interceptador de requisição insere automaticamente o token JWT no

cabeçalho de autorização, utilizando o formato bearer, antes de cada requisição. O

interceptador de resposta estabelece um tratamento avançado para o erro 401,

reconhecendo o token expirado e dando início ao processo de renovação automática.

Esse processo utiliza um sistema de filas, coordenado por meio de uma variável de

controle booleana e um array de callbacks, com o objetivo de evitar que várias

requisições simultâneas tentem renovar o token.

A função de renovação realiza uma solicitação ao endpoint de atualização e

envia o token de renovação. Ela extrai o novo token de acesso da resposta e o

armazena localmente. Posteriormente, a função realiza notificação através de um

callback e reexecuta todas as requisições que estejam enfileiradas. Caso a renovação

não seja bem-sucedida devido ao token de atualização também ter expirado, realiza-

se uma limpeza para eliminar os tokens e redirecionar o usuário para a página de

login. Foi instaurado um tratamento específico para os códigos 403, 404 e 500. O

método foi executado contando com uma função auxiliar que padroniza a extração

das mensagens de erro. A estruturação do código foi realizada através de módulos de

serviço especializados, de modo que cada módulo encapsula requisições pertinentes

a um domínio específico e exporta funções que devolvem dados tipados.

3.3.5 Funcionalidades por perfil

A implementação foi rigorosamente distribuída por perfil, assegurando que cada

interface exiba unicamente funcionalidades consideradas estritamente pertinentes.

A interface do aluno incorpora um painel composto por cartões informativos que

apresentam o status atual, o orientador, datas relevantes e notas, quando disponíveis,

assim como representado na Figura 25. Também inclui uma linha do tempo horizontal,

com a etapa atual salientada por meio de uma animação pulsante, além de um

componente de alerta de prazo que calcula os dias restantes e aplica níveis de

63

urgência, diferenciados por meio de cores. A seção dedicada a ações rápidas exibe

botões contextuais que surgem de forma dinâmica de acordo com o estado atual,

enquanto a página de documentos incorpora uma listagem que permite a aplicação

de filtros por tipo, indicadores visuais de status por meio de badges coloridos,

visualização inline do feedback do orientador e um sistema para download.

Figura 25 – Visão de tela principal de funcionalidades do perfil do aluno.

Fonte: autor, 2025.

A interface destinada aos professores agrega orientações, co-orientações e

bancas por meio de um painel, demonstrado na Figura 26, que apresenta solicitações

pendentes em cartões expansíveis, os quais incluem ações diretas para aceitar ou

recusar, sendo obrigatória a apresentação de uma justificativa. A relação de

orientandos apresenta cartões expansíveis que mostram informações resumidas,

acompanhados de indicadores numéricos de ações pendentes, enquanto a página de

detalhes estrutura o conteúdo em abas que são carregadas sob demanda, contendo

visão geral, documentos, linha do tempo e avaliações. O sistema de aprovação para

continuidade exige a confirmação através de um modal e valida a presença de uma

monografia aprovada como pré-requisito, ao mesmo tempo que a liberação para

avaliação verifica o sinalizador de continuidade e a monografia aprovada.

64

Figura 26 – Visão de tela principal de funcionalidades do perfil do professor.

Fonte: autor, 2025.

A interface do coordenador disponibiliza um painel administrativo abrangente,

que apresenta estatísticas calculadas em tempo real que englobam trabalhos por

etapa, distribuição de orientações e taxa de aprovação, assim como ilustrado na

Figura 27. Além disso, inclui também visualizações gráficas através de componentes

personalizados fundamentados em elementos HTML estilizados. A relação de

trabalhos estabelece um sistema de filtros segmentados por etapas, orientador e

semestre. A página de detalhes exibe seções estruturadas que contêm informações

básicas que podem ser editadas, uma grade de caixas de seleção para liberações

manuais acompanhada de um modal de confirmação que requer a inserção de senha

administrativa, além de um módulo destinado à formação de banca, que apresenta

um combobox para busca, validação da composição e um campo opcional para o

upload de versão anonimizada, com funcionalidade de arrastar e soltar. O

planejamento introduz um formulário destinado ao calendário acadêmico, que conta

com validações de natureza cronológica e exige a soma exata de 10,0 pontos para os

pesos dos critérios.

65

Figura 27 – Visão de tela principal de funcionalidades do perfil do coordenador.

Fonte: autor, 2025.

A interface destinada ao avaliador externo foi elaborada com uma abordagem

minimalista, de modo a apresentar as bancas através de cartões que exibem o título,

o nome do aluno ou uma indicação de anonimato, a fase, o prazo e o status. O

formulário de avaliação contém cinco campos numéricos, cada um com pesos

máximos extraídos do calendário e dispõe de uma validação dinâmica em tempo real

que restringe entradas que ultrapassem os limites estabelecidos. Além disso, inclui

um campo destinado a pareceres textuais e realiza o cálculo automático da nota total,

que é apresentado de forma destacada. O sistema de rascunho realiza o salvamento

automático em períodos regulares e assegura a preservação do progresso parcial. Ao

clicar no botão de envio final, um modal de confirmação é exibido e informa sobre a

impossibilidade de realizar edições posteriores, além de realizar a desabilitação o

formulário após a submissão.

3.3.6 Sistema de temas visuais

O mecanismo de temas foi desenvolvido utilizando variáveis CSS

personalizadas que contém atributos de dados HTML no elemento raiz, de forma a

possibilitar a troca dinâmica e integral dos esquemas de cores sem a necessidade de

recarregamento. Foram implementados os temas demonstrados na Figura 28: claro

(com fundo branco puro e tonalidades suaves), escuro (com fundo preto puro e

66

elevado contraste), dark (com fundo cinza escuro e contraste médio) e um clássico

(inspirado em interfaces acadêmicas tradicionais). Cada tema estabelece valores para

23 variáveis CSS dispostas em categorias semânticas, de modo a incluir fundos,

textos com hierarquia, bordas, estados e gradientes de marca.

Figura 28 – Visão de tela principal de funcionalidades do perfil do coordenador.

Fonte: autor, 2025.

O framework de CSS utilitário foi ajustado para vincular variáveis personalizadas

a classes utilitárias, possibilitando a utilização direta em atributos de classe que se

ajustam automaticamente ao tema em uso. O sistema permite personalização

adicional do tamanho da fonte, disponibilizando três níveis que ajustam o tamanho

base e a escala tipográfica, além da família de fontes, com três opções que permitem

a modificação da fonte em toda a interface. O contexto estabelece uma persistência

tripla, assegurando a sincronização: armazenamento local para aplicação imediata,

carregamento automático das preferências armazenadas no backend após o login e

sincronização ativa de alterações por meio de requisições sempre que o usuário

67

modifica uma opção, implementando uma estratégia otimista com atualização

imediata da interface e requisições em segundo plano.

3.3.7 Responsividade

A interface foi elaborada com uma abordagem mobile-first, utilizando um sistema

de breakpoints que assegura uma experiência apropriada em dispositivos que variam

de 320 pixels a 2560 pixels ou mais. Estilos base adotam um viewport reduzido como

referência inicial, aplicando ajustes progressivos por meio de prefixos de breakpoint

que ativam estilos apenas acima de certos limites, assegurando uma interface

utilizável em dispositivos móveis por padrão, à medida que aprimoramentos são

adicionados gradualmente.

Os componentes de estrutura realizam adaptações sincronizadas: o menu lateral

se transforma em um ícone de hambúrguer em telas estreitas, sendo possível abrir

um painel sobreposto, o cabeçalho é reduzido, de forma a preservar unicamente as

informações essenciais e a área de conteúdo ajustado o espaçamento interno.

Componentes de conteúdo desenvolvem responsividade através de diversas técnicas

como tabelas com rolagem horizontal em dispositivos de tela reduzida e alteram para

uma exibição completa em telas maiores, cartões que utilizam grade responsiva e

adaptam automaticamente o número de colunas e formulários que ajustam seu layout

de uma única coluna vertical em dispositivos móveis para múltiplas colunas em

desktops. As otimizações voltadas para dispositivos com touchscreen englobam uma

área mínima de toque de 44 por 44 pixels, estados ativos que complementam o efeito

de hover convencional e menus dropdown ajustados para exibição em tela cheia em

dispositivos móveis.

3.3.8 Validações e feedback ao usuário

Foi instituído um sistema abrangente de validações, estruturado em diversas

camadas. As validações realizadas no lado do cliente em formulários abarcam a

presença de campos obrigatórios, que são sinalizados por um asterisco e impedem a

submissão quando não preenchidos, campos numéricos que validam tanto o formato

68

quanto o intervalo, campos de e-mail que asseguram a conformidade através de

expressões regulares, além de formulários de avaliação que implementam uma

validação dinâmica, monitorando se os valores não ultrapassam os limites máximos

preestabelecidos em tempo real, conforme o usuário digita.

O sistema de notificações temporárias coordena uma sequência de toasts que

surgem no canto superior direito, com uma animação de entrada e permanecendo

visíveis por três segundos, de forma a se extinguir através de uma animação de saída.

O sistema apresenta quatro variantes visuais, cada uma com cores e ícones

específicos:

• Sucesso: fundo verde

• Erro: fundo vermelho

• Alerta: fundo amarelo

• Informação: fundo azul

Ações prejudiciais demandam validação por meio de modais ajustáveis, os quais

modificam ícones e paletas de cores, entrando em um estado de carregamento

durante a execução que inibe botões e apresenta um indicador de progresso.

Componentes de esqueleto foram desenvolvidos para representar estados de

carregamento, exibindo placeholders animados com gradiente pulsante. Os

indicadores de progresso incluem uma linha do tempo com uma barra visual que

conecta etapas finalizadas e distintivos numéricos que utilizam cores para diferenciar

os níveis de urgência.

3.4 Banco de dados

O banco de dados foi elaborado por meio do sistema de mapeamento objeto-

relacional do Django, o qual converte automaticamente classes em Python para

tabelas de banco de dados, assim como transforma os relacionamentos em chaves

estrangeiras. A configuração obtida consiste em 16 modelos fundamentais dispostos

nos quatro módulos da aplicação, sendo que cada um representa uma tabela no banco

de dados. A implementação e uso do SQLite durante a fase de desenvolvimento e

produção justifica-se em razão da simplicidade do banco de dados, porém o sistema

69

oferece suporte a migração ao PostgreSQL através de uma configuração que

possibilita a troca sem necessidade de modificação no código.

3.4.1 Modelo Entidade-Relacionamento

A organização da estrutura foi realizada através do agrupamento dos 16 modelos

nos módulos funcionais, esquematizados na Figura 29, de modo a realizar a divisão

de responsabilidades também na camada de dados.

A classe Usuário amplia as classes fundamentais de autenticação do framework,

estabelecendo o e-mail como o campo de identificação exclusivo, em substituição ao

tradicional nome de usuário. Essa escolha exprime o cenário acadêmico em que os

e-mails institucionais funcionam como identificadores inerentes. O campo

denominado "tipo de usuário" retém um dos quatro tipos possíveis através de um

campo de texto com opções limitadas, sendo essencial para o funcionamento do

sistema de permissões. A implementação adota a herança em uma tabela única para

realizar a centralização de todos os tipos em um único banco de dados. Essa

abordagem facilita consultas que englobam diversos tipos, além de prevenir junções

desnecessárias.

Para complementar o modelo principal de usuário, foram desenvolvidos modelos

de preferências que estabelecem relacionamentos um-para-um. A normalização

mencionada dissocia informações de configuração da tabela principal, tornando mais

simples a inclusão de preferências no futuro, sem a necessidade de alterar a estrutura

central. A geração desses modelos auxiliares é realizada de forma automatizada

através de sinais vinculados ao evento de criação de usuário, essa dinâmica assegura

que cada usuário tenha suas preferências configuradas com valores padrão

adequados. O modelo de TCC serve como o núcleo do sistema e estabelece vínculos

de chave estrangeira para três tipos de usuários com funções distintas: aluno,

orientador e coorientador. O campo que representa o estado atual armazena texto

proveniente do módulo de constantes, enquanto diversos campos de controle,

configurados como booleanos, administram as flags do fluxo. Os resultados das

avaliações são guardados em campos decimais, os quais aceitam valores nulos até

que sejam efetivamente calculados.

70

Figura 29 – Diagrama ER da aplicação.

Fonte: autor, 2025.

Entidades complementares estabelecem relacionamentos de chave estrangeira

com o TCC, configurando composições que representam diferentes aspectos do

processo. As solicitações de orientação guardam convites de alunos dirigidos aos

professores, os documentos armazenam todos os arquivos junto a metadados de

versionamento, os eventos registram, de forma cronológica, todas as ações

relevantes, o histórico conserva pareceres referentes a trabalhos rejeitados e os

agendamentos guardam dados acerca das apresentações. Todos esses modelos

estão interconectados ao TCC por meio de uma chave estrangeira que possibilita a

navegação em ambas as direções.

71

O modelo de banca estabelece um relacionamento um-para-um com o TCC, de

modo a assegurar que cada trabalho tenha apenas uma banca, além de um campo

opcional para o arquivo do documento anonimizado utilizado na avaliação em duplo-

cego. Os membros da banca são geridos através de um modelo específico que

determina as interações entre a banca e o usuário, apresentando uma limitação de

unicidade na combinação para evitar a inserção repetida do mesmo docente. Os

modelos de avaliação para cada fase criam conexões entre o TCC e o avaliador, além

de impor uma limitação de exclusividade na combinação, garantindo que cada

avaliador execute apenas uma avaliação por etapa. Os campos de nota são

configurados como decimais e possuem validadores que proíbem a inserção de

valores negativos, a medida que o campo de status gerencia o ciclo de vida da

avaliação, com estados como pendente, enviado e bloqueado.

O modelo de calendário concentra toda a administração do tempo por meio de

campos de data facultativos, permitindo flexibilidade, além de incluir campos decimais

para avaliações que totalizam obrigatoriamente 10,0. Diversos modelos de

configuração retêm códigos de cadastro organizados conforme o tipo de usuário,

documentos de referência disponíveis para download e parâmetros SMTP destinados

ao envio de e-mail. O modelo de notificação estabelece vínculos para o destinatário e

um TCC opcional, incluindo índices estratégicos que visam à otimização de consultas

recorrentes, como a busca por notificações não lidas.

3.4.2 Relacionamentos

As interações entre os modelos foram estabelecidas por meio de chaves

estrangeiras e relacionamentos um-para-um do ORM, cada um ajustado com uma

estratégia de deleção adequada, que equilibra a integridade referencial à preservação

histórica. O modelo de TCC ilustra essa abordagem dual de deleção: o vínculo com o

aluno adota a deleção em cascata, assegurando a eliminação total dos trabalhos

quando o discente é retirado do sistema. Enquanto isso, os relacionamentos com o

orientador e coorientador adotam a configuração de valor nulo, o que permite a

preservação do registro do TCC mesmo após a remoção do docente, mantendo,

dessa forma, a integridade histórica dos registros acadêmicos. Adicionalmente a

esses relacionamentos, limitações impõem restrições às escolhas disponíveis com

72

base no tipo de usuário, assegurando, por exemplo, que apenas docentes possam ser

selecionados na função de orientadores. Uma imposição de exclusividade entre aluno

e semestre proíbe que um estudante tenha mais de um TCC no mesmo período

acadêmico.

O sistema de bancas ilustra composições mais sofisticadas por meio de diversos

níveis de inter-relações. O modelo de banca estabelece um relacionamento um-para-

um com o TCC, assim como ilustrado na Figura 30, empregando a exclusão em

cascata para uma composição rigorosa, assegurando que os ciclos de vida da banca

e do TCC permaneçam interligados. Os integrantes da banca são administrados por

meio de um modelo intermediário que estabelece vínculos com deleção em cascata

em ambas as direções – tanto para a banca quanto para o usuário – configurando

uma estrutura de relacionamento muitos-para-muitos que é gerida manualmente. A

limitação de unicidade estabelecida entre a banca e os membros impede que um

mesmo docente seja alocado repetidamente na mesma banca.

Figura 30 – Diagrama relacional de TCC e bancas avaliadoras.

Fonte: autor, 2025.

Os modelos de avaliação adotam uma estratégia mista de exclusão: a exclusão

em cascata é utilizada para o relacionamento com o TCC, vinculando o ciclo de vida

da avaliação ao trabalho, enquanto a configuração de valor nulo no relacionamento

com o avaliador possibilita a preservação das avaliações históricas, mesmo após a

remoção do docente do sistema. A limitação de unicidade associada entre o TCC e o

avaliador assegura que cada docente ofereça, no máximo, uma avaliação por trabalho

em cada etapa.

Com o intuito de aprimorar o desempenho, foram elaborados índices de maneira

estratégica em campos e combinações que são comumente empregados nas

73

consultas. Índices simples sinalizam campos isolados, como destinatário, em

notificações, ao passo que índices compostos aprimoram buscas em vários campos,

como destinatário e estado de leitura, de forma simultânea. Esses índices aceleram

de maneira significativa operações rotineiras, como a localização de notificações não

lidas de um usuário ou a busca por eventos relacionados a um TCC específico.

Foram estabelecidos campos de auditoria em modelos de configuração para

monitoramento de modificações. Os vínculos para o usuário que efetuou a

modificação utilizam uma configuração com valor nulo, possibilitando ao sistema

registrar a identidade daqueles que efetuaram alterações, sem a necessidade de que

esses usuários permaneçam no sistema de forma indefinida. Os campos de data com

atualização automática registram o momento em que ocorreu cada alteração. Todos

os vínculos foram estabelecidos com denominações descritivas em ordem inversa, o

que facilita a navegação em ambas as direções, possibilitando o acesso tanto aos

objetos correlacionados quanto ao objeto de origem por meio de consultas diretas.

3.4.3 Modelo de usuários customizado

O modelo de usuário foi desenvolvido através da extensão das classes

fundamentais de autenticação do Django, de modo a possibilitar a personalização total

dos campos e das funcionalidades relacionadas à autenticação. No sistema, o e-mail

é tratado como o campo de identificação padrão ao invés do campo nome de usuário

convencional do framework. Essa opção se alinha ao contexto acadêmico, no qual e-

mails institucionais funcionam como identificadores únicos naturais. O campo de e-

mail apresenta uma restrição de unicidade, a qual assegura que os valores sejam

únicos no nível do banco de dados por meio de uma constraint, evitando assim a

criação de cadastros duplicados.

A implementação abrange um gerenciador personalizado que amplia o

gerenciador padrão de usuários do Django, sobrescrevendo os métodos de criação

com o intuito de assegurar que as senhas sejam sempre armazenadas de maneira

segura. O procedimento para a criação de usuários regulares aplica um hash de forma

automática à senha fornecida antes do armazenamento, enquanto o processo para a

criação de superusuários inclui a configuração automática de permissões

74

administrativas e determina o tipo como coordenador, estabelecendo que os

administradores do sistema são invariavelmente coordenadores.

O campo denominado tipo de usuário institui um armazenamento em formato de

texto, com opções limitadas estabelecidas no próprio modelo, sendo essencial para a

totalidade do sistema de permissões e filtragem de dados. Com o objetivo de

assegurar a consistência das informações, o método de limpeza aplica validações

condicionais que se baseiam no tipo de usuário: caso o tipo seja aluno, é

imprescindível que o campo referente ao curso não esteja desprovido de informações.

Se o tipo corresponder a professor ou coordenador, a inserção do campo

departamento se torna obrigatória. Se o tipo for avaliador externo, a afiliação

institucional deve ser disponibilizada. Essas validações são realizadas antes da

gravação no banco de dados, assegurando a integridade desde o momento da

criação.

Com o objetivo de otimizar a administração e as consultas, houve a

implementação de modelos proxy específicos para cada categoria de usuário. Esses

modelos não geram tabelas extras no banco de dados, de modo a atuarem como

visualizações restritas da tabela de usuários. Cada proxy implementa um gerenciador

personalizado, com dinâmica de sobreposição do método de consulta para realizar

automaticamente a filtragem por tipo, isto possibilita que os administradores operem

com interfaces distintas para cada tipo de usuário, sem a necessidade de sempre

indicar o filtro manualmente.

Os modelos de preferências estabelecem vínculos unidimensionais com o

modelo de usuário, sendo gerados de forma automática por meio de indícios

fornecidos pelo Django. Os receptores de sinal vinculados ao evento de criação de

usuário identificam o cadastro de novos usuários e geram automaticamente os

registros de preferências correspondentes. Essa automação assegura que cada

usuário tenha suas preferências sempre ajustadas e dispensa a necessidade de

verificações de presença em todo o código que emprega tais configurações.

75

3.5 Segurança

A segurança do sistema foi estabelecida por meio de diversas camadas de

proteção, em conformidade com os princípios da defesa em profundidade e as

diretrizes sugeridas pela OWASP. A arquitetura inclui um sistema de autenticação

sólida fundamentada em tokens, autorização detalhada através do controle de acesso

baseado em papéis, validação de dados em diversas camadas, proteção contra

fragilidades recorrentes e configurações de comunicação entre cliente e servidor.

3.5.1 Segurança de autenticação

A implementação do sistema de autenticação foi realizada através de JWT e

assegura uma autenticação sem estado, adequada para uma arquitetura com frontend

dissociado. A configuração determina políticas restritivas para expiração e renovação,

de modo a reduzir a janela de vulnerabilidade em situações de comprometimento.

A arquitetura adota dois tipos de tokens que possuem ciclos de vida diferentes:

tokens de acesso, com duração de 60 minutos, os quais são inseridos no cabeçalho

de autorização de cada requisição autenticada e tokens de atualização, que têm

validade de 7 dias e são utilizados unicamente para a geração de novos tokens de

acesso. O sistema realiza a rotação automática por meio de uma configuração

específica, na qual cada utilização para obter um novo token resulta na emissão de

um novo token de atualização e na invalidação automática do anterior, o que diminui

a janela de exploração caso o token seja interceptado. A configuração do algoritmo

emprega HS256 para a assinatura criptográfica, assegurando a integridade e a

autenticidade por meio de uma chave secreta compartilhada.

Foi implantada uma lista de revogação, armazenada em um banco de dados,

utilizando um modelo específico. Ao realizar o logout por meio de um endpoint

específico, o token de atualização é inserido em uma lista que invalida tanto o token

de atualização quanto os tokens de acesso associados, inibindo a reutilização após

um logout explícito. Verificações são realizadas de forma automática através de

middleware em cada tentativa de uso, de modo a realizar consulta a uma lista e rejeitar

tokens que tenham sido explicitamente invalidados. A rotação automática auxilia esse

76

mecanismo ao incluir o token anterior à lista sempre que um novo é gerado,

estabelecendo uma camada adicional de segurança.

As senhas dos usuários são armazenadas por meio da função de derivação de

chave baseada em senha PBKDF2, utilizando o algoritmo de hash SHA256, que é

implementada como padrão pelo framework Django. Esse método é exemplificado na

Figura 31 e aplica um hash iterativo com um salt gerado aleatoriamente para cada

senha, o que previne Rainbow Table Attack (ataque criptográfico usado para descobrir

senhas a partir de hashes). A configuração abrange quatro validadores que são

aplicados tanto na criação quanto na alteração das senhas: o validador de similaridade

com atributos impede a utilização de senhas que derivem de nome ou e-mail, o

validador de comprimento assegura uma complexidade básica, o validador de senhas

comuns refuta aquelas que constam em listas públicas de credenciais comprometidas

e o validador numérico impede senhas que sejam compostas unicamente por dígitos.

As credenciais de serviço SMTP são codificadas em base64 antes de serem

armazenadas por meio de métodos personalizados no modelo de configuração, o que

impede a exposição direta em dumps de banco de dados ou interfaces

administrativas. Adicionalmente, a chave secreta é armazenada em uma variável de

ambiente.

Figura 31 – Processo de hashing de senhas com PBKDF2 e salt.

Fonte: autor, 2025.

3.5.2 Segurança de autorização

O sistema de autorização estabelece um controle de acesso fundamentado em

papéis, por meio de permissões personalizadas que ampliam a estrutura básica do

77

DRF, assegurando que os usuários tenham acesso apenas aos recursos para os

quais possuem autorização explícita.

Nove classes de permissão customizadas foram implementadas, cada uma

responsável por validar aspectos específicos por meio de métodos que conferem

autenticação e relacionamentos. As permissões estabelecem uma lógica hierárquica

por meio de verificações condicionais: coordenadores detêm acesso administrativo

total, alunos têm acesso restrito a seus próprios recursos mediante a comparação de

identificadores, professores podem acessar recursos nos quais atuam como

orientadores ou coorientadores por meio de consultas aos relacionamentos e

avaliadores têm acesso apenas às avaliações que lhes foram atribuídas, por meio da

verificação dos membros da banca. O sistema de controle de visibilidade estabelece

três camadas para eventos na linha do tempo, por meio de um campo enumerado:

acessíveis a todos os participantes, acessíveis apenas ao orientador e ao

coordenador, ou acessíveis exclusivamente ao coordenador. Esta abordagem

possibilita a ocultação de informações sensíveis, como validações internas, de

usuários que não possuem autorização.

Todas as operações analisam a propriedade antes de permitir a execução, por

meio de métodos de permissão em nível de objeto, assegurando que apenas os

proprietários, os usuários associados ou o coordenador possam acessar recursos

determinados. O sistema distingue as permissões de leitura e escrita por meio da

verificação do método HTTP. Ademais, as consultas ao banco de dados são filtradas

através de métodos sobrescritos nas coleções de visualizações, com a dinâmica da

aplicação de filtros fundamentados no tipo de usuário antes de devolver os resultados,

o que impede a enumeração decorrente de tentativas de acesso através de

identificadores.

O sistema estabelece permissões distintas para cada operação por meio de um

decorador de ação personalizado aplicado a métodos específicos. As operações

críticas, como a aprovação de continuidade, a liberação para avaliação e a formação

de bancas, incluem validações que restringem o acesso exclusivamente a perfis

autorizados. A validação da autorização ocorre em três níveis complementares: a

configuração global assegura que os endpoints rejeitem requisições não autenticadas,

as permissões específicas validam o tipo de usuário junto com o relacionamento e a

78

lógica de negócio realiza validações adicionais que verificam o estado do TCC, a

conformidade com prazos e os valores das flags de controle.

3.5.3 Segurança de dados

A segurança da informação adota validações em diversas camadas e medidas

de prevenção contra tipos frequentes de ataques, assegurando a integridade dos

dados que são armazenados e processados.

As informações são validadas em três camadas distintas e independentes. No

frontend, os componentes realizam a validação do lado do cliente. São analisados os

critérios de formato, tamanho e regras fundamentais. No backend do sistema, a

camada de serialização realiza uma segunda validação, que analisa tipos, formatos,

comprimentos e regras complexas, incluindo a verificação se o aluno possui outro

TCC em andamento por meio de consulta ao banco de dados, se as notas não

ultrapassam os pesos estabelecidos e se as extensões estão de acordo com o tipo de

documento. Os serializadores implementam campos específicos em vez de permitir a

aceitação de todos os campos do modelo, o que ajuda a prevenir ataques de

atribuição em massa, nos quais um invasor poderia alterar campos que não deveriam

ser modificados. A terceira camada é implementada nos modelos por meio de

métodos de limpeza e validadores de campo, assegurando que os requisitos sejam

cumpridos, mesmo que as camadas anteriores sejam contornadas. Isso inclui a

verificação da unicidade por meio de restrições em nível de banco e a consistência de

dados correlacionados.

O mapeamento objeto-relacional produz, de forma automática, consultas SQL

parametrizadas por meio de uma API de consultas, desvinculando completamente o

código SQL dos dados fornecidos pelos usuários. Todas as interações empregam

técnicas de ORM ou consultas brutas parametrizadas, evitando, em qualquer

circunstância, a concatenação direta, assegurando que a entrada seja sempre

considerada como dado e não como código executável, mesmo na presença de

caracteres especiais.

A transferência de arquivos realiza uma validação rigorosa em diversas

camadas. A validação de extensões assegura que somente arquivos com extensões

79

autorizadas sejam aceitos por meio de um validador específico, permitindo a inclusão

de PDFs para monografias e de arquivos DOC/DOCX para outras categorias, evitando

o upload de arquivos executáveis. A validação de tamanho estabelece um teto de 10

megabytes através de uma função personalizada, a fim de impedir ataques de

negação de serviço. A validação do tipo MIME complementa a verificação da extensão

ao realizar uma análise do cabeçalho binário, em vez de confiar apenas no nome

apresentado, evitando o contorno dessa segurança por meio de renomeação. O

sistema cria nomes de arquivos a partir de identificadores únicos universais, utilizando

a biblioteca UUID, em vez de empregar nomes fornecidos, o que impede Path

Traversal (vulnerabilidade de segurança que permite acessar arquivos e diretórios fora

do caminho permitido pelo sistema). Uma função personalizada elabora uma estrutura

hierárquica utilizando exclusivamente o identificador de TCC e o tipo de documento

regulados pela aplicação, os quais são concatenados com um UUID gerado,

juntamente com metadados que incluem o nome original, armazenado em campos

distintos.

3.5.4 Segurança de comunicação

A comunicação estabelece medidas de proteção contra ataques de origem

cruzada e falsificação de requisições por meio da configuração adequada de políticas

e da utilização de middlewares de segurança, como ilustrado na Figura 32.

O compartilhamento de recursos entre diferentes origens foi estabelecido via

uma biblioteca específica, que contém uma lista explícita de origens autorizadas

prevista nas configurações. A mencionada lista branca limita a execução de

requisições via JavaScript apenas para o frontend implantado nas URLs designadas,

evitando que sites mal-intencionados hospedados em outros domínios realizem

requisições em nome de usuários autenticados. A configuração possibilita o envio de

cookies e cabeçalhos por meio da flag de credenciais, a qual é essencial para o

funcionamento de tokens armazenados localmente, que são incluídos em cabeçalhos

personalizados. O middleware foi colocado próximo ao vértice da pilha, assegurando

que as verificações sejam realizadas antes do tratamento da lógica de negócio,

permitindo a rejeição antecipada de requisições provenientes de fontes não

autorizadas.

80

A defesa contra a falsificação de requisições entre sites é realizada por meio de

um middleware específico integrado na pilha. Em interfaces REST que utilizam

autenticação fundamentada em tokens, as solicitações não estão sujeitas à validação

de token de proteção, uma vez que os tokens armazenados localmente devem ser

inclusos de forma explícita por meio de JavaScript, o qual é restringido pela política

de mesma origem quando a requisição é originada de um domínio distinto. A proteção

continua em vigor para endpoints administrativos que utilizam a autenticação de

sessão convencional, resguardando o painel administrativo mediante requisições

modificadoras que exigem um token válido inserido no cabeçalho ou no campo do

formulário.

Figura 32 – Fluxo de segurança de comunicação em requisições HTTP na API.

Fonte: autor, 2025.

O sistema incorpora cabeçalhos de segurança HTTP nas respostas através de

um middleware. O cabeçalho de opções de frame impede o clickjacking ao orientar os

navegadores a não permitirem a incorporação em frames de páginas externas.

Algumas configurações complementares englobam o redirecionamento obrigatório

para HTTPS, a implementação de segurança de transporte HTTP estrita e a

prevenção da detecção de tipo MIME, que determina o respeito ao tipo declarado. A

configuração de hosts autorizados limita os nomes aos quais a aplicação pode

responder, com base em uma lista estabelecida nas configurações obtidas a partir de

81

variáveis de ambiente. O objetivo é a prevenção contra ataques de envenenamento

de cache e injeção de cabeçalho do host.

3.5.5 Prevenção contra vulnerabilidades comuns

O sistema estabelece medidas de proteção direcionadas às vulnerabilidades

elencadas no OWASP Top 10, que corresponde ao conjunto de riscos mais

significativos para aplicações web.

O framework frontend realiza o escape automático de variáveis renderizadas por

meio do mecanismo padrão do React, o que previne a injeção de scripts. Quando

elementos apresentam informações oriundas do backend ou da inserção de usuário,

o framework realiza, de maneira automática, o processo de escape de caracteres

especiais em HTML, convertendo-os em entidades, o que impede sua interpretação

como marcação ou código executável. No backend, as respostas da interface

fornecem apenas dados no formato JSON através de serializadores, que não são

reconhecidos como HTML pelo navegador, dessa forma conferindo uma camada

adicional de segurança.

Todas as visualizações realizam a verificação de permissões antes de efetuar

operações por meio de classes aplicadas no nível das visualizações. Não há

endpoints que dependam unicamente de parâmetros de URL sem realizar a

verificação da relação entre o usuário autenticado e o recurso requisitado. A validação

de propriedades é realizada em nível de objeto, através da verificação de

relacionamentos mediante a comparação de chaves estrangeiras. Dessa forma é

possível assegurar que o acesso seja negado caso não se possua a autorização

adequada, mesmo que o invasor conheça o identificador. Aspectos críticos, como

notas finais, médias calculadas e resultado final, são definidos como somente leitura

nos serializadores, de modo que qualquer alteração direta através de requisições é

impedida.

O sistema elabora rotas de arquivos utilizando unicamente identificadores de

banco e UUIDs gerados internamente, por meio de bibliotecas com segurança

criptográfica, sem incluir entradas diretas de usuários. A função personalizada

emprega unicamente o identificador do TCC e o tipo de documento da instância para

82

organizar diretórios, criando um nome exclusivo por meio de UUID,

independentemente do nome original.

Um sistema de linha do tempo estabelece a auditoria automática de ações

críticas por meio da criação de eventos documentados em um modelo específico.

Qualquer alteração em TCC, aprovação de documento, validação de avaliação e

transição entre etapas provoca um evento por meio de sinais interligados aos

modelos, registrando o usuário responsável, o timestamp da execução, o tipo de

evento e informações específicas. Os registros são gerados com autorizações que

impedem alterações após a sua criação e implementam um log imutável, essa

dinâmica permite o rastreamento para fins de auditoria. Configurações delicadas,

como chave secreta, credenciais bancárias e SMTP, são administradas através de

variáveis de ambiente carregadas com a utilização de uma biblioteca específica, de

modo a assegurar que as credenciais não sejam inseridas no código-fonte e nem

commitadas no repositório. A variável de ambiente configura a flag de depuração, a

qual deve ser desativada em ambientes de produção, a fim de evitar a exposição de

rastreamentos de pilha, detalhes de consultas SQL e diretórios de arquivos em

mensagens de erro.

83

4 RESULTADOS

Os resultados obtidos nesta seção avaliam a implementação da plataforma,

conduzidos com base no processamento das etapas do fluxo de trabalho de conclusão

de curso. A sequência lógica dos processos pode ser apresentada no formato de

fluxograma, como apresentado na figura 33.

Figura 33 – Fluxograma de fluxo da aplicação.

Fonte: autor, 2025.

Para realizar a execução de um fluxo de TCC é necessária a realização do

cadastro de perfil pessoal do usuário na tela de login, apresentada na Figura 34.

84

Figura 34 – Tela de login.

Fonte: autor, 2025.

Os três perfis de cadastro disponíveis na tela de cadastro são Aluno, Professor

e Avaliador Externo, como demonstrado na Figura 35. O cadastro de perfil do

administrador é realizado via acesso direto ao painel do backend da aplicação.

Figura 35 – Opções de perfis para cadastro.

Fonte: autor, 2025.

85

Os requerimentos de cadastro possuem campos distintos de acordo com cada

tipo de perfil, como apresentado na Figura 36, de modo que os campos Nome

completo, E-mail, código de cadastro e senha são comuns a todos perfis. Os códigos

de cadastro solicitados são determinados na seção Planejamento do perfil do

coordenador.

Figura 36 – Telas de cadastro.

Fonte: autor, 2025.

Após o cadastro, o usuário tem acesso ao perfil para inicialização das atividades,

exemplificado na Figura 37.

Figura 37 – Tela inicial do aluno.

Fonte: autor, 2025.

86

Etapa de inicialização

A solicitação de orientação é realizada pelo aluno através do formulário inicial,

onde será solicitada a seleção do orientador (professor interno), indicação do

coorientador (opcional), título do TCC e upload do plano de desenvolvimento e termo

de aceite de orientação, como apresentado na Figura 38.

Figura 38 – Tela de solicitação de orientação.

Fonte: autor, 2025.

Após o envio da solicitação de orientação, a Figura 39 demonstra que a tela do

dashboard do aluno é liberada para visualização de ações, prazo, fase atual, timeline

de eventos e histórico de documentos.

87

Figura 39 – Tela do aluno, após envio de solicitação.

Fonte: autor, 2025.

O coordenador recebe a notificação, como apresentado na Figura 40, para

realizar aprovação ou solicitar ajustes de informações, como exibido na Figura 41.

Figura 40 – Notificação de solicitação de orientação no perfil do coordenador.

Fonte: autor, 2025.

88

Figura 41 – Tela de avaliação de solicitação de orientação.

Fonte: autor, 2025.

Etapa de desenvolvimento

Com a aprovação do coordenador, o aluno recebe a notificação de aprovação e

o campo de envio de TCC ao orientador é liberado, como observado na Figura 42.

Figura 42 – Tela de envio de TCC.

Fonte: autor, 2025.

O envio do TCC do aluno gera uma notificação ao orientador, que por sua vez,

pode aprovar ou solicitar ajustes, como demonstrado na Figura 43 e na Figura 44.

89

Figura 43 – Notificação de envio de TCC no perfil do orientador.

Fonte: autor, 2025.

Figura 44 – Tela de aprovação de TCC.

Fonte: autor, 2025.

Na data determinada pelo coordenador, na tela de Planejamento, a confirmação

de continuidade deve ser confirmada ou recusada, como exemplificado na Figura 45.

Em caso de recusa, o fluxo do aluno será encerrado.

90

Figura 45 – Tela de confirmação de continuidade.

Fonte: autor, 2025.

Após a confirmação de continuidade e aprovação do TCC pelo orientador, o

campo de envio do termo de solicitação de avaliação será liberado para que o

orientador realize o upload e envio do documento, solicitando ao coordenador a

formação da banca de avaliação, assim como apresentado na Figura 46.

Figura 46 – Tela de termo de solicitação de avaliação.

Fonte: autor, 2025.

91

Etapa Fase I

Na sequência, o coordenador recebe a notificação e realiza a formação da
banca, como demonstrado na Figura 47.

Figura 47 – Tela de formação de banca.

Fonte: autor, 2025.

A banca convidada recebe a notificação e pode acessar a página de avaliação,

contendo o TCC e o formulário de avaliação da Fase I, como é possível observar na

Figura 48 e Figura 49.

Figura 48 – Tela de participação de banca do professor.

Fonte: autor, 2025.

92

Figura 49 – Tela de avaliação da Fase I.

Fonte: autor, 2025.

Após o envio das avaliações de toda banca, o coordenador pode realizar a

validação das avaliações ou solicitar ajustes.

Com a confirmação das notas da banca e a validação do coordenador, caso o

aluno seja aprovado, o orientador é notificado e pode realizar o agendamento da

defesa, como demonstrado na Figura 50. Caso o aluno não atinja a nota mínima

necessária para a aprovação, o fluxo do TCC é encerrado.

Etapa Fase II

Figura 50 – Tela de agendamento de defesa.

Fonte: autor, 2025.

93

No dia e hora marcados para a defesa, os formulários de avaliação da segunda

fase serão liberados para a banca realizar as avaliações.

Após o envio de todas as notas da banca, o coordenador realiza a validação das

notas da Fase II, através do painel apresentado na Figura 51. Com a confirmação das

notas pelo coordenador, o fluxo é concluído e a aprovação será efetiva caso o discente

alcance a nota mínima exigida para aprovação.

Etapa de finalização

Figura 51 – Tela de finalização do fluxo de TCC.

Fonte: autor, 2025.

94

5 CONCLUSÕES E PROPOSTAS DE CONTINUIDADE

A plataforma desenvolvida atende ao objetivo de centralizar, padronizar e

acompanhar o ciclo de vida do TCC no DEE/UFPE, de forma a reduzir a dependência

de procedimentos manuais e ampliar a rastreabilidade das etapas para alunos,

orientadores, avaliadores e coordenação. A implementação de arquitetura cliente-

servidor com backend em Django/DRF e frontend em React/TypeScript, integrados

por API REST com JWT, mostrou-se adequada para manutenção evolutiva,

integração e controle de acesso baseado em papéis. Além disso, a estrutura em

módulos do backend, a máquina de estados para governar fases e transições, o

sistema de notificações e os controles de prazos contribuíram para a conformidade

processual e a transparência operacional dos fluxos acadêmicos descritos nos

capítulos 3 e 4.

Os resultados indicam a viabilidade prática da solução, resultando no aumento

da eficiência administrativa, maior clareza procedimental e na centralização de

informações institucionais.

Com base nos resultados obtidos, propõem-se as seguintes direções para

trabalhos futuros:

• Desenvolver uma versão móvel (aplicativo), de modo a permitir aos

usuários o acompanhamento e a execução de procedimentos via

dispositivos móveis;

• Adaptar a plataforma para outros procedimentos acadêmicos, como por

exemplo o gerenciamento de estágios supervisionados.

95

REFERÊNCIAS

1. BANKS, Alex; PORCELLO, Eve. Learning React: Modern Patterns for Developing
React Apps. 2nd ed. Sebastopol: O'Reilly Media, 2020.

2. CHRISTIE, Tom. Django REST Framework. 2011. Disponível em: https://www.Django-
rest-framework.org/. Acesso em: 8 jan. 2025.

3. DAVENPORT, Thomas H. Process Innovation: Reengineering Work through
Information Technology. Boston: Harvard Business School Press, 1993.

4. FACEBOOK. React: A JavaScript library for building user interfaces. 2013.
Disponível em: https://React.dev/. Acesso em: 8 jan. 2025.

5. FIELDING, Roy T. Architectural Styles and the Design of Network-based Software
Architectures. 2000. Tese (Doutorado em Ciência da Computação) – University of
California, Irvine, 2000.

6. FORCIER, Jeff; BISSEX, Paul; CHUN, Wesley J. Python Web Development with
Django. Upper Saddle River: Addison-Wesley Professional, 2008.

7. FOWLER, Martin. Patterns of Enterprise Application Architecture. Boston: Addison-
Wesley Professional, 2002.

8. GAMMA, Erich et al. Design Patterns: Elements of Reusable Object-Oriented
Software. Reading: Addison-Wesley Professional, 1994.

9. GREENFELD, Daniel Roy; GREENFELD, Audrey Roy. Two Scoops of Django 4.x:
Best Practices for the Django Web Framework. 6th ed. San Diego: Two Scoops Press,
2022.

10. JONES, M. et al. JSON Web Token (JWT). RFC 7519, IETF, maio 2015. Disponível
em: https://datatracker.ietf.org/doc/HTML/rfc7519. Acesso em: 8 jan. 2025.

11. LAKATOS, Eva Maria; MARCONI, Marina de Andrade. Fundamentos de Metodologia
Científica. 8. ed. São Paulo: Atlas, 2017.

12. LAUDON, Kenneth C.; LAUDON, Jane P. Sistemas de Informação Gerenciais. 14.
ed. São Paulo: Pearson, 2020.

13. MICROSOFT. TypeScript: JavaScript with syntax for types. 2012. Disponível em:
https://www.typescriptlang.org/. Acesso em: 8 jan. 2025.

14. OWASP. OWASP Top Ten 2021. 2021. Disponível em: https://owasp.org/www-project-
top-ten/. Acesso em: 8 jan. 2025.

15. PRESSMAN, Roger S.; MAXIM, Bruce R. Software Engineering: A Practitioner's
Approach. 8th ed. New York: McGraw-Hill Education, 2014.

16. SEVERINO, Antônio Joaquim. Metodologia do Trabalho Científico. 23. ed. São
Paulo: Cortez, 2016.

17. SOMMERVILLE, Ian. Software Engineering. 10th ed. Harlow: Pearson, 2015.

