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RESUMO

Ferramentas de merge não estruturadas são amplamente utilizadas na prática. Ferramen-
tas de merge estruturadas baseadas em ASTs apresentam uma precisão de merge significati-
vamente melhor, mas são específicas para cada linguagem e custosas, o que faz com que não
estejam disponíveis para muitas linguagens de programação. Essa restrição limita a adoção
de ferramentas estruturadas na indústria, já que muitas equipes trabalham com múltiplas lin-
guagens e não podem arcar com a manutenção de uma ferramenta de merge separada para
cada uma delas. Para melhorar a precisão do merge em uma ampla variedade de linguagens,
propomos LastMerge, uma ferramenta de merge estruturada genérica que pode ser confi-
gurada por meio de uma interface simples, reduzindo significativamente o esforço necessário
para dar suporte ao merge estruturado. Para entender o impacto que uma ferramenta de
merge estruturada genérica pode ter na precisão e no desempenho do merge, conduzimos um
experimento com quatro ferramentas de merge estruturado: duas específicas para Java, jDime

e Spork , e suas contrapartes genéricas, respectivamente LastMerge e Mergiraf . Utilizando
cada ferramenta, reexecutamos cenários de merge de um conjunto de projetos significativo e
coletamos dados sobre tempo de execução, divergências comportamentais e precisão do merge.
Nossos resultados mostram que não há evidências de que o merge estruturado genérico im-
pacte significativamente a precisão do merge. Embora observemos uma taxa de diferença de
aproximadamente 10% entre as ferramentas específicas para Java e suas contrapartes gené-
ricas, a maioria das diferenças decorre de detalhes de implementação e poderia ser evitada.
LastMerge reporta 15% menos falsos positivos (conflitos espúrios) que o jDime, enquanto
o Mergiraf deixa de identificar 42% menos falsos negativos (conflitos reais ignorados) que o
Spork . Ambas as ferramentas genéricas apresentam desempenho de tempo de execução com-
parável às implementações específicas por linguagem mais avançadas. Também exploramos
o esforço necessário para configurar LastMerge para uso com linguagens de programação,
configurando-o para uso com Java e C#. Verificamos que o esforço é significativamente menor
do que o necessário para manter uma ferramenta de merge específica por linguagem, exigindo
apenas um conhecimento mínimo da estrutura da linguagem de programação. Além disso,
essa configuração pode ser melhorada de forma incremental ao longo do tempo, conforme a
ferramenta é usada na prática, para aprimorar a precisão do merge nos diversos cenários en-
contrados. Esses resultados sugerem que ferramentas de merge estruturadas genéricas podem



substituir efetivamente as ferramentas específicas por linguagem, abrindo caminho para uma
adoção mais ampla do merge estruturado na indústria.

Palavras-chave: Integração de código. Ferramentas de Merge. Merge estruturado. Linguagens
de Programação



ABSTRACT

Unstructured line-based merge tools are widely used in practice. Structured AST-based
merge tools show significantly improved merge accuracy, but are language specific and costly,
consequently not being available for many programming languages. Such restriction limits the
adoption of structured merge tools in industry, as many teams work with multiple programming
languages and cannot afford to maintain a separate merge tool for each language. To improve
merge accuracy for a wide range of languages, we propose LastMerge, a generic structured
merge tool that can be configured through a thin interface that significantly reduces the effort
of supporting structured merge. To understand the impact that generic structured merge might
have on merge accuracy and performance, we run an experiment with four structured merge
tools: two Java specific ones, jDime and Spork , and their generic counterparts, respectively
LastMerge and Mergiraf . Using each tool, we replay merge scenarios from a significant
dataset, and collect data on runtime, behavioral divergences, and merge accuracy. Our results
show no evidence that generic structured merge significantly impacts merge accuracy. Although
we observe a difference rate of approximately 10% between the Java specific tools and their
generic counterparts, most of the differences stem from implementation details and could
be avoided. We find that LastMerge reports 15% fewer false positives than jDime while
Mergiraf misses 42% fewer false negatives than Spork . Both generic tools exhibit comparable
runtime performance to the state of the art language specific implementations. We also explore
the effort of configuring LastMerge for usage with programming languages, by configuring
it for usage with Java and C#. We find that the effort is significantly lower than maintaining a
language-specific merge tool, requiring only minimal knowledge of the programming language
structure. Furthermore, such configuration can be incrementally improved over time, as the tool
is used in practice, in order to improve merge accuracy for the variety of scenarios encountered
in practice. These results suggest that generic structured merge tools can effectively replace
language-specific ones, paving the way for broader adoption of structured merge in industry.

Keywords: Code integration. Merge tools. Structured merge. Programming languages.
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1 INTRODUCTION

In most projects, developers collaborate by working on separate branches or repositories
(like local and remote ones), and later merge their changes into the main codebase. Ver-
sion Control Systems (VCSs) typically rely on line-based, unstructured, merge tools such as
diff3 (MENS, 2002). These tools compare file revisions based solely on the textual content
of their lines, without considering the syntactic or semantic structure of the code (KHANNA;

KUNAL; PIERCE, 2007). Such unstructured merge techniques are fast, language-agnostic, and
widely used in practice. However, they often produce spurious conflicts that waste developer
effort to fix semantically harmless issues that could be otherwise automatically resolved. At
the same time, unstructured merge may overlook actual conflicts, which can silently propagate
into final artifacts and cause regressions in production.

To improve the accuracy of merging software revisions, researchers have proposed tools
that leverage the syntactic structure of the source code (HUNT; TICHY, 2002; APEL et al., 2011;
ZHU; HE; YU, 2019; WESTFECHTEL, 1991; CLEMENTINO; BORBA; CAVALCANTI, 2021; BUFFEN-

BARGER, 1995; LARSEN et al., 2023; APEL; LEßENICH; LENGAUER, 2012). Unlike unstructured
tools, structured merge tools parse the source code into an Abstract Syntax Tree (AST) and
apply tree matching and combination algorithms to generate the merged artifact. Prior stu-
dies have shown that structured merge significantly improves merge accuracy compared to
unstructured techniques (SEIBT et al., 2022; SCHESCH et al., 2024). Despite these advances,
structured tools remain largely absent from current practice especially for two reasons. First,
as they strongly rely on the syntax and semantics of specific programming languages, structu-
red tools proposed so far are language specific. Second, for being costly, not many languages
are supported by structured tools. State of the art tools, for example, are typically designed
for usage with only Java (APEL; LEßENICH; LENGAUER, 2012; LARSEN et al., 2023). This means
that substantial implementation and maintenance effort would needed for supporting a new
language. On the other hand, software projects in industry often involve multiple program-
ming languages, which are typically used for different purposes. Being restricted to a single
language, structured merge tools cannot be used in such polyglot projects, which limits their
applicability in practice.

To reduce these barriers and improve merge accuracy for a wide range of programming
languages, we introduce LastMerge, a generic structured merge tool that can be easily
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configurable for each language. It relies on a core merge engine that operates over generic
trees produced by an extensible and fast parser framework (BRUNSFELD, 2025) that has been
instantiated for more than 350 languages, and is in production at GitHub. By feeding the engine
with a high level description of language specific aspects (such as node labelling and restrictions
to permutation of node children) that are known to be relevant for structured merge, developers
can easily adapt LastMerge for new languages, or refine support for existing ones. This thin
configuration interface significantly reduces the effort of having structured merge for a wide
range of languages.

Apart from its implementation, this work also investigates the potential of LastMerge

for usage in production software projects. To do this, we divide our investigation into two
main parts. The first part aims to understand how generic structured merge tools compares
to the existing language specific state of the art ones. We aim to understand wether generic

structured merge can act as a drop-in replacement for language-specific structured merge
tools. In the second part, we evaluate the generalization capabilities of LastMerge. We
do this by investigating the effort involved in instantiating LastMerge for usage with a
programming language other than Java.

To understand the impact that a generic structured merge technique might have on merge
accuracy and computational performance, we run a comparative experiment with four struc-
tured merge tools, paired as follows: jDime (APEL; LEßENICH; LENGAUER, 2012), a well-known
Java specific tool, and LastMerge, which adopts a similar algorithm but on top of a lan-
guage independent AST and generic setting; and Spork (LARSEN et al., 2023), a more recent
Java specific tool, and Mergiraf ,1 which adopts a similar algorithm but on top of the same
language independent setting as LastMerge. This pairing reflects the counterpart influence
of existing state of the art, language specific, tools on the design and implementation of the
generic ones. We replay merge scenarios using each tool (the generic ones instantiated with
Java syntactic and semantic details) in a significant dataset (SCHESCH et al., 2024), and col-
lect data on runtime, behavioral divergences, and merge accuracy. Specifically, we compute
the number of spurious conflicts (false positives) and actual missed conflicts (false negatives).
We address the following research questions: How generic structured merge impacts merge
accuracy? How generic structured merge impacts merge runtime performance?

Our results show no evidence that generic structured merge significantly impacts merge
accuracy. Although we observe a difference rate of approximately 10% between the Java spe-
1 <https://mergiraf.org/>

https://mergiraf.org/
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cific tools (jDime and Spork) and their generic counterparts (LastMerge and Mergiraf )
instantiated for Java, most of the differences stem from implementation details and configu-
ration choices, not from design decisions implied by the generality requirement. We also find
that LastMerge reports 15% fewer false positives than jDime, while Mergiraf misses 42%
fewer false negatives than Spork . Furthermore, both generic tools exhibit comparable runtime
performance to the state of the art language-specific implementations.

Finally, with the goal of understanding the effort envolved in configuring LastMerge for
new languages, we also conduct a case study where the author instantiates a vanila configu-
ration for usage with C#. We argue that the effort is relatively simple, such that a user with
fairly basic knowledge of the language and some high level knowledge of the technologies used
could derive a similar minimal configuration within at most a few days. This is significantly less
than the expected effort for implementing a new language-specific tool, which would involve
adapting or even reimplementing several algorithms — an effort that may take weeks or even
months. These results suggest that LastMerge can effectively replace language-specific
tools, achieving similar levels of accuracy and efficiency while easing the onboarding of new
languages, thus paving the way for a broader adoption of structured merge in industry.

The rest of this document is organized as follows. In Chapter 2, we present the essential
concepts used in this work and motivates the need for language independent structured merge
tools. Chapter 3 discusses the implementation of language independent structured merge tools.
We present the design and implementation decisions of LastMerge, our proposed tool,
and briefly discuss how it compares to the other tools used in our experiment. In Chapter 4
we present our empirical study that evaluates the impact of generic structured merge on
merge accuracy and performance. We present our research questions, sampling process, and
methodology. We also present the results of our experiment and discuss how they help us answer
our research questions. Chapter 5 presents the configuration interface for LastMerge. This
configuration allows users to easily adapt the tool for new languages or refine support for
existing ones. We also present a case study where we instantiate LastMerge for C#. Finally,
Chapter 6 concludes this document. We summarize our contributions and discuss both related
and future work.
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2 BACKGROUND

In this chapter, we explain the main concepts used on this work. First, Section 2.1 discusses
the fundamentals of Version Control Systems (VCSs), which are the main supporting tools
of modern collaborative development. Section 2.2 introduces and contrast the strategies of
unstructured and structured merge through an illustrative example, as well as discuss the costs
of supporting structured merge for different languages. Lastly, Section 2.3 presents the two
state of the art structured merge tools available for Java used in our study: jDime and Spork .

2.1 VERSION CONTROL SYSTEMS (VCS)

With the ever rising complexity of software projects, development has become an increa-
singly collaborative effort. Within this context, concepts such as software configuration mana-

gement (SCM) and Version Control Systems (VCS) naturally arose to support collaborative
software development. SCM is often related in a broader sense to the management of software
artifacts, especially in environments where multiple versions of it are maintained. (CONRADI;

WESTFECHTEL, 1998) VCS, on the other hand, are a particular approach for handling changes
and updates to software artifacts, while ensuring the share and consistency of these artifacts
among multiple developers and environments. Such VCS systems are often classified into two
main categories: centralized and distributed version control systems. Figure 1 illustrates a high
level view of the differences between each architecture.

Centralized Version Control Systems (CVCS) are characterized by a single central repository
that stores all versions of the project files. On this model, developers updates their particular
repositories by checking out files from the central repository before doing contributions. Once
they have made changes, they check the files back in to the central repository. This process
ensures that all developers are working with the same version of the project files, aiming to
keep the current development stable and accessible for all involved. Many services implement
this approach, including Subversion (SUBVERSION, 2025) and CVS (CVS, 2025).

Decentralized Version Control Systems (DVCS) instead, foments developers to have their
own copies of the main repository. Each particular repository can be used as the source of
information for project history. These different repositories can be synchronized with each
other, allowing developers to share their changes and updates. This approach allows for greater
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Centralized VCS Decentralized VCS

Figura 1 – The image highlights the differences between centralized and distributed version control systems.
In a centralized system, developers interact with a single central repository, while in a distributed
system, each developer has their own repository that can be synchronized with others. The image
is based on (CAVALCANTI, 2019)

flexibility and independence, as developers can work on their own copies of the project without
needing to be connected to a central server. Popular examples of DVCS include Git (GIT,
2025) and Mercurial (MERCURIAL, 2025).

In comparison with the vertical contribution style of CVCS, DVCS empowers developers to
work in a more horizontal manner, where they can contribute to the project in parallel without
being constrained by a central authority. (RIGBY et al., 2009) Such difference has led to a shift
in the way software development is approached, with DVCS becoming the preferred choice
for many open source projects and collaborative software development environments. GitHub,
a popular platform that uses Git as its underlying DVCS, facilitates collaboration and version
control among developers that powered more than 1 billion contributions in 2024 (GITHUB,
2024).

Despites the differences between CVCS and DVCS, both systems share the same core
principle of allowing software developers to create parallel versions of software. This allows
developers to work on different features or bug fixes without interfering with each other’s work.
The core challenge of these systems is to ensure that changes made by different developers can
be merged together in a consistent and reliable manner to form one final version. This is where
the concept of merge comes into play, as it allows developers to combine their changes and
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updates into a single version of the project. Several techniques and tools have been developed
to support this process, ranging from simple unstructured merge tools to more sophisticated
structured merge tools that take into account the syntax and semantics of the code being
merged.

2.2 UNSTRUCTURED AND STRUCTURED MERGE

To illustrate the differences between unstructured and structured merge, and the costs of
supporting the latter for a number of languages, consider the merge scenario illustrated in
Figure 2. It shows the initial declaration of the debit method in the Account class. Starting
from this base version, two developers, Left and Right, independently modify the method. Left

makes the method public, while Right makes the method static. As these changes differ,
they must be merged to produce the final version of the Account class.

In this scenario, an unstructured merge tool such as diff3 (KHANNA; KUNAL; PIERCE, 2007)
performs a line-based comparison between the revisions, using the common base version as
a reference. Since both developers modify the same line, the tool is unable to integrate the
changes and reports a conflict, as illustrated in Figure 3. Resolving this conflict requires manual
intervention to combine the modifications to preserve developers intentions.

Base

public class
void int

   {

    (  amount) {

    
  }

}

Account
debit

// ...


Left

public class
public void int

   {

     (  amount) {

    
  }

}

Account
debit

// ...


Right

public class
static void int

   {

     (  amount) {

    
  }

}

Account
debit

// ...


Figura 2 – An example of a merge scenario. Base shows the initial revision, or the shared common ancestor.
Both Left and Right are revisions that independently introduce changes to Base. Changes are
highlighted in yellow.
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public class   {


    
  }

}

Account
<<<<<<<

  public void debit(int amount) {

=======

  static void debit(int amount) {

>>>>>>>


// ...


Figura 3 – The output of unstructured merge. Since it only relies on the textual content of the lines, a conflict
between the changes introduced by Left and Right is reported, as presented in red.

As shown in Figure 4, structured merge correctly merges Left and Right changes avoi-
ding developer effort. Structured tools (HUNT; TICHY, 2002; APEL et al., 2011; ZHU; HE; YU,
2019; WESTFECHTEL, 1991; CLEMENTINO; BORBA; CAVALCANTI, 2021; BUFFENBARGER, 1995;
LARSEN et al., 2023; APEL; LEßENICH; LENGAUER, 2012) are language-specific and leverage lan-
guage syntax and semantics. In the Java case, they explore the fact that modifiers such as
public and static can be applied together and in any order. Furthermore, they can also
enforce language rules to prevent the generation of semantically incorrect code. For example,
the tool can ensure that the resulting method after integration is not declared both public

and private, which would violate Java’s language specifications. Instead of comparing lines
of text, these tools firstly construct tree representations of the source code— typically Abs-
tract Syntax Trees (ASTs)— for each revision to be merged. During the matching phase,
the tool correlates common and modified nodes across revisions. In the subsequent amalga-

mation phase, it merges the nodes based on the collected matching information. Conflicts
are reported only when different changes affect corresponding tree nodes. Structured merge
also avoids spurious conflicts when, for instance, developers independently add declarations
(field, method, etc.) to the same area of the text, or change syntactically separate parts of an
expression or statement, even if they appear in the same or consecutive lines of code.

public class
public static void int

   {

      (  amount) {

    
  }

}

Account
debit

// ...


Figura 4 – The output of structured merge. Since the changes made by Left and Right occur in different tree
nodes, no conflict is reported.
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Although structured merge outperforms unstructured merge by reporting fewer spurious
conflicts (SEIBT et al., 2022; SCHESCH et al., 2024), and even detecting conflicts that are missed
by unstructured tools, creating such a tool demands significant effort for each language that
needs to be supported. Besides creating or adapting1 language-specific parsers and ASTs, one
has to implement the whole merging (matching, amalgamation, etc.) engines for each AST,
which is often expensive. Maintaining such engines is also costly, as they need to be fixed or
updated for each supported language. This explains why structured merge tools are available
for only a few languages, and have not been widely adopted in industry, where tools that
support multiple languages are often needed for most nontrivial projects.

2.3 JAVA SPECIFIC STRUCTURED TOOLS

Given the difficulties of implementing structured merge tools for general-purpose program-
ming languages, most of the existing work focused on specific languages, such as Java. In this
context, two contenders arise as the state of the art structured tools for structured merging:
jDime (APEL; LEßENICH; LENGAUER, 2012) and Spork (LARSEN et al., 2023). Both are publicly
available on GitHub, and we used them in our empirical study, as detailed in Chapter 4. This
section provides a brief overview of them.

jDime was proposed by Apel, Leßenich and Lengauer (2012) and still arises as one of the
most mature and benchmarked implementations of structured merge for Java. It implements
a three-way structured merge algorithm that operates on the Abstract Syntax Tree (AST)
representation of Java source code. By using a parser implemented on top of JastAddJ, it
first parses the three revisions of the merge scenario into their corresponding ASTs. Then,
it computes the differences between the base AST and each of the modified ASTs using a
combination of tree matching algorithms. Finally, it merges the changes from both modified
ASTs into a single AST, resolving conflicts based on the structure of the code. We have
reimplemented these algorithms on our tool, LastMerge, and we dive deep into the details
of them in Chapter 3.

More recently, Spork was proposed by Larsen et al. (2023) as another structured merge
tool for Java. Spork focuses on maintaining code readability by implementing a high-fidelity
pretty-printing mechanism that aims to preserve the original formatting of the code. Other
1 Tools often reuse existing parser infrastructure: Spork relies on Spoon (LARSEN et al., 2023), and jDime on

JastAddJ (APEL; LEßENICH; LENGAUER, 2012).
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existing tools, such as jDime, often struggle with this aspect, leading to merged code that is
syntactically correct but that might not respect the original style and formatting of the code.

Spork employs the 3DM-MERGE algorithm (LARSEN et al., 2023) to merge revisions. The
algorithm operates by firstly encoding input trees as a set of Parent-Child-Successor (PCS)
triples. Each triple (𝑝, 𝑐, 𝑠), where 𝑝 is a node, indicates that both 𝑐 and 𝑠 are children of
𝑝, with 𝑠 immediately succeeding 𝑐 in 𝑝’s children list (LARSEN et al., 2023). A set of PCS
triples is referred to as a changeset. Changesets from each revision are combined into a single
changeset to construct the final merged tree. However, inconsistencies may arise during this
process. For example, if the base contains a PCS triple (𝑥, 𝑦, 𝑧) and a revision adds a new PCS
triple (𝑥′, 𝑦, 𝑧), the changeset becomes inconsistent because nodes 𝑦 and 𝑧 now have different
parents. Mergiraf heuristically resolves some of these inconsistencies by removing triples from
the base revision until the changeset becomes consistent.

However, even after applying these heuristics, some inconsistencies may persist. In most
cases, these arise because the changes introduced by the revisions truly conflict, so the tool
reports a conflict. In other cases, the algorithm resolves inconsistencies by applying heuristics
such as reordering a node’s children, as illustrated by the reordering of method modifiers in
Figure 4.

Both jDime and Spork have been empirically evaluated and compared against unstructured
merge tools, showing that they can reduce the number of spurious conflicts in real-world merge
scenarios (APEL; LEßENICH; LENGAUER, 2012; LARSEN et al., 2023). Previous work also compared
them against each other, showing that they have different strengths and weaknesses (LARSEN

et al., 2023). However, being limited to Java limits its applicability, as many projects are written
in other programming languages. This motivates the need for structured merge tools that can
work with multiple programming languages. Chapter 3 presents two novel tools that aim to
fill this gap.
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3 GENERIC STRUCTURED MERGE

To reduce the problems discussed in the previous chapter, and to improve merge accuracy
for a wide range of programming languages, we propose LastMerge (Language Agnostic

Structured Tool for Code Merging), a generic structured merge tool that can be easily confi-
gurable for each language. This chapter focuses on describing the design and implementation
of such generic structured merge tools. Section 3.1 explains the main decisions of Last-

Merge which is built as a generic counterpart of jDime — adapting its algorithms to work
on a generic tree. Section 3.2 presents a high level view of the ones chosen for Mergiraf , a
recently proposed open-source tool that counterparts with Spork , that we use in our experi-
ment to understand whether our evaluation results are specific to LastMerge or generalize
beyond our particular design choices.

3.1 LASTMERGE

To achieve generality, LastMerge relies on a core merge engine that operates over gene-
ric trees produced by Tree Sitter (BRUNSFELD, 2025), an extensible and fast parser framework
that has been instantiated for more than 350 languages, and is in production at GitHub. Tree

Sitter allows users to define a Context-Free Grammar (CFG) using a domain-specific language
(DSL) to generate a parser. This parser builds a Concrete Syntax Tree (CST), a tree represen-
tation of the source code that preserves all syntactic elements; nodes are represented as either
Terminal (leaf nodes, such as literals) or NonTerminal (internal nodes, such as method decla-
rations). Unlike Abstract Syntax Trees (ASTs), CSTs retain more granular and less abstract
information, as illustrated in Figure 5.

Although several parser generators exist, the main advantage of Tree Sitter lies in its
extensive collection of community maintained grammars for most programming languages
used in industry. This ecosystem enables developers to build tools that aim to be language
independent by focusing on a core that operates over generic tree nodes, while delegating
the parsing to Tree Sitter . LastMerge employs the same strategy, abstracting away the
language-specific aspects of structured merge that can be configured by the user through a
simple interface. We discuss such aspects as well as the configuration interface of LastMerge

on Chapter 5. Architecturally, LastMerge follows a sequential pipeline composed of three
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class  {

  String x;

}

Account program

class_declaration

class Account class_body

{ field_declaration }

String x ;

Figura 5 – An CST produced by Tree Sitter. An CST represents all the syntactic information of the original
source code, including lexical elements.

main steps: parsing, matching and merging. Following sections describe these steps in detail,
highlighting the design decisions and implementation details for each of them.

3.1.1 Parsing

LastMerge relies on Tree Sitter to convert each revision into a Concrete Syntax Tree
(CST). In special, NonTerminal nodes can be marked as Unordered, indicating that their chil-
dren can be safely permuted without affecting program semantics. Nodes may also include an
optional identifier used to uniquely distinguish them among their siblings. Both identifier as-
signment and children ordering are language-specific aspects that must be properly configured
to ensure correct behavior.

To better illustrate these concepts, consider the snippet of Java code in Figure 6. In
this scenario, the order of the declarations within the class Account, such as the method
withdraw and the field declaration balance, can be altered freely, as they are marked as
unordered nodes, without affecting the program semantics. Additionally, the signature of the
method withdraw(int amount) can be used to uniquely identify it among the children of the
Account class.
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public class
private int

public static void int

   {

    balance;



      (  amount) {

    
  }

}

Account

withdraw
// ...


Figura 6 – An example Java code for class Account

3.1.2 Matching

This and the next step are based on jDime’s algorithms (APEL; LEßENICH; LENGAUER,
2012), which we adapted to work in our generic language-independent tree. We choose jDime

as the basis for LastMerge because, at the time of this work, it was the most mature and
benchmarked implementation of a structured merge tool available in the literature. Matchings
between each pair of revisions — (base, left), (base, right), and (left, right) — are first
computed by associating nodes in each revision in a pair with corresponding nodes in the
other revision. The matching process disallows pairing a Terminal node with a NonTerminal

node. Moreover, even when nodes share the same type (NonTerminal or Terminal), they can
only be matched if their kinds (method declaration, literal, etc.) are identical. These
restrictions ensures the merge algorithm only matches semantically equivalent nodes. In the
example of Figure 6, the method declaration withdraw can be matched only with another
method declaration, and will never be matched with field declaration of balance.

The rules used to compute the matchings depends heavily on the types of nodes being
compared. This decision is summarized in Algorithm 1. Matching Terminal nodes, for example,
is relatively straightforward; a match is assigned only if their values are identical. This approach
also applies to other literal types, such as integers or booleans. Matching NonTerminal nodes
is more complex. When their root nodes match — either because they share the same identifier
or kind — we recursively compute matches between each pair of children to find the maximum
matching. This process occurs level-wise, so nodes only match with others siblings at the same
tree level. Again, in Figure 6, the method declaration withdraw can only match with other
sibling method declarations within the same class. Algorithms that can compare nodes across
different levels exist and can be more precise as they can detect, for example, moved or renamed
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code blocks. However, they are not used in LastMerge due to their higher computational
cost — since such problems are known to be in NP-Hard.

Input: A pair of nodes 𝐿 and 𝑅.
Output: The maximum number of matchings between 𝐿 and 𝑅.

1 if 𝐿 and 𝑅 have different kinds then
2 return 0;
3 end
4 if 𝐿 and 𝑅 are Terminal nodes then
5 if 𝐿 and 𝑅 have the same value then
6 return 1;
7 end
8 else
9 return 0;

10 end
11 end
12 if 𝐿 and 𝑅 are NonTerminal nodes then
13 if 𝐿 and 𝑅 are Unordered then
14 return unordered_tree_matching(L, R);
15 end
16 else
17 return ordered_tree_matching(L, R);
18 end
19 end

Algoritmo 1: Tree Matching

The specific algorithm to compute matchings among the children of two NonTerminal

nodes depends on whether their children are ordered or unordered. Given two nodes with
ordered children 𝐿 and 𝑅, we compute their matchings using the procedure described in
Algorithm 2. The algorithm is based on the original one proposed by Yang (1991), which
generalizes the problem of computing the largest common subsequence from strings to trees.
It employs a dynamic programming approach to find the number of matches (𝑊 ) and the
maximum matching (𝑀) between two tree nodes 𝐿 and 𝑅 in quadratic time. In this context,
an element 𝑊 [𝑖][𝑗] of the matrix 𝑊 represents the maximum number of matches between the
𝑖-th child of 𝐿 and the 𝑗-th child of 𝑅. On the other hand, an element 𝑀 [𝑖][𝑗] of the matrix
𝑀 represents the maximum number of matchings between the first 𝑖 children of 𝐿 and the
first 𝑗 children of 𝑅. At the end of the algorithm, 𝑀 [𝑚][𝑛] contains the maximum number of
matchings between the two nodes, where 𝑚 and 𝑛 are the number of children of 𝐿 and 𝑅,
respectively. Both matrixes 𝑀 and 𝑊 are populated by recursively traversing both trees and
computing the maximum matching between each pair of their children (𝐿𝑖, 𝑅𝑖).

If nodes have unordered children, in the more general case, we rely on a linear programming
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Input: A pair of nodes 𝐿 and 𝑅 of the same kind.
Output: The maximum number of matchings between 𝐿 and 𝑅.

1 𝑚← number of children of L;
2 𝑛← number of children of R;
3 𝑀 ← (𝑚 + 1)× (𝑛 + 1) ; // Auxiliary matrix
4 for 𝑖← 1..𝑚 do
5 for 𝑗 ← 1..𝑛 do
6 𝑊 [𝑖][𝑗]← calculate_matchings(𝐿𝑖, 𝑅𝑗) ; // Match children
7 𝑀 [𝑖][𝑗]← max(𝑀 [𝑖][𝑗 − 1], 𝑀 [𝑖− 1][𝑗], 𝑀 [𝑖− 1][𝑗 − 1] + 𝑊 [𝑖][𝑗]);
8 end
9 end

10 return 𝑀 [𝑚][𝑛] + 1 ; // We add 1 to account for the root nodes
Algoritmo 2: Ordered Tree Matching - Yang’s algorithm

approach to find the maximum matching, similar to jDime’s original implementation (APEL;

LEßENICH; LENGAUER, 2012). On this approach, computing the highest number of matches
between the trees is equivalent to computing the maximum number of matches in a weighted
bipartite graph. Such problem is also known as the assignment problem, and it can be solved
algorithmically in cubic time, as shown in Algorithm 3. Given two trees 𝐿 and 𝑅, the algorithm
first computes the number of matches between each pair of children nodes (𝐿𝑖, 𝑅𝑖) in the left
and right trees. The auxiliary function solve_assignment_problem computes the maximum
matching using the well known Kuhn-Munkres algorithm (KUHN, 1955), a linear programming
inspired algorithm for solving the assignment problem. LastMerge uses the implementation
of the Kuhn-Munkres algorithm provided by the pathfinding crate1.

Input: A pair of nodes 𝐿 and 𝑅 of the same kind.
Output: The maximum number of matchings between 𝐿 and 𝑅.

1 𝑚← number of children of L;
2 𝑛← number of children of R;
3 𝑀 ← 𝑚× 𝑛 ; // Matrix to store children matchings
4 for 𝑖← 0..𝑚 do
5 for 𝑗 ← 0..𝑛 do
6 𝑀 [𝑖][𝑗]← calculate_matchings(𝐿𝑖, 𝑅𝑗) ; // Match children
7 end
8 end
9 𝑚𝑎𝑥_𝑚𝑎𝑡𝑐ℎ𝑒𝑠← solve_assignment_problem(𝑀) ; // Kuhn-Munkres algorithm

10 return 𝑚𝑎𝑥_𝑚𝑎𝑡𝑐ℎ𝑒𝑠 + 1 ; // We add 1 to account for the root nodes
Algoritmo 3: Unordered Tree Matching using the Assignment Problem

Despites its power, the Kuhn-Munkres algorithm is computationally expensive. To reduce
computational cost, we can apply an optimization to the matching process when all children
1 <https://docs.rs/pathfinding/latest/pathfinding/>

https://docs.rs/pathfinding/latest/pathfinding/
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being matched have identifiers. That occurs because if a node in one revision has an identifier
that matches a node in the other revision, we can assign a match without needing to compute
the maximum matching. Conversely, if a node in one revision has an identifier that does not
match any node in the other revision, we assume it has no match on the other revision.
This optimization reduces the matching algorithm to simply traversing both sets of children
and assigning a match when nodes have identical identifiers. This enhanced version can be
implemented naively in quadratic time, although it could be further optimized to linear time
by using a hash table to store the identifiers of the nodes in one revision, and then checking
for matches in the other revision.

Note that in both the ordered and unordered cases, instead of calling themselves during
the recursion, both algorithms delegates the call to the more general calculate_matchings
function, presented in Algorithm 1. This is done to ensure the most appropriate algorithm is
selected, depending on wether the nodes being compared are either Terminal or NonTerminal

and, in the case of the later, wether their children are ordered or unordered.

3.1.3 Merging

LastMerge constructs the final merged tree using a depth-first strategy, starting from
the pair of root nodes of each revision — and its common ancestor if existing, and recursively
traverses the tree until all nodes are merged. It leverages the previously computed matching
information to decide which nodes to retain or discard, how to integrate concurrent changes
to the same node, and when to report conflicts. When merging Terminal nodes, LastMerge

uses textual merge to compute the final version of the node, which is then added to the merged
tree. When merging NonTerminal nodes, the algorithm needs to traverse the children of the
nodes in each revision and apply the merge logic recursively. The logic however, differs wether
the nodes are Ordered or Unordered.

In the case of Ordered nodes, the algorithm operates by traversing both sets of children in
pairs, as shown in Algorithm 4. On this main loop, the algorithm first retrieves some indicators
using the function calculate_indicators. It uses the matching information for the current
children being processed from both revisions to retrieve their matching base nodes, their
matching node on the opposite revision and wether they are matched with each other. Using
this information, the algorithm infers the changes made in each revision, and assign them to
operations that can be performed on the tree using the choose_operations function. Table
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Tabela 1 – Merging cases for Ordered nodes. Here, both 𝑐𝐿 and 𝑐𝑅 represents the children of 𝐿 and 𝑅 being
merged. 𝑙, 𝑟 and 𝑏 are placeholders for any (other) node from the left, base, and right trees.
Each column represents a different indicator that can be used to determine the actions to be
taken during the merge. A checkmark indicates that a match is present. The indicators 𝑐𝐿 → 𝑟,
𝑐𝐿 → 𝑏, 𝑐𝑅 → 𝑙 and 𝑐𝑅 → 𝑏 denote a match from 𝑐𝐿 or 𝑐𝑅 to any node in an opposing tree. The
column 𝑐𝐿 ⇐⇒ 𝑐𝑅 indicates whether a bidirectional matching between the nodes was found. The
remaining columns show the actions to be taken for the corresponding configuration of indicators.
The last two columns indicate whether it is safe to advance the pointer for 𝑐𝐿 and 𝑐𝑅. The table
is based on Seibt et al. (2022) and adapted to the context of LastMerge.

𝑐𝐿 ⇐⇒ 𝑐𝑅 𝑐𝐿 → 𝑟 𝑐𝐿 → 𝑏 𝑐𝑅 → 𝑙 𝑐𝑅 → 𝑏 Result If left subtree changed If right subtree changed. If both subtrees changed. Move L? Move R?

Merge(𝑐𝐿 , 𝑐𝑅)
Merge(𝑐𝐿 , 𝑐𝑅)
Deletion(𝑐𝑅) Conflict(𝑐𝑅, 𝑛𝑜𝑛𝑒)
Addition(𝑐𝑅)
Deletion(𝑐𝑅) Conflict(𝑐𝑅, 𝑛𝑜𝑛𝑒)
Addition(𝑐𝑅)
Deletion(𝑐𝐿) Conflict(𝑐𝐿 , 𝑛𝑜𝑛𝑒)
Deletion(𝑐𝐿) Conflict(𝑐𝐿 , 𝑛𝑜𝑛𝑒)
Deletion(𝑐𝑅), Deletion(𝑐𝐿) Conflict(𝑐𝐿 , 𝑛𝑜𝑛𝑒) Conflict(𝑛𝑜𝑛𝑒, 𝑐𝑅) Conflict(𝑐𝐿 , 𝑐𝑅)
Addition(𝑐𝑅), Deletion(𝑐𝐿) Conflict(𝑐𝐿 , 𝑛𝑜𝑛𝑒)
Addition(𝑐𝐿)
Addition(𝑐𝐿)
Addition(𝑐𝐿), Deletion(𝑐𝑅) Conflict(𝑛𝑜𝑛𝑒, 𝑐𝑅)
Conflict(𝑐𝐿 , 𝑐𝑅)

1, based on Seibt et al. (2022), summarizes the operations for each valid configuration.
Once the operations are determined, the algorithm applies them to the merged tree. For

example, if a node from the left revision does not have a match in right, but has one in the base
revision, the algorithm infers that the node was removed in the right revision. However, if the
left node was modified in comparison to the base ancestor, the algorithm reports an edit/delete

conflict. These operations are applied by the function apply_all. After the operations are
applied, the pointers to the children of each tree might need to be updated. This is done by
calling the next function on each set of children, which returns the next child in the list, or
null if there are no more children to process. Wether to advance or not the pointers depends
on the operations applied, as summarized on Table 1. This process continues until all children
from both revisions are processed.

After one of the children lists is fully consumed, the algorithm proceeds to merge the
remaining nodes on the other side of the merge. This is done by traversing the remaining
children of the other revision and applying the same logic as the main loop. The algorithm
finishes by returning a new node of the same kind as the original nodes, containing its merged
children.

The merging of Unordered nodes follows a similar, but simpler, approach described in
Algorithm 5. As the order of the children can be freely permuted, the algorithm does not
need to traverse them in pairs. Instead, it starts by first processing the children of the left
revision and them the ones from the right revision. For each child it processes, the algorithm
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Input: A pair of Ordered nodes 𝐿 and 𝑅 of the same kind. The matching
information previously calculated

Output: The final merged node.
1 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 = Empty list;
2 𝑐𝑠𝐿 = children of Left;
3 𝑐𝑠𝑅 = children of Right;
4 𝑐𝑢𝑟_𝑙𝑒𝑓𝑡 = 𝑐𝑠𝑙.𝑛𝑒𝑥𝑡();
5 𝑐𝑢𝑟_𝑟𝑖𝑔ℎ𝑡 = 𝑐𝑠𝑟.𝑛𝑒𝑥𝑡();
6 while 𝑐𝑢𝑟_𝑙𝑒𝑓𝑡 ∧ 𝑐𝑢𝑟_𝑟𝑖𝑔ℎ𝑡 do
7 𝑖𝑛𝑑 = calculate_indicators(𝑐𝑢𝑟_𝑙𝑒𝑓𝑡, 𝑐𝑢𝑟_𝑟𝑖𝑔ℎ𝑡);
8 𝑜𝑝𝑠 = choose_operations(𝑖𝑛𝑑) ; // Operations from Table 1
9 (𝑚𝑜𝑣𝑒𝐿, 𝑚𝑜𝑣𝑒𝑅) = apply_all(𝑜𝑝𝑠, 𝑐𝑢𝑟_𝑙𝑒𝑓𝑡, 𝑐𝑢𝑟_𝑟𝑖𝑔ℎ𝑡, 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛);

10 if 𝑚𝑜𝑣𝑒𝐿 then
11 𝑐𝑢𝑟_𝑙𝑒𝑓𝑡 = 𝑐𝑠𝐿.𝑛𝑒𝑥𝑡();
12 end
13 if 𝑚𝑜𝑣𝑒𝑅 then
14 𝑐𝑢𝑟_𝑟𝑖𝑔ℎ𝑡 = 𝑐𝑠𝑅.𝑛𝑒𝑥𝑡();
15 end
16 end
17 while ¬𝑑𝑜𝑛𝑒𝐿 do
18 𝑖𝑛𝑑 = calculate_indicators(𝑐𝑢𝑟_𝑙𝑒𝑓𝑡);
19 𝑜𝑝 = choose_operation(𝑖𝑛𝑑);
20 apply(𝑜𝑝, 𝑐𝑢𝑟_𝑙𝑒𝑓𝑡, 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛);
21 𝑐𝑢𝑟_𝑙𝑒𝑓𝑡, 𝑑𝑜𝑛𝑒𝐿 = 𝑐𝑠𝐿.𝑛𝑒𝑥𝑡();
22 end
23 while ¬𝑑𝑜𝑛𝑒𝑅 do
24 𝑖𝑛𝑑 = calculate_indicators(𝑐𝑢𝑟_𝑟𝑖𝑔ℎ𝑡);
25 𝑜𝑝 = choose_operation(𝑖𝑛𝑑);
26 apply(𝑜𝑝, 𝑐𝑢𝑟_𝑟𝑖𝑔ℎ𝑡, 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛);
27 𝑐𝑢𝑟_𝑟𝑖𝑔ℎ𝑡, 𝑑𝑜𝑛𝑒𝑅 = 𝑐𝑠𝑅.𝑛𝑒𝑥𝑡();
28 end
29 return new NonTerminalNode(kind, result_children);

Algoritmo 4: Merging Ordered Nodes

recovers its matching node in both the opposite revision and the base ancestor. It them uses
this information to determine the resulting operation as follows. In case a node is added only
by a single revision, it is simply added to the final tree. However, if the same node is added by
both revisions, the algorithm recursively merges it. The same occurs for existing nodes that
might have been modified by both revisions. The final case to be considered is the opposite
parent removes the node. Here, the algorithms checks wether changes were made to this node,
and if that is the case, it adds a special node to report a conflict.

Since the algorithm traverses both sets of children independently, it introduces the risk of
processing the same node twice — the first in the left loop and the second in the right loop. To
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guarantee that nodes are only processed once, the algorithm uses the set processed_nodes to
keep track of the nodes that have already been processed. Thus, after applying each operation
on the left loop, the algorithm adds the corresponding nodes into this set. Note that, which
nodes have already been processed in each operation can vary. For example, when merged
recursively, both the left node and its matching right node are added to the set. Then, when
iterating through the children of the right revision, it simply skips the children that have already
been processed.

.
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Input: A pair of Unordered nodes 𝐿 and 𝑅 of the same kind. The matching
information previously calculated.

Output: The final merged node.
1 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 = Empty list;
2 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 = Empty set;
3 for 𝑐𝑢𝑟_𝑙𝑒𝑓𝑡 ∈ children of 𝐿 do
4 𝑚𝑏𝑙 = matching base node for 𝑐𝑢𝑟_𝑙𝑒𝑓𝑡;
5 𝑚𝑙𝑟 = matching right node for 𝑐𝑢𝑟_𝑙𝑒𝑓𝑡;
6 if ¬𝑚𝑏𝑙 ∧ ¬𝑚𝑙𝑟 // Node added only by left
7 then
8 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.𝑝𝑢𝑠ℎ(𝑐𝑢𝑟_𝑙𝑒𝑓𝑡);
9 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.𝑎𝑑𝑑(𝑐𝑢𝑟_𝑙𝑒𝑓𝑡);

10 end
11 else if ¬𝑚𝑏𝑙 ∧𝑚𝑙𝑟 // Node added by both left and right
12 then
13 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.𝑝𝑢𝑠ℎ(merge(𝑐𝑢𝑟_𝑙𝑒𝑓𝑡, 𝑚𝑙𝑟));
14 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.𝑎𝑑𝑑(𝑐𝑢𝑟_𝑙𝑒𝑓𝑡);
15 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.𝑎𝑑𝑑(𝑚𝑙𝑟);
16 end
17 else if 𝑚𝑏𝑙 ∧𝑚𝑙𝑟 // Node matched in base and right
18 then
19 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.𝑝𝑢𝑠ℎ(merge(𝑐𝑢𝑟_𝑙𝑒𝑓𝑡, 𝑚𝑙𝑟));
20 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.𝑎𝑑𝑑(𝑐𝑢𝑟_𝑙𝑒𝑓𝑡);
21 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.𝑎𝑑𝑑(𝑚𝑙𝑟);
22 end
23 else if 𝑚𝑏𝑙 ∧ ¬𝑚𝑙𝑟 // Node removed by right
24 then
25 if 𝑐𝑢𝑟_𝑙𝑒𝑓𝑡 was modified then
26 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.𝑝𝑢𝑠ℎ(conflict(𝑐𝑢𝑟_𝑙𝑒𝑓𝑡, 𝑛𝑜𝑛𝑒));
27 end
28 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.𝑎𝑑𝑑(𝑐𝑢𝑟_𝑙𝑒𝑓𝑡);
29 end
30 end
31 for 𝑐𝑢𝑟_𝑟𝑖𝑔ℎ𝑡 ∈ children of 𝑅 do
32 if 𝑐𝑢𝑟_𝑟𝑖𝑔ℎ𝑡 ∈ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 then

// Skip already processed children
33 continue;
34 end

// Analogous to the previous loop, but for right children

35 end
36 return new NonTerminalNode(kind, result_children);

Algoritmo 5: Merging Unordered Nodes
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3.2 MERGIRAF

Similarly to LastMerge, Mergiraf is based on Tree Sitter ’s parse infrastructure and
language-independent tree. However, instead of adapting jDime’s algorithms to a generic
context, Mergiraf opts for adapting Spork ’s algorithms. By design, Mergiraf explores auto
tuning (APEL; LEßENICH; LENGAUER, 2012), first attempting an unstructured merge of its input
files. Only if conflicts arise during this attempt, it resort to structured merge.

When using structured merge, the tool builds fictional trees upon the conflicts found du-
ring the line-based merge of the file. This allows Mergiraf to aggressively pre-assign matchings
between the revisions, which significantly speeds up the matching process. The remaining mat-
chings between each pair of revisions are computed using only the GumTree algorithm (FALLERI

et al., 2014), differently from LastMerge that combines different algorithms. Finally, revisi-
ons are merged into the final artifact using the same algorithm used by Spork (LARSEN et al.,
2023).
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4 EVALUATING GENERIC STRUCTURED MERGE

To understand the impact that a generic structured merge technique might have on merge
accuracy and computational performance, we run an experiment with generic tools (which rely
on matching and merging language independent trees) and their language specific counterparts.
The counterpart influence of existing state of the art, language specific, tools on the design
and implementation of the generic ones is reflected in our choice of tools. Thus, we choose to
pair LastMerge with jDime, and Mergiraf with Spork , reflecting the influence of existing
state of the art, language specific, tools on the design and implementation of the generic ones.

This pairing helps to isolate the generality aspect, mitigating bias that could arise from
the effect of design decisions (algorithms, etc.) not related to implementing the generic requi-
rement. This setting, especially with two generic tools, also helps us to investigate whether
results are consistent across two state of the art algorithms for structured merge. We intentio-
nally skip the pairings of LastMerge with Mergiraf and jDime with Spork from our study,
as these pairings would not allow us to isolate and understand the impact of the generic requi-
rement in the merge scenarios. We replay merge scenarios using each tool (the generic ones
instantiated with Java syntactic and semantic details), and collect data on runtime, behavioral
divergences, and merge accuracy.

In this chapter, Section 4.1 presents the research questions we address and how they
helps us guide the experiment to meet our goals. Section 4.2 describes our sampling process,
that uses a robust and state-of-the-art dataset for executing software merging experiments.
Section 4.3 further describes our methodology by describing our experiment design. Section
4.4 presents the results of our experiment, and discussing how these results help us to answer
our research questions. Finally, Section 4.5 discusses the threats to validity of our study, and
how we mitigate them.

4.1 RESEARCH QUESTIONS

With the goal of understanding whether generic structured merge tools can effectively
replace language-specific ones, achieving similar levels of accuracy and efficiency, we ask the
following research questions:
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4.1.1 RQ1: How generic structured merge impacts merge accuracy?

To address this question, we compute the number of spurious conflicts (false positives)
and actual missed conflicts (false negatives), but we do that comparatively, only when the pair
of tools being compared yield different results. So if both tools erroneously report a conflict,
we do not consider that as a false positive in our analysis. We pay only attention to scenarios
where one tool reports a conflict and the other does not, for instance. This is needed because
establishing sound conflict ground truth for a large sample is hard. Thus, we focus our analysis
on scenarios where the tools disagree on the presence of conflicts, as these are the scenarios
that matter the most to developers. We perform a relative analysis that discards the scenarios
where both tools of the pair agree on the presence or absence of conflicts, using the concepts
added false positives (aFPs) and added false negatives (aFNs) (CAVALCANTI; BORBA; ACCIOLY,
2017; CAVALCANTI et al., 2024), which are explained in detail latter. To answer this question,
we also manually analyze a number of cases to understand whether differences in conflict
detection accuracy occur due to programming language independence or other factors.

4.1.2 RQ2: How generic structured merge impacts merge runtime performance?

To answer this research question, we measure the runtime of each tool in every merge
scenario. Pairwise comparisons enable a clearer understanding of how different tree structures
affect the performance of structured merge tools. We also examine whether programming
language independence imposes a prohibitively high performance cost.

By answering these questions we hope to understand whether generic structured tools such
as LastMerge have the potential to pave the way for broader adoption of structured merge
in industry, as they can be easily adapted to multiple languages.

4.2 SAMPLING

For comparing the merge tools, we use the dataset of merge scenarios published by Schesch
et al. (SCHESCH et al., 2024). The sample consists of 5,983 merge scenarios from 1,116 open
source projects. Projects are extracted from GitHub’s Greatest Hits (GITHUB, 2020) and Re-
aper (MUNAIAH et al., 2017) datasets, and were carefully filtered so that users can rely on
significant buildable Java projects that are relevant within the open-source community. The



37

dataset includes scenarios with non-trivial test suites that pass on both parents within a speci-
fied timeout. This is particularly useful because it allows us to rely on test execution to check
merge accuracy; if tools yield different results but project tests pass in the results of just one
of the tools, we know the other tool has a problem.

When trying to replicate the original dataset, a number of scenarios could not be retrieved
due to external factors— such as when the GitHub repository is unavailable. We discard
these in our study. We further filter the sample to ensure each scenario contains at least one
file that was mutually modified by both parents. This excludes scenarios where merging is
trivially achieved by selecting the revision that introduces the changes; the tools would yield
the same results for these scenarios, not contributing to our comparative analysis. Additionally,
we remove scenarios in which any of the evaluated merge tools crashed during execution. As
a consequence of these filtering, we perform our experiment on a sample of 5,229 scenarios,
spanning 13,675 mutually modified files.

4.3 CHECKING MERGE ACCURACY AND PERFORMANCE

To answer RQ1, following the merge process, we collect metrics to estimate merge accuracy,
as explained in Section 4.1. In particular, we adopt a relative comparison (CAVALCANTI; BORBA;

ACCIOLY, 2017; CAVALCANTI et al., 2024), computing the occurrence of false positives and false
negatives of one tool in addition to the other tool in the same pair, as shown in Figure 7. Given
a pair of tools (𝐴, 𝐵), we say tool 𝐴 suffers an added false positive (aFP) in a scenario if it
reports an spurious conflict that tool 𝐵 does not. Similarly, 𝐴 suffers an added false negative

(aFN) in a scenario if it fails to report an actual conflict detected by 𝐵.

Figura 7 – A Venn diagram illustrating the concepts of added false positives (aFPs) and added false negatives
(aFNs) for a pair of tools (𝐴, 𝐵). Note that scenarios in which both tools incorrectly report or miss
conflicts are not considered in our analysis.
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Note that our analysis metrics assumes both tools disagree on the presence of conflicts in
a scenario. This aligns with our goal to compare tools relatively, focusing not on the absolute
number of conflicts each tool reports but on how they differ. Remember we are particularly
interested in understanding whether the generic nature of a tool impacts its accuracy in com-
parison to its language-specific counterpart. This way, we intentionally discard scenarios where
both tools incorrectly identify or miss conflicts, as these scenarios do not help us understand
the relative performance of the generic requirement. Moreover, scenarios with disagreement are
critical for developers, as incorrect conflict detection can result in faulty merges that are costly
to fix. We calculate the number of aFPs and aFNs for a pair of tools (𝐴, 𝐵) by combining
syntactic and semantic approaches, as illustrated in Figure 8.

A reports conflict but B does not B output syntactically

equivalent to merge commit?

Tests executes

successfully on B?

Added False 
Positive from AYes

No
Added False 

Positive from AYes

Added False 
Negative from B

No

Figura 8 – Deciding whether a tool has an added false positive (aFP) or an added false negative (aFN) in
a merge scenario (merge commit in the repository, its parents, and their common ancestor). The
output of 𝐵 is first compared to the merge commit in the repository. In summary, in the scenario
that 𝐴 reports a conflict that 𝐵 does not, we check whether 𝐵 successfully and accurately resolves
these conflicts.

Given a scenario where tool 𝐴 reports a conflict and 𝐵 does not, we aim to determine
whether 𝐵 has successfully and accurately resolved the conflict. We begin by checking if the
output produced by 𝐵 is syntactically equivalent to the merge commit of the original project
repository, as developers are presumably happy with such result. One caveat of this approach
is that both jDime and Spork often modify the original source code during pretty-printing
by inserting or removing tokens. This happens because these tools use more abstract tree
representations of the source code, which do not retain all the syntactic details of the original
revisions. We mitigate this issue by normalizing the formatting of the output files before
performing the syntactic equivalence check. This normalization is performed by running the
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pretty-printer of the tool in the files that will be checked, so that formatting is consistent across
all files. We then execute LastMerge to parse the files and execute its matching algorithms
to check whether the two resulting trees fully match, which indicates syntactic equivalence. If
the files are found to be syntactically equivalent, we assume 𝐵 correctly resolved the conflict
reported by 𝐴, and classify the scenario as an aFP for 𝐴.

Conversely, if 𝐵’s output is not syntactically equivalent, we rely on executing the project
test suite on the output generated by 𝐵. If all tests pass, we assume that the changes intro-
duced by both parents are non-conflicting and that 𝐵 successfully integrated them. Since 𝐴

reported a conflict and thus failed to integrate the changes, we classify this as an aFP for 𝐴.
However, if the tests fail, we assume 𝐵 did not correctly detect the conflict that 𝐴 detected,
thus resulting in an aFN for 𝐵.

Finally, as a last step to answer RQ1, we conduct a manual code analysis to better un-
derstand the reasons behind tool differences. We randomly select 5 scenarios with aFPs and 5
with aFNs for each tool, resulting in a total of 40 scenarios. For each scenario, we investigate
whether the observed differences in the tools outputs are due to programming language inde-
pendence or from other factors, such as configuration differences or implementation details.

To answer RQ2, we collect runtime execution metrics by measuring the time each tool takes
to merge each scenario. To do so, we aggregate the execution times across all files within a
scenario. To minimize the influence of external factors, each tool is executed sequentially ten
times per file, with runtime measured in each run. We discard the first measurement— used
as a warm-up— and compute the average of the remaining nine runs to determine the runtime
for each file.

We provide the scripts and data associated with this study in our online appendix.1

4.4 RESULTS AND DISCUSSION

In this section we present and discuss our findings, structured according to the research
questions outlined in Section 4.1, and the two pairs of (specific, generic) structured merge
tools compared: (jDime, LastMerge) and (Spork, Mergiraf).
1 <https://anonymous.4open.science/r/experiment-last-merge-3908>

https://anonymous.4open.science/r/experiment-last-merge-3908
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4.4.1 RQ1: How generic structured merge impacts merge accuracy?

As explained in Section 4.3, our analysis is comparative. For each tool pair, our analysis
focuses on scenarios in which the tools disagree on the existence of conflicts, as we are not
concerned with cases where both tools fail or where both successfully perform the merge. So
we first summarize in Table 2 the agreement and disagreement on the existence of conflicts
between each pair of merge tools. We observe a disagreement rate on the existence of conflicts
of 7.53% between LastMerge and jDime, and of 12.22% between Mergiraf and Spork . So,
based on our sample, we observe the generic structured merge tools behaving differently than
their language-specific counterparts in a minor, but considerable, part of cases.

Tabela 2 – Agreement rate on conflict existence in the analyzed merge scenarios. The total sum in each column
can vary because not all scenarios were successfully integrated by each tool.

Situation jDime vs LastMerge Spork vs Mergiraf
Agreement on
existence of 4909 (92.5%) 4697 (88.7%)

conflicts
Disagreement on

existence of 400 (7.5%) 601 (11.3%)
conflicts

In the following, we discuss how these behavior differences impact the accuracy of the tools
to detect and resolve conflicts. Furthermore, we examine whether these differences are related
to the generic aspects (language independent trees and algorithms) of both LastMerge

and Mergiraf . We do this first for the pair LastMerge and jDime, and then for the pair
Mergiraf and Spork .

LastMerge and jDime

Table 3 shows the results of the analysis of the accuracy of LastMerge and jDime in
terms of aFPs and aFNs. The results indicate that LastMerge reports fewer aFPs, but
exhibits nearly three times more aFNs than jDime. In absolute terms, this corresponds to 56
extra aFNs, which is considerable. Proportionally to the number of scenarios analyzed, or even
to the number of scenarios in which the tools differ, we observe less significant numbers (1.1%
and 14%, respectively), which are nevertheless further considered for our manual analysis.
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Tabela 3 – Comparison of added false positives (aFPs) and added false negatives (aFNs) between Last-
Merge and jDime.

Situation jDime LastMerge
Added false positives (aFPs) 153 130
Added false negatives (aFNs) 29 85

We conduct a statical test to assess the significance of the differences observed. We apply
McNemar’s test (MCNEMAR, 1947), takes as input the number of scenarios where each tool
produced aFPs and aFNs, and evaluates the null hypothesis that both tools have the same
error rate. This test is appropriate for our analysis as it evaluates the differences in performance
between two classifiers (in this case, merge tools) on paired nominal data (the presence or
absence of conflicts). The mathematical equation of the test is given by the formula 𝜒2 =
(|𝑏−𝑐|−1)2

𝑏+𝑐
, where 𝑏 is the number of scenarios where LastMerge yielded either an aFP or

an aFN . Conversely, 𝑐 is the number of scenarios where jDime produced either an aFP or an
aFN . In our case, 𝑏 = 85 + 130 = 215 and 𝑐 = 29 + 153 = 182. Yielding a p-value of 0.11,
the test indicates that the differences in conflict detection accuracy between LastMerge

and jDime are not statistically significant at the conventional level of 0.05.
As explained in more detail in the rest of the section, our manual analysis suggests that

the observed discrepancies are primarily due to implementation details and configuration dif-
ferences, rather than to LastMerge relying on language independent trees and algorithms.
Although LastMerge algorithms borrow from jDime exactly to reduce confounding factors,
they rely on substantially different trees, and minor differences in algorithm implementations
are expected when involving different developers and programming languages, as in this case.
More important, configuration details, especially in the Java configuration of structured tools,
can lead to differences that can easily eliminated by adjusting the configuration.

Starting with false positives, we found that in jDime three out of five analyzed scenarios
occur due to inadequate tool configuration. To illustrate this, consider the example in Figure 9.
Starting from the Base revision, Left adds the field declaration code, while Right independently
adds the field declaration age. Despite these changes not being conflicting, jDime incorrectly
reports an insert/insert conflict. This occurs because, during matching, jDime does not assign
unique identifiers to field declarations and relies solely on its structural matching algorithm,
which assigns a partial matching between the two properties— as they have the same node
kind. In contrast, LastMerge properly treats the field name as a unique identifier and
never matches nodes with different identifiers, thus correctly identifying the additions as non-
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conflicting, resulting on a clean merge. jDime’s configuration could, and should, be adjusted
to avoid this issue; it’s not a fundamental limitation of the tool, or one that is inherent to
language-specific tools.

Similar configuration differences also cause LastMerge to report false positives due
to method renaming. For example, in Figure 9, Left modifies only the implementation of the
method greet, while Right changes both its body and signature by adding an argument. Since
LastMerge matches method declarations only when their signatures (name and argument
types) are identical, it fails to match the different versions of greet from Left and Right. Ins-
tead, it mistakenly interprets Right’s change as the addition of a new method greet(String

greet) and the removal of the original greet(). Furthermore, because LastMerge detects
that Left also modifies the original method, it classifies this as a modify/delete conflict. In
contrast, jDime matches methods by name and subtree structure, correctly identifying the
correspondence between the renamed methods and producing a clean merge. Renaming con-
flicts are a common source of aFPs in structured merge tools (CAVALCANTI; BORBA; ACCIOLY,
2017; LEßENICH et al., 2017). Approaches to address this issue typically involve modifying ge-
neral aspects of the matching process, which could be replicated in LastMerge, without
prejudicing language independence.

Turning to false negatives, the conflicts missed exclusively by jDime (aFNs) also arise from
differences in matching configuration. To illustrate, consider the example in Figure 10. The
scenario involves independent changes to different constructors of the class AbstractSolver. Left

retains only the no-argument constructor AbstractSolver(), modifies its body, and removes
the field declaration seed. Meanwhile, Right keeps the constructor AbstractSolver(long

seed) and modifies its body by adding a new logging statement. These are conflicting changes,
as each parent modifies constructors that were removed in the other revision. Since jDime

matches constructors based only on their name— not their full signature— it incorrectly
matches the different constructors of Left and Right, merging both without reporting conflicts.
However, due to the removal of the field declaration seed, the generated file cannot be
compiled due to a missing symbol error. In contrast, LastMerge treats each constructor
as distinct nodes, correctly detecting and reporting the conflict. jDime could be configured to
match constructors by their full signature instead, which would result in the same behavior
observed on LastMerge; once again this highlights that the differences in output observed
arise from different configurations rather than language specific concerns.

We observe that jDime misses actual conflicts when merging generic type arguments, resul-
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Figura 9 – Merge scenario illustrating the differences in conflict detection between LastMerge and jDime.
Changes are highlighted in yellow.
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}
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AbstractSolver
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Figura 10 – Merge scenario illustrating changes that lead into a false negative in jDime. Changes are high-
lighted in yellow.

ting in compilation errors. Similarly, LastMerge produces compilation errors when integra-
ting throws declarations in method signatures. Both issues arise from incorrect configuration
of children node ordering: jDime treats generic type arguments as unordered, while Last-

Merge treats throws declarations as ordered. Finally, such differences in configuration can
be adjusted, and do not reflect fundamental limitations of the tools. Indeed, such configuration
differences are not related to the language independence of LastMerge in any sense.

jDime and LastMerge disagree on the existence of conflicts in 7.53% of the scenarios.
A McNemar test yields a p-value of 0.11, suggesting that the differences in accuracy are
not statistically significant. LastMerge has fewer aFPs than jDime, but exhibits nearly
three times more aFNs. Our manual analysis shows that these discrepancies occur mainly
due to implementation details and configuration differences, rather than to the language
independent aspects of LastMerge.

Mergiraf and Spork

Table 4 shows that Mergiraf reports almost twice as many aFPs as Spork . Conversely,
Mergiraf produces significantly fewer aFNs. Contrasting with the previous section, here the
generic tool has more aFPs but fewer aFNs. Again, we conduct a statistical test to assess
the significance of the differences observed. When applying the McNemar’s test with values
𝑏 = 290 + 62 = 352 and 𝑐 = 150 + 107 = 257, we achieve a p-value of 0.0001. This
time, differently from the previous result, it indicates that the differences in conflict detection
accuracy between Mergiraf and Spork are statistically significant at the conventional level of
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0.05. However, similarly to the previous section, we observe that the differences are mostly
not due to the language independent aspects of the generic tool.

Tabela 4 – Comparison of added false positives (aFPs) and added false negatives (aFNs) between Mergiraf
and Spork.

Situation Spork Mergiraf
Added false positives (aFPs) 150 290
Added false negatives (aFNs) 107 62

Our manual analysis indicates the design decision of Mergiraf to use auto-tuning strongly
influences the differences observed between the tools. With this strategy, Mergiraf first at-
tempts an unstructured merge of the revisions and falls back to a structured approach only
when conflicts arise. In contrast, Spork always applies a structured merge algorithm. We ob-
serve that, in 4 out of 5 scenarios analyzed, Spork failed to reproduce clean merges that
were previously achieved by Mergiraf through unstructured merge. These failures typically
result from incorrect or missing node matchings, which lead Spork to report spurious conflicts
(aFPs) in cases where Mergiraf produces conflict free results. Adding auto-tunnig to Spork

would be trivial, though; conversely, modifying Mergiraf to skip auto-tunning can also be
easily achieved.

Algorithmic differences also contribute to the discrepancies observed between Mergiraf and
Spork . To illustrate this, consider the situation in Figure 11. Left modifies the type of the
field declaration timeElapsed, while Right removes its declaration. This situation, where one
revision deletes a node modified by the other, characterizes a delete/edit conflict. Mergiraf

and Spork use the same merge algorithm, whose original implementation is not able to detect
such conflicts (LARSEN et al., 2023). Instead, it silently deletes the node without reporting
a conflict. This way, Spork considers only the removal of the field declaration timeElapsed

by right, and completely ignores the changes made by Left to the same node. However, as
Left also adds a new reference to timeElapsed in the main method, the resulting file fails to
compile due to a missing symbol error. In contrast, Mergiraf extends the algorithm to keep
track of deletions during the reconstruction of the merged tree. After the merged tree is fully
constructed, it checks wether one of the deleted nodes was modified on the other revision,
enabling it to correctly detect and report the conflict. Such extension is not a fundamental
change in the algorithm, but rather an improvement to the original algorithm, which could be
applied to Spork as well.
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Figura 11 – A merge scenario illustrating a delete/edit conflict not detected by Spork. Changes are highlighted
in yellow.

One can notice, however, that if Left did not introduce a new reference to the timeElapsed
property, the file produced by Spork would remain semantically valid and compile without
errors. In general, delete/edit conflicts only lead to issues when the changes introduced interfere
semantically, thus leading into build-time errors (SILVA; BORBA; PIRES, 2022). Therefore, while
Mergiraf adopts a more conservative strategy by always reporting delete/edit conflicts, this
choice may result in a higher number of aFPs, as the scenarios where such conflicts truly affect
the correctness of the merged program are relatively specific.

Spork and Mergiraf disagree on the existence of conflicts in 12.22% of the scenarios.
Mergiraf has nearly twice as many aFPs than Spork , but exhibits significantly fewer
aFNs. A McNemar’s test yields a p-value of 0.0001, suggesting that the differences in
accuracy are statistically significant. Our manual analysis shows that these discrepancies
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occur mainly due to differences on the usage of auto-tuning and Mergiraf improvements
to the original Spork algorithm, rather than the language independent aspects of the
generic tool.

4.4.2 RQ2: How generic structured merge impacts merge runtime performance?

Figure 12 presents the runtime performance of the tools analyzed by merging the scena-
rios in our dataset. Overall, both LastMerge and Mergiraf outperform jDime and Spork ,
achieving speedups of at least one order of magnitude on average. We conduct a statistical
analysis to assess the significance of the performance differences observed. We apply a t-test
for independent samples, which compares the means of two independent groups. The test is
conducted comparing the average runtimes of LastMerge and jDime, and then Mergiraf

and Spork . For the test, we use the relevant runtime values of each tool per scenario, stated in
Table 5. The t-test comparing LastMerge and jDime yields a p-value of 8.82e-54, while the
test comparing Mergiraf and Spork yields a p-value of 1.743e-178. These results clearly indi-
cate that the differences in runtime performance between both pairs of tools are statistically
significant. These differences, however, arise mainly from implementation and design choices
rather than fundamental algorithmic improvements or the language independent aspects of
the generic tools.

Figura 12 – A raincloud plot displaying runtime execution per merge scenario for each tool. Each dot represents
the average of 9 sequential executions of each tool in the same merge scenario. Time is in
logarithmic scale.
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Tabela 5 – Average runtime and Standard Deviation (in seconds) per merge scenario for each tool.

Metrics (per scenario, in seconds) jDime LastMerge Spork Mergiraf
Average runtime 89.568 4.465 60.363 1.301
Standard Deviation 395.831 32.389 145.142 8.014

Both LastMerge and Mergiraf are implemented in Rust, whereas Spork and jDime

use Java. Rust is a systems programming language that compiles directly to machine code,
enabling efficient execution. In contrast, Java compiles to to an intermediate representation
(bytecode) that is later interpreted and executed on the Java Virtual Machine. Furthermore,
while Java achieves memory safety in runtime by using garbage collection, Rust takes a unique
ownership model that enforces memory safety in compile time, eliminating runtime overhead.
Since structured merge tools perform CPU-intensive algorithms and numerous in-memory,
large tree manipulation operations, their runtime performance is highly sensitive to the cha-
racteristics of the implementation language.

Beyond the choice of programming language, other factors also influence performance
differences. For example, Mergiraf employs techniques known to enhance efficiency, such as
auto-tuning (APEL; LEßENICH; LENGAUER, 2012). In this approach, the tool first attempts
an unstructured merge and resorts to structured methods only if conflicts arise. Invoking
structured merge selectively leads to significant performance gains (SEIBT et al., 2022). Notably,
an auto-tuning strategy could also be implemented without further effort, potentially yielding
similar benefits for the other tools analyzed.

Finally, even if we focus our comparison on LastMerge— which does not use auto-
tuning— and assume a conservative 10x performance penalty when comparing Java to Rust
implementations, based on prior work (PEREIRA et al., 2017), LastMerge still delivers per-
formance comparable to state of the art tools, integrating 80.2% of the scenarios in less than
three seconds. This suggests that generic structured merge does not impose a computational
cost that is prohibitive compared to existing tools, and can be used in most situations in
industry.
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4.5 THREATS TO VALIDITY

4.5.1 Internal validity

Our aFPs and aFNs analysis (see Section 4.3) relies on a heuristic that combines static
and semantic analysis to approximate the existence of conflicts. Using the merge commit in
the repository is a good approximation of the expected merge result, but developers might, for
instance, have accepted the commit and immediately after noted a problem, later fixed it in
a subsequent commit. Failing builds are a quite robust approximation of problem in the result
yielded by the merge tool, but test is as robust as the project test suite itself. Nevertheless,
this criteria has been used in recent work (SCHESCH et al., 2024) and is stronger than the
ones used in previous work (ZHU; HE, 2018; ZHU; HE; YU, 2019; CAVALCANTI; BORBA; ACCIOLY,
2017), which focus only on the first part of our criteria.

Relying on manual analysis for identifying the reasons for false positives and false negatives
can be challenging. Accurately classifying such scenarios require a deep understanding of the
project implementation and even the original developers may sometimes overlook conflicting
changes. Instead, our manual analysis focuses on understanding the underlying reasons for the
differences in results produced by the tools. More specially, we focus on understanding wether
these differences arise because of the introduction of language independence aspects in the
generic tools. This approach is less error-prone, as the authors possess in-depth knowledge
of the design and behavior of each tool. Additionally, all findings were thoroughly discussed
among the authors to ensure accurate interpretations.

4.5.2 External validity

Our sample represents only a subset of possible merge scenarios. Specifically, we focus on
cases extracted from publicly available Java projects on GitHub, which may not capture the full
spectrum of programming practices. To mitigate this limitation, we rely on a comprehensive
dataset introduced by the work of Schesch et al. (SCHESCH et al., 2024), which includes a
diverse collection of projects spanning various domains and development practices, and can be
considered the state of the art dataset for merge tool studies.

Finally, despite the language independence of LastMerge and Mergiraf , our findings
may still be specific to Java, the programming language used in our evaluation. Since jDime
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and Spork support only Java, generalizing our results to other languages would need structured
merge tools for other languages, but these are hardly available. Additional studies comparing
LastMerge and Mergiraf with language specific structured merge tools across different
languages are necessary to better assess their applicability in broader contexts.
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5 CONFIGURING LASTMERGE FOR DIFFERENT LANGUAGES

In the previous chapter, we demonstrated that generic structured tools instantiated for
usage with Java can achieve comparable accuracy to state of the art Java-specific ones, while
also not being computationally prohibitive. This is a promising result, as it suggests that
LastMerge can be used in practice. However, this alone might not be enough to justify
its adoption in industry, where the usage of different programming languages is common. In
order to be useful in practice, LastMerge should be able to be configurable for usage with
different programming languages, so that it can be used in a wide range of software projects.

Furthermore, configuring LastMerge for usage with a new programming language should
be a low-effort process that requires little knowledge of the tool’s internals. This allows users
to quickly implement configurations for a broad range of programming languages and adapt it
to their needs. In fact, if the configuration effort is too high, users might be discouraged from
using it in practice, regardless of their advantages over different merge tools and strategies.

This chapter explores how LastMerge can be configured to work with different program-
ming languages as well as assesses the effort involved in instantiating it for a new language.
Section 5.1 explores the rationale behind the definition of such interface, by describing the
language specific aspects that are relevant for structured merge. Section 5.2 discusses the
effort involved in instantiating LastMerge, by building a minimal configuration for usage
with C#. Section 5.3 presents known current limitations of LastMerge that limits its ge-
neralization power for usage with a few programming languages. Section 5.4 summarizes and
concludes the discussion presented in this chapter.

5.1 DEFINING THE CONFIGURATION INTERFACE

In order to define the configuration interface of LastMerge, we first need to identify
which aspects of structured merge are language dependent. Once we have identified these
aspects, we can define an interface to abstract such aspects from the core of the tool. This way,
an user interested in using LastMerge with a new programming language can implement
the interface, without the need to modify the core of the tool.
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5.1.1 Source code parsing

One of the most fundamental aspects of structured merge is the conversion of the source
code into a tree like representation. This is important because structured merge algorithms
operate over trees, rather than over raw text. This conversion is done by a parser, which
is a program that reads the source code and outputs a tree representation of it. However,
parsers are often language dependent, as each programming language has its own syntax and
grammar.

LastMerge leverages Tree Sitter infrastructure to parse the source code. Tree Sitter is a
parser generator that can be used to define parsers for different programming languages through
a common DSL. It also provides a set of APIs to use such grammars to parse source code
into Concrete Syntax Trees (CSTs). This way, a user interested in using LastMerge with
a new programming language would need to provide a Tree Sitter grammar for the language.
Fortunately, Tree Sitter already has grammars available for most programming languages used
in industry1, so the effort required to provide the grammar is often minimal.

5.1.2 Stopping compilation at an intermediate level

In a few contexts, it might be desirable to stop the compilation process at an interme-
diate level, rather than generating a full CST. This is the case, for example, when using
semistructured merge. This merge strategy is based on the idea of combining both structured
and unstructured merge, by applying structured merge to the higher level structures of the
source code, such as classes and methods, while applying unstructured merge to the lower
level structures, such as statements and expressions.

Thus, this mechanism can be simulated by stopping the compilation process at an inter-
mediate level, such as the level of a method body. This way, the parsing algorithm would
generate a tree that contains only the higher level structures, such as classes and methods,
while leaving the lower level structures and groups the statements and expressions on a single
Terminal node — which are merged using unstructured merge.

It is easy to see that this is also a language dependent aspect, as the intermediate level at
which the compilation should stop may vary across programming languages. In LastMerge,
the user can specify the node kinds at which the compilation should stop, by providing a list
1 <https://github.com/tree-sitter/tree-sitter/wiki/List-of-parsers>

https://github.com/tree-sitter/tree-sitter/wiki/List-of-parsers
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of node kinds that should be considered as Terminal nodes. For example, in Java, the tool
could be configured to stop at the level of method_body nodes.

5.1.3 Parsing handlers

Although the pre-existing Tree Sitter grammars heavily facilitate extending LastMerge,
its resulting trees might not always be the best representation for structured merge. To illus-
trate this, consider the scenario in Figure 13. In this scenario, the Tree Sitter grammar for
Java places import declaration nodes directly under the root program node. This restricts the
merge algorithm to reorder import declarations, as naively reordering program node children
could result in a broken program — for example, one in which an import declaration ends up
appearing after a class declaration.

Original source code

package

import
import
import

public class

 foo.bar;



 foo.bar.Controller;

 foo.bar.Service;

 foo.bar.Repository;



   {

  
}

Main
// ...


Parses to

Parsed Tree

Figura 13 – CST generated by the Java Tree Sitter grammar for a program with import declarations. Note
that import declarations are placed directly under the root node.

To address this issue, one could define an algorithm that transforms the CST generated
by Tree Sitter into a more suitable representation for structured merge. For example, such
handler could group the import declarations into a dedicated node, which would allow the
merge algorithm to reorder them freely without breaking the program. Figure 14 Executing
such post-processing algorithms after certain steps of the merge process is something explored
by other merge tools (CAVALCANTI; BORBA; ACCIOLY, 2017), and such procedures are usually
referred as handlers. Since, in the case of LastMerge, these handlers hook in after the
parsing step is completed, we name them parsing handlers. From a code point of view, these
handlers are functions that follows the signature (root: CSTNode) -> CSTNode, where root

is the original root of the three. Such function them return a new root node, which incorpores
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the transformations applied to the original tree. One can easily note that the implementation
of parsing handlers are also language dependent, as the transformations applied to the trees
might vary across the grammars and languages involved.

Original source code

package

import
import
import

public class

 foo.bar;



 foo.bar.Controller;

 foo.bar.Service;

 foo.bar.Repository;



   {

  
}

Main
// ...


Parses to

Parsed Tree

Parsing

Handler

Transforms into

Final Tree

Figura 14 – The pipeline of parsing the original tree using Parsing Handlers. After the parsing is completed,
LastMerge calls the registered parsing handlers to transform the tree. Here, the import decla-
rations are grouped into a dedicated NonTerminal node, allowing the merge algorithm to reorder
the imports freely without breaking the program.

5.1.4 Node children ordering

As shown in Chapter 2, structured merge is able to handle merge scenarios for Java in
which both developers add different method declarations to a class within the same text area.
Differently from unstructured tools, which would yield conflicts in this scenario, structured
tools achieves a clean merge by reordering the method declarations — by simply juxtaposing
them. This is possible because structured merge algorithms are able to reason about the
structure of the code, rather than just the text.

However, wether a node can be reordered or not is a language dependent aspect. For
example, in Java, enum variants can be reordered without prejudice to program semantics,
which is not the case in Typescript.2 Furthermore, similar structures in different programming
languages may have their nodes named differently on the Tree Sitter grammar. For example,
in the Java grammar, declarations within a class are grouped in a node named class_body,
while in the C# grammar, such declarations are grouped within a declaration_list node.
This way, a list of node names whose children can be reordered by the merge algorithm must
be provided through the configuration interface.
2 In Java, enum variants are converted into plain String representations. In Typescript however, such variants

are numbered in order, starting from 1 by default.
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class  {


}

Account
  // ...
 Parses to

(program

  (class_declaration

    name: (identifier)

    body: (class_body)))

(class_declaration (identifier) @class_name)

Figura 15 – On top a class declaration in Java and its Tree Sitter parsed version. On the bottom, a Tree
Sitter query. Queries consist of one or more patterns that are specified as S-Expressions. In this
example, the named capture class_name holds the identifier (name) of the class Account.

5.1.5 Node identifier extraction

Structured merge often assign labels for nodes in order to uniquely identify them within a
children list. In the case of LastMerge, these identifiers are used to speed up the matching
process and to increase merge accuracy. Despite the fact that which nodes can have an
identifier is clearly language dependent, the extraction of these identifiers also depends on the
node structure itself.

For example, in Java, a method declaration can be uniquely identified within a class by its
signature — its name and parameters types. On the other hand, a field declaration can also be
uniquely identified solely by its name. This means that the tool knowing which nodes of the
language are uniquely identifiable is not enough; the procedure used to extract such identifier
from within the node must also be provided in the configuration.

While configuring LastMerge, for each identifiable node, the user must inform how
these identifiers can be extracted using Tree Sitter queries. These queries consist of a set
of patterns that match specific nodes and their children, allowing the extraction of relevant
information from the tree structure. They are executed during the parsing stage to locate
specific code structures within nodes through pattern matching and assign them as the node
identifier. Figure 15 illustrates an example Tree Sitter representation of a class declaration
alongside a query that extracts the class name, which can be used to uniquely identify it
within the context of a Java file.

5.2 INSTANTIATING LASTMERGE FOR OTHER LANGUAGES

In this section, we present a configuration for LastMerge for usage with C#. As it is a
language that is used in industry and, to the best of our knowledge, has no language specific
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structured tool implemented, the language is a good candidate for evaluating the effort of
instantiating LastMerge for a new language. The presented configuration will be succinct,
in the sense that we focus in covering only the most common and basic aspects of the language.
Our goal is to estimate the effort of instantiating LastMerge for a new language, and better
understand the challenges involved in such process. The configuration for the tool to support
C# has been integrated through a pull request to the official LastMerge repository.3

For source code parsing, we use the official Tree Sitter grammar for C#.4, which is based
on the Roslyn grammar (the official .NET compiler platform). The grammar features a com-
prehensive set of rules for parsing C# source code, including support for many versions of C#,
including the latest ones. Despites providing a complete and accurate representation of the
C# language syntax, it differs from the official C# grammar in some aspects. Such changes
involve adherence to Tree Sitter conventions, but also simplifications to the resulting tree, in
order to reduce parsing states and complexity.

The next step of the configuration process involves specifying semantical aspects of the
language such as node reordering and identifier extraction. For example, just like in Java,
C# allows declarations within a class or an interface to be reordered without prejudice to
program semantics. One of the challenges that arise during this process however is to identify
the node kinds that represent such declarations in the Tree Sitter grammar. In principle, one
might expect that deep knowledge of the Tree Sitter grammar is required to identify such
information. However, Tree Sitter provides a playground5 for users to explore the grammar
interactively by providing a source code and inspecting its resulting tree. Figure 16 shows how
the playground can be used to inspect the resulting tree for a given piece of code and identify
segments of the tree and its corresponding node kinds. In special, we use the playground
to identify that, for C#, the declarations within a class are grouped under a node of kind
declaration_list — a later inspection shows that this is also the case for interface

declarations.
We continue the process by specifying how identifiers for nodes are extracted. As previously

stated, this is done by providing a dictionary that maps node kinds to Tree Sitter queries that
are executed to extract identifiers from the nodes through pattern matching. Once more, just
like in Java, C# allows method declarations to be uniquely identified by their signature, which
3 <https://github.com/jpedroh/last-merge/pull/70>
4 <https://github.com/tree-sitter/tree-sitter-c-sharp>
5 <https://tree-sitter.github.io/tree-sitter/7-playground.html>

https://github.com/jpedroh/last-merge/pull/70
https://github.com/tree-sitter/tree-sitter-c-sharp
https://tree-sitter.github.io/tree-sitter/7-playground.html
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Figura 16 – A screenshot from the Tree Sitter playground. On top, the user can provide source code in a
language. At the bottom, the user can visualize the resulting tree after parsing. Clicking on the
tree nodes will highlight the corresponding code segment. This way, the user can inspect the
resulting tree and identify relevant aspects about its structure.

consists of the method name and its parameters types. Field declarations within a class, on
the other hand, can be uniquely identified by their name alone. Once more, the Tree Sitter

playground is useful to identify the node kinds that represent such declarations. Figure 17
shows how it can also be used to craft and test the Tree Sitter queries that will be used during
parsing for extracting identifiers.

Figura 17 – A screenshot from the Tree Sitter playground. When on query mode, the user can provide a Tree
Sitter query that will be evaluated by the playground. On the top amount is highlighted in blue
as it is matched by the @name capture from the query.
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Once we have identified the node kinds whose children can be safely reordered and the
nodes that can have unique labels assigned — as well as specifying how such extraction
occurs, our configuration is complete. Figure 18 summarizes the resulting configuration for
C#. Currently, the configuration is directly tied into the source code of LastMerge, but we
plan to support external configuration files in the future.

Figura 18 – Rust pseudocode of the configuration of LastMerge for usage with C#. The resulting code is
more verbose, so some lines and function calls have been simplified for better visualization.

We also conduct a small sanity check to verify that the configuration works as expected. We
create a small C# merge scenario that involves some of the most well known situations where
structured merge thrives. Figure 19 shows the resulting merge scenario and its resolution by
LastMerge. In this scenario, both branches add code to the same region of the base, but in
different ways. Each parent adds both a property and a getter to the same class within the same
region, but with different signatures. Furthermore, both of them also modify different tokens
of an expression within the same line: the calculation performed in the MultiplyNumbers

method. Finally, both of them also adds a new property name but with different initial values
in each parent — which should result in a conflict. The scenario is successfully resolved by
LastMerge, with spurious conflicts not being reported and actual conflicts highlighted.

The entire process of instantiating LastMerge for C# is succinct and straightforward.
Whereas the pull request that introduces the configuration consists of around 90 lines of code,
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   {
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    () {
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  }
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  }

}
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  }
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  }
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   {
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    () {
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  }
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  }
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  }
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  }

}
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  }

  public int GetAge() {
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  }

  public String GetName() {

    return name;

  }

  private String id;



  public String GetId() {

    return id;

  }

}
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>>>>>>>


30

Figura 19 – A small C# merge scenario that involves some of the most well known situations where structured
merge thrives. The scenario is successfully resolved by LastMerge (spurious conflicts are not
reported and actual conflicts are highlighted).
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instantiating any of the existing state of the art tools in the same way would be impractical. At
the end of this process, we argue that instantiating LastMerge for a new language rises as a
tremendously simple process. To implement a new language-specific structured merge tool, one
would need to either implement the parsing, matching, and merging algorithms from scratch,
or would need to dive deep in its existing implementation details in order to augment it. In
the case of LastMerge, however, the configuration is based on a high level description of
language specific aspects, so a user with fairly basic knowledge of the language and some high
level knowledge of compilers (grammars and CSTs) would certainly be able to reproduce such
minimal configuration at most within a couple of hours. Nonetheless, one of the key benefits is
that the configuration can also be iterated and improved over time as LastMerge is used by
the developer on its day-to-day. By being exposed to the results of the tool in a broader range
of merge scenarios, the user can identify missing pieces of configuration or how the existing
one can be tweaked to better suit their needs.

5.3 LIMITATIONS OF LASTMERGE FOR INSTANTIATION

Despites the simplicity of the configuration process, LastMerge still has some limitations
that currently prevents it from being used with any programming language. One such limitation
arises from its pretty printing mechanism. After merging the files, LastMerge converts
the resulting tree into a textual representation through a pretty printing process. Due to its
prototypical nature, our algorithm for pretty printing solely pipes the tree into a single chunk of
text separated by spaces, as shown in Figure 20. This way, the resulting text does not preserve
the original formatting of the source code, such as indentation and line breaks.

class  {

  String x;

}

Account
Pretty-prints to class { String x ; }Account 

Figura 20 – On the left the original source code with a certain formatting applied. At the right, the resulting
source code after the execution of LastMerge’s pretty printing. Note that the pretty printer
does not respect the original formatting of the source code, and simply outputs a single chunk of
text separating each token by a whitespace.

This limitation is not a problem for languages that do not rely on formatting, such as C#
and Java. As each statement can be perfectly delimited by using semicolons, these languages do
not require specific indentation or line breaks to be valid. That is not the case for languages such
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as Python, which relies on indentation to define code blocks. Failing to preserve indentation
in such languages results in syntactically invalid code, which would not compile or run. Other
limitation also arises from languages that uses mechanisms to infer the end of statements,
such as JavaScript.

Javascript uses a mechanism called automatic semicolon insertion (ASI) to infer the end
of statements. ASI allows developers to omit semicolons at the end of statements, and the
JavaScript engine will automatically insert them where it deems necessary. This feature is
designed to make the language more flexible and forgiving, allowing developers to write code
without worrying too much about semicolon placement. However, it is easy to notice that
LastMerge’s pretty printing can result in code that is incorrect due to the way ASI works.
To illustrate this, consider the code snippets in Figure 21. The left snippet shows the original
source code, while the right ones shows the result of formatting it with LastMerge’s pretty
printing algorithm. On the left snippet, the developer choose to omit a semicolon after the end
of the declaration of variable a and relies on ASI to infer it through the line break. However,
as on the right snippet the pretty printer outputs a single line of code, the ASI mechanism
will not be able to infer the end of the first statement. Thus, it interprets the entire code as
a single statement, and results in a syntax error.

let
let

 a = 
 b = 

2

1

Pretty-prints to let let a =   b = 2 1

Figura 21 – On the left, an example snippet consisting of the declaration of two variables. Due to the line
break between them, the ASI mechanism of JavaScript correctly interprets them as being two
different statements. The snippet on the right is the result of formatting the original source code
with LastMerge’s algorithm. As it combines the two statements into a single line, the ASI
mechanism will not be able to infer the end of the first statement, resulting in a syntax error.

Mitigating these issues, involves implementing a more sophisticated pretty printing algo-
rithm that is able to respect the formatting rules of each language. State of the art structured
tools, for example, do this by using a language specific pretty printer that is able to convert
the resulting tree into a valid textual representation. The trade-off here is that these pretty-
printers sometimes do not preserve the original formatting of the source code, but rather apply
a set of rules to format the code according to a predefined style. Another possibility, explored
by Mergiraf, is to use heuristics to infer the original formatting of the source code from the
resulting tree. During pretty-printing, the tool uses such heuristics to calculate whitespaces
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between tokens, as well as indentation levels, based on the original revisions of the source
code. Despites being more complex, this approach is able to yield syntactically valid code in
a language independent way, and arises as a promising direction for future improvement of
LastMerge.

5.4 SUMMARY

In this chapter, we presented the configuration options available in LastMerge for adap-
ting the tool to different programming languages. We discussed the interface for configuring
language-specific settings, the process of instantiating the tool for a new language, and the
known limitations that users should be aware of when using LastMerge with different pro-
gramming languages.

We demonstrated that instantiating LastMerge for a new language, such as C#, is a
low-effort process that can be accomplished with minimal knowledge of the tool’s internals.
One can argue that the effort involved in instantiating LastMerge should be similar for
languages that share the syntactical and semantical characteristics of Java, such as C#, Kotlin
and C++. Nonetheless, we conjecture that the effort required to instantiate it for languages
with different syntactical and semantical characteristics, such as Python or JavaScript, will be
higher, but still manageable.

In fact, one of the main limitations for the usage of LastMerge is not the effort required
to instantiate it for a new language, but rather the limitations of its current implementation.
As discussed in Section 5.3, languages that rely on formatting or indentation to define valid
grammar may not be fully supported by LastMerge. This is the case for languages such as
Python, where the tool will often yield an invalid program due to its limited pretty-printing
capabilities. This highlights a path for future work, where improving the pretty-printing ca-
pabilities of LastMerge could significantly enhance its usability for languages that rely on
formatting or indentation.
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6 CONCLUSION

In this work, our goal was to reduce the barriers that hinder the adoption of structured
merge in industry, where support for multiple languages is often needed for most nontrivial
projects. To reduce these barriers, we introduced LastMerge, a generic structured merge
tool that can be easily configured for each language. LastMerge relies on a core merge
engine that operates over generic trees. Combined with a high level description of language
specific aspects, developers can easily adapt LastMerge for new languages, or refine support
for existing ones.

To understand wether introducing language independency impacts the accuracy and per-
formance of structured merge, we conducted an empirical study comparing generic structured
merge tools and state-of-the-art language-specific ones. Our comparative study involved four
structured merge tools: jDime (APEL; LEßENICH; LENGAUER, 2012) and Spork (LARSEN et al.,
2023), two state-of-the-art Java specific tools; and both LastMerge and Mergiraf , which
are two generic structured merge tools that operate on language independent trees. The to-
ols are compared in pairs: LastMerge with jDime, and Mergiraf with Spork . This pairing
reflects the influence of existing state of the art, language specific, tools on the design and
implementation of the generic ones. It also helps to isolate the generality aspect, mitigating
bias that could arise from effects not related to implementing the generic requirement.

Our results show no evidence that introducing language independency to structured merge
significantly impacts its merge accuracy or runtime performance. In fact, despites observing a
difference rate of approximately 10% between the Java specific tools and their generic counter-
parts instantiated for Java, we observe that most of the differences stem from implementation
details and configuration choices. Furthermore, generic structured merge tools exhibit compa-
rable runtime performance to the state of the art language-specific implementations.

We also conducted a case study to understand the effort of configuring LastMerge for
new languages. We instantiated a minimal configuration for C# and found that the effort is
significantly lower than the one involved in implementing a language-specific tool. In fact, a user
with fairly basic knowledge of the language and some high level knowledge of compilers could
derive such minimal configuration within at most a few hours, compared to weeks or months
for implementing a new language-specific tool. We observe however, that LastMerge still
requires more improvements to support languages where code formatting is important, such as
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Python or JavaScript. Nonetheless, our overall results suggests that generic structured merge
tools can effectively replace language-specific ones, achieving similar levels of accuracy and
efficiency, thus paving the way for broader adoption of structured merge in industry.

6.1 CONTRIBUTIONS

We summarize the contributions of this work as follows:

• LastMerge, a generic structured merge tool designed to be easily configured for
different programming languages. It leverages the Tree Sitter parser framework to parse
source code into generic trees, and provides a thin configuration interface that allows
users to adapt the tool for new languages or refine support for existing ones.

• An empirical study that compares generic structured merge tools with Java specific ones.
The study uses an extensive state-of-the-art dataset to evaluate the impact of language
independency on the precision and performance of structured merge tools. We find no
evidence that generic structured merge tools perform worse than the Java specific ones.

6.2 RELATED WORK

Software integration is a well studied problem, and this chapter discusses the many approa-
ches that have been previously proposed to address it. Section 6.2.1 discusses other structured
tools and how they differ from ourselves. Section 6.2.2 discusses semi-structured tools, a class
of tools that aim to balance precision and performance. Finally, Section 6.2.3 discusses com-
plementary approaches that have also been proposed to address different problems that arise
during software integration.

6.2.1 Structured Merge

Several structured merge tools have been proposed previously. These tools rely on the
syntax and semantics of specific programming languages to perform the merge, in contrast to
LastMerge, which is designed to be more flexible and not limited to any particular language.

Apel, Leßenich and Lengauer (2012) introduced jDime, a tool that applies a structured
merge strategy to integrate Java programs. jDime employs auto-tuning to dynamically switch
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between structured and unstructured merge based on the presence of conflicts. Later, Leßenich
et al. (2017) enhanced jDime by incorporating a look-ahead mechanism into the node matching
algorithm. This improvement enables the tool to match nodes across different hierarchical
levels, allowing it to better detect refactorings such as renamings and code movements. As a
result, matching precision increased by 28% without compromising performance.

Zhu, He and Yu (2019) proposed AutoMerge. Built on top of jDime, it introduces a
new matching heuristic that aims to quantify the quality of a matching between the nodes.
This heuristic quantifies the similarity between nodes, and the algorithm seeks to maximize this
quality function to avoid incorrect or unrelated matchings, thereby improving precision. Their
evaluation shows that AutoMerge more closely reproduces the developer resolved merges
found in commit histories compared to jDime, at the expense of a performance overhead.

Larsen et al. (2023) proposed Spork , a structured merge tool for Java. Spork relies on
GumTree (FALLERI et al., 2014) to compute node matchings and introduces a high-fidelity

pretty-printing mechanism that reuses code fragments from the original revisions. This enables
the preservation of source code formatting, and their evaluation shows that Spork retained
the original source code in over 90% of merged files when compared to jDime.

Despite their benefits, extending these existing tools to support other programming langua-
ges is challenging, primarily due to their strong coupling with the specific languages for which
they were originally designed. In contrast, LastMerge operates on generic tree structures
and leverages the Tree Sitter infrastructure to parse source code into these trees. Additionally,
LastMerge provides an interface that allows users to extend the tool for use with other
programming languages.

More recently, Mergiraf 1, another generic structured merge tool, has also been proposed.
It is based on the algorithms and design of Spork , which have been adapted to work with
generic trees parsed with Tree Sitter — just like LastMerge. It also provides a configuration
interface to support new languages that is similar to the one used in LastMerge, and has
already been instantiated for over 20 languages so far2. Our work is the first to compare the
Java instantiation of Mergiraf with its state of the art counterpart. In our evaluation, we found
that just like LastMerge and Mergiraf present consistent results when compared with state
of the art tools. This further reinforces the idea that the generic structured merge tools can
be as effective as language-specific ones, and that the generality aspect is not influenced by
1 <https://mergiraf.org/>
2 <https://mergiraf.org/languages.html>

https://mergiraf.org/
https://mergiraf.org/languages.html
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the other design decisions of the tools.

6.2.2 Semistructured Merge

Other techniques have been explored as alternatives to structured merge. One such ap-
proach is semistructured merge, a hybrid strategy designed to balance precision and accuracy.
Semistructured merge applies structured merge to higher-level elements, such as method de-
clarations, while utilizing unstructured merge for lower-level elements, like expressions and
statements within method bodies.

Apel et al. (2011) proposed FSTMerge, a generic semistructured merge engine. They
have configured it for use with C#, Java, and Python. To support a new language, developers
must provide an annotated grammar that specifies the elements of the language where the
order does not matter. However, this approach requires a deep understanding of the language’s
grammar and the ability to annotate it correctly, which can pose a barrier for many users. In
contrast, LastMerge relies on the Tree Sitter parser framework, which has been instantiated
for over 350 languages, and offers a thin configuration interface for extending the tool for
usage with new languages. This makes LastMerge more flexible and easier to adapt to new
languages compared to FSTMerge.

Cavalcanti, Borba and Accioly (2017) evaluated FSTMerge by comparing it with uns-
tructured merge on Java code. They found that FSTMerge significantly reduces the number
of false positives, but this comes at the expense of missing actual conflicts (false negatives).
Based on their findings, they proposed s3m, a semistructured merge tool for Java built on
top of FSTMerge. s3m extends FSTMerge by introducing handlers that update the final
tree using heuristics based on information gathered during the merge process. These handlers

enhance merge accuracy by addressing cases where FSTMerge previously produced addi-
tional false positives and false negatives, such as in renaming scenarios. We draw inspiration
from s3m to implement the parsing handlers in LastMerge.

Tavares et al. (2019) explored the usage of semistructured merge in the context of JavaS-
cript, by extending FSTMerge to support it and build jsFSTMerge. During this process,
some limitations and difficulties of extending FSTMerge were identified. The first one is
that, differently from LastMerge, FSTMerge needs the user to manually annotate the
grammar of the language, which can be a complex and error-prone task. Also, the tool is
unable to handle the combination of ordered and unordered nodes at the same level of the
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tree, which is something common in scripting languages like JavaScript. They conduct an em-
pirical evaluation comparing semistructured merge with unstructured merge on 10,345 merge
scenarios from 50 JavaScript projects on GitHub. Their results shows that the benefits of
using semistructured merge in JavaScript are far less pronounced than in Java, with their best
instantiation of FSTMerge achieving a mere 6% reduction in the number of conflicts com-
pared to unstructured merge. Such findings suggest that the benefits of semistructured merge
may not be as significant in scripting languages as they are in more verbose and structured
languages like Java.

More recently, Cavalcanti et al. (2024) proposed Sesame, a tool designed to emulate
structured merge by leveraging semistructured merge along with language-specific syntactic
separators. The tool uses semistructured merge to integrate revisions; however, before perfor-
ming unstructured merge on lower-level elements, it synthetically splits the source code based
on these language separators, such as curly braces in Java. This splitting infers a structure
that, when combined with unstructured merge, emulates structured merge. Their empirical
evaluation demonstrates that Sesame achieves results comparable to those of structured to-
ols, positively by reducing false positives and negatively by increasing the number of false
negatives.

Despite being a structured merge tool, LastMerge can emulate the semistructured
behavior of both FSTMerge, jsFSTMerge, s3m and Sesame. This is possible because
the user can configure the tool to stop parsing at an intermediate tree level, treating all
descendants of that node as a single textual element.

6.2.3 Complementary Approaches

Despites the best of their efforts, unstructured, structured and semistructured merge tools
might still miss actual conflicts. Such conflicts are often referred to as semantic conflicts,
and arise when the changes introduced by developers are not syntactically conflicting but still
interfere with each other in a way that is not immediately apparent from the code structure
alone. Detecting these conflicts requires a deeper understanding of the code’s semantics, and
different approaches have been proposed to address this problem. They can be separated into
two main categories: those that rely on static analysis and those that rely on dynamic analysis.

Jesus et al. (2024) explores the usage of statical analysis to detect semantic conflicts.
Although this approach has already been explored in the past, it is often impractical due to
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the prohibitive cost of such analysis. They propose a lightweight static analysis tool that aims
to detect semantic conflicts in Java code. It does so by running static analysis on the merged
code to identify potential violations in data flow, assignments and dependencies. They evaluate
their tool on a set of 99 experimental units, associated with 54 merge scenarios extracted from
39 projects. Their results show that the tool is able to achieve an accuracy of 60% on the
scenarios, and a F1 Score of 50%.

Silva et al. (2020) follows a different approach by using dynamic analysis to detect semantic
conflicts. In their work, they propose a tool that aims to detect semantic conflicts by trying
to automatically detect changes in the behavior of the merged code. The tool does so by
heuristically building partial specifications of the different versions through the automatic
generation of test suites. In their work, they use widely recognized automated tools such
as Evosuite and Randoop for such generation and later execute these tests on the different
versions of the merge scenario. Depending on the results of these tests in each version, the tool
is able to identify behavior changes and potentially identify semantic conflicts. They conduct
an empirical evaluation of their technique on 40 different scenarios. A manual analysis of the
results shows that their tool is able to not report any false positives on the sample. However,
it fails to detect 11 of the actual 15 existing semantic conflicts, resulting in a low recall of
only 26%.

Both the tools proposed by Jesus et al. (2024) and Silva et al. (2020) can be used in
conjunction with LastMerge. In this case, LastMerge would be used to perform the
initial merge, and then these tools would be invoked to analyze the merged code for potential
semantic conflicts. This approach allows developers to leverage the strengths of both structured
merge and semantic conflict detection, providing a more comprehensive solution for handling
complex merge scenarios.

6.3 FUTURE WORK

In this work, we have focused on the design and implementation of LastMerge, a generic
structured merge tool. Furthermore, we have conducted an empirical study comparing gene-

ric merge tools with language-specific ones. Despites the promising results, we acknowledge
that there are still many opportunities for future work to enhance LastMerge and better
understand the applicability of structured merge across different programming languages. We
identify the following avenues for future work:
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• One of the main limitations of LastMerge for production usage is its rudimentary
pretty-printing capabilities. Due to the way its algorithm works, the tool can yield invalid
programs for languages where formatting is significant, such as Python. Future work
should focus on improving the pretty-printing mechanism to ensure that the merged
code better retains the syntactical and semantical rules of the original source code. This
would enhance the usability of LastMerge across more programming languages.

• The accuracy of structured merge is highly dependent on the quality of its matching

process. Matching nodes incorrectly can lead to false positives and false negatives, which
can significantly impact the merge results. Future work could explore the implementation
of different algorithms and heuristics to improve the quality of the matching stage in
LastMerge.

• Despites structured merge being a promising approach, it is still unclear wether its bene-
fits generalize to other programming languages. Future work can focus on instantiating
LastMerge for other programming languages, and evaluating its performance and
precision in these languages compared to other strategies. This would help to unders-
tand the limitations and strengths of structured merge across different programming
languages.
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