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RESUMO

A crescente complexidade dos sistemas de controle em robds auténomos exige métodos ri-
gorosos para assegurar a conformidade entre especificacdes e implementacoes, especialmente
em contextos criticos, como a dispensacdo de medicamentos. Este trabalho apresenta uma
abordagem baseada na formalizacdo de requisitos usando RoboChart (uma notacdo grafica
para a modelagem de sistemas robéticos), que possui uma seméantica formal definida na alge-
bra de processos CSP. A metodologia proposta inclui a obtencdo e abstracdo do LTS proveni-
ente da semantica CSP de um modelo RoboChart e a verificacdo de conformidade por meio de
um algoritmo préprio simplificado de verificacao de refinamento de traces, permitindo identi-
ficar inconsisténcias entre especificacoes formais e implementacoes praticas desenvolvidas em
Python. A abordagem foi aplicada em um sistema robético de dispensacdo de medicamentos
do Hospital das Clinicas da UFPE (HC-UFPE), desenvolvido no ambito do projeto CRIAR
— Centro de Robética e Inteligéncia Artificial Responsavel. O sistema integra controle de
braco robético e visdo computacional. Os resultados indicam que a abordagem facilita a de-
teccao de erros e promove um desenvolvimento mais robusto. Como contribuicdes principais,
destacam-se: uma sistematica de formalizacido de requisitos informais utilizando RoboChart;
o desenvolvimento de um algoritmo préprio para verificacao de refinamento de traces e a

aplicacao da metodologia em dois estudos de caso.

Palavras-chaves: RoboChart; CSP; Formalizacdo de requisitos; Verificacdo de conformidade;

Refinamento de Traces.



ABSTRACT

The increasing complexity of control systems in autonomous robots demands rigorous
methods to ensure conformance between specifications and implementations, especially in
critical contexts such as medication dispensing. This paper presents an approach based on
formalizing requirements using RoboChart (a graphical notation for modeling robotic systems),
which has formal semantics defined in the CSP process algebra. The proposed methodology
includes obtaining and abstracting the LTS from the CSP semantics of a RoboChart model
and verifying compliance using a proprietary simplified trace refinement checking algorithm,
allowing for the identification of inconsistencies between formal specifications and practical
implementations developed in Python. The approach was applied to a robotic medication
dispensing system at the Hospital das Clinicas of the (HC-UFPE), developed within the scope
of the CRIAR project — Center for Responsible Robotics and Artificial Intelligence. The system
integrates robotic arm control and computer vision. The results indicate that the approach
facilitates error detection and promotes more robust development. The main contributions
include: a systematic formalization of informal requirements using RoboChart; the development
of a proprietary algorithm for verifying trace refinement, and the application of the methodology

in two case studies.

Keywords: RoboChart; CSP; Requirements formalization; Conformance verification; Trace

refinement.
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1 INTRODUCAO

A crescente complexidade dos sistemas de controle em robos autonomos exige o desenvol-
vimento de abordagens rigorosas para garantir a conformidade das implementacoes com os re-
quisitos especificados. A medida que a robética avanca, esses sistemas tornam-se cada vez mais
sofisticados, integrando sensores, atuadores, sistemas de percepcao e algoritmos avancados de
tomada de decisdo que operam de forma autonoma em ambientes dinamicos, desestruturados
e, muitas vezes, imprevisiveis (THRUN, 2002). Além disso, o aumento da autonomia exige que
os sistemas consigam lidar com situacdes nao previstas durante o desenvolvimento, tomando
decisdes seguras em tempo real (ALUR, [2015). A precisdo e a confiabilidade desses sistemas
ndo sao somente desejaveis, mas essenciais, sobretudo quando se considera sua aplicacao em
cenarios criticos, onde qualquer falha pode gerar ndo somente prejuizos financeiros, mas tam-
bém riscos a integridade fisica de pessoas e a continuidade de processos essenciais (LEVESON,
2016).

Sistemas robdticos, frequentemente modelados por maquinas de estado, desempenham
papéis centrais em setores onde a seguranca, a previsibilidade e a precisao sdao absolutamente
indispenséveis (CASSANDRAS; LAFORTUNE, 2008). Hospitais, linhas de producdo industrial,
instalacoes de geracdo de energia e centros de pesquisa cientifica sdo exemplos de ambientes
onde tais sistemas operam em condi¢des rigorosas (LYNCH; PARK) [2017)). Nessas aplicacdes,
qualquer falha, por menor que seja, pode ter consequéncias severas, tanto do ponto de vista
operacional — com paralisacoes, perdas de produtividade e danos materiais — quanto em
termos de seguranca, colocando em risco operadores, pacientes e o préprio ambiente (LEVESON,
2016). Por exemplo, robds hospitalares que realizam tarefas sensiveis, como a dispensacdo
automatica de medicamentos ou a esterilizacdo de ambientes, devem operar com total exatidao
e rastreabilidade (MURPHY| 2019). Qualquer erro nesse contexto ndo somente compromete o
funcionamento do sistema, interrompendo fluxos hospitalares, como também pode colocar
vidas humanas em risco diretamente, seja pela administracdo incorreta de um farmaco, seja
pela falha em protocolos de biosseguranca (TENNER, 2015)).

Esses cenérios ilustram de forma clara e contundente a importancia de garantir que o
comportamento de um sistema robdtico esteja em total conformidade com suas especificacdes,
desde as fases iniciais de projeto até a implementacao final. Essa necessidade vai além de

uma boa pratica de engenharia; ela se torna um imperativo técnico, ético e regulatério em
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muitos setores. Nesse contexto, torna-se evidente que o desenvolvimento de robos confidveis
e seguros representa, atualmente, um dos maiores desafios contemporaneos na engenharia de
software aplicada a sistemas robéticos (CAVALCANTI et al, 2021)). A crescente dependéncia
desses sistemas para executar tarefas criticas, anteriormente realizadas exclusivamente por
seres humanos, somente intensifica a urgéncia por solucSes que assegurem sua corretude
formal, sua robustez operacional e sua capacidade de se adaptar seguramente a ambientes
complexos e dindmicos (SCHNEIDER; SHABOLT; TAYLOR, 2004).

Este trabalho foi desenvolvido no contexto do Centro de Robética e Inteligéncia Artifi-
cial Responséavel (CRIAR) do Centro de Informatica da UFPE, iniciativa voltada a pesquisa
aplicada e ao desenvolvimento de solucdes tecnoldgicas para problemas reais enfrentados por
instituicoes publicas e privadas do Brasil. Um dos projetos conduzidos nesse Centro é a au-
tomac3do do processo de dispensacdo de medicamentos no Hospital das Clinicas da UFPE,
onde sistemas robdticos desempenham papéis criticos na organizacdo, separacao e entrega de
farmacos. A seguranca e a confiabilidade dessas aplicacdes sdo essenciais, ndo somente para
evitar falhas operacionais, mas também para proteger a integridade de pacientes e profissionais
de satde. A motivacao deste trabalho surgiu diretamente da necessidade de garantir que os
controladores robdticos desenvolvidos para esse ambiente estejam em conformidade com os
requisitos estabelecidos — muitos dos quais definidos de forma informal e passiveis de inter-
pretacdo ambigua. A Figural[T]ilustra o arranjo fisico do sistema real utilizado, que serviu como
base para um dos estudos de caso desenvolvido neste trabalho.

Apesar da criticidade envolvida em aplicacbes robéticas como a dispensacdo automati-
zada de medicamentos, muitos projetos de sistemas robéticos ainda sdo desenvolvidos a partir
de especificacGes informais, frequentemente pouco estruturadas e suscetiveis a interpretacdes
divergentes. Na pratica, é comum que essas especificacoes estejam registradas em documen-
tos textuais genéricos, em diagramas que carecem de rigor semantico ou até mesmo sejam
transmitidas por meio de comunicacdes verbais e informais entre membros da equipe de de-
senvolvimento (WIEGERS; BEATTY, 2013). Esse tipo de abordagem, embora bastante difundido
na inddstria devido a sua aparente simplicidade e flexibilidade, introduz um grau significativo
de ambiguidade no processo de desenvolvimento (LAMSWEERDE, 2009). Essa ambiguidade,
por sua vez, abre margem para que diferentes desenvolvedores interpretem os requisitos de
maneiras distintas, levando a implementacdes que, apesar de aparentemente corretas, podem
divergir dos comportamentos originalmente desejados (MALL, 2018).

Esse cendrio torna-se ainda mais critico ao considerar a natureza sensivel de muitos sis-
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Figura 1 — Arranjo fisico do sistema de dispensacdo de medicamentos

Fonte: Elaborada pelo autor (2025)

temas robdticos, nos quais qualquer desvio em relacdo as especificacbes pode resultar em
consequéncias graves, tanto do ponto de vista operacional quanto da seguranca (LEVESON,
2016). A auséncia de uma formalizacdo precisa dos requisitos compromete ndo somente a
implementacdo correta, mas também a capacidade do sistema de ser auditado, validado e cer-
tificado por érgdos regulatérios (HINCHEY; BOWEN, 2012). Além disso, os sistemas robéticos
modernos tendem a ser cada vez mais distribuidos, heterogéneos e interativos, com miltiplos
componentes operando concorrentemente e se comunicando frequentemente de maneira as-
sincrona. Esse tipo de arquitetura introduz um conjunto complexo de interdependéncias e abre
espaco para o surgimento de propriedades emergentes — comportamentos que ndo podem ser
previstos a partir da analise isolada dos componentes, mas resultantes das interacdes entre
eles. Essas propriedades sdo particularmente dificeis de prever e controlar com as abordagens
tradicionais de engenharia de software, reforcando a necessidade do uso de métodos formais
para lidar com tais desafios de forma sistematica e verificavel (MITCHELL, [2006; LEVESON,
2016)).
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Diante desses desafios, os métodos formais emergem como uma abordagem n3o somente
robusta, mas cada vez mais indispensavel para garantir que sistemas robdticos operem em
estrita conformidade com seus requisitos funcionais e nao funcionais. Esses métodos ofere-
cem uma base matematica rigorosa para a descricao precisa do comportamento esperado dos
sistemas e, consequentemente, para a realizacao de verificacBes sistematicas de sua corre-
cdo. Entre as abordagens mais consolidadas, destaca-se Communicating Sequential Processes
(CSP) (HOARE et al., [1985; [ROSCOE, 1998), que fornece uma estrutura tedrica extremamente
poderosa para modelagem de sistemas concorrentes, permitindo representar formalmente tanto
os processos individuais quanto os padrdes de comunicacao e sincronizacao entre eles. CSP
permite descrever, com precisao, nao somente o comportamento interno de cada componente,
mas também as interacSes complexas que ocorrem em sistemas distribuidos e concorrentes,
oferecendo, assim, um modelo coerente e matematicamente validavel.

O uso de CSP, aliado a ferramentas como FDR (Failures-Divergence Refinement), permite
nao somente descrever formalmente os comportamentos esperados de sistemas concorren-
tes, mas também aplicar técnicas rigorosas de verificacao, como model checking e andlise de
refinamento. O model checking possibilita a exploracdo automatica de todos os estados pos-
siveis do sistema para verificar se certas propriedades sdo satisfeitas, enquanto o refinamento
permite demonstrar, formalmente, que uma implementacao estd em conformidade com uma
especificacao abstrata, garantindo que os comportamentos desejados sejam preservados ao
longo do desenvolvimento. Essas ferramentas também oferecem mecanismos de geracdo de
contraexemplos, facilitando a identificacdo e correcao de falhas no modelo.

Tais técnicas sdo essenciais para detectar, ainda nas fases iniciais do projeto, problemas
como deadlocks, livelocks, ndo determinismo, violacdo de propriedades de seguranca, incon-
sisténcias nos protocolos de comunicacdo e falhas no cumprimento de requisitos temporais.
Ao permitir a identificacdo precoce desses erros, os métodos formais evitam que problemas
custosos avancem para etapas posteriores do desenvolvimento, promovendo maior robustez,
previsibilidade e seguranca no sistema final. Nesse contexto, os métodos formais deixam de
ser ferramentas meramente académicas para se consolidarem como elementos indispensaveis
no ciclo de vida de sistemas criticos — especialmente na robdtica, onde a confiabilidade ope-
racional nao é somente desejavel, mas essencial.

Domain-Specific Languages (DSLs) também desempenham um papel fundamental no de-
senvolvimento de sistemas robéticos ao oferecerem abstracdes especializadas que reduzem a

complexidade da modelagem e implementac3o. Diversas DSLs foram propostas com diferentes
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enfoques: RobotML (DHOUIB et al., 2012) abstrai detalhes de baixo nivel por meio de uma ar-
quitetura baseada em componentes; G0 M (FLEURY; HERRB; CHATILA), 1997)) e seu sucessor
G",M3 (MALLET et al, 2010) possibilitam a geracdo automética de cddigo e a definicdo de
propriedades temporais; ORCCAD (BORRELLY et al.,|1998)) oferece suporte a controle em tempo
real com verificacdo formal; e o RoboFlow (ALEXANDROVA; TATLOCK; CAKMAK| |2015)) prioriza
a acessibilidade por meio de uma interface grafica baseada em fluxos. Cada uma dessas lin-
guagens apresenta vantagens e limitacoes que as tornam mais ou menos adequadas conforme
o contexto de aplicacdo. Enquanto RobotML e RoboFlow favorecem rapidez e simplicidade
no desenvolvimento, G"oM e ORCCAD oferecem maior controle e rigor em ambientes com
restricGes temporais e requisitos criticos de sincronizacao.

Nesse cendrio, RoboChart (MIYAZAWA et al} [2016) destaca-se como uma DSL voltada a
modelagem de sistemas robédticos que alia uma notacdo gréafica intuitiva a uma fundamenta-
cdo formal rigorosa baseada na teoria de processos concorrentes CSP. Ela permite especificar
formalmente sistemas de controle, realizar analises com ferramentas como FDR e gerar cédigo
automaticamente a partir dos modelos. Com essa integracdo entre clareza visual e verificacdo
matematica, RoboChart proporciona uma abordagem robusta para o desenvolvimento de sis-
temas robéticos criticos. Sua capacidade de aproximar requisitos informais de uma modelagem
precisa permite detectar inconsisténcias antecipadamente. No entanto, sua aplicacdo em sis-
temas maiores revelou limitacdes de escalabilidade, com aumento no custo computacional das
verificacBes, o que pode dificultar a analise continua e a validacdo eficiente do comportamento
frente a implementacao real.

Para mitigar essas limitacBes, a estratégia adotada, apresentada no Capitulo[3} foi restrin-
gir o escopo da modelagem, concentrando-se nas Maquinas de Estados de RoboChart, que
representam o nicleo do comportamento sequencial dos sistemas. Além disso, a analise foi
aplicada somente a um subconjunto bem definido do sistema, suficiente para capturar os re-
quisitos criticos. Essa abordagem tornou a verificacdo mais viavel, preservando as propriedades
comportamentais essenciais e mantendo a rastreabilidade entre os modelos e a implementacao.
Complementarmente, o desenvolvimento de um algoritmo de refinamento de trace contribuiu
para garantir que o comportamento observado na pratica estivesse alinhado com a especifica-
cdo formal.

Embora estudos anteriores (MIYAZAWA et al.,, 2016; MIYAZAWA et al,, 2017} |LI et al., 2024;
DAROLtl, 2019; [MURRAY et al., 2022) demonstrem a eficicia de RoboChart na verificacdo de

controladores em sistemas criticos, observa-se que muitos deles acabam nao abordando de



18

forma sistematica uma etapa fundamental: a traducdo dos requisitos informais em modelos
formais. Esse processo, frequentemente negligenciado, é crucial para assegurar que o modelo
represente fielmente as necessidades operacionais do sistema, evitando que modelos formal-
mente corretos se afastem dos objetivos praticos do projeto.

Diante desse cenério, a aplicacdo de RoboChart neste trabalho n3o se restringiu a verifica-
cdo formal isolada, mas também buscou enfrentar desafios praticos relacionados a formalizacdo
de requisitos e a escalabilidade dos modelos. A experiéncia adquirida durante o desenvolvimento
reforca que, com estratégias adequadas de delimitacdo de escopo e suporte de ferramentas
complementares, é possivel aplicar métodos formais de maneira eficiente no desenvolvimento
de sistemas robéticos complexos. Esse contexto motivou a construcdo de uma abordagem
especifica para este trabalho, cuja concepcao, estrutura e resultados serdo detalhados a seguir

na secao de contribuicoes.

1.1 CONTRIBUICOES DESTE TRABALHO

Este trabalho combina modelagem formal e verificacdo automatizada para assegurar a con-
formidade e aprimorar a correcdo de sistemas de controle robdtico, permitindo a identificacao
e resolucdo precoce de inconsisténcias entre especificacido e implementacdo. A metodologia
desenvolvida apoia-se em quatro pilares principais: (1) a formalizacdo de requisitos informais
por meio de RoboChart, que gera especificacdes formais em CSP; (2) a utilizacdo do veri-
ficador de refinamentos do FDR para derivar um Sistema de Transicdo Rotulado (Labelled
Transition Systems - LTS) a partir da especificacdo CSP; (3) o comportamento implementado
utilizando maquinas de estados finitos em Python, por meio da biblioteca pytransitions, cuja
execucdo é interpretada como um LTS; e (4) a aplicacdo do algoritmo proposto de refinamento
de traces para comparar o LTS gerado por RoboChart com as maquinas de estados da imple-
mentac3o, verificando a conformidade formal entre eles, seguindo a definicio de refinamento
de traces (ROSCOE, [1998; ROSCOE, [2010]). Essa abordagem permite reduzir ambiguidades
tipicas de requisitos informais, fortalecendo o processo de desenvolvimento por meio de ve-
rificacoes formais automatizadas que garantem validacdo sistematica e iterativa, alinhando a
implementacao com os requisitos e aumentando a confiabilidade do sistema. A abordagem
proposta estd resumida na Figura 2

A relevancia da metodologia proposta reside em sua aplicabilidade pratica e no avanco

que oferece em relacdo as abordagens existentes. Diferentemente de trabalhos que utilizam
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Figura 2 — Fluxo de verificac3o e refinamento do modelo.
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Fonte: Elaborada pelo autor (2025)

métodos formais para analise de modelos de sistemas robdticos, este estudo se concentra na
verificacdo diretamente da implementac3do, em relacdo aos requisitos esperados. Além disso, o
uso de RoboChart (e sua ferramenta de apoio RoboTooE[) como base para a modelagem formal
do comportamento do software, combinada com um algoritmo préprio de anélise de refina-
mento inspirado na definicao classica de refinamento de traces em CSP, oferece uma solucdo
robusta e inovadora para a verificacido de conformidade em sistemas de controle distribuidos.
Essa abordagem personalizada permite lidar com as particularidades das implementacées base-
adas em maquinas de estado em Python, ampliando a confiabilidade e a precisdo da verificacao

em contextos reais. As principais contribuicoes deste trabalho incluem:

» Formalizacdo de requisitos informais de dois estudos de caso usando RoboChart;

» Uma metodologia que mostra como garantir que uma implementacao baseada em py-
transitions esteja em conformidade com um sistema robético descrito por requisitos

informais usando a linguagem formal RoboChart;

= Um algoritmo de verificacdo de modelo para realizar a verificacdo de refinamento de
traces CSP do LTS abstrato de um modelo RoboChart em relacao a sua implementacao,

construida usando a biblioteca pytransitions;

» Aplicacdo do algoritmo proposto em dois estudos de caso, evidenciando discrepancias

em alguns casos entre os resultados esperados e os resultados obtidos.

A abordagem proposta melhora o desenvolvimento dos sistemas ao permitir que inconsis-
téncias sejam identificadas e corrigidas no estagio inicial do desenvolvimento, economizando

recursos durante a fase de integracdo. Ela também promove maior seguranca ao garantir que

1 https://robostar.cs.york.ac.uk/robotool /
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comportamentos criticos sejam verificados formalmente, reduzindo o risco de falhas catastré-
ficas. Por fim, a eficiéncia é aprimorada por meio da automacao no processo de verificacao
e refinamento, permitindo iteracGes mais rapidas e confidveis no desenvolvimento de siste-
mas robdticos. Os resultados dessa pesquisa foram submetidos para publicacdo no periddico

especializado The Journal of Systems & Software (MENDONCA; CONSERVA; MOTA, [2025)).

1.2 ORGANIZACAO DA DISSERTACAO

O restante deste trabalho estd organizado da seguinte forma: o Capitulo [2] apresenta a
fundamentacdo tedrica necesséria, incluindo conceitos de CSP e RoboChart; o Capitulo [3] des-
creve a metodologia adotada, abordando a formalizacdo de requisitos, a abstracdo de LTS e
o algoritmo de refinamento de traces; o Capitulo |4| detalha os estudos de caso aplicados, evi-
denciando as validacdes realizadas, os resultados obtidos, a discussdo critica desses resultados,
além das ameacas a validade e das medidas para mitiga-las; o Capitulo [5] explora os trabalhos
relacionados e como eles se conectam a este estudo; e, por fim, o Capl'tulo|§| apresenta as con-
sideracGes finais, ressaltando as principais contribuicGes e sugerindo direcGes para pesquisas

futuras.
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2 FUNDAMENTACAO TEORICA

O desenvolvimento de sistemas criticos, como os utilizados em robética, requer o uso de
ferramentas e métodos que garantam precisao e confiabilidade desde as etapas iniciais do pro-
jeto. Para isso, linguagens formais e técnicas de verificacdo desempenham um papel essencial,
permitindo modelar, especificar e validar rigorosamente os comportamentos do sistema. Nesse
contexto, destaca-se RoboChart, uma notacdo grafica projetada para descrever controlado-
res robdticos de forma estruturada, integrando elementos de estados, eventos e temporizacio
tipicos da robdtica. Uma das suas principais forcas reside na associacdo com CSP, uma lingua-
gem formal voltada a modelagem de sistemas concorrentes. RoboChart utiliza CSP como base
semantica formal, o que permite que modelos desenvolvidos visualmente possam ser traduzi-
dos para uma representacdo matematica precisa, possibilitando a verificacao automaética de
propriedades. Este capitulo comeca introduzindo CSP, abordando sua semantica denotacional,
conceitos de refinamento e ferramentas de suporte como FDR, destacando seu papel na mo-
delagem e verificacdo de sistemas concorrentes. Em seguida, apresenta RoboChart, explorando
sua estrutura, capacidades de modelagem e como sua semantica, baseada em CSP, permite a
especificacao rigorosa e a analise formal de sistemas roboticos.

Por fim, este capitulo também aborda a biblioteca pytransitions, uma ferramenta ampla-
mente utilizada para a implementacdao de Maquinas de Estados Finitos em Python. Embora
ndo constitua uma linguagem formal, a pytransitions exerce um papel fundamental na etapa
de implementacdo, ao permitir que os modelos formalmente especificados sejam convertidos

em sistemas funcionais e robustos.

2.1 COMMUNICATING SEQUENTIAL PROCESSES (CSP)

Communicating Sequential Processes (CSP) (HOARE et al., [1985; ROSCOE, (1998) é uma
linguagem formal utilizada para modelar e analisar sistemas concorrentes. Desenvolvida inicial-
mente por Tony Hoare e posteriormente modificada por Roscoe, CSP permite a especificacdo
de processos que interagem por meio de eventos atémicos, sincronizando-se somente quando
todos os participantes estdo prontos. Essa abordagem é especialmente dtil para sistemas dis-
tribuidos e concorrentes, como linhas de montagem e sistemas robdticos, ao possibilitar a

definicdo rigorosa de propriedades criticas e a verificacdo automatica da correcdo de suas
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implementacdes.

CSP utiliza os chamados processos para representar componentes do sistema que realizam
interacdes observaveis. Essas interacdes sdo modeladas por canais simples (ou eventos) ou
canais que carregam dados (ROSCOE, [2010|). Por exemplo, uma declaracdo como channel a
representa um evento, uma declaracao como channel b: Bool, permite comunicar os valores
True e False por meio do canal b, dando origem aos eventos complexos b. True ou b.False.
Essa flexibilidade permite modelar trocas de informacGes sincronas entre processos, o que é
essencial para capturar a complexidade de sistemas que requerem comunicacao estruturada.

Tabela 1 — Operadores CSP.

Operador Sintaxe Descricdo

Terminacdo com sucesso  SKIP O processo que termina imediatamente

Deadlock STOP O processo que n3o aceita eventos e, portanto, gera deadlocks

Prefixacdo Simples a — P Comunica o evento a e age como o processo P

Composicdo Sequencial P ; Q Executa os processos P e depois Q em sequéncia

Escolha Externa POQ  Oferece uma escolha entre dois processos P e Q

Ecolha Interna PN Q A escolha é arbitraria, sem influéncia do ambiente.

Composicdo Paralela Plla Q Executa P e Q simultaneamente, sincronizando o evento compartilhado a.
Ocultacdo P\A Executa o processo P, mas eventos do conjunto A n3o aparecem no trace.

Fonte: Elaborada pelo autor (2025)

Os operadores de CSP definem as interacdes e o comportamento dos processos, possibili-
tando modelar sistemas com diferentes niveis de complexidade. Entre os operadores principais
expostos na Tabela estéo o de prefixacdo (a — P), que descreve que um processo realiza o
evento a antes de continuar como P, incluindo casos como a?x!y, onde a comunicacdo ocorre
por meio de canais, permitindo que a receba um valor x e envie y para outro processo. O
operador de composicdo sequencial (P;Q), onde P é termina com sucesso antes de iniciar Q.
A escolha externa (P O Q) e interna (P M Q) definem comportamentos alternativos, sendo
que no primeiro caso o ambiente escolhe, e no segundo, a escolha ocorre internamente ao
sistema. O operador de composicdo paralela P |4 Q@ permite que os processos P e Q se-
jam executados em paralelo, sincronizando-se em todos os eventos do conjunto A. Por fim,
o operador de ocultacdo (P \ A) tornam internos os eventos do conjunto A, escondendo-os
do ambiente externo, facilitando o gerenciamento de complexidade em sistemas distribuidos
(ROSCOE, 1998).

A especificacdo CSP a seguir (Figura [3)) representa um modelo de controle para um rob6
movel capaz de se mover de forma autonoma, detectando obstaculos e ajustando sua trajetéria

de acordo.
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Figura 3 — Especificacio CSP para controle de robds méveis.

SMovement = Moving

Moving = moveCall.lv.@ — Obstacle

Obstacle = obstacle.in — stopCall — Turning
Turning = moveCall.@.av — Moving

Fonte: Elaborada pelo autor (2025)

Essa especificacdo utiliza a prefixacdo (a — P) para definir a ordem das a¢des do robd,
garantindo que ele execute um evento antes de transicionar para outro estado, que nesse
caso é representado por um processo. A estrutura sequencial do modelo assegura que o robo
primeiro recebe o comando de movimento (moveCall.lv.0) antes de transitar para a deteccdo de
obstaculo (Obstacle), e, ao detectar um obstaculo, executa o comando de parada (stopCall)
antes de iniciar a manobra de reorientacdo (Turning). Neste cddigo, lv e av denotam a
velocidade linear e angular do robo, respectivamente. A repeticdo do ciclo entre os estados
Moving e Turning representa a continuidade do comportamento do robd, modelando um fluxo

dinamico e adaptativo.

2.1.1 Semantica Denotacional e Refinamento

A semantica denotacional de CSP estabelece um vinculo rigoroso entre a sintaxe dos pro-
cessos e seu comportamento observavel, por meio de uma interpretacao matematica abstrata
que associa a cada processo um conjunto de comportamentos possiveis. Ao contrario da se-
mantica operacional, que descreve como os estados de um sistema evoluem ao longo do tempo,
a semantica denotacional concentra-se na caracterizacdo do “significado” de um processo de
forma composicional, ou seja, a semantica de uma construcdo composta pode ser deduzida
diretamente a partir das semanticas de suas partes. Essa abordagem proporciona uma base
sélida para anélise formal, permitindo a verificacdo de propriedades como seguranca, auséncia
de deadlocks e correcao funcional por meio de refinamento.

No contexto de CSP, diversos modelos denotacionais foram desenvolvidos, sendo os mais
comuns os baseados em traces, failures e divergences. Cada um desses modelos captura dife-
rentes aspectos do comportamento de um processo. O modelo de traces foca exclusivamente
na sequéncia de eventos visiveis que o processo pode realizar, abstraindo falhas e comporta-

mentos internos. O modelo de failures amplia essa visdo incluindo os conjuntos de eventos
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que um processo pode recusar apés determinado trace, capturando informacdes sobre disponi-
bilidade e sincronizacdo com o ambiente. Por fim, o modelo de failures-divergences considera
também o fendomeno de divergéncia, ou seja, a possibilidade de o processo entrar em um ci-
clo infinito de acGes internas ndo observaveis, representando perda de controle ou bloqueio
interno.

O modelo de traces é o mais simples e serve como ponto de partida para a compreensao dos
modelos mais complexos. Nesse contexto, o comportamento de um processo é descrito pelo
conjunto de sequéncias finitas de eventos observaveis que ele pode executar, representadas
por palavras sobre o alfabeto de eventos . A funcdo traces, definida de forma indutiva
sobre a estrutura dos processos, associa a cada processo CSP o conjunto de suas possiveis
execucdes observaveis. Para o operador de prefixo, por exemplo, a definicao formal da funcao

é apresentada na Figura [4]

Figura 4 — Definic3o formal da func3o traces para o operador de prefixo no CSP.

traces(a — P) = {()} U {(a) “tr | tr € traces(P)}

Fonte: Elaborada pelo autor (2025)

A equac3o exposta na Figura [4] expressa que o processo a — P pode inicialmente n3o
realizar nenhuma acdo (dai o trace vazio), ou pode realizar o evento a e entdo continuar
se comportando como o processo P, concatenando os traces de P apds a ocorréncia de a.
Com base nessa definicdo, é possivel derivar os traces dos processos basicos. Por exemplo,
o processo STOP, que ndo realiza nenhuma acao, possui somente o trace vazio, ou seja,
traces(STOP) = {()}. J& o processo a — STOP possui dois traces: o trace vazio, e o trace
(a), que corresponde a execucdo do evento a seguido da terminacdo imediata. Portanto, na

Figura [5] temos:

Figura 5 — Exemplo da func3o traces aplicada ao processo a — STOP.

traces(a — STOP) = {(), (a)}

Fonte: Elaborada pelo autor (2025)

Esses exemplos ilustram como a definicdo formal da funcao traces permite construir, de
forma composicional, o comportamento de processos arbitrarios. Em termos gerais, o modelo

de traces oferece uma perspectiva essencialmente sequencial do sistema, desconsiderando as-
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pectos como recusas ou divergéncias, mas ja possibilitando a analise de propriedades (safety),
como a ordem correta dos eventos e o alcance de determinadas acoes. Para um tratamento mais
aprofundado das definicGes formais e do desenvolvimento do modelo de traces, recomenda-se
a leitura das obras de Roscoe, em especial The Theory and Practice of Concurrency e Un-
derstanding Concurrent Systems, que apresentam uma abordagem abrangente com definicoes
rigorosas e exemplos ilustrativos (ROSCOE, 1998; ROSCOE, 2010)).

A nocao de refinamento emerge naturalmente a partir dessa semantica. Refinar um processo
significa restringir seus comportamentos, garantindo que seu comportamento esteja restrito
ao comportamento da especificacdo. No modelo de traces, um processo () é considerado
uma implementac3o valida de uma especificacao P se todo comportamento de () também é
permitido por P, ou seja, traces(Q) C traces(P). Em notacdo formal, diz-se que () refina P
no modelo de traces, representado por P T (). Tal relacdo expressa que () é, do ponto de
vista do comportamento observavel, mais deterministico ou mais restrito que P, preservando
todas as permissividades da especificacao original.

A aplicacdo do refinamento denotacional é especialmente Gtil em contextos nos quais a
ordem e a ocorréncia de eventos sdo determinantes para a correcdo funcional do sistema.
Considere, por exemplo, o modelo de controle de um robé mével autonomo. Nesse sistema,
eventos como deteccdo de obstaculo, parada e rotacdo devem ocorrer em uma ordem especifica
para garantir uma navegacdo segura. O conjunto de traces associado a especificacdo descreve
os ciclos completos de movimentacao, onde o robo inicia o deslocamento, detecta um obsta-
culo, realiza uma parada e executa uma manobra de desvio antes de retomar o movimento. A

Figura[f] ilustra esse conjunto de comportamentos esperados.

Figura 6 — Traces de uma execuc3o ciclica do sistema.

{(), (moveCall.lv.0), (moveCall.lv.0, obstacle.in),
(moveCall.lv.0, obstacle.in, stopCall),
(moveClall.lv.0, obstacle.in, stopCall, moveCall.0.av), ...}

Fonte: Elaborada pelo autor (2025)

Se uma implementac3o () executa, por exemplo, os eventos moveCall.lv.0, obstacle.in e, em
seguida, moveCall.0.av, omitindo o evento stopCall, essa sequéncia nao pertence ao conjunto
de traces da especificacao P, violando a ordem definida e, portanto, invalidando o refinamento.

Tal violacdo evidencia que P [Zr (), indicando que a implementacdo falha em seguir a légica
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de controle prescrita. Em sistemas criticos como esse, o refinamento de traces atua como um
critério formal para assegurar que a implementacdo nao introduza comportamentos inesperados
ou inseguros.

Embora o modelo de traces seja intuitivo e util para capturar sequéncias validas de eventos,
ele ndo é suficiente para caracterizar aspectos como a capacidade do processo de se recusar
a cooperar com o ambiente (por exemplo, quando n3o oferece certas acdes) ou de entrar em
ciclos internos infinitos. Por esse motivo, modelos mais ricos, como o de failures-divergences,
sdo geralmente preferidos na verificacdo formal. No entanto, o refinamento no modelo de
traces ja oferece garantias importantes para sistemas deterministicos ou com foco no controle
da sequéncia de eventos.

Além disso, a semantica denotacional tem como caracteristica fundamental a composicio-
nalidade. Isso significa que a semantica de operadores como escolha, paralelismo, ocultacio ou
recursao pode ser definida em termos das semanticas de seus operandos, permitindo construir
a semantica de sistemas complexos incrementalmente. Essa propriedade é essencial tanto para
a andlise manual quanto para a automac3o da verificacao, sendo explorada por ferramentas
como FDR, que analisam a estrutura dos processos e realizam verificacdes de refinamento de
maneira eficiente.

Em sintese, a semantica denotacional de CSP fornece uma base matematica sélida para
a especificacdo e andlise de sistemas concorrentes. O conceito de refinamento, central nesse
paradigma, permite comparar precisamente implementacdes e especificacdes, assegurando que
os comportamentos da implementacao estejam contidos nos comportamentos esperados. Ao
considerar diferentes niveis de abstracdo comportamental por meio dos modelos de traces,
failures-divergences, essa abordagem oferece uma estrutura robusta para a verificacao formal

de propriedades fundamentais de sistemas reativos, concorrentes e criticos.

2.1.2 Semantica Operacional

A semantica operacional de CSP fornece um mecanismo formal para descrever o compor-
tamento dinamico dos processos por meio da evolucdo dos seus estados ao longo do tempo,
modelando explicitamente as transicGes possiveis entre estados em resposta a ocorréncia de
eventos. Essa seméantica baseia-se nos Labelled Transition Systems (LTS), sendo estruturas
matematicas fundamentais para a representacdo precisa de sistemas concorrentes e distribui-

dos. Formalmente, um LTS é definido como uma quédrupla (S, L, —, s¢), em que S representa
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um conjunto finito ou enumeravel de estados, L corresponde ao conjunto de rétulos (eventos)
que descrevem as acdes do sistema, — C S x L x S é a relacdo de transicdo que define o
comportamento do sistema e sy € o estado inicial a partir do qual a execucdo inicia.

Os rétulos de transicdo pertencentes ao conjunto L incluem eventos visiveis, sendo aqueles
definidos na especificacdo (elementos do alfabeto ), e eventos especiais, como a a¢do interna
T e a terminacdo bem-sucedida v (tick). A acdo 7 representa um passo de execucdo interno ao
sistema, que ocorre sem cooperacdo do ambiente e, portanto, ndo é observavel externamente.
Por outro lado, o evento v indica a conclusdao de um processo, sinalizando que ele atingiu
um estado final com sucesso. A distincdo entre acles visiveis e invisiveis é crucial para a
modelagem de sistemas reais, ao permitir capturar tanto o comportamento externo quanto as
decisdes internas e automaticas do sistema.

Do ponto de vista operacional, a semantica de CSP é expressa por regras de inferéncia
que definem como as transicGes entre estados ocorrem com base na estrutura sintatica dos
processos. Cada operador da linguagem (como prefixo, escolha externa, paralelismo, ocultac3o,
recursdo, entre outros) possui um conjunto especifico de regras que determinam os eventos
iniciais possiveis e os estados resultantes apds sua ocorréncia. Essas regras, apresentadas no
estilo de sistemas dedutivos, formam um mecanismo sistematico para derivar, passo a passo,
todas as possiveis execucdes de um processo, construindo assim seu espaco de estados de
maneira estruturada. Por exemplo, para o processo a — P, hd uma unica transicao rotulada
por a levando ao estado P, enquanto para a composicao sequencial P; (), o processo () sé se
torna ativo apos a terminacao de P.

O evento v possui um papel especial dentro dos LTSs. Ele é tratado como uma acdo
visivel que indica a terminacdo do processo, mas, diferentemente das demais acoes externas,
nao requer cooperacao do ambiente. Isso significa que, uma vez habilitado, o evento de termi-
nacdo ndo pode ser impedido externamente, sendo inevitavel. Essa interpretacdo intermediéria
— entre um evento visivel comum e uma acdo interna — é necessaria para preservar leis
semanticas desejaveis, como a identidade a direita da composicao sequencial, expressa por
P; SKIP = P, que s6 é valida quando o comportamento de v é tratado com esse cuidado.

Ao modelar sistemas robéticos, LTSs permitem descrever de maneira precisa o fluxo de
controle entre sensores, atuadores e componentes de decisao, incorporando tanto as interag(")es
observaveis com o ambiente quanto os comportamentos internos. Essa capacidade de repre-
sentar estados e transicGes com granularidade adequada é essencial para garantir seguranca

e confiabilidade em sistemas criticos, onde a analise formal dos comportamentos possiveis é
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indispensavel. Por exemplo, a auséncia de deadlocks, a capacidade de terminac3do e o respeito
a ordem das operacdes s3o propriedades verificaveis diretamente sobre o LTS gerado. Essa
representacdo por LTSs ndo apenas favorece o entendimento do comportamento do sistema,
como também serve de base para a aplicacio de técnicas automatizadas de verificacdo. E
nesse contexto que ferramentas como a FDR se destacam, permitindo analisar formalmente
propriedades criticas a partir dos modelos especificados.

Por fim, a semantica operacional e a semantica denotacional sdo profundamente inter-
ligadas. Embora a primeira modele explicitamente a dinamica de execucado, e a segunda se
concentre em abstracoes comportamentais, ambas podem ser utilizadas de maneira comple-
mentar. A partir de um LTS derivado de um processo, é possivel extrair seu conjunto de traces,
failures e divergences, aproximando a anélise operacional da denotacional. Essa correspondén-
cia é particularmente importante na verificacdo formal, ao permitir aplicar métodos rigorosos
de anédlise a partir da estrutura sintatica dos processos, assegurando que suas propriedades

estejam conforme os requisitos estabelecidos pela especificacdo formal.

2.1.3 FDR

Failures-Divergence Refinement (FDR) (ROSCOE, 1998; ROSCOE, 2010) é uma ferramenta
de verificacdo formal projetada para analisar modelos especificados em CSP. Desenvolvida ori-
ginalmente pela Formal Systems (Europa) Ltd., FDR permite verificar automaticamente pro-
priedades criticas, como auséncia de deadlocks, seguranca e refinamento de processos, sendo
amplamente utilizado em sistemas criticos, como automacao industrial, sistemas distribuidos
e controle robdtico, onde a confiabilidade é indispenséavel. Sua aplicacdo garante que erros de
implementacao possam ser detectados e corrigidos antes de comprometerem a funcionalidade
do sistema.

Um dos recursos fundamentais de FDR é sua capacidade de transformar especificacées CSP
em LTS, representando graficamente estados e transicGes de um processo. Esse mapeamento
facilita a analise de comportamentos, a deteccdo de inconsisténcias e a comparacdo direta
entre especificacdo e implementacdo. Utilizando CSP,;, uma extensdo mecanizavel de CSP,
FDR viabiliza analises automatizadas que garantem a conformidade das implementacdes com
requisitos especificados, permitindo a validacao de propriedades de seguranca e correcdo em
sistemas criticos. Além disso, essa abordagem robusta minimiza erros operacionais e aumenta

a confiabilidade do sistema (ROSCOE, 1998; BAIER; KATOEN, [2008; |GIBSON-ROBINSON et al.
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2014).

Figura 7 — Resultado da verificacdo de deadlock no FDR com exibic3o de contraexemplo.
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Fonte: Elaborada pelo autor (2025)

Na pratica, FDR fornece uma interface grafica que permite ao usuario carregar arqui-
vos .csp, configurar as propriedades a serem verificadas e visualizar os resultados de maneira
interativa. Quando uma propriedade como auséncia de deadlocks ndo é satisfeita, FDR gera
automaticamente um contraexemplo, exibido graficamente, que ilustra o trace exato de execu-
cdo onde o erro ocorre. Esse trace inclui os eventos executados até o ponto de falha, auxiliando
o engenheiro a localizar com precisao a origem do comportamento incorreto. A Figura [/| mos-
tra uma tela do FDR evidenciando uma violacdo de deadlock no modelo de um rob6 detector
de obstaculos. Nesse caso, apés a ocorréncia de determinados eventos relacionados a deteccao
de obstaculos, o processo atinge um estado no qual nenhum evento adicional pode ser exe-
cutado, impossibilitando qualquer progresso adicional do sistema. Em outras palavras, o robo

permanece bloqueado sem opc¢des de transicdo, caracterizando um deadlock.

2.2 ROBOCHART

RoboChart é uma linguagem diagramatica de dominio especifico para projetar o compor-
tamento de software de controle para sistemas robéticos. E um perfil UML com semantica
formal definida em CSP que pode ser calculada automaticamente usando sua ferramenta as-
sociada, RoboTool. Ela foi projetada para capturar comportamentos de sistemas robéticos,
interacoes e restricoes rigorosas, incluindo aspectos temporais e probabilisticos, fundamentais

para sistemas criticos. RoboChart permite modelar sistemas complexos, integrando controla-
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dores, promovendo seguranca e confiabilidade em aplicacoes como robos industriais, sistemas

auténomos e plataformas de pesquisa (MIYAZAWA et al.,, 2016} IMIYAZAWA et al., 2019).

Figura 8 — CFootBot: modelo completo.

Movementl Obstaclel 0 move(lv: real, av: real) 0 stop()
move(lv: real, av: real)| | # obstacle
stop()
obstacle
dSMovement 0"2 Movement |
Movementl| Movementl
lv: real, PI: real, av: real Obstaclel
(@ obstaclel
F- T T T T T T T T T TT T T T T |
1
! L3 ref stm_ref0 = SMovement | Iobstacle
- ____7 obstacle
- - & CFootBot |
Moving Turning
entry move(lv, 0) obstacle/stop() entry move(0, av) & FootBot
[P] Movement! of ref main::
(i) Obstaclel Movement
obstacle async obstacle

Fonte: Elaborada pelo autor (2025)

Como ja mencionado, a caracteristica central de RoboChart é que sua semantica formal
é definida em CSP e, portanto, herda toda a expressividade e potencial de verificacdo dispo-
nivel para CSP por meio da ferramenta de verificacdo de refinamento FDR. Essa integracdo
possibilita verificar propriedades criticas, como auséncia de deadlocks e alcancabilidade de es-
tado, garantindo que todas as transicoes e comportamentos sejam analisados com seguranca
e precisao (MIYAZAWA et al., |2016; IMIYAZAWA et al., |2019; ROSCOE, 1998).

O principal elemento de um modelo RoboChart é o Médulo, uma estrutura que registra
as premissas feitas sobre o hardware do robd, descreve seu software de controle e estabelece
a ligacao entre ambos. Ele pode conter ou referenciar uma Plataforma e um ou mais Contro-
ladores, além de definir as conexdes entre eles. Usaremos o modelo de um robé moével capaz
de se deslocar de forma autonoma, detectando e reagindo a obstaculos no ambiente para
exemplificar a utilizacdo de RoboChart na modelagem. O modelo CFootBot representa esse
robd mével e é mostrado na Figura [g

O modelo CFootBot é descrito em RoboChart como um médulo de mesmo nome que
encapsula uma plataforma e um controlador, a Figura [J representa esse médulo. O médulo
atua como um contéiner que organiza esses componentes e define como eles interagem. A
plataforma denominada FootBot representa as capacidades fisicas do robd, incluindo senso-

res e atuadores, e expde um conjunto de operacdes, € um conjuntos de eventos, utilizados
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para sinalizar mudancas no ambiente e acionar comportamentos especificos. O controlador

Movement, por sua vez, gerencia a légica do robs e sua interacdo com a plataforma robética.

Figura 9 — CFootBot: médulo e controlador.
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Fonte: Elaborada pelo autor (2025)

Como dito anteriormente, plataformas representam recursos internos do hardware. Isso
inclui variaveis e constantes tipadas, operacdes que o robo pode executar e eventos. A pla-
taforma do FootBot especifica as operacdes move(lv, av), representando o deslocamento do
robd com velocidade linear /v e velocidade angular av, e a operacdo stop(), que interrompe o
movimento do rob6. Neste modelo, a operacao move representa a acao do robo de iniciar um
deslocamento sem especificar detalhes sobre a rota. A decisao sobre a direcao é tomada pelo
controlador com base nos eventos sensoriais. Assim, o controle de planejamento de trajetéria é
tratado de forma implicita pelo comportamento de uma maquina de estados, fazendo com que
o robd ande reto se n3o detectar obstaculo e vire caso exista obstaculo. A Figura [I0] mostra

as interfaces, operacdes e eventos possiveis.

Figura 10 — CFootBot: interfaces, eventos e operacdes.

Movementl Obstaclel 0 move(lv: real, av: real) 0 stop()
move(lv: real, av: real)| | ¥ obstacle
stop()

Fonte: Elaborada pelo autor (2025)

Todas as operacdes citadas anteriormente estdo contidas em uma interface fornecida cha-
mada Movementl. As interfaces encapsulam eventos, varidveis e operacdes. Elas podem ser de
trés tipos: Fornecidas, Definidas e Necessarias. O primeiro tipo descreve variaveis e operacoes
que uma plataforma robética fornece. Interfaces definidas declaram eventos e varidveis usadas
em um elemento. Interfaces necessarias descrevem operacdes e varidveis que um controla-

dor ou maquina de estados assume como fornecidas pela plataforma e outros controladores,
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permitindo que o comportamento seja definido independentemente da plataforma especifica
(MIYAZAWA et al., [2016) MIYAZAWA et al., 2017)).

Eventos representam uma comunicacdo atomica. No caso do CFootBot, a plataforma
define o evento obstacle, através da interface Obstaclel, que indica a deteccdo de um obstéaculo.
Eventos existem tanto no nivel da plataforma quanto no nivel do Controlador e da Maquina de
Estados. Por exemplo, o controlador do CFootBot tem uma interface necesséaria de operacoes
que ele espera da plataforma, conectando-se a interface fornecida pela mesma. O controlador
também define eventos internos como obstacle, que indica quando um obstéaculo é detectado.

Tendo definido a plataforma e o controlador e os vinculado no médulo, definimos o com-
portamento dentro do controlador. Isso é feito com uma maquina de estados, SMovement.
Ela tem a mesma interface necessaria que o controlador, varidveis internas para controle de
estado e eventos como obstacle, especificados em uma interface definida chamada Movementl

e vinculados aos eventos do controlador conforme o esperado.

Figura 11 — CFootBot: maquina de estados.

obstaclel I
e

dSMovement

Movementl
lv: real, PI: real, av: real

@ Obstaclel

Moving Turning
obstacle/stop()

entry move(lv, 0) entry move(0, av)

Fonte: Elaborada pelo autor (2025)

Toda maquina de estados é composta de estados, juncdes e transicdes. Os estados podem
ter acOes a serem executadas na entrada do estado, durante o estagio ativo do estado ou na
saida. As juncdes podem ndo ter essas operacdes e devem ter pelo menos uma transicao de
saida. As juncdes agem como estados tempordrios instaveis pelos quais o robd deve passar
e sair imediatamente. Cada Maquina de Estados deve ter uma juncdo inicial. A maquina

SMovement imediatamente transita para um estado chamado Moving, onde o rob6 inicia seu
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deslocamento até que um obstaculo seja detectado. A Figura apresenta uma representacao
esquematica dessa estrutura, ilustrando a relacido entre estados, juncoes e transicoes dentro
da maquina de estados.

Uma vez que o evento obstacle é recebido, o rob6 interrompe seu movimento, realiza a
operacdo stop() e transita para o estado Turning. Na entrada do estado Turning, uma a¢do
de reorientacdo é executada através da operacdo move(0, av), iniciando uma rotacdo. O robd
realiza uma operacdo de rotacdo e apés isso, a transicao para Moving é acionada, retomando
o deslocamento normal.

Para resumir, o CFootBot usa tipos de dados definidos na plataforma, e suas operacdes e
eventos externos estao encapsulados na interface fornecida. Seu comportamento é especificado
por uma maquina de estados, que é um componente do controlador. O nivel superior da
especificacao é o mddulo, que conecta a plataforma e o controlador. Além disso, a semantica
de RoboChart, que serd abordada a seguir, é fundamental para entender como os modelos
de sistemas dinamicos, como o CFootBot, podem ser formalizados e analisados, oferecendo
uma base sélida para a implementacao e validacdo de comportamentos complexos em sistemas

robdticos.

2.2.1 Semantica de RoboChart

Como dito anteriormente, a semantica formal de RoboChart é baseada em CSP, permitindo
que modelos especificados na notacdo diagramética sejam traduzidos para uma forma textual
adequada para verificacdo formal. Essa abordagem possibilita o uso de ferramentas como
FDR para anélise de propriedades como refinamento, deadlock e determinismo. CSP oferece
uma base sélida para a modelagem do comportamento concorrente e reativo dos sistemas
robdticos, garantindo que as interacdes entre componentes sejam expressas de forma rigorosa
e verificavel.

Uma das particularidades de RoboChart é a definicao de uma semantica prépria utilizando
CSP, incorporando eventos especificos que representam interacdes entre componentes do sis-
tema. Em particular, eventos como entered, in, out, exit, during e terminate sao utilizados
para capturar mudancas de estado e comunicacdes entre processos. O evento entered é acio-
nado sempre que um estado é alcancado, permitindo registrar explicitamente a entrada em um
novo estado dentro da maquina de estados de RoboChart. O evento exit representa a saida

de um estado, garantindo que a transicdo seja capturada formalmente. J& os eventos in e out
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sao usados para comunicacdo sincrona entre processos, onde in representa a recepcao de um
evento e out a sua emissao. O evento during é utilizado para modelar acdes continuas em um
estado, representando ciclos de execucao que ocorrem enquanto o estado estd ativo. O evento
.terminate é fundamental para indicar a finalizacdo de um processo ou sistema, garantindo
que uma terminacdo explicita seja modelada e tratada corretamente (MIYAZAWA et al., 2016
MIYAZAWA et al., [2017)).

A semantica de mapeamento de RoboChart para CSP traduz cada estado em um processo
cujo ciclo de vida é gerenciado por eventos especificos. A entrada em um estado é sinalizada
pelo evento .entered, e quaisquer acdes de entrada associadas sao modeladas como eventos
que ocorrem imediatamente em sequéncia. Acdes continuas, executadas enquanto o estado
esta ativo, sdo representadas pelo evento .during. A saida, por sua vez, é modelada pelo evento
.exit, que também encapsula as acoes de finalizacdo do estado. As transicOes entre estados
utilizam eventos .in e .out para sincronizacao, enquanto varidveis e operacoes sao abstraidas
como canais de comunicacao. Finalmente, o encerramento explicito de um processo é garantido
pelo evento .terminate, permitindo modelar a finalizacdo completa de um componente.

Além disso, a semantica de RoboChart em CSP inclui o uso de eventos de tempo para
modelar restrices temporais. Em RoboChart, o tempo pode ser expresso por clocks, que im-
pdem restricoes sobre quando eventos podem ocorrer. No CSP, essas restricoes temporais sdo
representadas utilizando operadores como wait e tock, permitindo a especificacdo e verificacdo
de propriedades temporais de modelos robéticos. Embora haja a semantica temporizada, este
trabalho usard somente a semantica sem considerar tempo.

Outro aspecto importante é como RoboChart lida com a composicao de processos. Em
CSP, a composicdo paralela é usada para modelar a execucao concorrente de diferentes compo-
nentes do sistema. No contexto de RoboChart, essa composicao permite descrever interacoes
entre multiplos controladores e entre controladores e a plataforma. A sincronizacdo entre esses
processos é feita por meio de eventos compartilhados, garantindo que a execucdo ocorra de
maneira coordenada.

Com a formalizacdo em CSP, é possivel realizar verificacdes rigorosas de modelos Robo-
Chart. A analise de refinamento permite comparar a implementacdo de um sistema com sua
especificacao formal, garantindo que todos os comportamentos permitidos pela implementacao
sejam compativeis com a especificacdo. Além disso, a verificacdo de deadlocks, ndo determi-
nismos e divergéncias assegura que o sistema n3o entre em estados indesejados ou apresente

comportamentos nao deterministicos.
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Portanto, a semantica CSP de RoboChart oferece uma base formal sélida para a modela-
gem e verificacao de sistemas robdticos. A inclus3o de eventos como .entered, .exit, .during, .in,
.out e .terminate permite um controle preciso das interacGes entre os componentes, enquanto
0s mecanismos de sincronizacao e composicdo asseguram a consisténcia do comportamento
concorrente. Assim, RoboChart se posiciona como uma ferramenta eficiente para o desenvol-

vimento de sistemas robdticos, garantindo confiabilidade e verificabilidade formal.

2.3 PYTRANSITIONS

A biblioteca pytransitions é uma implementac&o orientada a objetos de FSM (Finite State
Machine), ou Maquina de Estados Finitos, em Python, amplamente reconhecida por sua flexibi-
lidade e simplicidade na modelagem de sistemas baseados em estados. Criada com o propésito
de facilitar o gerenciamento de estados e transicdes em sistemas complexos, pytransitions é
frequentemente empregada em areas como sistemas robéticos e simulacdo de comportamentos
em software. Esta secdo detalha as funcionalidades e componentes principais da biblioteca,
bem como sua aplicacdo em sistemas criticos.

A pytransitions fornece um conjunto abrangente de ferramentas para modelar FSMs, com
suporte para estados, transicoes, eventos e triggers. Além disso, ela permite a personalizacao
de méaquinas por meio de acdes (callbacks) associadas a transicdes e estados, viabilizando a
execucao de comportamentos especificos em diferentes etapas do ciclo de vida do sistema. Uma
de suas caracteristicas marcantes é a capacidade de suportar maquinas de estados hierarquicas
e paralelas, tornando a biblioteca adequada para sistemas altamente complexos.

Os componentes centrais do pytransitions incluem:

» Estados: representam as condicdes ou modos de operacao de um sistema. Os estados
podem ser definidos de maneira simples (por strings) ou como objetos mais complexos,

permitindo maior flexibilidade na modelagem.

= Transicdes: definem como o sistema se move de um estado para outro. Cada transicdo
é ativada por um evento (trigger) e pode incluir condicdes especificas que precisam ser

satisfeitas para que a mudanca de estado ocorra.

= Triggers (Eventos): sdo os estimulos que iniciam as transicdes. Podem ser definidos

como métodos que simulam o recebimento de comandos externos ou internos.
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= Maquina: representa a FSM toda, gerenciando os estados, transicdes, eventos e o estado

atual do sistema.

» Modelo: refere-se ao objeto que mantém o estado atual e pode ser enriquecido com

dados adicionais para representar as propriedades de um sistema.

Os estados sdo os blocos fundamentais de qualquer maquina de estados modelada com
pytransitions. Cada estado representa uma condicao especifica ou um modo de operacdo do
sistema. Por exemplo, em um robé industrial, os estados podem incluir “ldle”, “Movendo para
a Posicao”, “Inspecionando Componente” e “Retornando a Base”. A biblioteca permite definir
estados de maneira simples, utilizando strings, ou como objetos mais complexos, possibilitando
a adicao de propriedades especificas e métodos associados a cada estado.

Além disso, pytransitions suporta estados aninhados, conhecidos como estados hierarquicos
ou compostos, onde um estado pode conter subestados. Isso é til para modelar sistemas com
comportamentos relacionados, como um robd que, no estado “Operacional”, pode alternar
entre subestados como “Navegando” e “Carregando Objeto”. Essa organizacio hierarquica
melhora a clareza do modelo, reduz a redundancia e facilita a gestdo de sistemas com mudltiplos
niveis de complexidade.

As transicdes sdo os elementos que conectam os estados e definem como o sistema muda
de uma condic&o para outra. No pytransitions, cada transicdo é ativada por um evento (trigger)
e pode incluir condicdes que devem ser satisfeitas para a mudanca ocorrer. Por exemplo, uma
transicao do estado “Movendo para a Posicdo” para “Inspecionando Componente” pode ser
ativada pelo evento reached_position e condicionada a verificacao de que a posicao alvo foi
alcancada com precisao.

Além disso, as transicoes podem ter aces associadas por meio de callbacks, permitindo
que tarefas sejam executadas durante a mudanca de estado. Por exemplo, ao transitar para o
estado “Retornando a Base”, a transicao pode incluir um comando para desativar os atuadores
ou salvar dados coletados no sistema. Essa funcionalidade garante que o modelo ndo somente
descreva os estados e mudancas, mas também integre logicamente as acdes associadas a cada
etapa.

Existem trés tipos principais de callbacks: ao entrar em um estado (on_enter), executados
assim que o sistema transita para um estado especifico; ao sair de um estado (on_exit), ativa-
dos antes que o sistema deixe um estado; e callbacks associados a transicdes (before/after),

que permitem verificar condicdes ou executar acdes especificas antes, ou depois de uma mu-
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danca de estado. Esses recursos garantem maior flexibilidade e adaptabilidade, especialmente
em sistemas complexos.

A biblioteca pytransitions também se destaca pela possibilidade de trabalhar de maneira
orientada a eventos, permitindo que as transicdes entre estados sejam ativadas por estimulos
externos ou internos, conhecidos como triggers. Essa abordagem é particularmente atil em
sistemas reativos, onde as mudancas de estado dependem de eventos dindmicos, como a
deteccao de um sensor ou a recepcao de um comando. Essa flexibilidade faz da biblioteca uma
ferramenta boa para modelar sistemas em tempo real, como aplicacdes robdticas e sistemas
de automacao, onde a responsividade a eventos é crucial para garantir um comportamento
adequado.

Com suporte para modelagem orientada a eventos, controle detalhado do ciclo de vida, e
recursos avancados para gerenciar estados e transicdes, pytransitions é uma biblioteca poderosa
para sistemas baseados em estados. Sua flexibilidade permite modelar sistemas simples e
altamente complexos, atendendo as necessidades de diversas aplicacGes, desde robdtica até
automacao industrial.

A seguir, o Cdédigo Fonte [1] ¢ um exemplo basico de uma FSM para o robd CFootBot,
conforme o modelo especificado na Secdo [2.2] O robd alterna entre dois estados principais:
Moving (movendo-se para frente) e Turning (girando para desviar de um obstaculo). As
transicGes entre os estados sdo ativadas por eventos representando a deteccao de obstaculos e
a conclusdo da manobra de desvio. Este exemplo ilustra de forma simplificada como representar

o comportamento reativo do robo utilizando a biblioteca pytransitions.

Cadigo Fonte 1 — Implementacdo do CFootBot usando pytransitions.

1 from transitions import Machine

3 class CFootBot:
def move_forward(self):

5 print("Movendo para frente.")

7 def turn(self):

print(”"Girando para desviar.")

robot = CFootBot ()

11
states = ['Initial', 'Moving', 'Turning']
13 transitions = [
{'trigger': 'start', 'source': 'Initial', ‘'dest': 'Moving',

15 "after': 'move_forward'},
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{'trigger': 'obstacle_detected', 'source': 'Moving', 'dest': 'Turning',
17 "after': 'turn'},
{'trigger': 'turn_completed', 'source': 'Turning', 'dest': 'Moving',
19 ‘after': 'move_forward'}
]
21
machine = Machine(model=robot, states=states, transitions=transitions, initial='
Initial')
23

robot.start ()
25 robot.obstacle_detected()

robot.turn_completed()

Fonte: Elaborada pelo autor (2025)

Durante a execucdo do cédigo, o robé CFootBot segue um ciclo de vida bem definido,
estruturado pela maquina de estados. Inicialmente, o sistema encontra-se no estado /nitial,
representando o ponto de partida do controle comportamental. A primeira transicdo ocorre com
a invocacdo do evento start(), que leva o rob6 ao estado Moving. Como parte dessa transicao,
é executada a acdo mov_forward(), que simboliza o inicio do deslocamento em linha reta.
Enquanto o rob6 permanece neste estado, presume-se que ele esteja operando normalmente
até que um evento externo, como a deteccdo de um obstaculo, dispare a transicdao para o
estado Turning por meio do evento obstacle_detected(). Ao entrar neste novo estado, a
funcdo turn() é acionada, simulando a execucao de uma manobra de desvio. Apds o término
dessa acado, o evento turn_completed() promove o retorno ao estado Moving, reiniciando o
ciclo. Esse comportamento ciclico demonstra a dindmica de um sistema reativo, no qual os
estados e as transicoes definem claramente as possiveis trajetérias de execucdo, enquanto os

eventos e métodos associados controlam o fluxo de acdes do rob6 ao longo de sua operacao.
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3 METODOLOGIA

Este capitulo apresenta a metodologia usada para verificar a conformidade de uma imple-
mentacdo de sistema de controle robdtico em Python, usando a biblioteca pytransitions, com
seu modelo de design em RoboChart (e sua especificacdo formal). Para a apresentacdo da me-
todologia, considere um exemplo de uma linha de montagem que utiliza um sistema robético
para executar operacdes como inspecionar e processar componentes, descartar itens defeituosos
e montar produtos. Dadas as preocupacdes com escalabilidade, optamos por reduzir o escopo
de nossa andlise focando somente em maquinas de estado e avaliando-as separadamente. Essa
abordagem permitiu um processo de verificacdo mais estruturado e computacionalmente via-
vel. Neste cenério, espera-se que o sistema robético passe por varios estados, como inspecionar
componentes, identificar defeitos e executar tarefas de montagem com base na condicao de
cada item. O sistema deve conseguir lidar com diferentes cenarios, como encontrar compo-
nentes defeituosos, o que levaria ao descarte desses itens e a continuacdo do processo.

A metodologia de analise consiste em cinco etapas principais: formalizacdo de requisitos
informais usando RoboChart, obtencdo do LTS da semantica formal de RoboChart em CSP,
abstracdo do LTS, verificacdo de conformidade entre o LTS e o FSM da implementacdo por
meio do Algoritmo [I] de verificacdo de refinamento de traces e uma etapa final de anélise de

resultados.

3.1 FORMALIZACAO DOS REQUISITOS

A formalizacdo de requisitos € um passo essencial no desenvolvimento de sistemas roboéti-
cos, especialmente em contextos reativos, criticos e concorrentes. Em aplicacdes como linhas
de montagem industriais, dispensacao automatizada de medicamentos ou robds moéveis au-
tonomos, qualquer ambiguidade nos requisitos pode resultar em falhas operacionais graves.
Especificaces informais, geralmente escritas em linguagem natural, tendem a ser incompletas
ou ambiguas, falhando em representar detalhes como condicGes de sincronizacdo, tratamento
de excecbes e comportamentos emergentes. Nesse cenario, o uso de modelos formais permite
explicitar decisGes, estruturar comportamentos condicionais e estabelecer limites operacionais
com precisdao matematica, promovendo confiabilidade, seguranca e rastreabilidade.

Com base nessa motivacdo, o primeiro passo metodoldgico deste trabalho consiste na utili-
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zacdo de RoboChart para traduzir requisitos informais — geralmente expressos em linguagem
natural — em modelos formais. Esses requisitos descrevem as operacGes esperadas do sis-
tema e podem ser classificados em duas categorias principais: funcionais e ndo funcionais. Os
requisitos funcionais especificam as acoes que o sistema deve realizar — por exemplo, “pe-
gar componente” ou “embalar produto” — enquanto os ndo funcionais tratam de restricdes
relacionadas a desempenho, seguranca, tempo de resposta, entre outros aspectos. Embora
este trabalho concentre-se na formalizacdo dos requisitos funcionais por meio de RoboChart,
é importante destacar que o formalismo também permite capturar requisitos ndo funcionais
relacionados a aspectos probabilisticos e temporais, os quais estdo fora do escopo do presente
trabalho. Estruturas como pré-condicGes, guardas e eventos podem representar, por exemplo,
restricoes como “sé inspecionar o componente se ele estiver posicionado corretamente”, ofe-
recendo uma base formal para aspectos criticos de operacdo. Como exemplo, consideramos o

seguinte requisito informal para uma linha de montagem automatizada:

“O braco robético, auxiliar da linha de montagem, deve pegar um componente e
inspeciona-lo. Caso o componente nao seja defeituoso, o braco leva o componente

para a montagem, verifica a montagem, embala o produto e finaliza a operacdo”.

Para tornar mais clara a correspondéncia entre os elementos do requisito informal e os
componentes formais da maquina de estados, é util detalhar como cada acdo e decisao foi
mapeada no modelo. A sistematica adotada para a traducdo dos requisitos segue um padrao
claro: o verbo principal da acdo no requisito origina o nome do evento (trigger) da transi-
cdo, enquanto o estado resultante é nomeado a partir do participio do verbo, invertendo a
ordem com o objeto da acdo. Por exemplo, a acdo “pegar um componente” gera o evento
pick_component para a transicdo, e o estado associado passa a ser ComponentPicked, re-
presentando que o componente foi capturado com sucesso. De forma anéloga, “inspecionar
componente” da origem a transicdo inspect_component e ao estado Componentinspected.

O braco robético, elemento central do requisito, da origem ao médulo responsavel pelas
operacdes principais. A decisdo condicional “caso o componente nao seja defeituoso” é tra-
duzida para uma transicdo com guarda légica, permitindo o desvio para diferentes caminhos:
se 0 componente estiver em boas condicOes, segue para a montagem por meio da transicao
place_component [defective_component == false], caso contrério, o fluxo segue para o des-
carte. Essas transicdes condicionais incorporam diretamente a légica de decisdo do dominio,

mantendo a rastreabilidade entre a linguagem natural e os artefatos formais. A Figura
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torna visivel essa estruturacao, evidenciando como estados, eventos e guardas representam os
comportamentos esperados e promovem uma modelagem rigorosa e interpretavel do sistema.

Para garantir a fidelidade entre o comportamento modelado e as expectativas do dominio,
algumas heuristicas de modelagem foram adotadas. A primeira delas foi o uso de estados
intermediarios para representar acbes compostas, o que permite rastrear cada etapa do processo
com precisao. Também se optou por manter os nomes de eventos e transicGes proximos
a linguagem original dos requisitos, facilitando a validacdo com especialistas do dominio.
Adicionalmente, priorizou-se uma granularidade que favorecesse modularidade, evitando que
estados acumulassem muiiltiplas funcdes, o que dificultaria a verificacdo formal posterior.

Conforme destacado em (GIESE; HELDAL), 2004; |CARVALHO et al/, |2015; SANTOS; CARVA-
LHO; SAMPAIO, 2018)), traduzir requisitos informais em modelos formais é uma etapa crucial
no desenvolvimento de sistemas reativos, especialmente em dominios onde a previsibilidade e
a seguranca sdo fundamentais. Essa transicdo tem o papel de eliminar ambiguidade, assegurar
precisao semantica e possibilitar a aplicacdo de técnicas de verificacao automatica. Requisitos
escritos em linguagem natural tendem a ser interpretados subjetivamente por diferentes mem-
bros da equipe de desenvolvimento, o que pode gerar inconsisténcias entre o comportamento
implementado e o desejado. A formalizac3o, por sua vez, torna explicitos os comportamentos
esperados, os fluxos condicionais e os cenéarios de excecdo, favorecendo a rastreabilidade entre
as etapas do ciclo de desenvolvimento.

Embora ferramentas automatizadas, como a NAT2TEST (CARVALHO et al 2015), ofe-
recam suporte parcial para converter sentencas em linguagem natural para modelos formais
de teste, ainda existem limitacOes considerdveis quanto a expressividade, controle semantico
e generalizacdo para dominios complexos como a robética. Por essa razdo, neste trabalho,
a modelagem da maquina de estados em RoboChart foi realizada manualmente, para repre-
sentar com maior precisdo os aspectos operacionais, restricdes contextuais e particularidades
do dominio. Apesar de permitir um mapeamento mais cuidadoso entre requisitos e modelo,
essa traducao manual n3o assegura, por si sd, que o comportamento especificado esteja com-
pletamente correto ou livre de ambiguidades. Por isso, a verificacao de propriedades sobre
a especificacdo formal é uma etapa essencial para validar se o0 modelo realmente satisfaz os
requisitos pretendidos. No entanto, uma direcdo futura promissora seria a automacdo desse
processo, integrando técnicas de aprendizado de maquina e linguagens naturais controladas,
para agilizar e sistematizar a transicao de requisitos informais para modelos formais verificaveis.

Embora nenhuma ferramenta automatizada tenha sido utilizada para gerar o modelo Ro-
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boChart a partir dos requisitos informais, essa traducao foi conduzida de forma sistematica,
por meio de um mapeamento estruturado, conforme demonstrado no exemplo fornecido. No
texto do requisito, verbos e acoes-chave como “pegar”, “inspecionar”, “levar”, “verificar” e
“embalar” foram traduzidos cuidadosamente em transices na maquina de estados RoboChart,
representando mudancas entre diferentes etapas do processo. Os estados, por sua vez, foram
definidos para capturar condicSes ou configuracdes especificas do sistema, como a posicdo
do braco robético ou o status de uma tarefa, compondo uma estrutura que reflete as fases
operacionais descritas no requisito. Para apoiar a validacdo do comportamento modelado, fo-
ram realizadas animacdes baseadas no cédigo CSP gerado automaticamente por RoboTool,
permitindo observar a dindmica de execucao do sistema e verificar se ela condizia com os
cenarios esperados. Embora essa abordagem ndo substitua a prova formal de propriedades
— sendo o método ideal para garantir a correcao do modelo —, ela contribui como uma
etapa complementar de validacdo apés a formalizacdo, reforcando a confianca na adequacao

do comportamento especificado.

Figura 12 — Assembly line parcial em RoboChart.
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verify_assembly

package_product

package_product

ProductPackaged

finalize_operation

®< finalize_operation

Fonte: Elaborada pelo autor (2025)

O uso do componente mdquinas de estados (conforme descrito na Secdo [2.2)) em Ro-
boChart se alinha naturalmente com a implementacao, que também é baseada em conceitos
de maquina de estados. Essa consisténcia facilita o desenvolvimento da metodologia e reduz

a complexidade e os desafios de escalabilidade da anélise. Ao definir explicitamente estados e
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transicdes, o modelo se torna mais modular e facil de entender, permitindo a decomposicao
sistematica do comportamento do sistema. Além disso, essa abordagem aprimora a manute-
nibilidade e a verificacdo, pois cada estado encapsula funcionalidades especificas, permitindo
uma validacao mais direta de requisitos e condicoes. Como j& mencionado, a maquina de
estados resultante do requisito informal antes apresentado € ilustrada na Figura (12|

Por exemplo, na Figura [12] o estado WaitOp representa o braco robético esperando pelo
préximo comando. A transicao pick_component modela a acdo de mover o braco para a
posicdo desejada e pegar o componente, enquanto o estado ComponentPicked resultante re-
presenta o status atualizado do sistema. Da mesma forma, a transicdo para o estado Compo-
nentlnspected é acionada pelo evento inspect_component, indicando que a inspecao do com-
ponente foi concluida. Nesse processo, as transicdes também podem envolver troca de dados
e avaliacdes condicionais. Por exemplo, a transicao inspect_component?defective_component
ndo somente sinaliza o evento de inspecdo, mas também recebe informacdes sobre se o com-
ponente esta com defeito. Esses dados s3o entdo usados em transicdes subsequentes, como
place_component [defective_component::false], 0 que garante que somente componentes
ndo defeituosos prossigam para a montagem. Ao estruturar sistematicamente esse processo
de traducdo, o modelo RoboChart organiza efetivamente o comportamento do sistema e va-
lida os requisitos, garantindo que os estados e transicoes reflitam com precisdo os objetivos
operacionais descritos na especificacao informal.

Usar RoboChart fornece uma abordagem estruturada e rigorosa para modelagem, e a ca-
pacidade de gerar cédigo CSP,; aprimora ainda mais o processo de verificacdo ao permitir
andlise formal e verificacido de refinamento, garantindo que todas as possibilidades sejam
rigorosamente verificadas. Essa formalizacao permite uma transicdo natural para analise auto-
matizada, garantindo que os comportamentos esperados sejam implementados com precisao.
Além disso, o uso de variaveis e tipos em RoboChart fornece flexibilidade para lidar com dife-
rentes niveis de abstracao, como contadores de pecas ou estados booleanos para condicoes de
falha, adicionando robustez ao modelo. Finalmente, destaca-se que essa formalizacdo também
prepara o sistema para etapas posteriores do ciclo de verificacdo e validacdo, como testes
formais, geracdo automatica de testes e simulacdo. Ao estruturar os requisitos desde o ini-
cio em uma notacdo formal compativel com verificacdo automatica, abrem-se possibilidades
para integracdo com testes baseados em modelos, verificacdo de tempo real e até sintese de
controladores. Esses desdobramentos podem ser explorados em trabalhos futuros.

Antes de avancar para a etapa de obtencdo do LTS, é fundamental assegurar que o sistema
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especificado em CSP esteja livre de propriedades indesejadas, como deadlocks, n3o determi-
nismo e livelocks. A presenca dessas propriedades compromete tanto a analise subsequente
quanto a confiabilidade geral do modelo. Por exemplo, deadlocks indicam estados de bloqueio
onde o sistema ndo pode mais avancar; o ndo determinismo pode causar comportamentos
ambiguos e imprevisiveis; enquanto livelocks representam ciclos infinitos de execucdo que im-
pedem o progresso efetivo do sistema. A verificac3o rigorosa dessas propriedades garante que
o modelo formal gerado por RoboChart seja consistente e apropriado para as fases seguintes
de andlise e refinamento. Somente apds a confirmacdo da auséncia desses problemas é que se

prossegue para a geracdo do LTS.

3.2 OBTENCAO DO LTS

Uma vez que a especificacdo CSP de um modelo RoboChart esteja disponivel, o préximo
passo em nossa metodologia é derivar seu LTS. Este processo é realizado usando a API
de FDR4E| (FDR4, 2016)), que fornece uma interface programética para carregar, analisar e
gerar o LTS correspondente ao modelo CSP. A API permite acessar os estados gerados,
identificacdo de transicGes habilitadas e inspecdo do comportamento dinamico do sistema.
Embora esteja disponivel para Java e C++, usamos a versdo Python para manter a consisténcia
com nossa linguagem de implementacao, garantindo integracao perfeita em nossa metodologia
e automatizando a geracdo de LTS e a verificacio de transicGes validas.

O processo de obtencdo do LTS comeca com a geracdo automatizada do cédigo CSP
a partir do modelo desenvolvido em RoboChart, preservando toda a estrutura da maquina
de estados, incluindo estados, transicoes, condicdes de guarda e aces associadas. Apos essa
geracdo, a especificacdo CSP é carregada na APl de FDR4, que executa a andlise e gera o
LTS. Este LTS, por sua vez, descreve todos os estados possiveis do sistema e as transicoes
entre eles, fornecendo uma representacdo precisa e completa do comportamento do modelo,
essencial para a validacdo formal e a anélise do sistema. Porém, esse LTS obtido n3o esta
pronto para ser usado na nossa abordagem e demanda um certo nivel de abstracao.

O Cédigo Fonte |2l mostra a funcdo Python utilizada para carregar a especificacdo CSP e

extrair o LTS e o primeiro n6 do LTS, por meio da APl de FDRA4.

Cadigo Fonte 2 — Func3o utilizada para obter o LTS a partir da especificacio.

1 https://cocotec.io/fdr/manual/
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def obtain_lts(fdr_instance, csp_path):

2 fdr_instance.library_init ()

4 session = fdr_instance.Session()

session.load_file(csp_path)

lts_target_process = session.evaluate_process('target_process', fdr_instance.
SemanticModel _Traces, None).result()

8 first_node = lts_target_process.root_node()

10 return lts_target_process, first_node

Fonte: Elaborada pelo autor (2025)

3.3 ABSTRACAO DO LTS

O LTS gerado a partir do modelo CSP inclui construcGes semanticas especificas de Ro-
boChart, muitas das quais nao s3o diretamente relevantes para a metodologia proposta neste
trabalho. Para focar no comportamento essencial do sistema, utilizamos o processo VS_0O___
da especificacdo CSP,que representa uma maquina de estados com estados visuais, ou seja,
estados como eventos, fornecendo uma visdo de alto nivel da maquina de estados. Esse pro-
cesso expde eventos-chave — como s.entered (onde s é o nome completo do estado) e eventos
de comunicacdo marcados com o sufixo .in — enquanto ja exclui transices internas 7. Es-
sas caracteristicas tornam o VS_O___ particularmente adequado para extrair comportamentos
significativos.

Em nossa abordagem, os eventos sdao processados incrementalmente a medida que sao en-
contrados, de forma dinamica. Cada evento é avaliado de acordo com sua relevancia: apenas
entradas de estado e eventos de comunicacao entre componentes sao retidos, com nomes de
estado simplificados e elementos estruturais desconsiderados. Embora fosse possivel realizar
essa renomeacao e filtragem diretamente no modelo CSP, optamos por aplicar essas transfor-

macdes no nivel da implementacao Python. Essa escolha proporcionou maior flexibilidade e

[ON

integracdo com as etapas de analise subsequentes. O resultado dessa abstracdo por eventos
um LTS abstrato que reflete o comportamento observavel do sistema. Um exemplo de trace
desse LTS abstrato, derivado do processo VS_O__ da maquina de estados AssemblyLine, é
apresentado na Figura [I3

Essa estratégia garante a compatibilidade com o nivel de abstracdo da implementacdo
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Figura 13 — Exemplo de trace apés a abstracio.

(WaitOp, receive_command.in, Component Picked, ..., Finish, terminate)

Fonte: Elaborada pelo autor (2025)

Python, que naturalmente omite eventos internos e sobrecarga estrutural. Além disso, ao in-
terpretar eventos diretamente do processo VS_O__, preservamos a semantica definida em
RoboChart e mantemos o alinhamento com a geracdo automatizada fornecida por Robo-
Tool (MIYAZAWA et al| 2016; [MIYAZAWA et al., |2017). Isso permite que a metodologia per-
maneca sélida e consistente com o modelo formal subjacente. Em particular, essa abordagem
evita transformacdes desnecessarias da especificacdo original, garantindo que o comportamento
usado para validacdo seja derivado fielmente da mesma semantica que rege a analise formal

do modelo.

3.4 ALGORITMO DE VERIFICACAO DE REFINAMENTO DE TRACES

A metodologia para verificar a conformidade entre a especificacdo formal e a implementa-
cdo é baseada no conceito de refinamento de traces, formalmente representado como P C (),
cuja definicdo é dada por traces(Q) C traces(P), veja a Secdo [2.1.1} P representa a espe-
cificacdo e () a implementacdo. Para executar essa verificacao, um algoritmo de Verificacao
de Refinamento de Traces é propostdzl. Esse algoritmo permite a exploracdo sistematica dos
estados e transices definidos no LTS abstrato da especificacdo CSP, conforme apresentado na
secdo anterior, e os compara com aqueles do FSM da implementac3do. Importante destacar que
o algoritmo desenvolvido é uma versdo simplificada do método utilizado pelo FDR (ROSCOE,
2010), especialmente no que diz respeito a manipulacdo da supermaquina e as normalizacdes
empregadas na verificacdo completa.

O algoritmo central da metodologia, apresentado no Algoritmo [T} utiliza uma abordagem
recursiva para percorrer o LTS abstraido a partir de CSP, verificando, em cada estado, se os
eventos e transicGes observaveis na FSM implementada com a biblioteca pytransitions estao
contidos no conjunto de comportamentos permitidos pela especificacdo. A funcdo principal,

explore_transitions, itera sobre os nds (estados) do LTS abstraido da especificacdo, gerando

2 Uma abordagem alternativa seria derivar uma especificacio CSP da implementacio e usar FDR para

refinamento, mas o algoritmo descrito aqui foi escolhido.
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as transicGes a partir de um né atual e comparando-as com as transicdes disponiveis na FSM
da implementacdo. Durante o processo, informacdes detalhadas sobre as transicdes e estados

visitados s3o registradas para analise posterior.

Algoritmo 1: Algoritmo de verificacao de refinamento de traces.

1 Function
is_traces_refined_by(spec_lts, implementation_machine, current_Its_node):

2 foreach spec_transition € spec_Its do
3 dest_node = spec_transition.destination() // Target state associated with
the transition

4 event_lts = spec_transition.event()

5 impl_transitions = implementation_machine.get_transitions()

6 if {event_lts} N {entered,terminate} then

7 spec_transitions = speci fication_lts.transitions(current_lts_node)

8 available_tmpl_transitions =

implementation_machine.get_available_transitions(impl_transitions)

9 if available_impl_transitions € spec_transitions then

10 return false ; // Refinement failed
11 end

// Executes the transition specified by the model in the
implementation’s machine

12 new_impl_machine = implementation_machine.trigger(spec_transition)
13 end

14 if event_lts =' terminate’ then

15 return true ; // End of refinement process
16 end

17 is_traces_refined_by(spec_lts, new_impl_machine, dest_node)
18 end

19 return true

Fonte: Elaborada pelo autor (2025)

A verificacdo de conformidade é realizada comparando o FSM derivado da implementacdo
com o LTS abstrato gerado a partir do modelo formal em CSP. O algoritmo garante que a
implementacao execute as mesmas transicoes especificadas no modelo, garantindo que o com-
portamento observado seja consistente com o definido. Se a implementacdo n3o suportar as
mesmas transicoes ou apresentar comportamentos divergentes, o processo € interrompido, re-
gistrando o ponto de erro e o trace correspondente até a falha. Esse registro detalhado permite
a identificacdo precisa de inconsisténcias e fornece uma base para corrigir a implementacao.

Uma das principais dificuldades encontradas nesse processo foi garantir que a maquina
de estados implementada em pytransitions seguisse os mesmos caminhos e alfabeto (nomes
de eventos) especificados pelo LTS do modelo. Para superar esse desafio, um dispositivo foi
usado para cadenciar a execucdo da implementacdo conforme a especificacdo. Cada evento na

especificacdo comunica, por meio de canais, o estado de variadveis booleanas associadas a exe-
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cucao dos estados de implementacdo. A manipulacao dessas varidveis garante que os estados
internos da maquina de implementacdo estejam alinhados com nés do LTS da especificacdo,
permitindo que a implementacao faca a transicao entre estados de maneira idéntica ao modelo.
Essa sincronizacdo garante consisténcia entre o FSM da implementacdo e o modelo formal.

Antes de iniciar a exploracdo dos caminhos no LTS, o algoritmo realiza uma verificacdo
preliminar para assegurar o alinhamento dos eventos entre a especificacdo formal e a maquina
de estados da implementacao. Na pratica, essa etapa consiste em verificar se o alfabeto de
eventos — isto €, os nomes dos eventos que ambos os modelos reconhecem — esta devi-
damente compativel. Caso sejam detectadas discrepancias entre esses eventos, a execucdo é
interrompida com a geracdo de um erro especifico, indicando que n3o é possivel prosseguir
devido a incompatibilidade. Essa checagem inicial é fundamental para garantir que a analise
posterior compare efetivamente comportamentos correspondentes nos dois modelos.

O corpo principal do algoritmo implementa uma busca em profundidade sobre o LTS da es-
pecificacdo, representada pela funcao recursiva is_traces_refined_by. Para cada transicdo dis-
ponivel no estado atual da especificacdo (obtida no laco foreach spec_ transition in spec_Its),
o algoritmo identifica o estado de destino associado (dest_node) e o evento que dispara essa
transicdo (event_lts). Em seguida, sdo recuperadas todas as transicdes possiveis no estado
corrente da implementacdo (impl_transitions = implementation_machine.get_transitions()).
Essas transicoes passam por um filtro, que considera somente aquelas habilitadas pelas con-
dicBes atuais do sistema (available_impl_transitions). Se algum evento disponivel na imple-
mentacdo ndo estiver previsto na especificacdo para aquele estado, o algoritmo reconhece a
falha de refinamento e retorna false, sinalizando a divergéncia. Caso contrario, a transicdo da
especificacdo é “executada” na implementacdo por meio do disparo da transicdo correspon-
dente (new_impl_machine = implementation_machine.trigger(spec_transition)), atualizando
o estado da maquina da implementacdo.

Se o evento da transicdo da especificacdo for o evento especial terminate, o algoritmo
considera que o caminho foi explorado com sucesso e retorna true, encerrando a busca naquele
ramo. Caso contrario, a funcdo é chamada recursivamente com o novo estado da especifica-
¢do (dest_node) e o estado atualizado da implementacdo (new_impl_machine), permitindo
a continuacdo da exploracao em profundidade. Assim, o algoritmo percorre sistematicamente
todos os caminhos possiveis no LTS da especificacdo, verificando em cada passo se o com-
portamento da implementacao acompanha corretamente o modelo formal, assegurando a pro-

priedade de refinamento de traces. Os eventos entered s3o tratados de forma especial, pois
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indicam a entrada em um novo estado, e sdo sempre considerados validos para transicoes na
implementacao, desde que o estado atual da implementacdo corresponda ao estado esperado
na especificacdo.

Uma das principais vantagens do algoritmo proposto é sua capacidade de alinhamento
direto com maquinas de estados implementadas em Python. Diferentemente das abordagens
tradicionais que verificam propriedades no nivel abstrato da especificacao formal, nosso método
interage diretamente com a FSM da implementacdo, garantindo que estados e transicdes
ocorram de maneira consistente com o modelo CSP. Esse alinhamento permite a deteccao
precisa de desvios entre a especificacdo e a implementacdo, proporcionando uma verificacdo
mais pratica e aplicavel para sistemas reais. Além disso, essa metodologia é generalizavel
para outras implementacdes, desde que os sistemas modelados mantenham uma estrutura de
estados e transicGes comparaveis e as especificacdes sejam verificaveis com FDR. Ao combinar
CSP com ferramentas de verificacdo automatizadas, ela oferece uma abordagem rigorosa e

repetivel para sistemas que exigem alta confiabilidade e estrita adesao as especificacoes formais.

3.5 ANALISE DOS RESULTADOS

Ao aplicar o Algoritmo [1 pode ocorrer uma incompatibilidade entre a especificacio e a
implementacao. Nesses casos, o algoritmo acusa um erro e fornece um contraexemplo — um
trace completo até o ponto da falha — que detalha o momento exato em que a execucdo da
implementacao diverge da especificacdo formal, bem como todo o caminho até esse ponto.
Esse contraexemplo evidencia n3o somente o evento que causou a falha, mas também o
caminho percorrido, oferecendo uma visdo precisa do comportamento incorreto.

A andlise dessas informacGes permite identificar e compreender as causas do erro, que
podem incluir eventos inesperados na implementacdo, condicGes de guarda mal definidas, or-
dens incorretas de transicGes ou interpretacdes equivocadas de eventos. A seguir, detalhamos
os principais tipos de inconsisténcias que o algoritmo pode detectar. O algoritmo de verifica-
cdo consegue identificar duas classes principais de inconsisténcias entre a implementacdo e a
especificacdo: desalinhamento de eventos e divergéncia de comportamento. Essa distincdo é

fundamental para orientar a andlise e a posterior correcao.
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3.5.1 Alfabetos incompativeis

Antes de verificar os traces, o algoritmo compara os alfabetos de eventos da implementa-
cdo e da especificacdo. E essencial que esses conjuntos sejam idénticos. Caso existam eventos
definidos em uma das partes e ausentes na outra, o algoritmo detecta essa discrepancia e
apresenta um retorno especifico, sinalizando o desalinhamento entre os modelos. Essa verifica-
cao preliminar previne analises incorretas e garante que a comparacdo ocorra em um contexto
semanticamente compativel. Na pratica, esse tipo de erro é comum em situacGes em que
eventos sdo modelados incompletamente, mal nomeados ou simplesmente omitidos em uma
das representacdes.

Um exemplo de alfabeto incompativel pode ocorrer quando a especificacao formal define
um evento chamado inspect_component, mas a implementacdo utiliza check_component.
Apesar de ambos os eventos representarem a mesma acdo conceitual, a diferenca nominal
impede o alinhamento necessério para a verificacdo de refinamento. Nesse caso, o algoritmo
interrompe a andlise e retorna um erro indicando que os alfabetos nao sao compativeis, des-
tacando os eventos discrepantes. Esse tipo de problema geralmente surge de falhas na comu-
nicacdo entre equipes de desenvolvimento e modelagem ou de mudancas nao sincronizadas

entre o modelo formal e a implementacao.

3.5.2 Divergéncia de Comportamento

Mesmo com os alfabetos alinhados e compativeis, a implementacao pode executar sequén-
cias de eventos que n3o sdo admitidas pela especificacdo formal. Nesses casos, o algoritmo
detecta a primeira transicao que viola o conjunto de traces definidos pelo modelo abstrato.
O contraexemplo gerado apresenta a sequéncia completa de eventos percorrida por ambos os
modelos até o ponto de divergéncia, facilitando a identificacdo exata da causa do problema.
Essa classe de erro estd geralmente associada a falhas de légica, como guardas incorretas,

transicoes ausentes ou estados mal conectados.

A abordagem baseada em verificacdo de modelos orienta, assim, o processo de correcdo,
permitindo que desenvolvedores e analistas revisem o comportamento do sistema de forma
direcionada. Quando uma transicdo inesperada ou um comportamento ausente é detectado, a

implementac3ao pode ser ajustada por meio da reformulacao de guardas, reorganizacao da légica
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ou refinamento da sequéncia de acdes. Alternativamente, se o erro estiver na especificacao
formal, é possivel revisar o modelo RoboChart e gerar novamente sua semantica CSP para
refletir com maior fidelidade os requisitos esperados.

Esse processo da origem a um ciclo iterativo de refinamento e validacdo, em que cada
execucdo do algoritmo contribui para alinhar mais precisamente a implementacdo ao compor-
tamento especificado. Além disso, os logs gerados durante a execucdo registram os caminhos
analisados e os estados visitados, possibilitando uma inspecdo detalhada do sistema e forne-
cendo insumos valiosos para a geracdo de testes automatizados. Assim, além de assegurar
a conformidade, a metodologia favorece a rastreabilidade e a manutencdo do sistema a me-
dida que ele evolui. A integracao entre verificacao formal, contraexemplos e iteracdo continua
reforca a robustez do processo de desenvolvimento, promovendo a construcdo de sistemas

confidveis mesmo em cendarios de elevada complexidade.
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4 ESTUDOS DE CASO

Este capitulo apresenta dois estudos de caso que demonstram a aplicacdo pratica da me-
todologia proposta neste trabalho. O primeiro estudo de caso aborda uma linha de montagem
simples, onde um braco robético atua como auxiliar, realizando tarefas como inspecao de com-
ponentes e movimentacdo de pecas para diferentes estagios do processo. O segundo estudo
se refere ao sistema de controle de um robé dispensador de medicamentos, com foco no mé-
dulo responsavel por localizar e inspecionar os itens (Locate Medicine). Por se tratar de um
sistema inserido em ambiente hospitalar, ele exige alto grau de precisdo e confiabilidade para
garantir a dispensacao correta dos medicamentos. Ambos os estudos evidenciam a eficacia da
metodologia nas etapas de formalizacdo dos requisitos, geracao do LTS, verificacdo de confor-
midade entre modelo e implementacdo, e andlise dos resultados, destacando seus beneficios e
os desafios enfrentados em cenarios reais e industriais.

Todos os arquivos utilizados nesses estudos de caso — incluindo os modelos RoboChart,
as especificacbes formais em CSP, o cddigo Python da implementacdo e demais artefatos
gerados — estdo disponiveis publicamente nos repositérios do GitHub: pharmacy-artifacts e
assembly-line-artifacts. Esses repositérios fornecem os elementos necessarios para reproducao,

extens3o ou validacdo independente dos experimentos descritos neste capitulo.

4.1 ASSEMBLY LINE

Este estudo de caso apresenta um sistema de controle para uma linha de montagem
automatizada, onde um braco robdtico auxilia em diferentes etapas do processo produtivo,
desde a inspecdo até a finalizacao de um produto. Esse sistema representa uma abstrac3o
comum em ambientes industriais modernos, nos quais robds desempenham tarefas repetitivas
e criticas com precisdo e autonomia. O estudo foi inicialmente introduzido na Secdo 2.2 e
modelado formalmente na Figura [14] destacando a aplicabilidade da metodologia baseada em
especificacGes formais na validacdo de comportamentos esperados em sistemas industriais.
Trata-se de um sistema hipotético, proposto visando demonstrar a viabilidade da abordagem
em um cendrio representativo, porém simplificado, que permite isolar e avaliar com clareza os
aspectos essenciais do processo de controle e verificacdo formal.

O sistema é responsavel por executar operacées como a coleta de componentes, inspecao


https://github.com/felipeadsm/pharmacy-artifacts
https://github.com/felipeadsm/assembly-line-artifacts
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de qualidade, montagem, verificac3o final, embalagem e encerramento da operacao. O modelo
incorpora ainda mecanismos de deteccdo e tratamento de falhas, garantindo que componentes
defeituosos sejam identificados e descartados corretamente, e que o sistema adote estratégias
de recuperacdo ou finalizacdo segura quando condicdes anormais forem detectadas.

Dentre os requisitos essenciais, destacam-se:

» Inspecionar cada componente antes da montagem, descartando aqueles considerados

defeituosos.
» Executar a montagem somente ap6s a validacdo do componente.
» Verificar a montagem, embalar o produto e concluir a operacdo se nao houver falhas.
» Retornar a posicdo Home e iniciar uma calibracdo caso o componente esteja defeituoso.

» Encerrar a operacao apés duas falhas consecutivas, evitando ciclos infinitos de tentativa

€ erro.

O modelo completo da maquina de estados responsavel por controlar o braco robético
nesse cenario é composto por doze estados, incluindo estados iniciais, intermediarios e finais,
organizando o fluxo da operacdo de forma sequencial e robusta. Essa estrutura foi implemen-
tada com base nas boas praticas de modelagem formal, utilizando a ferramenta RoboChart,
e posteriormente convertida para um modelo formal em CSP. O uso dessa abordagem per-
mite representar de maneira clara os comportamentos esperados do sistema, facilitando tanto
a verificacdo automatica quanto a identificacdo de inconsisténcias entre a especificacdo e a

implementacao.

4.1.1 Formalizacdo dos Requisitos e Obtencao do LTS

A descricao informal dos requisitos funcionais do sistema da linha de montagem é expressa

como segue:

“O braco robético auxiliar da linha de montagem deve pegar um componente,
inspecionar o componente e, caso ele ndo seja defeituoso, leva-lo para a mon-
tagem, verificar a montagem, embalar o produto e finalizar a operacdo. Caso o

componente seja defeituoso, o braco deve retornar para a posicao Home e iniciar o
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Figura 14 — Assembly Line formalizado em RoboChart.
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Fonte: Elaborada pelo autor (2025)

processo de calibracdo. Se ocorrerem duas falhas consecutivas durante o processo,

o sistema deve retornar a posicao Home e encerrar a operacao.”

Para alinhar a especificacdo formal ao comportamento descrito, foi construida uma maquina
de estados em RoboChart que reflete essa légica. Cada etapa da operacao foi modelada como
um estado distinto, incluindo transicGes explicitas para o tratamento de falhas. Essa estrutura
modela precisamente a sequéncia de acdes e permite que propriedades como auséncia de
deadlock, correcdo de fluxo e conformidade com os requisitos sejam avaliadas formalmente.

O modelo resultante da formalizacdo dos requisitos pode ser observado na Figura Ele
detalha o fluxo completo do processo, desde o inicio da operacdo até o término, incluindo os ca-
minhos alternativos para casos de erro. A estrutura da maquina de estados inclui eventos como
pick_component, inspect_component, assemble_product, verify_assembly, package _product,
finalize_operation e return_to_home, entre outros.

Apos a construcao do modelo, a ferramenta RoboTool foi utilizada para gerar automati-
camente o cédigo correspondente em CSP, o qual confere a semantica dos comportamentos
modelados. Em seguida, esse codigo foi usado como entrada para a geracdo do grafo de tran-

sicGes LTS, que representa todos os estados possiveis do sistema e suas transicoes associadas.
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Esse grafo é fundamental para a aplicacdo posterior do algoritmo de verificacdo de refinamento

de traces.

4.1.2 Anadlise dos Resultados

Esse estudo de caso desempenhou um papel fundamental no desenvolvimento e validac3do
inicial da metodologia proposta, oferecendo um cenario completo para testar as etapas de
formalizac3o, geracdo do LTS e aplicacdo do algoritmo. Utilizando uma assercdo de auséncia
de deadlock, analisamos o processo CSP AssemblyLine::VS_EL que define o comportamento
da maquina de estados RoboChart. Com 15 estados e 29 transicGes, o modelo apresenta uma
complexidade suficiente para representar comportamentos relevantes do sistema, incluindo
fluxos normais e situacdes de falha. A execucao do algoritmo gerou logs Uteis para analise e
possibilitou ajustes na légica de verificacao, contribuindo diretamente para o refinamento da
abordagem e demonstrando seu potencial de aplicacdo em contextos industriais.

No inicio do desenvolvimento, o algoritmo identificou algumas divergéncias entre a espe-
cificacao formal e a implementacdo, como transicoes ausentes ou eventos incorretos. Esses
problemas foram sendo corrigidos durante o desenvolvimento e testes, garantindo que a im-
plementacao seguisse os caminhos definidos no modelo formal. Apds os ajustes necessarios, o
algoritmo rodou sem qualquer falha, confirmando que a metodologia era eficaz em assegurar
a conformidade total entre a especificacdo e a implementacao.

No fim, a implementacao seguiu fielmente os caminhos especificados no modelo formal
em cenarios normais e situacdes de falhas na operacdo. Por exemplo, ao identificar um com-
ponente defeituoso, o sistema transitou corretamente para o estado de calibracdo, conforme
modelado. A limitacdo de duas falhas consecutivas foi respeitada, com o sistema alcancando
o estado final apds a terceira tentativa fracassada, atendendo aos requisitos. Os logs detalha-
dos gerados pelo algoritmo ndo somente confirmaram a conformidade da implementacdo, mas
também forneceram um recurso util para testes futuros, garantindo que o sistema mantivesse

o comportamento esperado mesmo em condicGes simuladas.

1 Os arquivos CSP podem ser encontrados em: <https://github.com /felipeadsm /assembly-line-artifacts>


https://github.com/felipeadsm/assembly-line-artifacts
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4.2 LOCATE MEDICINE

O estudo de caso analisado, consiste em um sistema de controle que utiliza um braco
robédtico para dispensar medicamentos em uma farmécia do Hospital das Clinicas da Universi-
dade Federal de Pernambuco. Esse sistema é responsavel por executar tarefas criticas, como
selecionar medicamentos prescritos para pacientes, garantindo precisdo, seguranca e eficiéncia
durante a operacdo. O controle do braco robdtico é implementado por meio de maquinas
de estados finitos (FSM), que gerenciam as transicdes entre diferentes estados do sistema,
conforme os eventos recebidos e condicdes definidas.

Alguns dos requisitos centrais do sistema especificam que o braco robético deve ser capaz

de:

» Dispensar medicamentos prescritos com base nas informacdes recebidas.

» Localizar os medicamentos na estante de armazenamento utilizando visao computacio-

nal, com estimacao de pose baseada em marcadores fiduciais.

» Garantir que o movimento do braco robdtico n3o interfira ou colida com a estante,

promovendo seguranca durante a operacao.

» Permitir pausas e retomadas a critério do operador humano, bem como interromper

imediatamente a operacdo quando solicitado.

= O sistema s6 pode tentar no maximo duas vezes realizar uma tarefa, caso n3o consiga,
na terceira vez o sistema deve ir para erro, recomendando uma resolucdo do erro se

possivel.

» Identificar e tratar erros toleraveis e continuar a operacao, enquanto solicita suporte

humano em caso de erros criticos.

O modelo geral (informal) do sistema de controle do braco robético é mostrado na Fi-
gura [I5 Ele é composto por médulos interconectados que gerenciam funcionalidades essen-
ciais, como controle de movimento do braco, estimativa de pose por visao computacional e
gerenciamento de interacdo com o operador humano. No centro do sistema estd a maquina
de estados DispensingMachine, que orquestra as operacdes do braco robético, desde a identi-

ficacdo do medicamento até a dispensacdo segura. A maquina de estados DispensingMachine
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é composta por trés estados, como CreatingConnections e MoveToHomePos, bem como trés
maquinas de estados, cada uma responsavel por uma funcionalidade especifica: LocateMe-
dicine, CaptureMedicine e DropOffMedicine. Juntas, elas formam a estrutura hierarquica da
DispensingMachine. A adocao dessa estratégia torna o sistema modular, permitindo traba-
lhar com cada maquina de estados separadamente, além de simplificar significativamente os
testes e a validacdo. Essas maquinas de estados foram implementadas usando a biblioteca

pytransitions.

Figura 15 — Esboco do sistema: controle de dispensacio de medicamentos.
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Por questdes de escalabilidade, restringimos nossa andlise a uma parte especifica do sis-
tema, em vez de avaliad-lo na totalidade. Essa abordagem seletiva nos permitiu focar na ve-
rificacdo de propriedades comportamentais essenciais, mantendo a viabilidade computacional.
Nesse contexto, nosso estudo concentra-se no médulo LocateMedicine, destacado na Figura
como parte da estrutura geral do sistema. Este médulo, detalhado na Figura |E| desempenha
um papel crucial na identificacdo da posicao dos medicamentos no ambiente de trabalho. Ele

integra multiplos componentes, incluindo controle de braco robético, aquisicao de dados de



camera e processamento de visdao computacional. O médulo gerencia transicoes entre estados

criticos, como deteccao de marcadores fiduciais, estimativa de pose e posicionamento preciso,

garantindo a precisao e a confiabilidade do processo de dispensacao de medicamentos.

A Figura ilustra a maquina de estados LocateMedicine analisada neste estudo, dese-

nhada com a ferramenta Excalidraw (EXCALIDRAW, [2020)). Tanto a Figura , que descreve

o sistema como um todo, quanto a Figura que detalha a funcionalidade de localiza¢do de

medicamentos, serviram como base para a implementacdo. No diagrama de estados ilustrado

na Figura em termos gerais, o0 braco robético se move para uma regido especifica do

arranjo fisico, procura o marcador associado ao medicamento e, se o marcador for encontrado,

move-se para uma posicao intermediaria proxima ao marcador. O sistema ent3do confirma se

o marcador detectado corresponde ao medicamento a ser dispensado.

Figura 16 — Esboco do sistema: Locate Medicine.
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A metodologia sera aplicada ao estudo de caso iniciando com a formalizacdo dos requisitos

utilizando RoboChart, seguida da obtencdo do LTS da especificacdo, abstracdo do LTS da

especificacao e entdo a aplicacdo do algoritmo verificacao de refinamento de traces.

4.2.1 Formalizacdo dos Requisitos e Obtencao do LTS

A tarefa de localizar medicamentos envolve uma sequéncia de operacSes interdependentes,

que devem ser executadas de maneira ordenada e confidvel para garantir a seguranca e a

eficAcia do sistema. Essa tarefa é descrita informalmente como:
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O braco robético deve se mover para uma posicao de leitura, identificar o mar-
cador associado ao medicamento, aproximar-se do local estimado, confirmar a
identificacdo do marcador e, se todas as etapas forem bem-sucedidas, concluir o
processo. No entanto, se ocorrerem duas falhas de execucdo, o sistema transita

para um estado de falha.

Como este estudo de caso se baseia em um sistema existente, a modelagem de RoboChart
se alinhou a estrutura utilizada nos requisitos informais, onde os verbos eram representados
como estados. Essa abordagem difere da utilizada na Secdo [3.1] Essa adaptacdo é essencial
para alinhar o modelo RoboChart (e, consequentemente, sua semantica formal em CSP) com
o comportamento do sistema ja implementado, garantindo consisténcia e precisdo na analise.

A etapa de formalizacdo de requisitos desempenha um papel crucial na reducao de am-
biguidades e na captura de detalhes criticos. Nesse contexto, a formalizacdo do requisito de
localizacao do medicamento em RoboChart resultou na criacdo de uma maquina de estados,
mostrada na Figura [I7] que encapsula os principais comportamentos e transicdes do sistema.
Cada etapa do processo foi modelada como um estado especifico, representando as diferentes
fases da operacao do braco robético. Esses estados foram definidos para capturar tanto as
principais acdes quanto os momentos de verificacdo necessarios para garantir a precisao do

sistema. O modelo inclui os seguintes estados:

= MoveToSection: O estado em que o robé inicia a busca pelo marcador fiducial.
= FindMarker: O sistema identifica 0 marcador associado ao medicamento.
» MoveToPoseRef: O rob6 se move para a posicdo estimada préxima ao medicamento.

= ConfirmMarker: O sistema verifica se 0 marcador identificado corresponde ao medica-

mento.
= Fail: O processo é interrompido devido a uma tentativa malsucedida ou a um erro.

= Finish: O processo é concluido com sucesso.

A Figura apresenta a maquina de estados de RoboChart resultante da formalizacdo de
requisitos informais, representando o comportamento do sistema de controle do braco robético.
Neste modelo, comportamentos como movimentacao para a posicao de leitura, identificacdo

do marcador associado ao medicamento, aproximacao da posicdo estimada e confirmacdo do



60

marcador sdo representados de forma clara e precisa. Este projeto em RoboChart serve como
ponto de partida para a obtencdo automatica de sua semantica formal em CSP, garantindo
que os comportamentos especificados possam ser rigorosamente verificados nas etapas subse-
quentes.

Figura 17 — Locate Medicine formalizado em RoboChart.
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A validacdo do modelo RoboChart poderia ser incluida, mas estenderia o escopo além do
objetivo principal do estudo de verificar a conformidade do sistema por meio do LTS. Isso pode
ser explorado em trabalhos futuros. Apds a formalizacao dos requisitos como uma maquina
de estados RoboChart, as proximas etapas envolvem a obtencdo e abstracao automaticas do
LTS correspondente a partir do cédigo CSP gerado por RoboTool, conforme detalhado nas
Secdes e 3.3 Uma verificacdo basica de deadlocks, livelocks e determinismo é realizada
antes da gerac3o e abstracdo do LTS, conforme descrito na Sec3o[3.2] Os processos de geracdo
e abstracdo do LTS preservam a semantica CSP de todos os construtores em RoboChart. Essa
representacdo em LTS nos permite explorar todas as configuracdes possiveis do sistema e suas

transicdes, facilitando a aplicacdo do algoritmo de verificacao de refinamento de traces.

4.2.2 Andlise dos Resultados

Esta secdo apresenta os resultados do processo de verificacdo para este estudo de caso,

destacando os casos em que a implementac3do foi consistente com os requisitos e os cenarios
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em que inconsisténcias foram detectadas. A complexidade adicionada pelo manuseio de diver-
sos farmacos ndo é considerada por esta maquina de estados, que se concentra somente na
l6gica de controle do robo. A camada de software Python, que escolhe o farmaco especifico
a ser administrado, contém essa variabilidade. Consequentemente, o modelo comportamental
do robd é propositalmente mantido basico, gerenciando uma Unica prescricao por vez. Inicial-
mente, aplicamos a metodologia a um modelo menor e mais gerenciadvel devido a preocupacoes
preliminares com as possiveis restricoes de escalabilidade de FDR4. Apesar da simplicidade in-
tencional do modelo CSP gerado automaticamente por RoboTool, sua validade foi confirmada
por meio da ferramenta FDR4, utilizando uma assercdo de auséncia de deadlock. Analisamos
o processo CSP LocateMedicineFS/\/l::VS_El, que define o comportamento da maquina de
estados RoboChart mostrada na Figura [I7] Como citado na introduc&o, a modelagem foi pro-
positalmente simplificada para focar no nicleo sequencial do sistema, restringindo o nimero
de estados e transicdes a fim de garantir a viabilidade da verificacdo formal. Ele contém 46
estados e 57 transicdes, incluindo eventos internos (7). O tempo total de processamento para
compilar o modelo e realizar a verificacdo foi de 0,11 segundos, utilizando um computador
com sistema operacional Linux, processador AMD Ryzen 5 5600G a 4400 MHz e 32 GB de
RAM.

Como ja havia uma implementac3o inicial construida utilizando os requisitos informais, o
primeiro passo foi formalizar os requisitos e obter o LTS. Com base nos requisitos informais e
na implementacao ja construida por uma equipe de desenvolvimento, o sistema apresentado
na Secdo [4.2]foi formalizado utilizando RoboChart, dando origem ao modelo apresentado na
Figura (L]

A aplicacdo do Algoritmo [1f revelou cenarios de consisténcias e inconsisténcias entre a es-
pecificacdo formal e o modelo implementado inicialmente. O primeiro cenéario de inconsisténcia
foi identificado logo no inicio da aplicacdo do Algoritmo [} no qual o algoritmo relatou diver-
géncias nos nomes de estados e transicoes. Se os nomes n3o fossem exatamente os mesmos
na especificacdo e na implementacdo, o algoritmo sinalizaria imediatamente a discrepancia,
fornecendo o trace exato até o ponto do erro. Inicialmente, a correcdo envolveu apenas a
renomeacado de elementos para garantir correspondéncias exatas entre a especificacdo e a im-
plementac3do. Essas alteracGes foram aplicadas diretamente na implementacdo para manter a
consisténcia. Esse feedback imediato se mostrou essencial para corrigir erros de nomenclatura

e garantir uma correspondéncia precisa entre o modelo formal e sua implementacdo pratica.

2 Os arquivos CSP podem ser encontrados em: <https://github.com/felipeadsm/pharmacy-artifacts>
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O segundo cenério de inconsisténcia a destacar é a auséncia de uma transicao para falha
no estado MoveToPosRef na implementacao. Nesse estado, ndo houve resultado para uma
falha consecutiva, ou seja, a partir desse estado, o sistema nunca mais apresentou falha,
permanecendo em um ciclo sem tratamento. Como resultado, o sistema poderia falhar vérias
vezes consecutivas sem nenhuma acao corretiva. Ao aplicar a estratégia desenvolvida, o rastro

obtido da especificacdo foi o seguinte:

(move_to_section, find_marker, repeat_move_to_pos_ref,
repeat_move_to_pos_ref, fail_move_to_pos_ref)

O trace da implementacdo apés a aplicacdo da estratégia foi esse:

(move_to_section, find_marker, repeat_move_to_pos_ref,
repeat_move_to_pos_ref, repeat_move_to_pos_ref)

Note que o Ultimo evento dos dois traces sdo eventos diferentes e por isso o algoritmo
de verificacdo e refinamento apontou uma divergéncia. Enquanto a especificacdo disparou o
evento fail_move_to_pos_ref, a implementacao disparou o evento repeat_move_to_pos_ref
erradamente, pois, como dito anteriormente, o estado MoveToPosRef da implementacdo nao
tinha uma transicdo que lidaria com falhas consecutivas.

Outro cenério de inconsisténcia observado foi que, em alguns estados, o limite de execucoes
com falha excedeu o valor especificado no requisito informal (descrito na Secdo 4.2.1)), que
foi definido como padrao em todo o sistema. Como resultado, a implementacdo ndo refina
a especificacdo, pois os traces da implementacdo nao seriam um subconjunto dos traces da
especificacao, levando a um comportamento diferente do esperado. Em casos de inconsisténcia
como esse, o algoritmo emite o trace da especificacdo e o trace da implementacao, juntamente
com informacdes sobre quais eventos s3o aceitos pela especificacdo e pela implementacao.

Apos a correcao dessas inconsisténcias iniciais, a implementacao seguiu de perto os com-
portamentos esperados definidos no modelo formal. Por exemplo, em situacdes em que o braco
robdtico precisava identificar o marcador associado ao medicamento e se mover para a posicao
correta, a FSM da implementac3o replicou com precis3o o fluxo de transicdo modelado. Con-
forme declarado na Secdo [3.4] a aplicacio do algoritmo gera um relatério contendo todos os
caminhos exercitados durante a execucdo. Ao final de cada execucao, esses caminhos podem

ser revisados para identificar quaisquer divergéncias.
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4.3 DISCUSSOES

A formalizacdo de requisitos no desenvolvimento de sistemas robéticos criticos é essencial
para garantir que o comportamento esperado seja rigorosamente especificado e validado. Neste
trabalho, o uso de RoboChart e sua semantica CSP fornece uma estrutura sélida para descrever
sistemas de controle de bracos robéticos, permitindo a verificacao de propriedades essenciais,
como auséncia de deadlocks e conformidade funcional. Essa abordagem n3o somente melhora
a confiabilidade do sistema, mas também simplifica a deteccdo precoce de inconsisténcias,
reduzindo os custos associados a correcoes em estagios posteriores de desenvolvimento. Vale
ressaltar que o método foi aplicado em um projeto real, relacionado a automacao da dispensa-
cdo de medicamentos no Hospital das Clinicas, demonstrando sua aplicabilidade em cenarios
praticos e relevantes.

Um dos principais impactos dessa metodologia é a capacidade de estabelecer uma ligacao
clara entre requisitos informais e sua implementacdo. A modelagem de sistemas robdticos
usando RoboChart e CSP facilitou a transicdo de conceitos abstratos para especificacdes
concretas, que foram posteriormente validadas por meio do método desenvolvido. No contexto
do projeto em andamento, isso garantiu que as operacdes criticas do braco robético fossem
descritas e analisadas com precisdo, garantindo o atendimento de requisitos essenciais, como
navegacao segura no ambiente de trabalho e identificacdo correta dos medicamentos. Essa
integracdo aumentou a rastreabilidade dos requisitos, um fator crucial para a seguranca e a
precisdo exigidas em sistemas de dispensacao de medicamentos hospitalares.

A aplicacdo do método em um sistema real em desenvolvimento trouxe resultados tangiveis,
demonstrando a viabilidade da abordagem para projetos praticos e complexos. A formalizacdo
e a validacdo continuas contribuiram para um desenvolvimento mais estruturado e para a
identificacdo de melhorias no sistema de controle do robd. Além disso, o uso de ferramentas
como RoboTool e FDR para validar a especificacdo em relacdo a implementacao destaca a
capacidade do método de integrar praticas académicas e industriais. Essa conexao entre teoria
e pratica fortalece o impacto do trabalho e sua relevancia para sistemas criticos reais.

Apesar de suas vantagens, este trabalho enfrentou desafios significativos, particularmente
no controle da execucdo da implementacdo em Python e na extracdo do LTS da especificacdo
usando a APl FDR. Um dos principais desafios foi garantir que a maquina de estados imple-
mentada seguisse exatamente o comportamento especificado no modelo CSP, respeitando a

cadéncia dos eventos. Para superar esse problema, foi necessario implementar uma estratégia
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baseada em varidveis de controle sincronizadas entre a especificacdo e a implementacdo, o
que exigiu instrumentacdo e esforcos de verificacdo adicionais. Embora eficaz, essa solucdo
introduz complexidade ao processo, especialmente quando aplicada a sistemas maiores.

Uma possivel solucdo para lidar com os desafios de complexidade e escalabilidade seria ado-
tar a verificacdo modular e o raciocinio composicional. Isso envolve a decomposicdo de sistemas
grandes em submoddulos menores e a andlise de cada parte independentemente, facilitando a
validac3o de sistemas maiores. Na Secdo [4.2] o subsistema de 46 estados analisado demons-
trou a viabilidade da aplicacdo dessas abordagens, fornecendo uma base para o escalonamento
da verificacdo para sistemas mais complexos no futuro. O foco no médulo LocateMedicine
foi escolhido devido a sua viabilidade computacional, permitindo que a metodologia seja efe-
tivamente validada em limites praticos. Embora o estudo de caso seja especifico e limitado
a um moddulo de controle mais restrito, ele serve como uma base sélida para a aplicacao da
metodologia em sistemas maiores e mais complexos.

Outro desafio relevante foi extrair o LTS da especificacdo CSP. A APl FDR usada para
essa tarefa é limitada a versdo 2.7 do Python, apresentando problemas de compatibilidade
e restringe o suporte a bibliotecas mais modernas. Além disso, o tratamento da semantica
CSP (especificacdo formal) de RoboChart, gerado automaticamente por RoboTool, apresentou
desafios devido a sua complexidade e interpretabilidade limitada, dificultando a adocdo de
abordagens e ferramentas de andlise alternativas.

Nossa metodologia, embora aplicada especificamente aos dois estudos de caso antes apre-
sentados, demonstra potencial significativo para generalizacdo em outros dominios que exigem
alta confiabilidade e seguranca. A combinacdo de RoboChart, CSP e FDR fornece uma estru-
tura versatil e rigorosa para a modelagem formal e verificacdo de sistemas robéticos, garantindo
confiabilidade e seguranca em sua operacao. O uso de ferramentas automatizadas, como FDR,
simplifica a anélise e validacao de especificacoes formais, aumentando a eficiéncia do processo
de verificacdo. Além disso, embora a implementacdo apresentada utilize a biblioteca pytransi-
tions, a abordagem proposta nao se limita a uma tecnologia especifica. Sistemas que utilizam
outras bibliotecas de maquinas de estados ou arquiteturas de controle podem ser facilmente
integrados, uma vez que o foco da metodologia esta no alinhamento entre o comportamento
formalizado e a implementacdo pratica, independentemente da ferramenta empregada. Essa
flexibilidade amplia o escopo do método, permitindo sua aplicacdo em sistemas com diferen-
tes escalas e complexidades. Por exemplo, no controle de trafego ferroviario, onde os estados

representam secdes da via e as transicGes modelam as permissdes de movimento, ou em dro-



65

nes auténomos, onde os estados incluem fases de voo e as transicoes envolvem comandos e
sensores, a formalizac3o e a validacao propostas neste trabalho podem ser diretamente adap-
tadas. Essa capacidade de generalizacdo reforca o valor da abordagem, destacando-a como

uma solucdo robusta e replicavel em diferentes contextos.

4.4 AMEACAS A VALIDADE

Uma ameaca potencial a validade é a auséncia de uma fase de normalizacao durante a
verificacdo de refinamento, particularmente no contexto do LTS da especificacdo. A normaliza-
¢do, conforme descrita em (ROSCOE, 2010), é uma etapa fundamental no FDR. Esse processo
garante que cada trace finito seja mapeado para um unico nd, simplificando as comparacdes
ao reduzir a complexidade estrutural do LTS. No entanto, em nossa metodologia, optamos
por avaliar diretamente o LTS bruto, sem normalizacdo, porque nosso sistema n3o apresenta
paralelismo ou propriedades altamente ndo deterministicas. Assim, o modelo de trace gerado
permanece funcionalmente equivalente a uma representacdo normalizada, tornando desneces-
sario o processamento adicional.

Outro fator motivador foi a eliminacdo de eventos redundantes. Na semantica CSP de
uma maquina de estados RoboChart, varios eventos sdo ocultos (e representados por s no
LTS), simplificando o modelo sem comprometer a precisdo na avaliacdo dos comportamentos
esperados. Essa abordagem é particularmente eficaz nos sistemas abordados, onde os fluxos de
trabalho s3o lineares e ndo exigem resolucdo de conflitos entre mdltiplos caminhos possiveis.
Assim, a auséncia de normalizacdo ndo compromete a analise, mas permite um foco mais direto
na comparacao de Traces entre a implementacao e a especificacdo. Apesar dessa justificativa,
é importante reconhecer que a auséncia de normalizacdo pode limitar a aplicabilidade de nossa
abordagem a sistemas mais complexos, especialmente aqueles que envolvem paralelismo ou
alto grau de nao determinismo. Nesses casos, a auséncia de um processo de simplificacao
estrutural pode dificultar a anélise de conformidade, tornando a extensao e a generalizacdo da
metodologia mais desafiadoras. Portanto, embora os fluxos de trabalho lineares no estudo de
caso tenham minimizado o ndo determinismo, trabalhos futuros devem explorar como integrar
técnicas de normalizacdo, particularmente para sistemas paralelos, onde a normalizacido se
torna uma etapa mais critica para garantir a simplificacdo estrutural do sistema.

O processo de formalizacao de requisitos informais em modelos RoboChart apresenta outra

ameaca potencial. Interpretaces erréneas ou omissGes durante esse processo podem resultar
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em uma especificacdo formal que n3o consegue capturar o comportamento pretendido do sis-
tema. Por exemplo, requisitos incompletos ou ambiguos podem introduzir erros no modelo
RoboChart. Além disso, a natureza manual desse processo introduz o risco de viés, onde jul-
gamentos subjetivos ou suposicoes incorretas podem influenciar a formalizacdo do sistema.
Abordar essa questdo requer ferramentas e metodologias aprimoradas para elicitacdo e forma-
lizacdo de requisitos, como as abordagens propostas no Capitulo [5, incluindo a pesquisa de
(SANTOS; CARVALHO; SAMPAIO, 2018), que podem servir de base para avancos futuros nessa
area. Para mitigar essa ameaca, esforcos sao feitos para revisar e validar requisitos durante a
fase de modelagem, incluindo revisGes iterativas por pares. No entanto, erros humanos nesse
processo nao podem ser completamente eliminados.

O processo iterativo de verificacdo e refinamento também apresenta desafios de validade.
Embora o ciclo de correcdo e revalidacdo permita ajustes iterativos nas especificacdes e im-
plementacdes, existe o risco de viés, onde as correcoes podem inadvertidamente alinhar a
implementacao a uma especificacdo incorreta. Para atenuar isso, praticas rigorosas de revi-
sao foram implementadas em cada iteracdo, garantindo que os ajustes fossem justificados por

evidéncias claras de falha ou inconsisténcia.
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5 TRABALHOS RELACIONADOS

Métodos formais desempenham um papel crucial na garantia da confiabilidade e seguranca
em sistemas robéticos criticos. Esses métodos permitem a especificacao, verificacdo e valida-
cdo precisas de propriedades essenciais, como a auséncia de deadlocks, correcdo funcional e
seguranca operacional. Nos dltimos anos, diversas abordagens tém explorado a aplicacdo de
técnicas formais a sistemas autdbnomos e ciberfisicos, destacando a crescente relevancia desse
campo para a robdtica. Nosso trabalho se concentra na integracao de RoboChart e de CSP
para formalizar requisitos e validar implementacdes, com énfase em sistemas robdticos que
lidam com tarefas criticas, como a dispensacdo de medicamentos.

As pesquisas de Luckcuck et al. (LUCKCUCK et al.,|2019)) e Schlegel et al. (SILVA et al., {2021))
fornecem uma vis3o geral abrangente da aplicacdo de métodos formais em sistemas robéticos.
As primeiras destacam os desafios e avancos na especificacdo e verificacdo de sistemas au-
tonomos, identificando lacunas em metodologias focadas em confiabilidade e seguranca. Este
ltimo complementa essa perspectiva revisando abordagens baseadas em modelos, enfatizando
sua relevancia no desenvolvimento de sistemas roboticos adaptativos. Juntos, esses trabalhos
fornecem uma base sélida para a compreensao do contexto e da evolucao de ferramentas e
metodologias na area.

RoboTool tem sido amplamente utilizado para modelar sistemas robéticos. (LI et al., 2024])
apresentaram uma estrutura que combina RoboChart e sua ferramenta associada, RoboTool,
para o projeto e a verificacdo formal de controladores robéticos. Por meio de um estudo de
caso envolvendo robds exploratérios, eles demonstraram como a geracdo automatica de cédigo
e modelos matematicos pode facilitar a validacdo e a simulacdo em plataformas robéticas
reais e independentes de hardware. Essa abordagem n3ao somente verificou as propriedades de
seguranca, mas também abriu caminho para uma implementacdo mais confidvel de sistemas
robéticos.

Complementando e expandindo as capacidades de ferramentas anteriores, RoboWorld foi
introduzido para oferecer um suporte mais completo ao ciclo de vida de sistemas robéticos,
em particular, ao considerar premissas sobre o ambiente (BAXTER et al,, |2023). Um editor
textual permite documentar de forma precisa restricoes e propriedades do ambiente robético.
A semantica formal da documentacdo é automaticamente gerada por RoboTool, permitindo

sua integracdo com a semantica de modelos RoboChart. Desta forma, tem-se uma abordagem
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integrada que permite analisar e testar modelos de sistemas robéticos em conjunto com os
seus respectivos ambientes operacionais.

Darolti (DAROLtl, 2019)) utiliza RoboChart para modelar e verificar o comportamento de
um robo de limpeza auténomo projetado para operar em painéis solares, com foco na validacao
de propriedades-chave, como a retomada da operacdo apds a recarga e a cobertura total dos
painéis, por meio de verificacdes baseadas em CSP. O estudo também apresenta uma nova
modelagem para controladores PID, explorando os limites da expressividade de RoboChart.
Trabalhos como o de Murray et al. (MURRAY et al., |2022) destacam a aplicagdo de RoboChart
em softwares de modelagem para sistemas industriais criticos, como o controle eletrostatico
de alta tensdo (HVC). O estudo demonstra os desafios das abstracdes de baixo nivel e o
equilibrio entre precisdo e complexidade computacional, enquanto Simulink foi utilizado para
modelar o hardware. Além disso, Santos et al. (SANTOS; FILHO; SAMPAIO, 2023) exploraram o
uso de RoboChart em competicdes robédticas, como Veiculos Aéreos N3o Tripulados (VANTS),
aplicando a ferramenta para modelar e verificar sistemas de navegacao e deteccao de objetos,
evidenciando sua capacidade de gerenciar a complexidade em sistemas que exigem alta precisao
e confiabilidade.

Yan et al. (YAN; FOSTER; HABLI, [2023)) propdem uma técnica de verificagdo composicional
automatizada para modelos de maquinas de estados RoboChart usando Isabelle/HOL. Este
método utiliza Z-Machines como notac3do intermediaria para transformar modelos RoboChart
em uma representacao semantica compativel com Isabelle. A técnica permite a verificacdo de
invariantes estruturais e propriedades criticas, como a auséncia de deadlocks. Para demonstrar
a abordagem, os autores a aplicaram a um estudo de caso envolvendo um veiculo subaquatico
auténomo, validando modos de operacao e transicoes em cendrios de alto risco, como colisoes
com obstaculos. Este trabalho destaca a escalabilidade e a eficiéncia de métodos formais
baseados em provas para garantir a confiabilidade em sistemas robdticos complexos.

O uso de CSP e FSMs provou ser eficaz na formalizacdo de requisitos e na garantia
da conformidade do sistema em cendrios criticos. Trabalhos recentes exploraram diferentes
aspectos dessas ferramentas, destacando suas aplicacdes em projetos reais. O trabalho de
CSP2Turtle (MACCONVILLE et al.,[2023)), que combina CSP e Python para verificar a navegacéo
de robds e a prevencdo de obstaculos em um mundo de grade 2D, é um exemplo pratico
desse tipo de abordagem. Da mesma forma, o estudo de Isobe et al. (ISOBE et al., 2021))
apresenta uma metodologia que utiliza FSMs concorrentes para modelar e verificar sistemas

robdticos cooperativos baseados em eventos. Neste trabalho, a formalizacio em CSP e a
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verificacdo usando a ferramenta FDR foram aplicadas em um sistema de transporte cooperativo
envolvendo robds auténomos. Essa abordagem destacou o uso de FSMs para representar modos
de controle e a validacdo da comunicacdo baseada em eventos, demonstrando a eficacia da
formalizacdo na deteccdo de erros de projeto antes da implementacdo. O uso de CSP com
linguagens de programacdo como Python é um ponto comum em nossa pesquisa.

O desenvolvimento de sistemas robéticos criticos requer métodos formais que vdo além
da especificacao e verificacao, integrando diferentes ferramentas e técnicas para lidar com
a crescente complexidade desses sistemas. Diversas abordagens tém explorado alternativas
a RoboChart e a CSP, aplicando diferentes metodologias para verificar e validar sistemas
robéticos em diversos dominios. Uma linha de pesquisa notavel é a integracdao de métodos
formais distintos, conforme apresentado por Bourbouh et al. (BOURBOUH et al., 2021)). Seu
trabalho combina mdltiplas ferramentas, incluindo FRET (GIANNAKOPOULOU et al., 2020),
COCOSIM (CARDOSO et al., 2020) e Event-B (ABRIAL et al., [2010), guiados pelo framework
AdvoCATE (DENNEY; PAI, 2018), para verificar propriedades de um sistema de inspecdo
autonomo. A abordagem destaca os beneficios da integracao de artefatos formais de forma
coerente ao longo do ciclo de desenvolvimento, garantindo fortes vinculos entre os processos
de especificacdo e validacao.

Outras abordagens focam em modelos orientados a tarefas, por exemplo, em (ASKARPOUR
et al} [2021) é proposta uma cadeia de ferramentas baseada em perfis UML para facilitar
o projeto de sistemas colaborativos. Este trabalho utiliza Papyrus UML (LANUSSE et al,
2009)) para modelar tarefas colaborativas de HRC (Human-Robot Collaboration) e Zot para
verificar formalmente os modelos traduzidos para a légica TRIO. Além da verificacdo formal
ou da identificacdo de cenarios inseguros, a metodologia inclui ferramentas para automatizar
o desenvolvimento e as atualizacGes de tarefas. Essa abordagem é semelhante a ferramenta
desenvolvida neste trabalho, compartilhando as etapas de modelagem usando uma ferramenta
baseada em UML e a etapa de verificacdo formal.

Em cenérios onde fluxos de trabalho robéticos exigem avaliacdo, o trabalho em (RATH-
MAIR et al, 2021 explora a verificacdo formal em camadas, aceitando modelos de entrada
em Business Process Model and Notation (BPMN). Em (ROSING et al., [2015]), a abordagem
permite uma analise abrangente de propriedades em grandes espacos de estados, destacando a
importancia do refinamento e da abstracdo em aplicacGes industriais. A verificacao em tempo
real foi abordada por (CHANDLER et al., [2023)), que apresentou um método de verificacdo

para a criacdo de planos multietapas em rob6s com rodas diferenciais, destacando a geracdo
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de planos em tempo real para lidar com variacbes ambientais imediatas. A combinacao de
algoritmos personalizados e discretizacao de dados LiDAR foi aplicada em cenéarios complexos
de navegacdo.

Sistemas ciberfisicos distribuidos e criticos foram o foco de (SIRJANI et al., [2021]), que
apresentaram uma metodologia iterativa utilizando a linguagem Rebeca (REYNISSON et al.
2014) para garantir a verificacdo de propriedades criticas desde os estagios iniciais de desen-
volvimento. Outra contribuicdo significativa é apresentada em (FOUGHALI; ZUEPKE, 2022),
onde os autores combinaram métodos formais e anéalise de escalonabilidade em uma abor-
dagem interdisciplinar para verificar robds auténomos em tempo real. O trabalho incluiu a
criacao de um mecanismo de controle de acesso multirrecursos, demonstrando melhorias no
comportamento em tempo real de drones.

O estudo (WEBSTER et al., 2020) abordou a interagdo humano-robd (HRI) apresentando
uma abordagem colaborativa de verificacdo e validacdo (V&V). Ele combinou técnicas como
verificacao de modelos, testes baseados em simulacdo e experimentos com robds reais para
validar requisitos de seguranca e tarefas complexas de manufatura cooperativa. Artigos como
(HORVATH et al, 2023) e (HOSSEINI; SAUTER; KASTNER), 2023) exploraram abordagens formais
aplicadas a contextos industriais. O primeiro focou em modelos SysML simplificados para
garantir verificacOes praticas em escala industrial, enquanto o dltimo utilizou a plataforma
AVATAR (Automated Verification of Real Time Software) (PEDROZA; APVRILLE; KNORRECK|,
2011) para verificar propriedades de seguranca em sistemas da Indistria 4.0. Ambos os artigos
destacaram a importancia de metodologias formais para enfrentar os desafios de sistemas
complexos em ambientes industriais.

Para reforcar os diferenciais da abordagem proposta, a Tabela [2| apresenta uma visdo com-
parativa entre os principais trabalhos relacionados a esta dissertacdo. Os critérios selecionados
incluem aspectos fundamentais como a modelagem formal, a geracdo de cédigo, a verifica-
cao de propriedades e a validacdo pratica. Essa comparacao destaca objetivamente as lacunas
preenchidas por este trabalho em relacdo as abordagens existentes.

A Tabela |2| evidencia que, embora varios trabalhos explorem o uso de RoboChart, CSP e
métodos formais para modelagem e verificacdo de sistemas robdticos, poucos integram essas
etapas com validacdo pratica e foco na rastreabilidade entre especificacoes e implementacao.
O diferencial desta dissertacdo reside justamente na abordagem holistica, que cobre desde a
formalizacdo manual dos requisitos até a comparac3o estruturada entre o modelo verificado e o

cédigo executével, promovendo maior confiabilidade no desenvolvimento de sistemas robdticos
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Tabela 2 — Comparacio entre trabalhos relacionados a esta dissertaco.

Critério (Lretal, | (DAROLtl, | (SANTOS; (YAN; Este
2024) 2019) FILHO; FOSTER; trabalho
SAMPAIQ, HABLI,
2023) 2023)

Modelagem com Ro- v’ v’ v’ v’ v’
boChart
Verificacao formal v’ v’ v’ v
Validacdo com sis- X v’ v’ v’ v
tema real
Comparacao formal X X X X v
x implementacdo
Cobertura do ciclo X X X X v’
completo

criticos.

Embora todos os trabalhos apresentados demonstrem abordagens inovadoras e robustas
para a verificacdo e validacdo de sistemas robéticos, este artigo se destaca por seu foco em
uma quest3do especifica: a comparacdo sistematica entre especificacoes formais e implementa-
¢Oes praticas. Nossa abordagem combina a precisdo de ferramentas como RoboChart e CSP

com o refinamento de traces, aplicando essas técnicas diretamente a um sistema real em de-

senvolvimento. Ao contrario de muitos dos trabalhos citados, que se concentram em etapas

especificas do ciclo de desenvolvimento, como modelagem ou geracdo de cédigo, nosso traba-
lho integra todo o fluxo de validacdo, desde a especificacdo inicial até a andlise detalhada da
conformidade da implementacao com o modelo formal. Essa perspectiva pratica e orientada a

aplicacdo reforca a utilidade da metodologia proposta, particularmente em sistemas criticos,

onde a confiabilidade da implementacao é tdo importante quanto a robustez da especificacdo.
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6 CONCLUSAO

Este trabalho apresentou uma abordagem para verificar a conformidade de sistemas ro-
béticos com suas especificacdes formais, integrando a linguagem RoboChart, sua semantica
baseada em CSP e a implementacdo pratica em Python com a biblioteca pytransitions. A
principal contribuicao foi a proposta de um fluxo sistematico de desenvolvimento e verificacao
que inicia na formalizac3do de requisitos, passa pela extracdo e abstracdo de LTSs e culmina na
aplicacao de um algoritmo préprio de refinamento de traces para avaliar se a implementacdo
esta em conformidade com o modelo formal.

Na pratica, a metodologia proposta foi aplicada a dois estudos de caso com diferentes niveis
de complexidade e origem. O primeiro, Assembly Line, foi desenvolvido de forma controlada
e inspirada em sistemas industriais, permitindo explorar situacoes de verificacdo em um ambi-
ente mais flexivel. O segundo estudo de caso, Locate Medicine, representa uma funcionalidade
real integrada a um sistema de dispensacdo automatizada de medicamentos em operacdo no
HC-UFPE. Nele, foi modelada formalmente somente uma parte do processo — a etapa de
localizacdo do medicamento — a fim de verificar a viabilidade da abordagem em um cenério
pratico e critico. Em ambos os casos, a abordagem possibilitou identificar inconsisténcias entre
os comportamentos esperados e os observados, demonstrando sua utilidade tanto para apli-
cacdes reais quanto como ferramenta experimental de apoio ao desenvolvimento de sistemas
roboticos. As analises indicam que, mesmo com escopo limitado, é possivel aplicar métodos
formais de forma eficaz, mantendo a rastreabilidade entre os requisitos e a implementacao
executavel.

Além disso, o algoritmo de verificacdo desenvolvido neste trabalho evidenciou-se capaz
de identificar falhas de conformidade de forma automatizada e precisa, reforcando o papel da
verificacdo formal desde as fases iniciais do ciclo de vida do sistema. Essa verificacdo antecipada
é especialmente valiosa porque permite identificar erros ainda na fase de desenvolvimento,
evitando que falhas criticas avancem para etapas mais custosas, como integracao, testes finais
ou operacao em campo. Com isso, o processo de desenvolvimento se torna nao somente mais
seguro e confidvel, mas também mais eficiente, uma vez que reduz retrabalho e favorece a
entrega de sistemas com maior aderéncia aos requisitos. Em dominios regulados ou sensiveis
— como salde, automacao laboratorial e processos industriais —, essa abordagem contribui

diretamente para o cumprimento de exigéncias normativas, além de reforcar a rastreabilidade
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e a transparéncia do processo de validacao de software embarcado.

Outro ponto de destaque foi a abordagem proposta para traduzir requisitos informais em
modelos formais de maneira sistematica, adotando heuristicas de nomeacdo e modularizacao
que facilitaram a comunicac3o entre especialistas da area de dominio e engenheiros de software.
Essa estratégia buscou reduzir a distancia entre a linguagem natural, frequentemente utilizada
na especificacdo de requisitos, e a precisdao exigida por métodos formais, promovendo uma
modelagem mais acessivel e alinhada ao contexto real do sistema. Ao padronizar a estrutura
dos modelos e organizar os comportamentos em blocos légicos e reutilizaveis, foi possivel ndo
somente melhorar a clareza dos modelos gerados, mas também favorecer sua manutencao
e evolucao ao longo do tempo. Essa contribuicao é particularmente relevante, dado que a
formalizacdo dos requisitos ainda representa uma lacuna significativa em muitos trabalhos que
utilizam RoboChart, como apontado na revisao da literatura. A proposta aqui apresentada
oferece, portanto, um caminho viadvel e replicavel para incorporar métodos formais desde as
primeiras fases do desenvolvimento, aumentando a rastreabilidade, contribuindo para a reducao
de ambiguidades e fortalecendo a consisténcia entre os modelos formais e os sistemas que deles

derivam.

6.1 TRABALHOS FUTUROS

Como desdobramento natural deste trabalho, vérias oportunidades se abrem para avancos
metodoldgicos e técnicos. Uma direcdo complementar essencial para o avanco deste trabalho
consiste na validacdo da metodologia em ambientes industriais de maior escala, envolvendo
projetos e sistemas significativamente mais complexos do que aqueles inicialmente abordados.
Embora a metodologia tenha sido aplicada com sucesso em um cenario real, sua aplicacao
restringiu-se a um exemplo relativamente limitado, reforcando a necessidade de ampliar a ava-
liacdo para casos de maior porte e diversidade, caracteristicos do mercado industrial. Exemplos
industriais com um espaco de estados muito maior e maior complexidade estrutural poderiam
evidenciar desafios praticos adicionais, ampliando a robustez da validacdo. Esse processo deve
incluir o acompanhamento préximo das equipes de desenvolvimento durante todo o ciclo de
vida do sistema, possibilitando a coleta sistematica de métricas quantitativas e qualitativas,
como o tempo médio para deteccdo e correcao de falhas, o esforco dedicado a modelagem
formal, a curva de aprendizado dos profissionais envolvidos e o impacto efetivo na qualidade

e confiabilidade do software entregue.
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Paralelamente, para garantir a escalabilidade e viabilidade da metodologia em sistemas
complexos, é necessario explorar melhorias no processo de verificacdo, especialmente para
lidar com o aumento exponencial do espaco de estados, tipico desses sistemas. Investigar téc-
nicas alternativas de abstracdo de estados, otimizacdes no algoritmo de refinamento de traces
e outras abordagens para reduzir a complexidade computacional pode aumentar consideravel-
mente a eficiéncia do método. Essa dupla abordagem, que alia uma validacdo mais abrangente
a avancos técnicos na escalabilidade, permitird consolidar de forma sélida o valor pratico da
metodologia, tornando-a mais adequada para adocao em contextos industriais criticos, onde
a seguranca, a confiabilidade e o desempenho sao requisitos fundamentais.

Outra possibilidade relevante e promissora para o avanco desta metodologia é a sua exten-
sdo para suportar modelos com restricGes temporais explicitas, especialmente aquelas relacio-
nadas a sistemas com requisitos de tempo real. Em aplicacdes robéticas criticas a seguranca,
como controle de robds auténomos e robédtica colaborativa, o tempo de resposta é um fa-
tor determinante para garantir a integridade e a operacdo correta do sistema. Modelar essas
restricoes temporais permite capturar aspectos essenciais como atrasos na percepcao, vari-
acoes no tempo de atuacdo e limites maximos aceitdveis para respostas seguras, elementos
que hoje s3o suportados somente parcialmente por RoboChart. Incorporar essas propriedades
temporais amplia significativamente a expressividade dos modelos e possibilita a realizacao de
verificacBes temporais especificas, fundamentais para garantir o comportamento esperado em
cenarios dinamicos e criticos.

Além disso, a inclusdo de comportamentos probabilisticos e estocasticos nos modelos é um
passo natural e necessario para lidar com as incertezas inerentes a ambientes reais e sistemas
robdticos complexos. Falhas intermitentes, ruidos nos sensores, variacdes imprevisiveis no am-
biente e incertezas na execucao sdo desafios constantes que exigem abordagens capazes de
representar e analisar eventos com caracteristicas probabilisticas. A incorporacdo dessas téc-
nicas permite a aplicacdo de model checking probabilistico e anélise estocastica, fortalecendo
a robustez das garantias fornecidas pela metodologia e ampliando seu escopo para sistemas
que operam em condicoes incertas ou parcialmente observaveis. Dessa forma, a extensao para
restricoes temporais e comportamentos probabilisticos nao sé eleva a precisdo da modelagem,
mas também amplia o impacto pratico da metodologia, tornando-a aplicadvel a uma gama mais
ampla de dominios robdticos, como navegacdo auténoma, sistemas colaborativos e outras apli-
cacdes onde a seguranca e a confiabilidade dependem do tratamento rigoroso do tempo e da

incerteza.
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Por fim, um dos caminhos mais promissores para dar continuidade a este trabalho é a
automacao da traducdo de requisitos informais para modelos RoboChart. Embora o processo
atual tenha sido manual e baseado em heuristicas bem definidas, ele demonstrou ser viavel
e eficaz como prova de conceito. No entanto, sua replicacdo em contextos maiores ou com
equipes multidisciplinares exige um suporte automatizado mais robusto. O desenvolvimento
de uma ferramenta capaz de interpretar requisitos escritos em linguagem natural — ainda
que restrita a dominios especificos — e sugerir automaticamente estruturas formais iniciais
em RoboChart poderia ndo somente acelerar o processo de modelagem, mas também reduzir
erros de interpretacdo e ampliar a acessibilidade dos métodos formais a desenvolvedores n3o
especialistas. Além disso, essa ferramenta funcionaria como uma ponte essencial entre espe-
cialistas da area de dominio e engenheiros de software, promovendo uma formalizacdo mais
colaborativa, iterativa e rastredvel, o que se mostra particularmente valioso em ambientes

regulados ou que exigem elevada garantia de conformidade.
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