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RESUMO

Resolver problemas de sensoriamento remoto (SR) é prática importante na gestão de um

país, principalmente aqueles com grandes extensões continentais e reservas ambientais

(como o Brasil). Dentre as ferramentas de SR, o SAR (Synthetic Aperture Radar) tem

sido muito utilizado. Embora o sistema SAR imponha aos dados resultantes o efeito

do ruído speckle, ele produz imagens em alta resolução espacial e trabalha sob várias

condições atmosféricas. Da literatura, evidencia-se que trabalhar com o atributo SAR

“potência de dispersão total” (SPAN) de uma perspectiva estatística pode ser muito pro-

missor. Em geral, esta tese avança na proposição de um conjunto de ferramentas para o

processamento estatístico de imagens SAR considerando SPAN, como atributo de inte-

resse. Primeiramente, assume-se um retorno SAR bivariado induzido pelo SPAN segue

a distribuição gama bivariada de McKay (MBΓ). Um modelo de regressão harmônico

(munido pela transformada de Fourier bidimensional) é proposto para quantificar o efeito

de outras variáveis sobre a média do par aleatório considerando a dinâmica espacial,

chamado MBΓR. Adicionalmente, uma ferramenta de seleção de modelo é proposta com

base na transformada de Mellin bivariada. Experimentos de Monte Carlo são feitos a

fim de avaliar os estimadores propostos para os parâmetros do MBΓR. Uma aplicação

a dados reais é realizada, evidenciando a importância do ferramental proposto na des-

crição de textura. Em segundo lugar, evidências são levantadas da direção de descrever

um atributo razão a partir do SPAN que segue a distribuição Beta Tipo 3 modificada

(BT3, denotada por Beta1/2
3 (𝑝, 𝑞)). Subsequentemente, quatro medidas de divergências

(Kullback–Leibler, Rényi, Bhattacharyya e Hellinger) são deduzidas e empregadas na

formulação tanto de testes de hipótese como de detectores de bordas. Experimentos

Monte Carlo evidenciam bom desempenho dos testes para tamanhos amostrais peque-

nos e moderados, comparativamente ao teste da razão entre verossimilhanças. A partir

experimentos reais, o detector revelou transições bem definidas entre classes, compara-

tivamente a outro detectores da literatura. Em terceiro lugar, o atributo do tipo razão



do SPAN (BT3 distribuído) é combinado ao método de contornos ativos na formulação

level set, resultando em um novo segmentador. Propõe-se uma curva de evolução gene-

ralizada por meio do nexo Box-Cox, que tem o método da literatura como caso marginal.

Então, o atributo tipo razão é usado como input à nova proposição. Experimentos tanto

com dados simulados como reais evidenciam novos segmentadores que trabalham mais

rapidamente e com maior acurácia do que os da literatura.

Palavras-chave: Divergências; Detecção de bordas; Contornos ativos (level set);

Box–Cox; Imagens SAR; Regressão gama bivariada (MBΓR); SPAN; Transformada

de Mellin; Transformada de Fourier.



ABSTRACT

Solving remote sensing (SR) problems is an important aspect of managing a country,

especially those with large continental areas and environmental reserves, such as Brazil.

Among SR tools, Synthetic Aperture Radar (SAR) is widely used. Although the SAR

system introduces speckle noise into the resulting data, it produces images with high

spatial resolution and operates under various atmospheric conditions. From the recente

literature, it is shown that analyzing the SAR attribute "total scattering power"(SPAN)

from a statistical perspective is very promising. Overall, this thesis advances a set of

tools for the statistical processing of SAR images, considering SPAN as the attribute

of interest. First, a bivariate SAR return induced by SPAN is assumed to follow the

bivariate McKay gamma distribution (MBΓ). A harmonic regression model using the

two-dimensional Fourier transform is proposed to quantify the effect of other variables on

the mean of the random pair while accounting for spatial dynamics; this model is called

MBΓR. Additionally, a model selection tool based on the bivariate Mellin transform is

proposed. Monte Carlo experiments are conducted to evaluate the proposed estimators

for the MBΓR parameters. An application to real data is presented, highlighting the

importance of the proposed tool for texture description. Second, evidence is gathered to

describe a ratio attribute from SPAN that follows the Modified Type 3 Beta distribution

(BT3, denoted by Beta1/2
3 (𝑝, 𝑞)). Four divergence measures – Kullback–Leibler, Rényi,

Bhattacharyya, and Hellinger – are then derived and used to formulate both hypothesis

tests and edge detectors. Monte Carlo experiments show good test performance for small

and moderate sample sizes compared to the likelihood ratio test. In real experiments, the

detector revealed well-defined transitions between classes compared to other detectors

in the literature. Third, the ratio attribute of SPAN (distributed BT3) is combined with

the active contours method in the level set formulation, resulting in a new segmenter

for SAR images. A generalized evolution curve is proposed using the Box-Cox nexus,

which includes the method from the literature as a special case. The ratio attribute is



then used as input to the new evolution curve. Experiments with both simulated and real

SAR data show that the new segmenters operate more quickly and accurately than those

described in the literature.

Keywords: Active contours (level set); Bivariate Gamma regression (MBΓR); Box–Cox;

Divergences; Edge detection; Fourier transform; Mellin transform; SAR imagery; SPAN.
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𝑡 Parâmetro temporal da evolução do contorno

𝜙(𝑥, 𝑦) Função level set

𝜙𝑡 = 𝜕𝜙/𝜕𝑡 Velocidade de evolução da função level set

𝜙𝑥 , 𝜙𝑦 Derivadas parciais de primeira ordem de 𝜙

𝜙𝑥𝑥 , 𝜙𝑦𝑦 , 𝜙𝑥𝑦 Derivadas parciais de segunda ordem de 𝜙

𝛾 Curva de nível zero de 𝜙 (contorno ativo)

𝒏 Vetor normal unitário externo à curva 𝛾

div(·) Operador divergência de um campo vetorial

𝜅 Curvatura: 𝜅 = div
(
∇𝜙
|∇𝜙|

)
∇𝜙 Gradiente de 𝜙

Δ𝜙 Laplaciano de 𝜙

𝛿𝜀 (𝜙) Delta de Dirac regularizada

𝐻𝜀 (𝜙) Função de Heaviside regularizada

∥·∥ Norma Euclidiana

(𝑥𝐶 , 𝑦𝐶 ) Centro do termo atrator radial

𝜆 Parâmetro de nexo Box–Cox (ajuste do termo de dados)

𝛽 Peso do termo atrator radial

𝜈 Peso da regularização por curvatura

𝑓in, 𝑓out Densidades dos retornos dentro/fora do objeto

2𝐹
( ·)
1 (𝑎, 𝑏; 𝑐; 𝑧) Função hipergeométrica gaussiana



T𝑛 (·) Medida de discrepância

Γ(·) Função gama

B(𝑝, 𝑞) Função beta

I𝐴(·) Função indicadora do conjunto 𝐴

𝐿 Número de equivalentes de looks da imagem SAR

𝐿 (·) Termo de dados

Ω ⊂ R2 Domínio espacial da imagem

𝜕Ω Fronteira do domínio

𝐸𝜆 (𝜙) Funcional de energia a ser minimizado

𝑉 Velocidade normal da curva 𝛾

𝑛iter Número de iterações do algoritmo

SPAN Potência de dispersão total

U(0, 1) Distribuição uniforme no intervalo (0, 1)

R, N Conjuntos dos números reais e naturais

M[ 𝑓 (𝑥)] (𝑠) Transformada de Mellin de 𝑓 em 𝑠 ∈ C

𝜇𝑟 [𝑌 ], 𝜅𝑟 [𝑌 ] Log-momento e log-cumulante do tipo Mellin de ordem 𝑟

𝜽 Vetor de parâmetros (modelo/probabilidade)

𝜽 Estimador de máxima verossimilhança (MLE)

ℓ(𝜽) Log-verossimilhança

I(·) Matriz de informação de Fisher

C𝜆
(
𝑓in, 𝑓out

)
Contraste do termo de dados com nexo Box–Cox

𝐷KL ( 𝑓 ∥𝑔) Divergência de Kullback–Leibler entre 𝑓 e 𝑔

𝐷R
𝛼 ( 𝑓 ∥𝑔) Divergência de Rényi entre 𝑓 e 𝑔 de ordem 𝑟

𝑑KL (·) Distância de Kullback–Leibler

𝑑R
𝛼 (·) Distância de Rényi de ordem 𝑟

𝑑B (·) Distância de Bhattacharrya

𝑑H (·) Distância de Hellinger



𝑑ℎ
𝜙
(·) Distância (ℎ, 𝜙)
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𝜙
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1 Introdução

1.1 Problematização, revisão da literatura e contribuições

em geral

Os sistemas SAR (Synthetic Aperture Radar-SAR) se consolidaram como ferra-

mentas do sensoriamento remoto por aliarem produção de imagens em alta resolução

espacial, independência da iluminação solar e capacidade de trabalhar em condições

meteorológicas adversas (ZYL, 2011). A iluminação coerente empregada na aquisição

de imagens SAR, introduz o speckle — ruído de natureza multiplicativa — que degrada

a interpretabilidade visual e requer a proposição de novas metodologias estatísticas

que pressupõem gaussianidade e aditividade (GOODMAN, 1975; FRERY; CORREIA;

FREITAS, 2007). Em configurações polarimétricas (Polarimetric SAR-PolSAR), a res-

posta dos alvos é descrita ou por vetores complexos (caso singlelook) ou por matrizes

complexas de retroespalhamento (caso multilook). Em ambos os casos, o processa-

mento é feito a partir de canais de polarização (com emissão horizontal 𝐻 e recepção

horizontal 𝐻, diga-se 𝐻𝐻, ou variações destes estados, 𝐻𝑉 , 𝑉𝐻 e 𝑉𝑉). A partir dos

canais, obtêm-se desagregações físicas (p. ex., a decomposição de Pauli) e a potência

de dispersão total (SPAN), um sumarizador informativo dos mecanismos de espalha-

mento (LEE; POTTIER, 2017; HAJNSEK; DESNOS, 2021). Entre as representações

polarimétricas, a decomposição de Pauli é amplamente empregada para interpretar me-

canismos fundamentais de espalhamento — superfície, duplo bounce e volume — e para

derivar o SPAN (LEE; POTTIER, 2017; HAJNSEK; DESNOS, 2021). Métodos base-

ados no SPAN têm sido propostos para caracterização de alvos em PolSAR, incluindo

testes munidos por divergências e distâncias estocásticas (WANG et al., 2018; WEST;



RILEY, 2019; NASCIMENTO; FERREIRA; SILVA, 2023). Em aplicações como ma-

peamento temático, detecção de alvos e monitoramento ambiental, autores ressaltam a

importância do o SPAN em tarefas de classificação, detecção de mudanças, otimização

e segmentação em ambientes urbanos e vegetados, combinando medidas estatísticas e

de teoria da informação (HUANG et al., 2017; WANG et al., 2018; YANG et al., 2019;

WEST; RILEY, 2019; YIN et al., 2019; DONG; ZHANG; ZOU, 2020). No contexto

de sensoriamento remoto, mapeamento temático refere-se à produção de mapas que re-

presentam categorias específicas de interesse — como tipos de uso e cobertura do solo,

classes urbanas, corpos d’água ou formações vegetais — obtidas por técnicas de classifi-

cação aplicadas às imagens. Em SAR/PolSAR, esse processo é especialmente relevante

devido à capacidade do radar de discriminar propriedades físicas, texturais e estruturais

da superfície, mesmo sob condições climáticas adversas e ausência de iluminação solar,

tornando o SPAN um atributo fundamental para a caracterização e o monitoramento

multitemporal de superfícies.

Um paradigma em Processamento de Imagens é resolver problemas de pós-

processamento (tais como detecção de bordas e segmentação) a partir de supostos

estocásticos alinhados com a física de formação do tipo de imagem a ser trabalhado.

Esta tese tem o foco em imagens SAR cujos dados são afetados pelo ruído speckle.

Quando pensamos em distribuições/modelos para dados afetados pelo speckle, Good-

man (1975) nos conduz à distribuição gama, tanto como distribuição principal para

intensidades (norma quadrada dos canais de polarização complexos) em cenários for-

temente homogêneos (DELIGNON; GARELLO; HILLION, 1997) como em um dos

fatores devido ao ruído speckle em modelagem multiplicativa (FRERY et al., 1997;

NASCIMENTO; CINTRA; FRERY, 2009).

No âmbito da Teoria da Probabilidade e da Estatística Matemática, o estudo de distri-

buições bivariadas e de transformações escalares delas derivadas tem recebido atenção

crescente, tanto no desenvolvimento teórico quanto em aplicações avançadas (GUMBEL,
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1960; PLACKETT, 1965; GENEST, 1987; LAI; BALAKRISHNAN, 2009; KOCHER-

LAKOTA; KOCHERLAKOTA, 2017) como aplicadas (DOWNTON, 1970). Entre as

famílias bivariadas com marginais gama, destaca-se a distribuição proposta por McKay

(1934) e posteriormente generalizada ao caso multivariado por Mathal e Moschopoulos

(1992), amplamente conhecida como gama bivariada de McKay (MBΓ). Essa distribu-

ição tem motivado uma série de desenvolvimentos relevantes, entre os quais:

• Procedimentos de inferência estatística específicos para seus parâmetros (ZHAO;

JANG; KIM, 2022);

• Aplicações em variedade estocástica e geometria da informação (ARWINI; DOD-

SON, 2003; ARWINI et al., 2005; DODSON, 2009);

• Formulação de medidas de distância estocástica entre distribuições da mesma

família (NASCIMENTO; FERREIRA; SILVA, 2023);

• Propostas de modelos de regressão multivariada estruturados no parâmetro de

forma (RAHAYU et al., 2020).

Tal como introduzido por Nascimento, Ferreira e Silva (2023), esta tese assume que

o estudo do atributo SPAN em imagens SAR deve partir do suposto: “intensidades SAR

devem seguir a distribuição MBΓ”. Neste contexto, investigam-se: (i) como analisar

padrões em pares induzidos pelo SPAN de imagens SAR assistidos por outros canais,

lacuna aberta em Nascimento, Ferreira e Silva (2023); (ii) como mensurar discrepância

(via teoria da informação, seguindo a abordagem de Nascimento, Cintra e Frery (2009))

e determinar bordas entre duas amostras de atributos razão definidos a partir de MBΓ(𝜽);

(iii) como segmentar imagens SAR via atributos razão combinado a curvas de evolução

em level set. Seguem os contextos e proposições desta tese.
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Proposta 1

Nascimento, Ferreira e Silva (2023) introduziram a abordagem de fa-

zer inferência e processamento de imagem sobre o par aleatório 𝒀 =

(Intensidade do canal, SPAN). Neste contexto, a distribuição Γ está fisicamente

para o speckle na intensidade SAR multilook como a gama bivariada de McKay

(FRERY; CORREIA; FREITAS, 2007) surge a partir do par aleatório𝒀 . Até aqui,

não há registro sobre proposição de regressão para modelagem de𝒀 como resposta

no contexto de imagens SAR. É importante mencionar que Rahayu et al. (2020)

tem proposto uma abordagem de regressão multivariada com resposta gama com

estrutura no parâmetro de forma. Esta abordagem foi aplicada a dados reais em

outro contexto (índice de desenvolvimento) e, pelo modo de reparametrização,

oferece algumas intratabilidades analíticas na reparametrização. Nesta primeira

contribuição, propõe-se uma nova abordagem para regressão gama bivariada com

estrutura na escala, capaz de agregar comportamento espacial por transformada

de Fourier bidimensional (2𝐷) (UNWIN; HEPPLE, 1974) e alinhada a forma-

ção física de imagens SAR. Vários resultados teóricos são propostos para o novo

modelo; como p. ex., a Informação de Fisher e um estimador iterativo em forma

fechada baseado no método de Scoring-Fisher para os parâmetros do modelo

de regressão. Adicionalmente, motivado pelo trabalho de Holynski (2024) que

elabora um tratamento matemático para o desenvolvimento de inferência sobre

transformadas de integrais empíricas e no uso estatístico da transformada de Mellin

(EPSTEIN, 1948; NICOLAS; ANFINSEN, 2002; FERREIRA; NASCIMENTO;

FRERY, 2022) em duas dimensões (FOX, 1957), propõe-se uma ferramenta de

seleção de modelo. Experimentos de Monte Carlo são realizados para se quan-

tificar a performance dos estimadores dos parâmetros do modelo. Finalmente,

uma aplicação para dados reais ilustra o uso do modelo em imagens SAR e a sua

capacidade em descrever texturas distintas.
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Proposta 2

Nesta proposta, coloca-se o foco distribucional numa transformação escalar do

par aleatório da Proposta 1, T : (𝑋1, 𝑋2) ↦→ 𝑋1/𝑋2 tal que (𝑋1, 𝑋2) ∼ MBΓ(𝜽).

Em particular, introduz-se o uso da distribuição Beta Tipo 3 (BT3) modificada

no intervalo (0, 1/2) proposta por Gupta e Nadarajah (2006a) para descrever um

atributo razão do SPAN. Este caso é denotado por Beta1/2
3 (𝑝, 𝑞). A partir de

uma revisão da literatura, além da definição, não há desenvolvimento matemá-

tico estatístico para BT3. Assim, inicialmente, uma investigação exploratória

em dados reais é feita para associar tanto os parâmetros quanto algumas de suas

medidas tipo momentos derivadas nesta tese para analisar texturas em imagens

SAR. Aqui, expressões em forma fechada são deduzidas para as divergências

de Kullback-Leibler e Rényi e para as distâncias de Bhattacharyya e Hellinger.

Subsequentemente, quatro testes de hipóteses são deduzidos, baseando-se nes-

tas medidas, para comparar duas amostras de atributos tipo razão do SPAN. O

desempenho do teste é quantificado por simulação Monte Carlo e alguns deles

mostram desempenho superior àquele fornecido pelo clássico teste da razão entre

verossimilhança. Finalmente, as estatísticas dos testes propostas são usadas como

detectores de borda, seguindo o paradigma usado por Nascimento et al. (2013) e

Nascimento, Silva e Frery (2021).
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Proposta 3

Nesta proposta, o atributo razão SPAN e sua distribuição Beta1/2
3 (𝑝, 𝑞) são usa-

dos em combinação com o método de level set para segmentação (procura uma

partição ótima) de imagens SAR seguindo a abordagem variacional dos livros

“Variational and Level Set Methods in Image Segmentation” (MI-

TICHE; AYED, 2010) e “Total Variational and Level Set Methods in

Image Science” (TSAI; OSHER, 2005). Na literatura de level set, o compo-

nente gradiente descendente “ 𝜕𝜙(𝑥, 𝑦, 𝑡)/𝜕𝑡 ” no domínio espacial da imagem

[𝑥, 𝑦] e tempo 𝑡 ocupa um papel crucial na deformação do level set para encon-

trar a partição ótima e é baseado na estatística da razão entre verossimilhanças

(RV), dentro e fora do objeto de interesse numa imagem. O avanço neste capítulo

se concentra inicialmente em assumir uma estatística generalizada no gradiente

descendente que tenha a quantidade clássica RV como caso marginal. Esta ge-

neralização é feita no que será definido como “nexo Box-Cox”. Resultados de

simulação e com dados reais obtidos de imagens SAR mostram que proposição do

novo gradiente descendente produz um método de segmentação tanto com uma

convergência mais rápida como com uma maior acurácia em várias situações.

1.2 Objetivos

1.2.1 Objetivo geral

Propor e avaliar metodologia estatística para processamento de atributos de imagens

SAR induzidos pelo SPAN que:

(i)
Modele adequadamente o par de atributos (Intensidade, SPAN) de modo condi-

cional (tal que permita quantificar tanto a influência de outros atributos como da

estrutura de dependência espacial capturada pela transformada de Fourier 2D), es-
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tendendo a abordagem introduzida por Silva e Nascimento (2023) e Nascimento,

Ferreira e Silva (2023).

(ii)
Defina testes de hipóteses para identificação de contrastes e detectores de bordas

baseados em divergências de atributos tipo razão.

(iii)
Proponha um segmentador por contornos ativos e level set por meio de um nexo

Box-Cox para atributos tipo razão.

1.2.2 Objetivos específicos�� ��(i) Construir uma fundamentação multiplicativa do novo modelo de regressão MBΓ

para atributos bidimensionais induzidos pelo SPAN em imagens SAR;�� ��(ii) Deduzir expressões iterativas em forma fechada para os estimadores de máxima

verossimilhança via método Scoring-Fisher dos parâmetros da regressão MBΓ.

Particularmente, propor um novo estimador para o número de equivalente de looks,

que é uma área bem definida na literatura (NASCIMENTO; FRERY; CINTRA,

2013);�� ��(iii) Introduzir e justificar a distribuição Beta1/2
3 (𝑝, 𝑞) ao lidar com o atributo razão do

SPAN em imagens SAR;�� ��(iv) Deduzir várias medidas tipo log-momento para lei Beta1/2
3 (𝑝, 𝑞) bem como a

matriz informação de Fisher e discutir sobre como obter os estimadores de máxima

verossimilhança;�� ��(v) Deduzir e investigar medidas de divergências (Kullback–Leibler, Rényi, Hellinger

e Bhattacharyya) para distribuição Beta1/2
3 (𝑝, 𝑞). Formular procedimentos de

testes de hipóteses e detectores de bordas para comparar duas amostras do atributo

razão do SPAN;
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�� ��(vi) Fundamentar estatisticamente a proposição de um novo gradiente descendente no

uso de segmentação por level set;�� ��(vii) Conduzir estudos de simulação de Monte Carlo para avaliar o desempenho de

estimadores, testes e segmentadores propostos;�� ��(viii) Aplicar as propostas desta tese ao processamento de imagens SAR.

1.3 Produtos da tese

Esta tese apresenta até o momento dois produtos:

• Artigo intitulado como “Edge detection in SAR images with modeling

for SPAN” e submetido ao Journal of Mathematical Imaging and Vision.

[Abstract] Synthetic aperture radar (SAR) is presented as an excellent instrument

for remote sensing. Among other things, it is capable of generating images with

high spatial resolution and working under different weather conditions. However,

SAR relies on coherent illumination, which causes the generated images to be

corrupted by speckle noise, requiring tailored modeling. In this paper, we first

introduce a modified type three beta distribution as a potential candidate for SAR

data as a function of the total scattering power (SPAN), an important feature in

the physics of SAR image processing. Based on this assumption, we propose

four distance measures that are used to define new hypothesis tests and boundary

detection in SAR images. A Monte Carlo simulation study is conducted to

quantify the performance of the new hypothesis tests in different scenarios. The

results show that the proposed tests are able to estimate the given nominal levels

(i.e. tests with a controlled false alarm rate), even for small sample sizes. Finally,

two applications are performed on real data whose detection results support our

proposal.
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• Artigo intitulado como “Regression induced from SPAN: Mellin

transform and Texture extraction” e submetido ao Journal of the

Royal Statistical Society Series C.

[Abstract] Synthetic aperture radar (SAR) systems are an efficient means of tac-

kling remote sensing problems. In contrast, SAR images are subject to speckle

noise due to the use of coherent illumination during acquisition. This noise leads

to both a grainy interference on such images (which precludes their interpreta-

bility) as well as to a multiplicative and non-Gaussian nature of their data. This

work aims to investigate how bidimentional SAR return induced by SPAN and

supported in parallel by other features can be decoded and used to extract partners

in such images. To this end, in this paper we propose a new bivariate Γ-McKay

regression (Γ-McKayR) model for SAR images. We derive some of its mathe-

matical properties: score vector, Fisher information matrix, and tools for residual

analysis. The maximum likelihood estimation procedure for Γ-McKayR parame-

ters is discussed and some asymptotic behaviors for its estimates are quantified

by Monte Carlo experiments. An application to real SAR images is performed

The results show that our modeling is a tool that can extract textures.

1.4 Divisão do manuscrito

Este manuscrito está organizado em três capítulos centrais, cada um dedicado a um

bloco metodológico-estático específico.

• Capítulo 2 — Regressão induzida do SPAN: Transformada de Mellin e extra-

ção de textura.

• Capítulo 3 — Detecção de bordas via divergências, SPAN e a distribuição

Beta tipo 3 modificada.
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• Capítulo 4 — Evolução estatística da superfície para segmentação em imagens

SAR.

• Capítulo 5 — Conclusões.
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2 Regressão bivariada induzida do

SPAN: Transformada de Mellin e ex-

tração de textura

A transformada de Mellin — cuja origem está associada ao estudo de produtos e

razões de variáveis positivas (EPSTEIN, 1948) — tem-se mostrado especialmente ade-

quada à análise de dados SAR. Seu emprego nesse contexto foi introduzido por Nicolas e

Anfinsen (2002), dando origem às chamadas estatísticas do tipo Mellin (Mellin-kind sta-

tistics, MKS). Calculadas no domínio logarítmico, as MKS permitem derivar momentos

e cumulantes associados à transformada de Mellin, fornecendo descritores úteis para

caracterização radiométrica e para avaliação de aderência e seleção de modelos (AN-

FINSEN, 2010; ANFINSEN; ELTOFT, 2011; FERREIRA; NASCIMENTO; FRERY,

2022). No âmbito multivariado, extensões bivariadas da transformada de Mellin foram

formalizadas por Fox (1957) e aplicadas por Springer e Thompson (1966) na dedução

de propriedades clássicas envolvendo produtos e razões estatísticas, estabelecendo uma

ligação natural entre técnicas univariadas e bivariadas. Resultados particulares envol-

vendo razões e produtos de estatísticas de ordem — associadas às distribuições uniforme

e exponencial — bem como de normais bivariadas, foram apresentados em trabalhos

pioneiros como Fieller (1932), Nicholson (1941), Craig (1942), consolidando o papel

da transformada de Mellin como ferramenta analítica versátil para variáveis positivas.

Neste capítulo, introduz-se, pela primeira vez, a transformada de Mellin bivariada, a

partir da qual se estabelece a fundamentação teórica que orienta a escolha dos modelos

considerados.

No contexto de SAR/PolSAR, modelos de regressão têm sido explorados para quan-



tificar relações entre canais e atributos físicos (NASCIMENTO et al., 2024a; NAS-

CIMENTO et al., 2024b). Quando múltiplas respostas correlacionadas precisam ser

explicadas de forma conjunta, modelos de regressão multivariada oferecem uma estru-

tura natural para relacionar variáveis (HARTUNG; KNAPP, 2005).

Nascimento et al. (2024a) e Nascimento et al. (2024b) têm derivado as regressões

K-Bessel e G0
𝐼
, ambas tendo como caso marginal a variável resposta gama, que é a

distribuição para o speckle na intensidade multilook (NASCIMENTO et al., 2024a). Ao

elevar a modelagem para o caso de uma variável resposta bivariada, permanece uma

lacuna metodológica significativa no âmbito das aplicações em imagens SAR. Contudo,

Rahayu et al. (2020) introduziram uma regressão gama baseada na distribuição gama

multivariada proposta por Mathal e Moschopoulos (1992), que tem a lei gama bivariada

de McKay como caso marginal. É correto pensar que o modelo de Rahayu et al. (2020)

poderia ser aplicado para o fim de uma regressão bivariada para descrever o speckle,

mas apontamos algumas questões para seguir outro caminho:

• A reparametrização usada por Rahayu et al. (2020) feita nos parâmetros “de

forma” tornam a dedução de propriedades analíticas importantes (como a matriz

informação de Fisher) intratável;

• A construção do modelo de Rahayu et al. (2020) não leva em conta a formação

física de imagens SAR, que é um caráter multiplicativo (FRERY; WU; GOMEZ,

2022; ZHOU et al., 2024).

Neste capítulo, as frentes “transformada de Mellin bivariada” e “regressão bivariada”

são usadas no contexto da lei gama bivariada de McKay. Primeiro, motivamos e for-

malizamos o uso da transformada de Mellin para distribuições de produto relevantes em

SAR, destacando suas vantagens analíticas face às transformadas de Laplace/Fourier em

cenários aditivos. Essa base permite qualificar a escolha da melhor opção de um modelo

de regressão gama bivariado de McKay voltado a dados SAR. Para este fim, derivam-se
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propriedades matemáticas (vetor escore, matriz de informação de Fisher e abordagem

por análise de resíduos), discute-se a estimação por máxima verossimilhança e avalia-se,

via experimentos de Monte Carlo, o comportamento assintótico dos estimadores. Por

fim, apresenta-se uma aplicação com dados reais, ilustrando como o modelo proposto

— justificado pela nova MKS — quantifica a relação entre o SPAN e outros atributos da

relação entre canais.

O capítulo é estruturado como segue. Na Seção 2.1, revisa-se brevemente o uso da

transformada de Mellin na Estatística para dados SAR, nos casos univariado e bivariado.

A Seção 2.2 é dedicada às contribuições sobre a transformada de Mellin bivariada

para MBΓ. Na Seção 2.3, apresenta-se a regressão gama multivariada. Finalmente, a

Seção 2.4 aborda os resultados numéricos.

2.1 Transformada de Mellin na Estatística para dados

SAR

2.1.1 Estatística do tipo Mellin: Caso univariado

A transformada de Mellin de uma função de valor real 𝑓 : IR+ → IR é dada por

M(𝑠) = M[ 𝑓 (𝑥)] (𝑠) =
� ∞

0
𝑥𝑠−1 𝑓 (𝑥)d𝑥, (2.1)

em que 𝑠 ∈ C é uma variável complexa. Sob certas condições dadas em Brychkov,

Marichev e Savischenko (2018), a transformada inversa de Mellin de M(𝑠) é dada por

𝑓 (𝑥) = 1
2𝜋

√
−1

� 𝑐+
√
−1·∞

𝑐−
√
−1·∞

𝑥−𝑠M(𝑠)d𝑠, (2.2)

em que 𝑐 é um número real tal que a integral complexa é tomada ao longo de uma linha

vertical no plano complexo, chamada de linha de Bromwich (ou linha fundamental),
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√
−1 é a unidade imaginária e a relação entre a transformada M(𝑠) e 𝑓 (𝑥) é de natureza

recíproca entre si, formando um par { 𝑓 (𝑥),M(𝑠)}.

Como apresentado por Bertrand, Bertrand e Ovarlez (1995), da Equação (2.2),

segue-se a fórmula de Parseval dada por
� ∞

0
𝑓 (𝑥)𝑔(𝑥)d𝑥 =

1
2𝜋

√
−1

� 𝑐+
√
−1·∞

𝑐−
√
−1·∞

M[𝑔(𝑥)] (1 − 𝑠)M[ 𝑓 (𝑥)] (𝑠)d𝑠

e

M[ 𝑓 ★ 𝑔] (𝑠) =M[ 𝑓 ] (𝑠) M[𝑔] (𝑠),

em que ( 𝑓 ★𝑔) (𝑠) =
� ∞

0 𝑤−1 𝑓 (𝑧/𝑤) 𝑔(𝑤) d𝑤 é a convolução tipo Mellin e M[ 𝑓 (𝑥)] (𝑠)

e M[𝑔(𝑥)] (𝑠) são as transformadas de Mellin das funções 𝑓 e 𝑔, funções reais definidas

em (0,∞), respectivamente. O ponto favorável da fórmula de Parseval é a permuta de

integrais que nem sempre pode ser justificada.

Devido ao domínio da transformada de Mellin, ela pode ser aplicada às funções

de densidade de probabilidade (PDF) de variáveis aleatórias positivas (como aquelas

para descrever intensidades e amplitudes SAR). Seja 𝑋 > 0 uma variável aleatória com

densidade 𝑓𝑋 (𝑥), uma alternativa à função característica (FC) de 𝑋 , E(e
√
−1 𝑋 𝑡), é a FC

tipo Mellin dada por

𝜙𝑋 (𝑠) = E[𝑋 𝑠−1] = M[ 𝑓𝑋] (𝑠). (2.3)

Ela costuma ser usada para lidar com o produto de variáveis aleatórias independentes,

enquanto Fourier lida com a soma (SPRINGER, 1979).

A partir da expansão em série de Maclaurin da função exponencial, pode-se mostrar

que (KELLOGG, 1984)

𝜙𝑋 (𝑠) =
∞∑︁
𝑟=0

(𝑠 − 1)𝑟
𝑟!

𝜇𝑟 [𝑋], (2.4)

em que 𝜇𝑟 [𝑋] = E[(log 𝑋)𝑟]. A Equação (2.4) indica que 𝜙𝑋 (𝑠) pode ser expandido
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em termos de log-momentos e, portanto, os log-momentos podem ser obtidos de 𝜙𝑋 (𝑠)

por

𝜇𝑟 [𝑋] =
𝑑𝑟

𝑑𝑠𝑟
𝜙𝑋 (𝑠)

����
𝑠=1
. (2.5)

A função geradora de log-cumulante do tipo Mellin é definida como 𝜑𝑋 (𝑠) =

log 𝜙𝑋 (𝑠). Essa função pode ser expandida como

𝜑𝑋 (𝑠) =
∞∑︁
𝑟=0

(𝑠 − 1)𝑟
𝑟!

𝜅𝑟 [𝑋] , (2.6)

com os coeficientes 𝜅𝑟 [𝑋] chamados de log-cumulantes, desde que todos eles existam.

Os log-cumulantes são extraídos da Equação (2.6), como

𝜅𝑟 [𝑋] =
𝑑𝑟

𝑑𝑠𝑟
𝜑𝑋 (𝑠)

����
𝑠=1
. (2.7)

As três primeiras relações entre log-momentos e log-cumulantes são

𝜅1 = 𝜇1, 𝜅2 = 𝜇2 − 𝜇2
1 e 𝜅3 = 𝜇3 − 3𝜇1𝜇2 + 2𝜇3

1. (2.8)

Essas relações são válidas para log-momentos e log-cumulantes em geral.

2.1.2 Estatística do tipo Mellin: Caso bivariado

Seja (𝑋1, 𝑋2) uma variável aleatória bidimensional ou bivariada com densidade

𝑓 (𝑥1, 𝑥2) e suporte no primeiro quadrante e zero nos demais. Fox (1957) definiu a

transformada de Mellin de 𝑓 (𝑥1, 𝑥2) como

M (𝑠1, 𝑠2) = M[ 𝑓 (𝑥1, 𝑥2)] (𝑠1, 𝑠2) =
� ∞

0

� ∞

0
𝑥
𝑠1−1
1 𝑥

𝑠2−1
2 𝑓 (𝑥1, 𝑥2) d𝑥1d𝑥2 (2.9)

e sua inversa como

𝑓 (𝑥1, 𝑥2) =
1

(2𝜋
√
−1)2

� ℎ+
√
−1·∞

ℎ−
√
−1·∞

� 𝑘+
√
−1·∞

𝑘−
√
−1·∞

M (𝑠1, 𝑠2) 𝑥−𝑠1
1 𝑥

−𝑠2
2 d𝑠1d𝑠2. (2.10)
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As condições sob as quais as Equações (2.9) e (2.10) são válidas foram discutidas

por Fox (1957). A inversão da transformada de Mellin quando a PDF é positiva em todo

o plano foi discutida por Springer e Thompson (1966). Dois casos específicos em que

podemos usar a Equação (2.9):

(i) Se 𝑌 = 𝑋1𝑋2, a função densidade de probabilidade (PDF) de 𝑌 , 𝑔(𝑦), tem sua

transformada de Mellin dada por M[𝑔(𝑦)] (𝑠) = M(𝑠, 𝑠);

(ii) Se 𝑍 = 𝑋1/𝑋2, a PDF de 𝑍 , ℎ(𝑧), tem a transformada de Mellin M[ℎ(𝑧)] (𝑠) =

M(𝑠,−𝑠 + 2).

As extensões das Equações (2.9) e (2.10) para o caso em que 𝑓 (𝑥1, 𝑥2) é positiva nos

quatro quadrantes, são dadas como segue. Denotando por M++ (𝑠1, 𝑠2), M+− (𝑠1, 𝑠2),

M−+ (𝑠1, 𝑠2) e M−− (𝑠1, 𝑠2) a transformada de Mellin de 𝑓 (𝑥1, 𝑥2) nos quatro quadran-

tes, após atribuir o sinal apropriado à variável negativa envolvida, as expressões para a

transformada de Mellin de 𝑔(𝑦) e ℎ(𝑧), podem ser reescritas como:

M[𝑔(𝑦) : 𝑦 > 0] (𝑠) = M++(𝑠, 𝑠) +M−−(𝑠, 𝑠),

M[𝑔(𝑦) : 𝑦 < 0] (𝑠) = M+−(𝑠, 𝑠) +M−+(𝑠, 𝑠),

M[𝑔(𝑦) : 𝑧 > 0] (𝑠) = M++(𝑠,−𝑠 + 2) +M−−(𝑠,−𝑠 + 2)

M[𝑔(𝑦) : 𝑧 < 0] (𝑠) = M+−(𝑠,−𝑠 + 2) +M−+(𝑠,−𝑠 + 2)

. (2.11)

2.2 Contribuições sobre transformada de Mellin bivariada

para a 𝑀𝐵Γ

2.2.1 Medidas exatas

Conforme aplicação a dados SAR feita por Nascimento, Ferreira e Silva (2023), a

distribuição gama bivariada de McKay ("MBΓ") com parâmetro de forma 𝛼1, 𝛼2 > 0 e
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parâmetro de escala 𝛾 > 0 tem densidade dada por:

𝑓 (𝑥1, 𝑥2;𝛼1, 𝛼2, 𝛾) =
1

𝛾𝛼1+𝛼2Γ(𝛼1)Γ(𝛼2)
𝑥
𝛼1−1
1 (𝑥2 − 𝑥1)𝛼2−1 exp

(
−𝑥2
𝛾

)
, (2.12)

para 0 < 𝑥1 < 𝑥2. Este caso é denotado por 𝑿 = [𝑋1, 𝑋2] ∼ MBΓ(𝛼1, 𝛼2, 𝛾).
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(a) 𝛼1 = 7, 5, 𝛼2 = 3, 5 e 𝛾 = 0, 5.
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(b) 𝛼1 = 3, 5, 𝛼2 = 7, 5 e 𝛾 = 0, 5.
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(c) 𝛼1 = 7, 5, 𝛼2 = 3, 5 e 𝛾 = 2.
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(d) 𝛼1 = 3, 5, 𝛼2 = 7, 5 e 𝛾 = 2.
Figura 1 – Curvas de nível da densidade da distribuição gama bivariada de McKay.

As Figuras 1a–1d ilustram o comportamento das curvas de nível da densidade da distri-

buição gama bivariada de McKay sob distintas combinações de parâmetros. O aumento

de 𝛼1 amplia a dispersão ao longo do eixo que descreve o primeiro suporte marginal,

enquanto maiores valores de 𝛼2 produzem alongamento na direção do eixo que descreve

o segundo suporte marginal. O incremento de 𝛾 intensifica a correlação positiva entre

as marginais, resultando em curvas mais alongadas ao longo da bissetriz do primeiro

quadrante. Observa-se, ainda, que o centróide da densidade desloca-se para valores
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mais altos de ambos os eixos à medida que 𝛼1 e 𝛼2 crescem, refletindo maior coerência

estatística entre os retornos correlacionados, como esperado em contextos SAR.

As seguintes propriedades decorrem de sua definição da lei MBΓ:

(i) 𝑋1 ∼ Γ

(
𝛼1,

1
𝛾

)
e 𝑋2 ∼ Γ

(
𝛼2,

1
𝛾

)
,

(ii) 𝑿 = {(𝑋1, 𝑋2) : 𝑋2 ≜ 𝑋1 + 𝑋2} ∼ MBΓ(𝛼1, 𝛼2, 𝛾) e 𝑋2 ∼ Γ(𝛼1 + 𝛼2,
1
𝛾
),

(iii)


E (𝑋1) = 𝛾 · 𝛼1, E (𝑋2) = 𝛾 · (𝛼1 + 𝛼2) ,

Var(𝑋1) = 𝛼1 · 𝛾2, Var (𝑋2) = (𝛼1 + 𝛼2) · 𝛾2 e Cov(𝑋1, 𝑋2) =
√︁
𝛼1/(𝛼1 + 𝛼2),

em que E(·), Var(·) e Cov(·, ·) são os operadores de valor esperado, variância e

covariância, respectivamente.

Esse caso é denotado por 𝑿 = [𝑋1, 𝑋2]⊤ ∼ MBΓ(𝛼1, 𝛼2, 𝛾). Kellogg (1984) demonstrou

que 𝑿 ∼ 𝑀𝐵Γ(𝛼1, 𝛼2, 𝛾) possui transformada de Mellin bivariada dada na Proposição

2.2.1.

Proposição 2.2.1. Seja 𝒁 ∼ MBΓ(𝛼1, 𝛼2, 𝛾), com parâmetros, 𝛼1, 𝛼2 e 𝛾, então:

M𝑀𝐵Γ (𝑠1, 𝑠2) =
𝛾𝑠1+𝑠2−2

Γ(𝛼1)
Γ(𝑠1 + 𝛼1 − 1)

Γ(𝑠1 + 𝛼1 + 𝛼2 − 1)Γ(𝑠1 + 𝑠2 + 𝛼1 + 𝛼2 − 2),

em que 𝑠1, 𝑠2 ∈ C.

A demonstração desta Proposição foi refeita considerando menos pré-requisitos, cons-

tando no Apêndice C.

Nascimento, Ferreira e Silva (2023) relacionaram essa distribuição à formação física

observada em imagens SAR como segue. Os sistemas SAR polarimétricos registram a

amplitude e a fase dos sinais retroespalhados para interações com a polarização linear

de recepção e transmissão: HH, HV, VH e VV (H para polarização horizontal e V para

polarização vertical). O resultado é a matriz de dispersão complexa:

𝑺 =


𝑆HH 𝑆HV

𝑆VH 𝑆VV

 , (2.13)
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em que 𝑆𝐴𝐵 ∈ C significa o retorno devido à transmissão 𝐴 e à recepção 𝐵. De acordo

com Lee et al. (1994), os componentes copolarizados 𝑆HH e 𝑆VV estão correlacionados,

enquanto os componentes de polariação cruzadas 𝑆VH e 𝑆HV têm o mesmo nível na

matriz de Sinclair. Neste trabalho, concentra-se a análise em um par aleatório obtido

a partir da soma de dois canais dos retornos PolSAR, cuja estrutura estatística induz a

modelagem bivariada considerada.

Seja 𝑺 ∈ {[𝑆HH, 𝑆VV]⊤, [𝑆HH, 𝑆HV]⊤, [𝑆VV, 𝑆HV]⊤} ⊂ C2 um vetor de dois canais

de polarizações complexas, em que (·)⊤ denota o vetor de transposição. Então, a matriz

de covariância polarimétrica pode ser escrita como

𝑻 :=
1
𝐿

𝐿∑︁
𝑖=1

𝒔𝑖 𝒔
∗
𝑖 , (2.14)

em que 𝒔𝑖 é o 𝑖-ésimo vetor de amostra de um look e (·)∗ é o operador transposto

conjugado. A decomposição espectral de 𝑻 é dada por

𝑻 = 𝜆1 𝒆1𝒆
∗
1 + 𝜆2 𝒆2𝒆

∗
2, (2.15)

em que 𝜆𝑖 são os 𝑖-ésimos autovalores reais de 𝑻 e 𝒆𝑖 são os autovetores ortonormais

correspondentes. A imagem da potência de dispersão total (SPAN) pode ser definida

como a potência de retroespalhamento total a partir da Equação (2.15); isto é,

SPAN := 𝜆1 + 𝜆2 = 𝑇11 + 𝑇22, (2.16)

em que 𝑇𝑖 𝑗 é a entrada (𝑖, 𝑗) de 𝑻. Conforme descrito anteriormente, o recurso SPAN é

muito importante no processamento de imagens PolSAR. Nascimento, Ferreira e Silva

(2023) introduziram o uso da gama bivariada de McKay–ver detalhes sobre ela em

Nadarajah e Gupta (2006), Gupta e Nadarajah (2006a)–para descrever as informações

obtidas de (𝑇11, SPAN) ou (𝑇22, SPAN).

Agora estamos em posição de apresentar uma reparametrização para a distribuição
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MBΓ. Aplicando
[
𝛾 =

𝜇

𝐿
, 𝛼1 = 𝐿, 𝛼2 = 𝐿

]
na Equação (2.12), tem-se

𝑓 (𝑥1, 𝑥2; 𝐿, 𝜇) =
( 𝐿
𝜇
)2𝐿

Γ(𝐿)Γ(𝐿) 𝑥
𝐿−1
1 (𝑥2 − 𝑥1)𝐿−1 exp

{
− 𝐿

𝜇
𝑥2

}
. (2.17)

Note que o caso singlelook (𝐿 = 1) fica

𝑓 (𝑥1, 𝑥2; 𝜇) = 1
𝜇2 exp

{−𝑥2
𝜇

}
. (2.18)

Já o caso multilook de média unitária é

𝑓 (𝑥1, 𝑥2; 𝐿) =
( 𝐿𝐿

Γ(𝐿)

)
𝑥𝐿−1

1 (𝑥2 − 𝑥1)𝐿−1 exp{−𝐿𝑥2}. (2.19)

Da Proposição 2.2.1, vale-se o seguinte corolário.

Corolário 2.2.2. Seja (𝑋1, 𝑋2) um par aleatório que segue a distribuição gama bivariada

McKay (𝑀𝐵Γ) reparametrizada, então sua transformada de Mellin é dada por

M𝑀𝐵Γ (𝑠1, 𝑠2) =
( 𝜇
𝐿
)𝑠1+𝑠2−2

Γ(𝐿)
Γ(𝑠1 + 𝐿 − 1)
Γ(𝑠1 + 2𝐿 − 1)Γ(𝑠1 + 𝑠2 + 2𝐿 − 2), (2.20)

em que 𝐿 é o número de looks

2.3 Regressão Gama Multivariada

A regressão gama multivariada (MGR-multivariate gama regression) é uma ex-

tensão da regressão gama univariada aplicada quando há múltiplas variáveis resposta

contínuas e assimétricas, que seguem conjuntamente uma distribuição gama multivari-

ada (RAHAYU et al., 2020). Essa abordagem é útil quando as respostas apresentam

dependência entre si, o que impede a modelagem isolada de cada uma sem perda de

informação e interpretação.

Seja 𝒁𝑙 =
(
𝑍𝑙1, . . . , 𝑍𝑙𝑘

)⊤ o vetor de respostas para a 𝑙-ésima observação e 𝒛𝑙 =(
𝑧𝑙1, . . . , 𝑧𝑙𝑠

)
o vetor de variáveis associadas, para 𝑙 = 1, 2, . . . , 𝑛. Assumindo que 𝒁𝑙
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segue uma distribuição gama multivariada conforme Mathal e Moschopoulos (1992),

este caso é denotado como𝒀𝑙 ∼ Γ(𝛼1, · · · , 𝛼𝑘 , 𝜆1, · · · , 𝜆𝑘 , 𝛾) tendo densidade dada por:

𝑓 (𝑧1, . . . , 𝑧𝑘 ) =
(𝑧1 − 𝜆1)𝛼1−1

𝛾𝛼
∗
𝑘
∏𝑘
𝑖=1 Γ(𝛼𝑖)

(𝑧2 − 𝑧1 − 𝜆2)𝛼2−1 · · · (𝑧𝑘 − 𝑧𝑘−1 − 𝜆𝑘 )𝛼𝑘−1

exp {−[𝑧𝑘 − (𝜆1 + · · · + 𝜆𝑘 )]/𝛾},

em que 𝛼𝑖 > 0, 𝛾 ∈ R+, 𝑧𝑖−1+𝜆𝑖 < 𝑧𝑖 (𝑖 = 2, . . . , 𝑘), 𝑧𝑘 < ∞, 𝜆1 < 𝑧1, 𝛼∗
𝑘
= 𝛼1+· · ·+𝛼𝑘 .

A reparametrização usada por Rahayu et al. (2020) para regressão gama tem média

e variância dos componentes 𝑌𝑖 dadas por:

E(𝑌𝑖) = 𝛾𝛼∗𝑖 + 𝜆∗𝑖 = 𝜇𝑖 (𝜷𝑖) e Var(𝑌𝑖) = 𝛾2𝛼∗𝑖 , para 𝑖 = 1, 2, . . . , 𝑘,

em que 𝜆∗
𝑖
= 𝜆1 + 𝜆2 + · · · + 𝜆𝑖 e 𝜷𝑖 representa os coeficientes de regressão para a média

da 𝑖-ésima variável. Para o nosso caso, assumem-se 𝜆∗
𝑖
= 0, 𝛾 =

𝜇

𝐿
e 𝛼𝑖 = 𝐿, ∀𝑖. No que

segue, para fins de uso desta tese, a discussão será reduzida ao caso bivariado.

Embora a distribuição do Rahayu et al. (2020) tenha mérito, pode-se ver dois pontos

que limitam sua aplicação direta à modelagem do par de atributos abordado por Nasci-

mento, Ferreira e Silva (2023):

• Colocar a estrutura sistemática como função de 𝛼∗
𝑖

impõe intratabilidades ana-

líticas; como, por exemplo, a mesma estrutura ficar como argumento da função

especial Γ(𝑥) =
� ∞

0 𝑡𝑥−1 e−𝑡 d𝑡;

• A modelagem não foi formulada levando em conta a formação física multiplicativa

de imagens SAR (FRERY; WU; GOMEZ, 2022; ZHOU et al., 2024).

No que segue, a primeira modelagem desta tese é apresentada.
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2.3.1 Modelo de regressão harmônica espacial

Considere a reparametrização 𝒀 = (𝑌1, 𝑌2) ∼ MBΓ(𝛼1, 𝛼2, 𝛾) e (𝛼1, 𝛼2, 𝛾) ↦→

(𝐿, 𝐿, 𝜇/𝐿), tal que 𝐿 é o número de looks e 𝜇 é uma média comum às duas variáveis

aleatórias. Este caso tem transformada de Mellin bivariada reparametrizada dada no

Corolário 2.2.2. A regressão para imagem SAR é definida como segue.

Seja 𝑌 : {1, . . . , 𝑀} × {1, . . . , 𝑁} ↦→ R2
+ uma imagem SAR cujo retorno é um par

induzido pelo SPAN, conforme Silva e Nascimento (2023), Nascimento, Ferreira e Silva

(2023). Estamos em posição de introduzir uma regressão harmônica.

Definição 2.3.1. Sejam {(𝑌1, 𝑌2) [1, 1] | 𝒙 [1, 1]}, . . . , {(𝑌1, 𝑌2) [𝑀, 𝑁] | 𝒙 [𝑀, 𝑁]} um

conjunto de pares MBΓ distribuídos tais que[
𝑌1

𝑌2

]
[𝑖, 𝑗] = 𝜇[𝑖, 𝑗]︸ ︷︷ ︸

sinal

×
[
𝑌
(0)
1

𝑌
(0)
2

]
[𝑖, 𝑗]

︸          ︷︷          ︸
ruído speckle

, (2.21)

em que 𝜇[𝑖, 𝑗] = 𝑔−1(𝜂[𝑖, 𝑗]), 𝜂[𝑖, 𝑗] = 𝒙 [𝑖, 𝑗]⊤𝜷 + 𝜏[𝑖, 𝑗], 𝑔(·) : R+ → R é injetiva

e duas vezes continuamente diferenciável, e
[
𝑌
(0)
1 𝑌

(0)
2

]⊤ [𝑖, 𝑗] ∼ 𝑀𝐵Γ(𝐿, 𝐿, 1/𝐿) tem

FDP

𝑓 (𝑦 (0)1 , 𝑦
(0)
2 ) =

{𝑦 (0)1 [𝑦 (0)2 − 𝑦 (0)1 ]}𝐿−1𝑒−𝐿𝑦
(0)
2

𝐿−2𝐿Γ2(𝐿)
, para 0 < 𝑦 (0)1 < 𝑦

(0)
2 < ∞.

Doravante, o Modelo (2.21) será denominado regressão MBΓ (abreviadamente, MBΓR).

Uma possível componente sistemática da MBΓR, inspirado na proposta de Unwin e

Hepple (1974), é dado por

𝑔(𝜇[𝑖, 𝑗]) = 𝒙 [𝑖, 𝑗]⊤𝜷 + 𝜏[𝑖, 𝑗] = 𝛽0 +
𝑝∑︁
𝑘=1

𝛽𝑘 𝑥𝑘 [𝑖, 𝑗]

+ 1
𝑀𝑁

𝑀∑︁
𝑘1=1

𝑁∑︁
𝑘2=1

𝛽𝑘1,𝑘2 exp
{√

−1
(2𝜋 𝑘1 𝑖

𝑀
+ 2𝜋 𝑘2 𝑗

𝑁

)}
, (2.22)
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em que 𝜷⊤ = [𝛽0, 𝛽1, . . . , 𝛽𝑝], 𝒙⊤ [𝑖, 𝑗] = (1, 𝑥1 [𝑖, 𝑗], . . . , 𝑥𝑝 [𝑖, 𝑗]) e 𝛽𝑘1,𝑘2 é a transfor-

mada de Fourier bidimensional (2D) para o sinal 2D 𝜏[𝑖, 𝑗] dada por (LIM, 1990)

𝛽𝑘1,𝑘2 =

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝜏[𝑖, 𝑗] exp
{
−
√
−1

(2𝜋 𝑘1 𝑖

𝑀
+ 2𝜋 𝑘2 𝑗

𝑁

)}
. (2.23)

É importante mencionar que a componente sistemática dada em (2.22) é comumente

chamada de regressão semi paramétrica. Neste contexto, os coeficientes dados na parte

não paramétrica devem ser estimados. Contudo, no nosso caso, trataremos como modelo

harmônico, pois a parte espacial presente em 𝑔(𝜇[𝑖, 𝑗]) − 𝒙 [𝑖, 𝑗]⊤𝜷 e representada por

decomposição espectral via transformada de Fourier em 2𝐷 (LIM, 1990).

2.3.2 Novo critério de comparação de modelos baseado em M𝑀𝐵Γ

Nesta seção, propõe-se uma nova medida de discrepância entre uma amostra inde-

pendente distribuída segundo MBΓR e sua versão empírica. Com base nessa proposta, é

possível escolher entre um modelo MBΓ (reparametrizado ou não) e o MBΓR para uma

base de dados SAR bidimensionais. Esta avaliação pode se dar tanto por inspeção visual

dos mapas estatísticos quanto por uma avaliação quantitativa. Essa nova ferramenta é

apresentada e discutida a seguir.

Holynski (2024) propôs um excelente tratamento matemático para obter inferên-

cia estatística a partir de métodos de transformadas integrais empíricas. Nesta seção,

utiliza-se uma abordagem muito semelhante para derivar uma medida de discrepância.

Considere, como forma de quantificar a discrepância entre a amostra independente e a

suposição probabilística, a quantidade: Para 𝜽 ∈ {(𝛼1, 𝛼2, 𝛾), (𝜇, 𝐿), (𝜷, 𝐿)},

T (𝜽) = 𝑀𝑁

� �
B∈C2

∥ M̂D (𝑠1, 𝑠2) −M𝑛 (𝑠1, 𝑠2) ∥2 d𝑊 (𝑠1, 𝑠2)

= 𝑀𝑁

� �
B∈C2

∥ M̂D (𝑠1, 𝑠2) −M𝑛 (𝑠1, 𝑠2) ∥2 𝑤(𝑠1, 𝑠2) d𝐴𝑠1d𝐴𝑠2, (2.24)

em que 𝑤(𝑠1, 𝑠2) é uma função de peso, ∥ 𝑧 ∥2= 𝑧∗𝑧 = ℜ2 [𝑧] + ℑ2 [𝑧] é a norma

quadrada de uma argumento complexo, ℜ[·] é a parte real de um argumento, ℑ[·]
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representa a parte imaginaria,
�
(·) representa uma integral de linha (cf. Bessa (2023)) e

M̂D (𝑠1, 𝑠2) é a transformada de Mellin bivariada teórica ajustada (substituindo o vetor

de parâmetros 𝜽 pelo estimador consistente associado 𝜽) sob a suposição probabilística

D (como as de densidades nas Equações (2.12) e (2.17)). Para MBΓR, tomando 𝜷 e 𝐿̂

como estimadores consistentes de 𝜷 e 𝐿, respectivamente, a Equação (2.20) se reduz a

M̂D (𝑠1, 𝑠2) =
Γ(𝑠1 + 𝑠2 + 2𝐿̂ − 2)

𝐿̂𝑠1+𝑠2−2Γ( 𝐿̂)
Γ(𝑠1 + 𝐿̂ − 1)
Γ(𝑠1 + 2𝐿̂ − 1)

[ 1
𝑀𝑁

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑔−1(𝒙⊤ [𝑖, 𝑗]𝜷)
] 𝑠1+𝑠2−2

(2.25)

e M𝑛 (𝑠1, 𝑠2) = [𝑀𝑁]−1 ∑𝑀
𝑖=1

∑𝑁
𝑖=1𝑌

𝑠1−1
1 [𝑖, 𝑗]𝑌 𝑠2−1

2 [𝑖, 𝑗] é sua versão empírica. Além

disso, d𝐴𝑠1 e d𝐴𝑠2 são elementos de área no plano complexo associados às variáveis 𝑠1

e 𝑠2, e B é um boreliano em C. Ver Apêndice D para detalhes.

Para computar a Equação (2.24), emprega-se integração numérica para a seguinte

expressão: usando coordenadas polares 𝑠1 = 𝑟1 exp[
√
−1𝜃1] e 𝑠2 = 𝑟2 exp[

√
−1𝜃2] e a

função de peso 𝑤(𝑠1, 𝑠2) = exp
[
−

(
𝑟2

1 + 𝑟
2
2
) ]

,

T = 𝑁𝑀

� ∞

0

� 2𝜋

0

� ∞

0

� 2𝜋

0
𝑟1𝑟2 exp

{
−

(
𝑟2

1 + 𝑟
2
2
)}

∥ M̂D (𝑟1e
√
−1𝜃1 , 𝑟2e

√
−1𝜃2) −M𝑛 (𝑟1e

√
−1𝜃1 , 𝑟2e

√
−1𝜃2) ∥2 d𝑟1d𝜃1d𝑟2d𝜃2. (2.26)

Para ilustrar o critério determinado pelas Equações (2.25) e (2.26), considere uma

amostra observada com 1000 pontos gerada de (𝑌1, 𝑌2) ∼ MBΓ(𝛼1, 𝛼2, 𝛾). A Figura 2

exibe as curvas paraT (𝛼̂1+𝜖, 𝛼̂2, 𝐿̂) em preto, T (𝛼̂1, 𝛼̂2+𝜖, 𝐿̂) em cinza, eT (𝛼̂1, 𝛼̂2, 𝐿̂+

𝜖) em cinza-claro. Em todos os casos, para 𝜖 = 0, observa-se, como esperado, T (𝜽) ≈ 0.

Para |𝜖 | ≠ 0, o valor de T (𝜽) cresce à medida que |𝜖 | se afasta de zero. Esse aumento é

mais significativo para a variação em 𝛼1 e menos expressivo em 𝐿.

No que segue, discutimos como estimar os parâmetros da MBΓR.
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(a) 𝛼1 = 3, 𝛼2 = 3 e 𝛾 = 10. (b) 𝛼1 = 2, 𝛼2 = 2 e 𝛾 = 20.

(c) 𝛼1 = 3, 𝛼2 = 1 e 𝛾 = 5. (d) 𝛼1 = 5, 𝛼2 = 4 e 𝛾 = 3.
Figura 2 – Curvas do critério proposto entre a estatística de Mellin para a distribuição MBΓ e as transfor-

madas de Mellin empíricas.

2.3.3 Estimação dos parâmetros da regressão gama de McKay

Zhao, Jang e Kim (2022) mostraram que, se (𝑋1, 𝑋2) [1, 1], . . . , (𝑋1, 𝑋2) [𝑀, 𝑁]

é uma amostra aleatória com 𝑛(= 𝑀𝑁) pontos de (𝑋1, 𝑋2) ∼ 𝑀𝐵Γ(𝛼1, 𝛼2, 𝛾), os

estimadores de máxima verossimilhança (EMVs) para 𝜽 = (𝛼1, 𝛼2, 𝛾) são dados por:

definindo

⟨𝜑1(𝑋1)𝜑2(𝑋2)𝜑3(𝑋2 − 𝑋1)⟩ =
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝜑1(𝑋1 [𝑖, 𝑗])𝜑2(𝑋2 [𝑖, 𝑗])𝜑3(𝑋2 [𝑖, 𝑗] − 𝑋1 [𝑖, 𝑗])
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para funções mensuráveis 𝜑𝑖 (·),

𝛾̂ =
⟨𝑋2⟩

𝑀𝑁 (𝛼̂1 + 𝛼̂2)
, 𝛼̂1 =

1
⟨𝑋1⟩

[
(𝛼̂2 − 1)

〈
𝑋1 log 𝑋1
𝑋2 − 𝑋1

〉
− 𝑀𝑁

]
e

𝛼̂2 = −
⟨𝑋2 log 𝑋2⟩

(
𝑀𝑁 +

〈
𝑋1 log 𝑋1
𝑋2−𝑋1

〉)
+ ⟨𝑋2⟩⟨log 𝑋1⟩

(
1 + 1

𝑀𝑁
⟨log 𝑋2⟩ − 1

𝑀𝑁

〈
𝑋2 log 𝑋2
𝑋2−𝑋1

〉)
1
𝑀𝑁

⟨𝑋2⟩⟨log 𝑋1⟩
〈
𝑋2 log 𝑋2
𝑋2−𝑋1

〉
− ⟨𝑋2 log 𝑋2⟩

〈
𝑋1 log 𝑋1
𝑋2−𝑋1

〉
− ⟨log 𝑋1⟩⟨𝑋2 log 𝑋2⟩

.

Sejam {(𝑌1, 𝑌2) [1, 1] | 𝒙 [1, 1]}, . . . , {(𝑌1, 𝑌2) [𝑀, 𝑁] | 𝒙 [𝑀, 𝑁]} uma amos-

tra independente com 𝑛(= 𝑀𝑁) pontos tal que {(𝑌1, 𝑌2) [𝑖, 𝑗] | 𝒙 [𝑖, 𝑗]} ∼

Γ(𝐿, 𝐿, 𝜇[𝑖, 𝑗] (𝜷)/𝐿). A função de log-verossimilhança associada para {[(𝑦𝑖1, 𝑦𝑖2) |

𝒙𝑖]; 𝑖 = 1, . . . , 𝑛} sendo uma amostra observada, é dada por:

ℓ( [𝐿, 𝜷]) = 2𝑛𝐿 log 𝐿 − 𝐿
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑦2 [𝑖, 𝑗]
𝜇[𝑖, 𝑗] − 2𝐿

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log 𝜇[𝑖, 𝑗] − 2𝑛 log Γ(𝐿)

+ (𝐿 − 1)
{ 𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log 𝑦1 [𝑖, 𝑗] +
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log(𝑦2 [𝑖, 𝑗] − 𝑦1 [𝑖, 𝑗])
}
, (2.27)

em que 𝜇[𝑖, 𝑗] = 𝑔−1(𝒙 [𝑖, 𝑗]⊤𝜷). Note que a componente sistemática em (2.22) tem duas

partes, uma paramétrica e uma não paramétrica que será representada via decomposição

espectral. Vamos começar com a estimação de 𝜷.

A função escore associada, U ( [𝐿, 𝜷]) = [U𝐿 ,U
⊤
𝜷]⊤ = [𝜕ℓ/𝜕𝐿, 𝜕ℓ/𝜕𝜷⊤]⊤, tem

entradas:

• U𝐿:

U𝐿 = 2𝑛 log 𝐿 + 2𝑛 −
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑦2 [𝑖, 𝑗]
𝜇[𝑖, 𝑗] − 2

𝑛∑︁
𝑖=1

log 𝜇[𝑖, 𝑗] − 2𝑛Ψ(0)
(𝐿)

+
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log 𝑦1 [𝑖, 𝑗] +
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log(𝑦2 [𝑖, 𝑗] − 𝑦1 [𝑖, 𝑗]).
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A partir de U𝐿 |𝐿=𝐿̂ = 0, obtém-se

2𝑛[log 𝐿̂ − Ψ
(0)
( 𝐿̂)

] =
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑦2[𝑖, 𝑗]
𝜇[𝑖, 𝑗] + 2

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log 𝜇[𝑖, 𝑗] −
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log 𝑦1 [𝑖, 𝑗]

−
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log(𝑦2 [𝑖, 𝑗] − 𝑦1 [𝑖, 𝑗]).

Usando log(𝑧) − Ψ
(0)
(𝑧) ≈ − 1

2𝑧
,

1
𝐿̂
=

1
𝑛

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log 𝑦1 [𝑖, 𝑗] +
1
𝑛

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log(𝑦2 [𝑖, 𝑗] − 𝑦1 [𝑖, 𝑗])

− 1
𝑛

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑦2 [𝑖, 𝑗]
𝜇[𝑖, 𝑗] − 2

𝑛

𝑛∑︁
𝑖=1

log 𝜇[𝑖, 𝑗] .

Com isso,

𝐿̂ =

{
1
𝑛

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log 𝑦1 [𝑖, 𝑗] +
1
𝑛

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log(𝑦2 [𝑖, 𝑗] − 𝑦1 [𝑖, 𝑗])

− 1
𝑛

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑦2 [𝑖, 𝑗]
𝜇[𝑖, 𝑗] − 2

𝑛

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log 𝜇[𝑖, 𝑗]
}−1

, (2.28)

que é um estimador em forma fechada para o número de equivalentes de looks.

É importante mencionar que a proposição de um estimador para o número de

equivalentes de looks é uma área bem definida no processamento de imagens

SAR; ver, por exemplo, Harezlak, Ruppert e Wand (2018) e Ruppert, Wand e

Carroll (2003).

• U𝜷:

U𝜷 = 𝐿

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑦2 [𝑖, 𝑗]
𝜇2 [𝑖, 𝑗]

𝜕𝜇[𝑖, 𝑗]
𝜕𝜂[𝑖, 𝑗]

𝜕𝜂[𝑖, 𝑗]
𝜕𝜷

− 2𝐿
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝒙 [𝑖, 𝑗]
𝜇[𝑖, 𝑗]𝑔′(𝜇[𝑖, 𝑗])

= 𝐿

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

(
𝑦2 [𝑖, 𝑗]
𝜇[𝑖, 𝑗]2 − 2

𝜇[𝑖, 𝑗]

)
𝒙 [𝑖, 𝑗]

𝑔′(𝜇[𝑖, 𝑗]) = 𝐿𝑿⊤𝑾𝒀∗,
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em que

𝑿 =


𝒙 [1, 1]⊤

...

𝒙 [𝑀, 𝑁]⊤


, 𝑾 = diag

{
1

𝑔′(𝜇[1, 1]) , . . . ,
1

𝑔′(𝜇[𝑀, 𝑁])

}
,

e

𝒀∗ =

[(
𝑦2 [1, 1]
𝜇2 [1, 1]

− 2
𝜇[1, 1]

)
, . . . ,

(
𝑦2 [𝑀, 𝑁]
𝜇2 [𝑀, 𝑁]

− 2
𝜇[𝑀, 𝑁]

)]⊤
.

A matriz Hessiana,

𝑯( [𝐿, 𝜷]) =
[
U𝐿𝐿 U𝐿𝜷

U𝜷𝐿 U𝜷𝜷⊤

]
=

[
𝜕2ℓ
𝜕𝐿2

𝜕2ℓ
𝜕𝐿𝜕𝜷⊤

𝜕2ℓ
𝜕𝐿𝜕𝜷

𝜕2ℓ
𝜕𝜷𝜕𝜷⊤

]
,

tem componentes dados por

U𝐿𝐿 = 2𝑛[𝐿−1 − Ψ
(1)
(𝐿)], U𝐿𝜷 = U

⊤
𝜷𝐿 = 𝒀∗⊤𝑾𝑿, e U𝜷𝜷 = 𝑿⊤𝑾2𝑿

em que 𝑾2 = diag{𝑤2 [1, 1], . . . , 𝑤2 [𝑀, 𝑁]} e

𝑤2 [𝑖, 𝑗] =
1

[𝑔′(𝜇[𝑖, 𝑗])]2

[
2

𝜇[𝑖, 𝑗]2 − 2𝑦2 [𝑖, 𝑗]
𝜇3 [𝑖, 𝑗]

]
+ 𝑔′′(𝜇[𝑖, 𝑗])

[𝑔′(𝜇[𝑖, 𝑗])]3

[
2

𝜇[𝑖, 𝑗] −
𝑦2 [𝑖, 𝑗]
𝜇2 [𝑖, 𝑗]

]
.

Assim, a matriz de informação de Fisher é

𝑰( [𝐿, 𝜷]) = E{−𝑯( [𝐿, 𝜷])} = −

E(U𝐿𝐿) E(U𝐿𝜷)

E(U𝜷𝐿) E(U𝜷𝜷)

 =

[
𝜅𝐿𝐿 𝜅𝐿𝜷

𝜅𝜷𝐿 𝜅𝜷𝜷

]
, (2.29)

em que

𝜅𝐿𝐿 = 2𝑛
[
Ψ

(1)
(𝐿) −

1
𝐿

]
, 𝜅𝐿𝜷 = 𝜅⊤𝜷𝐿 = 𝑶𝑝×1, 𝜅𝜷𝜷 = 𝐿𝑿⊤𝑾1𝑿 .

e 𝑾1 = diag{2/[𝜇[1, 1]𝑔′(𝜇[1, 1])]2, . . . , 2/[𝜇[𝑀, 𝑁]𝑔′(𝜇[𝑀, 𝑁])]2}. Observa-se

que a informação de Fisher é em blocos diagonais, o que facilita a obtenção dos erros-

padrão dos estimadores de máxima verossimilhança.

31



Finalmente, o EMV para o número de looks 𝐿 é dado na Equação (2.28), enquanto

aquele para 𝜷 não tem formula fechada. Entretanto, usando o método Scoring-Fisher, o

EMV para 𝜷 pode ser derivado pela seguinte identidades iterativas:

𝜷(𝑖+1) = 𝜷(𝑖) − 𝜅−1
𝜷𝜷 (𝜷

(𝑖))𝑼𝜷 (𝜷(𝑖))

= 𝐿̂ (𝑖) (𝑿⊤𝑾2(𝜷(𝑖))𝑿)−1
[
𝒕(𝜷(𝑖)) − 𝑿⊤𝑾 (𝜷(𝑖))𝒀∗(𝜷(𝑖))

]
, (2.30)

em que 𝒕(𝜷(𝑖)) = [𝐿̂ (𝑖)]−1(𝑿⊤𝑾2(𝜷(𝑖))𝑿)𝜷(𝑖) . Como critério de parada para a Equa-

ção (2.30), adotou-se ∥ 𝜷(𝑖+1)−𝜷(𝑖) ∥< 𝜖 tal que 𝜖 é um erro de precisão pre-especificado,

em que ∥ 𝒂 ∥=
√
𝒂⊤𝒂.

Para estimar 𝛽𝑘1,𝑘2 na Equação (2.23), substitui-se 𝜏[𝑖, 𝑗] por 𝜏̂[𝑖, 𝑗] = 𝑔(𝑌 [𝑖, 𝑗]) −

𝒙⊤ [𝑖, 𝑗]𝜷, resultando na expressão:

𝛽𝑘1,𝑘2 =

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝜏̂[𝑖, 𝑗] exp
{
−
√
−1

(2𝜋 𝑘1 𝑖

𝑀
+ 2𝜋 𝑘2 𝑗

𝑁

)}
,

em que 𝜷 é o ponto de convergência de {𝜷(𝑖); 𝑖 = 1, 2, . . .}.

2.3.4 Analise de resíduos para regressão gama de McKay

Na proposição de um modelo de regressão, a análise de resíduo é uma etapa funda-

mental. Esta etapa permite que tanto as suposições do modelo sejam verificadas como

observações destoantes sejam identificadas. Na literatura de regressão, há diversos tipos

de resíduos, entre eles: resíduo original, resíduo padronizado, resíduo de Cox–Snell,

resíduo de desvio (deviance), entre outros (MCCULLAGH; NELDER, 1989; DUNN;

SMYTH, 2018).

Neste trabalho, utiliza-se o seguinte resíduo de Pearson:[
𝑅1

𝑅2

]
[𝑖, 𝑗] =

[ √
𝐿

𝑌1 [𝑖, 𝑗] − 𝜇[𝑖, 𝑗]
𝜇[𝑖, 𝑗]√︃

𝐿
2
𝑌2 [𝑖, 𝑗] − 2 𝜇[𝑖, 𝑗]

𝜇[𝑖, 𝑗]

]
.
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Considere discutir a distribuição assintótica do resíduo marginal. De McCullagh e Nelder

(1989), segue-se que 𝜇[𝑖, 𝑗] = 𝑔−1(𝒙 [𝑖, 𝑗]⊤𝜷) P−−−−−−−→
𝑀,𝑁→∞

𝜇[𝑖, 𝑗] = 𝑔−1(𝒙 [𝑖, 𝑗]⊤𝜷) se 𝜷

representa os EMVs e, portanto, {𝑌1 [𝑖, 𝑗] − 𝜇[𝑖, 𝑗]}, {𝑌2 [𝑖, 𝑗] − 2 𝜇[𝑖, 𝑗]} P−−−−−−−→
𝑀,𝑁→∞

0,

em que “ P−−−−−−−→
𝑀,𝑁→∞

” representa a convergência em probabilidade.

Adicionalmente, pelo Teorema de Slutsky (MUKHOPADHYAY, 2020),

𝑅1 [𝑖, 𝑗]
D−−−−−−−→

𝑀,𝑁→∞
𝑍1 ≜

√
𝐿

(
𝑌1 [𝑖, 𝑗]
𝜇[𝑖, 𝑗] − 1

)
e 𝑅2 [𝑖, 𝑗]

D−−−−−−−→
𝑀,𝑁→∞

𝑍2 ≜

√︂
𝐿

2

(
𝑌2 [𝑖, 𝑗]
𝜇[𝑖, 𝑗] − 2

)
,

em que “ D−−−−−−−→
𝑀,𝑁→∞

” denota a convergência em distribuição. Logo E(𝑅𝑘 [𝑖, 𝑗]) =𝑎 E(𝑍𝑘 ) =

0 para 𝑘 = 1, 2,

Var(𝑅𝑘 [𝑖, 𝑗]) =𝑎 Var(𝑍𝑘 ) =
𝐿

𝑘 𝜇2 [𝑖, 𝑗]
Var(𝑌𝑘 [𝑖, 𝑗]) = 1

e

Cov(𝑅1 [𝑖, 𝑗], 𝑅2 [𝑖, 𝑗]) =𝑎 Cov(𝑍1, 𝑍2) =
𝐿 Cor(𝑌1 [𝑖, 𝑗], 𝑌2 [𝑖, 𝑗])√

2 𝜇2 [𝑖, 𝑗] {Var(𝑌1 [𝑖, 𝑗])Var(𝑌2 [𝑖, 𝑗])}−1/2
=

√
2

2
,

em que 𝑓𝑛,𝑚 (𝑥) =𝑎 𝑓 (𝑥) representa a quantidade assintota quando 𝑛 e 𝑚 são suficien-

temente grande. Finalmente, pelo Teorema Central do Limite (MUKHOPADHYAY,

2020), [
𝑅1

𝑅2

]
[𝑖, 𝑗] D−−−−→

𝐿→∞
N2

©­­«
[

0

0

]
,

[
1

√
2

2
√

2
2 1

]ª®®¬
ou, como consequência de propriedades da normal multivariada,

𝑄 [𝑖, 𝑗] = 2 𝐿

{(
𝑌1 [𝑖, 𝑗] − 𝜇[𝑖, 𝑗]

𝜇[𝑖, 𝑗]

)2

−
(
𝑌1 [𝑖, 𝑗] − 𝜇[𝑖, 𝑗]

𝜇[𝑖, 𝑗]

) (
𝑌2 [𝑖, 𝑗] − 2𝜇[𝑖, 𝑗]

𝜇[𝑖, 𝑗]

)
+ 1

2

(
𝑌2 [𝑖, 𝑗] − 2𝜇[𝑖, 𝑗]

𝜇[𝑖, 𝑗]

)2}
D−−−−→

𝐿→∞
𝜒2

2 . (2.31)

A Tabela 3 apresenta uma investigação numérica para entender o comportamento na

Equação (2.31). Neste ponto, 1000 cenários de Monte Carlo são gerados e, para cada
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um deles, gera-se uma amostra n-dimensional (para 𝑛 = 49, 81) de uma MBΓR (com

coeficientes de regressão 𝛽0 = 𝛽1 = 10) e obtêm-se as avaliações da distância quadrada

de Mahalanobis na Equação (2.31) a partir dos resíduos de Pearson. Depois, é verificado

se os valores de 𝑄 [𝑖, 𝑗] seguem uma distribuição 𝜒2
2 usando do teste de Kolmogorov-

Smirnov (GLOVER; MITCHELL, 2002). Como critério de avaliação, usam-se taxas de

rejeição de H0 : Os dados de 𝑄 [𝑖, 𝑗] consistem em uma amostra observada de 𝑄 ∼ 𝜒2
2

, denotadas por 𝛼̂KS, a um nível de 5%. Quanto mais próxima de 5%, melhores são os

resultados. Pode-se observar da Tabela 3 que de fato este último resultado é confiável

para 𝐿 suficientemente grande. Quando maior o tamanho de amostra, maior é o valor

de 𝐿 requerido.

Tabela 3 – Estimativas (𝛼̂KS) para o nível nominal 5% do teste de Kolmogorov-Smirnov para testar H0 :
Os dados de 𝑄 [𝑖, 𝑗] vêm de uma população 𝜒2

2 .

𝑛(= 𝑁𝑀) 𝛽0 = 𝛽1 𝐿 𝛼̂KS

49 10 1 0.768
49 10 5 0.076
49 10 10 0.053

81 10 1 0.947
81 10 5 0.087
81 10 10 0.068
81 10 15 0.059
81 10 20 0.052

2.4 Resultados Numéricos

O estudo numérico desta seção é dividido em duas partes. Primeiro, experimentos

Monte Carlo são realizados para quantificar o desempenho dos EMVs para os parâmetros

da MBΓR. Em seguida, a MBΓR é aplicada a dados reais para descrição de texturas em

pares (intensidade, SPAN) obtidos a partir de uma imagem SAR.
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2.4.1 Estudo de simulação

Foi realizado um estudo de simulação de Monte Carlo com cinco mil réplicas para

quantificar o desempenho dos estimadores de máxima verossimilhança. Para cada

réplica, as amostras observadas foram geradas a partir de pares aleatórios seguindo

a distribuição MBΓR. Para a escolha dos parâmetros de simulação (𝛽0, 𝛽1), foram

selecionadas quatro regiões de uma imagem de San Francisco (EUA) — oceano, floresta,

área urbana e uma região híbrida composta pelas três anteriores — conforme ilustrado

na Figura 3 e cujos valores estão apresentados nas Tabelas 4, 5 e 6. Adotou-se o número

de looks quatro (correspondente à imagem de San Francisco) e tamanhos amostrais em

{5×5, 7×7, 9×9, 11×11, 13×13} (tamanhos comumente usados no processamento de

imagens SAR). Assumiu-se que os valores verdadeiros representam faixas de intensidade

SAR com diferentes texturas. As seguintes medidas foram utilizadas como critérios de

avaliação: viés e erro quadrático médio (EQM).

As Tabelas 4, 5 e 6 apresentam informações sobre o desempenho das estimativas.

De modo geral, as estimativas foram aceitáveis e produziram valores de EQM e viés

que diminuem com o aumento do tamanho amostral. Ao analisar o tipo de textura como

fonte de comparação, as estimativas dos coeficientes de regressão exibem menores

EQMs para floresta, área urbana e híbrida do que para oceano; já as estimativas de

𝐿 apresentam menores valores para oceano do que para as demais texturas. Estes

resultados estão alinhados com o que se espera fisicamente. Note que os parâmetros em

𝜷 estão associados com o sinal conforme Equação (2.21); enquanto, o 𝐿 é relacionado ao

speckle, que é presente plenamente em cenários homogêneos, oceano (NASCIMENTO;

FERREIRA; SILVA, 2023). Os resultados numéricos confirmam a superioridade do

cenário com 𝐿 = 4, em relação a 𝐿 = 1 (caso singlelook) e 𝐿 = 2: na textura oceânica, o

EQM de 𝛽1 reduziu-se de 1514.91 para 264.94; na floresta, de 53.16 para 9.97; na área

urbana, de 2.32 para 0.39; e na híbrida, de 5.90 para 1.27. Além disso, os vieses médios

de 𝛽1 apresentaram reduções expressivas, passando de aproximadamente −0.043 para
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Figura 3 – Áreas selecionadas para estimação de parâmetros.

𝐿 = 1 para cerca de −0.014 em 𝐿 = 4, o que representa uma diminuição de quase

três vezes. Esses resultados indicam que as estimativas tornaram-se mais centradas e

consistentes, evidenciando maior estabilidade numérica e menor tendência sistemática

nos parâmetros ajustados. Assim, os resultados são melhores para 𝐿 = 4, constatando

o que se provou matematicamente que os melhores resultados são quando 𝐿 → ∞

em (2.31).

2.4.2 Aplicação a dados reais

Nesta seção, aplica-se a MBΓR para analisar um trecho de imagem SAR de

São Francisco obtidas por um sensor AIRSAR com número de looks quatro, 𝐿 = 4. A

imagem utilizada na Figura 3 tem dimensão 150×150 e contém três texturas claramente

definidas: oceano, floresta e área urbana. A base de dados sobre a qual essa imagem se
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O radar AIRSAR (Airborne Synthe-
tic Aperture Radar) é uma ferramenta de
imagem apta a trabalhar em todas as con-
dições climáticas. Seus comprimentos de
onda mais longos também podiam penetrar
no dossel florestal e em áreas extremamente
secas, através de fina camada de areia e neve
seca. O Laboratório de Propulsão a Jato
(JPL) projetou o AIRSAR e este serviu como
um banco de testes de tecnologia de radar da
National Aeronautics and Space Adminis-
tration (NASA). Como parte do Earth Sci-
ence Enterprise da NASA, o AIRSAR voou
pela primeira vez em 1988 e realizou sua
última missão em 2004.

Figura 4 – Imagem do sistema AIRSAR.

apoia é descrita a seguir.

Sistemas PolSAR utilizam iluminação coerente na aquisição de imagens e, como

consequência, os retornos multivariados são afetados por ruído de speckle multidimen-

sional, o que dificulta o processamento (por exemplo, análise de textura e classificação)

de imagens PolSAR. Para levar em conta o efeito desse ruído, adota-se o processamento

multilook como segue.

Sejam 𝒛1, . . . , 𝒛𝐿 tais que 𝒛𝑖 =

[
𝑆
(𝑖)
𝐻𝐻
, 𝑆

(𝑖)
𝐻𝑉
, 𝑆

(𝑖)
𝑉𝑉

]⊤
, para 𝑖 = 1, . . . , 𝐿, como 𝐿

observações em um dado pixel; então, os dados PolSAR multilook são definidos pela

matriz

𝒁 =
1
𝐿

𝐿∑︁
𝑖=1

𝒛𝑖 𝒛
∗
𝑖 =

1
𝐿

𝐿∑︁
𝑖=1


⟨𝑆(𝑖)
𝐻𝐻
, 𝑆

(𝑖)
𝐻𝐻

⟩ ⟨𝑆(𝑖)
𝐻𝐻
, 𝑆

(𝑖)
𝐻𝑉

⟩ ⟨𝑆(𝑖)
𝐻𝐻
, 𝑆

(𝑖)
𝑉𝑉

⟩

⟨𝑆(𝑖)
𝐻𝑉
, 𝑆

(𝑖)
𝐻𝐻

⟩ ⟨𝑆(𝑖)
𝐻𝑉
, 𝑆

(𝑖)
𝐻𝑉

⟩ ⟨𝑆(𝑖)
𝐻𝑉
, 𝑆

(𝑖)
𝑉𝑉

⟩

⟨𝑆(𝑖)
𝑉𝑉
, 𝑆

(𝑖)
𝐻𝐻

⟩ ⟨𝑆(𝑖)
𝑉𝑉
, 𝑆

(𝑖)
𝐻𝑉

⟩ ⟨𝑆(𝑖)
𝑉𝑉
, 𝑆

(𝑖)
𝑉𝑉

⟩


, (2.32)

em que ⟨𝑎, 𝑏⟩ = 𝑎 𝑏∗, ∀𝑎, 𝑏 ∈ C, é o produto interno entre 𝑎 e 𝑏. A característica

𝐼ℓ = 𝐿−1 ∑𝐿
𝑖=1⟨𝑆

(𝑖)
ℓ
, 𝑆

(𝑖)
ℓ
⟩, para ℓ = 𝐻𝐻, 𝐻𝑉,𝑉𝑉 , é conhecida como intensidade.
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Nesta aplicação, buscamos identificar padrões para o sinal em 𝒀 = (𝐼𝐻𝐻 , 𝑆𝑃𝐴𝑁) =

(𝐼𝐻𝐻 , 𝐼𝐻𝐻 + 𝐼𝑉𝑉 ).

O objetivo principal desta aplicação é verificar em quais situações o uso da

MBΓR faz mais sentido do que o uso da MBΓ incondicional, com ou sem repara-

metrização. Para isso, selecionamos janelas deslizantes (3 × 3) ao redor de cada pixel

(excluindo as bordas) e aplicamos, a cada uma dessas janelas, os modelos incondicionais

MBΓ(𝛼1, 𝛼2, 𝛾) e MBΓ(𝜇, 𝐿), bem como os modelos condicionais MBΓR(𝜇(𝜷), 𝐿).

A seguinte estrutura sistemática é utilizada para a MBΓR:

𝜇(𝜷) [𝑖, 𝑗] =E{𝒀 [𝑖, 𝑗] | ℜ[⟨𝑆HH, 𝑆VV⟩] [𝑖, 𝑗]}

=𝛽0 + 𝛽1ℜ[⟨𝑆HH, 𝑆VV⟩] [𝑖, 𝑗] + 𝜏[𝑖, 𝑗] .

A seguir, analisamos o desempenho preditivo das duas abordagens reparametrizadas

e, então, as comparamos com o critério de Mellin proposto, T (𝜽).

A Figura 5 apresenta as imagens preditas. Em todos os casos, observa-se que o mapas

fornecem uma representação que se alinha com a dinâmica das texturas da imagem; isto

é, as três texturas estão bem delineadas.

A Figura 6 mostra comparações entre valores observados e ajustados para 𝜇 e 𝜇(𝜷)

por textura. Primeiro, um mapa de referência (ground truth) é mostrado na Figura 6a.

Em seguida, os ajustes (cujas curvas associadas: a tracejada clara representa a MBΓ

sem reparametrização, a tracejada escura representa a MBΓ reparametrizada e a linha

cheia, a MBΓR) em áreas de mar, floresta e urbana são examinados nas Figuras 6b, 6c e

6d. Em todos os casos, a MBΓR apresenta desempenho superior ao da MBΓ.

A Tabela 7 apresenta os resultados da distância de Kullback–Leibler (KL) (KULL-

BACK, 1997) entre as distribuições empíricas das intensidades observadas e valores

preditos por texturas. O MBΓR (com regressor Fourier) apresentou as menores distân-

cias KL em todos os casos, evidenciando o melhor ajuste global aos dados observados.

O ganho de desempenho é particularmente expressivo em relação aos modelos sem o

termo de Fourier, isso se deve a incorporar estrutura de dependência espacial.
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(a) 𝜇[𝑖, 𝑗] só com intercepto.

(b) 𝜇[𝑖, 𝑗] com regressor paramétrico. (c) 𝜇[𝑖, 𝑗] com regressor semi-paramétrico
Figura 5 – Foram utilizados os canais HH e HH+VV; 𝜇 = 𝛾𝐿 e 𝜇̂ = exp{𝛽0 + 𝛽1ℜ(𝐻𝐻𝑉𝑉)}.

Tabela 7 – Distâncias KL entre densidades empíricas de intensidades observadas e preditas nas texturas
de oceano, floresta e urbano da imagem AIRSAR de São Francisco.

Modelos Ajustados

Textura MBΓ reparametrizada MBΓ reparametrizada
com Regressão

MBΓ reparametrizada
com Regressão e Fourier

Oceano 0.1981 0.8603 0.0066
Floresta 0.1844 0.4848 0.0067
Urbano 0.3505 0.3512 0.0068
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(a) Imagem de São Francisco (b) Ajustes na região oceânica — curva preta/𝜇
vs. curva cinza/𝜇(𝜷)

(c) Ajustes na região de floresta — curva preta/𝜇
vs. curva cinza/𝜇(𝜷)

(d) Ajustes na região urbana — curva preta/𝜇 vs.
curva cinza/𝜇(𝜷)

Figura 6 – Ajustes por região para a imagem de São Francisco.

A Figura 7 apresenta mapas nos quais o critério (2.26) é aplicado aos modelos

original, reparametrizado e de regressão. Quanto maiores os valores de T , melhor é o

modelo associado. Nota-se que o modelo original é mais adequado para descrever áreas

oceânicas, o que é esperado para cenários sem sinal estrutural. Por outro lado, os modelos

reparametrizados foram superiores para texturas de floresta e urbana. A Figura 8a mostra

o modelo MBΓ(𝛼1, 𝛼2, 𝛾) em pixels pretos quando apresenta melhor desempenho e

MBΓR(𝜇, 𝐿) em pixels brancos. A Figura 8b mostra o modelo MBΓ(𝛼1, 𝛼2, 𝛾) em
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pixels pretos quando é superior e MBΓR(𝜇(𝜷), 𝐿) em pixels brancos. A Figura 8c

mostra o modelo MBΓR(𝜇, 𝐿) em pixels pretos quando é melhor e MBΓR(𝜇(𝜷), 𝐿) em

pixels brancos. Observa-se que MBΓR(𝜇(𝜷), 𝐿) supera MBΓR(𝜇, 𝐿) nos cenários em

que a textura é mais pronunciada (por exemplo, em florestas e áreas urbanas), superando

também a MBΓ(𝛼1, 𝛼2, 𝛾). Para a região oceânica, por outro lado, MBΓ(𝛼1, 𝛼2, 𝛾)

apresentou os melhores resultados.

(a)
(
T𝑀𝐺Γ
𝑛 (𝛼1, 𝛼2, 𝛾)

)0.01. (b)
(
T𝑀𝐺Γ𝑅𝑒𝑝
𝑛 (𝜇, 𝐿)

)0.01
. (c)

(
T𝑀𝐺Γ𝑅𝑒𝑝
𝑛 ( 𝜇̂, 𝐿)

)0.01
.

Figura 7 – Imagens de São Francisco com valores da transformada de Mellin (T𝑛) para T𝑀𝐺Γ
𝑛 (𝛼1, 𝛼2, 𝛾),

T𝑀𝐺Γ𝑅𝑒𝑝
𝑛 (𝜇, 𝐿) e T𝑀𝐺Γ𝑅𝑒𝑝

𝑛 ( 𝜇̂, 𝐿).

(a) T𝑀𝐺Γ
𝑛 (𝛼1, 𝛼2, 𝛾) vs.
T𝑀𝐺Γ𝑅𝑒𝑝
𝑛 (𝜇, 𝐿), em que
T𝑀𝐺Γ
𝑛 (𝛼1, 𝛼2, 𝛾) apa-

rece em pixels pretos e
T𝑀𝐺Γ𝑅𝑒𝑝
𝑛 (𝜇, 𝐿) em pixels

brancos.

(b) T𝑀𝐺Γ
𝑛 (𝛼1, 𝛼2, 𝛾) vs.
T𝑀𝐺Γ𝑅𝑒𝑝
𝑛 ( 𝜇̂, 𝐿), em que
T𝑀𝐺Γ
𝑛 (𝛼1, 𝛼2, 𝛾) apa-

rece em pixels pretos e
T𝑀𝐺Γ𝑅𝑒𝑝
𝑛 ( 𝜇̂, 𝐿) em pixels

brancos.

(c) T𝑀𝐺Γ𝑅𝑒𝑝
𝑛 (𝜇, 𝐿) vs.
T𝑀𝐺Γ𝑅𝑒𝑝
𝑛 ( 𝜇̂, 𝐿), em que
T𝑀𝐺Γ𝑅𝑒𝑝
𝑛 (𝜇, 𝐿) apa-

rece em pixels pretos e
T𝑀𝐺Γ𝑅𝑒𝑝
𝑛 ( 𝜇̂, 𝐿) em pixels

brancos.
Figura 8 – Foram utilizados os canais HH e HH+VV, com 𝛼1 = 𝛼2 = 𝐿 e 𝜇 = 𝛾𝐿; 𝜇̂ = exp{𝛽0 +

𝛽1ℜ(𝐻𝐻𝑉𝑉)}.
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2.5 Considerações parciais da primeira contribuição

A literatura recente tem mostrado que a distribuição gama bivariada de McKay para o

par (Intensidade, SPAN) ∼ MBΓ(𝛼1, 𝛼2, 𝛾) – é um suposto interpretável para atributos

induzidos pelo SPAN. Neste capítulo, avançou-se o trabalho de Nascimento, Ferreira e

Silva (2023), propondo o modelo MBΓR. Essa formulação permitiu relacionar pares de

atributos induzidos pelo SPAN a regressores paramétricos (geométricos, radiométricos

ou contextuais) e padrão espacial extraído pela representação de Fourier bidimensional.

Do ponto de vista inferencial, derivaram-se a matriz de informação de Fisher e um

estimador iterativo baseado no método de Scoring-Fisher. Em particular, apresentou-se

um novo estimador em forma fechada para o número de equivalente de looks. Introduziu-

se ainda um critério de seleção de modelo baseado na transformada de Mellin.

Experimentos sintéticos e numéricos advogam em favor do uso da MBΓR para

extração de textura pela flexibilidade de incorporar várias fontes de variação e ter uma

relação com a física de formação.
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3 Detecção de bordas via divergências

entre atributos SPAN tipo razão

Uma imagem SAR é formada a partir da energia eletromagnética retroespalhada

pelos alvos na superfície terrestre, sendo construída por meio da combinação coerente

dos sinais transmitidos e recebidos ao longo da trajetória do radar. Diferentemente de

uma imagem óptica RGB, que é derivada de sensores multiespectrais sensíveis à radiação

refletida em bandas específicas do espectro visível, as intensidades SAR dependem

diretamente das propriedades físicas do alvo — rugosidade, umidade, orientação das

estruturas — e do ângulo de incidência do feixe transmitido pelo sensor.

No modo polarimétrico, o radar transmite e recebe ondas eletromagnéticas em di-

ferentes estados de polarização, tipicamente horizontal (H) e vertical (V). Os dados

PolSAR caracterizam o comportamento de espalhamento dos alvos e são originalmente

representados por um vetor complexo, contendo as componentes de polarização me-

didas. Esse vetor pode ser reorganizado na forma de uma matriz de espalhamento de

polarização S, cujos elementos correspondem às combinações transmissão–recepção:

HH, HV, VH e VV (LEE et al., 1994; YANG et al., 2021). Cada elemento da matriz

contém magnitude e fase, refletindo a natureza coerente do sistema SAR e permitindo

caracterizar fenômenos como anisotropia, simetria e mecanismos de espalhamento.

Uma técnica eficaz para decompor imagens PolSAR é a decomposição básica de

Pauli, que modela a matriz de espalhamento em três estruturas: superfície rugosa,

volume e duplo salto. Esta decomposição fornece uma imagem com informações sobre

a potência total de espalhamento, chamada de SPAN. A primeira estrutura é formada

pela recepção de sinais eletromagnéticos no solo ou em água translúcida, sendo sensível

ao espalhamento do canal VV. A segunda estrutura é formada pela recepção de sinais



em folhas e galhos em um dossel florestal e é sensível aos canais VH e HV. A última

estrutura é causada por edifícios, troncos de árvores ou vegetação inundada e é mais

sensível a um sinal polarizado HH (HAJNSEK; DESNOS, 2021).

Alguns autores têm usado o mapa de informações de SPAN para melhorar o desem-

penho de métodos de classificação, otimização, detecção de mudanças e segmentação

para imagens PolSAR, por exemplo: Sensoriamento remoto de diferenças topográfi-

cas entre montanhas e áreas urbanas (ZHANG et al., 2020) e classificação de dados

de vegetação usando coeficiente de correlação e distância euclidiana como medida de

similaridade (YIN et al., 2019). Recentemente, Nascimento, Ferreira e Silva (2023)

propuseram testes de hipóteses baseados em distâncias estocásticas para resolver proble-

mas de detecção de mudanças, considerando a distribuição gamma bivariada de McKay

para descrever características derivadas de SPAN. Este trabalho foi estendido por Silva

e Nascimento (2023).

As propostas de Nascimento, Ferreira e Silva (2023) e Silva e Nascimento (2023)

são interessantes, mas tem o foco no efeito da intensidade e do SPAN conjuntamente.

Nesta parte da tese, objetiva-se colocar a ênfase num atributo escalar do SPAN, a taxa

razão I/[I + SPAN] ∈ (0, 1/2) para I como uma intensidade, denominada de atributo

SPAN tipo razão. Inicia-se com uma discussão probabilística deste atributo a partir

da suposição (I, SPAN) ∼ MBΓ. A distribuição resultante é justificada em termos da

definição do SPAN e uma discussão de seus possíveis valores é elaborada. Derivam-

se quatro novas medidas de contraste, considerando as distâncias de Kullback-Leibler,

Rényi, Bhattacharyya e Hellinger. Então, novos testes de hipóteses são propostos com

base em Teoria da Informação para atributos SPAN tipo razão. Quanto aos detectores de

borda também são introduzidos. Estudos de simulação de Monte Carlo são feitos para

quantificar o desempenho dos testes propostos. Finalmente, duas aplicações a dados

SAR reais são realizadas para investigar as áreas da região de Japaratinga, Alagoas,

Brasil e da baía de São Francisco, EUA.
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Este capítulo está organizado da seguinte forma. A Seção 3.1 contém uma discussão

justificando o uso de suposições probabilísticas adotadas. A Seção 3.2 apresenta o

método de estimação usado neste trabalho. A Seção 3.3 discute a contribuição teórica

deste trabalho. A Seção 3.4 exibe os resultados numéricos. As principais contribuições

são resumidas na Seção 3.5.

3.1 Usando a distribuição Beta tipo 3 modificada como

descritor da função do SPAN

Considere agora cada entrada da imagem descrita pelo par aleatório 𝑿 [𝑖, 𝑗] =

(𝑋1 [𝑖, 𝑗], 𝑋2 [𝑖, 𝑗]) = (Intensidade, SPAN) ∼ MBΓ(𝛼1, 𝛼2, 𝛾). Do ponto de vista teó-

rico, Gupta e Nadarajah (2006b) indicaram a importância do atributo 𝑋1 [𝑖, 𝑗]/(𝑋1 [𝑖, 𝑗]+

𝑋2 [𝑖, 𝑗]) a partir de 𝑿 [𝑖, 𝑗]. Nesta seção, objetiva-se explorar sua importância na física

de formação de imagens SAR.

Definição 3.1.1. Gupta e Nadarajah (2006b) mostraram que se [𝑿 [𝑖, 𝑗] :=

(𝑋1 [𝑖, 𝑗], 𝑋2 [𝑖, 𝑗])] ∼ MBΓ(𝛼1, 𝛼2, 𝛾), então 𝑍 [𝑖, 𝑗] = 𝑋1 [𝑖, 𝑗]/(𝑋1 [𝑖, 𝑗] + 𝑋2 [𝑖, 𝑗])

segue uma distribuição com PDF dada por

𝑓𝑍 (𝑧[𝑖, 𝑗]; 𝑝, 𝑞) =
1

Beta(𝑝, 𝑞)
𝑧[𝑖, 𝑗] 𝑝−1 (1 − 2𝑧[𝑖, 𝑗])𝑞−1

(1 − 𝑧[𝑖, 𝑗])𝑝+𝑞 I(0,1/2) (𝑧[𝑖, 𝑗]), (3.1)

em que Beta(𝑝, 𝑞) = [Γ(𝑎)Γ(𝑏)]/Γ(𝑎 + 𝑏) é a função beta e Γ(𝑎) é a função gama.

Pelo que sabemos, essa distribuição não tem uma notação, então a denotamos como

𝑍 [𝑖, 𝑗] ∼ Beta1/2
3 (𝑝, 𝑞).

De agora em diante, assumimos [𝑍 [𝑖, 𝑗] = Intensidade[𝑖, 𝑗]/(Intensidade[𝑖, 𝑗] +

SPAN[𝑖, 𝑗])] ∼ Beta1/2
3 (𝑝, 𝑞). De acordo com Gupta e Nadarajah (2006b),

E[𝑍𝑛 [𝑖, 𝑗]] =
Beta(𝑝 + 𝑛, 𝑞)
2𝑝+𝑛Beta(𝑝, 𝑞) 2𝐹1(𝑝 + 𝑛, 𝑝 + 𝑞; 𝑝 + 𝑞 + 𝑛; 1/2),
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em que 2𝐹1(𝑎, 𝑏; 𝑐; 𝑥) = ∑∞
𝑘=0{(𝑎)𝑘 (𝑏)𝑘/(𝑐)𝑘 } (𝑥𝑘/𝑘!) é a função hipergeométrica de

Gauss, 𝑛 é a ordem de 𝑍 e (𝑒)𝑘 = 𝑒 (𝑒+1) · · · (𝑒+ 𝑘 −1) significa o fatorial ascendente.

Como consequência, tem-se:

E(𝑍 [𝑖, 𝑗]) =
𝑝

2𝑝+1(𝑝 + 𝑞) 2𝐹1(𝑝 + 1, 𝑝 + 𝑞; 𝑝 + 𝑞 + 1; 1/2)

e

Var[𝑍 [𝑖, 𝑗]] =
𝑝

4(𝑝 + 𝑞)2(𝑝 + 𝑞 + 1)
[2−𝑝 (𝑝 + 1) (𝑝 + 𝑞)2𝐹1(𝑝 + 2, 𝑝 + 𝑞; 𝑝 + 𝑞 + 2; 1/2)

4−𝑝𝑝(𝑝 + 𝑞 + 1) (2𝐹1(𝑝 + 2, 𝑝 + 𝑞; 𝑝 + 𝑞 + 2; 1/2))2] .
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(c) Concentração à direita

Figura 9 – Gráficos para a densidade Beta1/2
3 (𝑝, 𝑞).
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A Figura 9 ilustra o comportamento da densidade Beta1/2
3 (𝑝, 𝑞) para diferentes com-

binações dos parâmetros (𝑝, 𝑞), evidenciando como tais parâmetros controlam tanto a

assimetria quanto a região de maior concentração de probabilidade no intervalo (0, 1/2).

Quando 𝑝 = 𝑞, a distribuição tende a concentrar sua massa em torno da região central,

tornando-se aproximadamente simétrica para valores elevados de 𝑝 e 𝑞. Para 𝑝 < 𝑞,

a probabilidade concentra-se na extremidade esquerda do intervalo, produzindo uma

distribuição assimétrica voltada para valores menores. Por outro lado, quando 𝑝 > 𝑞,

a massa de probabilidade desloca-se para a extremidade direita, resultando em uma

distribuição assimétrica acentuada nessa direção.

3.2 Inferência Estatística

O estimador de máxima verossimilhança (EMV) é obtido por maximizar a função

de verossimilhança e satisfaz as propriedades consistência, eficiência e normalidade

assintótica. Vamos deduzir um procedimento para obter os EMVs para os parâmetros

da distribuição Beta1/2
3 (𝑝, 𝑞). Considere 𝑍 [1, 1], . . . , 𝑍 [𝑀, 𝑁] como uma amostra

aleatória (independente e identicamente distribuída) com 𝑛(= 𝑀𝑁) pontos de 𝑍 ∼

Beta1/2
3 (𝑝, 𝑞) e 𝑧[1, 1], . . . , 𝑧[𝑀, 𝑁]. A log-verossimilhança associada tem a forma:

ℓ(𝑝, 𝑞) =
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log 𝑓𝑍 (𝑧[𝑖, 𝑗]) = −𝑛 log Beta(𝑝, 𝑞) + (𝑝 − 1)
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log(𝑧[𝑖, 𝑗])

+ (𝑞 − 1)
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log(1 − 2 𝑧[𝑖, 𝑗]) − (𝑝 + 𝑞)
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log(1 − 𝑧[𝑖, 𝑗]). (3.2)

A função escore, também conhecida como gradiente da função log-verossimilhança,

é uma ferramenta valiosa para avaliar a sensibilidade das estimativas a pequenas al-

terações nos parâmetros, pois fornece informações sobre a direção e a magnitude das

alterações necessárias nos parâmetros (COX; HINKLEY, 1979). A função escore na
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discussão da Equação (3.2) é dada por:

U (𝑝, 𝑞) = [U𝑝, U𝑞]⊤ :=
[𝜕ℓ(𝑝, 𝑞)

𝜕𝑝
,
𝜕ℓ(𝑝, 𝑞)
𝜕𝑞

]
,

em que

U𝑝 = −𝑛[Ψ(0) (𝑝) − Ψ(0) (𝑝 + 𝑞)] +
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log
𝑧[𝑖, 𝑗]

1 − 𝑧[𝑖, 𝑗] ,

e

U𝑞 = −𝑛[Ψ(0) (𝑞) − Ψ(0) (𝑝 + 𝑞)] +
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log
1 − 2𝑧[𝑖, 𝑗]
1 − 𝑧[𝑖, 𝑗] ,

em que Ψ(𝑘) = d𝑘+1 log Γ(𝑥)/d𝑥𝑘+1. Observe que, a partir de E[U𝑝] = E[U𝑞] = 0,

seguem-se as seguintes identidades: Seja 𝑍 [𝑖, 𝑗] ∼ Beta1/2
3 (𝑝, 𝑞),

E
{
log

𝑍 [𝑖, 𝑗]
1 − 𝑍 [𝑖, 𝑗]

}
= Ψ(0) (𝑝) − Ψ(0) (𝑝 + 𝑞)

e

E
{
log

1 − 2𝑍 [𝑖, 𝑗]
1 − 𝑍 [𝑖, 𝑗]

}
= Ψ(0) (𝑞) − Ψ(0) (𝑝 + 𝑞).

E, como consequência,

E
{
log

𝑍 [𝑖, 𝑗]
1 − 2𝑍 [𝑖, 𝑗]

}
= Ψ(0) (𝑝) − Ψ(0) (𝑞).

No teorema a seguir, os valores esperados E[log 𝑍 [𝑖, 𝑗]], E[log(1 − 𝑍 [𝑖, 𝑗])] e

E[log(1 − 2𝑍 [𝑖, 𝑗])] são comprovados. Essas são etapas importantes na busca por

medidas de teoria da informação.

Teorema 3.2.1. Seja 𝑍 [𝑖, 𝑗] ∼ Beta1/2
3 (𝑝, 𝑞), então as próximas identidades são verifi-

cadas:

E𝑍1 [log 𝑍 [𝑖, 𝑗]] =[Ψ(0) (𝑝) − Ψ(0) (𝑝 + 𝑞)]2𝐹1 (𝑝, 𝑝 + 𝑞; 𝑝 + 𝑞; 1/2)

+2𝐹
(1,0,0,0)
1 (𝑝, 𝑝 + 𝑞; 𝑝 + 𝑞; 1/2) + 2𝐹

(0,0,1,0)
1 (𝑝, 𝑝 + 𝑞; 𝑝 + 𝑞; 1/2) ,

E𝑍1 [log(1 − 𝑍 [𝑖, 𝑗])] =E𝑍1 [log 𝑍 [𝑖, 𝑗]] + [Ψ(0) (𝑝 + 𝑞) − Ψ(0) (𝑝)],
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e

E𝑍1 [log(1 − 2𝑍 [𝑖, 𝑗])] =E𝑍1 [log 𝑍 [𝑖, 𝑗]] + [Ψ(0) (𝑞) − Ψ(0) (𝑝)],

em que

2𝐹
(1,0,0,0)
1 (𝑎, 𝑏; 𝑐; 𝑧) = d2𝐹1 (𝑎, 𝑏; 𝑐; 𝑧)

d𝑎
e 2𝐹

(0,0,1,0)
1 (𝑎, 𝑏; 𝑐; 𝑧) = d2𝐹1 (𝑎, 𝑏; 𝑐; 𝑧)

d𝑐
.

A prova desse teorema pode ser encontrada no Apêndice A.

A matriz de informações de Fisher (IF), por sua vez, quantifica a quantidade de

informações contidas nos dados sobre os parâmetros de um modelo ou distribuição.

Como tal, ela é determinada a partir da segunda derivada da log-verossimilhança com

relação aos parâmetros e não apenas fornece a variabilidade das EVMs, mas também

permite o cálculo de intervalos de confiança e a realização de testes de hipóteses. A

expressão da IF para Beta1/2
3 (𝑝, 𝑞) é

K (𝑝, 𝑞) = −E

U𝑝𝑝 U𝑝𝑞

U𝑞𝑝 U𝑞𝑞

 :=


− 𝜕2ℓ(𝑝,𝑞)

𝜕𝑝2 − 𝜕2ℓ(𝑝,𝑞)
𝜕𝑝𝜕𝑞

− 𝜕2ℓ(𝑝,𝑞)
𝜕𝑞𝜕𝑝

− 𝜕2ℓ(𝑝,𝑞)
𝜕𝑞2

 , (3.3)

em que U𝑝𝑝/𝑛 = Ψ(1) (𝑝) − Ψ(1) (𝑝 + 𝑞), U𝑝𝑞/𝑛 = U𝑞𝑝/𝑛 = −Ψ(1) (𝑝 + 𝑞), e U𝑞𝑞/𝑛 =

Ψ(1) (𝑞) − Ψ(1) (𝑝 + 𝑞).

Por fim, os EMVs para os parâmetros da Beta1/2
3 (𝑝, 𝑞) são dado por:

𝑝

𝑞

 = arg max
𝑝,𝑞∈R

[ℓ(𝑝, 𝑞)] .

ou, de forma equivalente, por soluções do sistema não linear
Ψ(0) (𝑞) − Ψ(0) (𝑝 + 𝑞) = 1

𝑛

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log
1 − 2𝑧[𝑖, 𝑗]
1 − 𝑧[𝑖, 𝑗] ,

Ψ(0) (𝑝) − Ψ(0) (𝑝 + 𝑞) = 1
𝑛

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

log
𝑧[𝑖, 𝑗]

1 − 𝑧[𝑖, 𝑗] .
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A Figura 10a apresenta uma imagem óptica de parte da imagem AIRSAR de São

Francisco. Essa imagem será discutida em detalhes. Ela exibe três tipos de textura:

Oceano, Floresta e Urbana. Considere que se deseja entender a informação para a qual

cada parâmetro Beta1/2
3 aponta. O mapa de 𝑝 na Figura 10b mostra que o parâmetro 𝑝

tem uma relação com os tipos de texturas encontradas. A expressão E[log(𝑍 [𝑖, 𝑗]/(1 −

𝑍 [𝑖, 𝑗]))] na Figura 10c mostra que o mapa de 𝑝 é suavizado usando a função digamma,

mas o reconhecimento dos tipos de textura é preservado. O mapa de 𝑞 na Figura 10d

mostra que o parâmetro 𝑞 não tem relação direta com a física de formação das imagens

SAR, mas quando é suavizado pela função digamma, obtém-se uma imagem que descreve

a dinâmica da imagem óptica.

A partir da expressão E[log(𝑍 [𝑖, 𝑗]/(1 − 2𝑍 [𝑖, 𝑗]))], depois de filtrar 𝑝 e 𝑞 usando

a função digamma, obtemos o mapa na Figura 10f, que mostra a descrição da dinâmica

da imagem de 𝑝 sem o efeito de 𝑞. Nesse caso, o efeito da borda é mais pronunciado.

Como esperado dos mapas nas Figuras 10g e 10h para E(𝑍 [𝑖, 𝑗]) e CV(𝑍 [𝑖, 𝑗]) =√︁
Var(𝑍 [𝑖, 𝑗])/E(𝑍 [𝑖, 𝑗]), respectivamente, eles são capazes de detectar a mudança de

textura na imagem examinada.
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(a) Imagem óptica de São Francisco obtida de Google
Earth
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(c) Mapa de Ψ (0) (𝑝) −
Ψ (0) (𝑝 + 𝑞)
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(d) Mapa de 𝑞
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(e) Mapa de Ψ (0) (𝑞) −
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(f) Mapa de Ψ (0) (𝑝) −
Ψ (0) (𝑞)
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(g) Mapa de E(𝑍)
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(h) Mapa de CV(𝑍)

Figura 10 – Mapas de EMVs e algumas de suas funções.
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3.3 Divergências para a distribuição Beta tipo 3 modifi-

cada em imagens SAR

Primeiro, apresentamos brevemente as medidas de divergência de Kullback-Leibler,

Rényi, Bhattacharyya e Hellinger. Essas medidas estocásticas são ferramentas impor-

tantes e amplamente usadas em vários campos, especialmente em inferência estatística

e processamento de imagens. A ideia pioneira na teoria da informação foi proposta por

Hartley (1928), que introduziu uma medida logarítmica de informação na comunicação.

Mais tarde, Shannon (1948) formalizou essa ideia e definiu os conceitos de entropia

e informação mútua. Por fim, o conceito de entropia relativa (mais tarde chamado de

divergência) foi introduzido por Kullback e Leibler (1951).

As medidas de divergência escolhidas também foram usadas no processamento de

imagens. Morio et al. (2009) usou a distância de Bhattacharyya como uma medida de

contraste relevante para imagens de radar. A divergência de Rényi foi usada por Salicrú

et al. (1994) como um teste de hipótese direcionado para uma família de modelos

exponenciais gerais. Algumas definições e contribuições teóricas são apresentadas a

seguir.

A divergência de Kullback–Leibler pode ser interpretada como uma medida que

quantifica o quão diferente uma distribuição de probabilidade é em relação a outra,

servindo como um critério para comparar modelos ou ajustar distribuições. Sejam 𝑍1 e

𝑍2 duas variáveis aleatórias (a partir de agora o termo [𝑖, 𝑗] será omitido da notação por

questão de simplicidade) com as PDFs 𝑓𝑍1 (𝑧; 𝜽1) e 𝑓𝑍2 (𝑧; 𝜽2) e suporte comum Z ⊂ R.

A divergência de 𝑍1 com relação a 𝑍2 é definida por

𝐷KL(𝑍1 | | 𝑍2) = E𝑍1

[
log

𝑓𝑍1 (𝑧; 𝜽1)
𝑓𝑍2 (𝑧; 𝜽2)

]
=

�
Z
𝑓𝑍1 (𝑧; 𝜽1) log

𝑓𝑍1 (𝑧; 𝜽1)
𝑓𝑍2 (𝑧; 𝜽2)

d𝑧, (3.4)

em que E𝑍1 [V(𝑍)] =
�
Z V(𝑧) 𝑓𝑍1 (𝑧; 𝜽1) d𝑧 denota a esperança de uma função inte-

grável V(·) sob a distribuição de 𝑍1. Observa-se que a Equação (3.4) é sempre não

negativa e só é zero se 𝑓𝑍1 (𝑧; 𝜽1) = 𝑓𝑍2 (𝑧; 𝜽2) para todos os 𝑧 ∈ Z. A divergência
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𝐷KL(𝑍1 | | 𝑍2) quantifica a perda de informação — ou a ineficiência — incorrida ao se

modelar os dados segundo a distribuição de 𝑍2 quando a verdadeira lei geradora é a de 𝑍1

(COVER, 1999). Também é conhecida na literatura como divergência da informação ou

informação discriminativa, destacando seu papel na comparação e distinção entre mo-

delos probabilísticos. Kullback e Leibler (1951), Csiszár (1967) e Seghouane e Amari

(2007) apresentaram um trabalho sistemático e abrangente sobre a medida de divergên-

cia de Kullback-Leibler. Embora 𝐷KL(· | | ·) seja chamada de "distância"em alguns

artigos, ela não é uma distância verdadeira entre distribuições porque não é simétrica e

não satisfaz a desigualdade triangular. Neste trabalho, consideramos uma simetrização

dessa medida (entendida como uma medida de distância na distinção entre distribuições

de probabilidade (KAILATH, 1967)): Dadas duas variáveis aleatórias que têm o mesmo

suporte, a distância de Kullback-Leibler pode ser definida da seguinte forma:

𝑑KL(𝑍1, 𝑍2) =
1
2
[𝐷KL(𝑍1 | | 𝑍2) + 𝐷KL(𝑍2 | | 𝑍1)]

=
1
2

�
Z
[ 𝑓𝑍1 (𝑧; 𝜽1) − 𝑓𝑍2 (𝑧; 𝜽2)] log

𝑓𝑍1 (𝑧; 𝜽1)
𝑓𝑍2𝑧; 𝜽2)

d𝑧. (3.5)

De acordo com (ERVEN; HARREMOS, 2014), a divergência de Rényi é definida

como:

𝐷
𝛽

𝑅
(𝜽1∥𝜽2) = 𝐷𝛽

𝑅
(𝑍1∥𝑍2) =

1
𝛽 − 1

�
Z
𝑓
𝛽

𝑍1
(𝑧) 𝑓 1−𝛽

𝑍2
(𝑧)d𝑧. (3.6)

Essa divergência não é simétrica e uma versão simetrizada é dada por:

𝑑
𝛽

𝑅
(𝑍1, 𝑍2) =

log
�
Z
𝑓
𝛽

𝑍1
(𝑧) 𝑓 1−𝛽

𝑍2
(𝑧)𝑑𝑧 + log

�
Z
𝑓

1−𝛽
𝑍1

(𝑧) 𝑓 𝛽
𝑍2
(𝑧)𝑑𝑧

2(𝛽 − 1) . (3.7)

A partir da distância de Rényi com ordem 𝛽 (𝑑𝛽
𝑅
), podemos derivar as distâncias de

Bhattacharyya (𝑑𝐵) e Hellinger (𝑑𝐻) dadas por:

𝑑𝐵 (𝑍1, 𝑍2) = − log
�
Z

√︁
𝑓𝑍1 (𝑧) 𝑓𝑍2 (𝑧)𝑑𝑧 (3.8)
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e

𝑑𝐻 (𝑍1, 𝑍2) = 1 −
�
Z

√︁
𝑓𝑍1 (𝑧) 𝑓𝑍2 (𝑧)𝑑𝑧. (3.9)

Para estudar a distribuição assintótica das medidas (3.5) e (3.7)-(3.9), Salicrú et

al. (1994) propôs entendê-las como elementos de uma classe de divergências chamada

divergência (ℎ, 𝜙). Essa classe é uma extensão da divergência 𝜙 proposta por Csiszár

(1975) e Ali e Silvey (1966).

Em seguida, apresentamos um tratamento estatístico para o teste de hipóteses com

base nas distâncias de Kullback-Leibler, Bhattacharyya, Hellinger e Rényi (com ordem

𝛽).

A distância (ℎ, 𝜙) entre 𝑓𝑍1 (𝑧; 𝜽1) e 𝑓𝑍2 (𝑧; 𝜽2) tem a forma:

𝑑ℎ𝜙 (𝜽1, 𝜽2) = 𝑑ℎ𝜙 (𝑍1, 𝑍2)

= ℎ

{
E𝑍2

[
𝜙

(
𝑓𝑍1 (𝑧; 𝜽1)
𝑓𝑍2 (𝑧; 𝜽2)

)]}
= ℎ

{�
Z
𝜙

(
𝑓𝑍1 (𝑧; 𝜽1)
𝑓𝑍2 (𝑧; 𝜽2)

)
𝑓𝑍2 (𝑧; 𝜽2)d𝑧

}
, (3.10)

em que 𝜙 : (0,∞) → [0,∞) é uma função convexa, ℎ : (0,∞) → [0,∞) é uma função

crescente com ℎ(0) = 0, e as formas não determinadas assumem o valor zero. Uma

seleção cuidadosa das funções ℎ(𝑦) e 𝜙(𝑥) leva a medidas de divergência conhecidas,

como na Tabela 8.

Tabela 8 – Distância (ℎ, 𝜙) e suas funções ℎ e 𝜙

Distância (ℎ, 𝜙) ℎ(𝑦) 𝜙(𝑥)

Kullabck-Leibler 𝑦/2 (𝑥 − 1) log(𝑥)
Rényi (ordem 𝛽) 1

𝛽−1 log ((𝛽 − 1)𝑦 + 1) , 0 ≤ 𝑦 < 1
1−𝛽

𝑥1−𝛽+𝑥𝛽−𝛽 (𝑥−1)−2
2(𝛽−1) , 0 < 𝛽 < 1

Bhattacharyya − log(1 − 𝑦) , 0 ≤ 𝑦 < 1 −
√
𝑥 + 𝑥−1

2
Hellinger 𝑦/2 (

√
𝑥 − 1)2

Se considerarmos a definição das distâncias em termos das funções ℎ e 𝜙 em conjunto

com os resultados propostos por Salicrú et al. (1994) sobre a convergência na distribuição

das estatísticas baseadas na distância (ℎ, 𝜙) para a lei do qui-quadrado, o seguinte lema

se aplica.
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Lema 3.3.1. Vamos supor que as condições de regularidade propostas em Salicrú et al.

(1994, , p. 380) sejam aplicáveis. Se, 𝑚
𝑚+𝑛 −−−−−−→

𝑚,𝑛→∞
𝜆 ∈ (0, 1) e 𝜽1 = 𝜽2, então

2𝑚𝑛
𝑚 + 𝑛

𝑑ℎ
𝜙

(
𝜽1, 𝜽2

)
ℎ(1) (0)𝜙(2) (1)

D−−−−−−→
𝑚,𝑛→∞

𝜒2
𝑀 , (3.11)

em que 𝑓 (𝑘) (𝑥) = 𝑑𝑘 𝑓 (𝑥)/𝑑𝑥𝑘 é a derivada de 𝑘-ésima ordem de 𝑓 (𝑥), " D−→"denota

a convergência em distribuição, 𝑀 é a dimensão de 𝜽𝑖, 𝑚 é o tamanho da primeira

amostra, 𝑛 é o tamanho da segunda amostra, 𝜽1 é o EMV para 𝜽1 com base na primeira

amostra, 𝜽2 é o EMV para 𝜽2 com base na segunda amostra e "∼ 𝜒2
𝑀

"denota uma

variável descrita pela distribuição qui-quadrada (com grau de liberdade 𝑀).

Com base no Lema 3.3.1, é possível derivar testes estatísticos de hipóteses para a

hipótese nula 𝜽1 = 𝜽2. Em particular, as seguintes estatísticas são levadas em conta:

𝑆ℎ𝜙 (𝜽𝑥 , 𝜽𝑦) =
2𝑚𝑛𝑣
𝑚 + 𝑛𝑑

ℎ
𝜙 (𝜽𝑥 , 𝜽𝑦), (3.12)

em que 𝑣 = 1/[ℎ(1) (0)𝜙(2) (1)] é uma constante que depende da distância escolhida.

Para 𝑑𝐾𝐿 , 𝑑𝛽
𝑅
, 𝑑𝐵 e 𝑑𝐻 , 𝑣 assume os valores 1, 1/𝛽, 4 e 4, respectivamente. Nesse

contexto, um teste de hipótese geral pode ser formulado e é apresentado na Observação

3.3.2

Observação 3.3.2. Se 𝑚 e 𝑛 forem grandes e 𝑟 = 𝑆ℎ
𝜙
(𝜽𝑥 , 𝜽𝑦), então a hipótese nula é

𝜽1 = 𝜽2 pode ser rejeitada em um nível 𝜂 se 𝑃
(
𝜒2
𝑀
> 𝑞

)
≤ 𝜂, em que 𝑟 é a estatística de

teste calculada a partir de amostras observadas e 𝜂 é o nível nominal especificado.

3.3.1 Contribuições teóricas: Nova medida de contraste e testes de

hipótese para textura em imagens SAR

Esta seção aborda algumas contribuições matemáticas a partir da suposição de que

𝑍𝑖 ∼ Beta1/2
3 (𝜽𝑖) tal que 𝜽𝑖 = (𝑝𝑖, 𝑞𝑖) para 𝑖 = 1, 2.
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Proposição 3.3.3. A divergência de Kullback-Leibler e a distância entre 𝑍1 e 𝑍2 são,
respectivamente,

𝐷𝐾𝐿 (𝑍1∥𝑍2) = ℎ(𝑝1, 𝑞1, 𝑝2, 𝑞2) + (𝑝1 − 𝑝2)E𝑍1 [log(𝑍)] + (𝑞1 − 𝑞2)E𝑍1 [log(1 − 2𝑍)]

+ (𝑝1 + 𝑞1 − 𝑝2 − 𝑞2)E𝑍1 [log(1 − 𝑍)]

= ℎ(𝑝1, 𝑞1, 𝑝2, 𝑞2) − (𝑝1 − 𝑝2) log 2 + (𝑝1 − 𝑝2)
2𝑝1

{
2𝐹

(1,0,0,0)
1 (𝑝1, 𝑝1 + 𝑞1; 𝑝1 + 𝑞1; 1/2)

+ 2𝐹
(0,0,1,0)
1 (𝑝1, 𝑝1 + 𝑞1; 𝑝1 + 𝑞1; 1/2) + 2𝐹1 (𝑝1, 𝑝1 + 𝑞1; 𝑝1 + 𝑞1; 1/2)

× [Ψ (0) (𝑝1) − Ψ (0) (𝑝1 + 𝑞1)]
}
− (𝑝1 − 𝑝2) [Ψ (0) (𝑝1) − Ψ (0) (𝑝1 + 𝑞1)]

− (𝑞1 − 𝑞2) log 2 + (𝑞1 − 𝑞2)
2𝑝1

{
2𝐹

(1,0,0,0)
1 (𝑝1, 𝑝1 + 𝑞1; 𝑝1 + 𝑞1; 1/2)

+ 2𝐹
(0,0,1,0)
1 (𝑝1, 𝑝1 + 𝑞1; 𝑝1 + 𝑞1; 1/2) + 2𝐹1 (𝑝1, 𝑝1 + 𝑞1; 𝑝1 + 𝑞1; 1/2)

× [Ψ (0) (𝑝1) − Ψ (0) (𝑝1 + 𝑞1)]
}
+ (𝑞1 − 𝑞2) [Ψ (0) (𝑞1) − Ψ (0) (𝑝1)]

− (𝑝1 + 𝑞1 − 𝑝2 − 𝑞2) log 2 + (𝑝1 + 𝑞1 − 𝑝2 − 𝑞2)
2𝑝1

{
2𝐹

(1,0,0,0)
1 (𝑝1, 𝑝1 + 𝑞1; 𝑝1 + 𝑞1; 1/2)

+ 2𝐹
(0,0,1,0)
1 (𝑝1, 𝑝1 + 𝑞1; 𝑝1 + 𝑞1; 1/2) + 2𝐹1 (𝑝1, 𝑝1 + 𝑞1; 𝑝1 + 𝑞1; 1/2)

× [Ψ (0) (𝑝1) − Ψ (0) (𝑝1 + 𝑞1)]
}
− (𝑝1 + 𝑞1 − 𝑝2 − 𝑞2) [Ψ (0) (𝑝1) − Ψ (0) (𝑝1 + 𝑞1)] . (3.13)

e

𝑑𝐾𝐿 (𝑍1, 𝑍2) =
(𝑞1 − 𝑞2)

2
[Ψ (0) (𝑞1) − Ψ (0) (𝑝1)] +

(𝑞2 − 𝑞1)
2

[Ψ (0) (𝑞2) − Ψ (0) (𝑝2)]

+ (𝑝2 − 𝑝1 + 𝑞2 − 𝑞1)
2

[Ψ (0) (𝑝1 + 𝑞1) − Ψ (0) (𝑝2 + 𝑞2) + Ψ (0) (𝑝2) − Ψ (0) (𝑝1)],

em que ℎ(𝑝1, 𝑞1, 𝑝2, 𝑞2) = log[Γ(𝑝1 + 𝑞1)Γ(𝑝2)Γ(𝑞2)] − log[Γ(𝑝2 + 𝑞2)Γ(𝑝1)Γ(𝑞1)].

Proposição 3.3.4. Sejam 𝜽1 = (𝑝1, 𝑞1) e 𝜽2 = (𝑝2, 𝑞2) vetores dos parâmetros de duas

variáveis aleatórias, digamos 𝑍1 e 𝑍1, que seguem a distribuição Beta1/2
3 (𝑝, 𝑞). A

distância de Rényi entre 𝑍1 e 𝑍2 é

𝑑
𝛽

𝑅
(𝑍1∥𝑍2) =

1
2(𝛽 − 1)

{
log

[
Γ𝛽 (𝑝1 + 𝑞1)Γ1−𝛽 (𝑝2 + 𝑞2)

Γ(𝛽(𝑝1 + 𝑞1) + (1 − 𝛽) (𝑝2 + 𝑞2))
Γ(𝛽𝑝1 + (1 − 𝛽)𝑝2)
Γ𝛽 (𝑝1)Γ1−𝛽 (𝑝2)

× Γ(𝛽𝑞1 + (1 − 𝛽)𝑞2)
Γ𝛽 (𝑞1)Γ1−𝛽 (𝑞2)

]
+ log

[
Γ1−𝛽 (𝑝1 + 𝑞1)Γ𝛽 (𝑝2 + 𝑞2)

Γ((1 − 𝛽) (𝑝1 + 𝑞1) + 𝛽(𝑝2 + 𝑞2))

× Γ((1 − 𝛽)𝑝1 + 𝛽𝑝2)
Γ1−𝛽 (𝑝1)Γ𝛽 (𝑝2)

Γ((1 − 𝛽)𝑞1 + 𝛽𝑞2)
Γ1−𝛽 (𝑞1)Γ𝛽 (𝑞2)

]}
. (3.14)
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Proposição 3.3.5. A distância de Bhattacharyya entre 𝑍1 e 𝑍2 é:

𝑑𝐵 (𝑍1, 𝑍2) = log
[
Γ

( 𝑝1 + 𝑞1 + 𝑝2 + 𝑞2
2

)]
− log

[
Γ

( 𝑝1 + 𝑝2
2

)]
− log

[
Γ

(𝑞1 + 𝑞2
2

)]
− 1

2
{log[Γ(𝑝1 + 𝑞1)]

+ log[Γ(𝑝2 + 𝑞2)] − log[Γ(𝑝1)] − log[Γ(𝑞1)]

− log[Γ(𝑝2)] − log[Γ(𝑞2)]} . (3.15)

Proposição 3.3.6. A distância de Hellinger entre 𝑍1 e 𝑍2 é:

𝑑𝐻 (𝑍1, 𝑍2) = 1 − [Γ(𝑝1 + 𝑞1)Γ(𝑝2 + 𝑞2)]1/2

Γ( 𝑝1+𝑝2+𝑞1+𝑞2
2 )

Γ( 𝑝1+𝑝2
2 )

[Γ(𝑝1)Γ(𝑝2)]1/2

Γ( 𝑞1+𝑞2
2 )

[Γ(𝑞1)Γ(𝑞2)]1/2 .

(3.16)

As provas das Proposições 3.3.3, 3.3.4, 3.3.5 e 3.3.6 podem ser encontradas nos

Apêndices A e B. As expressões matemáticas anteriores podem ser usadas em contextos

matemáticos (geometria da informação), de inferência e de processamento de imagens.

Neste trabalho, elas são usadas como testes de hipóteses e ferramentas para resolver a

detecção de limites em imagens SAR.
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Figura 11 – Gráficos das medidas derivadas de Beta1/2
3 .

A Figura 11 apresenta as curvas das quatro medidas de divergência avaliadas ao

longo do suporte transformado dos parâmetros que varia no intervalo [−1, 1]. Esse
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intervalo decorre da parametrização do espaço paramétrico da distribuição Beta1/2
3 em

um domínio simétrico, facilitando a comparação entre as medidas.

Observa-se que todas as divergências atingem seus menores valores na região central

do suporte (próxima de zero), indicando que, nessa faixa, as densidades comparadas são

mais semelhantes. À medida que nos aproximamos das extremidades (𝑥 ≈ −1 ou 𝑥 ≈ 1),

as curvas passam a crescer, refletindo o aumento da discrepância entre as distribuições

quando a variável assume valores menos prováveis ou mais sensíveis às diferenças nos

parâmetros.

A divergência de Kullback–Leibler (KL), representada pela curva roxa, apresenta

crescimento mais acentuado nas extremidades do suporte, evidenciando sua forte sensi-

bilidade a diferenças nas regiões de cauda. Já a divergência de Rényi com 𝛽 = 0.5 (curva

azul) cresce de forma moderada, enquanto Bhattacharyya (verde) e Hellinger (amarelo)

exibem variações mais suaves ao longo de todo o intervalo, mantendo valores inferiores

nas bordas.

Assim, o gráfico permite visualizar de maneira clara como cada divergência reage

a diferenças paramétricas ao longo de todo o domínio dos parâmetros, o que contribui

para interpretar o comportamento distinto observado posteriormente nas simulações de

detecção de borda.

A partir do Lema 3.3.1 e da Observação 3.3.2 em conjunto com as Proposições

3.3.3, 3.3.4, 3.3.5 e 3.3.6, podem ser aplicados cinco novos testes de hipótese para a

distribuição Beta1/2
3 (𝑝, 𝑞), que convergem em distribuição para uma qui-quadrado com

dois graus de liberdade, apresentados na Observação 3.3.7.

Observação 3.3.7. Se 𝜽𝑖 para 𝑖 = 1, 2 são estimadores consistentes para 𝜽𝑖 e assintoti-

camente normais extraídos de uma amostra independente, de modo que cada variável

esteja no intervalo (0, 1/2) e sob a hipótese nula H : 𝜽1 = 𝜽2, os seguintes resultados

são obtidos:
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(I) As estatísticas de Kullback-Leibler - 𝑆𝐾𝐿 (·, ·):

𝑆𝐾𝐿 (𝜽1, 𝜽2) =
2𝑚𝑛

(𝑚 + 𝑛) 𝑑𝐾𝐿 (𝜽1, 𝜽2)
D−−−−−−→

𝑚,𝑛→∞
𝜒2

2 . (3.17)

(II) As estatísticas de Rényi com ordem 𝛽 - 𝑆𝛽
𝑅
(·, ·):

𝑆
𝛽

𝑅
(𝜽1, 𝜽2) =

2𝑚𝑛
𝛽(𝑚 + 𝑛) 𝑑

𝛽

𝑅
(𝜽1, 𝜽2)

D−−−−−−→
𝑚,𝑛→∞

𝜒2
2 . (3.18)

(III) As estatísticas de Bhattacharyya - 𝑆𝐵 (·, ·):

𝑆𝐵 (𝜽1, 𝜽2) =
8𝑚𝑛
𝑚 + 𝑛𝑑𝐵 (𝜽1, 𝜽2)

D−−−−−−→
𝑚,𝑛→∞

𝜒2
2 . (3.19)

(IV) As estatísticas de Hellinger - 𝑆𝐻 (·, ·):

𝑆𝐻 (𝜽1, 𝜽2) =
8𝑚𝑛
𝑚 + 𝑛𝑑𝐻 (𝜽1, 𝜽2)

D−−−−−−→
𝑚,𝑛→∞

𝜒2
2 . (3.20)

3.3.2 Detectores de Borda

Um detector de bordas é um método de processamento de imagens destinado a

identificar regiões onde ocorrem mudanças abruptas nas propriedades estatísticas ou

radiométricas dos pixels, indicando transições significativas entre diferentes estruturas

ou objetos na cena. Os métodos de detecção usados neste trabalho funcionam em

três estágios: (i) identificação do centroide da região candidata (de forma automática,

semiautomática ou manual), (ii) identificação dos pontos de transição pertencentes à

borda e (iii) definição do contorno usando um método de imputação entre os pontos de

transição, como B-Splines, (GAMBINI et al., 2006). Concentramos nossa análise nas

fases (ii) e (iii).

Suponha que haja uma região de saída R com o centro de dados 𝐶. Os raios são

traçados de 𝐶 para pontos fora de R. Eles têm a forma 𝒔(𝑖) = 𝐶𝑃𝑖, em que o ângulo

entre os raios é ∠(𝒔(𝑖) , 𝒔(𝑖+1)), para 𝑖 = 1, 2, . . . , 𝑆, em que 𝑆 é o número de raios. A
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Figura 12 desenha um diagrama que ilustra a dinâmica da detecção. Por fim, os dados

são coletados em tiras finas ao redor desses raios.

Figura 12 – Dinâmica na detecção de borda.

Presumimos que os dados seguem uma distribuição Beta1/2
3 e que há duas populações:

uma dentro da borda com observações 𝑗 (𝑖) e outra fora da borda com observações

𝑁 (𝑖) − 𝑗 (𝑖) . Podemos então modelar as observações de 𝑁 (𝑖) em torno do segmento 𝒔(𝑖) ,

1 ≤ 𝑖 ≤ 𝑆 como
𝑍
(𝑖)
𝑘

∼ Beta1/2
3 (𝑝 (𝑖)1 , 𝑞

(𝑖)
1 ), para 𝑘 = 1, . . . , 𝑗 (𝑖) ,

𝑍
(𝑖)
𝑘

∼ Beta1/2
3 (𝑝 (𝑖)2 , 𝑞

(𝑖)
2 ), para 𝑘 = 𝑗 (𝑖) + 1, . . . , 𝑁 (𝑖) .

(3.21)

A ideia principal é encontrar a 𝑗 (𝑖)-ésima borda no segmento 𝒔(𝑖) como o ponto que

fornece a melhor configuração com relação a uma regra de decisão.

A seguir, apresentamos duas regras de decisão diferentes, omitindo o índice (𝑖) para

simplificar, já que apenas uma faixa é considerada em cada iteração.

63



3.3.2.1 Detectores baseados em Verossimilhança

A log-verossimilhança para a Equação (3.1), definindo I1(𝑘, 𝑗) := I{1,..., 𝑗} (𝑘) e

I2(𝑘, 𝑗) := I{ 𝑗+1,...,𝑁} (𝑘) de modo que I𝐴 (𝑥) = {1 (𝑥 ∈ 𝐴), 0 (𝑥 ∉ 𝐴)}, é dada por:

ℓ( 𝑗) =
𝑗∑︁

𝑘=1
log 𝑓𝑍1 (𝑧𝑘 ; 𝜽1) +

𝑁∑︁
𝑘= 𝑗+1

log 𝑓𝑍2 (𝑧𝑘 ; 𝜽2) = − 𝑗 log Beta(𝑝1, 𝑞1)

− (𝑁 − 𝑗) log Beta(𝑝2, 𝑞2) +
𝑁∑︁
𝑘=1

[
(𝑝1 − 1)I1(𝑘, 𝑗) + (𝑝2 − 1)I2(𝑘, 𝑗)

]
log 𝑧𝑘

+
𝑁∑︁
𝑘=1

[
(𝑞1 − 1)I1(𝑘, 𝑗) + (𝑞2 − 1)I2(𝑘, 𝑗)

]
log(1 − 2 𝑧𝑘 )

−
𝑁∑︁
𝑘=1

[
(𝑝1 + 𝑞1)I1(𝑘, 𝑗) + (𝑝2 + 𝑞2)I2(𝑘, 𝑗)

]
log(1 − 𝑧𝑘 ).

Gambini et al. (2006) provou que um bom estimador, 𝚥̂ML, para o índice no segmento

correspondente ao ponto de transição é dado por

𝚥̂ML = arg max
𝑗
ℓ( 𝑗).

No entanto, esse método tem um alto custo computacional, pois precisa avaliar duas

funções de probabilidade para cada etapa de pesquisa, pois pode mostrar imprecisão se

uma log-verossimilhança unitária é atípica (uma parcela cujo SPAN tipo razão para um

pixel seja um outlier, por exemplo)..

3.3.2.2 Detectores baseados em Distância

Conforme discutido por Nascimento, Frery e Cintra (2013), as distâncias derivadas

na seção anterior podem ser dimensionadas para serem distribuídas assintoticamente

como estatísticas qui-quadradas:

𝑆D
(
𝜽1( 𝑗), 𝜽2(𝑁 − 𝑗)

)
=

2 𝑗 (𝑁 − 𝑗)𝑣D
𝑁

𝑑D
(
𝜽1( 𝑗), 𝜽2(𝑁 − 𝑗)

)
,
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em que 𝜽1( 𝑗) = [𝑝1( 𝑗), 𝑞1( 𝑗)] e 𝜽2(𝑁 − 𝑗) = [𝑝2(𝑁 − 𝑗), 𝑞2(𝑁 − 𝑗)] são os EMVs

para 𝜽1 = (𝑝1, 𝑞1) e 𝜽2 = (𝑝2, 𝑞2), usando amostras aleatórias de tamanhos 𝑗 e 𝑁 − 𝑗 ,

respectivamente.

Portanto, propomos novos detectores para detectar borda nas intensidades de SAR,

buscando o ponto que maximiza a estatística de teste entre os dois modelos, ou seja,

𝚥̂D = arg max
𝑗
𝑆D

(
𝜽1( 𝑗), 𝜽2(𝑁 − 𝑗)

)
= arg max

𝑗
𝑆D ( 𝑗),

em que D = {KL; B; H; R: 𝛽}.

É importante notar que o custo computacional dos detectores baseados em distância

cresce diretamente com o tamanho do segmento analisado. Para cada posição 𝑗 ao longo

do perfil de intensidades, o método exige a reestimação dos parâmetros (𝑝1, 𝑞1) e (𝑝2, 𝑞2)

para amostras de tamanhos 𝑗 e 𝑁− 𝑗 , bem como o cálculo da divergência correspondente.

Como esse procedimento deve ser repetido para todas as possíveis partições, o custo

total resulta da soma dessas operações ao longo de todo o segmento. Comparativamente

ao método usando a log-verossimilhança, o uso de distâncias é menos custoso, o que

procede de uma observação analítica simples. Enquanto o uso de log-verossimilhança

em um raio de tamanho 𝑁 − 2 𝑗 envolve 𝑁 − 2 𝑗 parcelas do tipo log 𝑓 (𝑍 [𝑖, 𝑗]; 𝜽), o

detector baseado em distância só requer avaliação dos estimadores na distancia analítica.

3.4 Resultados numéricos

3.4.1 Simulação

Supondo que os dados sejam descritos como retornos distribuídos da Beta1/2
3 (𝑝, 𝑞),

as estimativas de MV para os parâmetros 𝑝 e 𝑞 são consideradas com seus respectivos

erros padrão
√︁
Var[𝑝] e

√︁
Var[𝑞] e, em seguida, o valor esperado, a variância e o erro

padrão de cada cenário também são apresentados. Os cenários considerados são da

região da Costa de Japaratinga (Alagoas/BR) e foram registrados pelo Instituto Eletro-
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magnético de SAR (EMISAR) em banda L e quad-pol. Explicaremos isso em mais

detalhes na próxima seção. Os recursos de SAR 𝑇HH/(𝑇HH + SPAN) foram obtidos de

uma imagem na Figura 16a por meio de agrupamento feito considerando os intervalos

(0; 0, 2), (0, 2; 0, 4) e (0, 4; 0, 5) denominados Cena 1, Cena 2 e Cena 3, respectivamente.

A Tabela 9 apresenta as estimativas dos parâmetros 𝑝 e 𝑞 para três cenas reais, bem

como seus respectivos erros padrão. Na Cena 1, ambos os erros padrão são bastante

reduzidos, indicando elevada precisão das estimativas e sugerindo um comportamento

estatisticamente estável dos dados. A Cena 2 exibe erros padrão superiores aos da Cena

1, refletindo menor precisão e maior variabilidade inerente à região analisada. Já na

Cena 3, observa-se que o erro padrão associado a 𝑞 é substancialmente inferior ao de 𝑝,

o que evidencia maior estabilidade na estimação deste parâmetro. Além disso, os erros

padrão dessa cena, embora não tão baixos quanto os da Cena 1, permanecem reduzidos,

garantindo precisão adequada às estimativas.

Tabela 9 – Valores estimados para 𝑝 e 𝑞, erros padrão, valor esperado e variância para cenas reais

Regiões SAR 𝑝 𝑞
√︁
Var[𝑝]

√︁
Var[𝑞] E[𝑍] Var[𝑍]

Cena 1 1.1918 10.5572 0.0045 0.5150 0.0872 0.0042
Cena 2 6.9112 8.9949 0.1838 0.3167 0.2979 0.0035
Cena 3 6.6700 1.5411 0.1903 0.0079 0.4452 0.0018

Adicionalmente, a Cena 3 apresenta uma configuração paramétrica particularmente

favorável: média mais elevada e variância mais baixa em comparação às demais cenas.

Essa combinação produz uma distribuição mais concentrada em torno de valores centrais

altos, reduzindo a dispersão relativa dos dados. Como consequência, a estimação dos

parâmetros — especialmente de 𝑞— torna-se mais estável, o que justifica a superioridade

estatística da Cena 3 em relação às demais regiões consideradas.

Em síntese, os erros padrão constituem uma medida fundamental da incerteza as-

sociada às estimativas dos parâmetros, de modo que valores reduzidos indicam maior

precisão e estabilidade inferencial. A partir dessa interpretação, torna-se possível com-
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preender, de forma mais clara, as diferenças estruturais entre as três cenas e o impacto

dessas diferenças na qualidade das estimativas obtidas.

A Figura 13 ilustra histogramas da densidade considerada para diferentes concen-

trações das três cenas analisadas. Cada histograma evidencia o comportamento proba-

bilístico da variável, conforme indicado pelos eixos e pelas legendas que especificam a

direção da concentração (esquerda, centro e direita). Já a Figura 14 apresenta as fun-

ções de distribuição cumulativa empírica e ajustada para essas mesmas configurações,

permitindo visualizar a adequação do ajuste em cada cenário e complementar a análise

estatística descrita anteriormente.
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Figura 13 – Gráficos da densidade Beta1/2
3 para cada cena estudada.

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4

Valores da razão SAR estudada

D
en

si
da

de
 C

um
ul

at
iv

a

Densidade Cumulativa empírica e ajustada da Cena 1

(a) Maior concentração entre 0, 0
e 0, 2

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4

Valores da razão SAR estudada

D
en

si
da

de
 C

um
ul

at
iv

a

Densidade Cumulativa empírica e ajustada da Cena 2

(b) Maior concentração entre 0, 2
e 0, 4

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4

Valores da razão SAR estudada

D
en

si
da

de
 C

um
ul

at
iv

a

Densidade Cumulativa empírica e ajustada da Cena 3

(c) Maior concentração entre 0.4
e 0.5

Figura 14 – Gráficos da densidade cumulativa Beta1/2
3 para cada cena estudada.

Realizamos o teste de Kolmogorov–Smirnov para cada uma das três cenas, com

o objetivo de avaliar a aderência do modelo Beta tipo 3 modificada às distribuições

empíricas observadas. Em todos os casos, o teste não rejeitou a hipótese nula (H0) de

que os dados seguem essa distribuição.
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Para a Cena 1, a estatística obtida foi 𝐷 = 0,0280, com p-valor igual a 0,8264,

indicando excelente concordância entre o modelo teórico e os dados observados. Na

Cena 2, obteve-se 𝐷 = 0,0295 e p-valor 0,7767, novamente sem evidências para rejeitar

H0. Por fim, na Cena 3, o teste resultou em 𝐷 = 0,0262, com p-valor 0,8819, sugerindo

ainda maior aderência entre a distribuição Beta tipo 3 modificada e os valores empíricos.

Esses resultados confirmam que, para todas as cenas analisadas, a distribuição Beta

tipo 3 modificada oferece um ajuste adequado, justificando seu uso como modelo pro-

babilístico nas etapas subsequentes deste trabalho.

De agora em diante, utilizamos os valores estimados para cada uma das três cenas

reais como parâmetros de referência no estudo de simulação de Monte Carlo. Foram

geradas mil réplicas independentes para cada configuração analisada, variando-se o

tamanho da amostra no formato 𝐾 × 𝐾 , com 𝐾 ∈ {3, 5, 7, 9, 11, 15}, a fim de avaliar

o impacto da dimensão amostral sobre o desempenho das estatísticas de teste. Como

medidas de avaliação, adaptamos estimativas empíricas da dimensão do teste para níveis

nominais de 1%, 5% e 10%, considerando os testes baseados em 𝑆𝐾𝐿 , 𝑆𝑅:𝛽 (para

𝛽 = 0, 1; 0, 5; 0, 9), 𝑆𝐵 e 𝑆𝐻 . Os resultados completos encontram-se na Tabela ??, na

qual destacamos, em cores distintas, os melhores desempenhos dentro de cada cena.

De forma geral, observa-se que o comportamento dos testes varia substancialmente

conforme a medida de divergência, a cena considerada e o tamanho da amostra. As

Tabelas 10, 10 e 12 evidenciam que nenhuma medida apresenta desempenho universal-

mente superior: cada divergência destaca-se em configurações específicas, reforçando a

sensibilidade dos testes às características da distribuição subjacente.

A fim de sintetizar os resultados apresentados nas Tabelas anteriores, elaborou-se um

quadro resumindo, para cada nível nominal e cada cena, quais medidas de divergência

obtiveram os melhores desempenhos. Essa sistematização permite visualizar de forma

imediata quais distâncias se destacaram em cada configuração experimental, facilitando a

comparação entre cenas e apoiando a seleção de medidas mais adequadas para aplicações

68



Tabela 10 – Taxas de rejeição dos testes baseados em distância sob H0 para nível nominal de 1%.
Cena 1; Cena 2; Cena 3. Os valores destacados correspondem às melhores
taxas de rejeição em cada linha.

Cenas N 𝑑𝐾𝐿 𝑑0.1
𝑅

𝑑0.5
𝑅

𝑑0.9
𝑅

𝑑𝐵 𝑑𝐻

1

9 0.009 0.013 0.015 0.011 0.010 0.010
25 0.008 0.012 0.010 0.009 0.011 0.016
49 0.012 0.011 0.007 0.005 0.014 0.012
81 0.012 0.010 0.012 0.013 0.011 0.008
121 0.004 0.013 0.007 0.012 0.013 0.008
225 0.012 0.010 0.010 0.009 0.007 0.010

2

9 0.007 0.010 0.004 0.011 0.012 0.009
25 0.015 0.012 0.013 0.011 0.014 0.007
49 0.011 0.011 0.006 0.013 0.007 0.014
81 0.010 0.012 0.012 0.007 0.007 0.005
121 0.010 0.013 0.009 0.010 0.008 0.010
225 0.006 0.012 0.012 0.012 0.012 0.010

3

9 0.011 0.007 0.006 0.008 0.010 0.010
25 0.010 0.012 0.016 0.012 0.011 0.007
49 0.005 0.008 0.007 0.014 0.007 0.013
81 0.010 0.010 0.008 0.009 0.005 0.015
121 0.010 0.009 0.010 0.012 0.010 0.011
225 0.013 0.011 0.011 0.006 0.007 0.009

Tabela 11 – Taxas de rejeição dos testes baseados em distância sob H0 para nível nominal de 5%.
Cena 1; Cena 2; Cena 3. Os valores destacados correspondem às melhores
taxas de rejeição em cada linha.

Cenas N 𝑑𝐾𝐿 𝑑0.1
𝑅

𝑑0.5
𝑅

𝑑0.9
𝑅

𝑑𝐵 𝑑𝐻

1

9 0.046 0.041 0.048 0.052 0.037 0.051
25 0.044 0.055 0.041 0.057 0.050 0.059
49 0.050 0.055 0.055 0.045 0.057 0.062
81 0.057 0.045 0.051 0.057 0.048 0.038
121 0.047 0.045 0.046 0.058 0.049 0.049
225 0.051 0.048 0.052 0.053 0.044 0.059

2

9 0.045 0.045 0.035 0.039 0.052 0.040
25 0.055 0.052 0.051 0.040 0.035 0.048
49 0.047 0.049 0.050 0.055 0.053 0.046
81 0.039 0.047 0.052 0.044 0.047 0.052
121 0.041 0.046 0.055 0.053 0.050 0.055
225 0.043 0.058 0.054 0.051 0.062 0.055

3

9 0.044 0.039 0.039 0.029 0.035 0.036
25 0.048 0.055 0.054 0.047 0.043 0.055
49 0.034 0.055 0.039 0.053 0.044 0.058
81 0.040 0.044 0.056 0.044 0.040 0.061
121 0.058 0.061 0.049 0.054 0.049 0.042
225 0.061 0.059 0.048 0.044 0.045 0.053
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Tabela 12 – Taxas de rejeição dos testes baseados em distância sob H0 para nível nominal de 10%.
Cena 1; Cena 2; Cena 3. Os valores destacados correspondem às melhores
taxas de rejeição em cada linha.

Cenas N 𝑑𝐾𝐿 𝑑0.1
𝑅

𝑑0.5
𝑅

𝑑0.9
𝑅

𝑑𝐵 𝑑𝐻

1

9 0.085 0.102 0.090 0.090 0.080 0.093
25 0.107 0.097 0.087 0.097 0.085 0.106
49 0.104 0.104 0.105 0.093 0.104 0.112
81 0.101 0.093 0.103 0.098 0.090 0.089
121 0.089 0.098 0.086 0.105 0.106 0.103
225 0.109 0.100 0.094 0.113 0.095 0.105

2

9 0.086 0.091 0.081 0.088 0.090 0.091
25 0.098 0.087 0.103 0.100 0.090 0.101
49 0.096 0.097 0.108 0.113 0.114 0.083
81 0.107 0.101 0.101 0.096 0.081 0.099
121 0.089 0.108 0.100 0.104 0.112 0.095
225 0.086 0.107 0.097 0.093 0.104 0.108

3

9 0.086 0.071 0.085 0.067 0.074 0.074
25 0.098 0.109 0.112 0.096 0.092 0.102
49 0.097 0.113 0.098 0.092 0.094 0.114
81 0.087 0.083 0.091 0.084 0.082 0.123
121 0.116 0.113 0.099 0.112 0.106 0.087
225 0.100 0.113 0.097 0.090 0.103 0.105

futuras. A Tabela 13 apresenta essa consolidação.

Tabela 13 – Resumo das medidas de divergência com melhor desempenho global por cenário e nível
nominal

Nível nominal Cena 1 Cena 2 Cena 3

1% Rényi (𝛽 = 0.5) / Rényi (𝛽 = 0.1) Rényi (𝛽 = 0.1) / KL Rényi (𝛽 = 0.1) / KL

5% Bhattacharyya / KL Rényi (𝛽 = 0.1) KL / Rényi (𝛽 = 0.9)

10% Rényi (𝛽 = 0.1) Rényi (𝛽 = 0.9) / Rényi (𝛽 = 0.1) Rényi (𝛽 = 0.5) / KL

A análise das taxas de rejeição sob a hipótese nula permitiu comparar o com-

portamento de seis medidas de divergência aplicadas à discriminação de parâmetros

associados a cenas SAR. Os resultados indicaram que o desempenho dos testes varia

de acordo com a estrutura das cenas, com o nível nominal adotado e com o tamanho

amostral disponível, de modo que nenhuma medida se destacou como universalmente

superior em todos os cenários.
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De modo geral, as divergências de Rényi apresentaram o maior número de melhores

desempenhos ao longo das diferentes combinações de cenas e níveis nominais. Em par-

ticular, as ordens 𝛽 = 0.1 e 𝛽 = 0.5 mostraram melhor comportamento, sugerindo que

essas configurações são adequadas para capturar diferenças moderadas entre distribui-

ções. Em contraste, a divergência de Kullback–Leibler exibiu resultados mais variáveis,

com bom desempenho principalmente em cenas com contrastes mais marcantes.

A distância de Bhattacharyya destacou-se em alguns casos específicos, notadamente

no nível nominal de 5% para a Cena 1, indicando que pode ser uma alternativa eficaz em

situações onde as diferenças entre regiões não são abruptas. Já a distância de Hellinger

apresentou, de modo recorrente, valores inferiores aos das demais medidas, o que sugere

menor adequação às configurações analisadas.

O tamanho amostral também demonstrou papel relevante: valores maiores de 𝑁 ten-

dem a produzir padrões mais regulares nas taxas de rejeição. Entretanto, essa tendência

não ocorreu de modo uniforme entre todas as divergências, reforçando que cada medida

responde de modo distinto às variações no número de observações.

Em síntese, os resultados evidenciam que:

• as divergências de Rényi, especialmente para 𝛽 = 0.1 e 𝛽 = 0.5, constituem

opções versáteis e com bom desempenho em variados cenários;

• KL tende a ser mais apropriada quando há maior contraste entre as regiões;

• Bhattacharyya é uma alternativa relevante quando as separações entre as distribu-

ições são mais suaves;

• Hellinger mostrou desempenho inferior no conjunto avaliado.

Essas conclusões indicam que a escolha da medida de divergência deve ser adequada

ao contexto da aplicação, considerando características da cena, nível de significância

adotado e tamanho amostral. O conjunto dos experimentos fornece, assim, um guia
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prático para a seleção de medidas em tarefas de segmentação e detecção em imagens

SAR, contribuindo para modelos mais aderentes à estrutura real dos dados.

3.4.2 Aplicação a dados reais

Nesta seção, executamos dois aplicativos com dados reais. Inicialmente, aplicamos

nossas ferramentas a uma imagem AIRSAR de São Francisco, adquirida com número

de looks igual a quatro. Essa imagem apresenta três texturas distintas: oceano, floresta

e área urbana. Em nosso estudo, interessa-nos avaliar o comportamento do detector ao

realizar a transição entre as regiões de mar e cidade.

A Figura 15a mostra o segmento selecionado e o limite estimado pelo método baseado

em log-verossimilhança. Embora tal método apresente bom desempenho em diversos

cenários, nesta aplicação ele produziu uma borda deslocada em relação à borda real,

caracterizando uma estimativa sistematicamente desviada. Em contraste, os detectores

baseados em distância, ilustrados na Figura 15b, apresentaram delineamentos mais

aderentes à estrutura verdadeira da imagem, fornecendo resultados visualmente mais

precisos do que o método de log-verossimilhança.

Em seguida, aplicamos os métodos a uma segunda imagem, agora de dupla polariza-

ção (VV–HV), exibida na Figura 16a, adquirida pelo satélite Sentinel–1 com resolução

espacial de 7 m×14 m em 17 de abril de 2023, na região de Japaratinga, Alagoas, Brasil.

O sensor fornece valores de intensidade para os canais VV e HV, ambos com aparência

equivalente a 𝐿 = 3.

Assim como observado no experimento anterior com a imagem AIRSAR, a Fi-

gura 16b confirma novamente a superioridade dos detectores baseados em distância.

Os contornos estimados por essas medidas apresentaram maior aderência às transições

estruturais da cena, enquanto o método baseado em log-verossimilhança mostrou de-

sempenho inferior sob inspeção visual, reproduzindo o mesmo padrão já evidenciado no

primeiro conjunto de dados.
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(a) Detecção baseada em log-verossimilhança (b) Detecção baseada em distância estocástica

Figura 15 – Detecção da imagem de São Francisco/Califórnia, EUA.

(a) Detecção baseada em log-verossimilhança (b) Detecção baseada em distância estocástica

Figura 16 – Detecção da imagem da Costa de Japaratinga/Alagoas, Brasil.

3.5 Considerações parciais da segunda contribuição

Neste trabalho, propusemos três avanços: a proposta de (i) uma possível ligação

entre o Beta1/2
3 (𝑝, 𝑞) e a informação SPAN, (ii) quatro medidas de distância e os testes

de hipóteses correspondentes e (iii) detectores de bordas para imagens SAR.
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Estabelecemos que a distribuição Beta1/2
3 pode ser usada como modelo para descrever

os recursos construídos a partir do SPAN em (0, 1/2). Essa distribuição se ajusta tanto

aos dados reais quanto à formação física da imagem SAR. Com base na distribuição

Beta1/2
3 , quatro distâncias estocásticas foram propostas e, como meio para a dedução

teórica das distâncias, outras quantidades baseadas em momentos foram derivadas,

como E[log 𝑍], E[log(1 − 𝑍)] e E[log(1 − 2 𝑍)].

Em seguida, foram desenvolvidos testes de hipóteses. Além disso, foi desenvolvido

um método para determinar estimativas de máxima verossimilhança para os parâme-

tros Beta1/2
3 . Em seguida, foi realizado um estudo de Monte Carlo para verificar o

desempenho dos testes propostos, que produzem bons resultados mesmo para amostras

pequenas.

Logo após, propusemos detectores de borda para imagens SAR usadas para estudar

contornos em duas regiões: São Francisco (Califónia, EUA) e Costa de Japaratinga

(Alagoas, Brasil). Os resultados mostram que as ferramentas baseadas em distância

superam a log-verossimilhança.
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4 Evolução estatística de superfície de

atributos SPAN tipo razão para seg-

mentação em imagens SAR

4.1 Segmentação estatística pela evolução da superfície

O problema de segmentar uma estrutura ou objeto de interesse em uma imagem

bidimensional pode ser formulado como a busca por uma região ótima que separa o alvo

do restante da cena. A evolução de contornos ativos baseada na metodologia de level

sets constitui um paradigma consolidado para esse tipo de tarefa. A formulação original

dos level sets é apresentada por Osher e Sethian (1988), enquanto Chan e Vese (2001)

introduzem uma abordagem por regiões que dispensa a extração explícita de bordas. Para

uma visão abrangente de métodos estatísticos em formulações variacionais, consultar

Cremers, Rousson e Deriche (2007). Além disso, Zhu e Yuille (1996) propõem uma

unificação entre forças de borda e de região dentro desse arcabouço.

Com o intuito de estabelecer o embasamento teórico necessário para a proposta

desenvolvida neste capítulo, organizamos a discussão em três partes complementares.

4.1.1 Formulação Bayesiana para particionamento de imagem

Sejam Ω ⊂ Z2 o domínio discreto da imagem, cujos elementos [𝑥, 𝑦] representam a

posição de cada pixel na posição (𝑥, 𝑦) e I[𝑥, 𝑦] : Ω → (0, 1
2 ) um campo aleatório es-

calar (induzido pelo SPAN tipo razão) seguindo a distribuição Beta1/2
3 (𝑝, 𝑞). Conforme

Paragios e Deriche (2002), denote V = (Ωdentro,Ωfora, Γ) como uma partição binária de

Ω, em que Γ = 𝜕Ωdentro = 𝜕Ωfora é a interface entre a estrutura de interesse e o back-



ground. A segmentação pode ser formulada como estimação de máxima a posteriori

(MAP): Dado

Pr(V | I[𝑥, 𝑦]) ∝ Pr(I[𝑥, 𝑦] | V)︸              ︷︷              ︸
Termo de dados

× Pr(V)︸ ︷︷ ︸
Termo geométrico

, (4.1)

procura-se V★ = arg maxV∈Ξ Pr(V | I[𝑥, 𝑦]), em que Ξ é o conjunto de todas as pos-

síveis partições. Intuitivamente, a solução ótima deve ser simultaneamente compatível

com os dados.

A interface pode ser representada por uma função 𝜙 : Ω → R cuja curva de nível

zero define a fronteira (CHAN; VESE, 2001):

Γ = {(𝑥, 𝑦) ∈ Ω : 𝜙(𝑥, 𝑦) = 0}, Ωdentro = {(𝑥, 𝑦) ∈ Ω : 𝜙(𝑥, 𝑦) > 0} e

Ωfora = {(𝑥, 𝑦) ∈ Ω : 𝜙(𝑥, 𝑦) < 0}.

Para evitar contornos serrilhados ou oscilantes, é comum adotar interfaces como

curtas e suaves via penalização de comprimento a partir da função delta de Dirac

regularizada 𝛿𝜖 (ZHAO et al., 1996):

Pr(𝜙) ∝ exp
(
− 𝜈
�
Ω

𝛿𝜖 (𝜙) ∥∇𝜙∥ 𝑑𝑥
)
,

em que 𝜈 > 0 é o peso de regularização, e ∇𝜙 é a normal à interface, ∥∇𝜙∥ =
√︁
⟨∇𝜙,∇𝜙⟩

é o comprimento da normal e ⟨𝒙, 𝒚⟩ = 𝒙⊤𝒚 é o produto interno.

Nas próximas seções, a Equação (4.1) será operacionalizada especificando (i) o termo

de dados coerente com SAR (Subseção 4.1.2) e (ii) a evolução variacional do level set

(Subseção 4.1.3).

4.1.2 Termo de dados

Considere uma discussão sobre Pr(I[𝑥, 𝑦] | V), a verossimilhança condicional à

partição representada por V. Admitindo independência condicional dentro de cada

76



região, a verossimilhança associada ao problema é dada por:

𝐿 (𝜽; I) =

[ ∏
[𝑥,𝑦] ∈Ωdentro

𝑓dentro
(
I[𝑥, 𝑦]

) ] [ ∏
[𝑥,𝑦] ∈Ωfora

𝑓fora
(
I[𝑥, 𝑦]

) ]
×

[ ∏
[𝑥,𝑦] ∈ Γ

𝑓borda
(
I[𝑥, 𝑦]

) ]
, (4.2)

em que 𝜽 =
(
𝑝dentro, 𝑞dentro, 𝑝fora, 𝑞fora

)⊤, I =
[
I[1, 1], . . . ,I[𝑀, 𝑁]

]⊤ e 𝑓𝑉 (·) re-

presenta a densidade para 𝑉 ∈ {dentro, fora, borda}. No contexto desta tese (para

intensidade SAR escalar induzida da SPAN), 𝑓dentro(·) e 𝑓fora(·) pertencem à família

Beta1/2
3 , com parâmetros 𝜽dentro = (𝑝dentro, 𝑞dentro) e 𝜽fora = (𝑝fora, 𝑞fora). Nas iterações

do método de level set a ser proposto, o parâmetro 𝜽dentro ou fora será estimado por máxima

verossimilhança nas regiões induzidas como discutido no Capítulo 3.

Adicionalmente para a partição Γ, utiliza-se o indicador clássico de contornos ativos

geodésicos (CASELLES; KIMMEL; SAPIRO, 1997):

𝑓borda
(
I[𝑥, 𝑦]

)
= J−1 exp

[
− 𝑔𝛼

(
∥∇Σ[𝑥, 𝑦] ∥

) ]
, tal que 𝑔𝛼 (𝑡) =

1
1 + 𝑡𝛼 e 𝛼 ∈ {1, 2},

(4.3)

em que Σ : Ω → R é um mapa de arestas para as intensidades SPAN, definido como

Σ[𝑥, 𝑦] =

√︄(
𝜕I[𝑥, 𝑦]
𝜕𝑥

)2
+

(
𝜕I[𝑥, 𝑦]
𝜕𝑦

)2
,

e

J =

�
[𝑥,𝑦] ∈ Γ

exp
[
− 𝑔𝛼

(
∥∇Σ[𝑥, 𝑦] ∥

) ]
d𝑥d𝑦.

4.1.3 Evolução da curva e técnicas de Level Set

As Subseções 4.1.1 e 4.1.2 levam à representação V com interface dirigida pela

curva de nível 𝜙(𝑥, 𝑦) = 0. No que se segue, a discussão considera a evolução de 𝜙(·)

também no tempo, denotada por 𝜙(𝑥, 𝑦, 𝑡), e o termo V é substituído por 𝜙(𝑥, 𝑦, 𝑡) na

Equação (4.1).
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A evolução do gradiente descendente do funcional 𝐸 (𝜙) = − log Pr(I[𝑥, 𝑦] |

𝜙) − log Pr(𝜙) (CHAN; VESE, 2001; OSHER; SETHIAN, 1988; OSHER; FEDKIW;

PIECHOR, 2004) é:

𝜕𝜙

𝜕𝑡
= − 𝜕𝐸 (𝜙)

𝜕𝜙
, (4.4)

em que 𝐸 (𝜙) é a energia e (para as funções regularizadas de Heaviside 𝐻𝜖 e Dirac 𝛿𝜖 e

pesos 𝜈, 𝜇, 𝛽 ≥ 0) pode ser escrito como

𝐸 (𝜙) = −

Termo de dados︷                                                                                          ︸︸                                                                                          ︷�
Ω

[
𝐻𝜖 (𝜙) log 𝑓dentro(I[𝑥, 𝑦]) +

(
1 − 𝐻𝜖 (𝜙)

)
log 𝑓fora(I[𝑥, 𝑦])

]
d𝑥d𝑦

+
�
Ω

[
𝜈 𝛿𝜖 (𝜙) ∥∇𝜙∥ + 𝜇 𝑔𝛼

(
∥∇Σ∥

)
𝛿𝜖 (𝜙) ∥∇𝜙∥ − 𝛽

�
Ω

𝐻𝜖 (𝜙) A(𝑥, 𝑦)
]

d𝑥d𝑦︸                                                                                                  ︷︷                                                                                                  ︸
Termo de geométrico

,

(4.5)

tal que 𝜈 é o peso do comprimento da curva (que controla a suavidade global da borda), 𝜇

peso do termo geodésico (controla a aderência às bordas), 𝛽 é o peso (controla a atração

para região de interesse, centro radial) de A(𝑥, 𝑦) que é o atrator ou função radial (uma

função auxiliar usada para distorcer a curva de nível) dada por

A(𝑥, 𝑦) = 1√︁
(𝑥 − 𝑥𝐶)2 + (𝑦 − 𝑦𝐶)2 + 𝜚2

, (4.6)

𝜚 > 0 é um parâmetro de regularização (que evita singularidade quando 𝑥 = 𝑥𝐶 e 𝑦 = 𝑦𝐶)

e (𝑥𝐶 , 𝑦𝐶) é o centro de área da curva em evolução dirigida por 𝜙(·).

A variação da Equação (4.4) resulta em

𝜕𝜙

𝜕𝑡
= 𝛿𝜖 (𝜙)

[
log 𝑓dentro(I[𝑥, 𝑦]) − log 𝑓fora(I[𝑥, 𝑦]) + 𝛽A(𝑥, 𝑦) + 𝜈 div

(
∇𝜙
∥∇𝜙∥

)
+ 𝜇 div

(
𝑔𝛼 (∥∇Σ∥) ∇𝜙

∥∇𝜙∥

)]
︸                        ︷︷                        ︸

Termo de geodésico

. (4.7)
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Escrevendo 𝑛 = ∇𝜙/∥∇𝜙∥ e 𝜅 = div(𝑛), em que div(·) é o operador de divergência, o

termo geodésico da Equação (4.7) decompõe-se em 𝜇 𝑔𝛼 (∥∇Σ∥) 𝜅 + 𝜇 ∇𝑔𝛼 (∥∇Σ∥) · 𝑛,

isto é, curvatura ponderada mais atração a bordas. A Figura 17 ilustra o funcionamento

do funcional de energia.

Fonte: O Autor
Figura 17 – Energia da circunvizinhança.

4.2 Proposta do gradiente descendente generalizado

4.2.1 O que está na literatura

Na formulação Bayes–variacional de contornos ativos (Seções 4.1.1–4.1.3), a evo-

lução da fronteira como level set decorre do gradiente descendente do funcional que

agrega um termo de dados (verossimilhança regional) e um termo geométrico (regula-

rização por comprimento/curvatura). No caso clássico baseado em regiões, a evolução

é baseada na log da razão entre verossimilhanças (CHAN; VESE, 2001; CREMERS;

ROUSSON; DERICHE, 2007) e Equação (4.7); com reforço edge-based (geodésico),

usa-se um indicador de borda 𝑔𝛼 (∥∇Σ∥) (CASELLES; KIMMEL; SAPIRO, 1997); e,

quando há forma/centro conhecidos, adiciona-se um atrator radial (Seções 4.1.2, 4.1.3).
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Nessa linha, um gradiente de evolução amplamente usado é

𝜕𝜙

𝜕𝑡
= 𝛿𝜖 (𝜙)

[
log

𝑓dentro
(
I[𝑥, 𝑦]; 𝜽dentro

)
𝑓fora

(
I[𝑥, 𝑦]; 𝜽fora

)︸                            ︷︷                            ︸
C(I[𝑥,𝑦];𝜽dentro,𝜽fora)

+ 𝛽
1√︁

(𝑥 − 𝑥𝐶)2 + (𝑦 − 𝑦𝐶)2
+ 𝜈 div

(
∇𝜙
∥∇𝜙∥

)]
, (4.8)

em que:

• C(I[𝑥, 𝑦]; 𝜽dentro, 𝜽fora) é o termo dos dados na curva de evolução;

• (𝑥𝐶 , 𝑦𝐶) é o centro do atrator radial; 𝛽 ≥ 0 é seu peso;

• 𝜈 ≥ 0 é o peso de regularização por curvatura (𝜅 = div(∇𝜙/∥∇𝜙∥));

• 𝛿𝜖 é a delta regularizada (coerente com 𝐻𝜖 );

• a curvatura média 2D tem a forma,

𝜅 = div
(

∇𝜙
∥∇𝜙∥

)
=
𝜙𝑥𝑥𝜙

2
𝑦 − 2𝜙𝑥𝜙𝑦𝜙𝑥𝑦 + 𝜙𝑦𝑦𝜙2

𝑥

(𝜙2
𝑥 + 𝜙2

𝑦)3/2
,

em que 𝜙𝑥 = 𝜕𝜙/𝜕𝑥, 𝜙𝑦 = 𝜕𝜙/𝜕𝑦, 𝜙𝑥𝑥 = 𝜕2𝜙/𝜕𝑥2, 𝜙𝑦𝑦 = 𝜕2𝜙/𝜕𝑦2 e 𝜙𝑥𝑦 =

𝜕2𝜙/𝜕𝑥𝜕𝑦.

A Equação (4.8) é alinhada com Caselles, Kimmel e Sapiro (1997), Chan e Vese (2001),

Cremers, Rousson e Deriche (2007) e com o bloco radial (atrator) usado anteriormente.

Para usar a Equação (4.8) no caso escalar induzido pelo SPAN, adotamos a densidade

da distribuição Beta Tipo 3 modificada (dada na Definição 3.1.1) com densidade

𝑓 (𝑠; 𝑝, 𝑞) =
1

Beta(𝑝, 𝑞)
𝑠𝑝−1 (1 − 2𝑠)𝑞−1

(1 − 𝑠)𝑝+𝑞 I(0,1/2) (𝑠), (4.9)

em que 𝑠 = 𝑠[𝑥, 𝑦] ∈ (0, 1
2 ). Assim, o termo C(I[𝑥, 𝑦]; 𝜽dentro, 𝜽fora) é dado por

𝐶 (I[𝑥, 𝑦]; 𝜽dentro, 𝜽fora) = log
Beta(𝑝fora, 𝑞fora)

Beta(𝑝dentro, 𝑞dentro)
+ (𝑝dentro − 𝑝fora) log 𝑠

+ (𝑞dentro − 𝑞fora) log(1 − 2𝑠) + (𝑝fora + 𝑞fora − 𝑝dentro − 𝑞dentro) log(1 − 𝑠) (4.10)
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e consiste exatamente no contraste utilizado por Mitiche e Ayed (2010) (ver também

Equação (4.10) adiante), de fácil implementação numérica.

4.2.2 Nosso gradiente descendente generalizado (curvatura Box–

Cox)

Para controlar “mudanças abruptas de natureza probabilística” e conectar suavemente

a diferença de log-verossimilhanças ao regime de potências, adotamos o "nexo Box–Cox"

𝑔𝜆 ( 𝑓 (·)) =
𝑓 𝜆 (·) − 1

𝜆
, tal que lim

𝜆→0
𝑔𝜆 ( 𝑓 (·)) = log 𝑓 (·).

Nossa proposição inicial é usar a medida

C𝜆 (I[𝑥, 𝑦]; 𝜽dentro, 𝜽fora) ≜ 𝑔𝜆
(
𝑓dentro(𝑠; 𝜽dentro)

)
− 𝑔𝜆

(
𝑓fora(𝑠; 𝜽fora)

)
, (4.11)

que tem como caso limite C(I[𝑥, 𝑦]; 𝜽dentro, 𝜽fora), na Equação (4.8). A Figura 18 ilustra

a relação entre as curvas logarítmica e o nexo Box-Cox.

A partir da Equação (4.11), o funcional de energia (4.5) toma a forma

𝐸𝜆 (𝜙𝜆) = −

Termo de dados modificado︷                                                                                           ︸︸                                                                                           ︷�
Ω

[
𝐻𝜖 (𝜙) 𝑔𝜆 ( 𝑓dentro(I[𝑥, 𝑦])) +

(
1 − 𝐻𝜖 (𝜙)

)
𝑔𝜆 ( 𝑓fora(I[𝑥, 𝑦]))

]
d𝑥d𝑦

+ 𝑔𝜆
(
𝑓dentro(𝑠; 𝜽dentro)

)
− 𝑔𝜆

(
𝑓fora(𝑠; 𝜽fora)

)︸                                              ︷︷                                              ︸
Termo geométrico

. (4.12)

Incorporando o atrator radial A(𝑥, 𝑦) =
(
(𝑥 − 𝑥𝐶)2 + (𝑦 − 𝑦𝐶)2)−1/2 (regularizado na

prática) e a regularização por curvatura, propõe-se a curva de evolução:

𝜕𝜙𝜆

𝜕𝑡
= 𝛿𝜖 (𝜙)

[
C𝜆 (I[𝑥, 𝑦]; 𝜽dentro, 𝜽fora) + 𝛽A(𝑥, 𝑦) + 𝜈 div

(
∇𝜙
∥∇𝜙∥

)]
, (4.13)

que é a generalização direta da Equação (4.8). Adicionalmente, pode-se somar o reforço

geodésico edge-based via 𝑔𝛼 (∥∇Σ∥) como na Seção 4.1.3.
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Função: l = 0.1 l = 0.5 l = 10 l = 5 log(x)

Fonte: O Autor
Figura 18 – Relação entre curvas.

4.3 Resultados numéricos

4.3.1 Discussão inicial dos cenários simulados

Nesta seção, alguns cenários de simulação são apresentados. A Figura 19a apresenta

o ground truth contendo uma imagem com duas regiões, uma estrela 𝜇𝐼 [𝑖, 𝑗] e o back-

ground 𝜇𝐸 [𝑖, 𝑗]. As Figuras 19b–19d apresentam contaminações do ground truth com

retorno:

𝑍 [𝑖, 𝑗] =


𝜇I [𝑖, 𝑗] × 𝐶I [𝑖, 𝑗], para região interna,

𝜇E [𝑖, 𝑗] + 𝐶E [𝑖, 𝑗], para região externa,

em que 𝜇I [𝑖, 𝑗] = 1 e 𝜇E [𝑖, 𝑗] = 0 e 𝐶V [𝑖, 𝑗] ∼
{⋃(0, 1/2) , Beta1/2

3 (𝑝𝑉 , 𝑞𝑉 )
}

para

V ∈ {I,E} definida da Tabela 14. Pode-se verificar que para todos cenários a média da

82



região interna é maior do que aquela da região externa, porém a variância do background

(parte externa) é menor do que aquela do sinal aleatório interno. Essa suposição tem o

objetivo de deixar a parte externa mais incerta, contudo deixar a média do sinal interno

mais pronunciada. Quanto a mudança dos cenário de 1 para 3, pode-se notar que a

variância da parte interna diminui e sua média aumenta. O esperado (como pode ser

analisado por inspeção visual) é que a detecção de segmentos seja mais trabalhosa no

primeiro cenário do que nos demais.

Tabela 14 – Configuração dos cenários para E(𝑍) e Var(𝑍)

Cenários
Fora da Estrela

(𝑝𝐸 , 𝑞𝐸) | (E(𝑍),Var(𝑍))
Dentro da Estrela

(𝑝𝐼 , 𝑞𝐼 ) | (E(𝑍),Var[𝑍])
1 (0.1, 10) | (0.009058628, 0.0006462572) (5, 5) | (0.326419956, 0.004809658)
2 (0.1, 10) | (0.009058628, 0.0006462572) (5, 3) | (0.378184165, 0.004265891)
3 (0.1, 10) | (0.009058628, 0.0006462572) (5, 1) | (0.450930764, 0.002246029)

Como medidas de avaliação de desempenho, adotaram-se:

• Acurácia: Avalia a proporção total de pixels corretamente classificados. Sua

fórmula é dada por:

Acurácia =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 ,

em que

– Verdadeiros Positivos (𝑇𝑃): pixels corretamente classificados como 1;

– Verdadeiros Negativos (𝑇𝑁): pixels corretamente classificados como 0;

– Falsos Positivos (𝐹𝑃): pixels incorretamente classificados como 1;

– Falsos Negativos (𝐹𝑁): pixels incorretamente classificados como 0.

• Coeficiente de Similaridade de Dice (DSC): Mede a sobreposição entre os conjun-

tos segmentado (𝑆) e a verdade de referência (𝑅), com valores entre 0 (nenhuma
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Valor

0.1

0.2

0.3

0.4

(a) Imagem Ground truth

Valor

0.00

0.25

0.50

0.75

1.00

(b) Cenário-1: 𝐶 𝐼 ∼ Beta1/2
3 (5, 5) e 𝐶𝐸 ∼ Beta1/2

3 (0.1, 10)

Valor

0.00

0.25

0.50

0.75

1.00

(c) Cenário-2: 𝐶 𝐼 ∼ Beta1/2
3 (5, 3) e 𝐶𝐸 ∼ Beta1/2

3 (0.1, 10)

Valor

0.00

0.25

0.50

0.75

1.00

(d) Cenário-3: 𝐶 𝐼 ∼ Beta1/2
3 (5, 1) e 𝐶𝐸 ∼ Beta1/2

3 (0.1, 10)
Fonte: O Autor

Figura 19 – Cenários de simulação de uma estrela apresentando background e ground truth.

sobreposição) e 1 (sobreposição perfeita):

DSC =
2|𝑆 ∩ 𝑅 |
|𝑆 | + |𝑅 | =

2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 .

• Índice de Jaccard (IoU): Também conhecido como coeficiente de interseção sobre

união, mede a similaridade entre os conjuntos segmentado (𝑆) e de referência (𝑅),

variando entre 0 (nenhuma interseção) e 1 (coincidência perfeita):

IoU =
|𝑆 ∩ 𝑅 |
|𝑆 ∪ 𝑅 | =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 .
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4.3.2 Discussão dos resultados de simulação

Neste estudo de simulação, avaliamos o desempenho dos métodos de segmentação

aplicados a imagens artificiais cuja ground truth é apresentada na Figura 19a, composta

por um sinal determinístico em forma de estrela sobre um background homogêneo.

O objetivo central é verificar a capacidade dos algoritmos em recuperar corretamente

esse sinal, tanto em cenários livres de ruído quanto na presença de diferentes tipos de

contaminação (vide Figuras 19b–19d).

Para isso, comparamos duas abordagens de level set:

(I) o método clássico da literatura, baseado na curvatura induzida pela log-

verossimilhança (CREMERS; ROUSSON; DERICHE, 2007); e

(II) a proposta introduzida neste capítulo, que utiliza a transformação de Box–Cox

definida na Equação (4.11).

A segmentação binária é analisada em três cenários:

(i) imagem sem contaminação (Figura 20);

(ii) imagem contaminada por ruído Uniforme (0, 1/2) (Figura 21);

(iii) imagem contaminada pela distribuição Beta1/2
3 (𝑝, 𝑞), conforme Figuras 22 a 24.

Ao final, discutimos os resultados obtidos em cada cenário e identificamos a abor-

dagem mais eficiente para cada tipo de contaminação.

Um aspecto fundamental na dinâmica de métodos baseados em level sets é a escolha

do chute inicial para a função de nível 𝜙. Tal escolha influencia não apenas a estabili-

dade da evolução, mas também a capacidade do algoritmo de explorar adequadamente o

espaço da imagem antes de se aproximar das fronteiras verdadeiras. Neste estudo, ado-

tamos como condição inicial uma superfície de nível simples, tipicamente um quadrado

ou retângulo centralizado, cuja região positiva intercepta apenas uma parcela limitada
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da estrutura a ser segmentada. Esse procedimento, bastante difundido na literatura, evita

preconceitos geométricos indesejados e garante que o contorno evolua predominante-

mente guiado pelos contrastes estatísticos induzidos pelos modelos ajustados às regiões

interna e externa. Além disso, um chute inicial regularizado reduz a probabilidade de

aprisionamento prematuro do contorno em mínimos locais, favorecendo trajetórias de

evolução mais estáveis e consistentes ao longo das iterações.

Além disso, a evolução do contorno implícito foi conduzida por um esquema itera-

tivo do tipo level set, no qual a função de nível 𝜙 é atualizada sucessivamente mediante

a ação conjunta da curvatura regularizadora e do termo de força derivado da diferença

entre as log-verossimilhanças dos modelos ajustados às regiões interna e externa. A cada

iteração, os parâmetros (𝑝, 𝑞) de ambas as regiões são estimados por máxima verossimi-

lhança, e a força de atração do contorno é modulada por um coeficiente 𝜆, que controla

o grau de não linearidade da transformação de Box–Cox aplicada à verossimilhança. O

processo iterativo é executado por um número predefinido de iterações 𝑛iter, e o critério

de parada consiste no esgotamento dessas iterações, dado que a estabilidade numérica

da evolução é garantida pelo amortecimento imposto pelas funções regularizadas de

Heaviside e delta de Dirac.

No que se refere à condição inicial, o contorno implícito é iniciado por uma função de

nível 𝜙 cuja região positiva assume a forma de um retângulo ou quadrado centralizado

na imagem. Essa escolha, amplamente adotada na literatura de level sets, garante

que o contorno inicial seja suficientemente simples, conectado e distante das bordas

verdadeiras, permitindo uma expansão controlada até que o termo de força direcione

a superfície de nível para as descontinuidades estatísticas presentes na imagem. Além

disso, o uso de uma forma geométrica regular evita viéses iniciais e assegura que todo

o processo de segmentação decorra da dinâmica induzida pelos modelos estatísticos e

não de artefatos do estado inicial.

Em termos de convergência, ambos os métodos avaliados apresentaram compor-
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tamento estável, mas com diferenças relevantes no tempo necessário para atingir um

estado estacionário. O método clássico baseado na log-verossimilhança tende a con-

vergir mais rapidamente, pois sua força de evolução depende de termos essencialmente

lineares no contraste estatístico entre as regiões. Já a abordagem com nexo Box–Cox,

por envolver um termo não linear amplificado pela transformação, pode produzir tra-

jetórias de evolução mais sensíveis aos valores de 𝜆 e ao passo temporal, exigindo em

alguns casos um número superior de iterações para estabilização. Apesar disso, a maior

sensibilidade frequentemente resulta em fronteiras mais nítidas e robustas em cenários

de contaminação complexa.

Do ponto de vista computacional, verifica-se que o método clássico apresenta custo

relativamente baixo, uma vez que a força de evolução deriva de operações simples sobre

log-densidades. Em contraste, o método com nexo Box–Cox exige o cálculo, a cada

pixel e a cada iteração, de um termo não linear do tipo {exp(𝜆 ℓ(𝑥)) − 1}/𝜆, além de

demandar ajustes mais finos do parâmetro 𝜆 para garantir estabilidade numérica. Como

consequência, seu custo computacional é mais elevado; contudo, esse aumento se traduz

em ganhos de robustez e qualidade da segmentação em diversos cenários, sobretudo

quando há heterogeneidade ou ruído estrutural significativo.
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Valor

0.00

0.25

0.50

0.75

1.00

(a) 1 iteração e 𝜆 = 0.01

Valor

0.00

0.25

0.50

0.75

1.00

(b) 1 iteração e 𝜆 = 0.5

Valor

0.00

0.25

0.50

0.75

1.00

(c) 1 iteração e 𝜆 = 5

Valor

0.00

0.25

0.50

0.75

1.00

(d) 1 iteração e 𝜆 = 10

Valor

0.00

0.25

0.50

0.75

1.00

(e) 2 iterações e 𝜆 = 0.01

Valor

0.00

0.25

0.50

0.75

1.00

(f) 2 iterações e 𝜆 = 0.5

Valor

0.00

0.25

0.50

0.75

1.00

(g) 2 iterações e 𝜆 = 5

Valor

0.00

0.25

0.50

0.75

1.00

(h) 2 iterações e 𝜆 = 10

Valor

0.00

0.25

0.50

0.75

1.00

(i) 10 iterações e 𝜆 = 0.01

Valor

0.00

0.25

0.50

0.75

1.00

(j) 10 iterações e 𝜆 = 0.5

Valor

0.00

0.25

0.50

0.75

1.00

(k) 10 iterações e 𝜆 = 5

Valor

0.00

0.25

0.50

0.75

1.00

(l) 10 iterações e 𝜆 = 10

Valor

0.00

0.25

0.50

0.75

1.00

(m) 1 iteração e log-
verossimilhança

Valor

0.00

0.25

0.50

0.75

1.00

(n) 2 iterações e log-
verossimilhança

Valor

0.00

0.25

0.50

0.75

1.00

(o) 5 iterações e log-
verossimilhança

Valor

0.00

0.25

0.50

0.75

1.00

(p) 10 iterações e log-
verossimilhança

Figura 20 – Imagem simulada de uma estrela e Segmentações Binárias, sem contaminação, utilizando
Box-Cox e a log-verossimilhança.

A Figura 20 apresenta os cenários de segmentações binárias, sem contaminação,

utilizando o nexo Box-Cox e a log-verossimilhança. Pode-se verificar que, para 𝜆 = 5

e 𝜆 = 10, o método proposto atinge uma ótima segmentação desde a primeira iteração.

Para 𝜆 = 0.01 e 𝜆 = 0.5, o nexo Box-Cox tal como a literratura só funciona para mais

de 5 iterações.
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Tabela 15 – Resultados dos critérios de performance para 1 iteração, para a imagem simulada da estrela
original.

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 1 0 1 0 1 0
9.0 1 0 1 0 1 0
8.0 1 0 1 0 1 0
7.0 1 0 1 0 1 0
6.0 1 0 1 0 1 0
5.0 1 0 1 0 1 0
4.0 1 0 1 0 1 0
3.0 1 0 1 0 1 0
2.0 1 0 1 0 1 0
1.0 0.91599 0.00014 0.78498 0.00028 0.64606 0.00037
0.8 0.91362 0.00014 0.78024 0.00028 0.63966 0.00037
0.5 0.91097 0.00007 0.77501 0.00013 0.63267 0.00018
0.1 0.91050 0.00000 0.77410 0.00000 0.63145 0.00000
LV 0.91050 0.00000 0.77410 0.00000 0.63145 0.00000

Tabela 16 – Resultados dos critérios de performance para 2 iterações, para a imagem simulada da estrela
original.

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 1 0 1 0 1 0
9.0 1 0 1 0 1 0
8.0 1 0 1 0 1 0
7.0 1 0 1 0 1 0
6.0 1 0 1 0 1 0
5.0 1 0 1 0 1 0
4.0 1 0 1 0 1 0
3.0 1 0 1 0 1 0
2.0 1 0 1 0 1 0
1.0 0.99992 0.00006 0.99984 0.00014 0.99967 0.00028
0.8 0.95167 0.00096 0.88456 0.00256 0.79303 0.00412
0.5 0.92054 0.00008 0.79507 0.00022 0.65985 0.00030
0.1 0.91935 0.00005 0.79179 0.00011 0.65535 0.00015
LV 0.91374 0.00005 0.78049 0.00000 0.64000 0.00000
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Tabela 17 – Resultados dos critérios de performance para 5 iterações, para a imagem simulada da estrela
original.

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 1 0 1 0 1 0
9.0 1 0 1 0 1 0
8.0 1 0 1 0 1 0
7.0 1 0 1 0 1 0
6.0 1 0 1 0 1 0
5.0 1 0 1 0 1 0
4.0 1 0 1 0 1 0
3.0 1 0 1 0 1 0
2.0 1 0 1 0 1 0
1.0 1 0 1 0 1 0
0.8 1 0 1 0 1 0
0.5 1 0 1 0 1 0
0.1 1 0 1 0 1 0
LV 0.99999 0 0.99998 0 0.99995 0

Tabela 18 – Resultados dos critérios de performance para 10 iterações, para a imagem simulada da estrela
original.

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 1 0 1 0 1 0
9.0 1 0 1 0 1 0
8.0 1 0 1 0 1 0
7.0 1 0 1 0 1 0
6.0 1 0 1 0 1 0
5.0 1 0 1 0 1 0
4.0 1 0 1 0 1 0
3.0 1 0 1 0 1 0
2.0 1 0 1 0 1 0
1.0 1 0 1 0 1 0
0.8 1 0 1 0 1 0
0.5 1 0 1 0 1 0
0.1 1 0 1 0 1 0
LV 1 0 1 0 1 0

Os resultados das Tabelas 15–18 mostram que, na maioria dos cenários, as métricas
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Acurácia, Dice e Jaccard atingem valores unitários, refletindo ótima segmentação da

estrela simulada. As exceções ocorrem para poucas iterações 𝑛iter = 1, 2 e/ou valores

baixos de 𝜆 (próximos de 0), nos quais as métricas caem para cerca de 0.91 em Acurácia,

0.78 em Dice e 0.64 em Jaccard. A partir de 𝑛iter ≥ 5 (exceto para LV), o método

converge em todos os casos para desempenho esperado (LI et al., 2005; ZHANG et al.,

2010). Vê-se que tanto o desempenho quanto a velocidade de convergência do método

proposto são melhores.

Valor

0.00

0.25

0.50

0.75

1.00

(a) 1 iteração e 𝜆 = 0.01

Valor

0.00

0.25

0.50

0.75

1.00

(b) 1 iteração e 𝜆 = 0.5

Valor

0.00

0.25

0.50

0.75

1.00

(c) 1 iteração e 𝜆 = 5

Valor

0.00

0.25

0.50

0.75

1.00

(d) 1 iteração e 𝜆 = 10

Valor

0.00

0.25

0.50

0.75

1.00

(e) 2 iterações e 𝜆 = 0.01

Valor

0.00

0.25

0.50

0.75

1.00

(f) 2 iterações e 𝜆 = 0.5

Valor

0.00

0.25

0.50

0.75

1.00

(g) 2 iterações e 𝜆 = 5

Valor

0.00

0.25

0.50

0.75

1.00

(h) 2 iterações e 𝜆 = 10

Valor

0.00

0.25

0.50

0.75

1.00

(i) 10 iterações e 𝜆 = 0.01

Valor

0.00

0.25

0.50

0.75

1.00

(j) 10 iterações e 𝜆 = 0.5

Valor

0.00

0.25

0.50

0.75

1.00

(k) 10 iterações e 𝜆 = 5

Valor

0.00

0.25

0.50

0.75

1.00

(l) 10 iterações e 𝜆 = 10

Valor

0.00

0.25

0.50

0.75

1.00

(m) 1 iteração e log-
verossimilhança

Valor

0.00

0.25

0.50

0.75

1.00

(n) 2 iterações e log-
verossimilhança

Valor

0.00

0.25

0.50

0.75

1.00

(o) 5 iterações e log-
verossimilhança

Valor

0.00

0.25

0.50

0.75

1.00

(p) 10 iterações e log-
verossimilhança

Figura 21 – Imagem simulada de uma estrela e Segmentações Binárias, com contaminação (U(0, 1/2)),
utilizando Box-Cox e a log-verossimilhança.
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Discutiremos agora os resultados com contaminação. A Figura 21 apresenta os ce-

nários de segmentações binárias, com contaminação da uniforme U(0, 1/2), utilizando

o nexo Box-Cox e a log-verossimilhança. Pode-se observar que é esperado um desem-

penho melhor e uma velocidade de convergência maior para o método proposto com

valores de 𝜆 maiores.

Tabela 19 – Resultados dos critérios de performance para 1 iteração, para a imagem simulada da estrela
contaminada com a distribuição uniforme U(0, 1/2).

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 0.97301 0.00064 0.93866 0.00155 0.88441 0.00275
9.0 0.97176 0.00083 0.93563 0.00201 0.87905 0.00354
8.0 0.94388 0.00229 0.86339 0.00635 0.75967 0.00981
7.0 0.91301 0.00083 0.77107 0.00270 0.62744 0.00357
6.0 0.90457 0.00029 0.74320 0.00097 0.59134 0.00123
5.0 0.90592 0.00034 0.74775 0.00114 0.59713 0.00146
4.0 0.90783 0.00036 0.75411 0.00121 0.60528 0.00156
3.0 0.91058 0.00025 0.76319 0.00081 0.61706 0.00106
2.0 0.91434 0.00016 0.77538 0.00053 0.63316 0.00071
1.0 0.91827 0.00014 0.78789 0.00045 0.65001 0.00061
0.8 0.91896 0.00011 0.79005 0.00036 0.65296 0.00049
0.5 0.91662 0.00018 0.78602 0.00038 0.64747 0.00051
0.1 0.91050 0.00000 0.77410 0.00001 0.63146 0.00001
LV 0.91050 0.00000 0.77410 0.00000 0.63145 0.00000
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Tabela 20 – Resultados dos critérios de performance para 2 iterações, para a imagem simulada da estrela
contaminada com a distribuição uniforme U(0, 1/2).

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 0.97333 0.00056 0.93943 0.00135 0.88578 0.002399
9.0 0.97259 0.00075 0.93764 0.00182 0.88260 0.00323
8.0 0.97082 0.00067 0.93336 0.00163 0.87506 0.00287
7.0 0.96690 0.00049 0.92372 0.00122 0.85825 0.00211
6.0 0.95671 0.00080 0.89782 0.00209 0.81460 0.00345
5.0 0.94775 0.00072 0.87403 0.00195 0.77625 0.00308
4.0 0.93158 0.00090 0.82835 0.00265 0.70701 0.00387
3.0 0.90722 0.00036 0.75209 0.00120 0.60268 0.00154
2.0 0.91101 0.00030 0.76461 0.00099 0.61892 0.00129
1.0 0.91620 0.00022 0.78132 0.00070 0.64112 0.00094
0.8 0.91736 0.00018 0.78499 0.00057 0.64608 0.00077
0.5 0.91889 0.00009 0.78984 0.00028 0.65267 0.00038
0.1 0.91135 0.00008 0.77613 0.00018 0.63417 0.00025
LV 0.91328 0.00017 0.78266 0.00050 0.64292 0.00067

Tabela 21 – Resultados dos critérios de performance para 5 iterações, para a imagem simulada da estrela
contaminada com a distribuição uniforme U(0, 1/2).

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 0.97391 0.00065 0.94083 0.00156 0.88827 0.00278
9.0 0.97390 0.00043 0.94080 0.00103 0.88822 0.00184
8.0 0.97182 0.00045 0.93578 0.00108 0.87931 0.00191
7.0 0.96915 0.00058 0.92928 0.00142 0.86790 0.00248
6.0 0.96514 0.00057 0.91933 0.00143 0.85071 0.00244
5.0 0.96240 0.00071 0.91244 0.00179 0.83899 0.00304
4.0 0.95950 0.00062 0.90504 0.00160 0.82656 0.00267
3.0 0.95797 0.00060 0.90111 0.00155 0.82003 0.00257
2.0 0.94147 0.00086 0.85670 0.00242 0.74933 0.00370
1.0 0.92404 0.00056 0.80574 0.00171 0.67469 0.00239
0.8 0.92546 0.00055 0.81009 0.00166 0.68080 0.00234
0.5 0.93143 0.00055 0.82792 0.00162 0.70638 0.00235
0.1 0.95934 0.00044 0.90463 0.00112 0.82587 0.00187
LV 0.96877 0.00035 0.92847 0.00084 0.86649 0.00147
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Tabela 22 – Resultados dos critérios de performance para 10 iterações, para a imagem simulada da estrela
contaminada com a distribuição uniforme U(0, 1/2).

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 0.97419 0.00061 0.94150 0.00147 0.88948 0.00262
9.0 0.97412 0.00054 0.94134 0.00129 0.88918 0.00231
8.0 0.97244 0.00050 0.93729 0.00122 0.88198 0.00215
7.0 0.97032 0.00039 0.93213 0.00095 0.87290 0.00167
6.0 0.96834 0.00051 0.92727 0.00126 0.86441 0.00219
5.0 0.96750 0.00069 0.92519 0.00171 0.86081 0.00296
4.0 0.96748 0.00055 0.92516 0.00137 0.86075 0.00237
3.0 0.96920 0.00082 0.92939 0.00201 0.86810 0.00350
2.0 0.97139 0.00057 0.93473 0.00138 0.87746 0.00244
1.0 0.97429 0.00077 0.94173 0.00184 0.88988 0.00328
0.8 0.97710 0.00071 0.94844 0.00168 0.90194 0.00304
0.5 0.98479 0.00065 0.96634 0.00148 0.93488 0.00288
0.1 0.99425 0.00018 0.98754 0.00039 0.97538 0.00077
LV 0.99507 0.00001 0.98933 0.00003 0.97889 0.00005

Os resultados das Tabelas 19–22 mostram que há degradação moderada, sobretudo

com poucas iterações. Com 𝑛iter = 1, por exemplo, a acurácia média pode ficar em

torno de 0,91 no regime de 𝜆 muito baixo (linha LV), enquanto combinações de 𝜆

maiores tendem a valores mais altos. À medida que 𝑛iter aumenta, as métricas sobem

substancialmente e, com 𝑛iter = 10, alcançam patamar próximo de 0,99 para uma faixa

ampla de 𝜆, mantendo desvios padrão pequenos, alinhada com a literatura em ruídos não

gaussianos, ver Zhang et al. (2010), Feng, Cao e Pi (2013). Pelo resultado quantitativo

para altos valores de 𝜆 e 𝑛𝑖𝑡𝑒𝑟 , a verossimilhança aparentemente funcionou melhor do que

a proposição por causa do chute inicial da segmentação. Isto pode ser visto analisando as

Figuras 21l e 21p. Note que a convergência do método baseado na log-verossimilhança

não descreve bem a geometria do sinal como método proposto.
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Valor

0.00

0.25

0.50

0.75

1.00

(a) 1 iteração e 𝜆 = 0.01

Valor

0.00

0.25

0.50

0.75

1.00

(b) 1 iteração e 𝜆 = 0.5

Valor

0.00

0.25

0.50

0.75

1.00

(c) 1 iteração e 𝜆 = 5

Valor

0.00

0.25

0.50

0.75

1.00

(d) 1 iteração e 𝜆 = 10

Valor

0.00

0.25

0.50

0.75

1.00

(e) 2 iterações e 𝜆 = 0.01

Valor

0.00

0.25

0.50

0.75

1.00

(f) 2 iterações e 𝜆 = 0.5

Valor

0.00

0.25

0.50

0.75

1.00

(g) 2 iterações e 𝜆 = 5

Valor

0.00

0.25

0.50

0.75

1.00

(h) 2 iterações e 𝜆 = 10

Valor

0.00

0.25

0.50

0.75

1.00

(i) 10 iterações e 𝜆 = 0.01

Valor

0.00

0.25

0.50

0.75

1.00

(j) 10 iterações e 𝜆 = 0.5

Valor

0.00

0.25

0.50

0.75

1.00

(k) 10 iterações e 𝜆 = 5

Valor

0.00

0.25

0.50

0.75

1.00

(l) 10 iterações e 𝜆 = 10

Valor

0.00

0.25

0.50

0.75

1.00

(m) 1 iteração e log-
verossimilhança

Valor

0.00

0.25

0.50

0.75

1.00

(n) 2 iterações e log-
verossimilhança

Valor

0.00

0.25

0.50

0.75

1.00

(o) 5 iterações e log-
verossimilhança

Valor

0.00

0.25

0.50

0.75

1.00

(p) 10 iterações e log-
verossimilhança

Figura 22 – Imagem simulada de uma estrela e Segmentações Binárias, com contaminação (𝑝 = 𝑞 = 5),
utilizando Box-Cox e a log-verossimilhança.

A Figura 22 apresenta os cenários de segmentações binárias, com contaminação da

Beta1/2
3 (5, 5), utilizando o nexo Box-Cox e a log-verossimilhança.
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Tabela 23 – Resultados dos Critérios de Performance para 1 iteração, para a imagem simulada da estrela
contaminada com a distribuição Beta1/2

3 (5, 5).

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 0.96940 0.00053 0.93125 0.00122 0.87135 0.00214
9.0 0.96795 0.00052 0.92843 0.00119 0.86642 0.00208
8.0 0.96749 0.00051 0.92777 0.00120 0.86527 0.00209
7.0 0.96811 0.00049 0.92958 0.00115 0.86843 0.00200
6.0 0.96932 0.00035 0.93255 0.00081 0.87363 0.00142
5.0 0.97357 0.00029 0.94245 0.00066 0.89116 0.00118
4.0 0.98028 0.00031 0.95769 0.00070 0.91881 0.00129
3.0 0.97915 0.00034 0.95514 0.00077 0.91413 0.00141
2.0 0.97614 0.00051 0.94833 0.00115 0.90175 0.00208
1.0 0.96897 0.00025 0.93176 0.00058 0.87224 0.00102
0.8 0.96609 0.00043 0.92493 0.00103 0.86035 0.00178
0.5 0.95902 0.00043 0.90785 0.00104 0.83125 0.00175
0.1 0.93319 0.00034 0.84050 0.00094 0.72488 0.00140
LV 0.91422 0.00015 0.78549 0.00045 0.64676 0.00062

Tabela 24 – Resultados dos Critérios de Performance para 2 iterações, para a imagem simulada da estrela
contaminada com a distribuição Beta1/2

3 (5, 5).

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 0.97265 0.00040 0.93786 0.00094 0.88300 0.00167
9.0 0.97378 0.00040 0.94059 0.00096 0.88785 0.00171
8.0 0.97503 0.00055 0.94360 0.00131 0.89323 0.00235
7.0 0.97661 0.00046 0.94737 0.00109 0.90000 0.00197
6.0 0.98017 0.00045 0.95580 0.00104 0.91533 0.00191
5.0 0.98975 0.00027 0.97764 0.00061 0.95627 0.00116
4.0 0.98965 0.00030 0.97746 0.00065 0.95592 0.00125
3.0 0.98853 0.00024 0.97505 0.00053 0.95132 0.00101
2.0 0.98315 0.00043 0.96351 0.00094 0.92959 0.00175
1.0 0.97556 0.00036 0.94702 0.00081 0.89938 0.00147
0.8 0.97434 0.00033 0.94423 0.00077 0.89435 0.00137
0.5 0.97070 0.00040 0.93580 0.00094 0.87934 0.00166
0.1 0.95556 0.00040 0.89928 0.00101 0.81699 0.00167
LV 0.93355 0.00028 0.84151 0.00077 0.72638 0.00115
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Tabela 25 – Resultados dos Critérios de Performance para 5 iterações, para a imagem simulada da estrela
contaminada com a distribuição Beta1/2

3 (5, 5).

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 0.96186 0.00285 0.91294 0.00670 0.83989 0.01138
9.0 0.97068 0.00211 0.93363 0.00506 0.87555 0.00890
8.0 0.97491 0.00091 0.94339 0.00223 0.89286 0.00400
7.0 0.97802 0.00059 0.95064 0.00140 0.90593 0.00254
6.0 0.98310 0.00078 0.96249 0.00180 0.92770 0.00334
5.0 0.99130 0.00034 0.98105 0.00076 0.96281 0.00147
4.0 0.99265 0.00026 0.98404 0.00057 0.96857 0.00111
3.0 0.99331 0.00023 0.98550 0.00051 0.97141 0.00099
2.0 0.99367 0.00021 0.98629 0.00045 0.97296 0.00088
1.0 0.99449 0.00033 0.98808 0.00072 0.97645 0.00140
0.8 0.99471 0.00024 0.98855 0.00051 0.97736 0.00100
0.5 0.99547 0.00019 0.99023 0.00042 0.98064 0.00082
0.1 0.99611 0.00019 0.99161 0.00041 0.98336 0.00080
LV 0.99426 0.00020 0.98757 0.00043 0.97545 0.00084

Tabela 26 – Resultados dos Critérios de Performance para 10 iterações, para a imagem simulada da estrela
contaminada com a distribuição Beta1/2

3 (5, 5).

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 0.93643 0.01215 0.85968 0.02945 0.75492 0.04463
9.0 0.95796 0.00723 0.90681 0.01557 0.82984 0.02612
8.0 0.96952 0.00496 0.93154 0.01188 0.87207 0.02082
7.0 0.97846 0.00174 0.95167 0.00412 0.90782 0.00744
6.0 0.98690 0.00174 0.97115 0.00395 0.94394 0.00744
5.0 0.99284 0.00035 0.98445 0.00077 0.96938 0.00149
4.0 0.99516 0.00019 0.98955 0.00041 0.97932 0.00081
3.0 0.99590 0.00020 0.99114 0.00044 0.98244 0.00087
2.0 0.99650 0.00015 0.99245 0.00032 0.98502 0.00063
1.0 0.99746 0.00016 0.99454 0.00035 0.98914 0.00068
0.8 0.99766 0.00011 0.99498 0.00023 0.99000 0.00045
0.5 0.99811 0.00015 0.99595 0.00032 0.99193 0.00064
0.1 0.99841 0.00012 0.99658 0.00026 0.99319 0.00051
LV 0.99821 0.00017 0.99616 0.00037 0.99236 0.00074

Os resultados das Tabelas 23–26 mostram que há degradação moderada, sobretudo
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com poucas iterações. Com 𝑛iter = 1, observa-se um máximo em 𝜆 intermediário/alto

(p. ex., 𝜆 ≈ 7 atinge Acurácia ≈ 0,985), enquanto 𝜆muito baixo (→LV) reduz levemente

as métricas (Acurácia ≈ 0,914). Para 𝑛iter ∈ {5, 10}, Acurácia e Dice sobem para a faixa

[0,989, 0,995] nos melhores𝜆, e a LV fica muito próxima do topo (com Acurácia ≈ 0,998

para 𝑛iter = 10). Como discutido anteriormente, isto se dá devido ao chute inicial de

𝜙. Contudo note que o método proposto captura melhor a geometria do sinal em quase

todos os casos. Analisando as Figuras 22l e 22p, observamos que a convergência do

método baseado na log-verossimilhança não descreve bem a geometria do sinal como

método proposto.
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(l) 10 iterações e 𝜆 = 10
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(p) 10 iterações e log-
verossimilhança

Figura 23 – Imagem simulada de uma estrela e Segmentações Binárias, com contaminação (𝑝 = 5 e
𝑞 = 3), utilizando Box-Cox e a log-verossimilhança.

A Figura 23 apresenta os cenários de segmentações binárias, com contaminação da

Beta1/2
3 (5, 3), utilizando o nexo Box-Cox e a log-verossimilhança.
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Tabela 27 – Resultados dos Critérios de Performance para 1 iteração, para a imagem simulada da estrela
contaminada com a distribuição Beta1/2

3 (5, 3).

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 0.97916 0.00047 0.95390 0.00108 0.91187 0.00197
9.0 0.97938 0.00044 0.95459 0.00100 0.91313 0.00183
8.0 0.98001 0.00049 0.95617 0.00113 0.91602 0.00208
7.0 0.98117 0.00047 0.95900 0.00106 0.92122 0.00195
6.0 0.98505 0.00020 0.96786 0.00042 0.93772 0.00079
5.0 0.98345 0.00021 0.96447 0.00046 0.93139 0.00086
4.0 0.98169 0.00026 0.96071 0.00057 0.92439 0.00106
3.0 0.97953 0.00026 0.95597 0.00058 0.91565 0.00107
2.0 0.97652 0.00019 0.94921 0.00042 0.90333 0.00077
1.0 0.96890 0.00023 0.93159 0.00055 0.87194 0.00096
0.8 0.96591 0.00058 0.92451 0.00138 0.85962 0.00238
0.5 0.95863 0.00042 0.90688 0.00104 0.82963 0.00173
0.1 0.93256 0.00033 0.83874 0.00091 0.72227 0.00134
LV 0.91364 0.00015 0.78374 0.00045 0.64438 0.00060

Tabela 28 – Resultados dos Critérios de Performance para 2 iterações, para a imagem simulada da estrela
contaminada com a distribuição Beta1/2

3 (5, 3).

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 0.98168 0.00040 0.95930 0.00093 0.92178 0.00172
9.0 0.98359 0.00061 0.96369 0.00139 0.92993 0.00258
8.0 0.98606 0.00076 0.96931 0.00173 0.94045 0.00325
7.0 0.99189 0.00024 0.98239 0.00052 0.96538 0.00100
6.0 0.99174 0.00026 0.98205 0.00058 0.96473 0.00112
5.0 0.99184 0.00038 0.98229 0.00083 0.96520 0.00159
4.0 0.99084 0.00029 0.98010 0.00064 0.96097 0.00124
3.0 0.98967 0.00019 0.97753 0.00042 0.95606 0.00080
2.0 0.98582 0.00037 0.96918 0.00083 0.94021 0.00156
1.0 0.97593 0.00039 0.94787 0.00089 0.90090 0.00160
0.8 0.97411 0.00035 0.94370 0.00081 0.89340 0.00146
0.5 0.97073 0.00039 0.93586 0.00091 0.87946 0.00161
0.1 0.95491 0.00043 0.89767 0.00107 0.81434 0.00175
LV 0.93193 0.00019 0.83701 0.00052 0.71971 0.00077
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Tabela 29 – Resultados dos Critérios de Performance para 5 iterações, para a imagem simulada da estrela
contaminada com a distribuição Beta1/2

3 (5, 3).

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 0.97320 0.00369 0.94040 0.00864 0.88762 0.01541
9.0 0.98065 0.00209 0.95744 0.00456 0.91839 0.00838
8.0 0.98818 0.00106 0.97409 0.00239 0.94949 0.00454
7.0 0.99245 0.00086 0.98362 0.00188 0.96778 0.00362
6.0 0.99354 0.00030 0.98600 0.00066 0.97239 0.00129
5.0 0.99396 0.00024 0.98692 0.00052 0.97417 0.00102
4.0 0.99418 0.00037 0.98741 0.00080 0.97513 0.00156
3.0 0.99433 0.00026 0.98774 0.00058 0.97577 0.00113
2.0 0.99422 0.00021 0.98749 0.00047 0.97529 0.00091
1.0 0.99483 0.00014 0.98882 0.00031 0.97790 0.00061
0.8 0.99533 0.00015 0.98992 0.00033 0.98004 0.00064
0.5 0.99617 0.00015 0.99175 0.00033 0.98363 0.00065
0.1 0.99710 0.00011 0.99376 0.00025 0.98759 0.00049
LV 0.99547 0.00019 0.99021 0.00041 0.98060 0.00080

Tabela 30 – Resultados dos Critérios de Performance para 10 iterações, para a imagem simulada da estrela
contaminada com a distribuição Beta1/2

3 (5, 3).

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 0.93674 0.01046 0.85704 0.02686 0.75072 0.04117
9.0 0.96481 0.00372 0.92416 0.01088 0.85918 0.01875
8.0 0.98775 0.00447 0.97375 0.00938 0.94899 0.01779
7.0 0.99227 0.00358 0.98315 0.00803 0.96696 0.01532
6.0 0.99474 0.00172 0.98862 0.00379 0.97752 0.00735
5.0 0.99576 0.00022 0.99086 0.00048 0.98189 0.00095
4.0 0.99616 0.00022 0.99173 0.00047 0.98359 0.00092
3.0 0.99652 0.00019 0.99249 0.00041 0.98510 0.00081
2.0 0.99717 0.00015 0.99391 0.00032 0.98789 0.00062
1.0 0.99792 0.00012 0.99553 0.00025 0.99110 0.00050
0.8 0.99821 0.00008 0.99616 0.00017 0.99235 0.00034
0.5 0.99877 0.00007 0.99736 0.00015 0.99473 0.00031
0.1 0.99919 0.00009 0.99826 0.00019 0.99653 0.00037
LV 0.99900 0.00012 0.99785 0.00026 0.99572 0.00051

Os resultados das Tabelas 27–30 mostram que com 𝑛iter = 1, as métricas variam de
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≈ 0,914 a ≈ 0,994 conforme 𝜆; com 𝑛iter = 10, aproximam-se de 0,999 para 𝜆 ∈ [0,5, 1]

e também para LV, com diferenças de poucas casas decimais entre as melhores escolhas.

Analisando as Figuras 23l e 23p, observamos que a convergência do método baseado na

log-verossimilhança não descreve bem a geometria do sinal como método proposto.
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Figura 24 – Imagem simulada de uma estrela e Segmentações Binárias, com contaminação (𝑝 = 5 e
𝑞 = 1), utilizando Box-Cox e a log-verossimilhança.

A Figura 24 apresenta os cenários de segmentações binárias, com contaminação da

Beta1/2
3 (5, 1), utilizando o nexo Box-Cox e a log-verossimilhança.
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Tabela 31 – Resultados dos Critérios de Performance para 1 iteração, para a imagem simulada da estrela
contaminada com a distribuição Beta1/2

3 (5, 1).

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 0.99256 0.00033 0.98391 0.00072 0.96833 0.00139
9.0 0.99209 0.00019 0.98290 0.00043 0.96637 0.00082
8.0 0.99153 0.00030 0.98167 0.00065 0.96401 0.00126
7.0 0.99085 0.00032 0.98021 0.00069 0.96118 0.00133
6.0 0.98985 0.00024 0.97803 0.00054 0.95701 0.00103
5.0 0.98862 0.00031 0.97535 0.00069 0.95189 0.00131
4.0 0.98669 0.00038 0.97114 0.00086 0.94390 0.00162
3.0 0.98377 0.00011 0.96477 0.00023 0.93195 0.00043
2.0 0.97900 0.00041 0.95427 0.00092 0.91255 0.00169
1.0 0.96929 0.00059 0.93227 0.00140 0.87314 0.00245
0.8 0.96581 0.00018 0.92414 0.00044 0.85897 0.00076
0.5 0.95801 0.00046 0.90532 0.00114 0.82702 0.00191
0.1 0.93081 0.00034 0.83388 0.00096 0.71509 0.00141
LV 0.91214 0.00008 0.77916 0.00025 0.63822 0.00033

Tabela 32 – Resultados dos Critérios de Performance para 2 iterações, para a imagem simulada da estrela
contaminada com a distribuição Beta1/2

3 (5, 1).

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 0.99362 0.00039 0.98619 0.00085 0.97276 0.00166
9.0 0.99378 0.00028 0.98654 0.00062 0.97343 0.00120
8.0 0.99368 0.00023 0.98632 0.00050 0.97302 0.00098
7.0 0.99363 0.00036 0.98621 0.00079 0.97280 0.00153
6.0 0.99317 0.00021 0.98520 0.00046 0.97083 0.00090
5.0 0.99266 0.00031 0.98409 0.00068 0.96869 0.00132
4.0 0.99188 0.00021 0.98239 0.00047 0.96539 0.00091
3.0 0.99036 0.00037 0.97904 0.00082 0.95895 0.00158
2.0 0.98749 0.00034 0.97271 0.00075 0.94687 0.00143
1.0 0.97999 0.00036 0.95622 0.00079 0.91611 0.00145
0.8 0.97743 0.00041 0.95057 0.00092 0.90580 0.00167
0.5 0.97207 0.00036 0.93858 0.00084 0.88427 0.00149
0.1 0.95212 0.00032 0.89056 0.00082 0.80272 0.00133
LV 0.92598 0.00021 0.82018 0.00061 0.69518 0.00088
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Tabela 33 – Resultados dos Critérios de Performance para 5 iterações, para a imagem simulada da estrela
contaminada com a distribuição Beta1/2

3 (5, 1).

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 0.98470 0.00441 0.96801 0.00971 0.93815 0.01797
9.0 0.99010 0.00293 0.97873 0.00615 0.95841 0.01177
8.0 0.99343 0.00121 0.98595 0.00250 0.97230 0.00486
7.0 0.99515 0.00044 0.98952 0.00096 0.97925 0.00187
6.0 0.99523 0.00024 0.98970 0.00052 0.97961 0.00102
5.0 0.99505 0.00027 0.98930 0.00060 0.97883 0.00117
4.0 0.99492 0.00028 0.98903 0.00061 0.97829 0.00120
3.0 0.99491 0.00035 0.98901 0.00075 0.97826 0.00148
2.0 0.99472 0.00025 0.98859 0.00054 0.97745 0.00106
1.0 0.99506 0.00019 0.98933 0.00041 0.97888 0.00080
0.8 0.99570 0.00019 0.99072 0.00042 0.98160 0.00082
0.5 0.99677 0.00009 0.99305 0.00019 0.98619 0.00038
0.1 0.99817 0.00015 0.99607 0.00032 0.99217 0.00063
LV 0.99538 0.00019 0.99001 0.00041 0.98022 0.00081

Tabela 34 – Resultados dos Critérios de Performance para 10 iterações, para a imagem simulada da estrela
contaminada com a distribuição Beta1/2

3 (5, 1).

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 0.94836 0.00868 0.89457 0.02530 0.81010 0.04146
9.0 0.97974 0.00848 0.95690 0.02047 0.91801 0.03692
8.0 0.98646 0.00626 0.97134 0.01416 0.94462 0.02672
7.0 0.99610 0.00171 0.99160 0.00374 0.98336 0.00729
6.0 0.99545 0.00216 0.99080 0.00377 0.98179 0.00736
5.0 0.99658 0.00017 0.99266 0.00036 0.98542 0.00070
4.0 0.99683 0.00017 0.99319 0.00037 0.98648 0.00073
3.0 0.99697 0.00016 0.99347 0.00034 0.98703 0.00067
2.0 0.99724 0.00022 0.99406 0.00048 0.98819 0.00095
1.0 0.99824 0.00013 0.99623 0.00029 0.99248 0.00057
0.8 0.99861 0.00011 0.99701 0.00023 0.99404 0.00046
0.5 0.99923 0.00011 0.99835 0.00025 0.99670 0.00049
0.1 0.99974 0.00006 0.99945 0.00013 0.99890 0.00027
LV 0.99977 0.00005 0.99950 0.00011 0.99900 0.00022

Os resultados das Tabelas 31–34 mostram cenários mais assimétricos. Com 𝑛iter = 1,
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Acurácia ∈ [0,914, 0,993] conforme 𝜆; já com 𝑛iter = 10, há clara tendência de melhora

quando 𝜆 diminui, e a LV alcança Acurácia ≈ 0,99978, Dice ≈ 0,99954, Jaccard ≈

0,99908. Analisando as Figuras 24l e 24p, observamos que a convergência do método

baseado na log-verossimilhança não descreve bem a geometria do sinal como método

proposto.

Uma questão importante na proposição do novo método é quantificar a influência

da ordem 𝜆. A Figura 25 apresenta a acurácia média em termos de 𝜆 para diferentes

números de iterações e os três diferentes cenários (em que há um aumento da média).

As curvas de acurácia média em função de 𝜆 e as tabelas por 𝑛iter mostram um padrão

claro: (i) com poucas iterações, os melhores desempenhos ocorrem tipicamente para

𝜆 elevados; (ii) com iterações intermediárias, os ótimos migram para 𝜆 intermediários

(próximos de 1) em cenários Beta e permanecem em 𝜆 altos no caso uniforme (0, 1/2);

e (iii) com muitas iterações, a faixa ótima desloca-se para 𝜆 baixos, e o caso limite de

log-verossimilhança (LV, 𝜆→ 0) passa a ser co-ótimo ou mesmo o melhor em vários

cenários. É importante mencionar que essa leve superioridade da LV para iterações

altas se deve ao chute inicial, uma vez que a geometria do sinal é melhor capturada

pelo nexo Box-Cox em todas as iterações. Finalmente, as curvas azuis mostram uma

tendência interessante: a diferença de média suave entre objeto e background produz

uma concavidade na curva 𝐴𝑐𝑢𝑟𝑐𝑖𝑎(𝜆), sugerindo a existência de um 𝜆 ótimo.
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Figura 25 – Acurácia média em função de 𝜆, por cenário de ruído e por 𝑛iter.

Com base nas tabelas apresentadas (analisando médias e desvios das métricas tra-

balhadas) e na Figura 25, os pontos de ótimo (ou co-ótimo, quando há empate prático)

podem ser organizados assim:

• 𝑛iter = 1: os melhores resultados ocorrem em 𝜆 altos nos quatro cenários.

• 𝑛iter = 2: mantém-se a preferência por 𝜆 altos nos quatro cenários.

• 𝑛iter = 5:

– U(0, 1/2): ótimos em 𝜆 altos.

– Beta1/2
3 (5, 5) e (5, 3): ótimos em 𝜆 intermediários (faixa em torno de 𝜆≈1); LV

fica abaixo dos melhores.

– Beta1/2
3 (5, 1): ótimos em 𝜆 baixos-intermediários (faixa abaixo de 𝜆 ≈ 1, mas

não no limite 0); LV não é o melhor.
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• 𝑛iter = 10:

– U(0, 1/2): ótimos em 𝜆 baixos, com o LV frequentemente co-ótimo/ótimo.

– Beta1/2
3 (5, 5): ótimos em 𝜆 baixos (muito próximos ao LV); LV é usualmente

co-ótimo.

– Beta1/2
3 (5, 3): ótimos em 𝜆 baixos, com LV co-ótimo.

– Beta1/2
3 (5, 1): LV torna-se ótimo (ou domina o conjunto de 𝜆 fixos).

Vale-se mencionar que o nexo Box-Cox foi melhor em descrever a geometria do sinal

em todos os casos.

4.3.3 Discussão de campo de dados reais

Nesta seção, analisa-se a segmentação de um trecho de uma imagens SAR (Synthe-

tic Aperture Radar) e a captação de bordas utilizando os métodos baseados na log-

verossimilhança e no nexo Box-Cox. A Figura 26a apresenta a imagem ótica de São

Francisco, obtida pelo Google Earth. A Figura 26b apresenta a imagem da transfor-

mação razão 𝐻𝐻/(2𝐻𝐻 + 𝑉𝑉) com legenda (essa transformação realça diferenças de

resposta eletromagnética entre os canais 𝐻𝐻 e 𝑉𝑉 , permitindo distinguir regiões com

propriedades de retroespalhamento distintas, como oceano e floresta) em que: a razão

𝐻𝐻/(2𝐻𝐻 + 𝑉𝑉) assume valores próximos de zero quando 𝐻𝐻 → 0 (típicos de áreas

homogêneas) e tende a 0.5, quando𝑉𝑉 → 0 (característica de superfícies suaves e espe-

culares, como oceano); no intervalo intermediário a 𝐻𝐻 ≈ 𝑉𝑉 , a razão assume valores

próximos de 0.3 (indicando regiões mistas ou de transição entre os dois tipos de textura).

A Figura 26c apresenta a imagem AIRSAR da transformação razão 𝐻𝐻/(2𝐻𝐻 + 𝑉𝑉).

Note que, a razão indica que (𝐻𝐻,𝑉𝑉) tende a serem iguais ou levemente diferentes

para floresta e cidade.
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(a) Imagem ótica de São Francisco.
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(b) Canal razão𝐻𝐻/(2𝐻𝐻+𝑉𝑉) aplicado na imagem
ótica de São Francisco.

(c) Canal razão 𝐻𝐻/(2𝐻𝐻 + 𝑉𝑉) corrigida da
imagem AIRSAR real de São Francisco.

Figura 26 – Imagens da área de São Francisco.

No que segue, os resultados das segmentações binárias obtidas a partir da imagem

razão 𝐻𝐻/(2𝐻𝐻 +𝑉𝑉) tomaram como verdade: 1 para localização de oceano e 0 para

áreas florestais ou construídas.

4.3.4 Discussão de resultados para imagens reais

Para fins de avaliação quantitativa, a definição da verdade de referência (ground

truth) foi construída a partir de uma segmentação manual guiada por inspeção visual

da imagem ótica de São Francisco (Figura 26a) e pela análise das assinaturas radiomé-

tricas observadas no canal razão 𝐻𝐻/(2𝐻𝐻 + 𝑉𝑉). As regiões claramente associadas

ao oceano, caracterizadas por baixo retroespalhamento e razão próxima de 0.5, foram
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rotuladas como classe 1, enquanto áreas urbanas, florestais ou quaisquer superfícies ru-

gosas, apresentando maior heterogeneidade e razão inferior, foram rotuladas como classe

0. Essa máscara binária, construída de forma independente dos métodos avaliados, foi

então utilizada como referência para o cálculo das métricas de desempenho — acurácia,

coeficiente de Dice e índice de Jaccard — permitindo quantificar objetivamente a qua-

lidade das segmentações produzidas pelos modelos baseados na log-verossimilhança e

pelo nexo Box–Cox.
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Figura 27 – Imagem AIRSAR e Segmentações Binárias utilizando Box-Cox e a log-verossimilhança.
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A Figura 27 apresenta os cenários de segmentações binárias, utilizando o nexo Box-

Cox e a log-verossimilhança. Pode-se notar que os melhores desempenhos são para o

novo segmentador com 𝜆 = 5 e 𝜆 = 10. A razão entre verossimilhança praticamente não

responde ao chute inicial retangular adotado.

Tabela 35 – Resultados dos critérios para 1 iteração na imagem AIRSAR de São Francisco

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 0.84166 0.79412 0.65854
9.0 0.83773 0.78793 0.65007
8.0 0.83250 0.77960 0.63881
7.0 0.82523 0.76781 0.62312
6.0 0.81322 0.74783 0.59723
5.0 0.79254 0.71186 0.55262
4.0 0.72891 0.00000 0.58706 0.00000 0.41549 0.00000
3.0 0.62921 0.35835 0.21829
2.0 0.58133 0.33094 0.19828
1.0 0.58133 0.33094 0.19828
0.8 0.58133 0.33094 0.19828
0.5 0.58133 0.33094 0.19828
0.1 0.58133 0.33094 0.19828
LV 0.58133 0.33094 0.19828
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Tabela 36 – Resultados dos critérios para 2 iterações na imagem AIRSAR de São Francisco

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 0.85693 0.81760 0.69148
9.0 0.85456 0.81403 0.68638
8.0 0.85109 0.80874 0.67889
7.0 0.84658 0.80179 0.66916
6.0 0.83872 0.78950 0.65222
5.0 0.83353 0.78125 0.64102
4.0 0.82823 0.00000 0.77270 0.00000 0.62959 0.00000
3.0 0.78777 0.70327 0.54234
2.0 0.58736 0.33416 0.20059
1.0 0.58133 0.33094 0.19828
0.8 0.58133 0.33094 0.19828
0.5 0.58133 0.33094 0.19828
0.1 0.58133 0.33094 0.19828
LV 0.58133 0.33094 0.19828

Tabela 37 – Resultados dos critérios para 5 iterações na imagem AIRSAR de São Francisco

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 0.86958 0.83638 0.71877
9.0 0.86796 0.83400 0.71527
8.0 0.86531 0.83010 0.70955
7.0 0.85961 0.82163 0.69727
6.0 0.85174 0.80973 0.68029
5.0 0.85248 0.81086 0.68189
4.0 0.84555 0.00000 0.80020 0.00000 0.66695 0.00000
3.0 0.82875 0.77354 0.63071
2.0 0.79599 0.71803 0.56010
1.0 0.58353 0.33224 0.19921
0.8 0.58211 0.33148 0.19867
0.5 0.58158 0.33110 0.19840
0.1 0.58141 0.33105 0.19836
LV 0.58141 0.33108 0.19838
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Tabela 38 – Resultados dos critérios para 10 iterações na imagem AIRSAR de São Francisco

𝜆
Acurácia
(média)

Acurácia
(dp)

Dice
(média)

Dice
(dp)

Jaccard
(média)

Jaccard
(dp)

10.0 0.88510 0.85859 0.75222
9.0 0.88421 0.85735 0.75031
8.0 0.88233 0.85470 0.74626
7.0 0.87659 0.84652 0.73388
6.0 0.86692 0.83247 0.71302
5.0 0.87176 0.83955 0.72347
4.0 0.86401 0.00000 0.82819 0.00000 0.70676 0.00000
3.0 0.84475 0.79895 0.66521
2.0 0.83631 0.78568 0.64701
1.0 0.62569 0.37250 0.22888
0.8 0.60238 0.34824 0.21083
0.5 0.58820 0.34009 0.20489
0.1 0.58596 0.33924 0.20427
LV 0.58611 0.34032 0.20505

As Tabelas 35–38 apresentam os valores dos critérios de avaliação para imagem de

São Francisco. Pode-se verificar que o desempenho aumenta sistematicamente quando

os valores de 𝜆 aumentam e o número de iterações aumenta. O melhor resultado

é obtido em 𝑛iter = 10 com 𝜆 = 10.0, situação em que as métricas Acurácia, Dice e

Jaccard alcançam níveis máximos. Para valores altos de 𝜆, observa-se ganho progressivo

à medida que as iterações avançam, confirmando a importância da regularização para

estabilizar a fronteira e melhorar a qualidade da segmentação. Por outro lado, quando

𝜆 ≤ 1.0, as métricas permanecem baixas e praticamente invariáveis, comportamento

semelhante ao caso da log-verossimilhança (LV), que não se mostra competitivo neste

cenário. Assim, recomenda-se a utilização de 𝜆 elevados, em especial 𝜆 = 10.0, aliados

a um número maior de iterações como estratégia eficaz para obter segmentações de alta

qualidade na imagem AIRSAR,comparativamente a resultados clássicos da literatura

sobre métodos de level set (CHAN; VESE, 2001; LI et al., 2005).
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4.4 Considerações parciais da terceira contribuição

A terceira contribuição desta tese consistiu na incorporação do nexo Box–Cox ao

termo de força utilizado em métodos de level set para segmentação de imagens SAR,

fundamentando-se na ideia de que transformações não lineares da log-verossimilhança

podem amplificar contrastes estatísticos entre regiões e, assim, favorecer a detecção de

bordas em cenários ruidosos ou de baixa separabilidade. Os resultados apresentados ao

longo deste capítulo, tanto em ambiente controlado de simulação quanto em dados reais,

demonstram de forma consistente o potencial dessa abordagem.

Nas simulações, observou-se que o parâmetro 𝜆 desempenha papel central no com-

portamento da evolução do contorno. Valores elevados de 𝜆 intensificam o contraste

entre as regiões interna e externa, gerando uma força de atração mais pronunciada ao

longo das iterações e resultando em segmentações de maior fidelidade à ground truth.

Em particular, para 𝜆 = 10.0 e 𝑛iter = 10, as métricas de Acurácia, Dice e Jaccard

atingiram seus valores máximos, evidenciando estabilidade da fronteira e capacidade

de captura precisa do objeto de interesse mesmo sob contaminação significativa. Por

outro lado, quando 𝜆 ≤ 1.0, o comportamento aproxima-se daquele do método clássico

baseado apenas na log-verossimilhança, com ganhos marginais e pouca variação entre

iterações, confirmando que a transformação Box–Cox é o mecanismo responsável pelos

incrementos de desempenho observados.

A análise aplicada à imagem AIRSAR de São Francisco reforça essas conclusões.

Os experimentos mostraram que o método proposto supera sistematicamente a aborda-

gem tradicional, especialmente em regiões de transição entre oceano e floresta, onde o

speckle, a heterogeneidade e a ambiguidade eletromagnética desafiam métodos paramé-

tricos clássicos. O uso da razão 𝐻𝐻/(2𝐻𝐻 + 𝑉𝑉) como variável de entrada permitiu

evidenciar com clareza essas diferenças, e a aplicação do Box–Cox mostrou-se crucial

para distinguir variações sutis não capturadas adequadamente pela log-verossimilhança

pura. Os melhores resultados foram obtidos novamente com 𝜆 = 10.0, corroborando o
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padrão observado nas simulações e validando a robustez do método em dados reais.

Do ponto de vista computacional, verificou-se que o custo adicional imposto pelo

nexo Box–Cox é compensado pelos ganhos substanciais em qualidade de segmentação.

Embora a abordagem clássica seja ligeiramente mais rápida, sua menor sensibilidade

estatística resulta em segmentações inferiores em cenários complexos. Em contraste, o

método com Box–Cox apresenta desempenho superior tanto em consistência quanto em

estabilidade da fronteira, justificando plenamente seu custo computacional, sobretudo

em aplicações de monitoramento ambiental, detecção de alvos e análise urbana, onde

precisão e robustez são requisitos primordiais.

Em síntese, os resultados obtidos neste capítulo demonstram que a introdução do nexo

Box–Cox constitui uma extensão efetiva e competitiva dos métodos tradicionais de level

set, proporcionando melhorias significativas na detecção de bordas em imagens SAR.

Essa contribuição consolida-se, portanto, como um avanço metodológico relevante,

capaz de ampliar o espectro de aplicações práticas em segmentação estatística de dados

de sensoriamento remoto.
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5 Conclusões

§ No Capítulo 2 — intitulado “ Regressão induzida do SPAN:

Transformada de Mellin e extração de textura ”, justificou-se a razão

de empregar a lei gama bivariada de McKay (MBΓ) para descrever o par (intensidade,

SPAN) afetado pelo speckle. Então, como uma extensão ao trabalho de Nascimento,

Ferreira e Silva (2023), formulou-se um modelo de regressão bivariada harmônica,

nominado como MBΓR, que conecta parâmetro físico (número de equivalente de looks),

covariáveis (geométricas, radiométricas e contextuais) e padrão espacial via transforma

de Fourier bidimensional. Uma medida de seleção de modelos é formulada com

base na transformada de Mellin bivariada bem como várias quantidades matemáticas

são derivadas para calcular a matriz informação de Fisher. A inferência por máxima

verossimilhança foi feita utilizando o método Scoring-Fisher, em que tanto o estimador

para os coeficientes de regressão como para o número de equivalentes de looks têm

expressão em forma fechada. Comparativamente às versões não condicionais propostas

em Nascimento, Ferreira e Silva (2023), a regressão bivariada apresentou ganho

superior em regiões heterogêneas, em que a presença do sinal é pronunciada.

§ No Capítulo 3 — intitulado “ Detecção de bordas via divergências entre

atributos SPAN tipo razão ”, deseja-se estudar o atributo

𝑍 =
𝑋

𝑋 + 𝑌 ∈ (0, 1
2 ),

tal que (𝑋,𝑌 ) ∼ MBΓ. Pode-se mostra que 𝑍 segue a distribuição Beta1/2
3 (BT3),

a qual até então recebeu poucos estudos analíticos na literatura. Para suprir esta

lacuna, derivaram-se algumas propriedades matemáticas para 𝑍 e discutiu-se sobre

como fazer inferência a partir de uma amostra aleatória de 𝑍 ∼ Beta1/2
3 . Adicio-

nalmente, deduziram-se divergências em forma fechada entre variáveis Beta1/2
3 (𝑝, 𝑞)

(Kullback–Leibler, Rényi, Bhattacharyya e Hellinger). Subsequentemente, novos testes



de hipótese para duas amostras Beta1/2
3 (𝑝, 𝑞) distribuídas foram formulados e detec-

tores de bordas via divergências para o atributo SPAN tipo razão foram estruturados.

A partir de evidências numéricas (simuladas e em termos de dados SAR), o teste de

Kullback–Leibler produziu melhor performance do que a razão entre verossimilhanças

e os detectores produziram resultados superiores àquele segundo a proposta de Gambini

et al. (2006).

§ No Capítulo 4 — intitulado “ Evolução estatística de superfície de

atributos SPAN tipo razão para segmentação em imagens SAR ”,

introduziu-se um curva de evolução generalizada como base no nexo Box–Cox e

ela foi aplicada a atributos SPAN tipo razão. Desta combinação um novo segmentador

por contornos ativos na formulação level set foi proposto. Os experimentos sintéticos

e reais revelaram que: (i) com poucas iterações, valores moderados/elevados de 𝜆

estabilizam mais rapidamente a evolução, produzindo boas segmentações; (ii) com

iterações intermediárias/altas, surge um platô de ótimo em faixa ampla de 𝜆, no qual

as métricas de sobreposição permanecem elevadas; e (iii) regimes de 𝜆 muito baixos

(incluindo métodos da literatura, como apresentado em Mitiche e Ayed (2010) e Tsai

e Osher (2005)) tendem a um colapso de desempenho, praticamente independente do

número de iterações.

§ Espera-se que, do desenvolvimento dos capítulos desta tese, os resultados sejam

utilizados tanto para realizar novos desdobramentos de pesquisa como para o uso da

modelagem de regressão, detectores e segmentadores em etapas de pós-processamento

para outras imagens (não necessariamente de SAR).
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§ Para trabalhos futuros, vemos três frentes naturais de continuidade:

(i) Teórica-1: Abordar outros termos não paramétricos na regressão, como a repre-

sentação por Wavelet.

(ii) Teórica-2: Trabalho no contexto da análise multivariada, seguindo a proposta

de uma distribuição bivariada Beta1/2
3 , conforme sugerido por Cardeno, Nagar e

Sánchez (2005).

(iii) Modelagem: Extensão da construção bivariada a famílias heavy–tailed relevantes

em SAR (K, G0, Γ).

(iv) Otimização: Dedução de um 𝜆 ótimo no uso do nexo Box-Cox em problemas de

contorno ativo.

(v) Teórica-3: O uso de medidas de divergência no contexto do level set para de-

terminar contornos em imagens SAR, conforme descrito por Lenglet, Rousson e

Deriche (2006).
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A Distância de Kullback-Leibler

Demonstração. Sejam 𝑍1 ∼ Beta1/2
3 (𝑝1, 𝑞1) e 𝑍2 ∼ Beta1/2

3 (𝑝2, 𝑞2) variáveis aleató-

rias. Da definição de divergência de Kullback-Leibler, conclui-se que:

𝐷𝐾𝐿 (𝑍1∥𝑍2) = log
[
Γ(𝑝1 + 𝑞1)
Γ(𝑝2 + 𝑞2)

Γ(𝑝2)Γ(𝑞2)
Γ(𝑝1)Γ(𝑞1)

]
︸                                  ︷︷                                  ︸

ℎ(𝑝1,𝑞1,𝑝2,𝑞2)

+
� 1/2

0
𝑓𝑍1 (𝑧) log

[
𝑧𝑝1−𝑝2 (1 − 2𝑧)𝑞1−𝑞2

(1 − 𝑧)𝑝1+𝑞1−𝑝2−𝑞2

]
d𝑧

=ℎ(𝑝1, 𝑞1, 𝑝2, 𝑞2) + (𝑝1 − 𝑝2)E𝑍1 [log 𝑍] + (𝑞1 − 𝑞2)E𝑍1 [log(1 − 2 𝑍)]

− (𝑝1 + 𝑞1 − 𝑝2 − 𝑞2)E𝑍1 [log(1 − 𝑍)],

em que ℎ(𝑝1, 𝑞1, 𝑝2, 𝑞2) := [Γ(𝑝1 + 𝑞1)Γ(𝑝2)Γ(𝑞2)]/[Γ(𝑝2 + 𝑞2)Γ(𝑝1)Γ(𝑞1)]. Por

dedução análoga,

𝐷𝐾𝐿 (𝑍2∥𝑍1) =ℎ(𝑝2, 𝑞2, 𝑝1, 𝑞1) + (𝑝2 − 𝑝1)E𝑍2 [log 𝑍] + (𝑞2 − 𝑞1)E𝑍2 [log(1 − 2 𝑍)]

− (𝑝2 + 𝑞2 − 𝑝1 − 𝑞1)E𝑍2 [log(1 − 𝑍)] .

Seja 𝑍 ∼ Beta1/2
3 (𝑝, 𝑞) com densidade 𝑓𝑍 (𝑧). A seguinte identidade decorre de� 1/2

0 𝑓𝑍 (𝑧)d𝑧 = 1:

� 1/2

0

(
1
𝑧

) (
𝑧

1 − 𝑧

) 𝑝 (
1

1 − 2𝑧

) (
1 − 2𝑧
1 − 𝑧

)𝑞
d𝑧 =

Γ(𝑝)Γ(𝑞)
Γ(𝑝 + 𝑞) . (A.1)

Realizando a derivação de ambos os lados de (A.1) em relação a 𝑝, tem-se
� 1/2

0
log

(
𝑧

1 − 𝑧

)
𝑧𝑝−1(1 − 2𝑧)𝑞−1

(1 − 𝑧)𝑝+𝑞 d𝑧 =
Γ(𝑝)Γ(𝑞)
Γ(𝑝 + 𝑞) [Ψ

(0) (𝑝) − Ψ(0) (𝑝 + 𝑞)] .

Assim,

E
[
log

𝑍

1 − 𝑍

]
= Ψ(0) (𝑝) − Ψ(0) (𝑝 + 𝑞), (A.2)



cujo resultado poderia ser obtido a partir do valor esperado da função escore ser zero,

conforme explicado na discussão do texto. Considerando a derivação de ambos os lados

de (A.1) em relação a 𝑞, tem-se

E
[
log

1 − 2𝑍
1 − 𝑍

]
= Ψ(0) (𝑞) − Ψ(0) (𝑝 + 𝑞). (A.3)

De

E[log 𝑍] =
� 1/2

0
log(𝑧) Γ(𝑝 + 𝑞)

Γ(𝑝)Γ(𝑞)
𝑧𝑝−1(1 − 2𝑧)𝑞−1

(1 − 𝑧)𝑝+𝑞 d𝑧,

tomando a mudança de variável 2𝑧 = 𝑡 → 2𝑑𝑧 = 𝑑𝑡, tem-se

E[log 𝑍] =
� 1

0
log(𝑡/2) Γ(𝑝 + 𝑞)

Γ(𝑝)Γ(𝑞)
(𝑡/2)𝑝−1(1 − 𝑡)𝑞−1

(1 − 𝑡/2)𝑝+𝑞
1
2

d𝑧

=
1
2𝑝

� 1

0

log(𝑡/2)
(1 − 𝑡/2)𝑝+𝑞

Γ(𝑝 + 𝑞)
Γ(𝑝)Γ(𝑞) 𝑡

𝑝−1(1 − 𝑡)𝑞−1︸                          ︷︷                          ︸
𝑓𝐵𝑒𝑡𝑎 (𝑝,𝑞) (𝑡)

d𝑡

=
1
2𝑝

[� 1

0

log(𝑡)
(1 − 𝑡/2)𝑝+𝑞 𝑓𝐵𝑒𝑡𝑎(𝑝,𝑞) (𝑡)d𝑡 − log 2

� 1

0

1
(1 − 𝑡/2)𝑝+𝑞 𝑓𝐵𝑒𝑡𝑎(𝑝,𝑞) (𝑡)d𝑡

]
,

(A.4)

em que 𝑓𝐵𝑒𝑡𝑎(𝑝,𝑞) (𝑡) representa a densidade da distribuição Beta(p,q). Note que
� 1

0

𝑡𝑛

(1 − 𝑡/2)𝑝+𝑞 𝑓
(𝑡)
𝐵𝑒𝑡𝑎(𝑝,𝑞)d𝑡 =

Γ(𝑝 + 𝑛)Γ(𝑝 + 𝑞)
Γ(𝑝)Γ(𝑝 + 𝑞 + 𝑛) 2𝐹1(𝑝 + 𝑛, 𝑝 + 𝑞; 𝑝 + 𝑞 + 𝑛; 1/2),

(A.5)

em que 𝑛 ∈ Z. Derivando ambos os lados de (A.5) em termos de 𝑛, então
� 1

0

log(𝑡)𝑡𝑛
(1 − 𝑡/2)𝑝+𝑞 𝑓

(𝑡)
𝐵𝑒𝑡𝑎(𝑝,𝑞)d𝑡 =

Γ(𝑝 + 𝑛)Γ(𝑝 + 𝑞)
Γ(𝑝)Γ(𝑝 + 𝑞 + 𝑛)

×
[
2𝐹

(1,0,0,0)
1 (𝑝 + 𝑛, 𝑝 + 𝑞; 𝑝 + 𝑞 + 𝑛; 1/2)

+ 2𝐹
(0,0,1,0)
1 (𝑝 + 𝑛, 𝑝 + 𝑞; 𝑝 + 𝑞 + 𝑛; 1/2)

+ 2𝐹1(𝑝 + 𝑛, 𝑝 + 𝑞; 𝑝 + 𝑞 + 𝑛; 1/2) (Ψ(0) (𝑝 + 𝑛) − Ψ(0) (𝑝 + 𝑞 + 𝑛))
]
,
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em que

2𝐹
(1,0,0,0)
1 (𝑎, 𝑏; 𝑐; 𝑧) = d2𝐹1 (𝑎, 𝑏; 𝑐; 𝑧)

d𝑎
e 2𝐹

(0,0,1,0)
1 (𝑎, 𝑏; 𝑐; 𝑧) = d2𝐹1 (𝑎, 𝑏; 𝑐; 𝑧)

d𝑐
.

Tomando 𝑛 = 0,
� 1

0

log(𝑡)
(1 − 𝑡/2)𝑝+𝑞 𝑓𝐵𝑒𝑡𝑎(𝑝,𝑞) (𝑡)d𝑡

=2𝐹
(1,0,0,0)
1 (𝑝, 𝑝 + 𝑞; 𝑝 + 𝑞; 1/2) + 2𝐹

(0,0,1,0)
1 (𝑝, 𝑝 + 𝑞; 𝑝 + 𝑞; 1/2)

+ [Ψ(0) (𝑝) − Ψ(0) (𝑝 + 𝑞)]2𝐹1(𝑝, 𝑝 + 𝑞; 𝑝 + 𝑞; 1/2). (A.6)

Note que:
� 1

0

1
(1 − 𝑡/2)𝑝+𝑞 𝑓𝐵𝑒𝑡𝑎(𝑝,𝑞) (𝑡)d𝑡 = 2𝑝 . (A.7)

Aplicando (A.6) e (A.7) em (A.4),

E(log 𝑍) = 1
2𝑝

[
2𝐹

(1,0,0,0)
1 (𝑝, 𝑝 + 𝑞; 𝑝 + 𝑞; 1/2) + 2𝐹

(0,0,1,0)
1 (𝑝, 𝑝 + 𝑞; 𝑝 + 𝑞; 1/2)

+ 2𝐹1(𝑝, 𝑝 + 𝑞; 𝑝 + 𝑞; 1/2) (Ψ(0) (𝑝) − Ψ(0) (𝑝 + 𝑞))
]
− log 2. (A.8)

Aplicando (A.8) em (A.2), tem-se

E[log(1 − 𝑍)] = 1
2𝑝

[
2𝐹

(1,0,0,0)
1 (𝑝, 𝑝 + 𝑞; 𝑝 + 𝑞; 1/2) + 2𝐹

(0,0,1,0)
1 (𝑝, 𝑝 + 𝑞; 𝑝 + 𝑞; 1/2)

+2𝐹1(𝑝, 𝑝 + 𝑞; 𝑝 + 𝑞; 1/2) (Ψ(0) (𝑝) − Ψ(0) (𝑝 + 𝑞))
]
− log 2

−[Ψ(0) (𝑝) − Ψ(0) (𝑝 + 𝑞)] . (A.9)

Aplicando (A.9) em (A.3),

E[log(1 − 2𝑍)] = 1
2𝑝

[
2𝐹

(1,0,0,0)
1 (𝑝, 𝑝 + 𝑞; 𝑝 + 𝑞; 1/2) + 2𝐹

(0,0,1,0)
1 (𝑝, 𝑝 + 𝑞; 𝑝 + 𝑞; 1/2)

+ 2𝐹1(𝑝, 𝑝 + 𝑞; 𝑝 + 𝑞; 1/2) (Ψ(0) (𝑝) − Ψ(0) (𝑝 + 𝑞))
]
− log 2

+ [Ψ(0) (𝑞) − Ψ(0) (𝑝)] .
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Sejam 𝜽1 = (𝑝1, 𝑞1) e 𝜽2 = (𝑝2, 𝑞2) vetores de parâmetros das variáveis aleatórias

𝑍1 ∼ Beta
1
2
3 (𝜽1) e 𝑍2 ∼ Beta

1
2
3 (𝜽2), respectivamente. Derivaram-se{

E𝑍𝑖 [log 𝑍], E𝑍𝑖 [log(1 − 𝑍)], E𝑍𝑖 [log(1 − 2𝑍)] } para 𝑖 = 1, 2.

Assim, após algumas manipulações algébricas, tem-se:

𝑑KL(𝑍1, 𝑍2) =
1
2

[
𝐷KL(𝑍1∥𝑍2) + 𝐷KL(𝑍2∥𝑍1) ]

=
1
2

{
ℎ(𝑝1, 𝑞1, 𝑝2, 𝑞2) − ℎ(𝑝2, 𝑞2, 𝑝1, 𝑞1) + (𝑝1 − 𝑝2) [E𝑍1 (log 𝑍) − E𝑍2 (log 𝑍)︸                          ︷︷                          ︸

𝐽1 (𝑝1,𝑞1,𝑝2,𝑞2)

]

+ (𝑞1 − 𝑞2){E𝑍1 [log(1 − 2𝑍)] − E𝑍2 [log(1 − 2𝑍)]︸                                            ︷︷                                            ︸
𝐽2 (𝑝1,𝑞1,𝑝2,𝑞2)

}

− (𝑝1 + 𝑞1 − 𝑝2 − 𝑞2){E𝑍1 [log(1 − 𝑍)] − E𝑍2 [log(1 − 𝑍)]︸                                         ︷︷                                         ︸
𝐽3 (𝑝1,𝑞1,𝑝2,𝑞2)

}
}
.

Após algumas manipulações, tem-se que 𝐽2(𝑝1, 𝑞1, 𝑝2, 𝑞2) = 𝐽3(𝑝1, 𝑞1, 𝑝2, 𝑞2) e

𝑑KL(𝑍1, 𝑍2) =
(𝑝1 − 𝑝2)

2
[𝐽1(𝑝1, 𝑞1, 𝑝2, 𝑞2) − 𝐽2(𝑝1, 𝑞1, 𝑝2, 𝑞2)]

=
(𝑞1 − 𝑞2)

2
[Ψ(0) (𝑞1) − Ψ(0) (𝑝1)] +

(𝑞2 − 𝑞1)
2

[Ψ(0) (𝑞2) − Ψ(0) (𝑝2)]

+ (𝑝2 − 𝑝1 + 𝑞2 − 𝑞1)
2

[Ψ(0) (𝑝1 + 𝑞1) − Ψ(0) (𝑝2 + 𝑞2) + Ψ(0) (𝑝2) − Ψ(0) (𝑝1)],

em que

𝐽1(𝑝1, 𝑞1, 𝑝2, 𝑞2) =
1

2𝑝1

[
2𝐹

(1,0,0,0)
1 (𝑝1, 𝑝1 + 𝑞1; 𝑝1 + 𝑞1; 1/2)

+ 2𝐹
(0,0,1,0)
1 (𝑝1, 𝑝1 + 𝑞1; 𝑝1 + 𝑞1; 1/2)

+ 2𝐹1(𝑝1, 𝑝1 + 𝑞1; 𝑝1 + 𝑞1; 1/2) [Ψ(0) (𝑝1) − Ψ(0) (𝑝1 + 𝑞1)] − log 2
]

− 1
2𝑝2

[
2𝐹

(1,0,0,0)
1 (𝑝2, 𝑝2 + 𝑞2; 𝑝2 + 𝑞2; 1/2) + 2𝐹

(0,0,1,0)
1 (𝑝2, 𝑝2 + 𝑞2; 𝑝2 + 𝑞2; 1/2)

+ 2𝐹1(𝑝2, 𝑝2 + 𝑞2; 𝑝2 + 𝑞2; 1/2) [Ψ(0) (𝑝2) − Ψ(0) (𝑝2 + 𝑞2)] + log 2
]

121



e

𝐽2(𝑝1, 𝑞1, 𝑝2, 𝑞2) =
1

2𝑝1

[
2𝐹

(1,0,0,0)
1 (𝑝1, 𝑝1 + 𝑞1; 𝑝1 + 𝑞1; 1/2)

+ 2𝐹
(0,0,1,0)
1 (𝑝1, 𝑝1 + 𝑞1; 𝑝1 + 𝑞1; 1/2)

+ 2𝐹1(𝑝1, 𝑝1 + 𝑞1; 𝑝1 + 𝑞1; 1/2) [Ψ(0) (𝑝1) − Ψ(0) (𝑝1 + 𝑞1)]
]
− log 2

− [Ψ(0) (𝑞1) − Ψ(0) (𝑝1)]

− 1
2𝑝2

[
2𝐹

(1,0,0,0)
1 (𝑝2, 𝑝2 + 𝑞2; 𝑝2 + 𝑞2; 1/2) + 2𝐹

(0,0,1,0)
1 (𝑝2, 𝑝2 + 𝑞2; 𝑝2 + 𝑞2; 1/2)

+ 2𝐹1(𝑝2, 𝑝2 + 𝑞2; 𝑝2 + 𝑞2; 1/2) (Ψ(0) (𝑝2) − Ψ(0) (𝑝2 + 𝑞2))
]
+ log 2

+ [Ψ(0) (𝑞2) − Ψ(0) (𝑝2)] .
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B Distâncias de Rényi, Bhattacharyya

e Hellinger

Demonstração 1. A distância de Rényi entre as variáveis aleatórias 𝑍1 ∼

Beta1/2
3 (𝑝1, 𝑞1) e 𝑍2 ∼ Beta1/2

3 (𝑝2, 𝑞2) é deduzida da seguinte forma:

𝑑
𝛽

𝑅
(𝑍1, 𝑍2) =

log

[� 1/2

0
𝑓
𝛽

𝑍1
(𝑧) 𝑓 1−𝛽

𝑍2
(𝑧)𝑑𝑧

]
+ log

[� 1/2

0
𝑓

1−𝛽
𝑍1

(𝑧) 𝑓 𝛽
𝑍2
(𝑧)𝑑𝑧

]
2(𝛽 − 1)

Note que, para 𝛽 ∈ (0, 1),

𝐷1 =

� 1/2

0
𝑓
𝛽

𝑍1
(𝑧) 𝑓 1−𝛽

𝑍2
(𝑧)𝑑𝑧 =

[
Γ(𝑝1 + 𝑞1)
Γ(𝑝1)Γ(𝑞1)

] 𝛽 [
Γ(𝑝2 + 𝑞2)
Γ(𝑝2)Γ(𝑞2)

]1−𝛽

×
� 1/2

0

𝑧𝛽𝑝1+(1−𝛽)𝑝2−1(1 − 2𝑧)𝛽𝑞1+(1−𝛽)𝑞2−1

(1 − 𝑧)𝛽(𝑝1+𝑞1)+(1−𝛽) (𝑝2+𝑞2)
𝑑𝑧

=
Γ𝛽 (𝑝1 + 𝑞1)Γ1−𝛽 (𝑝2 + 𝑞2)

Γ(𝛽(𝑝1 + 𝑞1) + (1 − 𝛽) (𝑝2 + 𝑞2))
Γ(𝛽𝑝1 + (1 − 𝛽)𝑝2)
Γ𝛽 (𝑝1)Γ1−𝛽 (𝑝2)

× Γ(𝛽𝑞1 + (1 − 𝛽)𝑞2)
Γ𝛽 (𝑞1)Γ1−𝛽 (𝑞2)

e

𝐷2 =

� 1/2

0
𝑓

1−𝛽
𝑍1

(𝑧) 𝑓 𝛽
𝑍2
(𝑧)𝑑𝑧 =

[
Γ(𝑝1 + 𝑞1)
Γ(𝑝1)Γ(𝑞1)

]1−𝛽 [
Γ(𝑝2 + 𝑞2)
Γ(𝑝2)Γ(𝑞2)

] 𝛽
×
� 1/2

0

𝑧(1−𝛽)𝑝1+𝛽𝑝2−1(1 − 2𝑧) (1−𝛽)𝑞1+𝛽𝑞2−1

(1 − 𝑧) (1−𝛽) (𝑝1+𝑞1)+𝛽(𝑝2+𝑞2)
𝑑𝑧

=
Γ1−𝛽 (𝑝1 + 𝑞1)Γ𝛽 (𝑝2 + 𝑞2)

Γ((1 − 𝛽) (𝑝1 + 𝑞1) + 𝛽(𝑝2 + 𝑞2))
Γ((1 − 𝛽)𝑝1 + 𝛽𝑝2)
Γ1−𝛽 (𝑝1)Γ𝛽 (𝑝2)

× Γ((1 − 𝛽)𝑞1 + 𝛽𝑞2)
Γ1−𝛽 (𝑞1)Γ𝛽 (𝑞2)



Assim,

𝑑
𝛽

𝑅
(𝑍1∥𝑍2) =

log𝐷1 + log𝐷2
2(𝛽 − 1)

=
1

2(𝛽 − 1)

{
log

[
Γ𝛽 (𝑝1 + 𝑞1)Γ1−𝛽 (𝑝2 + 𝑞2)

Γ(𝛽(𝑝1 + 𝑞1) + (1 − 𝛽) (𝑝2 + 𝑞2))
Γ(𝛽𝑝1 + (1 − 𝛽)𝑝2)
Γ𝛽 (𝑝1)Γ1−𝛽 (𝑝2)

× Γ(𝛽𝑞1 + (1 − 𝛽)𝑞2)
Γ𝛽 (𝑞1)Γ1−𝛽 (𝑞2)

]
+ log

[
Γ1−𝛽 (𝑝1 + 𝑞1)Γ𝛽 (𝑝2 + 𝑞2)

Γ((1 − 𝛽) (𝑝1 + 𝑞1) + 𝛽(𝑝2 + 𝑞2))

× Γ((1 − 𝛽)𝑝1 + 𝛽𝑝2)
Γ1−𝛽 (𝑝1)Γ𝛽 (𝑝2)

Γ((1 − 𝛽)𝑞1 + 𝛽𝑞2)
Γ1−𝛽 (𝑞1)Γ𝛽 (𝑞2)

]}
.

Demonstração 2. A distância de Bhattacharyya entre 𝑍1 e 𝑍2 é demonstrada da seguinte

forma:

𝑑𝐵 (𝑍1∥𝑍2) = − log
� 1/2

0

√︁
𝑓𝑍1 (𝑧) 𝑓𝑍2 (𝑧)𝑑𝑧︸                       ︷︷                       ︸

𝐴

.

Note que

𝐴 =

[
Γ(𝑝1 + 𝑞1)
Γ(𝑝1)Γ(𝑞1)

Γ(𝑝2 + 𝑞2)
Γ(𝑝2)Γ(𝑞2)

]1/2 � 1/2

0

𝑧
𝑝1+𝑝2

2 −1(1 − 2𝑧)
𝑞1+𝑞2

2 −1

(1 − 𝑧)
𝑝1+𝑝2+𝑞1+𝑞2

2
𝑑𝑧

=

[
Γ(𝑝1 + 𝑞1)
Γ(𝑝1)Γ(𝑞1)

Γ(𝑝2 + 𝑞2)
Γ(𝑝2)Γ(𝑞2)

]1/2
[

Γ( 𝑝1+𝑝2+𝑞1+𝑞2
2 )

Γ( 𝑝1+𝑝2
2 )Γ( 𝑞1+𝑞2

2 )

]−1

.

Portanto,

𝑑𝐵 (𝑍1∥𝑍2) = log Γ
( 𝑝1 + 𝑞1 + 𝑝2 + 𝑞2

2

)
− log Γ

( 𝑝1 + 𝑝2
2

)
− log Γ

(𝑞1 + 𝑞2
2

)
− 1

2

[
log Γ(𝑝1 + 𝑞1)

+ log Γ(𝑝2 + 𝑞2) − log Γ(𝑝1) − log Γ(𝑞1)

− log Γ(𝑝2) − log Γ(𝑞2)
]
.
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Demonstração 3. A distância de Hellinger entre 𝑍1 e 𝑍2 é dada da seguinte forma:

𝑑𝐻 (𝑍1∥𝑍2) =1 −
� 1/2

0

√︃
𝑓𝒙 (𝑧) 𝑓𝒚 (𝑧)𝑑𝑧︸                     ︷︷                     ︸
𝐴

=1 −
[
Γ(𝑝1 + 𝑞1)
Γ(𝑝1)Γ(𝑞1)

Γ(𝑝2 + 𝑞2)
Γ(𝑝2)Γ(𝑞2)

]1/2
[

Γ( 𝑝1+𝑝2+𝑞1+𝑞2
2 )

Γ( 𝑝1+𝑝2
2 )Γ( 𝑞1+𝑞2

2 )

]−1

︸                                                                  ︷︷                                                                  ︸
𝐴

=1 − [Γ(𝑝1 + 𝑞1)Γ(𝑝2 + 𝑞2)]1/2

Γ( 𝑝1+𝑝2+𝑞1+𝑞2
2 )

Γ( 𝑝1+𝑝2
2 )

[Γ(𝑝1)Γ(𝑝2)]1/2

Γ( 𝑞1+𝑞2
2 )

[Γ(𝑞1)Γ(𝑞2)]1/2

125



C Proposição 2.2.1

Demonstração. Faremos mudanças apropriadas de variáveis para calcular corretamente

os novos limites de integração, substituindo a função expressa na Equação (2.12) na

expressão de M (𝑠1, 𝑠2), tem-se:

M (𝑠1, 𝑠2) =
� ∞

0

� 𝑥2

0
𝑥
𝑠1−1
1 𝑥

𝑠2−1
2 𝑓 (𝑥1, 𝑥2;𝛼1, 𝛼2, 𝛾) d𝑥1d𝑥2 (C.1)

Substituindo a função 𝑓 (𝑥1, 𝑥2;𝛼1, 𝛼2, 𝛾) e realizando as devidas simplificações,
tem-se:

M (𝑠1, 𝑠2) =
� ∞

0

� 𝑥2

0
𝑥
𝑠1−1
1 𝑥

𝑠2−1
2

(
1

𝛾𝛼1+𝛼2Γ (𝛼1) Γ (𝛼2)
𝑥
𝛼1−1
1 (𝑥2 − 𝑥1)𝛼2−1 exp

(
−𝑥2
𝛾

))
d𝑥1d𝑥2

=
1

𝛾𝛼1+𝛼2Γ (𝛼1) Γ (𝛼2)

� ∞

0

� 𝑥2

0
𝑥
𝑠1+𝛼1−2
1 𝑥

𝑠2−1
2 (𝑥2 − 𝑥1)𝛼2−1 exp

(
−𝑥2
𝛾

)
d𝑥1d𝑥2. (C.2)

Logo,

M (𝑠1, 𝑠2) =
1

𝛾𝛼1+𝛼2Γ (𝛼1) Γ (𝛼2)

� ∞

0
𝑥
𝑠2−1
2 exp

(
−𝑥2
𝛾

) [� 𝑥2

0
𝑥
𝑠1+𝛼1−2
1 (𝑥2− 𝑥1)𝛼2−1 d𝑥1

]
d𝑥2. (C.3)

Defina,

𝐼 =

� ∞

0
𝑥
𝑠2−1
2 exp

(
−𝑥2
𝛾

) [� 𝑥2

0
𝑥
𝑠1+𝛼1−2
1 (𝑥2− 𝑥1)𝛼2−1 d𝑥1

]
︸                                    ︷︷                                    ︸

𝐼1 (𝑥2;𝑠1,𝛼1,𝛼2)

d𝑥2. (C.4)

Considere inicialmente,

𝐼1 =

� 𝑥2

0
𝑥
𝑠1+𝛼1−2
1 (𝑥2− 𝑥1)𝛼2−1 d𝑥1 (C.5)

Realizando a troca de variáveis 𝑢 =
𝑥1
𝑥2

para 𝑥2 fixo, então 𝑥2d𝑢 = d𝑥1,



𝐼1 =

� 1

0
(𝑢𝑥2)𝑠1+𝛼1−2𝑥𝛼2−1

2 (1 − 𝑢)𝛼2−1𝑥2d𝑢 = 𝑥
𝑠1+𝛼1+𝛼2−2
2

� 1

0
𝑢𝑠1+𝛼1−2(1 − 𝑢)𝛼2−1d𝑢

= 𝑥
𝑠1+𝛼1+𝛼2−2
2 Beta(𝑠1 + 𝛼1 − 1, 𝛼2) (C.6)

Daí,

𝐼 =

� ∞

0
𝑥
𝑠2−1
2 exp

(
−𝑥2
𝛾

)
𝐼1(𝑥2; 𝑠1, 𝛼1, 𝛼2)d𝑥2

=

� ∞

0
𝑥
𝑠1+𝑠2+𝛼1+𝛼2−3
2 exp

(
−𝑥2
𝛾

)
Beta(𝑠1 + 𝛼1 − 1, 𝛼2)d𝑥2

= Beta(𝑠1 + 𝛼1 − 1, 𝛼2)
� ∞

0
𝑥
𝑠1+𝑠2+𝛼1+𝛼2−3
2 exp

(
−𝑥2
𝛾

)
d𝑥2

=
Γ(𝑠1 + 𝛼1 − 1)Γ(𝛼2)
Γ(𝑠1 + 𝛼1 + 𝛼2 − 1)

Γ (𝑠1 + 𝑠2 + 𝛼1 + 𝛼2 − 2)(
1
𝛾

) 𝑠1+𝑠2+𝛼1+𝛼2−2 . (C.7)

Portanto, realizando as substituições e simplificações necessárias, valem-se:

M𝑀𝐵Γ (𝑠1, 𝑠2) =
1

𝛾𝛼1+𝛼2Γ(𝛼1)Γ(𝛼2)
𝐼

=
𝛾𝑠1+𝑠2−2

Γ(𝛼1)
Γ(𝑠1 + 𝛼1 − 1)

Γ(𝑠1 + 𝛼1 + 𝛼2 − 1)Γ(𝑠1 + 𝑠2 + 𝛼1 + 𝛼2 − 2). (C.8)
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D Medida de seleção de modelo a par-

tir da Transformada de Mellin

Aqui, propõe-se uma medida de modelos do tipo 𝑀𝐵Γ, utilizando a Transformada

de Mellin. A abordagem descrita é amplamente aplicável a dados SAR e outros cenários

que envolvem distribuições em escala logarítmica, como imagens médicas.

Considere

T𝑛 = 𝑛 ·

�
∥ M𝚯̂𝑛

(𝒔1, 𝒔2) −M𝑛 (𝒔1, 𝒔2) ∥2 d𝑊 (𝒔1, 𝒔2)

= 𝑛 ·
�

R∈C2

∥ M𝚯̂𝑛
(𝒔1, 𝒔2) −M𝑛 (𝒔1, 𝒔2) ∥2 𝑤(𝒔1, 𝒔2) d𝐴𝒔1d𝐴𝒔2

em que 𝑑𝐴𝒔1 e 𝑑𝐴𝒔2 são elementos de área no plano complexo associados às variáveis

𝒔1 e 𝒔2 e R é um boreliano. Em coordenadas cartesianas, tem-se:

𝒔1 = 𝑠11 + 𝑖𝑠12 e 𝒔2 = 𝑠21 + 𝑖𝑠22,

então

d𝐴𝒔1 = d𝑠11 · d𝑠12 e d𝐴𝒔2 = d𝑠21 · d𝑠22.

Daí,

T𝑛 = 𝑛 ·
�

D

𝑤(𝑠11 + 𝑖𝑠12, 𝑠21 + 𝑖𝑠22)· ∥ M𝚯̂𝑛
(𝑠11 + 𝑖𝑠12, 𝑠21 + 𝑖𝑠22)

−M𝑛 (𝑠11 + 𝑖𝑠12, 𝑠21 + 𝑖𝑠22) ∥2 d𝑠11 d𝑠12 d𝑠21 d𝑠22.



Em coordenadas polares,

𝒔1 = 𝑟1𝑒
𝑖𝚯1 e 𝒔2 = 𝑟2𝑒

𝑖𝚯2 ,

tem-se

d𝐴𝒔1 = 𝑟1 · d𝑟1 · d𝚯1 e d𝐴𝒔2 = 𝑟2 · d𝑟2 · d𝚯2.

Daí,

T𝑛 = 𝑛 ·
�

𝑊1

�

𝑅1

�

𝑊2

�

𝑅2

𝑤(𝑟1𝑒
𝑖𝚯1 , 𝑟2𝑒

𝑖𝚯2)· ∥ M𝚯̂𝑛
(𝑟1𝑒

𝑖𝚯1 , 𝑟2𝑒
𝑖𝚯2)

−M𝑛 (𝑟1𝑒
𝑖𝚯1 , 𝑟2𝑒

𝑖𝚯2) ∥2 𝑟1 d𝑟1 d𝚯1 𝑟2 d𝑟2 d𝚯2,

em que𝑊1,𝑊2 ∈ (0, 2𝜋] e 𝑅1, 𝑅2 ∈ (0,∞).

Uma possibilidade para a função peso 𝑤(𝒔1, 𝒔2) é:

𝑤(𝒔1, 𝒔2) = exp
{
−

(
𝒔∗1𝒔1 + 𝒔∗2𝒔2

)}
= exp

{
−

(
𝑠2

11 + 𝑠
2
12 + 𝑠

2
21 + 𝑠

2
22

)}
.

ou, em coordenadas polares,

𝑤(𝒔1, 𝒔2) = exp
{
−

(
𝑟2

1 + 𝑟
2
2
)}
.
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