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RESUMO

A crescente complexidade dos sistemas de controle em robôs autônomos exige métodos ri-
gorosos para assegurar a conformidade entre especificações e implementações, especialmente
em contextos críticos, como a dispensação de medicamentos. Este trabalho apresenta uma
abordagem baseada na formalização de requisitos usando RoboChart (uma notação gráfica
para a modelagem de sistemas robóticos), que possui uma semântica formal definida na álge-
bra de processos CSP. A metodologia proposta inclui a obtenção e abstração do LTS proveni-
ente da semântica CSP de um modelo RoboChart e a verificação de conformidade por meio de
um algoritmo próprio simplificado de verificação de refinamento de traces, permitindo identi-
ficar inconsistências entre especificações formais e implementações práticas desenvolvidas em
Python. A abordagem foi aplicada em um sistema robótico de dispensação de medicamentos
do Hospital das Clínicas da UFPE (HC-UFPE), desenvolvido no âmbito do projeto CRIAR
— Centro de Robótica e Inteligência Artificial Responsável. O sistema integra controle de
braço robótico e visão computacional. Os resultados indicam que a abordagem facilita a de-
tecção de erros e promove um desenvolvimento mais robusto. Como contribuições principais,
destacam-se: uma sistemática de formalização de requisitos informais utilizando RoboChart;
o desenvolvimento de um algoritmo próprio para verificação de refinamento de traces e a
aplicação da metodologia em dois estudos de caso.

Palavras-chaves: RoboChart; CSP; Formalização de requisitos; Verificação de conformidade;
Refinamento de Traces.



ABSTRACT

The increasing complexity of control systems in autonomous robots demands rigorous
methods to ensure conformance between specifications and implementations, especially in
critical contexts such as medication dispensing. This paper presents an approach based on
formalizing requirements using RoboChart (a graphical notation for modeling robotic systems),
which has formal semantics defined in the CSP process algebra. The proposed methodology
includes obtaining and abstracting the LTS from the CSP semantics of a RoboChart model
and verifying compliance using a proprietary simplified trace refinement checking algorithm,
allowing for the identification of inconsistencies between formal specifications and practical
implementations developed in Python. The approach was applied to a robotic medication
dispensing system at the Hospital das Clínicas of the (HC-UFPE), developed within the scope
of the CRIAR project — Center for Responsible Robotics and Artificial Intelligence. The system
integrates robotic arm control and computer vision. The results indicate that the approach
facilitates error detection and promotes more robust development. The main contributions
include: a systematic formalization of informal requirements using RoboChart; the development
of a proprietary algorithm for verifying trace refinement, and the application of the methodology
in two case studies.

Keywords: RoboChart; CSP; Requirements formalization; Conformance verification; Trace
refinement.
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1 INTRODUÇÃO

A crescente complexidade dos sistemas de controle em robôs autônomos exige o desenvol-
vimento de abordagens rigorosas para garantir a conformidade das implementações com os re-
quisitos especificados. À medida que a robótica avança, esses sistemas tornam-se cada vez mais
sofisticados, integrando sensores, atuadores, sistemas de percepção e algoritmos avançados de
tomada de decisão que operam de forma autônoma em ambientes dinâmicos, desestruturados
e, muitas vezes, imprevisíveis (THRUN, 2002). Além disso, o aumento da autonomia exige que
os sistemas consigam lidar com situações não previstas durante o desenvolvimento, tomando
decisões seguras em tempo real (ALUR, 2015). A precisão e a confiabilidade desses sistemas
não são somente desejáveis, mas essenciais, sobretudo quando se considera sua aplicação em
cenários críticos, onde qualquer falha pode gerar não somente prejuízos financeiros, mas tam-
bém riscos à integridade física de pessoas e à continuidade de processos essenciais (LEVESON,
2016).

Sistemas robóticos, frequentemente modelados por máquinas de estado, desempenham
papéis centrais em setores onde a segurança, a previsibilidade e a precisão são absolutamente
indispensáveis (CASSANDRAS; LAFORTUNE, 2008). Hospitais, linhas de produção industrial,
instalações de geração de energia e centros de pesquisa científica são exemplos de ambientes
onde tais sistemas operam em condições rigorosas (LYNCH; PARK, 2017). Nessas aplicações,
qualquer falha, por menor que seja, pode ter consequências severas, tanto do ponto de vista
operacional — com paralisações, perdas de produtividade e danos materiais — quanto em
termos de segurança, colocando em risco operadores, pacientes e o próprio ambiente (LEVESON,
2016). Por exemplo, robôs hospitalares que realizam tarefas sensíveis, como a dispensação
automática de medicamentos ou a esterilização de ambientes, devem operar com total exatidão
e rastreabilidade (MURPHY, 2019). Qualquer erro nesse contexto não somente compromete o
funcionamento do sistema, interrompendo fluxos hospitalares, como também pode colocar
vidas humanas em risco diretamente, seja pela administração incorreta de um fármaco, seja
pela falha em protocolos de biossegurança (TENNER, 2015).

Esses cenários ilustram de forma clara e contundente a importância de garantir que o
comportamento de um sistema robótico esteja em total conformidade com suas especificações,
desde as fases iniciais de projeto até a implementação final. Essa necessidade vai além de
uma boa prática de engenharia; ela se torna um imperativo técnico, ético e regulatório em
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muitos setores. Nesse contexto, torna-se evidente que o desenvolvimento de robôs confiáveis
e seguros representa, atualmente, um dos maiores desafios contemporâneos na engenharia de
software aplicada a sistemas robóticos (CAVALCANTI et al., 2021). A crescente dependência
desses sistemas para executar tarefas críticas, anteriormente realizadas exclusivamente por
seres humanos, somente intensifica a urgência por soluções que assegurem sua corretude
formal, sua robustez operacional e sua capacidade de se adaptar seguramente a ambientes
complexos e dinâmicos (SCHNEIDER; SHABOLT; TAYLOR, 2004).

Este trabalho foi desenvolvido no contexto do Centro de Robótica e Inteligência Artifi-
cial Responsável (CRIAR) do Centro de Informática da UFPE, iniciativa voltada à pesquisa
aplicada e ao desenvolvimento de soluções tecnológicas para problemas reais enfrentados por
instituições públicas e privadas do Brasil. Um dos projetos conduzidos nesse Centro é a au-
tomação do processo de dispensação de medicamentos no Hospital das Clínicas da UFPE,
onde sistemas robóticos desempenham papéis críticos na organização, separação e entrega de
fármacos. A segurança e a confiabilidade dessas aplicações são essenciais, não somente para
evitar falhas operacionais, mas também para proteger a integridade de pacientes e profissionais
de saúde. A motivação deste trabalho surgiu diretamente da necessidade de garantir que os
controladores robóticos desenvolvidos para esse ambiente estejam em conformidade com os
requisitos estabelecidos — muitos dos quais definidos de forma informal e passíveis de inter-
pretação ambígua. A Figura 1 ilustra o arranjo físico do sistema real utilizado, que serviu como
base para um dos estudos de caso desenvolvido neste trabalho.

Apesar da criticidade envolvida em aplicações robóticas como a dispensação automati-
zada de medicamentos, muitos projetos de sistemas robóticos ainda são desenvolvidos a partir
de especificações informais, frequentemente pouco estruturadas e suscetíveis a interpretações
divergentes. Na prática, é comum que essas especificações estejam registradas em documen-
tos textuais genéricos, em diagramas que carecem de rigor semântico ou até mesmo sejam
transmitidas por meio de comunicações verbais e informais entre membros da equipe de de-
senvolvimento (WIEGERS; BEATTY, 2013). Esse tipo de abordagem, embora bastante difundido
na indústria devido à sua aparente simplicidade e flexibilidade, introduz um grau significativo
de ambiguidade no processo de desenvolvimento (LAMSWEERDE, 2009). Essa ambiguidade,
por sua vez, abre margem para que diferentes desenvolvedores interpretem os requisitos de
maneiras distintas, levando a implementações que, apesar de aparentemente corretas, podem
divergir dos comportamentos originalmente desejados (MALL, 2018).

Esse cenário torna-se ainda mais crítico ao considerar a natureza sensível de muitos sis-
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Figura 1 – Arranjo físico do sistema de dispensação de medicamentos

Fonte: Elaborada pelo autor (2025)

temas robóticos, nos quais qualquer desvio em relação às especificações pode resultar em
consequências graves, tanto do ponto de vista operacional quanto da segurança (LEVESON,
2016). A ausência de uma formalização precisa dos requisitos compromete não somente a
implementação correta, mas também a capacidade do sistema de ser auditado, validado e cer-
tificado por órgãos regulatórios (HINCHEY; BOWEN, 2012). Além disso, os sistemas robóticos
modernos tendem a ser cada vez mais distribuídos, heterogêneos e interativos, com múltiplos
componentes operando concorrentemente e se comunicando frequentemente de maneira as-
síncrona. Esse tipo de arquitetura introduz um conjunto complexo de interdependências e abre
espaço para o surgimento de propriedades emergentes — comportamentos que não podem ser
previstos a partir da análise isolada dos componentes, mas resultantes das interações entre
eles. Essas propriedades são particularmente difíceis de prever e controlar com as abordagens
tradicionais de engenharia de software, reforçando a necessidade do uso de métodos formais
para lidar com tais desafios de forma sistemática e verificável (MITCHELL, 2006; LEVESON,
2016).
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Diante desses desafios, os métodos formais emergem como uma abordagem não somente
robusta, mas cada vez mais indispensável para garantir que sistemas robóticos operem em
estrita conformidade com seus requisitos funcionais e não funcionais. Esses métodos ofere-
cem uma base matemática rigorosa para a descrição precisa do comportamento esperado dos
sistemas e, consequentemente, para a realização de verificações sistemáticas de sua corre-
ção. Entre as abordagens mais consolidadas, destaca-se Communicating Sequential Processes
(CSP) (HOARE et al., 1985; ROSCOE, 1998), que fornece uma estrutura teórica extremamente
poderosa para modelagem de sistemas concorrentes, permitindo representar formalmente tanto
os processos individuais quanto os padrões de comunicação e sincronização entre eles. CSP
permite descrever, com precisão, não somente o comportamento interno de cada componente,
mas também as interações complexas que ocorrem em sistemas distribuídos e concorrentes,
oferecendo, assim, um modelo coerente e matematicamente validável.

O uso de CSP, aliado a ferramentas como FDR (Failures-Divergence Refinement), permite
não somente descrever formalmente os comportamentos esperados de sistemas concorren-
tes, mas também aplicar técnicas rigorosas de verificação, como model checking e análise de
refinamento. O model checking possibilita a exploração automática de todos os estados pos-
síveis do sistema para verificar se certas propriedades são satisfeitas, enquanto o refinamento
permite demonstrar, formalmente, que uma implementação está em conformidade com uma
especificação abstrata, garantindo que os comportamentos desejados sejam preservados ao
longo do desenvolvimento. Essas ferramentas também oferecem mecanismos de geração de
contraexemplos, facilitando a identificação e correção de falhas no modelo.

Tais técnicas são essenciais para detectar, ainda nas fases iniciais do projeto, problemas
como deadlocks, livelocks, não determinismo, violação de propriedades de segurança, incon-
sistências nos protocolos de comunicação e falhas no cumprimento de requisitos temporais.
Ao permitir a identificação precoce desses erros, os métodos formais evitam que problemas
custosos avancem para etapas posteriores do desenvolvimento, promovendo maior robustez,
previsibilidade e segurança no sistema final. Nesse contexto, os métodos formais deixam de
ser ferramentas meramente acadêmicas para se consolidarem como elementos indispensáveis
no ciclo de vida de sistemas críticos — especialmente na robótica, onde a confiabilidade ope-
racional não é somente desejável, mas essencial.

Domain-Specific Languages (DSLs) também desempenham um papel fundamental no de-
senvolvimento de sistemas robóticos ao oferecerem abstrações especializadas que reduzem a
complexidade da modelagem e implementação. Diversas DSLs foram propostas com diferentes
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enfoques: RobotML (DHOUIB et al., 2012) abstrai detalhes de baixo nível por meio de uma ar-
quitetura baseada em componentes; 𝐺𝑒𝑛𝑜𝑀(FLEURY; HERRB; CHATILA, 1997) e seu sucessor
𝐺𝑒𝑛

𝑜𝑀3 (MALLET et al., 2010) possibilitam a geração automática de código e a definição de
propriedades temporais; ORCCAD (BORRELLY et al., 1998) oferece suporte a controle em tempo
real com verificação formal; e o RoboFlow (ALEXANDROVA; TATLOCK; CAKMAK, 2015) prioriza
a acessibilidade por meio de uma interface gráfica baseada em fluxos. Cada uma dessas lin-
guagens apresenta vantagens e limitações que as tornam mais ou menos adequadas conforme
o contexto de aplicação. Enquanto RobotML e RoboFlow favorecem rapidez e simplicidade
no desenvolvimento, 𝐺𝑒𝑛𝑜𝑀 e ORCCAD oferecem maior controle e rigor em ambientes com
restrições temporais e requisitos críticos de sincronização.

Nesse cenário, RoboChart (MIYAZAWA et al., 2016) destaca-se como uma DSL voltada à
modelagem de sistemas robóticos que alia uma notação gráfica intuitiva a uma fundamenta-
ção formal rigorosa baseada na teoria de processos concorrentes CSP. Ela permite especificar
formalmente sistemas de controle, realizar análises com ferramentas como FDR e gerar código
automaticamente a partir dos modelos. Com essa integração entre clareza visual e verificação
matemática, RoboChart proporciona uma abordagem robusta para o desenvolvimento de sis-
temas robóticos críticos. Sua capacidade de aproximar requisitos informais de uma modelagem
precisa permite detectar inconsistências antecipadamente. No entanto, sua aplicação em sis-
temas maiores revelou limitações de escalabilidade, com aumento no custo computacional das
verificações, o que pode dificultar a análise contínua e a validação eficiente do comportamento
frente à implementação real.

Para mitigar essas limitações, a estratégia adotada, apresentada no Capítulo 3, foi restrin-
gir o escopo da modelagem, concentrando-se nas Máquinas de Estados de RoboChart, que
representam o núcleo do comportamento sequencial dos sistemas. Além disso, a análise foi
aplicada somente a um subconjunto bem definido do sistema, suficiente para capturar os re-
quisitos críticos. Essa abordagem tornou a verificação mais viável, preservando as propriedades
comportamentais essenciais e mantendo a rastreabilidade entre os modelos e a implementação.
Complementarmente, o desenvolvimento de um algoritmo de refinamento de trace contribuiu
para garantir que o comportamento observado na prática estivesse alinhado com a especifica-
ção formal.

Embora estudos anteriores (MIYAZAWA et al., 2016; MIYAZAWA et al., 2017; LI et al., 2024;
DAROLt, I, 2019; MURRAY et al., 2022) demonstrem a eficácia de RoboChart na verificação de
controladores em sistemas críticos, observa-se que muitos deles acabam não abordando de
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forma sistemática uma etapa fundamental: a tradução dos requisitos informais em modelos
formais. Esse processo, frequentemente negligenciado, é crucial para assegurar que o modelo
represente fielmente as necessidades operacionais do sistema, evitando que modelos formal-
mente corretos se afastem dos objetivos práticos do projeto.

Diante desse cenário, a aplicação de RoboChart neste trabalho não se restringiu à verifica-
ção formal isolada, mas também buscou enfrentar desafios práticos relacionados à formalização
de requisitos e à escalabilidade dos modelos. A experiência adquirida durante o desenvolvimento
reforça que, com estratégias adequadas de delimitação de escopo e suporte de ferramentas
complementares, é possível aplicar métodos formais de maneira eficiente no desenvolvimento
de sistemas robóticos complexos. Esse contexto motivou a construção de uma abordagem
específica para este trabalho, cuja concepção, estrutura e resultados serão detalhados a seguir
na seção de contribuições.

1.1 CONTRIBUIÇÕES DESTE TRABALHO

Este trabalho combina modelagem formal e verificação automatizada para assegurar a con-
formidade e aprimorar a correção de sistemas de controle robótico, permitindo a identificação
e resolução precoce de inconsistências entre especificação e implementação. A metodologia
desenvolvida apoia-se em quatro pilares principais: (1) a formalização de requisitos informais
por meio de RoboChart, que gera especificações formais em CSP; (2) a utilização do veri-
ficador de refinamentos do FDR para derivar um Sistema de Transição Rotulado (Labelled
Transition Systems - LTS) a partir da especificação CSP; (3) o comportamento implementado
utilizando máquinas de estados finitos em Python, por meio da biblioteca pytransitions, cuja
execução é interpretada como um LTS; e (4) a aplicação do algoritmo proposto de refinamento
de traces para comparar o LTS gerado por RoboChart com as máquinas de estados da imple-
mentação, verificando a conformidade formal entre eles, seguindo a definição de refinamento
de traces (ROSCOE, 1998; ROSCOE, 2010). Essa abordagem permite reduzir ambiguidades
típicas de requisitos informais, fortalecendo o processo de desenvolvimento por meio de ve-
rificações formais automatizadas que garantem validação sistemática e iterativa, alinhando a
implementação com os requisitos e aumentando a confiabilidade do sistema. A abordagem
proposta está resumida na Figura 2.

A relevância da metodologia proposta reside em sua aplicabilidade prática e no avanço
que oferece em relação às abordagens existentes. Diferentemente de trabalhos que utilizam
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Figura 2 – Fluxo de verificação e refinamento do modelo.

Propriedades em CSP Veredicto/Contraexemplo

RoboChart (1) CSP LTS Concreto (2) LTS Abstrato

Requisitos Informais Refinado pelo Algoritmo 1 (4)

FSM informal Implementação Python (3)

Fonte: Elaborada pelo autor (2025)

métodos formais para análise de modelos de sistemas robóticos, este estudo se concentra na
verificação diretamente da implementação, em relação aos requisitos esperados. Além disso, o
uso de RoboChart (e sua ferramenta de apoio RoboTool1) como base para a modelagem formal
do comportamento do software, combinada com um algoritmo próprio de análise de refina-
mento inspirado na definição clássica de refinamento de traces em CSP, oferece uma solução
robusta e inovadora para a verificação de conformidade em sistemas de controle distribuídos.
Essa abordagem personalizada permite lidar com as particularidades das implementações base-
adas em máquinas de estado em Python, ampliando a confiabilidade e a precisão da verificação
em contextos reais. As principais contribuições deste trabalho incluem:

• Formalização de requisitos informais de dois estudos de caso usando RoboChart;

• Uma metodologia que mostra como garantir que uma implementação baseada em py-
transitions esteja em conformidade com um sistema robótico descrito por requisitos
informais usando a linguagem formal RoboChart;

• Um algoritmo de verificação de modelo para realizar a verificação de refinamento de
traces CSP do LTS abstrato de um modelo RoboChart em relação à sua implementação,
construída usando a biblioteca pytransitions;

• Aplicação do algoritmo proposto em dois estudos de caso, evidenciando discrepâncias
em alguns casos entre os resultados esperados e os resultados obtidos.

A abordagem proposta melhora o desenvolvimento dos sistemas ao permitir que inconsis-
tências sejam identificadas e corrigidas no estágio inicial do desenvolvimento, economizando
recursos durante a fase de integração. Ela também promove maior segurança ao garantir que
1 https://robostar.cs.york.ac.uk/robotool/
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comportamentos críticos sejam verificados formalmente, reduzindo o risco de falhas catastró-
ficas. Por fim, a eficiência é aprimorada por meio da automação no processo de verificação
e refinamento, permitindo iterações mais rápidas e confiáveis no desenvolvimento de siste-
mas robóticos. Os resultados dessa pesquisa foram submetidos para publicação no periódico
especializado The Journal of Systems & Software (MENDONÇA; CONSERVA; MOTA, 2025).

1.2 ORGANIZAÇÃO DA DISSERTAÇÃO

O restante deste trabalho está organizado da seguinte forma: o Capítulo 2 apresenta a
fundamentação teórica necessária, incluindo conceitos de CSP e RoboChart; o Capítulo 3 des-
creve a metodologia adotada, abordando a formalização de requisitos, a abstração de LTS e
o algoritmo de refinamento de traces; o Capítulo 4 detalha os estudos de caso aplicados, evi-
denciando as validações realizadas, os resultados obtidos, a discussão crítica desses resultados,
além das ameaças à validade e das medidas para mitigá-las; o Capítulo 5 explora os trabalhos
relacionados e como eles se conectam a este estudo; e, por fim, o Capítulo 6 apresenta as con-
siderações finais, ressaltando as principais contribuições e sugerindo direções para pesquisas
futuras.
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2 FUNDAMENTAÇÃO TEÓRICA

O desenvolvimento de sistemas críticos, como os utilizados em robótica, requer o uso de
ferramentas e métodos que garantam precisão e confiabilidade desde as etapas iniciais do pro-
jeto. Para isso, linguagens formais e técnicas de verificação desempenham um papel essencial,
permitindo modelar, especificar e validar rigorosamente os comportamentos do sistema. Nesse
contexto, destaca-se RoboChart, uma notação gráfica projetada para descrever controlado-
res robóticos de forma estruturada, integrando elementos de estados, eventos e temporização
típicos da robótica. Uma das suas principais forças reside na associação com CSP, uma lingua-
gem formal voltada à modelagem de sistemas concorrentes. RoboChart utiliza CSP como base
semântica formal, o que permite que modelos desenvolvidos visualmente possam ser traduzi-
dos para uma representação matemática precisa, possibilitando a verificação automática de
propriedades. Este capítulo começa introduzindo CSP, abordando sua semântica denotacional,
conceitos de refinamento e ferramentas de suporte como FDR, destacando seu papel na mo-
delagem e verificação de sistemas concorrentes. Em seguida, apresenta RoboChart, explorando
sua estrutura, capacidades de modelagem e como sua semântica, baseada em CSP, permite a
especificação rigorosa e a análise formal de sistemas robóticos.

Por fim, este capítulo também aborda a biblioteca pytransitions, uma ferramenta ampla-
mente utilizada para a implementação de Máquinas de Estados Finitos em Python. Embora
não constitua uma linguagem formal, a pytransitions exerce um papel fundamental na etapa
de implementação, ao permitir que os modelos formalmente especificados sejam convertidos
em sistemas funcionais e robustos.

2.1 COMMUNICATING SEQUENTIAL PROCESSES (CSP)

Communicating Sequential Processes (CSP) (HOARE et al., 1985; ROSCOE, 1998) é uma
linguagem formal utilizada para modelar e analisar sistemas concorrentes. Desenvolvida inicial-
mente por Tony Hoare e posteriormente modificada por Roscoe, CSP permite a especificação
de processos que interagem por meio de eventos atômicos, sincronizando-se somente quando
todos os participantes estão prontos. Essa abordagem é especialmente útil para sistemas dis-
tribuídos e concorrentes, como linhas de montagem e sistemas robóticos, ao possibilitar a
definição rigorosa de propriedades críticas e a verificação automática da correção de suas
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implementações.
CSP utiliza os chamados processos para representar componentes do sistema que realizam

interações observáveis. Essas interações são modeladas por canais simples (ou eventos) ou
canais que carregam dados (ROSCOE, 2010). Por exemplo, uma declaração como channel a

representa um evento, uma declaração como channel b: Bool, permite comunicar os valores
True e False por meio do canal b, dando origem aos eventos complexos b.True ou b.False.
Essa flexibilidade permite modelar trocas de informações síncronas entre processos, o que é
essencial para capturar a complexidade de sistemas que requerem comunicação estruturada.

Tabela 1 – Operadores CSP.

Operador Sintaxe Descrição
Terminação com sucesso SKIP O processo que termina imediatamente
Deadlock STOP O processo que não aceita eventos e, portanto, gera deadlocks
Prefixação Simples a → P Comunica o evento a e age como o processo P
Composição Sequencial P ; Q Executa os processos P e depois Q em sequência
Escolha Externa P □ Q Oferece uma escolha entre dois processos P e Q
Ecolha Interna P ⊓ Q A escolha é arbitrária, sem influência do ambiente.
Composição Paralela P ‖𝐴 Q Executa P e Q simultaneamente, sincronizando o evento compartilhado a.
Ocultação P \𝐴 Executa o processo P, mas eventos do conjunto A não aparecem no trace.

Fonte: Elaborada pelo autor (2025)

Os operadores de CSP definem as interações e o comportamento dos processos, possibili-
tando modelar sistemas com diferentes níveis de complexidade. Entre os operadores principais
expostos na Tabela 1 estão o de prefixação (a → P), que descreve que um processo realiza o
evento a antes de continuar como P, incluindo casos como a?x!y, onde a comunicação ocorre
por meio de canais, permitindo que a receba um valor x e envie y para outro processo. O
operador de composição sequencial (P;Q), onde P é termina com sucesso antes de iniciar Q.
A escolha externa (P □ Q) e interna (P ⊓ Q) definem comportamentos alternativos, sendo
que no primeiro caso o ambiente escolhe, e no segundo, a escolha ocorre internamente ao
sistema. O operador de composição paralela P ‖𝐴 Q permite que os processos P e Q se-
jam executados em paralelo, sincronizando-se em todos os eventos do conjunto 𝐴. Por fim,
o operador de ocultação (P ∖ 𝐴) tornam internos os eventos do conjunto 𝐴, escondendo-os
do ambiente externo, facilitando o gerenciamento de complexidade em sistemas distribuídos
(ROSCOE, 1998).

A especificação CSP a seguir (Figura 3) representa um modelo de controle para um robô
móvel capaz de se mover de forma autônoma, detectando obstáculos e ajustando sua trajetória
de acordo.
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Figura 3 – Especificação CSP para controle de robôs móveis.

SMovement = Moving

Moving = moveCall.lv.0 → Obstacle

Obstacle = obstacle.in → stopCall → Turning

Turning = moveCall.0.av → Moving

Fonte: Elaborada pelo autor (2025)

Essa especificação utiliza a prefixação (a → P) para definir a ordem das ações do robô,
garantindo que ele execute um evento antes de transicionar para outro estado, que nesse
caso é representado por um processo. A estrutura sequencial do modelo assegura que o robô
primeiro recebe o comando de movimento (moveCall.lv.0) antes de transitar para a detecção de
obstáculo (Obstacle), e, ao detectar um obstáculo, executa o comando de parada (stopCall)
antes de iniciar a manobra de reorientação (Turning). Neste código, 𝑙𝑣 e 𝑎𝑣 denotam a
velocidade linear e angular do robô, respectivamente. A repetição do ciclo entre os estados
Moving e Turning representa a continuidade do comportamento do robô, modelando um fluxo
dinâmico e adaptativo.

2.1.1 Semântica Denotacional e Refinamento

A semântica denotacional de CSP estabelece um vínculo rigoroso entre a sintaxe dos pro-
cessos e seu comportamento observável, por meio de uma interpretação matemática abstrata
que associa a cada processo um conjunto de comportamentos possíveis. Ao contrário da se-
mântica operacional, que descreve como os estados de um sistema evoluem ao longo do tempo,
a semântica denotacional concentra-se na caracterização do “significado” de um processo de
forma composicional, ou seja, a semântica de uma construção composta pode ser deduzida
diretamente a partir das semânticas de suas partes. Essa abordagem proporciona uma base
sólida para análise formal, permitindo a verificação de propriedades como segurança, ausência
de deadlocks e correção funcional por meio de refinamento.

No contexto de CSP, diversos modelos denotacionais foram desenvolvidos, sendo os mais
comuns os baseados em traces, failures e divergences. Cada um desses modelos captura dife-
rentes aspectos do comportamento de um processo. O modelo de traces foca exclusivamente
na sequência de eventos visíveis que o processo pode realizar, abstraindo falhas e comporta-
mentos internos. O modelo de failures amplia essa visão incluindo os conjuntos de eventos
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que um processo pode recusar após determinado trace, capturando informações sobre disponi-
bilidade e sincronização com o ambiente. Por fim, o modelo de failures-divergences considera
também o fenômeno de divergência, ou seja, a possibilidade de o processo entrar em um ci-
clo infinito de ações internas não observáveis, representando perda de controle ou bloqueio
interno.

O modelo de traces é o mais simples e serve como ponto de partida para a compreensão dos
modelos mais complexos. Nesse contexto, o comportamento de um processo é descrito pelo
conjunto de sequências finitas de eventos observáveis que ele pode executar, representadas
por palavras sobre o alfabeto de eventos Σ. A função traces, definida de forma indutiva
sobre a estrutura dos processos, associa a cada processo CSP o conjunto de suas possíveis
execuções observáveis. Para o operador de prefixo, por exemplo, a definição formal da função
é apresentada na Figura 4.

Figura 4 – Definição formal da função traces para o operador de prefixo no CSP.

traces(𝑎 → 𝑃 ) = {⟨⟩} ∪ {⟨𝑎⟩ ^ 𝑡𝑟 | 𝑡𝑟 ∈ traces(𝑃 )}
Fonte: Elaborada pelo autor (2025)

A equação exposta na Figura 4 expressa que o processo 𝑎 → 𝑃 pode inicialmente não
realizar nenhuma ação (daí o trace vazio), ou pode realizar o evento 𝑎 e então continuar
se comportando como o processo 𝑃 , concatenando os traces de 𝑃 após a ocorrência de 𝑎.
Com base nessa definição, é possível derivar os traces dos processos básicos. Por exemplo,
o processo 𝑆𝑇𝑂𝑃 , que não realiza nenhuma ação, possui somente o trace vazio, ou seja,
𝑡𝑟𝑎𝑐𝑒𝑠(𝑆𝑇𝑂𝑃 ) = {⟨⟩}. Já o processo 𝑎 → 𝑆𝑇𝑂𝑃 possui dois traces: o trace vazio, e o trace
⟨𝑎⟩, que corresponde à execução do evento 𝑎 seguido da terminação imediata. Portanto, na
Figura 5 temos:

Figura 5 – Exemplo da função traces aplicada ao processo 𝑎 → 𝑆𝑇𝑂𝑃 .

𝑡𝑟𝑎𝑐𝑒𝑠(𝑎 → 𝑆𝑇𝑂𝑃 ) = {⟨⟩, ⟨𝑎⟩}

Fonte: Elaborada pelo autor (2025)

Esses exemplos ilustram como a definição formal da função traces permite construir, de
forma composicional, o comportamento de processos arbitrários. Em termos gerais, o modelo
de traces oferece uma perspectiva essencialmente sequencial do sistema, desconsiderando as-
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pectos como recusas ou divergências, mas já possibilitando a análise de propriedades (safety),
como a ordem correta dos eventos e o alcance de determinadas ações. Para um tratamento mais
aprofundado das definições formais e do desenvolvimento do modelo de traces, recomenda-se
a leitura das obras de Roscoe, em especial The Theory and Practice of Concurrency e Un-

derstanding Concurrent Systems, que apresentam uma abordagem abrangente com definições
rigorosas e exemplos ilustrativos (ROSCOE, 1998; ROSCOE, 2010).

A noção de refinamento emerge naturalmente a partir dessa semântica. Refinar um processo
significa restringir seus comportamentos, garantindo que seu comportamento esteja restrito
ao comportamento da especificação. No modelo de traces, um processo 𝑄 é considerado
uma implementação válida de uma especificação 𝑃 se todo comportamento de 𝑄 também é
permitido por 𝑃 , ou seja, 𝑡𝑟𝑎𝑐𝑒𝑠(𝑄) ⊆ 𝑡𝑟𝑎𝑐𝑒𝑠(𝑃 ). Em notação formal, diz-se que 𝑄 refina 𝑃

no modelo de traces, representado por 𝑃 ⊑𝑇 𝑄. Tal relação expressa que 𝑄 é, do ponto de
vista do comportamento observável, mais determinístico ou mais restrito que 𝑃 , preservando
todas as permissividades da especificação original.

A aplicação do refinamento denotacional é especialmente útil em contextos nos quais a
ordem e a ocorrência de eventos são determinantes para a correção funcional do sistema.
Considere, por exemplo, o modelo de controle de um robô móvel autônomo. Nesse sistema,
eventos como detecção de obstáculo, parada e rotação devem ocorrer em uma ordem específica
para garantir uma navegação segura. O conjunto de traces associado à especificação descreve
os ciclos completos de movimentação, onde o robô inicia o deslocamento, detecta um obstá-
culo, realiza uma parada e executa uma manobra de desvio antes de retomar o movimento. A
Figura 6 ilustra esse conjunto de comportamentos esperados.

Figura 6 – Traces de uma execução cíclica do sistema.

{⟨⟩, ⟨𝑚𝑜𝑣𝑒𝐶𝑎𝑙𝑙.𝑙𝑣.0⟩, ⟨𝑚𝑜𝑣𝑒𝐶𝑎𝑙𝑙.𝑙𝑣.0, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒.𝑖𝑛⟩,
⟨𝑚𝑜𝑣𝑒𝐶𝑎𝑙𝑙.𝑙𝑣.0, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒.𝑖𝑛, 𝑠𝑡𝑜𝑝𝐶𝑎𝑙𝑙⟩,

⟨𝑚𝑜𝑣𝑒𝐶𝑎𝑙𝑙.𝑙𝑣.0, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒.𝑖𝑛, 𝑠𝑡𝑜𝑝𝐶𝑎𝑙𝑙, 𝑚𝑜𝑣𝑒𝐶𝑎𝑙𝑙.0.𝑎𝑣⟩, ...}

Fonte: Elaborada pelo autor (2025)

Se uma implementação 𝑄 executa, por exemplo, os eventos moveCall.lv.0, obstacle.in e, em
seguida, moveCall.0.av, omitindo o evento stopCall, essa sequência não pertence ao conjunto
de traces da especificação 𝑃 , violando a ordem definida e, portanto, invalidando o refinamento.
Tal violação evidencia que 𝑃 ̸⊑𝑇 𝑄, indicando que a implementação falha em seguir a lógica
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de controle prescrita. Em sistemas críticos como esse, o refinamento de traces atua como um
critério formal para assegurar que a implementação não introduza comportamentos inesperados
ou inseguros.

Embora o modelo de traces seja intuitivo e útil para capturar sequências válidas de eventos,
ele não é suficiente para caracterizar aspectos como a capacidade do processo de se recusar
a cooperar com o ambiente (por exemplo, quando não oferece certas ações) ou de entrar em
ciclos internos infinitos. Por esse motivo, modelos mais ricos, como o de failures-divergences,
são geralmente preferidos na verificação formal. No entanto, o refinamento no modelo de
traces já oferece garantias importantes para sistemas determinísticos ou com foco no controle
da sequência de eventos.

Além disso, a semântica denotacional tem como característica fundamental a composicio-
nalidade. Isso significa que a semântica de operadores como escolha, paralelismo, ocultação ou
recursão pode ser definida em termos das semânticas de seus operandos, permitindo construir
a semântica de sistemas complexos incrementalmente. Essa propriedade é essencial tanto para
a análise manual quanto para a automação da verificação, sendo explorada por ferramentas
como FDR, que analisam a estrutura dos processos e realizam verificações de refinamento de
maneira eficiente.

Em síntese, a semântica denotacional de CSP fornece uma base matemática sólida para
a especificação e análise de sistemas concorrentes. O conceito de refinamento, central nesse
paradigma, permite comparar precisamente implementações e especificações, assegurando que
os comportamentos da implementação estejam contidos nos comportamentos esperados. Ao
considerar diferentes níveis de abstração comportamental por meio dos modelos de traces,
failures-divergences, essa abordagem oferece uma estrutura robusta para a verificação formal
de propriedades fundamentais de sistemas reativos, concorrentes e críticos.

2.1.2 Semântica Operacional

A semântica operacional de CSP fornece um mecanismo formal para descrever o compor-
tamento dinâmico dos processos por meio da evolução dos seus estados ao longo do tempo,
modelando explicitamente as transições possíveis entre estados em resposta à ocorrência de
eventos. Essa semântica baseia-se nos Labelled Transition Systems (LTS), sendo estruturas
matemáticas fundamentais para a representação precisa de sistemas concorrentes e distribuí-
dos. Formalmente, um LTS é definido como uma quádrupla (𝑆, 𝐿, →, 𝑠0), em que 𝑆 representa
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um conjunto finito ou enumerável de estados, 𝐿 corresponde ao conjunto de rótulos (eventos)
que descrevem as ações do sistema, → ⊆ 𝑆 × 𝐿 × 𝑆 é a relação de transição que define o
comportamento do sistema e 𝑠0 é o estado inicial a partir do qual a execução inicia.

Os rótulos de transição pertencentes ao conjunto 𝐿 incluem eventos visíveis, sendo aqueles
definidos na especificação (elementos do alfabeto Σ), e eventos especiais, como a ação interna
𝜏 e a terminação bem-sucedida (tick). A ação 𝜏 representa um passo de execução interno ao
sistema, que ocorre sem cooperação do ambiente e, portanto, não é observável externamente.
Por outro lado, o evento indica a conclusão de um processo, sinalizando que ele atingiu
um estado final com sucesso. A distinção entre ações visíveis e invisíveis é crucial para a
modelagem de sistemas reais, ao permitir capturar tanto o comportamento externo quanto as
decisões internas e automáticas do sistema.

Do ponto de vista operacional, a semântica de CSP é expressa por regras de inferência
que definem como as transições entre estados ocorrem com base na estrutura sintática dos
processos. Cada operador da linguagem (como prefixo, escolha externa, paralelismo, ocultação,
recursão, entre outros) possui um conjunto específico de regras que determinam os eventos
iniciais possíveis e os estados resultantes após sua ocorrência. Essas regras, apresentadas no
estilo de sistemas dedutivos, formam um mecanismo sistemático para derivar, passo a passo,
todas as possíveis execuções de um processo, construindo assim seu espaço de estados de
maneira estruturada. Por exemplo, para o processo 𝑎 → 𝑃 , há uma única transição rotulada
por 𝑎 levando ao estado 𝑃 , enquanto para a composição sequencial 𝑃 ; 𝑄, o processo 𝑄 só se
torna ativo após a terminação de 𝑃 .

O evento possui um papel especial dentro dos LTSs. Ele é tratado como uma ação
visível que indica a terminação do processo, mas, diferentemente das demais ações externas,
não requer cooperação do ambiente. Isso significa que, uma vez habilitado, o evento de termi-
nação não pode ser impedido externamente, sendo inevitável. Essa interpretação intermediária
— entre um evento visível comum e uma ação interna — é necessária para preservar leis
semânticas desejáveis, como a identidade à direita da composição sequencial, expressa por
𝑃 ; SKIP = 𝑃 , que só é válida quando o comportamento de é tratado com esse cuidado.

Ao modelar sistemas robóticos, LTSs permitem descrever de maneira precisa o fluxo de
controle entre sensores, atuadores e componentes de decisão, incorporando tanto as interações
observáveis com o ambiente quanto os comportamentos internos. Essa capacidade de repre-
sentar estados e transições com granularidade adequada é essencial para garantir segurança
e confiabilidade em sistemas críticos, onde a análise formal dos comportamentos possíveis é
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indispensável. Por exemplo, a ausência de deadlocks, a capacidade de terminação e o respeito
à ordem das operações são propriedades verificáveis diretamente sobre o LTS gerado. Essa
representação por LTSs não apenas favorece o entendimento do comportamento do sistema,
como também serve de base para a aplicação de técnicas automatizadas de verificação. É
nesse contexto que ferramentas como a FDR se destacam, permitindo analisar formalmente
propriedades críticas a partir dos modelos especificados.

Por fim, a semântica operacional e a semântica denotacional são profundamente inter-
ligadas. Embora a primeira modele explicitamente a dinâmica de execução, e a segunda se
concentre em abstrações comportamentais, ambas podem ser utilizadas de maneira comple-
mentar. A partir de um LTS derivado de um processo, é possível extrair seu conjunto de traces,
failures e divergences, aproximando a análise operacional da denotacional. Essa correspondên-
cia é particularmente importante na verificação formal, ao permitir aplicar métodos rigorosos
de análise a partir da estrutura sintática dos processos, assegurando que suas propriedades
estejam conforme os requisitos estabelecidos pela especificação formal.

2.1.3 FDR

Failures-Divergence Refinement (FDR) (ROSCOE, 1998; ROSCOE, 2010) é uma ferramenta
de verificação formal projetada para analisar modelos especificados em CSP. Desenvolvida ori-
ginalmente pela Formal Systems (Europa) Ltd., FDR permite verificar automaticamente pro-
priedades críticas, como ausência de deadlocks, segurança e refinamento de processos, sendo
amplamente utilizado em sistemas críticos, como automação industrial, sistemas distribuídos
e controle robótico, onde a confiabilidade é indispensável. Sua aplicação garante que erros de
implementação possam ser detectados e corrigidos antes de comprometerem a funcionalidade
do sistema.

Um dos recursos fundamentais de FDR é sua capacidade de transformar especificações CSP
em LTS, representando graficamente estados e transições de um processo. Esse mapeamento
facilita a análise de comportamentos, a detecção de inconsistências e a comparação direta
entre especificação e implementação. Utilizando CSP𝑀 , uma extensão mecanizável de CSP,
FDR viabiliza análises automatizadas que garantem a conformidade das implementações com
requisitos especificados, permitindo a validação de propriedades de segurança e correção em
sistemas críticos. Além disso, essa abordagem robusta minimiza erros operacionais e aumenta
a confiabilidade do sistema (ROSCOE, 1998; BAIER; KATOEN, 2008; GIBSON-ROBINSON et al.,
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2014).

Figura 7 – Resultado da verificação de deadlock no FDR com exibição de contraexemplo.

Fonte: Elaborada pelo autor (2025)

Na prática, FDR fornece uma interface gráfica que permite ao usuário carregar arqui-
vos .csp, configurar as propriedades a serem verificadas e visualizar os resultados de maneira
interativa. Quando uma propriedade como ausência de deadlocks não é satisfeita, FDR gera
automaticamente um contraexemplo, exibido graficamente, que ilustra o trace exato de execu-
ção onde o erro ocorre. Esse trace inclui os eventos executados até o ponto de falha, auxiliando
o engenheiro a localizar com precisão a origem do comportamento incorreto. A Figura 7 mos-
tra uma tela do FDR evidenciando uma violação de deadlock no modelo de um robô detector
de obstáculos. Nesse caso, após a ocorrência de determinados eventos relacionados à detecção
de obstáculos, o processo atinge um estado no qual nenhum evento adicional pode ser exe-
cutado, impossibilitando qualquer progresso adicional do sistema. Em outras palavras, o robô
permanece bloqueado sem opções de transição, caracterizando um deadlock.

2.2 ROBOCHART

RoboChart é uma linguagem diagramática de domínio específico para projetar o compor-
tamento de software de controle para sistemas robóticos. É um perfil UML com semântica
formal definida em CSP que pode ser calculada automaticamente usando sua ferramenta as-
sociada, RoboTool. Ela foi projetada para capturar comportamentos de sistemas robóticos,
interações e restrições rigorosas, incluindo aspectos temporais e probabilísticos, fundamentais
para sistemas críticos. RoboChart permite modelar sistemas complexos, integrando controla-
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dores, promovendo segurança e confiabilidade em aplicações como robôs industriais, sistemas
autônomos e plataformas de pesquisa (MIYAZAWA et al., 2016; MIYAZAWA et al., 2019).

Figura 8 – CFootBot: modelo completo.

Fonte: Elaborada pelo autor (2025)

Como já mencionado, a característica central de RoboChart é que sua semântica formal
é definida em CSP e, portanto, herda toda a expressividade e potencial de verificação dispo-
nível para CSP por meio da ferramenta de verificação de refinamento FDR. Essa integração
possibilita verificar propriedades críticas, como ausência de deadlocks e alcançabilidade de es-
tado, garantindo que todas as transições e comportamentos sejam analisados com segurança
e precisão (MIYAZAWA et al., 2016; MIYAZAWA et al., 2019; ROSCOE, 1998).

O principal elemento de um modelo RoboChart é o Módulo, uma estrutura que registra
as premissas feitas sobre o hardware do robô, descreve seu software de controle e estabelece
a ligação entre ambos. Ele pode conter ou referenciar uma Plataforma e um ou mais Contro-
ladores, além de definir as conexões entre eles. Usaremos o modelo de um robô móvel capaz
de se deslocar de forma autônoma, detectando e reagindo a obstáculos no ambiente para
exemplificar a utilização de RoboChart na modelagem. O modelo CFootBot representa esse
robô móvel e é mostrado na Figura 8.

O modelo CFootBot é descrito em RoboChart como um módulo de mesmo nome que
encapsula uma plataforma e um controlador, a Figura 9 representa esse módulo. O módulo
atua como um contêiner que organiza esses componentes e define como eles interagem. A
plataforma denominada FootBot representa as capacidades físicas do robô, incluindo senso-
res e atuadores, e expõe um conjunto de operações, e um conjuntos de eventos, utilizados
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para sinalizar mudanças no ambiente e acionar comportamentos específicos. O controlador
Movement, por sua vez, gerencia a lógica do robô e sua interação com a plataforma robótica.

Figura 9 – CFootBot: módulo e controlador.

Fonte: Elaborada pelo autor (2025)

Como dito anteriormente, plataformas representam recursos internos do hardware. Isso
inclui variáveis e constantes tipadas, operações que o robô pode executar e eventos. A pla-
taforma do FootBot especifica as operações move(lv, av), representando o deslocamento do
robô com velocidade linear lv e velocidade angular av, e a operação stop(), que interrompe o
movimento do robô. Neste modelo, a operação move representa a ação do robô de iniciar um
deslocamento sem especificar detalhes sobre a rota. A decisão sobre a direção é tomada pelo
controlador com base nos eventos sensoriais. Assim, o controle de planejamento de trajetória é
tratado de forma implícita pelo comportamento de uma máquina de estados, fazendo com que
o robô ande reto se não detectar obstaculo e vire caso exista obstáculo. A Figura 10 mostra
as interfaces, operações e eventos possíveis.

Figura 10 – CFootBot: interfaces, eventos e operações.

Fonte: Elaborada pelo autor (2025)

Todas as operações citadas anteriormente estão contidas em uma interface fornecida cha-
mada MovementI. As interfaces encapsulam eventos, variáveis e operações. Elas podem ser de
três tipos: Fornecidas, Definidas e Necessárias. O primeiro tipo descreve variáveis e operações
que uma plataforma robótica fornece. Interfaces definidas declaram eventos e variáveis usadas
em um elemento. Interfaces necessárias descrevem operações e variáveis que um controla-
dor ou máquina de estados assume como fornecidas pela plataforma e outros controladores,
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permitindo que o comportamento seja definido independentemente da plataforma específica
(MIYAZAWA et al., 2016; MIYAZAWA et al., 2017).

Eventos representam uma comunicação atômica. No caso do CFootBot, a plataforma
define o evento obstacle, através da interface ObstacleI, que indica a detecção de um obstáculo.
Eventos existem tanto no nível da plataforma quanto no nível do Controlador e da Máquina de
Estados. Por exemplo, o controlador do CFootBot tem uma interface necessária de operações
que ele espera da plataforma, conectando-se à interface fornecida pela mesma. O controlador
também define eventos internos como obstacle, que indica quando um obstáculo é detectado.

Tendo definido a plataforma e o controlador e os vinculado no módulo, definimos o com-
portamento dentro do controlador. Isso é feito com uma máquina de estados, SMovement.
Ela tem a mesma interface necessária que o controlador, variáveis internas para controle de
estado e eventos como obstacle, especificados em uma interface definida chamada MovementI

e vinculados aos eventos do controlador conforme o esperado.

Figura 11 – CFootBot: máquina de estados.

Fonte: Elaborada pelo autor (2025)

Toda máquina de estados é composta de estados, junções e transições. Os estados podem
ter ações a serem executadas na entrada do estado, durante o estágio ativo do estado ou na
saída. As junções podem não ter essas operações e devem ter pelo menos uma transição de
saída. As junções agem como estados temporários instáveis pelos quais o robô deve passar
e sair imediatamente. Cada Máquina de Estados deve ter uma junção inicial. A máquina
SMovement imediatamente transita para um estado chamado Moving, onde o robô inicia seu
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deslocamento até que um obstáculo seja detectado. A Figura 11 apresenta uma representação
esquemática dessa estrutura, ilustrando a relação entre estados, junções e transições dentro
da máquina de estados.

Uma vez que o evento obstacle é recebido, o robô interrompe seu movimento, realiza a
operação stop() e transita para o estado Turning. Na entrada do estado Turning, uma ação
de reorientação é executada através da operação move(0, av), iniciando uma rotação. O robô
realiza uma operação de rotação e após isso, a transição para Moving é acionada, retomando
o deslocamento normal.

Para resumir, o CFootBot usa tipos de dados definidos na plataforma, e suas operações e
eventos externos estão encapsulados na interface fornecida. Seu comportamento é especificado
por uma máquina de estados, que é um componente do controlador. O nível superior da
especificação é o módulo, que conecta a plataforma e o controlador. Além disso, a semântica
de RoboChart, que será abordada a seguir, é fundamental para entender como os modelos
de sistemas dinâmicos, como o CFootBot, podem ser formalizados e analisados, oferecendo
uma base sólida para a implementação e validação de comportamentos complexos em sistemas
robóticos.

2.2.1 Semântica de RoboChart

Como dito anteriormente, a semântica formal de RoboChart é baseada em CSP, permitindo
que modelos especificados na notação diagramática sejam traduzidos para uma forma textual
adequada para verificação formal. Essa abordagem possibilita o uso de ferramentas como
FDR para análise de propriedades como refinamento, deadlock e determinismo. CSP oferece
uma base sólida para a modelagem do comportamento concorrente e reativo dos sistemas
robóticos, garantindo que as interações entre componentes sejam expressas de forma rigorosa
e verificável.

Uma das particularidades de RoboChart é a definição de uma semântica própria utilizando
CSP, incorporando eventos específicos que representam interações entre componentes do sis-
tema. Em particular, eventos como entered, in, out, exit, during e terminate são utilizados
para capturar mudanças de estado e comunicações entre processos. O evento entered é acio-
nado sempre que um estado é alcançado, permitindo registrar explicitamente a entrada em um
novo estado dentro da máquina de estados de RoboChart. O evento exit representa a saída
de um estado, garantindo que a transição seja capturada formalmente. Já os eventos in e out
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são usados para comunicação síncrona entre processos, onde in representa a recepção de um
evento e out a sua emissão. O evento during é utilizado para modelar ações contínuas em um
estado, representando ciclos de execução que ocorrem enquanto o estado está ativo. O evento
.terminate é fundamental para indicar a finalização de um processo ou sistema, garantindo
que uma terminação explícita seja modelada e tratada corretamente (MIYAZAWA et al., 2016;
MIYAZAWA et al., 2017).

A semântica de mapeamento de RoboChart para CSP traduz cada estado em um processo
cujo ciclo de vida é gerenciado por eventos específicos. A entrada em um estado é sinalizada
pelo evento .entered, e quaisquer ações de entrada associadas são modeladas como eventos
que ocorrem imediatamente em sequência. Ações contínuas, executadas enquanto o estado
está ativo, são representadas pelo evento .during. A saída, por sua vez, é modelada pelo evento
.exit, que também encapsula as ações de finalização do estado. As transições entre estados
utilizam eventos .in e .out para sincronização, enquanto variáveis e operações são abstraídas
como canais de comunicação. Finalmente, o encerramento explícito de um processo é garantido
pelo evento .terminate, permitindo modelar a finalização completa de um componente.

Além disso, a semântica de RoboChart em CSP inclui o uso de eventos de tempo para
modelar restrições temporais. Em RoboChart, o tempo pode ser expresso por clocks, que im-
põem restrições sobre quando eventos podem ocorrer. No CSP, essas restrições temporais são
representadas utilizando operadores como wait e tock, permitindo a especificação e verificação
de propriedades temporais de modelos robóticos. Embora haja a semântica temporizada, este
trabalho usará somente a semântica sem considerar tempo.

Outro aspecto importante é como RoboChart lida com a composição de processos. Em
CSP, a composição paralela é usada para modelar a execução concorrente de diferentes compo-
nentes do sistema. No contexto de RoboChart, essa composição permite descrever interações
entre múltiplos controladores e entre controladores e a plataforma. A sincronização entre esses
processos é feita por meio de eventos compartilhados, garantindo que a execução ocorra de
maneira coordenada.

Com a formalização em CSP, é possível realizar verificações rigorosas de modelos Robo-
Chart. A análise de refinamento permite comparar a implementação de um sistema com sua
especificação formal, garantindo que todos os comportamentos permitidos pela implementação
sejam compatíveis com a especificação. Além disso, a verificação de deadlocks, não determi-
nismos e divergências assegura que o sistema não entre em estados indesejados ou apresente
comportamentos não determinísticos.
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Portanto, a semântica CSP de RoboChart oferece uma base formal sólida para a modela-
gem e verificação de sistemas robóticos. A inclusão de eventos como .entered, .exit, .during, .in,
.out e .terminate permite um controle preciso das interações entre os componentes, enquanto
os mecanismos de sincronização e composição asseguram a consistência do comportamento
concorrente. Assim, RoboChart se posiciona como uma ferramenta eficiente para o desenvol-
vimento de sistemas robóticos, garantindo confiabilidade e verificabilidade formal.

2.3 PYTRANSITIONS

A biblioteca pytransitions é uma implementação orientada a objetos de FSM (Finite State

Machine), ou Máquina de Estados Finitos, em Python, amplamente reconhecida por sua flexibi-
lidade e simplicidade na modelagem de sistemas baseados em estados. Criada com o propósito
de facilitar o gerenciamento de estados e transições em sistemas complexos, pytransitions é
frequentemente empregada em áreas como sistemas robóticos e simulação de comportamentos
em software. Esta seção detalha as funcionalidades e componentes principais da biblioteca,
bem como sua aplicação em sistemas críticos.

A pytransitions fornece um conjunto abrangente de ferramentas para modelar FSMs, com
suporte para estados, transições, eventos e triggers. Além disso, ela permite a personalização
de máquinas por meio de ações (callbacks) associadas a transições e estados, viabilizando a
execução de comportamentos específicos em diferentes etapas do ciclo de vida do sistema. Uma
de suas características marcantes é a capacidade de suportar máquinas de estados hierárquicas
e paralelas, tornando a biblioteca adequada para sistemas altamente complexos.

Os componentes centrais do pytransitions incluem:

• Estados: representam as condições ou modos de operação de um sistema. Os estados
podem ser definidos de maneira simples (por strings) ou como objetos mais complexos,
permitindo maior flexibilidade na modelagem.

• Transições: definem como o sistema se move de um estado para outro. Cada transição
é ativada por um evento (trigger) e pode incluir condições específicas que precisam ser
satisfeitas para que a mudança de estado ocorra.

• Triggers (Eventos): são os estímulos que iniciam as transições. Podem ser definidos
como métodos que simulam o recebimento de comandos externos ou internos.
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• Máquina: representa a FSM toda, gerenciando os estados, transições, eventos e o estado
atual do sistema.

• Modelo: refere-se ao objeto que mantém o estado atual e pode ser enriquecido com
dados adicionais para representar as propriedades de um sistema.

Os estados são os blocos fundamentais de qualquer máquina de estados modelada com
pytransitions. Cada estado representa uma condição específica ou um modo de operação do
sistema. Por exemplo, em um robô industrial, os estados podem incluir “Idle”, “Movendo para
a Posição”, “Inspecionando Componente” e “Retornando à Base”. A biblioteca permite definir
estados de maneira simples, utilizando strings, ou como objetos mais complexos, possibilitando
a adição de propriedades específicas e métodos associados a cada estado.

Além disso, pytransitions suporta estados aninhados, conhecidos como estados hierárquicos
ou compostos, onde um estado pode conter subestados. Isso é útil para modelar sistemas com
comportamentos relacionados, como um robô que, no estado “Operacional”, pode alternar
entre subestados como “Navegando” e “Carregando Objeto”. Essa organização hierárquica
melhora a clareza do modelo, reduz a redundância e facilita a gestão de sistemas com múltiplos
níveis de complexidade.

As transições são os elementos que conectam os estados e definem como o sistema muda
de uma condição para outra. No pytransitions, cada transição é ativada por um evento (trigger)
e pode incluir condições que devem ser satisfeitas para a mudança ocorrer. Por exemplo, uma
transição do estado “Movendo para a Posição” para “Inspecionando Componente” pode ser
ativada pelo evento reached_position e condicionada à verificação de que a posição alvo foi
alcançada com precisão.

Além disso, as transições podem ter ações associadas por meio de callbacks, permitindo
que tarefas sejam executadas durante a mudança de estado. Por exemplo, ao transitar para o
estado “Retornando à Base”, a transição pode incluir um comando para desativar os atuadores
ou salvar dados coletados no sistema. Essa funcionalidade garante que o modelo não somente
descreva os estados e mudanças, mas também integre logicamente as ações associadas a cada
etapa.

Existem três tipos principais de callbacks: ao entrar em um estado (on_enter), executados
assim que o sistema transita para um estado específico; ao sair de um estado (on_exit), ativa-
dos antes que o sistema deixe um estado; e callbacks associados a transições (before/after),
que permitem verificar condições ou executar ações específicas antes, ou depois de uma mu-
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dança de estado. Esses recursos garantem maior flexibilidade e adaptabilidade, especialmente
em sistemas complexos.

A biblioteca pytransitions também se destaca pela possibilidade de trabalhar de maneira
orientada a eventos, permitindo que as transições entre estados sejam ativadas por estímulos
externos ou internos, conhecidos como triggers. Essa abordagem é particularmente útil em
sistemas reativos, onde as mudanças de estado dependem de eventos dinâmicos, como a
detecção de um sensor ou a recepção de um comando. Essa flexibilidade faz da biblioteca uma
ferramenta boa para modelar sistemas em tempo real, como aplicações robóticas e sistemas
de automação, onde a responsividade a eventos é crucial para garantir um comportamento
adequado.

Com suporte para modelagem orientada a eventos, controle detalhado do ciclo de vida, e
recursos avançados para gerenciar estados e transições, pytransitions é uma biblioteca poderosa
para sistemas baseados em estados. Sua flexibilidade permite modelar sistemas simples e
altamente complexos, atendendo às necessidades de diversas aplicações, desde robótica até
automação industrial.

A seguir, o Código Fonte 1 é um exemplo básico de uma FSM para o robô CFootBot,
conforme o modelo especificado na Seção 2.2. O robô alterna entre dois estados principais:
Moving (movendo-se para frente) e Turning (girando para desviar de um obstáculo). As
transições entre os estados são ativadas por eventos representando a detecção de obstáculos e
a conclusão da manobra de desvio. Este exemplo ilustra de forma simplificada como representar
o comportamento reativo do robô utilizando a biblioteca pytransitions.

Código Fonte 1 – Implementação do CFootBot usando pytransitions.

1 from transitions import Machine

3 class CFootBot:

def move_forward(self):

5 print("Movendo para frente.")

7 def turn(self):

print("Girando para desviar.")

9

robot = CFootBot ()

11

states = ['Initial ', 'Moving ', 'Turning ']

13 transitions = [

{'trigger ': 'start', 'source ': 'Initial ', 'dest': 'Moving ',

15 'after ': 'move_forward '},
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{'trigger ': 'obstacle_detected ', 'source ': 'Moving ', 'dest': 'Turning ',

17 'after ': 'turn'},

{'trigger ': 'turn_completed ', 'source ': 'Turning ', 'dest': 'Moving ',

19 'after ': 'move_forward '}

]

21

machine = Machine(model=robot , states=states , transitions=transitions , initial='

Initial ')

23

robot.start()

25 robot.obstacle_detected ()

robot.turn_completed ()

Fonte: Elaborada pelo autor (2025)

Durante a execução do código, o robô CFootBot segue um ciclo de vida bem definido,
estruturado pela máquina de estados. Inicialmente, o sistema encontra-se no estado Initial,
representando o ponto de partida do controle comportamental. A primeira transição ocorre com
a invocação do evento start(), que leva o robô ao estado Moving. Como parte dessa transição,
é executada a ação mov_forward(), que simboliza o início do deslocamento em linha reta.
Enquanto o robô permanece neste estado, presume-se que ele esteja operando normalmente
até que um evento externo, como a detecção de um obstáculo, dispare a transição para o
estado Turning por meio do evento obstacle_detected(). Ao entrar neste novo estado, a
função turn() é acionada, simulando a execução de uma manobra de desvio. Após o término
dessa ação, o evento turn_completed() promove o retorno ao estado Moving, reiniciando o
ciclo. Esse comportamento cíclico demonstra a dinâmica de um sistema reativo, no qual os
estados e as transições definem claramente as possíveis trajetórias de execução, enquanto os
eventos e métodos associados controlam o fluxo de ações do robô ao longo de sua operação.
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3 METODOLOGIA

Este capítulo apresenta a metodologia usada para verificar a conformidade de uma imple-
mentação de sistema de controle robótico em Python, usando a biblioteca pytransitions, com
seu modelo de design em RoboChart (e sua especificação formal). Para a apresentação da me-
todologia, considere um exemplo de uma linha de montagem que utiliza um sistema robótico
para executar operações como inspecionar e processar componentes, descartar itens defeituosos
e montar produtos. Dadas as preocupações com escalabilidade, optamos por reduzir o escopo
de nossa análise focando somente em máquinas de estado e avaliando-as separadamente. Essa
abordagem permitiu um processo de verificação mais estruturado e computacionalmente viá-
vel. Neste cenário, espera-se que o sistema robótico passe por vários estados, como inspecionar
componentes, identificar defeitos e executar tarefas de montagem com base na condição de
cada item. O sistema deve conseguir lidar com diferentes cenários, como encontrar compo-
nentes defeituosos, o que levaria ao descarte desses itens e à continuação do processo.

A metodologia de análise consiste em cinco etapas principais: formalização de requisitos
informais usando RoboChart, obtenção do LTS da semântica formal de RoboChart em CSP,
abstração do LTS, verificação de conformidade entre o LTS e o FSM da implementação por
meio do Algoritmo 1 de verificação de refinamento de traces e uma etapa final de análise de
resultados.

3.1 FORMALIZAÇÃO DOS REQUISITOS

A formalização de requisitos é um passo essencial no desenvolvimento de sistemas robóti-
cos, especialmente em contextos reativos, críticos e concorrentes. Em aplicações como linhas
de montagem industriais, dispensação automatizada de medicamentos ou robôs móveis au-
tônomos, qualquer ambiguidade nos requisitos pode resultar em falhas operacionais graves.
Especificações informais, geralmente escritas em linguagem natural, tendem a ser incompletas
ou ambíguas, falhando em representar detalhes como condições de sincronização, tratamento
de exceções e comportamentos emergentes. Nesse cenário, o uso de modelos formais permite
explicitar decisões, estruturar comportamentos condicionais e estabelecer limites operacionais
com precisão matemática, promovendo confiabilidade, segurança e rastreabilidade.

Com base nessa motivação, o primeiro passo metodológico deste trabalho consiste na utili-
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zação de RoboChart para traduzir requisitos informais — geralmente expressos em linguagem
natural — em modelos formais. Esses requisitos descrevem as operações esperadas do sis-
tema e podem ser classificados em duas categorias principais: funcionais e não funcionais. Os
requisitos funcionais especificam as ações que o sistema deve realizar — por exemplo, “pe-
gar componente” ou “embalar produto” — enquanto os não funcionais tratam de restrições
relacionadas a desempenho, segurança, tempo de resposta, entre outros aspectos. Embora
este trabalho concentre-se na formalização dos requisitos funcionais por meio de RoboChart,
é importante destacar que o formalismo também permite capturar requisitos não funcionais
relacionados a aspectos probabilísticos e temporais, os quais estão fora do escopo do presente
trabalho. Estruturas como pré-condições, guardas e eventos podem representar, por exemplo,
restrições como “só inspecionar o componente se ele estiver posicionado corretamente”, ofe-
recendo uma base formal para aspectos críticos de operação. Como exemplo, consideramos o
seguinte requisito informal para uma linha de montagem automatizada:

“O braço robótico, auxiliar da linha de montagem, deve pegar um componente e
inspecioná-lo. Caso o componente não seja defeituoso, o braço leva o componente
para a montagem, verifica a montagem, embala o produto e finaliza a operação”.

Para tornar mais clara a correspondência entre os elementos do requisito informal e os
componentes formais da máquina de estados, é útil detalhar como cada ação e decisão foi
mapeada no modelo. A sistemática adotada para a tradução dos requisitos segue um padrão
claro: o verbo principal da ação no requisito origina o nome do evento (trigger) da transi-
ção, enquanto o estado resultante é nomeado a partir do particípio do verbo, invertendo a
ordem com o objeto da ação. Por exemplo, a ação “pegar um componente” gera o evento
pick_component para a transição, e o estado associado passa a ser ComponentPicked, re-
presentando que o componente foi capturado com sucesso. De forma análoga, “inspecionar
componente” dá origem à transição inspect_component e ao estado ComponentInspected.

O braço robótico, elemento central do requisito, dá origem ao módulo responsável pelas
operações principais. A decisão condicional “caso o componente não seja defeituoso” é tra-
duzida para uma transição com guarda lógica, permitindo o desvio para diferentes caminhos:
se o componente estiver em boas condições, segue para a montagem por meio da transição
place_component [defective_component == false], caso contrário, o fluxo segue para o des-
carte. Essas transições condicionais incorporam diretamente a lógica de decisão do domínio,
mantendo a rastreabilidade entre a linguagem natural e os artefatos formais. A Figura 12
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torna visível essa estruturação, evidenciando como estados, eventos e guardas representam os
comportamentos esperados e promovem uma modelagem rigorosa e interpretável do sistema.

Para garantir a fidelidade entre o comportamento modelado e as expectativas do domínio,
algumas heurísticas de modelagem foram adotadas. A primeira delas foi o uso de estados
intermediários para representar ações compostas, o que permite rastrear cada etapa do processo
com precisão. Também se optou por manter os nomes de eventos e transições próximos
à linguagem original dos requisitos, facilitando a validação com especialistas do domínio.
Adicionalmente, priorizou-se uma granularidade que favorecesse modularidade, evitando que
estados acumulassem múltiplas funções, o que dificultaria a verificação formal posterior.

Conforme destacado em (GIESE; HELDAL, 2004; CARVALHO et al., 2015; SANTOS; CARVA-

LHO; SAMPAIO, 2018), traduzir requisitos informais em modelos formais é uma etapa crucial
no desenvolvimento de sistemas reativos, especialmente em domínios onde a previsibilidade e
a segurança são fundamentais. Essa transição tem o papel de eliminar ambiguidade, assegurar
precisão semântica e possibilitar a aplicação de técnicas de verificação automática. Requisitos
escritos em linguagem natural tendem a ser interpretados subjetivamente por diferentes mem-
bros da equipe de desenvolvimento, o que pode gerar inconsistências entre o comportamento
implementado e o desejado. A formalização, por sua vez, torna explícitos os comportamentos
esperados, os fluxos condicionais e os cenários de exceção, favorecendo a rastreabilidade entre
as etapas do ciclo de desenvolvimento.

Embora ferramentas automatizadas, como a NAT2TEST (CARVALHO et al., 2015), ofe-
reçam suporte parcial para converter sentenças em linguagem natural para modelos formais
de teste, ainda existem limitações consideráveis quanto à expressividade, controle semântico
e generalização para domínios complexos como a robótica. Por essa razão, neste trabalho,
a modelagem da máquina de estados em RoboChart foi realizada manualmente, para repre-
sentar com maior precisão os aspectos operacionais, restrições contextuais e particularidades
do domínio. Apesar de permitir um mapeamento mais cuidadoso entre requisitos e modelo,
essa tradução manual não assegura, por si só, que o comportamento especificado esteja com-
pletamente correto ou livre de ambiguidades. Por isso, a verificação de propriedades sobre
a especificação formal é uma etapa essencial para validar se o modelo realmente satisfaz os
requisitos pretendidos. No entanto, uma direção futura promissora seria a automação desse
processo, integrando técnicas de aprendizado de máquina e linguagens naturais controladas,
para agilizar e sistematizar a transição de requisitos informais para modelos formais verificáveis.

Embora nenhuma ferramenta automatizada tenha sido utilizada para gerar o modelo Ro-
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boChart a partir dos requisitos informais, essa tradução foi conduzida de forma sistemática,
por meio de um mapeamento estruturado, conforme demonstrado no exemplo fornecido. No
texto do requisito, verbos e ações-chave como “pegar”, “inspecionar”, “levar”, “verificar” e
“embalar” foram traduzidos cuidadosamente em transições na máquina de estados RoboChart,
representando mudanças entre diferentes etapas do processo. Os estados, por sua vez, foram
definidos para capturar condições ou configurações específicas do sistema, como a posição
do braço robótico ou o status de uma tarefa, compondo uma estrutura que reflete as fases
operacionais descritas no requisito. Para apoiar a validação do comportamento modelado, fo-
ram realizadas animações baseadas no código CSP gerado automaticamente por RoboTool,
permitindo observar a dinâmica de execução do sistema e verificar se ela condizia com os
cenários esperados. Embora essa abordagem não substitua a prova formal de propriedades
— sendo o método ideal para garantir a correção do modelo —, ela contribui como uma
etapa complementar de validação após a formalização, reforçando a confiança na adequação
do comportamento especificado.

Figura 12 – Assembly line parcial em RoboChart.

Fonte: Elaborada pelo autor (2025)

O uso do componente máquinas de estados (conforme descrito na Seção 2.2) em Ro-
boChart se alinha naturalmente com a implementação, que também é baseada em conceitos
de máquina de estados. Essa consistência facilita o desenvolvimento da metodologia e reduz
a complexidade e os desafios de escalabilidade da análise. Ao definir explicitamente estados e
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transições, o modelo se torna mais modular e fácil de entender, permitindo a decomposição
sistemática do comportamento do sistema. Além disso, essa abordagem aprimora a manute-
nibilidade e a verificação, pois cada estado encapsula funcionalidades específicas, permitindo
uma validação mais direta de requisitos e condições. Como já mencionado, a máquina de
estados resultante do requisito informal antes apresentado é ilustrada na Figura 12.

Por exemplo, na Figura 12, o estado WaitOp representa o braço robótico esperando pelo
próximo comando. A transição pick_component modela a ação de mover o braço para a
posição desejada e pegar o componente, enquanto o estado ComponentPicked resultante re-
presenta o status atualizado do sistema. Da mesma forma, a transição para o estado Compo-

nentInspected é acionada pelo evento inspect_component, indicando que a inspeção do com-
ponente foi concluída. Nesse processo, as transições também podem envolver troca de dados
e avaliações condicionais. Por exemplo, a transição inspect_component?defective_component

não somente sinaliza o evento de inspeção, mas também recebe informações sobre se o com-
ponente está com defeito. Esses dados são então usados em transições subsequentes, como
place_component [defective_component==false], o que garante que somente componentes
não defeituosos prossigam para a montagem. Ao estruturar sistematicamente esse processo
de tradução, o modelo RoboChart organiza efetivamente o comportamento do sistema e va-
lida os requisitos, garantindo que os estados e transições reflitam com precisão os objetivos
operacionais descritos na especificação informal.

Usar RoboChart fornece uma abordagem estruturada e rigorosa para modelagem, e a ca-
pacidade de gerar código CSP𝑀 aprimora ainda mais o processo de verificação ao permitir
análise formal e verificação de refinamento, garantindo que todas as possibilidades sejam
rigorosamente verificadas. Essa formalização permite uma transição natural para análise auto-
matizada, garantindo que os comportamentos esperados sejam implementados com precisão.
Além disso, o uso de variáveis e tipos em RoboChart fornece flexibilidade para lidar com dife-
rentes níveis de abstração, como contadores de peças ou estados booleanos para condições de
falha, adicionando robustez ao modelo. Finalmente, destaca-se que essa formalização também
prepara o sistema para etapas posteriores do ciclo de verificação e validação, como testes
formais, geração automática de testes e simulação. Ao estruturar os requisitos desde o iní-
cio em uma notação formal compatível com verificação automática, abrem-se possibilidades
para integração com testes baseados em modelos, verificação de tempo real e até síntese de
controladores. Esses desdobramentos podem ser explorados em trabalhos futuros.

Antes de avançar para a etapa de obtenção do LTS, é fundamental assegurar que o sistema
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especificado em CSP esteja livre de propriedades indesejadas, como deadlocks, não determi-
nismo e livelocks. A presença dessas propriedades compromete tanto a análise subsequente
quanto a confiabilidade geral do modelo. Por exemplo, deadlocks indicam estados de bloqueio
onde o sistema não pode mais avançar; o não determinismo pode causar comportamentos
ambíguos e imprevisíveis; enquanto livelocks representam ciclos infinitos de execução que im-
pedem o progresso efetivo do sistema. A verificação rigorosa dessas propriedades garante que
o modelo formal gerado por RoboChart seja consistente e apropriado para as fases seguintes
de análise e refinamento. Somente após a confirmação da ausência desses problemas é que se
prossegue para a geração do LTS.

3.2 OBTENÇÃO DO LTS

Uma vez que a especificação CSP de um modelo RoboChart esteja disponível, o próximo
passo em nossa metodologia é derivar seu LTS. Este processo é realizado usando a API
de FDR41 (FDR4, 2016), que fornece uma interface programática para carregar, analisar e
gerar o LTS correspondente ao modelo CSP. A API permite acessar os estados gerados,
identificação de transições habilitadas e inspeção do comportamento dinâmico do sistema.
Embora esteja disponível para Java e C++, usamos a versão Python para manter a consistência
com nossa linguagem de implementação, garantindo integração perfeita em nossa metodologia
e automatizando a geração de LTS e a verificação de transições válidas.

O processo de obtenção do LTS começa com a geração automatizada do código CSP
a partir do modelo desenvolvido em RoboChart, preservando toda a estrutura da máquina
de estados, incluindo estados, transições, condições de guarda e ações associadas. Após essa
geração, a especificação CSP é carregada na API de FDR4, que executa a análise e gera o
LTS. Este LTS, por sua vez, descreve todos os estados possíveis do sistema e as transições
entre eles, fornecendo uma representação precisa e completa do comportamento do modelo,
essencial para a validação formal e a análise do sistema. Porém, esse LTS obtido não está
pronto para ser usado na nossa abordagem e demanda um certo nível de abstração.

O Código Fonte 2 mostra a função Python utilizada para carregar a especificação CSP e
extrair o LTS e o primeiro nó do LTS, por meio da API de FDR4.

Código Fonte 2 – Função utilizada para obter o LTS a partir da especificação.
1 https://cocotec.io/fdr/manual/
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def obtain_lts(fdr_instance , csp_path):

2 fdr_instance.library_init ()

4 session = fdr_instance.Session ()

session.load_file(csp_path)

6

lts_target_process = session.evaluate_process('target_process ', fdr_instance.

SemanticModel_Traces , None).result ()

8 first_node = lts_target_process.root_node ()

10 return lts_target_process , first_node

Fonte: Elaborada pelo autor (2025)

3.3 ABSTRAÇÃO DO LTS

O LTS gerado a partir do modelo CSP inclui construções semânticas específicas de Ro-
boChart, muitas das quais não são diretamente relevantes para a metodologia proposta neste
trabalho. Para focar no comportamento essencial do sistema, utilizamos o processo VS_O__

da especificação CSP,que representa uma máquina de estados com estados visuais, ou seja,
estados como eventos, fornecendo uma visão de alto nível da máquina de estados. Esse pro-
cesso expõe eventos-chave — como s.entered (onde s é o nome completo do estado) e eventos
de comunicação marcados com o sufixo .in — enquanto já exclui transições internas 𝜏 . Es-
sas características tornam o VS_O__ particularmente adequado para extrair comportamentos
significativos.

Em nossa abordagem, os eventos são processados incrementalmente à medida que são en-
contrados, de forma dinâmica. Cada evento é avaliado de acordo com sua relevância: apenas
entradas de estado e eventos de comunicação entre componentes são retidos, com nomes de
estado simplificados e elementos estruturais desconsiderados. Embora fosse possível realizar
essa renomeação e filtragem diretamente no modelo CSP, optamos por aplicar essas transfor-
mações no nível da implementação Python. Essa escolha proporcionou maior flexibilidade e
integração com as etapas de análise subsequentes. O resultado dessa abstração por eventos é
um LTS abstrato que reflete o comportamento observável do sistema. Um exemplo de trace
desse LTS abstrato, derivado do processo VS_O__ da máquina de estados AssemblyLine, é
apresentado na Figura 13.

Essa estratégia garante a compatibilidade com o nível de abstração da implementação
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Figura 13 – Exemplo de trace após a abstração.

⟨𝑊𝑎𝑖𝑡𝑂𝑝, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑐𝑜𝑚𝑚𝑎𝑛𝑑.𝑖𝑛, 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑃 𝑖𝑐𝑘𝑒𝑑, ..., 𝐹 𝑖𝑛𝑖𝑠ℎ, 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒⟩

Fonte: Elaborada pelo autor (2025)

Python, que naturalmente omite eventos internos e sobrecarga estrutural. Além disso, ao in-
terpretar eventos diretamente do processo VS_O__, preservamos a semântica definida em
RoboChart e mantemos o alinhamento com a geração automatizada fornecida por Robo-
Tool (MIYAZAWA et al., 2016; MIYAZAWA et al., 2017). Isso permite que a metodologia per-
maneça sólida e consistente com o modelo formal subjacente. Em particular, essa abordagem
evita transformações desnecessárias da especificação original, garantindo que o comportamento
usado para validação seja derivado fielmente da mesma semântica que rege a análise formal
do modelo.

3.4 ALGORITMO DE VERIFICAÇÃO DE REFINAMENTO DE TRACES

A metodologia para verificar a conformidade entre a especificação formal e a implementa-
ção é baseada no conceito de refinamento de traces, formalmente representado como 𝑃 ⊑ 𝑄,
cuja definição é dada por traces(Q) ⊆ traces(P), veja a Seção 2.1.1; 𝑃 representa a espe-
cificação e 𝑄 a implementação. Para executar essa verificação, um algoritmo de Verificação

de Refinamento de Traces é proposto2. Esse algoritmo permite a exploração sistemática dos
estados e transições definidos no LTS abstrato da especificação CSP, conforme apresentado na
seção anterior, e os compara com aqueles do FSM da implementação. Importante destacar que
o algoritmo desenvolvido é uma versão simplificada do método utilizado pelo FDR (ROSCOE,
2010), especialmente no que diz respeito à manipulação da supermáquina e às normalizações
empregadas na verificação completa.

O algoritmo central da metodologia, apresentado no Algoritmo 1, utiliza uma abordagem
recursiva para percorrer o LTS abstraído a partir de CSP, verificando, em cada estado, se os
eventos e transições observáveis na FSM implementada com a biblioteca pytransitions estão
contidos no conjunto de comportamentos permitidos pela especificação. A função principal,
explore_transitions, itera sobre os nós (estados) do LTS abstraído da especificação, gerando
2 Uma abordagem alternativa seria derivar uma especificação CSP da implementação e usar FDR para

refinamento, mas o algoritmo descrito aqui foi escolhido.
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as transições a partir de um nó atual e comparando-as com as transições disponíveis na FSM
da implementação. Durante o processo, informações detalhadas sobre as transições e estados
visitados são registradas para análise posterior.

Algoritmo 1: Algoritmo de verificação de refinamento de traces.
1 Function

𝑖𝑠_𝑡𝑟𝑎𝑐𝑒𝑠_𝑟𝑒𝑓𝑖𝑛𝑒𝑑_𝑏𝑦(𝑠𝑝𝑒𝑐_𝑙𝑡𝑠, 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛_𝑚𝑎𝑐ℎ𝑖𝑛𝑒, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑡𝑠_𝑛𝑜𝑑𝑒):
2 foreach 𝑠𝑝𝑒𝑐_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑠𝑝𝑒𝑐_𝑙𝑡𝑠 do
3 𝑑𝑒𝑠𝑡_𝑛𝑜𝑑𝑒 = 𝑠𝑝𝑒𝑐_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛.𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛() // Target state associated with

the transition
4 𝑒𝑣𝑒𝑛𝑡_𝑙𝑡𝑠 = 𝑠𝑝𝑒𝑐_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛.𝑒𝑣𝑒𝑛𝑡()
5 𝑖𝑚𝑝𝑙_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛_𝑚𝑎𝑐ℎ𝑖𝑛𝑒.𝑔𝑒𝑡_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠()
6 if {𝑒𝑣𝑒𝑛𝑡_𝑙𝑡𝑠} ∩ {𝑒𝑛𝑡𝑒𝑟𝑒𝑑, 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒} then
7 𝑠𝑝𝑒𝑐_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑙𝑡𝑠.𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠(𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑡𝑠_𝑛𝑜𝑑𝑒)
8 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑖𝑚𝑝𝑙_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 =

𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛_𝑚𝑎𝑐ℎ𝑖𝑛𝑒.𝑔𝑒𝑡_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠(𝑖𝑚𝑝𝑙_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠)
9 if 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑖𝑚𝑝𝑙_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 ̸⊆ 𝑠𝑝𝑒𝑐_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 then

10 return false ; // Refinement failed
11 end

// Executes the transition specified by the model in the
implementation’s machine

12 𝑛𝑒𝑤_𝑖𝑚𝑝𝑙_𝑚𝑎𝑐ℎ𝑖𝑛𝑒 = 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛_𝑚𝑎𝑐ℎ𝑖𝑛𝑒.𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑠𝑝𝑒𝑐_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛)
13 end
14 if 𝑒𝑣𝑒𝑛𝑡_𝑙𝑡𝑠 =′ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒′ then
15 return true ; // End of refinement process
16 end
17 𝑖𝑠_𝑡𝑟𝑎𝑐𝑒𝑠_𝑟𝑒𝑓𝑖𝑛𝑒𝑑_𝑏𝑦(𝑠𝑝𝑒𝑐_𝑙𝑡𝑠, 𝑛𝑒𝑤_𝑖𝑚𝑝𝑙_𝑚𝑎𝑐ℎ𝑖𝑛𝑒, 𝑑𝑒𝑠𝑡_𝑛𝑜𝑑𝑒)

18 end
19 return true

Fonte: Elaborada pelo autor (2025)

A verificação de conformidade é realizada comparando o FSM derivado da implementação
com o LTS abstrato gerado a partir do modelo formal em CSP. O algoritmo garante que a
implementação execute as mesmas transições especificadas no modelo, garantindo que o com-
portamento observado seja consistente com o definido. Se a implementação não suportar as
mesmas transições ou apresentar comportamentos divergentes, o processo é interrompido, re-
gistrando o ponto de erro e o trace correspondente até a falha. Esse registro detalhado permite
a identificação precisa de inconsistências e fornece uma base para corrigir a implementação.

Uma das principais dificuldades encontradas nesse processo foi garantir que a máquina
de estados implementada em pytransitions seguisse os mesmos caminhos e alfabeto (nomes
de eventos) especificados pelo LTS do modelo. Para superar esse desafio, um dispositivo foi
usado para cadenciar a execução da implementação conforme a especificação. Cada evento na
especificação comunica, por meio de canais, o estado de variáveis booleanas associadas à exe-
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cução dos estados de implementação. A manipulação dessas variáveis garante que os estados
internos da máquina de implementação estejam alinhados com nós do LTS da especificação,
permitindo que a implementação faça a transição entre estados de maneira idêntica ao modelo.
Essa sincronização garante consistência entre o FSM da implementação e o modelo formal.

Antes de iniciar a exploração dos caminhos no LTS, o algoritmo realiza uma verificação
preliminar para assegurar o alinhamento dos eventos entre a especificação formal e a máquina
de estados da implementação. Na prática, essa etapa consiste em verificar se o alfabeto de
eventos — isto é, os nomes dos eventos que ambos os modelos reconhecem — está devi-
damente compatível. Caso sejam detectadas discrepâncias entre esses eventos, a execução é
interrompida com a geração de um erro específico, indicando que não é possível prosseguir
devido à incompatibilidade. Essa checagem inicial é fundamental para garantir que a análise
posterior compare efetivamente comportamentos correspondentes nos dois modelos.

O corpo principal do algoritmo implementa uma busca em profundidade sobre o LTS da es-
pecificação, representada pela função recursiva is_traces_refined_by. Para cada transição dis-
ponível no estado atual da especificação (obtida no laço foreach spec_transition in spec_lts),
o algoritmo identifica o estado de destino associado (dest_node) e o evento que dispara essa
transição (event_lts). Em seguida, são recuperadas todas as transições possíveis no estado
corrente da implementação (impl_transitions = implementation_machine.get_transitions()).
Essas transições passam por um filtro, que considera somente aquelas habilitadas pelas con-
dições atuais do sistema (available_impl_transitions). Se algum evento disponível na imple-
mentação não estiver previsto na especificação para aquele estado, o algoritmo reconhece a
falha de refinamento e retorna false, sinalizando a divergência. Caso contrário, a transição da
especificação é “executada” na implementação por meio do disparo da transição correspon-
dente (new_impl_machine = implementation_machine.trigger(spec_transition)), atualizando
o estado da máquina da implementação.

Se o evento da transição da especificação for o evento especial terminate, o algoritmo
considera que o caminho foi explorado com sucesso e retorna true, encerrando a busca naquele
ramo. Caso contrário, a função é chamada recursivamente com o novo estado da especifica-
ção (dest_node) e o estado atualizado da implementação (new_impl_machine), permitindo
a continuação da exploração em profundidade. Assim, o algoritmo percorre sistematicamente
todos os caminhos possíveis no LTS da especificação, verificando em cada passo se o com-
portamento da implementação acompanha corretamente o modelo formal, assegurando a pro-
priedade de refinamento de traces. Os eventos entered são tratados de forma especial, pois
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indicam a entrada em um novo estado, e são sempre considerados válidos para transições na
implementação, desde que o estado atual da implementação corresponda ao estado esperado
na especificação.

Uma das principais vantagens do algoritmo proposto é sua capacidade de alinhamento
direto com máquinas de estados implementadas em Python. Diferentemente das abordagens
tradicionais que verificam propriedades no nível abstrato da especificação formal, nosso método
interage diretamente com a FSM da implementação, garantindo que estados e transições
ocorram de maneira consistente com o modelo CSP. Esse alinhamento permite a detecção
precisa de desvios entre a especificação e a implementação, proporcionando uma verificação
mais prática e aplicável para sistemas reais. Além disso, essa metodologia é generalizável
para outras implementações, desde que os sistemas modelados mantenham uma estrutura de
estados e transições comparáveis e as especificações sejam verificáveis com FDR. Ao combinar
CSP com ferramentas de verificação automatizadas, ela oferece uma abordagem rigorosa e
repetível para sistemas que exigem alta confiabilidade e estrita adesão às especificações formais.

3.5 ANÁLISE DOS RESULTADOS

Ao aplicar o Algoritmo 1, pode ocorrer uma incompatibilidade entre a especificação e a
implementação. Nesses casos, o algoritmo acusa um erro e fornece um contraexemplo — um
trace completo até o ponto da falha — que detalha o momento exato em que a execução da
implementação diverge da especificação formal, bem como todo o caminho até esse ponto.
Esse contraexemplo evidencia não somente o evento que causou a falha, mas também o
caminho percorrido, oferecendo uma visão precisa do comportamento incorreto.

A análise dessas informações permite identificar e compreender as causas do erro, que
podem incluir eventos inesperados na implementação, condições de guarda mal definidas, or-
dens incorretas de transições ou interpretações equivocadas de eventos. A seguir, detalhamos
os principais tipos de inconsistências que o algoritmo pode detectar. O algoritmo de verifica-
ção consegue identificar duas classes principais de inconsistências entre a implementação e a
especificação: desalinhamento de eventos e divergência de comportamento. Essa distinção é
fundamental para orientar a análise e a posterior correção.
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3.5.1 Alfabetos incompatíveis

Antes de verificar os traces, o algoritmo compara os alfabetos de eventos da implementa-
ção e da especificação. É essencial que esses conjuntos sejam idênticos. Caso existam eventos
definidos em uma das partes e ausentes na outra, o algoritmo detecta essa discrepância e
apresenta um retorno específico, sinalizando o desalinhamento entre os modelos. Essa verifica-
ção preliminar previne análises incorretas e garante que a comparação ocorra em um contexto
semanticamente compatível. Na prática, esse tipo de erro é comum em situações em que
eventos são modelados incompletamente, mal nomeados ou simplesmente omitidos em uma
das representações.

Um exemplo de alfabeto incompatível pode ocorrer quando a especificação formal define
um evento chamado inspect_component, mas a implementação utiliza check_component.
Apesar de ambos os eventos representarem a mesma ação conceitual, a diferença nominal
impede o alinhamento necessário para a verificação de refinamento. Nesse caso, o algoritmo
interrompe a análise e retorna um erro indicando que os alfabetos não são compatíveis, des-
tacando os eventos discrepantes. Esse tipo de problema geralmente surge de falhas na comu-
nicação entre equipes de desenvolvimento e modelagem ou de mudanças não sincronizadas
entre o modelo formal e a implementação.

3.5.2 Divergência de Comportamento

Mesmo com os alfabetos alinhados e compatíveis, a implementação pode executar sequên-
cias de eventos que não são admitidas pela especificação formal. Nesses casos, o algoritmo
detecta a primeira transição que viola o conjunto de traces definidos pelo modelo abstrato.
O contraexemplo gerado apresenta a sequência completa de eventos percorrida por ambos os
modelos até o ponto de divergência, facilitando a identificação exata da causa do problema.
Essa classe de erro está geralmente associada a falhas de lógica, como guardas incorretas,
transições ausentes ou estados mal conectados.

A abordagem baseada em verificação de modelos orienta, assim, o processo de correção,
permitindo que desenvolvedores e analistas revisem o comportamento do sistema de forma
direcionada. Quando uma transição inesperada ou um comportamento ausente é detectado, a
implementação pode ser ajustada por meio da reformulação de guardas, reorganização da lógica
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ou refinamento da sequência de ações. Alternativamente, se o erro estiver na especificação
formal, é possível revisar o modelo RoboChart e gerar novamente sua semântica CSP para
refletir com maior fidelidade os requisitos esperados.

Esse processo dá origem a um ciclo iterativo de refinamento e validação, em que cada
execução do algoritmo contribui para alinhar mais precisamente a implementação ao compor-
tamento especificado. Além disso, os logs gerados durante a execução registram os caminhos
analisados e os estados visitados, possibilitando uma inspeção detalhada do sistema e forne-
cendo insumos valiosos para a geração de testes automatizados. Assim, além de assegurar
a conformidade, a metodologia favorece a rastreabilidade e a manutenção do sistema à me-
dida que ele evolui. A integração entre verificação formal, contraexemplos e iteração contínua
reforça a robustez do processo de desenvolvimento, promovendo a construção de sistemas
confiáveis mesmo em cenários de elevada complexidade.
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4 ESTUDOS DE CASO

Este capítulo apresenta dois estudos de caso que demonstram a aplicação prática da me-
todologia proposta neste trabalho. O primeiro estudo de caso aborda uma linha de montagem
simples, onde um braço robótico atua como auxiliar, realizando tarefas como inspeção de com-
ponentes e movimentação de peças para diferentes estágios do processo. O segundo estudo
se refere ao sistema de controle de um robô dispensador de medicamentos, com foco no mó-
dulo responsável por localizar e inspecionar os itens (Locate Medicine). Por se tratar de um
sistema inserido em ambiente hospitalar, ele exige alto grau de precisão e confiabilidade para
garantir a dispensação correta dos medicamentos. Ambos os estudos evidenciam a eficácia da
metodologia nas etapas de formalização dos requisitos, geração do LTS, verificação de confor-
midade entre modelo e implementação, e análise dos resultados, destacando seus benefícios e
os desafios enfrentados em cenários reais e industriais.

Todos os arquivos utilizados nesses estudos de caso — incluindo os modelos RoboChart,
as especificações formais em CSP, o código Python da implementação e demais artefatos
gerados — estão disponíveis publicamente nos repositórios do GitHub: pharmacy-artifacts e
assembly-line-artifacts. Esses repositórios fornecem os elementos necessários para reprodução,
extensão ou validação independente dos experimentos descritos neste capítulo.

4.1 ASSEMBLY LINE

Este estudo de caso apresenta um sistema de controle para uma linha de montagem
automatizada, onde um braço robótico auxilia em diferentes etapas do processo produtivo,
desde a inspeção até a finalização de um produto. Esse sistema representa uma abstração
comum em ambientes industriais modernos, nos quais robôs desempenham tarefas repetitivas
e críticas com precisão e autonomia. O estudo foi inicialmente introduzido na Seção 2.2 e
modelado formalmente na Figura 14, destacando a aplicabilidade da metodologia baseada em
especificações formais na validação de comportamentos esperados em sistemas industriais.
Trata-se de um sistema hipotético, proposto visando demonstrar a viabilidade da abordagem
em um cenário representativo, porém simplificado, que permite isolar e avaliar com clareza os
aspectos essenciais do processo de controle e verificação formal.

O sistema é responsável por executar operações como a coleta de componentes, inspeção

https://github.com/felipeadsm/pharmacy-artifacts
https://github.com/felipeadsm/assembly-line-artifacts
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de qualidade, montagem, verificação final, embalagem e encerramento da operação. O modelo
incorpora ainda mecanismos de detecção e tratamento de falhas, garantindo que componentes
defeituosos sejam identificados e descartados corretamente, e que o sistema adote estratégias
de recuperação ou finalização segura quando condições anormais forem detectadas.

Dentre os requisitos essenciais, destacam-se:

• Inspecionar cada componente antes da montagem, descartando aqueles considerados
defeituosos.

• Executar a montagem somente após a validação do componente.

• Verificar a montagem, embalar o produto e concluir a operação se não houver falhas.

• Retornar à posição Home e iniciar uma calibração caso o componente esteja defeituoso.

• Encerrar a operação após duas falhas consecutivas, evitando ciclos infinitos de tentativa
e erro.

O modelo completo da máquina de estados responsável por controlar o braço robótico
nesse cenário é composto por doze estados, incluindo estados iniciais, intermediários e finais,
organizando o fluxo da operação de forma sequencial e robusta. Essa estrutura foi implemen-
tada com base nas boas práticas de modelagem formal, utilizando a ferramenta RoboChart,
e posteriormente convertida para um modelo formal em CSP. O uso dessa abordagem per-
mite representar de maneira clara os comportamentos esperados do sistema, facilitando tanto
a verificação automática quanto a identificação de inconsistências entre a especificação e a
implementação.

4.1.1 Formalização dos Requisitos e Obtenção do LTS

A descrição informal dos requisitos funcionais do sistema da linha de montagem é expressa
como segue:

“O braço robótico auxiliar da linha de montagem deve pegar um componente,
inspecionar o componente e, caso ele não seja defeituoso, levá-lo para a mon-
tagem, verificar a montagem, embalar o produto e finalizar a operação. Caso o
componente seja defeituoso, o braço deve retornar para a posição Home e iniciar o
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Figura 14 – Assembly Line formalizado em RoboChart.

Fonte: Elaborada pelo autor (2025)

processo de calibração. Se ocorrerem duas falhas consecutivas durante o processo,
o sistema deve retornar à posição Home e encerrar a operação.”

Para alinhar a especificação formal ao comportamento descrito, foi construída uma máquina
de estados em RoboChart que reflete essa lógica. Cada etapa da operação foi modelada como
um estado distinto, incluindo transições explícitas para o tratamento de falhas. Essa estrutura
modela precisamente a sequência de ações e permite que propriedades como ausência de
deadlock, correção de fluxo e conformidade com os requisitos sejam avaliadas formalmente.

O modelo resultante da formalização dos requisitos pode ser observado na Figura 14. Ele
detalha o fluxo completo do processo, desde o início da operação até o término, incluindo os ca-
minhos alternativos para casos de erro. A estrutura da máquina de estados inclui eventos como
pick_component, inspect_component, assemble_product, verify_assembly, package_product,
finalize_operation e return_to_home, entre outros.

Após a construção do modelo, a ferramenta RoboTool foi utilizada para gerar automati-
camente o código correspondente em CSP, o qual confere a semântica dos comportamentos
modelados. Em seguida, esse código foi usado como entrada para a geração do grafo de tran-
sições LTS, que representa todos os estados possíveis do sistema e suas transições associadas.
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Esse grafo é fundamental para a aplicação posterior do algoritmo de verificação de refinamento
de traces.

4.1.2 Análise dos Resultados

Esse estudo de caso desempenhou um papel fundamental no desenvolvimento e validação
inicial da metodologia proposta, oferecendo um cenário completo para testar as etapas de
formalização, geração do LTS e aplicação do algoritmo. Utilizando uma asserção de ausência
de deadlock, analisamos o processo CSP AssemblyLine::VS__1, que define o comportamento
da máquina de estados RoboChart. Com 15 estados e 29 transições, o modelo apresenta uma
complexidade suficiente para representar comportamentos relevantes do sistema, incluindo
fluxos normais e situações de falha. A execução do algoritmo gerou logs úteis para análise e
possibilitou ajustes na lógica de verificação, contribuindo diretamente para o refinamento da
abordagem e demonstrando seu potencial de aplicação em contextos industriais.

No início do desenvolvimento, o algoritmo identificou algumas divergências entre a espe-
cificação formal e a implementação, como transições ausentes ou eventos incorretos. Esses
problemas foram sendo corrigidos durante o desenvolvimento e testes, garantindo que a im-
plementação seguisse os caminhos definidos no modelo formal. Após os ajustes necessários, o
algoritmo rodou sem qualquer falha, confirmando que a metodologia era eficaz em assegurar
a conformidade total entre a especificação e a implementação.

No fim, a implementação seguiu fielmente os caminhos especificados no modelo formal
em cenários normais e situações de falhas na operação. Por exemplo, ao identificar um com-
ponente defeituoso, o sistema transitou corretamente para o estado de calibração, conforme
modelado. A limitação de duas falhas consecutivas foi respeitada, com o sistema alcançando
o estado final após a terceira tentativa fracassada, atendendo aos requisitos. Os logs detalha-
dos gerados pelo algoritmo não somente confirmaram a conformidade da implementação, mas
também forneceram um recurso útil para testes futuros, garantindo que o sistema mantivesse
o comportamento esperado mesmo em condições simuladas.
1 Os arquivos CSP podem ser encontrados em: <https://github.com/felipeadsm/assembly-line-artifacts>

https://github.com/felipeadsm/assembly-line-artifacts
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4.2 LOCATE MEDICINE

O estudo de caso analisado, consiste em um sistema de controle que utiliza um braço
robótico para dispensar medicamentos em uma farmácia do Hospital das Clínicas da Universi-
dade Federal de Pernambuco. Esse sistema é responsável por executar tarefas críticas, como
selecionar medicamentos prescritos para pacientes, garantindo precisão, segurança e eficiência
durante a operação. O controle do braço robótico é implementado por meio de máquinas
de estados finitos (FSM), que gerenciam as transições entre diferentes estados do sistema,
conforme os eventos recebidos e condições definidas.

Alguns dos requisitos centrais do sistema especificam que o braço robótico deve ser capaz
de:

• Dispensar medicamentos prescritos com base nas informações recebidas.

• Localizar os medicamentos na estante de armazenamento utilizando visão computacio-
nal, com estimação de pose baseada em marcadores fiduciais.

• Garantir que o movimento do braço robótico não interfira ou colida com a estante,
promovendo segurança durante a operação.

• Permitir pausas e retomadas a critério do operador humano, bem como interromper
imediatamente a operação quando solicitado.

• O sistema só pode tentar no máximo duas vezes realizar uma tarefa, caso não consiga,
na terceira vez o sistema deve ir para erro, recomendando uma resolução do erro se
possível.

• Identificar e tratar erros toleráveis e continuar a operação, enquanto solicita suporte
humano em caso de erros críticos.

O modelo geral (informal) do sistema de controle do braço robótico é mostrado na Fi-
gura 15. Ele é composto por módulos interconectados que gerenciam funcionalidades essen-
ciais, como controle de movimento do braço, estimativa de pose por visão computacional e
gerenciamento de interação com o operador humano. No centro do sistema está a máquina
de estados DispensingMachine, que orquestra as operações do braço robótico, desde a identi-
ficação do medicamento até a dispensação segura. A máquina de estados DispensingMachine
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é composta por três estados, como CreatingConnections e MoveToHomePos, bem como três
máquinas de estados, cada uma responsável por uma funcionalidade específica: LocateMe-
dicine, CaptureMedicine e DropOffMedicine. Juntas, elas formam a estrutura hierárquica da
DispensingMachine. A adoção dessa estratégia torna o sistema modular, permitindo traba-
lhar com cada máquina de estados separadamente, além de simplificar significativamente os
testes e a validação. Essas máquinas de estados foram implementadas usando a biblioteca
pytransitions.

Figura 15 – Esboço do sistema: controle de dispensação de medicamentos.

Fonte: Elaborada pelo autor (2025)

Por questões de escalabilidade, restringimos nossa análise a uma parte específica do sis-
tema, em vez de avaliá-lo na totalidade. Essa abordagem seletiva nos permitiu focar na ve-
rificação de propriedades comportamentais essenciais, mantendo a viabilidade computacional.
Nesse contexto, nosso estudo concentra-se no módulo LocateMedicine, destacado na Figura 15
como parte da estrutura geral do sistema. Este módulo, detalhado na Figura 16, desempenha
um papel crucial na identificação da posição dos medicamentos no ambiente de trabalho. Ele
integra múltiplos componentes, incluindo controle de braço robótico, aquisição de dados de
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câmera e processamento de visão computacional. O módulo gerencia transições entre estados
críticos, como detecção de marcadores fiduciais, estimativa de pose e posicionamento preciso,
garantindo a precisão e a confiabilidade do processo de dispensação de medicamentos.

A Figura 16 ilustra a máquina de estados LocateMedicine analisada neste estudo, dese-
nhada com a ferramenta Excalidraw (EXCALIDRAW, 2020). Tanto a Figura 15, que descreve
o sistema como um todo, quanto a Figura 16, que detalha a funcionalidade de localização de
medicamentos, serviram como base para a implementação. No diagrama de estados ilustrado
na Figura 16, em termos gerais, o braço robótico se move para uma região específica do
arranjo físico, procura o marcador associado ao medicamento e, se o marcador for encontrado,
move-se para uma posição intermediária próxima ao marcador. O sistema então confirma se
o marcador detectado corresponde ao medicamento a ser dispensado.

Figura 16 – Esboço do sistema: Locate Medicine.

Fonte: Elaborada pelo autor (2025)

A metodologia será aplicada ao estudo de caso iniciando com a formalização dos requisitos
utilizando RoboChart, seguida da obtenção do LTS da especificação, abstração do LTS da
especificação e então a aplicação do algoritmo verificação de refinamento de traces.

4.2.1 Formalização dos Requisitos e Obtenção do LTS

A tarefa de localizar medicamentos envolve uma sequência de operações interdependentes,
que devem ser executadas de maneira ordenada e confiável para garantir a segurança e a
eficácia do sistema. Essa tarefa é descrita informalmente como:
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O braço robótico deve se mover para uma posição de leitura, identificar o mar-
cador associado ao medicamento, aproximar-se do local estimado, confirmar a
identificação do marcador e, se todas as etapas forem bem-sucedidas, concluir o
processo. No entanto, se ocorrerem duas falhas de execução, o sistema transita
para um estado de falha.

Como este estudo de caso se baseia em um sistema existente, a modelagem de RoboChart
se alinhou à estrutura utilizada nos requisitos informais, onde os verbos eram representados
como estados. Essa abordagem difere da utilizada na Seção 3.1. Essa adaptação é essencial
para alinhar o modelo RoboChart (e, consequentemente, sua semântica formal em CSP) com
o comportamento do sistema já implementado, garantindo consistência e precisão na análise.

A etapa de formalização de requisitos desempenha um papel crucial na redução de am-
biguidades e na captura de detalhes críticos. Nesse contexto, a formalização do requisito de
localização do medicamento em RoboChart resultou na criação de uma máquina de estados,
mostrada na Figura 17, que encapsula os principais comportamentos e transições do sistema.
Cada etapa do processo foi modelada como um estado específico, representando as diferentes
fases da operação do braço robótico. Esses estados foram definidos para capturar tanto as
principais ações quanto os momentos de verificação necessários para garantir a precisão do
sistema. O modelo inclui os seguintes estados:

• MoveToSection: O estado em que o robô inicia a busca pelo marcador fiducial.

• FindMarker: O sistema identifica o marcador associado ao medicamento.

• MoveToPoseRef: O robô se move para a posição estimada próxima ao medicamento.

• ConfirmMarker: O sistema verifica se o marcador identificado corresponde ao medica-
mento.

• Fail: O processo é interrompido devido a uma tentativa malsucedida ou a um erro.

• Finish: O processo é concluído com sucesso.

A Figura 17 apresenta a máquina de estados de RoboChart resultante da formalização de
requisitos informais, representando o comportamento do sistema de controle do braço robótico.
Neste modelo, comportamentos como movimentação para a posição de leitura, identificação
do marcador associado ao medicamento, aproximação da posição estimada e confirmação do
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marcador são representados de forma clara e precisa. Este projeto em RoboChart serve como
ponto de partida para a obtenção automática de sua semântica formal em CSP, garantindo
que os comportamentos especificados possam ser rigorosamente verificados nas etapas subse-
quentes.

Figura 17 – Locate Medicine formalizado em RoboChart.

Fonte: Elaborada pelo autor (2025)

A validação do modelo RoboChart poderia ser incluída, mas estenderia o escopo além do
objetivo principal do estudo de verificar a conformidade do sistema por meio do LTS. Isso pode
ser explorado em trabalhos futuros. Após a formalização dos requisitos como uma máquina
de estados RoboChart, as próximas etapas envolvem a obtenção e abstração automáticas do
LTS correspondente a partir do código CSP gerado por RoboTool, conforme detalhado nas
Seções 3.2 e 3.3. Uma verificação básica de deadlocks, livelocks e determinismo é realizada
antes da geração e abstração do LTS, conforme descrito na Seção 3.2. Os processos de geração
e abstração do LTS preservam a semântica CSP de todos os construtores em RoboChart. Essa
representação em LTS nos permite explorar todas as configurações possíveis do sistema e suas
transições, facilitando a aplicação do algoritmo de verificação de refinamento de traces.

4.2.2 Análise dos Resultados

Esta seção apresenta os resultados do processo de verificação para este estudo de caso,
destacando os casos em que a implementação foi consistente com os requisitos e os cenários
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em que inconsistências foram detectadas. A complexidade adicionada pelo manuseio de diver-
sos fármacos não é considerada por esta máquina de estados, que se concentra somente na
lógica de controle do robô. A camada de software Python, que escolhe o fármaco específico
a ser administrado, contém essa variabilidade. Consequentemente, o modelo comportamental
do robô é propositalmente mantido básico, gerenciando uma única prescrição por vez. Inicial-
mente, aplicamos a metodologia a um modelo menor e mais gerenciável devido a preocupações
preliminares com as possíveis restrições de escalabilidade de FDR4. Apesar da simplicidade in-
tencional do modelo CSP gerado automaticamente por RoboTool, sua validade foi confirmada
por meio da ferramenta FDR4, utilizando uma asserção de ausência de deadlock. Analisamos
o processo CSP LocateMedicineFSM::VS__2, que define o comportamento da máquina de
estados RoboChart mostrada na Figura 17. Como citado na introdução, a modelagem foi pro-
positalmente simplificada para focar no núcleo sequencial do sistema, restringindo o número
de estados e transições a fim de garantir a viabilidade da verificação formal. Ele contém 46
estados e 57 transições, incluindo eventos internos (𝜏). O tempo total de processamento para
compilar o modelo e realizar a verificação foi de 0,11 segundos, utilizando um computador
com sistema operacional Linux, processador AMD Ryzen 5 5600G a 4400 MHz e 32 GB de
RAM.

Como já havia uma implementação inicial construída utilizando os requisitos informais, o
primeiro passo foi formalizar os requisitos e obter o LTS. Com base nos requisitos informais e
na implementação já construída por uma equipe de desenvolvimento, o sistema apresentado
na Seção 4.2 foi formalizado utilizando RoboChart, dando origem ao modelo apresentado na
Figura 17.

A aplicação do Algoritmo 1 revelou cenários de consistências e inconsistências entre a es-
pecificação formal e o modelo implementado inicialmente. O primeiro cenário de inconsistência
foi identificado logo no início da aplicação do Algoritmo 1, no qual o algoritmo relatou diver-
gências nos nomes de estados e transições. Se os nomes não fossem exatamente os mesmos
na especificação e na implementação, o algoritmo sinalizaria imediatamente a discrepância,
fornecendo o trace exato até o ponto do erro. Inicialmente, a correção envolveu apenas a
renomeação de elementos para garantir correspondências exatas entre a especificação e a im-
plementação. Essas alterações foram aplicadas diretamente na implementação para manter a
consistência. Esse feedback imediato se mostrou essencial para corrigir erros de nomenclatura
e garantir uma correspondência precisa entre o modelo formal e sua implementação prática.
2 Os arquivos CSP podem ser encontrados em: <https://github.com/felipeadsm/pharmacy-artifacts>

https://github.com/felipeadsm/pharmacy-artifacts
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O segundo cenário de inconsistência a destacar é a ausência de uma transição para falha
no estado MoveToPosRef na implementação. Nesse estado, não houve resultado para uma
falha consecutiva, ou seja, a partir desse estado, o sistema nunca mais apresentou falha,
permanecendo em um ciclo sem tratamento. Como resultado, o sistema poderia falhar várias
vezes consecutivas sem nenhuma ação corretiva. Ao aplicar a estratégia desenvolvida, o rastro
obtido da especificação foi o seguinte:

⟨𝑚𝑜𝑣𝑒_𝑡𝑜_𝑠𝑒𝑐𝑡𝑖𝑜𝑛, 𝑓𝑖𝑛𝑑_𝑚𝑎𝑟𝑘𝑒𝑟, 𝑟𝑒𝑝𝑒𝑎𝑡_𝑚𝑜𝑣𝑒_𝑡𝑜_𝑝𝑜𝑠_𝑟𝑒𝑓,

𝑟𝑒𝑝𝑒𝑎𝑡_𝑚𝑜𝑣𝑒_𝑡𝑜_𝑝𝑜𝑠_𝑟𝑒𝑓, fail_move_to_pos_ref⟩

O trace da implementação após a aplicação da estratégia foi esse:

⟨𝑚𝑜𝑣𝑒_𝑡𝑜_𝑠𝑒𝑐𝑡𝑖𝑜𝑛, 𝑓𝑖𝑛𝑑_𝑚𝑎𝑟𝑘𝑒𝑟, 𝑟𝑒𝑝𝑒𝑎𝑡_𝑚𝑜𝑣𝑒_𝑡𝑜_𝑝𝑜𝑠_𝑟𝑒𝑓,

𝑟𝑒𝑝𝑒𝑎𝑡_𝑚𝑜𝑣𝑒_𝑡𝑜_𝑝𝑜𝑠_𝑟𝑒𝑓, repeat_move_to_pos_ref⟩

Note que o último evento dos dois traces são eventos diferentes e por isso o algoritmo
de verificação e refinamento apontou uma divergência. Enquanto a especificação disparou o
evento fail_move_to_pos_ref, a implementação disparou o evento repeat_move_to_pos_ref

erradamente, pois, como dito anteriormente, o estado MoveToPosRef da implementação não
tinha uma transição que lidaria com falhas consecutivas.

Outro cenário de inconsistência observado foi que, em alguns estados, o limite de execuções
com falha excedeu o valor especificado no requisito informal (descrito na Seção 4.2.1), que
foi definido como padrão em todo o sistema. Como resultado, a implementação não refina
a especificação, pois os traces da implementação não seriam um subconjunto dos traces da
especificação, levando a um comportamento diferente do esperado. Em casos de inconsistência
como esse, o algoritmo emite o trace da especificação e o trace da implementação, juntamente
com informações sobre quais eventos são aceitos pela especificação e pela implementação.

Após a correção dessas inconsistências iniciais, a implementação seguiu de perto os com-
portamentos esperados definidos no modelo formal. Por exemplo, em situações em que o braço
robótico precisava identificar o marcador associado ao medicamento e se mover para a posição
correta, a FSM da implementação replicou com precisão o fluxo de transição modelado. Con-
forme declarado na Seção 3.4, a aplicação do algoritmo gera um relatório contendo todos os
caminhos exercitados durante a execução. Ao final de cada execução, esses caminhos podem
ser revisados para identificar quaisquer divergências.
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4.3 DISCUSSÕES

A formalização de requisitos no desenvolvimento de sistemas robóticos críticos é essencial
para garantir que o comportamento esperado seja rigorosamente especificado e validado. Neste
trabalho, o uso de RoboChart e sua semântica CSP fornece uma estrutura sólida para descrever
sistemas de controle de braços robóticos, permitindo a verificação de propriedades essenciais,
como ausência de deadlocks e conformidade funcional. Essa abordagem não somente melhora
a confiabilidade do sistema, mas também simplifica a detecção precoce de inconsistências,
reduzindo os custos associados a correções em estágios posteriores de desenvolvimento. Vale
ressaltar que o método foi aplicado em um projeto real, relacionado à automação da dispensa-
ção de medicamentos no Hospital das Clínicas, demonstrando sua aplicabilidade em cenários
práticos e relevantes.

Um dos principais impactos dessa metodologia é a capacidade de estabelecer uma ligação
clara entre requisitos informais e sua implementação. A modelagem de sistemas robóticos
usando RoboChart e CSP facilitou a transição de conceitos abstratos para especificações
concretas, que foram posteriormente validadas por meio do método desenvolvido. No contexto
do projeto em andamento, isso garantiu que as operações críticas do braço robótico fossem
descritas e analisadas com precisão, garantindo o atendimento de requisitos essenciais, como
navegação segura no ambiente de trabalho e identificação correta dos medicamentos. Essa
integração aumentou a rastreabilidade dos requisitos, um fator crucial para a segurança e a
precisão exigidas em sistemas de dispensação de medicamentos hospitalares.

A aplicação do método em um sistema real em desenvolvimento trouxe resultados tangíveis,
demonstrando a viabilidade da abordagem para projetos práticos e complexos. A formalização
e a validação contínuas contribuíram para um desenvolvimento mais estruturado e para a
identificação de melhorias no sistema de controle do robô. Além disso, o uso de ferramentas
como RoboTool e FDR para validar a especificação em relação à implementação destaca a
capacidade do método de integrar práticas acadêmicas e industriais. Essa conexão entre teoria
e prática fortalece o impacto do trabalho e sua relevância para sistemas críticos reais.

Apesar de suas vantagens, este trabalho enfrentou desafios significativos, particularmente
no controle da execução da implementação em Python e na extração do LTS da especificação
usando a API FDR. Um dos principais desafios foi garantir que a máquina de estados imple-
mentada seguisse exatamente o comportamento especificado no modelo CSP, respeitando a
cadência dos eventos. Para superar esse problema, foi necessário implementar uma estratégia
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baseada em variáveis de controle sincronizadas entre a especificação e a implementação, o
que exigiu instrumentação e esforços de verificação adicionais. Embora eficaz, essa solução
introduz complexidade ao processo, especialmente quando aplicada a sistemas maiores.

Uma possível solução para lidar com os desafios de complexidade e escalabilidade seria ado-
tar a verificação modular e o raciocínio composicional. Isso envolve a decomposição de sistemas
grandes em submódulos menores e a análise de cada parte independentemente, facilitando a
validação de sistemas maiores. Na Seção 4.2, o subsistema de 46 estados analisado demons-
trou a viabilidade da aplicação dessas abordagens, fornecendo uma base para o escalonamento
da verificação para sistemas mais complexos no futuro. O foco no módulo LocateMedicine

foi escolhido devido à sua viabilidade computacional, permitindo que a metodologia seja efe-
tivamente validada em limites práticos. Embora o estudo de caso seja específico e limitado
a um módulo de controle mais restrito, ele serve como uma base sólida para a aplicação da
metodologia em sistemas maiores e mais complexos.

Outro desafio relevante foi extrair o LTS da especificação CSP. A API FDR usada para
essa tarefa é limitada à versão 2.7 do Python, apresentando problemas de compatibilidade
e restringe o suporte a bibliotecas mais modernas. Além disso, o tratamento da semântica
CSP (especificação formal) de RoboChart, gerado automaticamente por RoboTool, apresentou
desafios devido à sua complexidade e interpretabilidade limitada, dificultando a adoção de
abordagens e ferramentas de análise alternativas.

Nossa metodologia, embora aplicada especificamente aos dois estudos de caso antes apre-
sentados, demonstra potencial significativo para generalização em outros domínios que exigem
alta confiabilidade e segurança. A combinação de RoboChart, CSP e FDR fornece uma estru-
tura versátil e rigorosa para a modelagem formal e verificação de sistemas robóticos, garantindo
confiabilidade e segurança em sua operação. O uso de ferramentas automatizadas, como FDR,
simplifica a análise e validação de especificações formais, aumentando a eficiência do processo
de verificação. Além disso, embora a implementação apresentada utilize a biblioteca pytransi-

tions, a abordagem proposta não se limita a uma tecnologia específica. Sistemas que utilizam
outras bibliotecas de máquinas de estados ou arquiteturas de controle podem ser facilmente
integrados, uma vez que o foco da metodologia está no alinhamento entre o comportamento
formalizado e a implementação prática, independentemente da ferramenta empregada. Essa
flexibilidade amplia o escopo do método, permitindo sua aplicação em sistemas com diferen-
tes escalas e complexidades. Por exemplo, no controle de tráfego ferroviário, onde os estados
representam seções da via e as transições modelam as permissões de movimento, ou em dro-
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nes autônomos, onde os estados incluem fases de voo e as transições envolvem comandos e
sensores, a formalização e a validação propostas neste trabalho podem ser diretamente adap-
tadas. Essa capacidade de generalização reforça o valor da abordagem, destacando-a como
uma solução robusta e replicável em diferentes contextos.

4.4 AMEAÇAS À VALIDADE

Uma ameaça potencial à validade é a ausência de uma fase de normalização durante a
verificação de refinamento, particularmente no contexto do LTS da especificação. A normaliza-
ção, conforme descrita em (ROSCOE, 2010), é uma etapa fundamental no FDR. Esse processo
garante que cada trace finito seja mapeado para um único nó, simplificando as comparações
ao reduzir a complexidade estrutural do LTS. No entanto, em nossa metodologia, optamos
por avaliar diretamente o LTS bruto, sem normalização, porque nosso sistema não apresenta
paralelismo ou propriedades altamente não determinísticas. Assim, o modelo de trace gerado
permanece funcionalmente equivalente a uma representação normalizada, tornando desneces-
sário o processamento adicional.

Outro fator motivador foi a eliminação de eventos redundantes. Na semântica CSP de
uma máquina de estados RoboChart, vários eventos são ocultos (e representados por 𝜏s no
LTS), simplificando o modelo sem comprometer a precisão na avaliação dos comportamentos
esperados. Essa abordagem é particularmente eficaz nos sistemas abordados, onde os fluxos de
trabalho são lineares e não exigem resolução de conflitos entre múltiplos caminhos possíveis.
Assim, a ausência de normalização não compromete a análise, mas permite um foco mais direto
na comparação de Traces entre a implementação e a especificação. Apesar dessa justificativa,
é importante reconhecer que a ausência de normalização pode limitar a aplicabilidade de nossa
abordagem a sistemas mais complexos, especialmente aqueles que envolvem paralelismo ou
alto grau de não determinismo. Nesses casos, a ausência de um processo de simplificação
estrutural pode dificultar a análise de conformidade, tornando a extensão e a generalização da
metodologia mais desafiadoras. Portanto, embora os fluxos de trabalho lineares no estudo de
caso tenham minimizado o não determinismo, trabalhos futuros devem explorar como integrar
técnicas de normalização, particularmente para sistemas paralelos, onde a normalização se
torna uma etapa mais crítica para garantir a simplificação estrutural do sistema.

O processo de formalização de requisitos informais em modelos RoboChart apresenta outra
ameaça potencial. Interpretações errôneas ou omissões durante esse processo podem resultar
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em uma especificação formal que não consegue capturar o comportamento pretendido do sis-
tema. Por exemplo, requisitos incompletos ou ambíguos podem introduzir erros no modelo
RoboChart. Além disso, a natureza manual desse processo introduz o risco de viés, onde jul-
gamentos subjetivos ou suposições incorretas podem influenciar a formalização do sistema.
Abordar essa questão requer ferramentas e metodologias aprimoradas para elicitação e forma-
lização de requisitos, como as abordagens propostas no Capítulo 5, incluindo a pesquisa de
(SANTOS; CARVALHO; SAMPAIO, 2018), que podem servir de base para avanços futuros nessa
área. Para mitigar essa ameaça, esforços são feitos para revisar e validar requisitos durante a
fase de modelagem, incluindo revisões iterativas por pares. No entanto, erros humanos nesse
processo não podem ser completamente eliminados.

O processo iterativo de verificação e refinamento também apresenta desafios de validade.
Embora o ciclo de correção e revalidação permita ajustes iterativos nas especificações e im-
plementações, existe o risco de viés, onde as correções podem inadvertidamente alinhar a
implementação a uma especificação incorreta. Para atenuar isso, práticas rigorosas de revi-
são foram implementadas em cada iteração, garantindo que os ajustes fossem justificados por
evidências claras de falha ou inconsistência.
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5 TRABALHOS RELACIONADOS

Métodos formais desempenham um papel crucial na garantia da confiabilidade e segurança
em sistemas robóticos críticos. Esses métodos permitem a especificação, verificação e valida-
ção precisas de propriedades essenciais, como a ausência de deadlocks, correção funcional e
segurança operacional. Nos últimos anos, diversas abordagens têm explorado a aplicação de
técnicas formais a sistemas autônomos e ciberfísicos, destacando a crescente relevância desse
campo para a robótica. Nosso trabalho se concentra na integração de RoboChart e de CSP
para formalizar requisitos e validar implementações, com ênfase em sistemas robóticos que
lidam com tarefas críticas, como a dispensação de medicamentos.

As pesquisas de Luckcuck et al. (LUCKCUCK et al., 2019) e Schlegel et al. (SILVA et al., 2021)
fornecem uma visão geral abrangente da aplicação de métodos formais em sistemas robóticos.
As primeiras destacam os desafios e avanços na especificação e verificação de sistemas au-
tônomos, identificando lacunas em metodologias focadas em confiabilidade e segurança. Este
último complementa essa perspectiva revisando abordagens baseadas em modelos, enfatizando
sua relevância no desenvolvimento de sistemas robóticos adaptativos. Juntos, esses trabalhos
fornecem uma base sólida para a compreensão do contexto e da evolução de ferramentas e
metodologias na área.

RoboTool tem sido amplamente utilizado para modelar sistemas robóticos. (LI et al., 2024)
apresentaram uma estrutura que combina RoboChart e sua ferramenta associada, RoboTool,
para o projeto e a verificação formal de controladores robóticos. Por meio de um estudo de
caso envolvendo robôs exploratórios, eles demonstraram como a geração automática de código
e modelos matemáticos pode facilitar a validação e a simulação em plataformas robóticas
reais e independentes de hardware. Essa abordagem não somente verificou as propriedades de
segurança, mas também abriu caminho para uma implementação mais confiável de sistemas
robóticos.

Complementando e expandindo as capacidades de ferramentas anteriores, RoboWorld foi
introduzido para oferecer um suporte mais completo ao ciclo de vida de sistemas robóticos,
em particular, ao considerar premissas sobre o ambiente (BAXTER et al., 2023). Um editor
textual permite documentar de forma precisa restrições e propriedades do ambiente robótico.
A semântica formal da documentação é automaticamente gerada por RoboTool, permitindo
sua integração com a semântica de modelos RoboChart. Desta forma, tem-se uma abordagem
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integrada que permite analisar e testar modelos de sistemas robóticos em conjunto com os
seus respectivos ambientes operacionais.

Darolt, i (DAROLt, I, 2019) utiliza RoboChart para modelar e verificar o comportamento de
um robô de limpeza autônomo projetado para operar em painéis solares, com foco na validação
de propriedades-chave, como a retomada da operação após a recarga e a cobertura total dos
painéis, por meio de verificações baseadas em CSP. O estudo também apresenta uma nova
modelagem para controladores PID, explorando os limites da expressividade de RoboChart.
Trabalhos como o de Murray et al. (MURRAY et al., 2022) destacam a aplicação de RoboChart
em softwares de modelagem para sistemas industriais críticos, como o controle eletrostático
de alta tensão (HVC). O estudo demonstra os desafios das abstrações de baixo nível e o
equilíbrio entre precisão e complexidade computacional, enquanto Simulink foi utilizado para
modelar o hardware. Além disso, Santos et al. (SANTOS; FILHO; SAMPAIO, 2023) exploraram o
uso de RoboChart em competições robóticas, como Veículos Aéreos Não Tripulados (VANTs),
aplicando a ferramenta para modelar e verificar sistemas de navegação e detecção de objetos,
evidenciando sua capacidade de gerenciar a complexidade em sistemas que exigem alta precisão
e confiabilidade.

Yan et al. (YAN; FOSTER; HABLI, 2023) propõem uma técnica de verificação composicional
automatizada para modelos de máquinas de estados RoboChart usando Isabelle/HOL. Este
método utiliza Z-Machines como notação intermediária para transformar modelos RoboChart
em uma representação semântica compatível com Isabelle. A técnica permite a verificação de
invariantes estruturais e propriedades críticas, como a ausência de deadlocks. Para demonstrar
a abordagem, os autores a aplicaram a um estudo de caso envolvendo um veículo subaquático
autônomo, validando modos de operação e transições em cenários de alto risco, como colisões
com obstáculos. Este trabalho destaca a escalabilidade e a eficiência de métodos formais
baseados em provas para garantir a confiabilidade em sistemas robóticos complexos.

O uso de CSP e FSMs provou ser eficaz na formalização de requisitos e na garantia
da conformidade do sistema em cenários críticos. Trabalhos recentes exploraram diferentes
aspectos dessas ferramentas, destacando suas aplicações em projetos reais. O trabalho de
CSP2Turtle (MACCONVILLE et al., 2023), que combina CSP e Python para verificar a navegação
de robôs e a prevenção de obstáculos em um mundo de grade 2D, é um exemplo prático
desse tipo de abordagem. Da mesma forma, o estudo de Isobe et al. (ISOBE et al., 2021)
apresenta uma metodologia que utiliza FSMs concorrentes para modelar e verificar sistemas
robóticos cooperativos baseados em eventos. Neste trabalho, a formalização em CSP e a
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verificação usando a ferramenta FDR foram aplicadas em um sistema de transporte cooperativo
envolvendo robôs autônomos. Essa abordagem destacou o uso de FSMs para representar modos
de controle e a validação da comunicação baseada em eventos, demonstrando a eficácia da
formalização na detecção de erros de projeto antes da implementação. O uso de CSP com
linguagens de programação como Python é um ponto comum em nossa pesquisa.

O desenvolvimento de sistemas robóticos críticos requer métodos formais que vão além
da especificação e verificação, integrando diferentes ferramentas e técnicas para lidar com
a crescente complexidade desses sistemas. Diversas abordagens têm explorado alternativas
a RoboChart e a CSP, aplicando diferentes metodologias para verificar e validar sistemas
robóticos em diversos domínios. Uma linha de pesquisa notável é a integração de métodos
formais distintos, conforme apresentado por Bourbouh et al. (BOURBOUH et al., 2021). Seu
trabalho combina múltiplas ferramentas, incluindo FRET (GIANNAKOPOULOU et al., 2020),
COCOSIM (CARDOSO et al., 2020) e Event-B (ABRIAL et al., 2010), guiados pelo framework
AdvoCATE (DENNEY; PAI, 2018), para verificar propriedades de um sistema de inspeção
autônomo. A abordagem destaca os benefícios da integração de artefatos formais de forma
coerente ao longo do ciclo de desenvolvimento, garantindo fortes vínculos entre os processos
de especificação e validação.

Outras abordagens focam em modelos orientados a tarefas, por exemplo, em (ASKARPOUR

et al., 2021) é proposta uma cadeia de ferramentas baseada em perfis UML para facilitar
o projeto de sistemas colaborativos. Este trabalho utiliza Papyrus UML (LANUSSE et al.,
2009) para modelar tarefas colaborativas de HRC (Human-Robot Collaboration) e Zot para
verificar formalmente os modelos traduzidos para a lógica TRIO. Além da verificação formal
ou da identificação de cenários inseguros, a metodologia inclui ferramentas para automatizar
o desenvolvimento e as atualizações de tarefas. Essa abordagem é semelhante à ferramenta
desenvolvida neste trabalho, compartilhando as etapas de modelagem usando uma ferramenta
baseada em UML e a etapa de verificação formal.

Em cenários onde fluxos de trabalho robóticos exigem avaliação, o trabalho em (RATH-

MAIR et al., 2021) explora a verificação formal em camadas, aceitando modelos de entrada
em Business Process Model and Notation (BPMN). Em (ROSING et al., 2015), a abordagem
permite uma análise abrangente de propriedades em grandes espaços de estados, destacando a
importância do refinamento e da abstração em aplicações industriais. A verificação em tempo
real foi abordada por (CHANDLER et al., 2023), que apresentou um método de verificação
para a criação de planos multietapas em robôs com rodas diferenciais, destacando a geração
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de planos em tempo real para lidar com variações ambientais imediatas. A combinação de
algoritmos personalizados e discretização de dados LiDAR foi aplicada em cenários complexos
de navegação.

Sistemas ciberfísicos distribuídos e críticos foram o foco de (SIRJANI et al., 2021), que
apresentaram uma metodologia iterativa utilizando a linguagem Rebeca (REYNISSON et al.,
2014) para garantir a verificação de propriedades críticas desde os estágios iniciais de desen-
volvimento. Outra contribuição significativa é apresentada em (FOUGHALI; ZUEPKE, 2022),
onde os autores combinaram métodos formais e análise de escalonabilidade em uma abor-
dagem interdisciplinar para verificar robôs autônomos em tempo real. O trabalho incluiu a
criação de um mecanismo de controle de acesso multirrecursos, demonstrando melhorias no
comportamento em tempo real de drones.

O estudo (WEBSTER et al., 2020) abordou a interação humano-robô (HRI) apresentando
uma abordagem colaborativa de verificação e validação (V&V). Ele combinou técnicas como
verificação de modelos, testes baseados em simulação e experimentos com robôs reais para
validar requisitos de segurança e tarefas complexas de manufatura cooperativa. Artigos como
(HORVÁTH et al., 2023) e (HOSSEINI; SAUTER; KASTNER, 2023) exploraram abordagens formais
aplicadas a contextos industriais. O primeiro focou em modelos SysML simplificados para
garantir verificações práticas em escala industrial, enquanto o último utilizou a plataforma
AVATAR (Automated Verification of Real Time Software) (PEDROZA; APVRILLE; KNORRECK,
2011) para verificar propriedades de segurança em sistemas da Indústria 4.0. Ambos os artigos
destacaram a importância de metodologias formais para enfrentar os desafios de sistemas
complexos em ambientes industriais.

Para reforçar os diferenciais da abordagem proposta, a Tabela 2 apresenta uma visão com-
parativa entre os principais trabalhos relacionados a esta dissertação. Os critérios selecionados
incluem aspectos fundamentais como a modelagem formal, a geração de código, a verifica-
ção de propriedades e a validação prática. Essa comparação destaca objetivamente as lacunas
preenchidas por este trabalho em relação às abordagens existentes.

A Tabela 2 evidencia que, embora vários trabalhos explorem o uso de RoboChart, CSP e
métodos formais para modelagem e verificação de sistemas robóticos, poucos integram essas
etapas com validação prática e foco na rastreabilidade entre especificações e implementação.
O diferencial desta dissertação reside justamente na abordagem holística, que cobre desde a
formalização manual dos requisitos até a comparação estruturada entre o modelo verificado e o
código executável, promovendo maior confiabilidade no desenvolvimento de sistemas robóticos
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Tabela 2 – Comparação entre trabalhos relacionados a esta dissertação.

Critério (LI et al.,
2024)

(DAROLt, I,
2019)

(SANTOS;
FILHO;

SAMPAIO,
2023)

(YAN;
FOSTER;
HABLI,
2023)

Este
trabalho

Modelagem com Ro-
boChart
Verificação formal
Validação com sis-
tema real

×

Comparação formal
x implementação

× × × ×

Cobertura do ciclo
completo

× × × ×

críticos.
Embora todos os trabalhos apresentados demonstrem abordagens inovadoras e robustas

para a verificação e validação de sistemas robóticos, este artigo se destaca por seu foco em
uma questão específica: a comparação sistemática entre especificações formais e implementa-
ções práticas. Nossa abordagem combina a precisão de ferramentas como RoboChart e CSP
com o refinamento de traces, aplicando essas técnicas diretamente a um sistema real em de-
senvolvimento. Ao contrário de muitos dos trabalhos citados, que se concentram em etapas
específicas do ciclo de desenvolvimento, como modelagem ou geração de código, nosso traba-
lho integra todo o fluxo de validação, desde a especificação inicial até a análise detalhada da
conformidade da implementação com o modelo formal. Essa perspectiva prática e orientada à
aplicação reforça a utilidade da metodologia proposta, particularmente em sistemas críticos,
onde a confiabilidade da implementação é tão importante quanto a robustez da especificação.
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6 CONCLUSÃO

Este trabalho apresentou uma abordagem para verificar a conformidade de sistemas ro-
bóticos com suas especificações formais, integrando a linguagem RoboChart, sua semântica
baseada em CSP e a implementação prática em Python com a biblioteca pytransitions. A
principal contribuição foi a proposta de um fluxo sistemático de desenvolvimento e verificação
que inicia na formalização de requisitos, passa pela extração e abstração de LTSs e culmina na
aplicação de um algoritmo próprio de refinamento de traces para avaliar se a implementação
está em conformidade com o modelo formal.

Na prática, a metodologia proposta foi aplicada a dois estudos de caso com diferentes níveis
de complexidade e origem. O primeiro, Assembly Line, foi desenvolvido de forma controlada
e inspirada em sistemas industriais, permitindo explorar situações de verificação em um ambi-
ente mais flexível. O segundo estudo de caso, Locate Medicine, representa uma funcionalidade
real integrada a um sistema de dispensação automatizada de medicamentos em operação no
HC-UFPE. Nele, foi modelada formalmente somente uma parte do processo — a etapa de
localização do medicamento — a fim de verificar a viabilidade da abordagem em um cenário
prático e crítico. Em ambos os casos, a abordagem possibilitou identificar inconsistências entre
os comportamentos esperados e os observados, demonstrando sua utilidade tanto para apli-
cações reais quanto como ferramenta experimental de apoio ao desenvolvimento de sistemas
robóticos. As análises indicam que, mesmo com escopo limitado, é possível aplicar métodos
formais de forma eficaz, mantendo a rastreabilidade entre os requisitos e a implementação
executável.

Além disso, o algoritmo de verificação desenvolvido neste trabalho evidenciou-se capaz
de identificar falhas de conformidade de forma automatizada e precisa, reforçando o papel da
verificação formal desde as fases iniciais do ciclo de vida do sistema. Essa verificação antecipada
é especialmente valiosa porque permite identificar erros ainda na fase de desenvolvimento,
evitando que falhas críticas avancem para etapas mais custosas, como integração, testes finais
ou operação em campo. Com isso, o processo de desenvolvimento se torna não somente mais
seguro e confiável, mas também mais eficiente, uma vez que reduz retrabalho e favorece a
entrega de sistemas com maior aderência aos requisitos. Em domínios regulados ou sensíveis
— como saúde, automação laboratorial e processos industriais —, essa abordagem contribui
diretamente para o cumprimento de exigências normativas, além de reforçar a rastreabilidade
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e a transparência do processo de validação de software embarcado.
Outro ponto de destaque foi a abordagem proposta para traduzir requisitos informais em

modelos formais de maneira sistemática, adotando heurísticas de nomeação e modularização
que facilitaram a comunicação entre especialistas da área de domínio e engenheiros de software.
Essa estratégia buscou reduzir a distância entre a linguagem natural, frequentemente utilizada
na especificação de requisitos, e a precisão exigida por métodos formais, promovendo uma
modelagem mais acessível e alinhada ao contexto real do sistema. Ao padronizar a estrutura
dos modelos e organizar os comportamentos em blocos lógicos e reutilizáveis, foi possível não
somente melhorar a clareza dos modelos gerados, mas também favorecer sua manutenção
e evolução ao longo do tempo. Essa contribuição é particularmente relevante, dado que a
formalização dos requisitos ainda representa uma lacuna significativa em muitos trabalhos que
utilizam RoboChart, como apontado na revisão da literatura. A proposta aqui apresentada
oferece, portanto, um caminho viável e replicável para incorporar métodos formais desde as
primeiras fases do desenvolvimento, aumentando a rastreabilidade, contribuindo para a redução
de ambiguidades e fortalecendo a consistência entre os modelos formais e os sistemas que deles
derivam.

6.1 TRABALHOS FUTUROS

Como desdobramento natural deste trabalho, várias oportunidades se abrem para avanços
metodológicos e técnicos. Uma direção complementar essencial para o avanço deste trabalho
consiste na validação da metodologia em ambientes industriais de maior escala, envolvendo
projetos e sistemas significativamente mais complexos do que aqueles inicialmente abordados.
Embora a metodologia tenha sido aplicada com sucesso em um cenário real, sua aplicação
restringiu-se a um exemplo relativamente limitado, reforçando a necessidade de ampliar a ava-
liação para casos de maior porte e diversidade, característicos do mercado industrial. Exemplos
industriais com um espaço de estados muito maior e maior complexidade estrutural poderiam
evidenciar desafios práticos adicionais, ampliando a robustez da validação. Esse processo deve
incluir o acompanhamento próximo das equipes de desenvolvimento durante todo o ciclo de
vida do sistema, possibilitando a coleta sistemática de métricas quantitativas e qualitativas,
como o tempo médio para detecção e correção de falhas, o esforço dedicado à modelagem
formal, a curva de aprendizado dos profissionais envolvidos e o impacto efetivo na qualidade
e confiabilidade do software entregue.
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Paralelamente, para garantir a escalabilidade e viabilidade da metodologia em sistemas
complexos, é necessário explorar melhorias no processo de verificação, especialmente para
lidar com o aumento exponencial do espaço de estados, típico desses sistemas. Investigar téc-
nicas alternativas de abstração de estados, otimizações no algoritmo de refinamento de traces
e outras abordagens para reduzir a complexidade computacional pode aumentar consideravel-
mente a eficiência do método. Essa dupla abordagem, que alia uma validação mais abrangente
a avanços técnicos na escalabilidade, permitirá consolidar de forma sólida o valor prático da
metodologia, tornando-a mais adequada para adoção em contextos industriais críticos, onde
a segurança, a confiabilidade e o desempenho são requisitos fundamentais.

Outra possibilidade relevante e promissora para o avanço desta metodologia é a sua exten-
são para suportar modelos com restrições temporais explícitas, especialmente aquelas relacio-
nadas a sistemas com requisitos de tempo real. Em aplicações robóticas críticas à segurança,
como controle de robôs autônomos e robótica colaborativa, o tempo de resposta é um fa-
tor determinante para garantir a integridade e a operação correta do sistema. Modelar essas
restrições temporais permite capturar aspectos essenciais como atrasos na percepção, vari-
ações no tempo de atuação e limites máximos aceitáveis para respostas seguras, elementos
que hoje são suportados somente parcialmente por RoboChart. Incorporar essas propriedades
temporais amplia significativamente a expressividade dos modelos e possibilita a realização de
verificações temporais específicas, fundamentais para garantir o comportamento esperado em
cenários dinâmicos e críticos.

Além disso, a inclusão de comportamentos probabilísticos e estocásticos nos modelos é um
passo natural e necessário para lidar com as incertezas inerentes a ambientes reais e sistemas
robóticos complexos. Falhas intermitentes, ruídos nos sensores, variações imprevisíveis no am-
biente e incertezas na execução são desafios constantes que exigem abordagens capazes de
representar e analisar eventos com características probabilísticas. A incorporação dessas téc-
nicas permite a aplicação de model checking probabilístico e análise estocástica, fortalecendo
a robustez das garantias fornecidas pela metodologia e ampliando seu escopo para sistemas
que operam em condições incertas ou parcialmente observáveis. Dessa forma, a extensão para
restrições temporais e comportamentos probabilísticos não só eleva a precisão da modelagem,
mas também amplia o impacto prático da metodologia, tornando-a aplicável a uma gama mais
ampla de domínios robóticos, como navegação autônoma, sistemas colaborativos e outras apli-
cações onde a segurança e a confiabilidade dependem do tratamento rigoroso do tempo e da
incerteza.
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Por fim, um dos caminhos mais promissores para dar continuidade a este trabalho é a
automação da tradução de requisitos informais para modelos RoboChart. Embora o processo
atual tenha sido manual e baseado em heurísticas bem definidas, ele demonstrou ser viável
e eficaz como prova de conceito. No entanto, sua replicação em contextos maiores ou com
equipes multidisciplinares exige um suporte automatizado mais robusto. O desenvolvimento
de uma ferramenta capaz de interpretar requisitos escritos em linguagem natural — ainda
que restrita a domínios específicos — e sugerir automaticamente estruturas formais iniciais
em RoboChart poderia não somente acelerar o processo de modelagem, mas também reduzir
erros de interpretação e ampliar a acessibilidade dos métodos formais a desenvolvedores não
especialistas. Além disso, essa ferramenta funcionaria como uma ponte essencial entre espe-
cialistas da área de domínio e engenheiros de software, promovendo uma formalização mais
colaborativa, iterativa e rastreável, o que se mostra particularmente valioso em ambientes
regulados ou que exigem elevada garantia de conformidade.
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