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“Security is not a product, but a process.”

— Bruce Schneier



RESUMO

A detecção de ataques desconhecidos ou zero-day representa um dos principais desafios
da segurança cibernética moderna, especialmente em ambientes com recursos computacionais
limitados como redes IoT. Os sistemas tradicionais baseados em assinaturas são ineficazes
contra ameaças desconhecidas, enquanto abordagens existentes de aprendizado de máquina
apresentam limitações como dependência de parâmetros estáticos, complexidade arquitetural
excessiva e necessidade de ajustes manuais constantes. Este trabalho propõe o HSAE (Hybrid
Scoring Autoencoder), uma arquitetura híbrida não supervisionada que combina um autoen-
coder profundo com uma saída auxiliar de pontuação de anomalia, implementando detecção
multi-critério através de função de perda híbrida e threshold dinâmico otimizado via Equal Er-
ror Rate (EER). Adicionalmente, desenvolve-se uma extensão ensemble que integra o HSAE,
com PCA (Principal Component Analysis) e One-Class SVM (Support Vector Machine) para
aumentar a robustez da detecção. A metodologia empregada baseia-se no treinamento ex-
clusivo com dados benignos, permitindo identificação de padrões anômalos sem necessidade
de exemplos de ataques previamente rotulados. A validação experimental foi conduzida nos
conjuntos de dados CICIDS2017 e ToN_IoT, comparando o desempenho com o Variational
Autoencoder (VAE) como modelo de referência. Os resultados demonstram superioridade con-
sistente do HSAE, com o ensemble alcançando 94% de precisão e 96% de AUC (Area Under
the Curve) na detecção de ransomware, e 96% de precisão em cenários de múltiplos ataques
simultâneos. Destaca-se a redução de 99,8% no consumo de memória em relação a frameworks
existentes, viabilizando implementação em dispositivos com recursos restritos. As contribui-
ções incluem uma arquitetura adaptativa que elimina dependência de configurações manuais,
metodologia transparente de pré-processamento que mitiga vieses experimentais, e validação
abrangente com múltiplas métricas de desempenho. O trabalho estabelece uma solução prática
e escalável para detecção proativa de ameaças em ambientes dinâmicos, equilibrando eficiência
computacional com alta acurácia na identificação de ataques desconhecidos.

Palavras-chaves: Detecção de anomalias, Ataques zero-day, Autoencoder híbrido, Aprendi-
zado não supervisionado, Segurança em IoT, Ensemble learning.



ABSTRACT

Detection of unknown or zero-day attacks represents one of the main challenges in mod-
ern cybersecurity, especially in resource-constrained environments such as IoT networks. Tradi-
tional signature-based systems are ineffective against unknown threats, while existing machine
learning approaches present limitations such as dependence on static parameters, excessive
architectural complexity, and the need for constant manual adjustments. This work proposes
the HSAE (Hybrid Scoring Autoencoder), an unsupervised hybrid architecture that combines
a deep autoencoder with an auxiliary anomaly scoring output, implementing multi-criteria
detection through a hybrid loss function and dynamic threshold optimized via Equal Error
Rate (EER). Additionally, an ensemble extension is developed that integrates HSAE, PCA
(Principal Component Analysis), and One-Class SVM (Support Vector Machine) to enhance
detection robustness. The methodology employed is based on exclusive training with benign
data, enabling identification of anomalous patterns without requiring previously labeled attack
examples. Experimental validation was conducted on the CICIDS2017 and ToN_IoT datasets,
comparing performance with the Variational Autoencoder (VAE) as a reference model. Results
demonstrate consistent superiority of HSAE, with the ensemble achieving 94% precision and
96% AUC in ransomware detection, and 96% precision in multiple simultaneous attack sce-
narios. Notably, a 99.8% reduction in memory consumption compared to existing frameworks
was achieved, enabling implementation in resource-constrained devices. Contributions include
an adaptive architecture that eliminates dependence on manual configurations, a transparent
preprocessing methodology that mitigates experimental biases, and comprehensive validation
with multiple performance metrics. This work establishes a practical and scalable solution for
proactive threat detection in dynamic environments, balancing computational efficiency with
high accuracy in identifying unknown attacks.

Keywords: Anomaly detection, Zero-day attacks, Hybrid autoencoder, Unsupervised learning,
IoT security, Ensemble learning.
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1 INTRODUÇÃO

1.1 CONTEXTO

A evolução das ameaças cibernéticas revela um crescimento preocupante tanto em volume
quanto em sofisticação. Um exemplo emblemático recente é o ransomware Clop, que em 2023
explorou vulnerabilidades do sistema MOVEit Transfer, afetando mais de 8 mil organizações
globalmente, segundo o relatório da Agência de Segurança Cibernética e Infraestrutura dos
EUA (CISA) citado pelo Verizon Data Breach Investigations Report (DBIR) 2024 (VERIZON,
2024). Esse tipo de ameaça, classificado como ransomware, um malware que sequestra os
dados por meio de criptografia e exige pagamento para devolução, continua sendo um dos
principais vetores de ataque, estando presente em 23% das violações, enquanto as técnicas
de extorsão pura já representam 9%, totalizando 32% das brechas associadas a esse tipo de
ameaça. Paralelamente, ataques tradicionais como o phishing, prática fraudulenta que visa
enganar o usuário para obter dados sensíveis, mantêm sua relevância, sendo responsáveis por
uma parte significativa das violações motivadas financeiramente. O relatório ainda destaca
que o tempo médio para que um usuário clique em um link malicioso após abrir o e-mail de
phishing é de apenas 21 segundos, seguido por 28 segundos para o fornecimento de dados,
evidenciando a urgência de medidas preventivas (VERIZON, 2024).

A crescente conectividade no ambiente digital contemporâneo, impulsionada pela expansão
da Internet das Coisas (Internet of Things (IoT)), tem ampliado significativamente a superfície
de ataque em razão do número cada vez maior de dispositivos conectados. Muitos desses
dispositivos operam com recursos computacionais limitados, carecem de padronização em
protocolos de segurança e permanecem vulneráveis a ameaças como spoofing (falsificação
de identidade), jamming (interferência no canal de comunicação) e ataques distribuídos de
negação de serviço (DDoS), representando desafios críticos para a segurança da informação
nesse ecossistema (LONE; MUSTAJAB; ALAM, 2023).

Neste trabalho, quando se fala em ‘ambientes com recursos computacionais limitados’
refere-se a dispositivos intermediários, como roteadores de borda e gateways de IoT, que pos-
suem capacidade restrita de processamento e memória. Estes equipamentos são responsáveis
por monitorar o tráfego de uma rede composta por diversos dispositivos finais (como sensores
inteligentes e outros equipamentos IoT), mas não dispõem da alta capacidade computacional
de servidores ou clusters de alto desempenho, tornando inviável a utilização de sistemas de
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detecção mais pesados. A Figura 1 ilustra o cenário de aplicação descrito, posicionando o
sistema de detecção no gateway de borda.

Figura 1 – Cenário de Aplicação: Ambientes com Recursos Computacionais Limitados

Os sistemas de detecção convencionais se baseiam predominantemente em técnicas de re-
conhecimento de assinaturas digitais conhecidas, apresentando limitações operacionais críticas
(ABDULGANIYU; TCHAKOUCHT; SAHEED, 2023) (NEUPANE et al., 2022). A detecção por assi-
natura demonstra limitações significativas contra ataques polimórficos, conforme evidenciado
por experimentos onde 63 produtos antivírus falharam na detecção de variantes do Wanna-
Cry (CHEN; BRIDGES, 2017). Adicionalmente, muitos sistemas baseados em machine learning

continuam falhando ao lidar com ameaças inéditas, pois operam sob a suposição de “mundo
fechado” — ou seja, assumem que os dados vistos no treinamento representam todas as pos-
síveis entradas —, o que os torna ineficazes diante de ataques não observados previamente e
conjuntos de dados desatualizados (AHMAD et al., 2023).

Entre as ameaças mais desafiadoras destacam-se os ataques zero-day, que exploram vul-
nerabilidades previamente desconhecidas pelos sistemas de defesa (BILGE; DUMITRAŞ, 2012).
A literatura recente aponta que a detecção desses ataques permanece um dos grandes desa-
fios em aberto na pesquisa em segurança cibernética (AHMAD et al., 2023) (LONE; MUSTAJAB;

ALAM, 2023). Estudos indicam que essas ameaças podem persistir por longos períodos antes
de serem descobertas, impactando significativamente a segurança dos sistemas. Além disso,
a natureza imprevisível dos ataques zero-day exige o desenvolvimento de técnicas capazes
de identificar padrões anômalos, mesmo diante da ausência de dados previamente rotulados,
ressaltando a importância de abordagens voltadas à detecção em ambientes abertos e dinâ-
micos, isto é, contextos em que há constante mudança no tráfego de rede, inclusão de novos
dispositivos e surgimento de vulnerabilidades desconhecidas (LONE; MUSTAJAB; ALAM, 2023).
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Diante da incapacidade dos métodos tradicionais em detectar essas ameaças desconheci-
das, a análise comportamental automatizada emerge como uma abordagem promissora para
identificar ataques zero-day por meio de seus padrões anômalos. Tais técnicas visam detectar
desvios comportamentais no tráfego de rede, mesmo em cenários com dados não rotula-
dos ou ausência de assinaturas conhecidas (LONE; MUSTAJAB; ALAM, 2023). No contexto da
análise de tráfego de rede, ataques zero-day são detectáveis através de seus desvios compor-
tamentais, manifestando-se como padrões anômalos em relação ao tráfego legítimo (CHEN;

BRIDGES, 2017). Os principais indicadores comportamentais incluem comunicação comando-
e-controle através de protocolos legítimos, estabelecimento de túneis Domain Name System
(DNS), padrões de tráfego modificados, anomalias temporais e conexões geográficas incomuns
(VISHWAKARMA; JAIN, 2020).

O cenário evidencia uma transição em direção a abordagens mais sofisticadas, destacando
a necessidade urgente de análise comportamental automatizada em tempo real e identificação
proativa de anomalias (ABDULGANIYU; TCHAKOUCHT; SAHEED, 2023) (VISHWAKARMA; JAIN,
2020). Esta transição é coerente com tendências emergentes baseadas em reconhecimento de
padrões anômalos e aprendizagem sem supervisão (AHMAD et al., 2023).

1.2 PROBLEMA DE PESQUISA

A detecção de ataques zero-day permanece um dos maiores desafios em segurança ciber-
nética, especialmente em ecossistemas de alta complexidade e com recursos limitados, como a
Internet das Coisas (IoT). Conforme discutido, sistemas de detecção convencionais, baseados
em assinaturas, são ineficazes contra ameaças inéditas, e muitas abordagens de machine lear-

ning falham ao operar sob a premissa de "mundo fechado", tornando-se vulneráveis a ataques
não vistos previamente.

Diante desse cenário, a literatura recente tem explorado diversas técnicas de aprendizado
profundo não supervisionado. No entanto, uma análise crítica dos trabalhos relacionados, apre-
sentada no Capítulo 3, revela limitações significativas que comprometem a aplicação prática
dessas soluções em ambientes de produção dinâmicos. Estudos como o de (ZAVRAK; ISKE-

FIYELI, 2020) e (MBONA; ELOFF, 2022) propõem modelos que dependem de parâmetros está-
ticos, como limiares de decisão fixos, o que os torna pouco adaptáveis às variações naturais
do tráfego de rede.

Outros trabalhos, embora apresentem resultados promissores, introduzem uma complexi-



22

dade arquitetônica excessiva, resultando em alto custo computacional e latência, fatores que
inviabilizam sua implementação em dispositivos com recursos restritos (MINHAS et al., 2025)
(SOLTANI et al., 2023). Além disso, a necessidade de ajustes manuais constantes e a depen-
dência de processos complexos de recalibração (ZAHOORA et al., 2022) (SOLTANI et al., 2023)
reduzem a autonomia e a robustez dos sistemas em cenários reais. Por fim, muitas propostas
são validadas com um conjunto restrito de métricas, como o uso exclusivo da Area Under
the Curve (AUC), o que oferece uma visão limitada de seu desempenho operacional (ZAVRAK;

ISKEFIYELI, 2020).
Essas lacunas, falta de adaptabilidade, dependência de parâmetros estáticos, complexidade

excessiva e avaliação incompleta evidenciam a necessidade de uma abordagem que seja, ao
mesmo tempo, precisa, eficiente em termos de recursos e capaz de se generalizar para dife-
rentes contextos de rede. Neste trabalho, o termo ataques zero-day refere-se especificamente
a ameaças que exploram vulnerabilidades desconhecidas no tráfego de rede, com foco em
cenários corporativos, IoT e IIoT. Incluem-se tanto ataques de negação de serviço (DoS/D-
DoS) quanto comunicações associadas a malwares como ransomware, desde que apresentem
padrões comportamentais anômalos detectáveis em nível de fluxo de rede. Assim, emerge o
seguinte problema de pesquisa:

Como desenvolver uma abordagem de detecção de anomalias não supervisionada eficiente

e precisa para identificar ataques zero-day em dispositivos com recursos limitados, que seja

generalizável para diferentes ambientes de rede?

1.3 OBJETIVO

Este trabalho visa desenvolver uma abordagem de detecção de anomalias não supervisio-
nado que identifique ataques zero-day em redes com alta precisão e baixo custo computacional
em diferentes tipos de ambiente de rede.

Para isso, foram estabelecidos os seguintes objetivos específicos:

• Desenvolver uma arquitetura de detecção de anomalias baseado em autoencoder com
capacidade de identificação de ataques zero-day.

• Analisar o impacto de diferentes técnicas de pré-processamento e seleção de atributos
no desempenho da abordagem proposta.
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• Investigar a eficácia da integração de técnicas de redução de dimensionalidade e de
classificação não supervisionada na melhoria da detecção de anomalias.

• Avaliar a robustez e desempenho da abordagem proposta em diferentes cenários, utili-
zando conjuntos de dados com perfis distintos de tráfego de rede.

1.4 METODOLOGIA

O desenvolvimento de uma solução eficaz para detecção de ataques zero-day demanda
uma abordagem metodológica que combine pesquisa teórica, desenvolvimento de arquiteturas
inovadoras e validação experimental rigorosa. Esta metodologia se propõe a guiar esse processo
de forma sistemática e abrangente.

O primeiro passo consiste em realizar uma revisão sistemática do estado da arte no campo
da detecção proativa de ameaças. Isso envolve a exploração de literatura acadêmica, estudos
de caso, trabalhos relacionados e padronizações reconhecidas. Será conduzido um mapea-
mento das principais abordagens existentes, identificando suas contribuições e limitações. A
compreensão dos desafios enfrentados e das práticas existentes é essencial para orientar o
desenvolvimento de soluções mais eficazes e estabelecer o contexto científico da pesquisa.

Com base na revisão teórica, o próximo passo é a definição dos requisitos técnicos e
funcionais que orientarão o desenvolvimento das soluções. Serão estabelecidas as restrições
operacionais e os parâmetros de desempenho adequados ao contexto de aplicação. Além disso,
é essencial definir os critérios de avaliação e selecionar os elementos de referência que per-
mitirão a comparação objetiva com abordagens existentes. Os parâmetros definidos devem
ser suficientemente precisos para orientar o desenvolvimento, mas flexíveis o bastante para
contemplar diferentes cenários de validação.

Isso inclui o desenvolvimento e especificação detalhados das soluções propostas para o pro-
blema investigado. Por meio desta especificação será estabelecido o escopo de funcionamento,
as capacidades e limitações de cada abordagem, bem como os mecanismos de adaptação
para diferentes contextos de aplicação. O desenvolvimento seguirá princípios de eficiência e
praticidade, considerando as restrições típicas dos ambientes de aplicação.

Uma vez estabelecida a especificação que norteia as propostas, é possível seguir para a im-
plementação e otimização subsequente. Nesta etapa serão abordados os aspectos práticos de
desenvolvimento, desde a definição das arquiteturas até a implementação dos sistemas funcio-
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nais. As soluções serão desenvolvidas considerando os requisitos estabelecidos anteriormente,
buscando o equilíbrio entre diferentes objetivos conflitantes identificados durante a fase de
especificação.

Para demonstrar a eficácia das soluções propostas e validar suas contribuições, será de-
senvolvida uma estratégia de avaliação experimental abrangente. A experimentação seguirá
protocolos rigorosos utilizando dados representativos e metodologias reconhecidas pela co-
munidade científica. Os resultados serão analisados sob múltiplas perspectivas, fornecendo
evidências empíricas sobre as contribuições, limitações e aplicabilidade de cada abordagem
metodológica adotada.

1.5 ESTRUTURA DA DISSERTAÇÃO

Este capítulo introdutório apresentou a contextualização do problema de pesquisa, a mo-
tivação para o estudo, seus objetivos e a metodologia geral. Os capítulos subsequentes estão
estruturados para aprofundar a investigação de forma lógica e sequencial.

No Capítulo 2, é abordado o referencial teórico que serve de alicerce para a pesquisa. São
explorados os conceitos de ataques de rede, os fundamentos da detecção de anomalias e as
técnicas não supervisionadas, com destaque para os autoencoders e as métricas de avaliação
de sistemas de segurança.

O Capítulo 3, por sua vez, realiza uma análise crítica dos trabalhos relacionados na lite-
ratura. Nele, são discutidas as principais abordagens existentes para a detecção de ataques
zero-day, identificando suas limitações e as lacunas que este trabalho se propõe a preencher.

No Capítulo 4, detalha-se o método proposto. Especifica-se a arquitetura híbrida Hybrid
Scoring Autoencoder (HSAE) e de sua extensão ensemble com Principal Component Analy-
sis (PCA) e One-Class SVM. Adicionalmente, descreve-se toda a metodologia experimental,
incluindo o tratamento dos dados, o protocolo de treinamento e os parâmetros de avaliação.

O Capítulo 5 é dedicado à apresentação e à discussão dos resultados experimentais. O
desempenho das abordagens propostas é rigorosamente comparado ao de uma abordagem de
referência em dois datasets distintos, e a eficiência computacional das soluções é avaliada em
termos de consumo de memória.

Por fim, o Capítulo 6 reúne as conclusões do trabalho. Nele, destacam-se as contribuições
da pesquisa para o campo da detecção de ataques zero-day, e são elencadas sugestões para
investigações futuras.
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2 REFERENCIAL TEÓRICO

A detecção proativa de ataques zero-day constitui elemento-chave para o desenvolvimento
de sistemas de segurança cibernética eficazes, especialmente em ambientes com recursos com-
putacionais limitados. Nesse sentido, este capítulo abordará as referências teóricas, as quais
permitirão uma melhor compreensão do HSAE e da abordagem ensemble proposta pelo pre-
sente trabalho. Para a correta compreensão do escopo desta pesquisa, é necessário distinguir
três conceitos correlacionados entre si: Segurança da Informação, Cibersegurança e Ataques em
Redes. A Segurança da Informação é a disciplina mais ampla, dedicada a proteger a informação
em todas as suas formas, e é historicamente fundamentada nos pilares de confidencialidade,
integridade e disponibilidade — a tríade CIA (SAMONAS; COSS, 2014). A Cibersegurança, por
sua vez, é frequentemente vista como uma evolução desse conceito, sendo um subconjunto
da Segurança da Informação focado especificamente na proteção de ativos no ciberespaço,
como redes, computadores e dados (CRAIGEN; DIAKUN-THIBAULT; PURSE, 2014). Dentro deste
domínio, os Ataques em Redes são uma das principais categorias de ameaças, envolvendo
ações que buscam contornar mecanismos de segurança explorando as vulnerabilidades de uma
rede-alvo (HOQUE et al., 2014), tema central que será detalhado a seguir.

2.1 CONCEITOS FUNDAMENTAIS SOBRE ATAQUES ZERO-DAY

2.1.1 Definição de Ataques Zero-day

Um ataque classificado como zero-day ocorre quando uma vulnerabilidade é explorada
antes de ser divulgada publicamente e, portanto, antes que exista uma atualização ou assi-
natura capaz de corrigi-la (BILGE; DUMITRAŞ, 2012). Nesse cenário, mecanismos de defesa
baseados em assinaturas tornam-se ineficazes, pois a ameaça ainda não foi documentada. O
termo “zero-day” deriva do fato de que, desde o início da exploração, não há tempo de reação
disponível para desenvolvedores ou equipes de segurança (NKONGOLO; TOKMAK, 2023).

Tradicionalmente, o conceito restringia-se a vulnerabilidades inéditas. No entanto, estu-
dos recentes indicam que ele também se aplica a vulnerabilidades conhecidas exploradas por
métodos não previstos, capazes de contornar mecanismos de detecção (AHMAD et al., 2023).
Essa ampliação reforça a necessidade de estabelecer limites claros entre o que é e o que não
é um ataque zero-day. Nessa classificação, distingue-se entre unknown unknowns — ameaças
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sem qualquer registro prévio — e known unknowns, que apresentam semelhanças parciais com
incidentes conhecidos, mas exigem detecção adaptativa (AHMAD et al., 2023).

O impacto de ataques zero-day pode afetar de forma crítica a confidencialidade, integri-
dade e disponibilidade (ROUMANI, 2021), e seu risco é ampliado no contexto de Internet das
Coisas (IoT) devido à diversidade de dispositivos, heterogeneidade de protocolos e restrições
de processamento e memória. Nessas redes, a exploração de vulnerabilidades ainda desconhe-
cidas ou de vetores inéditos pode comprometer desde sensores domésticos até infraestruturas
críticas, muitas vezes sem possibilidade de atualização rápida.

2.1.2 Taxonomias e Tipos de Ataques Zero-Day

A literatura apresenta diferentes formas de classificar ataques zero-day. Um critério é a
origem da vulnerabilidade:

• Vulnerabilidade nova: falha inédita, sem registro prévio.

• Vulnerabilidade conhecida com técnica nova: exploração por meio de métodos
inéditos capazes de evitar detecção (AHMAD et al., 2023).

Outro critério é o alvo: sistemas corporativos, dispositivos IoT, ou infraestruturas críticas —
onde a exploração pode interromper serviços essenciais (NKONGOLO; TOKMAK, 2023). Também
se classifica conforme o vetor de ataque, que pode envolver exploração de protocolos, serviços,
aplicações ou comportamento anômalo de rede.

Há ainda casos que se destacam pelo método, como uso de código malicioso inédito, téc-
nicas polimórficas e ofuscação para dificultar análise e detecção (GANDOTRA; BANSAL; SOFAT,
2016). Ataques a protocolos, como manipulação de pacotes e exploração de vulnerabilidades
em serviços de comunicação, diferem de ataques focados em padrões comportamentais, nos
quais o objetivo é imitar tráfego legítimo para evitar alarmes (mimicry attacks). Ataques como
o Stuxnet e o WannaCry são frequentemente citados na literatura por combinarem exploração
de falhas inéditas com alta capacidade de propagação (CHEN; BRIDGES, 2017). Esses casos
ilustram como diferentes categorias podem se sobrepor, aumentando o desafio para a defesa.
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2.1.3 Desafios Específicos na Detecção

A detecção de ataques zero-day enfrenta obstáculos significativos devido à dependência
histórica de mecanismos baseados em assinaturas e à premissa de um “mundo fechado”, onde
só é identificado aquilo que já foi previamente registrado (BILGE; DUMITRAŞ, 2012). No caso
de ataques inéditos, padrões anômalos no tráfego ou no comportamento do sistema tornam-se
sinais precoces essenciais (AHMAD et al., 2023).

Entretanto, técnicas como mimicry e evasão polimórfica reduzem a eficácia de detecção.
Malwares polimórficos, por exemplo, modificam continuamente suas assinaturas de arquivo e
podem também ofuscar o tráfego de rede pós-infecção, como nas comunicações com servidores
de comando e controle (CHEN; BRIDGES, 2017).

No contexto de IoT e gateways, esses desafios são potencializados por limitações de re-
cursos e pela diversidade de plataformas, dificultando a aplicação de técnicas complexas de
inspeção e análise em tempo real (NKONGOLO; TOKMAK, 2023). Dessa forma, a detecção
efetiva exige modelos capazes de identificar anomalias comportamentais e padrões sutis de
desvios, indo além da simples correspondência com ataques previamente conhecidos. Para
compreender e detectar esses ataques, é necessário observar como padrões comportamentais
se manifestam também em ataques já conhecidos. Embora não sejam zero-day, eles fornecem
insights valiosos para o treinamento e validação de modelos de detecção.

Frente aos desafios expostos, este trabalho adota uma definição operacional de ’zero-day ’
focada em comportamento de rede. Definimos como ’zero-day ’ uma anomalia de tráfego em
nível de fluxo, ausente no conjunto de treinamento, que se manifesta como um desvio do
perfil de normalidade aprendido exclusivamente com dados benignos. Tal delimitação direci-
ona nosso escopo experimental para ataques como DoS/DDoS e ransomware, cujos traços
comportamentais na rede são o foco de nossa análise. A metodologia de avaliação completa
está descrita na Seção 4.5.

2.2 TAXONOMIA E COMPORTAMENTO DE ATAQUES EM REDES

Para desenvolver um sistema capaz de detectar o comportamento de ataques desconheci-
dos (zero-day), é necessário primeiro compreender e caracterizar as ’impressões digitais com-
portamentais’ de ataques conhecidos. A premissa central desta abordagem é que, embora a
vulnerabilidade explorada por um ataque zero-day seja inédita, sua manifestação no tráfego
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de rede frequentemente compartilhará características anômalas com famílias de ataques já
estudadas. Padrões como picos de volume de tráfego, conexões de baixa taxa, exfiltração
de dados ou comunicação com servidores de Comando e Controle (C&C) são exemplos de
comportamentos que transcendem ataques específicos.

Portanto, esta seção se aprofunda na análise comportamental de ameaças consolidadas,
como os ataques de Negação de Serviço (DoS) e o Ransomware. O objetivo não é criar um
detector para essas ameaças específicas, mas sim utilizar seus padrões operacionais como uma
base de conhecimento para treinar e validar um modelo de detecção de anomalias que seja
capaz de generalizar e identificar esses mesmos tipos de desvios comportamentais quando
originados por uma ameaça zero-day.

Os ataques em redes constituem uma das principais preocupações no cenário atual de
segurança cibernética, representando ações maliciosas deliberadas que visam comprometer a
confidencialidade, integridade ou disponibilidade de sistemas e dados em ambientes de comuni-
cação digital. Segundo (HOQUE et al., 2014), "ataques em redes tentam contornar mecanismos
de segurança de uma rede explorando vulnerabilidades da rede-alvo", podendo resultar em
perdas financeiras significativas, vazamento de informações sensíveis e interrupção de serviços
críticos.

A natureza distribuída e interconectada das redes modernas amplia consideravelmente a
superfície de ataque, criando múltiplos vetores pelos quais agentes maliciosos podem penetrar
nos sistemas. A crescente complexidade da infraestrutura tecnológica, aliada à proliferação
de dispositivos conectados, torna o ambiente digital cada vez mais suscetível a diferentes
modalidades de ataques cibernéticos. Importante salientar que a segurança da informação
depende coletivamente de cada indivíduo que pode ter acesso à infraestrutura organizacional
(PRABHU; THOMPSON, 2022).

2.2.1 Natureza dos Ataques: Ativo vs. Passivo

Os autores de (LATHA; PRAKASH, 2017) estabelecem uma distinção fundamental entre
ataques ativos e passivos. Os ataques ativos envolvem ações que alteram recursos do sistema,
como quebra de segurança ou modificação de dados. Esses ataques incluem diferentes ti-
pos, como mascaramento (masquerade), repetição de sessão (session replay), modificação de
mensagens e negação de serviço. Tais ações podem ser implementadas por meio de artefatos
maliciosos como vírus, worms, cavalos de Tróia e inserção de código malicioso.
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Ataques passivos, por outro lado, tentam conhecer ou utilizar informações importantes
sem afetar os recursos do sistema. Neste tipo de ataque, o atacante utiliza ferramentas de
farejamento (sniffer) e aguarda para capturar informações sensíveis que podem ser aplicadas
em outras ações (LATHA; PRAKASH, 2017). Tais ataques incluem a liberação de conteúdo
de mensagens, análise de tráfego, uso de sniffers, ferramentas de farejamento de pacotes e
filtragem de senhas.

2.2.2 Classificação Geral dos Ataques em Redes

Latha e Prakash (2017) apresentam uma classificação estruturada onde qualquer ataque
pode ser categorizado em uma das quatro categorias principais: Ataques de Negação de Ser-
viço (DoS), Ataques de Sondagem (Probing), Ataques Remoto-para-Local (R2L) e Ataques
Usuário-para-Root (U2R), conforme ilustrado na Figura 2.

Figura 2 – Taxonomia dos Principais Ataques em Redes

2.2.3 Análise Comportamental de Ataques de Negação de Serviço

Com o avanço das técnicas de ataque e a sofisticação dos atacantes, emergiram variantes
específicas de ataques de negação de serviço. Embora as ameaças descritas a seguir sejam
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conhecidas, a análise de seu modus operandi é fundamental para a detecção de ataques zero-

day. Portanto, esta seção detalha ataques proeminentes como HULK, Slowhttptest, Slowloris
e GoldenEye, não como um fim em si mesmos, mas como estudos de caso dos padrões com-
portamentais que um sistema de detecção de anomalias robusto deve ser capaz de generalizar
e identificar.

1. Ataques de Negação de Serviço (DoS) Tipo de ataque onde o invasor sobrecar-
rega um sistema ou serviço, tornando-o indisponível para usuários legítimos. Exemplos incluem
Smurf, Ping of Death, Neptune, UDP Storm e Apache. Uma variante específica é o ataque dis-
tribuído (DDoS), que visa comprometer a disponibilidade dos servidores inundando o canal de
comunicação com solicitações falsas originadas de múltiplos dispositivos distribuídos. Segundo
Neira, Kantarci e Nogueira (2023), os ataques DDoS figuram entre as principais ameaças
cibernéticas globais, exigindo soluções que antecipem e mitiguem esses eventos volumétricos.

2. Ataques de Sondagem (Probing) Ataque onde o hacker escaneia uma máquina ou
dispositivo de rede para descobrir seu endereço IP válido, tipo de serviço, sistema operacional
utilizado e vulnerabilidades do sistema usando ferramentas de hacking. Essas informações
podem ser usadas para explorar o sistema posteriormente. Exemplos: Saint, Portsweep, Nmap,
Ipsweep e Mscan.

3. Ataques Remoto-para-Local (R2L) O atacante que não possui conta naquela má-
quina envia pacotes de rede para uma máquina vítima através da internet, estabelecendo uma
conexão com aquela máquina. O atacante então causa danos ao software da máquina e pode
explorar os privilégios do usuário original. Exemplos: Ataques de dicionário e Ataques de senha.

4. Ataques Usuário-para-Root (U2R) Um atacante se introduz na rede como usuá-
rio normal e, após atingir uma zona mais segura, tenta agir como superusuário explorando
vulnerabilidades no mecanismo do computador, finalmente alcançando privilégios de superu-
suário. Como o atacante faz parte da rede, a identificação é muito trabalhosa. Exemplo: buffer

overflow.

2.2.3.1 HULK (HTTP Unbearable Load King)

O ataque HULK representa um método de ataque DoS especializado em sobrecarregar
servidores web através de requisições HyperText Transfer Protocol (HTTP) massivas. Esta
técnica caracteriza-se por gerar um volume elevado de solicitações HTTP aparentemente le-
gítimas, mas que consomem recursos significativos do servidor alvo (SHOREY et al., 2018). O
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método HULK opera gerando URLs únicos e requisições variadas para contornar mecanismos
básicos de detecção baseados em padrões, tornando cada requisição aparentemente distinta
das anteriores.

A estratégia do ataque HULK fundamenta-se na exploração da capacidade limitada de pro-
cessamento simultâneo de conexões dos servidores web. Ao inundar o servidor com requisições
HTTP GET e POST diversificadas, este tipo de ataque esgota recursos críticos como threads

de processamento, slots de conexão e memória disponível, resultando na indisponibilidade do
serviço para usuários legítimos (MALLIGA; NANDHINI; KOGILAVANI, 2022).

2.2.3.2 Slowhttptest

O Slowhttptest constitui uma técnica de ataque desenvolvida para explorar vulnerabilidades
de servidores web através de ataques DoS de baixa taxa (slow-rate attacks). Esta modalidade
de ataque implementa diferentes variantes de ataques lentos, incluindo Slow Headers, Slow

Body e Slow Read (SHOREY et al., 2018).
A metodologia do ataque Slowhttptest baseia-se no princípio de manter conexões HTTP

abertas por períodos prolongados, enviando dados em velocidades extremamente baixas. Di-
ferentemente dos ataques tradicionais de alta volumetria, esta abordagem explora a paciência
limitada dos servidores em aguardar a conclusão de requisições aparentemente legítimas. O
ataque Slow Headers, por exemplo, envia cabeçalhos HTTP de forma fragmentada e em inter-
valos prolongados, forçando o servidor a manter a conexão aberta enquanto aguarda a chegada
completa dos dados (MALLIGA; NANDHINI; KOGILAVANI, 2022).

2.2.3.3 Slowloris

O Slowloris, desenvolvido por Robert “RSnake” Hansen, representa uma das técnicas de
ataque DoS mais elegantes e eficazes já concebidas. A simplicidade desta modalidade de ataque
reside no fato de que apenas um computador é necessário para derrubar um servidor web, sem
afetar outras portas e serviços, impactando exclusivamente o alvo designado (SHOREY et al.,
2018).

O mecanismo de funcionamento do ataque Slowloris baseia-se na abertura de numerosas
conexões com o servidor web direcionado, mantendo-as abertas por período indefinido. Utili-
zando essas conexões, o método transmite requisições HTTP fracionárias de forma contínua,
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resultando em servidores sob ataque que mantêm as conexões abertas enquanto aguardam a
conclusão dessas requisições fragmentadas (SHOREY et al., 2018).

A denominação “Slowloris” deriva da característica do ataque de “lentamente” consumir
os recursos HTTP do servidor. Trata-se fundamentalmente de um ataque DDoS HTTP, não
devendo ser confundido com um ataque DDoS TCP. Essencialmente, o método estabelece uma
conexão Transmission Control Protocol (TCP) legítima com o host alvo e, posteriormente,
inunda a mesma com conexões HTTP parciais que são mantidas abertas pelo maior tempo
possível e continuamente enviadas até o esgotamento completo dos recursos do alvo.

Uma vantagem significativa do Slowloris é que o atacante não envia pacotes malformados,
permitindo que esses pacotes parciais atravessem facilmente sistemas de prevenção de intrusão
Intrusion Prevention System (IPS) — ferramentas que, diferentemente dos sistemas que apenas
detectam, são capazes de bloquear ativamente o tráfego considerado malicioso. No entanto,
servidores web de gerações atuais possuem recursos adequados para mitigar ataques Slowloris
através de estratégias como expansão do número máximo de clientes permitidos, restrição
do número de conexões de um único endereço IP e limitação temporal para permanência de
conexões (SHOREY et al., 2018).

2.2.3.4 GoldenEye

O GoldenEye constitui uma técnica de ataque DoS HTTP/S mais recente em comparação
ao Slowloris. Esta modalidade de ataque, implementada originalmente em Python para fins
de teste de segurança, demonstra capacidade de derrubar servidores web quando utilizada
maliciosamente (SHOREY et al., 2018).

A estratégia do ataque GoldenEye consiste em utilizar o cabeçalho Connection: Keep-Alive,
combinado com opções de Cache-Control, para estabelecer e manter múltiplas conexões com o
servidor. Essa tática visa esgotar gradualmente todo o pool de sockets disponíveis, sufocando o
servidor e impedindo que usuários legítimos consigam se conectar. O método também é descrito
como uma técnica sofisticada para a análise de malwares, capaz de investigar ambientes de
forma adaptativa para determinar as prováveis configurações do sistema-alvo (SHOREY et al.,
2018).

O ataque pode alternar online sua condição de estrutura de sistema adaptativamente para
promover investigação, sendo eficaz em descobrir qual é o ambiente almejado através de um
mecanismo de execução específico para observar práticas sob situações eletivas. Embora o
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GoldenEye comprometa espaço em favor da velocidade, observou-se que pode efetivamente
utilizar menos espaço de memória enquanto consegue velocidade significativamente superior
(SHOREY et al., 2018).

2.2.4 Ataques DDoS em IoT: Papel dos Botnets e Malware

O papel dos botnets IoT em ataques DDoS representa uma evolução significativa das ame-
aças cibernéticas. Dispositivos IoT comprometidos, conhecidos como ’bots’, são controlados
por um servidor mestre (Master Bot Controller) que pode utilizar comunicação baseada em
Internet Relay Chat (IRC), Peer-to-Peer ou HTTP. A formação de botnets IoT é facilitada
pela tendência desses dispositivos permanecerem conectados 24 x 7 x 365, tornando-os alvos
ideais para ataques de larga escala (VISHWAKARMA; JAIN, 2020).

Entre os malwares mais notórios, destaca-se o Mirai, responsável pelo maior ataque DDoS
registrado até então, envolvendo até 15 milhões de dispositivos IoT com velocidade de inun-
dação de 1 Tbps. O código-fonte do Mirai, disponibilizado publicamente, contém 62-68 pares
padrão de nomes de usuário e senhas utilizados para ataques de força bruta em dispositivos
IoT desprotegidos (VISHWAKARMA; JAIN, 2020).

2.2.5 Desafios Específicos em Ambientes IoT

O contexto IoT apresenta desafios únicos que amplificam as vulnerabilidades tradicionais
de segurança. A Internet das Coisas emergiu como uma plataforma significativa para escalar
entidades maliciosas, aproveitando-se de vulnerabilidades resultantes de recursos limitados e
segurança mais fraca dos dispositivos (VISHWAKARMA; JAIN, 2020). Estes dispositivos herdam
vulnerabilidades de tecnologias base como Radio Frequency Identification (RFID) e redes de
sensores sem fio (DEOGIRIKAR; VIDHATE, 2017), enfrentando desafios únicos devido às limita-
ções de processamento e recursos computacionais restritos.

A complexidade computacional dos algoritmos sofisticados torna-se inviável em ambientes
IoT, especialmente em dispositivos com recursos limitados (VISHWAKARMA; JAIN, 2020). As
limitações intrínsecas fazem com que as contramedidas tradicionais não possam ser aplicadas
diretamente para ameaças baseadas em IoT (DEOGIRIKAR; VIDHATE, 2017). A proliferação
de dispositivos IoT heterogêneos cria um ambiente particularmente propício para ataques
zero-day, uma vez que a diversidade de sistemas operacionais, protocolos e implementações
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amplia significativamente a superfície de ataque disponível para exploração de vulnerabilidades
previamente desconhecidas (AHMAD et al., 2023).

Ataques DDoS IoT têm se tornado cada vez mais frequentes devido à proliferação de
dispositivos IoT vulneráveis e mal configurados, especialmente em redes IoT onde o ataque
visa a disponibilidade dos servidores inundando o canal de comunicação com solicitações falsas
vindas de dispositivos IoT distribuídos (VISHWAKARMA; JAIN, 2020).

Essa vulnerabilidade característica dos ecossistemas IoT evidencia uma mudança de pa-
radigma na segurança. Em redes tradicionais, a defesa é distribuída em múltiplas camadas,
incluindo proteções no próprio dispositivo (host-based), como antivírus e firewalls locais, além
da aplicação de patches. No entanto, as severas restrições de processamento e memória da
maioria dos dispositivos IoT inviabilizam a implementação dessas defesas locais sofisticadas.
Essa lacuna na segurança do dispositivo eleva a importância da monitoração da rede, tornando
os detectores de anomalias, que analisam o tráfego de entrada e saída, uma camada de defesa
essencial e, muitas vezes, a principal forma de identificar que um dispositivo foi comprometido.

2.2.6 Taxonomia de Ataques DDoS em IoT

Os ataques DDoS em redes IoT podem ser categorizados com base no impacto nas cama-
das da arquitetura de rede. Os ataques de camada de aplicação tentam invadir a camada de
aplicação da infraestrutura de rede IoT, onde os pacotes são descartados em taxa de solicita-
ções por segundo (Rps) devido à inundação do servidor de aplicação ou web por solicitações
HTTP (Get/Post). Já os ataques de camada de infraestrutura visam tornar o sistema alvo
inacessível explorando vulnerabilidades nas camadas de transporte ou de rede da arquitetura
IoT, podendo ser baseados em protocolo ou volume (VISHWAKARMA; JAIN, 2020).

Estatísticas recentes mostram que ataques de camada de infraestrutura como SYN, User
Datagram Protocol (UDP) e TCP flood obtiveram as maiores porcentagens comparados aos
ataques de camada de aplicação, embora ataques HTTP GET flood tenham mostrado cres-
cimento significativo. Além disso, botnets baseados em Linux têm se tornado mais comuns,
não devido à falta de segurança do Linux, mas porque fornecedores frequentemente lançam
roteadores e equipamentos IoT com kernels Linux desatualizados e proteção de segurança
limitada (VISHWAKARMA; JAIN, 2020).
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2.2.7 Ransomware

De forma análoga aos ataques DoS, o ransomware, outra ameaça crítica no cenário atual,
também gera comportamentos de rede anômalos que podem ser detectados antes que o
dano principal (a criptografia dos arquivos) ocorra. A análise de suas fases de comunicação
com servidores de Comando e Controle (C&C) e exfiltração de dados revela padrões que, se
identificados, podem sinalizar a presença de uma nova variante de ransomware agindo na rede.
Assim, o estudo a seguir sobre a taxonomia e o funcionamento do ransomware serve como
base para entender os desvios comportamentais que a solução proposta visa detectar.

O ransomware representa uma das ameaças cibernéticas mais devastadoras dos últimos
anos, distinguindo-se por empregar técnicas avançadas de criptografia para bloquear o acesso
aos dados das vítimas e, posteriormente, exigir pagamentos para sua liberação. Essa moda-
lidade de ataque tem experimentado um crescimento exponencial em sofisticação, impulsio-
nado principalmente pela emergência de modelos comerciais como o Ransomware-as-a-Service
(RaaS) e pela diversificação de vetores de disseminação que incluem campanhas de phishing,
exploração de vulnerabilidades em protocolos remotos como Remote Desktop Protocol (RDP)
e a utilização de kits de exploração automatizados (BEAMAN et al., 2021).

No estudo de (RAZAULLA et al., 2023), é apresentada uma taxonomia abrangente do ecos-
sistema de ransomware, a qual classifica as variantes com base em seus tipos (como crypto,

locker, leakware e scareware), vetores de infecção, mecanismos de comunicação com servido-
res de comando e controle (C&C) e ações maliciosas associadas. Essa estrutura é ilustrada
na Figura 3, que integra diferentes dimensões comportamentais e técnicas, fornecendo um
referencial analítico para o estudo dessa ameaça.

Essa taxonomia evidencia como diferentes famílias de ransomware podem compartilhar
características técnicas, mesmo que variem em seus objetivos estratégicos ou métodos de
disseminação. Por exemplo, o mesmo artigo analisa variantes notórias como Ryuk, REvil e
Maze, e destaca como o Maze introduziu o modelo de dupla extorsão, que combina criptografia
com exfiltração de dados para aumentar a pressão sobre a vítima (RAZAULLA et al., 2023).

Complementando essa perspectiva classificatória, Beaman et al. (2021) investigam os avan-
ços mais recentes na engenharia de ransomware, destacando a adoção generalizada de esque-
mas de criptografia híbrida que combinam algoritmos Advanced Encryption Standard (AES)
e Rivest-Shamir-Adleman (RSA). Os autores também documentam como eventos disruptivos
globais, particularmente a pandemia de COVID-19, criaram janelas de oportunidade que foram
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Figura 3 – Taxonomia do Ransomware.

Fonte: Razaulla et al. (2023).

amplamente exploradas por operadores maliciosos. Particularmente relevante é a demonstra-
ção de como variantes experimentais, exemplificada pelo ransomware AESthetic, conseguem
contornar sistemas de detecção de intrusão (Intrusion Detection System (IDS)) baseados em
assinatura, sublinhando a urgência no desenvolvimento de mecanismos de detecção mais so-
fisticados.

Em uma abordagem complementar, estudos como o de Chen e Bridges (2017) demons-
tram a eficácia da análise comportamental automatizada para extrair padrões de malwares.
Essa técnica permite identificar características distintivas de variantes de ransomware, como o
WannaCry, que possuem capacidades polimórficas projetadas para desafiar soluções baseadas
em assinaturas estáticas. A relevância dessa abordagem é particularmente evidente na detec-
ção precoce de ameaças, permitindo intervenções preventivas antes da execução dos processos
de criptografia.

2.3 DETECÇÃO DE ANOMALIAS EM TRÁFEGO DE REDE

No contexto deste trabalho, considera-se ‘anomalia’ qualquer padrão de tráfego de rede que
se desvia significativamente do comportamento esperado, podendo ter origem em atividades
maliciosas (como ataques conhecidos e zero-day), falhas de configuração, erros operacionais
ou eventos legítimos raros. Embora nem toda anomalia represente uma ameaça, sua detecção
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é fundamental para identificar comportamentos potencialmente prejudiciais.
Diante da crescente sofisticação dos ataques cibernéticos, especialmente os ataques do

tipo zero-day que se manifestam inicialmente como desvios comportamentais sutis no tráfego
de rede, torna-se necessário compreender as abordagens de detecção de anomalias. Este tipo
de detecção representa uma alternativa promissora aos métodos tradicionais baseados em
assinaturas, ao permitir a identificação de ameaças ainda não catalogadas, ou mesmo variações
sofisticadas de ataques já conhecidos (GARCIA-TEODORO et al., 2009).

A essência da detecção por anomalias está na identificação de padrões de comportamento
que divergem de um perfil previamente estabelecido como normal. Essa abordagem envolve a
modelagem estatística ou o uso de algoritmos de aprendizado de máquina treinados com dados
de tráfego legítimo, a fim de detectar desvios que possam indicar atividades suspeitas. Por
não depender de uma base de assinaturas previamente definida, ela se mostra particularmente
eficaz contra ataques emergentes, como os zero-day, que exploram vulnerabilidades ainda
desconhecidas pelos sistemas convencionais de defesa (HOQUE et al., 2014).

Limitações e Desafios Específicos

No entanto, nem toda atividade maliciosa resulta em anomalias perceptíveis. Um dos prin-
cipais desafios enfrentados por essa abordagem é sua limitação diante de ameaças internas
(insider threats), as quais são executadas por indivíduos com acesso legítimo diante do sistema
e organização. Esses usuários, por possuírem credenciais válidas e conhecimento do funciona-
mento interno dos sistemas, conseguem muitas vezes operar dentro dos limites considerados
normais, escapando à detecção baseada em anomalias. Liu et al. (2018) classificam essas
ameaças em três categorias: traidores (usuários maliciosos), mascarados (agentes externos
usando credenciais legítimas) e perpetradores não intencionais (usuários que comprometem
a segurança por negligência). Reforçando essa perspectiva, Yuan e Wu (2021) afirmam que
as ameaças internas são particularmente difíceis de detectar. O desafio reside no fato de que
os insiders, por já possuírem acesso legítimo, não necessariamente violam controles de acesso
diretos. Além disso, suas atividades maliciosas podem ser sutis, gerando comportamentos que,
embora anômalos, são muito próximos aos de usuários benignos no espaço de característi-
cas, dificultando a detecção por métodos estatísticos tradicionais. Para superar essa barreira,
os autores defendem o uso de modelos de Deep Learning, como Redes Neurais Recorrentes
(RNNs) e Autoencoders, que são capazes de aprender representações complexas e modelar
sequências de comportamento para identificar esses padrões maliciosos sutis.

Além das ameaças internas, destaca-se uma classe de ataques especialmente desenhada
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para contaminar sistemas de detecção comportamental: os mimicry attacks. Como descrevem
Wagner e Soto (2002), esses ataques consistem na imitação deliberada do comportamento
legítimo do sistema alvo, de forma a não acionar os mecanismos de detecção. Um exemplo
prático dessa estratégia é demonstrado por Larson et al. (2009), que mostram como é pos-
sível construir longas sequências de chamadas de sistema que permanecem indetectáveis por
sistemas que validam apenas os nomes das chamadas, ignorando outros contextos importan-
tes como seus argumentos ou valores de retorno. A construção bem-sucedida desses ataques
baseia-se na identificação da interseção entre comportamentos normais e maliciosos, conforme
ilustrado na Figura 4, onde essa interseção representa o espaço comportamental que pode ser
explorado para construir mimicry attacks eficazes.

Figura 4 – A interseção denota o comportamento que pode ser usado para construir mimicry attacks

Fonte: Larson et al. (2007).

O conceito de mimicry abrange múltiplas dimensões, tais como:

• Mimicry temporal: onde a temporização das ações maliciosas é ajustada para se alinhar
ao ritmo normal de operação da rede;

• Mimicry estatístico: em que os parâmetros estatísticos do tráfego (como frequência de
pacotes, tamanho de payloads e tempos de resposta) são manipulados para se manterem
dentro dos limites normais;

• Mimicry comportamental: que busca replicar precisamente sequências e fluxos de uso
típicos de usuários legítimos.
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Para esse fim, atacantes podem empregar diversas técnicas de fingerprinting de tráfego de
rede, que operam em diferentes níveis de detalhe, como a análise a nível de pacote (packet-

level) ou a nível de fluxo (flow-level), para mapear o comportamento de sistemas e identificar
alvos (SHENG et al., 2025). Um mecanismo adicional empregado é o uso de no-ops semânticos,
instruções que não alteram o estado do sistema, mas são introduzidas para disfarçar a sequência
real de ações, dificultando ainda mais a detecção (WAGNER; SOTO, 2002)). Larson et al.
(2009)identificam que essas técnicas de no-ops podem incluir chamadas como write(-1,,0)
que falham propositalmente, mas mantêm a aparência de atividade normal.

A modelagem do comportamento normal constitui, portanto, o alicerce da detecção de
anomalias, exigindo análises estatísticas e algoritmos robustos capazes de lidar com variações
legítimas e adaptar-se a mudanças de padrão sem comprometer a sensibilidade à ocorrência de
eventos maliciosos. Larson et al. (2009) demonstram que a inclusão de informações adicionais
das chamadas de sistema - como argumentos, valores de retorno e identidade do usuário -
pode reduzir significativamente as opções dos atacantes para construir mimicry attacks bem-
sucedidos, revelando manifestações de ataque previamente ocultas. Sistemas bem-sucedidos
nesse campo devem ser capazes de aprender com o tráfego contínuo, manter taxas aceitáveis
de falsos positivos e negativos e integrar, sempre que possível, informações contextuais e
comportamentais para enriquecer sua capacidade preditiva (GARCIA-TEODORO et al., 2009)
(LATHA; PRAKASH, 2017).

Portanto, embora a detecção baseada em anomalias não seja isenta de limitações, ela de-
sempenha papel fundamental no ecossistema de defesa cibernética moderno, principalmente
quando associada a abordagens híbridas e técnicas avançadas de machine learning. Ao possi-
bilitar a identificação de padrões até então invisíveis a métodos tradicionais, essa estratégia
torna-se indispensável para enfrentar ameaças furtivas e adaptativas. Nesse contexto, o estudo
de padrões comportamentais observados em ataques conhecidos fornece subsídios valiosos
para a construção de modelos capazes de reconhecer manifestações equivalentes em ataques
zero-day, mesmo sem a existência prévia de assinaturas ou registros formais.

2.4 ABORDAGENS DE DETECÇÃO

Estabelecidos os princípios da detecção por anomalias e seus desafios intrínsecos, é ne-
cessário analisar as diferentes abordagens. A detecção de anomalias em tráfego de rede, por
exemplo, evoluiu significativamente nas últimas décadas, migrando de métodos tradicionais
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baseados em regras para técnicas modernas fundamentadas em aprendizado de máquina. A
detecção de anomalias baseada em rede permanece como um importante campo de pesquisa
e desenvolvimento em detecção de intrusão (JAVAHERI et al., 2023) (ABDULGANIYU; TCHA-

KOUCHT; SAHEED, 2023). Mais recentemente, a detecção de anomalias habilitada por deep

learning, ou detecção profunda de anomalias, emergiu como uma direção relevante nesse con-
texto (GUO, 2023). O objetivo principal dessa abordagem, conforme destacam Pang et al.
(2021), é aprender representações de características ou pontuações de anomalia por meio de
redes neurais, visando identificar desvios de comportamento. Diversos métodos de detecção
profunda de anomalias foram introduzidos recentemente, demonstrando desempenho superior
em relação às técnicas convencionais, principalmente na resolução de problemas desafiadores
e aplicações do mundo real (GUO, 2023) (BERAHMAND et al., 2024).

2.4.1 Paradigmas de Aprendizado de Máquina

As abordagens modernas para detecção de ameaças se apoiam em técnicas de Machine
Learning (ML), que se mostram promissoras por sua capacidade de extrair características
estatísticas de ataques (GUO, 2023). A escolha do paradigma de aprendizado é determinante
e depende da disponibilidade de dados rotulados. As técnicas podem ser classificadas em três
categorias principais: supervisionada, não supervisionada e semi-supervisionada (BERAHMAND

et al., 2024).

• Aprendizado Supervisionado: Este paradigma exige um conjunto de dados de treina-
mento previamente rotulado, que deve conter exemplos tanto do tráfego normal quanto
do anômalo (BERAHMAND et al., 2024). O objetivo do modelo é aprender a partir desses
rótulos a “capturar a diferença” entre as classes (BERAHMAND et al., 2024), criando uma
função que mapeia as características do tráfego a um rótulo específico (GUO, 2023). Sua
principal desvantagem é a ineficácia contra ataques zero-day, pois, por definição, não exis-
tem exemplos rotulados de ameaças desconhecidas durante a fase de treinamento (GUO,
2023).

• Aprendizado Não Supervisionado: Em contraste, esta abordagem aprende padrões a
partir de dados não rotulados (GUO, 2023). Na detecção de anomalias, a estratégia con-
siste em treinar o modelo utilizando exclusivamente dados da classe normal (GUO, 2023).
O objetivo não é diferenciar classes, mas sim construir um modelo robusto do que é a “nor-
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malidade”, geralmente ao tentar reconstruir os dados normais com o menor erro possível.
Qualquer dado que não se ajuste a este modelo e resulte em um erro de reconstrução alto é
considerado uma anomalia (BERAHMAND et al., 2024). É importante notar que, dentro deste
paradigma, é possível utilizar rótulos auxiliares para guiar partes específicas do treinamento,
como forçar uma saída de score de anomalia a assumir um valor constante (e.g., zero) para
todos os dados normais. Essa técnica não caracteriza o método como semi-supervisionado,
pois o modelo nunca é exposto a dados da classe de anomalia durante o treinamento. Por
não depender de assinaturas de ataques conhecidos, é uma abordagem inerentemente capaz
de detectar anomalias novas, como os ataques zero-day (GUO, 2023), sendo este o foco do
presente trabalho..

• Aprendizado Semi-supervisionado: Este paradigma utiliza uma mistura de dados no
treinamento: uma pequena porção de dados rotulados e um volume maior de dados não
rotulados (BERAHMAND et al., 2024). Em detecção de anomalias, isso geralmente significa
ter alguns exemplos rotulados como “normal” em meio a uma grande massa de dados sem
rótulos (BERAHMAND et al., 2024). O objetivo do modelo é usar os poucos dados rotulados
como “âncoras” para ajudar a estruturar e a classificar o restante dos dados não rotulados,
otimizando o aprendizado em cenários onde a rotulagem completa é inviável.

Considerando o desafio de identificar ameaças desconhecidas, as técnicas não supervisio-
nadas oferecem a flexibilidade necessária para a construção de sistemas de detecção mais
robustos e independentes de assinaturas prévias.

2.4.2 Métodos Tradicionais vs. Modernos

Para uma melhor compreensão das estratégias de detecção, precisamos primeiro distinguir
os Sistemas de Detecção de Intrusão (IDS) dos Sistemas de Prevenção de Intrusão (IPS).
Um IDS é o processo de monitorar os eventos em um sistema ou rede, analisando-os em
busca de sinais de possíveis incidentes. Sua atuação é essencialmente passiva, limitando-se a
detectar atividades maliciosas e gerar alertas, sem, no entanto, alterar o tráfego de rede para
bloquear a ameaça. Em contraste, um IPS possui todas as capacidades de um IDS, mas com
o diferencial de poder atuar ativamente para impedir que os incidentes sejam bem-sucedidos.
Ao identificar uma ameaça, o IPS pode tomar ações como finalizar sessões, bloquear conexões
ou descartar pacotes, efetivamente interrompendo um ataque em andamento. A principal
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diferença, portanto, é que o IDS é um sistema de monitoramento, enquanto o IPS é um
sistema de controle (ABBAS; NASER; KADHIM, 2023).

No panorama histórico, as técnicas tradicionais de detecção de intrusão são predominan-
temente baseadas em assinaturas, regras predefinidas e limites estatísticos. Esses métodos
operam comparando o tráfego de rede observado com padrões conhecidos de ataques ou
comportamentos maliciosos previamente catalogados. O princípio fundamental consiste na
criação de uma base de conhecimento contendo assinaturas digitais de ataques conhecidos,
permitindo a identificação de ameaças através da correspondência de padrões (JAVAHERI et al.,
2023) (ABDULGANIYU; TCHAKOUCHT; SAHEED, 2023) (GUO, 2023).

Referente à classificação dos Sistemas de Detecção de Intrusão (IDS), é possível agrupá-los
segundo múltiplos critérios (ABDULGANIYU; TCHAKOUCHT; SAHEED, 2023):

Fonte de Dados Monitorados:

• NIDS (Network-based IDS): Monitoram o tráfego em pontos estratégicos da rede,
sendo desafiados por questões como escalabilidade e criptografia.

• HIDS (Host-based IDS): Monitoram atividades em hosts individuais, sendo precisos
para rastreamento local, mas com custos e limitações de escalabilidade.

Estratégia de Detecção:

• Baseados em Assinatura: Buscam padrões específicos de ataques conhecidos.

• Baseados em Anomalia: Detectam desvios do comportamento normal, essenciais para
identificação de ataques zero-day, ainda que com maior taxa de falsos positivos.

Modo de Operação:

• Tempo Real (Online): Análise contínua, com consumo elevado de recursos computa-
cionais.

• Off-line: Análise pós-evento, menos intensiva em recursos, porém sem resposta imedi-
ata.

Arquitetura:

• Centralizada: Facilita o gerenciamento, mas apresenta ponto único de falha.
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• Distribuída: Mais escalável e resiliente.

Conforme detalhado anteriormente, o paradigma atual da detecção de anomalias aposta em
abordagens de aprendizado de máquina por sua maior flexibilidade e capacidade de adaptação
(GUO, 2023) (BERAHMAND et al., 2024). Dentre elas, o deep learning se destaca por sua aptidão
para lidar com a alta dimensionalidade e a complexidade dos dados de tráfego de rede.

2.4.3 Pré-processamento de Dados

A qualidade e a representação dos dados são fatores primordiais para o sucesso na detecção
de anomalias. Entre as principais técnicas de pré-processamento, destacam-se: limpeza de
dados, tratamento de dados desbalanceados, conversão, seleção e extração de características,
conforme detalhado a seguir.

• Limpeza de dados: Consiste no processo de identificar e corrigir ou remover erros,
inconsistências e valores ausentes no conjunto de dados. Em dados de tráfego de rede,
essa etapa é necessária para garantir que o modelo de detecção não seja treinado com
informações corrompidas, o que poderia levar a uma baixa performance e a conclusões
equivocadas sobre o que é um comportamento normal ou anômalo.

• Tratamento de dados desbalanceados: Aborda um desafio comum em segurança
cibernética: a grande desproporção entre a quantidade de tráfego benigno (muito abun-
dante) e o tráfego de ataques (eventos raros). Sem um tratamento adequado, um mo-
delo poderia simplesmente aprender a classificar tudo como “normal”, atingindo uma
alta acurácia, mas sendo ineficaz para detectar ameaças. Técnicas para balancear os
dados garantem que o modelo dê a devida importância aos ataques, mesmo que eles
sejam minoritários.

• Conversão de dados: É a etapa que transforma todos os atributos do dataset em um
formato numérico, que é o único formato que os algoritmos de aprendizado de máquina
conseguem processar. Características textuais, como os nomes de protocolos de rede (ex:
‘TCP’, ‘UDP’), precisam ser codificadas em números para que possam ser utilizadas pelo
modelo durante o treinamento.

• Seleção e extração de características: São técnicas de redução de dimensionalidade.
A seleção busca identificar e manter apenas o subconjunto de atributos mais relevantes
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para a detecção, descartando os demais. Em particular, autoencoders e PCA são am-
plamente empregados para extração de características, atuando respectivamente como
métodos não lineares e lineares (BERAHMAND et al., 2024).

2.5 TÉCNICAS NÃO SUPERVISIONADAS PARA DETECÇÃO DE ANOMALIAS

Uma vez estabelecidas as abordagens gerais de detecção, esta seção examina em deta-
lhe as principais técnicas não supervisionadas, que representam a base metodológica para a
identificação de ataques zero-day sem dependência de dados rotulados. A detecção não su-
pervisionada em tráfego de rede compreende diferentes famílias de algoritmos, cada uma com
sua própria lógica para diferenciar o comportamento normal do anômalo.

Algoritmos Baseados em Clusterização

A abordagem baseada em clusterização, como o K-Means, agrupa os dados em k clus-

ters distintos com base na similaridade de suas características. O princípio para detecção de
anomalias é que instâncias normais estarão próximas dos centroides (o centro) de clusters

densos, enquanto anomalias serão pontos distantes de todos os centroides ou formarão clus-

ters muito pequenos e esparsos (AHMED; SERAJ; ISLAM, 2020). Apesar de sua popularidade, o
K-Means tradicional possui limitações como a necessidade de pré-definir o número de clusters

e a sensibilidade à inicialização aleatória dos centroides, o que pode impactar seu desempenho
(AHMED; SERAJ; ISLAM, 2020).

Algoritmos Baseados em Fronteira de Decisão

Técnicas como o One-Class Support Vector Machine (OCSVM) operam aprendendo uma
fronteira de decisão (ou hiperplano) que envolve a maior parte dos dados de treinamento,
que são considerados normais. Qualquer nova instância de dados que caia fora dessa fronteira
é classificada como uma anomalia ou outlier (GUO, 2023). Essa abordagem é eficaz para
identificar ataques que são significativamente diferentes do tráfego benigno, mas pode ter
dificuldades com ataques mais complexos e sutis que se assemelham ao comportamento normal
(GUO, 2023).

Algoritmos Baseados em Isolamento

Os algoritmos baseados em isolamento, como o Isolation Forest (iForest), partem de um
princípio fundamental: anomalias são instâncias “poucas e diferentes” nos dados (FARIZI; HI-

DAYAH; RIZAL, 2021). Por serem raras e distintas, elas são mais fáceis de serem isoladas do
que os pontos de dados normais. O método funciona construindo um conjunto de árvores de
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decisão aleatórias (chamadas de iTrees). A lógica é que, por serem diferentes, as anomalias
precisarão de menos partições para serem isoladas, resultando em um comprimento de caminho
(path length) menor desde a raiz da árvore até o ponto ser isolado (FARIZI; HIDAYAH; RIZAL,
2021). A pontuação de anomalia de uma instância é, portanto, baseada nesse comprimento de
caminho médio: quanto menor o caminho, maior a probabilidade de ser uma anomalia (FARIZI;

HIDAYAH; RIZAL, 2021).
Algoritmos Baseados em Densidade

Local Outlier Factor (LOF) é um algoritmo baseado em densidade que identifica anomalias
comparando a densidade local de uma instância com a de seus vizinhos. Uma instância é
considerada anômala se sua densidade local for significativamente menor do que a densidade
de suas vizinhanças, indicando que ela está em uma região mais esparsa do que seus vizinhos.
Essa abordagem é eficaz para identificar anomalias em conjuntos de dados com densidades
variadas e estruturas complexas (BUDIARTO; PERMANASARI; FAUZIATI, 2019).

Autoencoders

Autoencoders (AEs) são um tipo de rede neural artificial que aprende representações efi-
cientes dos dados de forma não supervisionada. A arquitetura de um autoencoder é composta
por duas partes: um encoder (codificador), que comprime os dados de entrada para uma
representação de dimensão reduzida chamada de espaço latente, e um decoder (decodifica-
dor), que tenta reconstruir os dados de entrada originais a partir dessa representação latente
(BERAHMAND et al., 2024).

O princípio fundamental para a detecção de ataques zero-day é treinar o autoencoder

utilizando exclusivamente dados de tráfego normal (GUO, 2023). Ao fazer isso, o modelo se
especializa em reconstruir com alta fidelidade apenas os padrões de normalidade. Quando o
modelo treinado é apresentado a uma instância anômala, como um ataque desconhecido, ele
falha em reconstruí-la adequadamente, gerando um erro de reconstrução elevado. Esse erro
serve como uma pontuação de anomalia, e instâncias com erro acima de um determinado
limiar são classificadas como maliciosas (BERAHMAND et al., 2024) (GUO, 2023). Estudos com-
parativos mostram que autoencoders geralmente superam o One-Class SVM na detecção de
ataques zero-day complexos (GUO, 2023) (ZAVRAK; ISKEFIYELI, 2020).

Variações de Autoencoders:

• Robust AE e Denoising AE: Focam na robustez em relação a ruídos.
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• Variational AE (VAE): Aprendem a distribuição de probabilidade dos dados, úteis
para geração e regularização do espaço latente.

Aprofundamento em Autoencoders

Para compreender melhor o funcionamento dos autoencoders na detecção de anomalias,
é necessário analisar sua arquitetura e processo de treinamento em detalhes. Sua arquitetura
básica compreende um encoder, um espaço latente (bottleneck) e um decoder, conforme
ilustra a Figura 5. Diversos hiperparâmetros, como número de camadas, neurônios e funções
de ativação, influenciam diretamente o desempenho do modelo (BERAHMAND et al., 2024).

Figura 5 – Estrutura do Autoencoder

Fonte: IBM (2025).

O princípio da detecção de anomalias por autoencoders baseia-se no erro de reconstrução.
O encoder recebe o dado de entrada (como um vetor de características do tráfego de rede)
e o comprime em uma representação de dimensão muito menor, chamada de espaço latente
ou bottleneck. Essa compressão força o modelo a aprender apenas as características mais
essenciais e recorrentes dos dados. Em seguida, o decoder recebe essa representação compacta
e tem a tarefa de reconstruir o dado de entrada original com a maior fidelidade possível
(BERAHMAND et al., 2024).

Quando o autoencoder é treinado exclusivamente com dados normais, ele se torna um
especialista em comprimir e descomprimir apenas esse tipo de dado, e o espaço latente passa a
ser uma representação otimizada dos padrões de normalidade (GUO, 2023). Consequentemente,



47

ao ser apresentado a um dado anômalo (como um ataque zero-day), o modelo falha em
representá-lo adequadamente no espaço latente, pois nunca aprendeu os padrões daquela
anomalia. Ao tentar reconstruir o dado original a partir dessa representação falha, o decoder

produz uma saída, x’, que é visivelmente diferente da entrada original, x (GUO, 2023).
Essa diferença entre a entrada e a saída é o erro de reconstrução, geralmente quantificado

por uma métrica de distância como o Erro Quadrático Médio (Mean Squared Error - MSE),
definida como L(x, x’) = ||x - x’||2 (GUO, 2023). Portanto, um erro de reconstrução baixo indica
que o dado se conforma ao padrão de normalidade aprendido, enquanto um erro elevado é
um forte indicador de uma anomalia, que pode então ser sinalizada ao exceder um limiar de
detecção (BERAHMAND et al., 2024) (GUO, 2023).

Os autoencoders oferecem múltiplos benefícios, como redução de dimensionalidade, extra-
ção de características, compressão, remoção de ruído e detecção de anomalias. Como redutores
de dimensionalidade e extratores automáticos de características, dispensam a necessidade de
engenharia manual. Entretanto, enfrentam desafios como a propensão ao overfitting, a sensi-
bilidade na escolha de hiperparâmetros e a possibilidade de representações enviesadas quando
treinados com dados contaminados por outliers ou anomalias. Além disso, sua função objetivo
é voltada à reconstrução e não, necessariamente, à detecção de anomalias, o que pode impactar
a qualidade da representação aprendida e limitar sua eficácia Berahmand et al. (2024).

Para solucionar essas questões, aplicam-se técnicas de regularização, cujo princípio funda-
mental consiste em incorporar restrições na arquitetura do modelo ou em sua função de perda,
com o objetivo de guiar o processo de aprendizado. Essas restrições incentivam a formação de
um espaço de características mais discriminativo e com propriedades desejáveis, como impor
esparsidade, aumentar a robustez a pequenas variações nos dados de entrada, ou preservar a
estrutura intrínseca dos dados (BERAHMAND et al., 2024).

Pang et al. (2021) destacam que as vantagens dos métodos baseados em reconstrução
incluem simplicidade e aplicabilidade geral a diferentes tipos de dados, enquanto as desvanta-
gens envolvem o aprendizado de regularidades pouco frequentes e limitações na detecção de
irregularidades raras ou complexas.

2.6 MÉTRICAS DE AVALIAÇÃO

Estabelecidas as técnicas algorítmicas fundamentais, é necessário também compreender
como avaliar adequadamente o desempenho desses sistemas em cenários práticos. A avaliação



48

eficaz de sistemas de detecção de anomalias requer um conjunto abrangente de métricas
que contemplem diferentes aspectos do desempenho e aplicabilidade prática. Estas métricas
devem considerar não apenas a acurácia da detecção, mas também a viabilidade operacional
em ambientes de produção.

Samariya e Thakkar (2023) enfatizam a importância de métricas específicas para detecção
de anomalias, incluindo Precision at n (P@n), que mede a proporção de anomalias corretas
nos primeiros n resultados classificados, e Average Precision (AP), que assume conhecimento
do número total de anomalias e calcula a média das precisões em cada posição de anomalia
verdadeira.

2.6.1 Precisão, Recall e F1-Score

A precisão mede a proporção de anomalias corretamente identificadas em relação ao total
de detecções realizadas pelo sistema, sendo matematicamente definida como TP/(TP+FP).
O recall, também conhecido como sensibilidade ou Taxa de Verdadeiros Positivos (TPR),
quantifica a proporção de anomalias reais que foram corretamente identificadas pelo sistema,
calculado como TP/(TP+FN). Conforme estabelecido por (RAINIO; TEUHO; KLÉN, 2024), estas
métricas expressam respectivamente a porcentagem de instâncias corretamente classificadas no
conjunto de instâncias classificadas como positivas e no conjunto de instâncias verdadeiramente
positivas.

A especificidade mede a capacidade do sistema de identificar corretamente instâncias nor-
mais, sendo calculada como TN/(TN+FP). A Taxa de Falsos Positivos (FPR) relaciona-se
diretamente com a especificidade através da fórmula FPR = 1 - Especificidade, conforme
detalhado por (NARKHEDE, 2018) e (RAINIO; TEUHO; KLÉN, 2024).

O F1-Score representa a média harmônica entre precisão e recall, definido matematica-
mente como F1 = 2·(Precisão·Recall)/(Precisão+Recall). Esta métrica oferece uma ava-
liação balanceada que considera simultaneamente ambos os aspectos, sendo particularmente
valiosa em cenários desbalanceados onde a acurácia simples pode ser enganosa (RAINIO; TEUHO;

KLÉN, 2024).
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2.6.2 AUC-ROC

A Area Under the Curve - Receiver Operating Characteristic (AUC-ROC) avalia a capaci-
dade discriminativa geral do sistema através da análise da relação entre a taxa de verdadeiros
positivos e a taxa de falsos positivos em diferentes limites de decisão. Esta métrica oferece
uma visão abrangente do desempenho do classificador independentemente do limiar específico
escolhido, sendo particularmente útil para comparação entre diferentes algoritmos.

A curva ROC é obtida plotando a sensibilidade (TPR - True Positive Rate) contra a taxa de
falsos positivos (FPR - False Positive Rate) em todos os valores possíveis de limiar (Narkhede,
2018). Conforme descrito por (RAINIO; TEUHO; KLÉN, 2024), a curva ROC é sempre uma função
monotonicamente crescente dentro do quadrado unitário ligada aos pontos (0,0) e (1,1), onde
quanto mais próxima a curva ROC estiver do ponto (0,1), melhores são as predições. A figura
6 apresenta um exemplo de curva ROC (Google Developers, 2024). Narkhede (2018) destaca
que a AUC-ROC representa o grau ou medida de separabilidade, indicando quanto o modelo
é capaz de distinguir entre classes.

Figura 6 – Exemplo de curva ROC

A interpretação dos valores de AUC fornece insights importantes sobre o desempenho
do modelo: um modelo excelente apresenta AUC próximo a 1, indicando boa medida de
separabilidade; um modelo pobre apresenta AUC próximo a 0, sugerindo que está invertendo
as classificações; quando AUC é 0,5, o modelo não possui capacidade de separação de classes
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(NARKHEDE, 2018). Uma interpretação probabilística útil é que quando a AUC é 0,7, por
exemplo, há 70% de chance de que o modelo seja capaz de distinguir corretamente entre a
classe positiva e negativa (NARKHEDE, 2018).

De acordo com Narkhede (2018), existe uma relação inversa entre sensibilidade e especifi-
cidade, que é diretamente controlada pelo ajuste do limiar de decisão (threshold). Ao diminuir
o limiar, o modelo se torna mais permissivo e classifica mais instâncias como positivas. Isso,
por consequência, aumenta a sensibilidade (a capacidade de encontrar ataques verdadeiros),
mas ao custo de diminuir a especificidade (pois mais tráfego normal é classificado incorre-
tamente como ataque). De forma análoga, ao aumentar o limiar, o modelo se torna mais
rigoroso, elevando a especificidade, mas reduzindo a sensibilidade. Como o FPR é calculado
como 1 - especificidade, essa dinâmica implica que a Taxa de Verdadeiros Positivos (TPR, ou
sensibilidade) e a FPR se movem na mesma direção: para aumentar uma, é necessário aceitar
um aumento na outra. A Figura 7 ilustra a relação inversa entre sensibilidade e especificidade
controlada pelo threshold.

Figura 7 – Relação entre Sensibilidade, Especificidade, FPR e Threshold

Ao contrário das outras métricas, o valor da AUC não depende da escolha do limiar de
decisão, tornando-se uma métrica robusta para comparação de diferentes algoritmos (RAINIO;
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TEUHO; KLÉN, 2024). Para problemas de classificação multi-classe, pode-se plotar N curvas
AUC-ROC para N classes usando a metodologia “Um contra Todos” (One vs ALL), onde cada
classe é avaliada contra todas as demais combinadas (NARKHEDE, 2018).

2.6.3 Métricas Específicas para Ambientes de Produção

Taxa de Falsos Positivos e Falsos Negativos (FPR/FNR)

As taxas de falsos positivos e falsos negativos assumem importância crítica em ambientes
produtivos de detecção de intrusão. A taxa de falsos positivos (FPR) mede a proporção de
tráfego normal incorretamente classificado como anômalo, impactando diretamente na carga
de trabalho dos analistas de segurança que precisam analisar o evento e na credibilidade do
sistema. A taxa de False Negative Rate (FNR) quantifica a proporção de ataques reais que
passaram despercebidos, representando um risco direto à segurança da infraestrutura.

Kumar, Selvi e Kannan (2023) enfatizam a importância de avaliar sistemas IDS em ambi-
entes IoT com um conjunto mais abrangente de métricas. Além da tradicional Taxa de Falsos
Positivos (FPR), que os autores denominam False Positive Intrusion Detection Rate (FPIDR),
a pesquisa destaca métricas operacionais como Detecção de Intrusão em Tempo Real Real-
Time Intrusion Detection (RTID), Taxa de Tolerância a Falhas Fault Tolerance Rate (FTR)
e Otimização de Recursos de Rede Network Resource Optimization (NRO) como essenciais
para validar a viabilidade prática desses sistemas em ambientes com recursos limitados.

Métricas de Qualidade de Serviço (QoS) para IoT

No contexto de IoT, Kumar, Selvi e Kannan (2023) destacam que a medição de Quality
of Service (QoS) constitui uma tarefa imperativa e desafiadora. Os autores argumentam que
muitos estudos utilizam apenas a taxa de falsos positivos como métrica importante, mas que
uma avaliação efetiva deve incluir métricas como razão de entrega de pacotes, delay, energia
consumida, pacotes esperados e acelerados pelos nós, e throughput geral da rede para medição
eficaz de QoS e análise comparativa.

Consumo de Memória

O consumo de memória avalia a adequação do sistema para implementação em disposi-
tivos com recursos limitados. Esta métrica é particularmente relevante em contextos de edge

computing e dispositivos IoT, onde as restrições de hardware podem limitar a complexidade
dos algoritmos implementáveis. A eficiência de memória também impacta a escalabilidade do
sistema em ambientes com múltiplos pontos de monitoramento.
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2.6.4 Equal Error Rate (EER)

Diante desses trade-offs inerentes aos sistemas de classificação, surge a necessidade de
identificar um ponto operacional que equilibre adequadamente os diferentes tipos de erro. O
Equal Error Rate (EER) constitui uma das principais métricas neste contexto, sendo definido
como o ponto onde a False Acceptance Rate (FAR) e a False Rejection Rate (FRR) se igualam.
Como destacado por (CHENG; WANG, 2004), o EER é "uma medida para avaliar o desempenho
do sistema", sendo matematicamente expresso como FAR(𝜏 *) = FRR(𝜏 *), onde 𝜏 * representa
o limiar ótimo que satisfaz esta condição de igualdade.

A Figura 8 ilustra como o EER representa geometricamente a intersecção das curvas FAR
e FRR quando plotadas em função do limiar de decisão, minimizando simultaneamente ambos
os tipos de erro. Em sistemas baseados em modelos de Gaussian Mixture Models (GMM),
é calculado através de Log-Likelihood Ratio (LLR) scores, onde as taxas são formalmente
definidas como FAR(𝜏) = P(s ≥ 𝜏 | 𝐻0) e FRR(𝜏) = P(s < 𝜏 | 𝐻1), sendo s o score de
similaridade, 𝐻0 a hipótese de impostor e 𝐻1 a hipótese de usuário genuíno (CHENG; WANG,
2004).

A principal vantagem do EER é fornecer um critério objetivo para definição do limiar ope-
racional, eliminando ajustes empíricos que dependem da intuição do desenvolvedor. Cheng e
Wang (2004) demonstram que é possível estimar o EER diretamente através dos parâmetros
dos modelos, sem necessidade de "um grande número de amostras de teste". Esta abordagem
objetiva estabeleceu o EER como métrica padrão para benchmarking de algoritmos biométri-
cos, sendo amplamente utilizada em competições como National Institute of Standards and
Technology (NIST) Speaker Evaluation.
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Figura 8 – Curvas FAR e FRR em função do limiar de decisão 𝜏 .

Valores menores de EER indicam melhor desempenho do sistema. Experimentos reporta-
dos em (CHENG; WANG, 2004) utilizando dados NIST 1999 demonstraram EERs de 23.7%,
validando a eficácia da métrica para avaliação de sistemas reais. O EER correlaciona-se inver-
samente com a Área sob a Curva ROC (AUC) e representa um caso específico da Taxa de
Erro Balanceada onde os custos de FAR e FRR são considerados equivalentes.

As limitações do EER incluem a dependência de distribuições representativas e a não
consideração de custos assimétricos entre FAR e FRR. Como observado por Cheng e Wang
(2004), "a distribuição dos scores computados é significativamente enviesada em relação à
distribuição dos scores obtidos de amostras de teste", exigindo cuidado na interpretação dos
resultados quando as condições operacionais diferem significativamente do ambiente de teste.
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3 TRABALHOS RELACIONADOS

Este capítulo apresenta uma análise crítica dos trabalhos mais relevantes que abordam
a detecção não supervisionada de ataques zero-day, com foco particular em ambientes de
redes IoT e sistemas críticos. A análise não se limita a descrever as abordagens existentes,
mas busca identificar suas principais contribuições e as lacunas e limitações que motivaram o
desenvolvimento do método proposto nesta dissertação. Ao contextualizar a pesquisa frente
a estudos com objetivos semelhantes, este capítulo constrói a justificativa para a arquitetura
HSAE e sua extensão ensemble.

3.1 REVISÃO DA LITERATURA

O estudo conduzido em (ZAVRAK; ISKEFIYELI, 2020) propõe uma abordagem baseada em
aprendizado profundo não supervisionado para detecção de anomalias de tráfego e ataques
desconhecidos, incluindo cenários de zero-day, a partir de dados de fluxo. A investigação
compara três métodos — Autoencoder (AE), Variational Autoencoder (VAE) e OCSVM —
todos treinados exclusivamente com fluxos benignos. Os resultados experimentais indicam que
o VAE apresenta desempenho superior na maioria dos cenários analisados, especialmente na
detecção de ataques com alta taxa de ocorrência, como DoS e DDoS. O estudo tem sido
reconhecido na literatura como uma das referências relevantes no uso de autoencoders para a
detecção de intrusões em redes, sendo citado em revisões sistemáticas recentes que discutem
o papel de modelos generativos na segurança cibernética (HALVORSEN et al., 2024) e que
apresentam taxonomias atualizadas sobre sistemas de detecção de intrusões (ALKASASSBEH;

BADDAR, 2023). Entretanto, os autores não exploram mecanismos adaptativos de detecção
nem estratégias de controle dinâmico de falsos positivos, fatores importantes para aplicação
em ambientes reais e dinâmicos. Além disso, a utilização exclusiva da métrica AUC (Area

Under the Curve) das curvas ROC (Receiver Operating Characteristic) para avaliação limita a
compreensão mais ampla do desempenho do modelo frente a diferentes aspectos do processo
de detecção, como precisão, sensibilidade e taxas de erro.

Mbona e Eloff (2022) propõem detectar ataques zero-day combinando a Lei de Benford
com aprendizado semi-supervisionado e OCSVM. Os experimentos realizados alcançam resul-
tados razoáveis com F1-score de 85% e Matthews Correlation Coefficient (MCC) de 74%.
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Apesar de os autores compararem diferentes métodos semi-supervisionados, o trabalho apre-
senta limitações para aplicação prática, utilização de thresholds fixos no OCSVM sem capa-
cidade de ajuste automático às variações do tráfego, dependência de scores simples baseados
exclusivamente na saída do classificador sem integração de múltiplas fontes de informação e
ausência de mecanismos adaptativos para ambientes dinâmicos. Essas limitações, particular-
mente a dependência de parâmetros estáticos (thresholds fixos) e a falta de adaptabilidade a
padrões de tráfego variáveis, comprometem a robustez do método em cenários reais onde o
tráfego de rede apresenta características dinâmicas e evolutivas.

Lu et al. (2024) exploram aprendizado por transferência em sistemas Communication-Based
Train Control (CBTC) usando Convolutional Neural Network (CNN) e Long Short-Term Me-
mory (LSTM) para extrair automaticamente características espaciais e temporais. Apesar de
obter resultados promissores com F1-score de 93,21% para zero-day, a necessidade constante
de fine-tuning com amostras inéditas implica alta complexidade e menor eficiência compu-
tacional. Essa necessidade constante de fine-tuning com dados novos e a alta complexidade
computacional prejudicam a aplicação em tempo real.

Minhas et al. (2025) introduzem o Fog-based One Solution For All (F-OSFA), solução
fog-based generalizável para detecção de ataques DDoS zero-day, combinando CNN, árvores
de decisão e autoencoders contrativos. Apesar da precisão elevada relatada de 96,77%, a
complexidade estrutural e treinamento intensivo resultam em maior latência operacional e
elevado consumo de recursos computacionais. A complexidade arquitetural excessiva e o alto
consumo de recursos computacionais limitam sua aplicação prática em determinados contextos.

(ZAHOORA et al., 2022) apresentam uma abordagem baseada em Zero-shot Learning, mé-
todo de aprendizado de máquina onde um modelo é capaz de classificar objetos ou conceitos
que ele nunca viu durante o treinamento. A proposta utiliza autoencoder contrativo profundo
e ensemble heterogêneo com votação, alcançando recall elevado de 95%. Contudo, os autores
destacam a forte dependência da qualidade das representações latentes e necessidade de ajus-
tes manuais nas regras do ensemble. Essa dependência crítica da qualidade das representações
latentes e a necessidade de ajustes manuais nas regras do ensemble reduzem a robustez do
método em ambientes dinâmicos.

Soltani et al. (2023) apresentam um framework adaptativo de quatro fases baseado em
aprendizado profundo para detecção de ataques zero-day, integrando múltiplas implementa-
ções de Open Set Recognition, técnica voltada à identificação de padrões que não pertencem
a nenhuma das classes previamente conhecidas, permitindo a detecção de instâncias inédi-
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tas. Essa abordagem é combinada com clustering otimizado para classificação dinâmica de
ataques conhecidos e identificação contínua de novos padrões maliciosos. O sistema incor-
pora uma arquitetura end-to-end complexa que combina reconhecimento de conjunto aberto,
agrupamento inteligente, rotulagem supervisionada por grupos e atualização automática do
modelo. Apesar da adaptabilidade multi-modal demonstrada, o desempenho depende critica-
mente da convergência inicial dos algoritmos de clustering e da eficácia dos múltiplos módulos
integrados, podendo resultar em degradação significativa frente a ataques que mimetizam trá-
fego benigno, uma limitação que também afeta outras abordagens baseadas em detecção de
anomalias. A dependência da qualidade inicial do clustering, a necessidade de re-calibração
periódica dos múltiplos componentes e os custos computacionais elevados do treinamento si-
multâneo representam limitações para aplicação prática em ambientes de produção, exigindo
expertise especializada para otimização e manutenção do pipeline completo.

3.2 SÍNTESE DAS LACUNAS E REQUISITOS PARA A NOVA ABORDAGEM

Os trabalhos discutidos demonstram que as técnicas atuais de detecção de ataques e
anomalias apresentam limitações significativas que comprometem sua aplicação prática. As
cinco limitações principais identificadas direcionam o desenvolvimento desta pesquisa: falta de
mecanismos adaptativos para ambientes dinâmicos, dependência de parâmetros estáticos sem
capacidade de ajuste automático, complexidade arquitetural excessiva que compromete a efici-
ência computacional, necessidade de ajustes manuais periódicos e dependência de intervenção
humana, e avaliação limitada com uso restrito de métricas de desempenho.

A análise crítica da literatura evidencia um conjunto de desafios recorrentes que limitam a
aplicação prática das soluções existentes. As principais lacunas identificadas, como a depen-
dência de parâmetros estáticos, a complexidade arquitetural excessiva e a falta de mecanismos
adaptativos, apontam para a necessidade de uma nova abordagem. Portanto, para superar
essas barreiras, um sistema de detecção de ataques zero-day eficaz, especialmente para am-
bientes com recursos limitados, deve atender aos seguintes requisitos fundamentais:

• Adaptabilidade: Possuir mecanismos para ajustar dinamicamente seus parâmetros de
detecção, como o limiar de decisão, em resposta às variações naturais do tráfego de
rede.

• Eficiência Computacional: Apresentar uma arquitetura leve, com baixo consumo de
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memória e latência, viabilizando sua implementação em dispositivos de borda e IoT.

• Autonomia: Reduzir a necessidade de ajustes manuais e intervenção de especialistas,
automatizando o processo de calibração.

• Avaliação Abrangente: Ser validado por um conjunto diverso de métricas que reflitam
o desempenho operacional real, para além da acurácia ou da AUC.

O método proposto no capítulo seguinte foi desenvolvido com o objetivo de satisfazer esses
requisitos.
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4 ARQUITETURA PROPOSTA

Este capítulo é dedicado à apresentação de uma arquitetura proposta neste trabalho. O
objetivo é detalhar a arquitetura desenvolvida para superar as limitações dos autoencoders

convencionais, discutidas no referencial teórico. Serão descritos os fundamentos teóricos que
motivaram sua concepção, a estrutura do modelo e a estratégia de detecção implementada.

4.1 A ARQUITETURA HSAE

A proposta central deste estudo reside na construção de uma arquitetura de autoencoder

denominado HSAE (Hybrid Scoring Autoencoder), desenvolvido para superar as limitações
dos autoencoders tradicionais identificadas na Seção 2.4. Conforme discutido no referencial
teórico, autoencoders convencionais dependem exclusivamente do erro de reconstrução, o
que pode ser insuficiente para detectar anomalias sutis ou ataques do tipo mimicry (Seção
2.2). O HSAE aborda essas limitações através de uma arquitetura híbrida que combina um
autoencoder profundo com uma ramificação auxiliar, responsável pela geração de um score

de anomalia que emula uma probabilidade. Essa abordagem implementa uma estratégia de
detecção multi-critério.

Esta arquitetura híbrida foi concebida com base em três insights teóricos fundamentais: (i)
a necessidade de múltiplas perspectivas de detecção para combater ataques evasivos, conforme
demonstrado na discussão sobre mimicry attacks (Seção 2.2.1); (ii) a importância de meca-
nismos adaptativos de threshold, evidenciada pela análise do Equal Error Rate (Seção 2.5.4);
e (iii) as limitações inerentes de métodos baseados puramente em reconstrução, detalhadas na
Seção 2.4.1. A combinação desses elementos resulta em um modelo mais robusto e adaptável.

Formalmente, seja 𝑥 ∈ R𝑑 uma amostra de entrada. O encoder mapeia 𝑥 em um espaço
latente 𝑧 ∈ R𝑘, onde 𝑘 < 𝑑, por meio da função ℎ𝜓 : R𝑑 → R𝑘. O decoder reconstrói
𝑥̂ = 𝑔𝜑(𝑧), onde 𝑔𝜑 : R𝑘 → R𝑑. A saída auxiliar é uma função 𝑦 = 𝜎(𝑊𝑧 + 𝑏), com 𝜎 sendo
a função sigmoide.

A arquitetura completa é, portanto, uma composição de funções parametrizadas:

𝑓𝜃(𝑥) = (𝑔𝜑(ℎ𝜓(𝑥)), 𝜎(𝑊ℎ𝜓(𝑥) + 𝑏))

onde 𝜃 = {𝜓, 𝜑,𝑊, 𝑏}.
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A Figura 9 ilustra a arquitetura completa do HSAE, destacando o fluxo de dados desde a
entrada até as duas saídas: a reconstrução e a pontuação de anomalia.

Figura 9 – Arquitetura do HSAE com dupla saída

Para implementar esta arquitetura, o HSAE é composta por três componentes principais:

• Encoder : Dense(1024) → Dense(512) → Dense(256), com LeakyReLU, BatchNorma-

lization e Dropout;

• Decoder : Dense(512) → Dense(1024) → Output;

• Saída Auxiliar: Dense(1, sigmoid).

A concepção da arquitetura HSAE foi guiada pelo princípio de equilibrar a capacidade repre-
sentacional com a eficiência computacional, evitando a “complexidade arquitetural excessiva”
identificada em abordagens correlatas. A complexidade de um modelo, neste contexto, não se
define apenas pelo número de camadas, mas por uma combinação de fatores que incluem a
profundidade da rede, o tipo de camadas utilizadas, a aplicação de técnicas de regularização
e a natureza do pipeline de processamento.

A estrutura utiliza uma arquitetura simétrica decrescente-crescente (1024-512-256-512-
1024) baseada em compressão progressiva de informação, seguindo os princípios de redução
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dimensional efetiva discutidos na Seção 2.5. Conforme definida na implementação, o encoder
com três camadas densas (Dense) força o modelo a aprender representações cada vez mais
compactas, criando um gargalo que preserva apenas as informações mais relevantes. Esta
profundidade foi deliberadamente escolhida por ser suficiente para aprender as relações não-
lineares complexas presentes nos dados de fluxo de rede, sem incorrer em um número excessivo
de parâmetros que poderia levar ao overfitting e a um alto custo computacional. Essa con-
figuração equilibra dois requisitos conflitantes: (i) capacidade representacional suficiente para
evitar underfitting e (ii) compressão adequada para garantir sensibilidade a desvios anômalos,
conforme demonstrado por (BERAHMAND et al., 2024). Adicionalmente, a escolha por camadas
Dense é estratégica, pois são mais eficientes e adequadas para os dados tabulares (vetores de
características) deste trabalho, em contraste com frameworks que empregam Redes Neurais
Convolucionais (CNNs), arquiteturas mais pesadas e projetadas para dados com localidade
espacial, como imagens.

As técnicas de regularização implementadas são importantes para este balanço, pois permi-
tem que uma arquitetura contida generalize de forma robusta, controlando sua complexidade
efetiva. Essas técnicas endereçam diretamente desafios de pré-processamento e dados desba-
lanceados (Seção 2.4.3). O Dropout (0,5 e 0,3) mitiga o risco de overfitting mencionado por
Berahmand et al. (2024), enquanto o BatchNormalization garante estabilidade no treinamento
com dados de alta dimensionalidade típicos de tráfego de rede (Seção 2.4.2). A regulariza-
ção L2 (0,0001) foi calibrada para preservar a capacidade de detecção sem comprometer a
sensibilidade a anomalias sutis, um trade-off crítico discutido na Seção 2.6.1.

Finalmente, a simplicidade do HSAE também reside em sua arquitetura unificada. O deco-

der reconstrói os dados utilizando camadas de 512 e 1024 unidades, enquanto a saída auxiliar
gera uma pontuação de anomalia. Ambas as saídas são geradas a partir de um único passe
pelo encoder e otimizadas conjuntamente por uma função de perda híbrida, que combina o
erro de reconstrução (Mean Squared Error - MSE) com a entropia cruzada binária, ponderada
por um fator de 0,03. Esta abordagem integrada é intrinsecamente menos complexa do que
sistemas multi-estágio que acoplam modelos distintos em sequência. Para a tomada de deci-
são, é empregado um score combinado e um limiar adaptativo baseado na métrica Equal Error

Rate (EER), tornando o mecanismo mais sensível e equilibrado. Portanto, a complexidade do
HSAE foi cuidadosamente calibrada em sua profundidade, tipo de camada e estrutura geral,
constituindo um modelo projetado para ser enxuto e eficaz para o problema em questão.
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4.2 FUNDAMENTAÇÃO DA ARQUITETURA HÍBRIDA: COMBINAÇÃO ENTRE RECONS-
TRUÇÃO E PONTUAÇÃO DIRETA DE ANOMALIAS

A concepção da arquitetura HSAE foi orientada pela busca de um método de detecção de
anomalias que combinasse múltiplos critérios de decisão — erro de reconstrução e score de
classificação auxiliar —, com o objetivo de aumentar a robustez da detecção, especialmente
em cenários com ataques zero-day e do tipo mimicry. A seguir, detalha-se a fundamentação
para a adoção de uma saída dupla — o erro de reconstrução e o anomaly score — e como a
combinação de ambos busca oferecer uma detecção mais robusta.

4.2.1 O Papel do Anomaly Score e a Função Classificatória da Saída Sigmoide

O anomaly score foi proposto como uma saída auxiliar que, na prática, atua como um
classificador binário sobre o espaço latente — a representação comprimida e significativa
dos dados gerada pelo encoder. A literatura aponta que essa representação latente pode ser
utilizada como um extrator de características para outras tarefas, como a própria classificação
(BANK; KOENIGSTEIN; GIRYES, 2023). Inspirado por essa capacidade, o anomaly score busca
avaliar e classificar se a própria representação latente de uma amostra é consistente com os
padrões de normalidade aprendidos.

A sua implementação utiliza uma função de ativação sigmoide, uma escolha fundamentada
em suas propriedades matemáticas. Uma função de ativação sigmoide é não linear e diferen-
ciável, requisitos para o funcionamento de redes MLP (Multilayer Perceptron) treinadas com
retropropagação (backpropagation) (NARAYAN, 1997). Seus principais benefícios no contexto
desta arquitetura são:

• Interpretabilidade e Classificação: A função sigmoide mapeia a saída para o intervalo
[0, 1], o que permite que o resultado seja interpretado como uma pontuação de anomalia,
análoga a uma probabilidade (PRATIWI et al., 2020). Essa pontuação é a base para a
classificação: valores próximos de 0 são associados à classe "normal", enquanto valores
próximos de 1 são associados à classe "anômala".

• Treinamento Direcionado: No treinamento com dados exclusivamente benignos, a
função de perda híbrida, por meio do componente de entropia cruzada binária (Binary
Cross-Entropy - BCE) — uma perda clássica de classificação —, incentiva essa saída a
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se aproximar de zero (PRATIWI et al., 2020). Com isso, o modelo é treinado não apenas
para reconstruir dados normais, mas também para classificar a representação latente de
tráfego benigno com um score mínimo.

Dessa forma, a proposta é que o anomaly score introduza um critério de detecção classi-
ficatório e complementar, focado na consistência da representação latente dos dados.

4.2.2 Detecção de Desvios Estruturais e Representacionais

A eficácia da arquitetura híbrida é demonstrada na fase de teste, momento em que o
modelo, já treinado com dados normais, confronta dados brutos que nunca viu, incluindo
tanto tráfego normal quanto ataques. Ao receber uma nova amostra, o modelo a submete a
duas avaliações simultâneas para decidir se é uma anomalia:

1. Verificação Estrutural (via Reconstrução): O modelo tenta reconstruir a amostra
de entrada. O erro de reconstrução funciona como um sensor para desvios estruturais.
Se uma amostra de ataque possui padrões, fluxos ou características que diferem da
estrutura normal aprendida, o modelo falhará em recriá-la fielmente, gerando um erro
alto.

2. Verificação Representacional (via Anomaly Score): O encoder mapeia a amostra
para o espaço latente, e a saída sigmoide a classifica. O anomaly score atua como
um sensor para desvios de representação. Mesmo que um ataque seja estruturalmente
similar ao tráfego normal, sua representação interna no modelo pode ser atípica. A
saída sigmoide, treinada para reconhecer apenas representações normais, irá sinalizar
essa inconsistência com um score alto (próximo de 1).

A necessidade dessa dupla verificação no teste é justificada pela forma como o modelo
é treinado. Se o treinamento dependesse apenas do anomaly score, o encoder poderia ter
aprendido um atalho: colapsar a informação, mapeando todos os tipos de tráfego normal para
uma representação única e simplista. Isso destruiria a capacidade do modelo de generalizar, pois
ele não teria a sensibilidade para notar, no teste, as nuances que distinguem um ataque sutil de
um tráfego normal. A tarefa de reconstrução, portanto, atua como um regularizador estrutural
durante o treino, forçando o encoder a criar um mapa rico e detalhado da normalidade, o que
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torna a verificação representacional na fase de teste muito mais confiável e precisa (BANK;

KOENIGSTEIN; GIRYES, 2023).

4.2.3 Score Combinado: Uma Estratégia de Fusão de Evidências

A fusão dos dois scores em um resultado combinado busca implementar uma estraté-
gia de combinação de informações, visando criar um indicador de anomalia mais completo.
Esta abordagem encontra respaldo na literatura, onde autoencoders são utilizados como uma
forma de regularização para redes de classificação, combinando a perda de reconstrução com
a perda de classificação em uma função de custo unificada (BANK; KOENIGSTEIN; GIRYES,
2023). Abordagens similares são vistas em autoencoders semi-supervisionados, que também
integram diferentes tipos de perdas para alavancar tanto dados rotulados quanto não rotulados
(BERAHMAND et al., 2024).

A adoção de uma ponderação igualitária (50/50) representa uma abordagem inicial equili-
brada, que busca assegurar que ambos os mecanismos de detecção — estrutural e representa-
cional — contribuam de maneira balanceada para a decisão final. Essa escolha procura evitar
um viés prévio em favor de um tipo específico de anomalia, contribuindo para a capacidade
de generalização do modelo.

4.3 ENSEMBLE

Embora o modelo HSAE integre mecanismos de reconstrução e uma saída auxiliar, ainda
assim pode apresentar limitações frente a certas anomalias que não geram distorções ex-
pressivas na reconstrução. Para aumentar a eficiência e reduzir falsos negativos, propomos
uma arquitetura ensemble híbrida sequencial que combina o HSAE com técnicas de redução
dimensional e classificação de outliers.

A abordagem ensemble segue uma arquitetura sequencial onde cada componente contribui
com informações específicas para a detecção final, conforme ilustrado na Figura 10. O HSAE
atua como extrator de características, gerando representações compactas no espaço latente e
o erro de reconstrução normalizado. Sobre essas features, aplica-se PCA para preservar 95%
da variância e eliminar ruídos. O One-Class SVM é treinado com essas features reduzidas para
identificar anomalias com base na fronteira de normalidade. A decisão final é baseada em um
score combinado, dado por 50% do erro de reconstrução e 50% da pontuação de anomalia
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calculada pelo OCSVM. O limiar de decisão é determinado com base na métrica EER calculada
sobre os dados de validação, e posteriormente aplicado aos dados de teste para a classificação
final.

Figura 10 – Arquitetura do Ensemble

4.4 DEFINIÇÃO FORMAL E MATEMÁTICA DO HSAE

O modelo HSAE consiste em um autoencoder híbrido com duas saídas: reconstrução do vetor
de entrada 𝑥̂ e um score de anomalia 𝑦anom ∈ [0, 1]. O treinamento é realizado exclusivamente
com dados benignos, sem a necessidade de rótulos explícitos de ataque.
Seja 𝑥 ∈ R𝑛 uma instância de tráfego de rede. O autoencoder aprende as funções:

𝑓𝜃 : R𝑛 → R𝑛 (reconstrução) (4.1)

𝑠𝜃 : R𝑛 → [0, 1] (score de anomalia) (4.2)

A função de perda total do modelo é definida como:

ℒHSAE(𝑥, 𝑦) = E
[︁
‖𝑥− 𝑥̂‖2

]︁
+ 𝜆 · BCE(𝑦, 𝑦anom) (4.3)

onde:
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• ‖𝑥− 𝑥̂‖2 é o erro de reconstrução;
• Rótulo auxiliar 𝑦 = 0 para todas as instâncias benignas, de modo a forçar a saída 𝑠𝜃(𝑥)

a assumir valores baixos em situações normais.
• BCE é a Binary Cross-Entropy;
• 𝜆 é o hiperparâmetro de ponderação (neste caso, 𝜆 = 0, 03).

4.4.1 Score Combinado e Interpretação Estatística

A pontuação final atribuída a cada instância é dada por:

scorecomb(𝑥) = 𝛼 · RE(𝑥) + (1 − 𝛼) · 𝑠𝜃(𝑥) (4.4)

com:
• RE(𝑥) = 1

𝑛

∑︀𝑛
𝑖=1 |𝑥𝑖 − 𝑥̂𝑖| (normalizado);

• 𝛼 ∈ [0, 1] é o fator de ponderação entre reconstrução e score de anomalia.
Este score é interpretado como uma variável aleatória contínua 𝑆 ∼ 𝑃 (𝑆|𝑥), indicando a
probabilidade de anomalia.
Interpretamos o score combinado como uma variável aleatória contínua 𝑆 condicionada à
entrada 𝑥, com densidade 𝑝𝑆(𝑠 | 𝑥). Assim, 𝑠 = scorecomb(𝑥) é uma amostra da distribuição
condicional de anomalia associada a 𝑥.

4.5 DEFINIÇÃO FORMAL E MATEMÁTICA DO ENSEMBLE HSAE + PCA + OCSVM

No ensemble híbrido, temos três estágios:
Codificador do HSAE gera vetores 𝑧 = Encoder(𝑥); PCA reduz a dimensionalidade: 𝑧′ =

PCA(𝑧); One-Class SVM aprende uma fronteira de decisão a partir de 𝑧′.
A função de decisão do One-Class SVM é dada por:

ℎ(𝑥) = sign (⟨𝑤, 𝜑(𝑧′)⟩ + 𝜌) (4.5)

O score contínuo para cada instância é a distância ao hiperplano, invertida e normalizada:

𝑠OCSVM(𝑥) = − (⟨𝑤, 𝜑(𝑧′)⟩ + 𝜌) (4.6)

A pontuação final do ensemble é:
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scoreensemble(𝑥) = 𝛽 · RE(𝑥) + (1 − 𝛽) · 𝑠OCSVM(𝑥) (4.7)

4.5.1 Teste de Hipóteses para os Scores

Sejam:
• 𝑆0: distribuição dos scores para 𝑦 = 0 (benigno);
• 𝑆1: distribuição dos scores para 𝑦 = 1 (ataque).

As hipóteses estatísticas são:

𝐻0 : 𝜇0 = 𝜇1 vs 𝐻1 : 𝜇0 < 𝜇1 (4.8)

O teste 𝑡 de Welch pode ser aplicado para validar a separabilidade estatística entre as
distribuições.

4.6 DEFINIÇÃO DOS EXPERIMENTOS

O objetivo dos experimentos é aferir a eficácia do HSAE em sua forma básica e como parte
de um ensemble, comparando-o com modelos representativos do estado da arte na detecção
de ataques do tipo zero-day. Para isso, define-se um projeto experimental que avaliará os
modelos em diferentes cenários operacionais e cargas de ataque, considerando anomalias de
tráfego em nível de fluxo de rede. Em particular, os experimentos avaliam a capacidade do
sistema, treinado exclusivamente com tráfego benigno, de: (i) detectar ataques DoS/DDoS;
(ii) identificar atividades precursoras de ransomware antes da criptografia; (iii) reconhecer
variantes e ataques zero-day que se manifestem como desvios do perfil benigno aprendido; e
(iv) manter desempenho robusto mesmo diante de múltiplos ataques simultâneos.

Cenário de testes

O cenário de testes representa uma abordagem genérica para a avaliação dos modelos de
detecção de anomalias, conforme ilustrado pela Figura 11 . O fluxo consiste em treinar os
modelos exclusivamente com dados benignos e, posteriormente, avaliá-los em um ambiente
com tráfego misto (benigno e malicioso).

A abordagem geral segue as etapas de:
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Figura 11 – Cenário de Testes para Avaliação dos Modelos

1. Separação dos Dados (Data Splitting): O tráfego benigno é dividido, com uma
parte para treinamento e o restante para validação e teste.

2. Pré-processamento (Data Preprocessing): Os dados são normalizados para garantir
a consistência e evitar vazamento de informações entre as etapas.

3. Treinamento (Training): Os modelos aprendem o padrão de normalidade a partir do
conjunto de treino.

4. Codificação de Rótulos (Label Encoding): Transforma os rótulos textuais em valores
numéricos (0 e 1) para viabilizar o cálculo das métricas de desempenho pelo modelo.

5. Avaliação (Evaluation): O desempenho dos modelos é medido em conjuntos de vali-
dação e teste, que contêm tanto dados normais quanto anômalos.

Para avaliar a eficácia da abordagem proposta, o desenho experimental foi estruturado para
analisar o serviço de detecção de anomalias em tráfego de rede, especificamente em cenários
de ataques zero-day. O desempenho do sistema é mensurado a partir de suas respostas,
que podem ser classificadas em três categorias: a correta detecção de anomalias (verdadeiros
positivos), a falha em detectar um ataque existente (falsos negativos) e a classificação errônea
de um tráfego benigno como anômalo (falsos positivos).

A avaliação quantitativa dessa capacidade é realizada por meio de um conjunto de métri-
cas consolidadas. A Área sob a Curva ROC (AUC) é utilizada para medir a capacidade geral
do modelo em distinguir entre tráfego normal e malicioso. Para uma análise mais granular
do desempenho, são empregadas a Precisão (Precision), que avalia a proporção de detecções
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corretas dentre todos os alertas gerados, e a Revocação (Recall), que mede a capacidade
do modelo de identificar todas as anomalias existentes. O F1-Score é então calculado como
a média harmônica entre Precisão e Revocação, fornecendo um balanço entre ambas. Adi-
cionalmente, a Taxa de Falsos Positivos (FPR) e a Taxa de Falsos Negativos (FNR) são
inspecionadas para compreender em detalhe os tipos de erro que o modelo comete.

O núcleo do projeto experimental envolve dois fatores principais. O primeiro, um parâmetro
de sistema, é o próprio modelo de detecção, que é avaliado em quatro níveis: um modelo de
referência (VAE), a proposta principal (HSAE), um ensemble baseado no VAE (Ensemble VAE
+ One-Class SVM) e um ensemble baseado na proposta (Ensemble HSAE + PCA + One-Class
SVM). O segundo, um parâmetro de carga, é o conjunto de dados, que introduz variabilidade de
cenário através de dois níveis: o dataset CICIDS2017, representando um ambiente corporativo
tradicional, e o ToN_IoT, que simula infraestruturas modernas de Internet das Coisas.

Utilizamos como primeiro conjunto de dados, o CICIDS2017 (SHARAFALDIN et al., 2018),
desenvolvido pelo Canadian Institute for Cybersecurity, que simula um ambiente corporativo
real, englobando tráfego legítimo e malicioso. Esse conjunto de dados é bastante utilizado em
pesquisas sobre sistemas de detecção de intrusões devido à diversidade de ataques modernos
que apresenta, com destaque para os ataques de negação de serviço (DoS/DDoS). Escolhemos
esses ataques por sua alta frequência em redes reais e pelo impacto significativo que exercem
na disponibilidade dos serviços.

Esse conjunto de dados apresenta características relevantes para a detecção de ataques
zero-day. Composto por 2.830.540 instâncias rotuladas e 83 features, permite a extração
de variáveis como tempo entre fluxos, estatísticas de pacotes e flags Transmission Control
Protocol/Internet Protocol (TCP/IP). Conta ainda com o sistema B-Profile, que modela o
comportamento de 25 usuários reais com base em protocolos como HTTP, HyperText Trans-
fer Protocol Secure (HTTPS), File Transfer Protocol (FTP), Secure Shell (SSH) e e-mail.
Além disso, 83,34% das instâncias correspondem a tráfego benigno, fornecendo um baseline

estatisticamente robusto para identificação de desvios.
Adotamos também o conjunto de dados ToN_IoT, desenvolvido pelo Australian Centre

for Cyber Security (MOUSTAFA, 2021), que representa ambientes modernos e complexos como
casas inteligentes e redes industriais. Esse conjunto de dados inclui múltiplas fontes de dados,
como tráfego de rede, que é processado na forma de fluxos para a extração de características
detalhadas, registros de sistemas e dados de sensores, permitindo uma visão abrangente do
comportamento da rede em contextos de Internet das Coisas (IoT) e IoT Industrial (Industrial
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Internet of Things (IIoT)). A arquitetura que originou o ToN_IoT integra as camadas de edge,
fog e cloud, utilizando tecnologias como Software Defined Networking (SDN), Network Func-
tion Virtualization (NFV) e Service Orchestration para coleta simultânea de eventos normais
e maliciosos em ambientes realistas (MOUSTAFA, 2021).

Embora o ToN_IoT contenha uma grande variedade de vetores de ataque (Backdoor,
Injection, Cross-Site Scripting (XSS), Password Cracking, Man-in-the-Middle, entre outros),
foram selecionados para este trabalho apenas os ataques Denial of Service (DoS), Distributed
Denial of Service (DDoS) e Ransomware. Incluímos o ataque de Ransomware devido ao seu
crescimento alarmante, sendo atualmente uma das ameaças mais sofisticadas e destrutivas,
conforme destacado por (RAZAULLA et al., 2023) (BEAMAN et al., 2021). Essa escolha metodo-
lógica alinha os experimentos com ameaças reais e críticas em redes operacionais modernas,
conforme discutido no contexto do CICIDS2017.

Utilizar esses dois conjuntos de dados possibilita avaliar a robustez da abordagem proposta
em diversos contextos operacionais e tipos de ameaças, desde ambientes corporativos tradicio-
nais (CICIDS2017) até infraestruturas modernas e heterogêneas (ToN_IoT). Essa diversidade
é essencial para validar a generalização dos modelos de detecção de intrusões, conforme reco-
mendado na literatura recente (ELOUARDI et al., 2024). Ambos os conjuntos de dados apresen-
tam características que estão em consonância com os critérios técnicos propostos por (GHARIB

et al., 2016) para datasets de detecção de intrusão, favorecendo aplicações em detecção de
anomalias e ameaças previamente desconhecidas.

A combinação desses fatores resulta em um total de quarenta experimentos, sendo que no
dataset CICIDS2017 foram testados 5 ataques individuais mais ataques simultâneos, enquanto
no ToN_IoT foram 3 ataques individuais mais ataques simultâneos. Na primeira etapa, a aná-
lise focou no desempenho contra ataques de forma isolada. A seleção de ameaças para esta
fase visou refletir os desafios mais críticos e frequentes encontrados em redes operacionais. Do
dataset CICIDS2017, que simula um ambiente corporativo, foram selecionados cinco tipos de
ataques de Negação de Serviço: DDoS, DoS e suas variantes específicas (Slowloris, Slowhttp-
test, Hulk e GoldenEye). Do dataset ToN_IoT, representativo de ambientes modernos de IoT,
foram escolhidas três categorias de ameaças: DoS, DDoS e Ransomware. Este teste individual
de cada um dos quatro modelos contra essas ameaças permitiu criar um perfil detalhado da
eficácia de cada modelo contra vetores de ataque específicos.

Na segunda etapa, o foco foi avaliar a robustez dos modelos na presença de múltiplos
ataques simultâneos. O objetivo foi simular um ambiente de rede mais caótico e realista, onde
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um defensor não sabe quantas ou quais ameaças estão ativas. Nessa fase, os conjuntos de teste
foram compostos por uma mistura de diferentes ataques, testando a capacidade dos modelos
de manter a performance e a generalização mesmo sob condições de sobrecarga e com ameaças
coexistindo. Essa metodologia de duas fases visa garantir tanto uma compreensão detalhada
da performance dos modelos quanto uma avaliação clara de sua aplicabilidade e resiliência em
cenários de segurança complexos e atuais.

4.7 IMPLEMENTAÇÃO DO CENÁRIO DE TESTES

Esta seção detalha os procedimentos metodológicos e práticos adotados na implementação
do cenário de testes. São abordados os detalhes de preparação dos dados, a configuração de
implementação das arquiteturas propostas e de comparação, e os protocolos utilizados para o
treinamento e a avaliação dos modelos.

4.7.1 Rotulagem e Separação dos dados

Os dados dos datasets selecionados foram rotulados e separados de acordo com os proce-
dimentos a seguir. Conduzimos o processo de rotulagem por meio do algoritmo LabelEncoder,
que atribui os seguintes valores:

BENIGNO → 0, ANÔMALO → 1

Para o treinamento, foram selecionados 50% dos dados benignos, contendo exclusiva-
mente amostras benignas. O conjunto de validação foi composto por 20% de dados benignos
e a mesma quantidade de amostras maliciosas, estabelecendo o balanceamento entre as clas-
ses. O mesmo critério de balanceamento foi aplicado ao conjunto de teste, que recebeu os
30% restantes dos dados benignos e uma quantidade equivalente de ataques. A divisão dos
dados foi realizada utilizando sementes de aleatoriedade fixas (random_state) em todas as
etapas de separação. Esta metodologia opera sobre fluxos de rede, onde cada amostra indi-
vidual já representa um resumo estatístico agregado de uma comunicação. As características
temporais, portanto, estão encapsuladas nos atributos de cada fluxo, tornando a divisão por
amostras uma abordagem consistente com a prática padrão da literatura para datasets desta
natureza (JAVAHERI et al., 2023) (ABDULGANIYU; TCHAKOUCHT; SAHEED, 2023). O conjunto
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de treinamento 𝒟_train é definido como:

𝒟train = {(𝑥𝑖, 𝑦𝑖) ∈ 𝒳train × 𝒴 | 𝑦𝑖 = 0}

ou seja, é composto exclusivamente por amostras benignas, permitindo ao modelo, neste caso,
o autoencoder aprender a estrutura normal do tráfego de rede em ausência de ruído malicioso.
Os conjuntos de validação e teste são definidos como:

𝒟val = {(𝑥𝑖, 𝑦𝑖) ∈ 𝒳val × 𝒴 | 𝑦𝑖 ∈ {0, 1} e 𝑁0 = 𝑁1}

𝒟test = {(𝑥𝑖, 𝑦𝑖) ∈ 𝒳test × 𝒴 | 𝑦𝑖 ∈ {0, 1} e 𝑁0 = 𝑁1}

onde 𝑁0 e 𝑁1 representam a cardinalidade dos subconjuntos de instâncias benignas e malicio-
sas, respectivamente, garantindo o balanceamento entre as classes no conjunto de teste. Essa
divisão estratégica permite avaliar a capacidade de generalização do modelo frente a dados
não vistos, mitigando tendências enviesadas e evitando sobreajuste (overfitting) durante o
treinamento.

4.7.2 Pré-processamento dos Dados

A padronização dos atributos foi realizada utilizando a transformação z-score, dada por:

𝑥̂𝑖 = 𝑥𝑖 − 𝜇

𝜎

onde 𝜇 e 𝜎 são a média e o desvio padrão, respectivamente, calculados sobre o conjunto
de treinamento 𝒟𝑡𝑟𝑎𝑖𝑛. Essa transformação assegura que os dados possuam média zero e
variância unitária, propriedade essencial para estabilizar o processo de otimização em redes
neurais profundas.

Neste trabalho, a padronização foi aplicada utilizando o StandardScaler, da biblioteca
Scikit-learn. Primeiramente, são calculados a média e o desvio padrão de cada atributo com
base no conjunto de treinamento por meio do método fit_transform, que também rea-
liza a transformação dos dados de treino. Em seguida, a mesma transformação é aplicada
aos conjuntos de validação e teste por meio do método transform, utilizando os parâme-
tros previamente ajustados no treino. Essa abordagem evita vazamento de dados e assegura
consistência na escala das variáveis em todos os conjuntos.

Para a etapa de avaliação, os conjuntos de validação e teste, que contêm tráfego misto (be-
nigno e malicioso), foram transformados utilizando os mesmos parâmetros do StandardScaler



72

ajustado no treino. Em seguida, para viabilizar o cálculo das métricas de desempenho, os rótu-
los desses conjuntos foram convertidos em formato binário (0 para benigno, 1 para anomalia)
com o LabelEncoder. Esse procedimento permite uma avaliação quantitativa da capacidade
do modelo em generalizar e identificar anomalias em dados não vistos.

4.7.3 Arquitetura Base: HSAE (Hybrid Scoring Autoencoder)

Como mencionado anteriormente, a arquitetura HSAE representa a primeira proposta deste
trabalho, constituindo uma arquitetura de autoencoder híbrida que combina aprendizado de
reconstrução com classificação direta de anomalias. Esta abordagem busca superar limita-
ções dos autoencoders tradicionais, que dependem exclusivamente do erro de reconstrução
para detecção, incorporando uma saída auxiliar especializada em pontuação probabilística de
anomalias.

A Figura 12 apresenta a metodologia adotada nesta pesquisa para a avaliação do mo-
delo híbrido proposto. Ela descreve desde a divisão dos dados utilizados, passando pelo pré-
processamento necessário, treinamento do modelo proposto (HSAE) e a etapa final de avali-
ação do desempenho por meio de diversas métricas.

Figura 12 – Cenário de testes para o modelo proposto.

Nosso objetivo é simular um cenário realista de detecção de anomalias, onde treinamos o
modelo exclusivamente com dados benignos e, posteriormente, o expomos a tráfego misto,
contendo instâncias normais e maliciosas. Para isso, dividimos os dados da seguinte forma:
50% do tráfego benigno foi destinado ao treinamento, 20% foram utilizados na validação e
os 30% restantes compuseram o conjunto de teste. O threshold é definido via EER sobre o
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conjunto de validação e então aplicado ao teste.
Para os dados de treinamento, utilizamos a técnica de padronização z-score apresentada

na seção 4.6.3 para o pré-processamento dos atributos, por meio do StandardScaler. Os
parâmetros de média e desvio padrão foram calculados exclusivamente sobre o conjunto de
treinamento, uma prática que evita o vazamento de informações (data leakage) entre as
etapas. Esse conjunto de dados de treino, já normalizado e composto unicamente por tráfego
benigno, foi então utilizado para treinar o modelo HSAE, permitindo que ele aprendesse a
representar o padrão de normalidade da rede.

4.7.4 Extensão Ensemble: HSAE + PCA + One-Class SVM

Dando sequência à justificativa apresentada na Seção 4.2, esta seção detalha a implemen-
tação do ensemble híbrido, concebido para superar as limitações do modelo HSAE isolado. A
arquitetura integra o autoencoder para aprendizado de características com um classificador
de fronteira para a detecção de anomalias, buscando um score mais completo ao combinar a
sensibilidade do erro de reconstrução com a precisão de um modelo de fronteira.

A Figura 13 ilustra a metodologia adotada nesta pesquisa. O fluxograma descreve o pro-
cesso completo, desde a divisão dos dados, passando pelo pré-processamento, o treinamento
do ensemble (HSAE+PCA e OC-SVM) e a etapa final de avaliação de desempenho por meio
de um conjunto de métricas. No pipeline do ensemble, o modelo HSAE, previamente treinado
com sua função de perda híbrida, é empregado de forma especializada. Embora sua saída
auxiliar seja fundamental durante o treinamento para aprimorar a qualidade da representação
latente, na etapa de inferência do ensemble, apenas duas de suas saídas são utilizadas: o erro
de reconstrução, que é combinado com o score do One-Class SVM, e a representação latente,
que serve de entrada para o pipeline PCA+OCSVM. Essa abordagem mantém a especialização
de cada componente: o HSAE para modelagem de padrões normais e o OCSVM para definição
de fronteiras de decisão.

Este componente utiliza kernel Radial Basis Function (RBF) com 𝛾=‘auto’ e 𝜈=0.045,
gerando scores de anomalia baseados na distância à fronteira.

O objetivo do desenho experimental é simular um cenário realista, onde o modelo é trei-
nado exclusivamente com dados benignos e, posteriormente, avaliado em um ambiente com
tráfego misto. Para isso, os dados foram divididos da seguinte forma: 50% do tráfego benigno
foi destinado ao treinamento; 20% foram utilizados para a validação; e os 30% restantes com-



74

Figura 13 – Cenário de testes para o modelo ensemble.

puseram o conjunto de teste. O limiar de decisão (threshold) é otimizado via Equal Error

Rate (EER) sobre o conjunto de validação e, então, aplicado ao conjunto de teste para a
classificação final.

Assim como no HSAE, para os dados de treinamento, utilizou-se a técnica de padroniza-
ção z-score apresentada na seção 4.6.3 para o pré-processamento dos atributos por meio do
StandardScaler. A implementação segue etapas sequenciais: treinamento do HSAE com dados
benignos, extração de features latentes, aplicação de PCA para redução dimensional, e trei-
namento do One-Class SVM. Este componente utiliza kernel RBF com 𝛾=‘auto’ e 𝜈=0.045,
gerando scores de anomalia baseados na distância à fronteira. O score final é uma combina-
ção ponderada: Score_final = 0.5 × Score_HSAE + 0.5 × Score_OneClassSVM. Ambos os
scores são normalizados no intervalo [0,1] para garantir contribuição equilibrada, e o threshold

é definido via EER sobre o conjunto de validação antes de ser aplicado ao teste.
Essa abordagem oferece complementariedade entre métodos: o HSAE captura padrões

de reconstrução, enquanto o One-Class SVM detecta desvios latentes. A combinação mitiga
fraquezas individuais e amplifica as forças de cada técnica, resultando em um sistema de
detecção mais robusto e preciso.

4.7.5 Modelo de Comparação: VAE (Variational Autoencoder)

Seguindo a abordagem do estudo de (ZAVRAK; ISKEFIYELI, 2020). Entre os modelos avalia-
dos por aqueles autores, incluindo o Autoencoder tradicional e o One-Class SVM, o Variational

Autoencoder (VAE) apresentou os melhores resultados. Como apresentado anteriormente, o
VAE continua sendo valorizado na literatura atual como uma solução eficaz para detecção
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de anomalias, especialmente em contextos relacionados à segurança da informação. Conforme
(BERAHMAND et al., 2024), autoencoders como o VAE vêm sendo empregados com frequência
em tarefas que envolvem a identificação de comportamentos irregulares em dados complexos.
Sua capacidade de modelar distribuições probabilísticas permite detectar desvios sutis em re-
lação ao padrão normal, característica fundamental para sistemas de detecção de intrusões
(IDS). Nesse sentido, o VAE é classificado como um autoencoder generativo e figura entre as
abordagens mais promissoras para cenários envolvendo tráfego anômalo.

Embora o VAE seja uma referência importante no campo, o artigo de (ZAVRAK; ISKEFIYELI,
2020) não fornece descrição suficientemente detalhada do processo de preparação dos dados.
Etapas essenciais, como os critérios adotados para normalização, estratégias de validação e
o tratamento do desbalanceamento entre as classes, não são claramente especificadas, o que
compromete a reprodutibilidade dos experimentos.

Como não dispúnhamos do código original, reimplementamos o VAE ajustado ao nosso
cenário experimental, de modo a assegurar consistência metodológica em termos de pré-
processamento, divisão dos dados e métricas de avaliação. Essa reimplementação preserva
a estrutura central proposta por (ZAVRAK; ISKEFIYELI, 2020), com encoder, decoder e regula-
rização do espaço latente via penalização Kullback-Leibler divergence (KL). No entanto, foram
adotadas adaptações práticas, como o uso do erro de reconstrução como score de detecção (em
substituição à probabilidade de reconstrução) (BERAHMAND et al., 2024) (YANG et al., 2022) e
treinamento com o otimizador Adam (BERAHMAND et al., 2024). Tais escolhas são compatíveis
com diretrizes amplamente aceitas na literatura para implementações práticas de autoencoders

variacionais, que destacam a flexibilidade desses modelos quanto à função de ativação, tipo de
perda e estratégias de limiar baseadas em métricas estatísticas do erro de reconstrução (YANG

et al., 2022). Essas modificações foram necessárias para permitir uma comparação justa com
o HSAE, sem comprometer os princípios fundamentais do modelo variacional.

A arquitetura implementada para o VAE inclui um encoder com camadas Dense (512 e
256 neurônios, LeakyReLU), normalização por lotes e dropout, espaço latente com dimensão
64, e um decoder simétrico. A função de perda combina MSE (Mean Squared Error) com
penalização KL-divergence, e o treinamento foi conduzido por 150 épocas. Para a detecção
de anomalias, utilizou-se o erro de reconstrução como métrica base, sendo o limiar de decisão
otimizado através do EER. O EER representa o ponto operacional onde a taxa de falsos
positivos (FPR) se iguala à taxa de falsos negativos (FNR), proporcionando um equilíbrio
otimizado entre essas métricas (CHENG; WANG, 2004). O threshold EER foi calculado sobre
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o conjunto de validação e posteriormente aplicado no conjunto de teste, garantindo uma
avaliação mais robusta e teoricamente fundamentada em comparação com métodos baseados
em percentis fixos (YANG et al., 2022). Essa abordagem permite uma comparação mais justa
entre os modelos, uma vez que ambos operam sob condições de limiar otimizadas.

4.7.6 Modelo de Comparação: VAE + PCA + One-Class SVM

Para aprimorar a capacidade de detecção do modelo VAE isolado, foi desenvolvida uma ex-
tensão que implementa uma abordagem híbrida, combinando o Variational Autoencoder (VAE)
com um classificador One-Class Support Vector Machine (OC-SVM). Essa arquitetura sinér-
gica busca superar as limitações de um sistema baseado unicamente no erro de reconstrução,
criando um mecanismo de detecção de anomalias com duas camadas de análise.

A lógica fundamental deste modelo híbrido é utilizar o VAE não apenas para a reconstru-
ção de dados, mas também como um extrator de características não-lineares. O VAE aprende
a comprimir os dados de tráfego normal em um espaço latente de dimensionalidade redu-
zida (64 dimensões, neste caso), que captura as características mais salientes e essenciais da
normalidade.

O processo de detecção ocorre em duas frentes simultâneas. Na primeira, as representações
latentes geradas pelo encoder a partir dos dados de treinamento são otimizadas via Análise
de Componentes Principais (PCA), que retém 95% da variância e estabiliza o processo. Em
seguida, um modelo One-Class SVM é treinado com essas features para aprender uma fronteira
de decisão que delimita a normalidade no espaço de características. Na segunda frente, o VAE
reconstrói a instância de entrada, e o seu erro de reconstrução é calculado como uma segunda
métrica de anomalia, que tende a ser maior para dados anômalos.

Para cada instância, o score de anomalia do OC-SVM e o erro de reconstrução do VAE
são normalizados e combinados através de uma média ponderada. Isso gera um score de
anomalia híbrido e final, que reflete tanto a dificuldade de reconstrução da instância quanto
sua conformidade com a distribuição de dados normais no espaço latente.

4.7.7 Etapa de Treinamento

O modelo foi treinado por 150 épocas com batch size 128, utilizando o algoritmo de
otimização Adam com taxa de aprendizado igual a 5 × 10−5. A função de custo híbrida
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garante que o modelo seja sensível a desvios sutis na estrutura do tráfego.
O treinamento segue a estratégia de aprendizado não supervisionado, utilizando exclusiva-

mente dados normais (50% do conjunto de dados benignos, conforme descrito na seção 4.3.3).
Todas as amostras benignas recebem o rótulo zero, estabelecendo o padrão de normalidade
que o autoencoder deve aprender, sem exposição prévia a padrões maliciosos.

Durante o processo de treinamento, o modelo otimiza simultaneamente a capacidade de
reconstrução e a detecção de anomalias através da função de perda híbrida definida na equação
(4.3). Essa abordagem permite que o modelo aprenda representações robustas do tráfego
normal, essenciais para a posterior detecção de anomalias.

4.7.8 Síntese da Proposta e Vantagens sobre as Abordagens Correlatas

Para abordar sistematicamente essas limitações, este trabalho propõe inicialmente uma ar-
quitetura Autoencoder (HSAE) que incorpora uma camada adicional de classificação no espaço
latente e utiliza uma função de perda híbrida, combinando reconstrução (MSE) e classifica-
ção (binary cross-entropy). O modelo HSAE também emprega otimização dinâmica baseada
no Equal Error Rate (EER) para ajuste automático da fronteira de decisão, substituindo os
thresholds fixos utilizados em trabalhos como Zavrak e Iskefiyeli (2020) por um threshold que
se adapta automaticamente às características dos dados através de um score combinado que
integra o erro de reconstrução com o score de anomalia da camada de classificação. Esta
proposta busca oferecer uma representação robusta e discriminativa dos padrões normais de
tráfego, estabelecendo uma baseline com potencial eficiência computacional e reduzindo a
dependência de ajustes manuais ou processos complexos. Diferentemente de trabalhos como
Zavrak et al. que se restringem à métrica AUC, o modelo é avaliado utilizando um conjunto
mais amplo de métricas, incluindo precisão, recall, F1-score, FPR e FNR.

Posteriormente, o modelo é ampliado em uma abordagem ensemble híbrida sequencial,
integrando o HSAE com PCA para redução dimensional das representações latentes e One-
Class SVM para classificação das representações reduzidas. Esta arquitetura ensemble utiliza
um score combinado que integra o erro de reconstrução do HSAE com o score de anomalia
do One-Class SVM, aplicando também a otimização dinâmica baseada no Equal Error Rate

(EER) para ajustar automaticamente a fronteira de decisão às variações no tráfego. Assim,
busca-se mitigar limitações específicas observadas nos trabalhos anteriores, incluindo controle
dinâmico dos falsos positivos, menor complexidade estrutural, maior cobertura na avaliação e
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maior adaptabilidade.
As duas propostas trabalham em conjunto para endereçar cada limitação identificada na

tabela comparativa. O modelo HSAE isolado resolve a dependência de parâmetros estáticos
através do aprendizado automático de representações discriminativas e da substituição de
thresholds fixos por otimização dinâmica do EER aplicada ao score combinado (erro de re-
construção + score de anomalia da camada de classificação), enquanto o ensemble híbrido
sequencial (HSAE+PCA+OCSVM) amplia essa capacidade adaptativa utilizando um score

combinado diferente (erro de reconstrução + score do One-Class SVM) com a mesma es-
tratégia de threshold dinâmico baseado no Equal Error Rate, eliminando a necessidade de
configuração manual de parâmetros de detecção. A arquitetura simplificada contrasta com a
complexidade excessiva de modelos como F-OSFA, e o processo automatizado de combinação
de scores com otimização EER elimina a necessidade de ajustes manuais presentes em traba-
lhos como Zahoora et al. A avaliação abrangente com múltiplas métricas supera a limitação
de trabalhos que utilizam apenas AUC-ROC.

As propostas deste trabalho buscam contribuir com um avanço incremental na área, funda-
mentado diretamente nas lacunas observadas na literatura e sistematizadas na tabela compara-
tiva apresentada. Espera-se oferecer maior adaptabilidade através de mecanismos automáticos
de ajuste baseados em EER e scores combinados, menor complexidade estrutural através da ar-
quitetura híbrida sequencial HSAE+PCA+OCSVM mantendo eficácia na detecção, avaliação
mais abrangente com múltiplas métricas de desempenho, e aplicabilidade prática em cenários
dinâmicos e críticos como redes IoT e infraestruturas industriais.

Conforme discutido no Capítulo 3, a análise dos trabalhos relacionados revelou um conjunto
de limitações que motivaram esta pesquisa. As arquiteturas do HSAE e de sua extensão
ensemble foram concebidas para superar diretamente cada uma dessas deficiências. A Tabela
1, a seguir, sistematiza essa relação, ilustrando como cada limitação observada é abordada
por uma característica específica dos modelos aqui propostos.
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Tabela 1 – Limitações Identificadas versus Soluções Propostas

Limitação Identifi-
cada

Trabalhos Afetados Solução Proposta Nesta Pesquisa

Falta de mecanismos
adaptativos

(ZAVRAK; ISKEFIYELI,
2020), (MBONA; ELOFF,
2022))

Threshold dinâmico via EER em subs-
tituição aos thresholds fixos, permitindo
ajuste automático da fronteira de deci-
são baseado nas características dos da-
dos, combinado com scores adaptativos
que integram múltiplas fontes de infor-
mação

Dependência de parâ-
metros estáticos

(MBONA; ELOFF, 2022),
(SOLTANI et al., 2023)

Função de perda híbrida com apren-
dizado automático de representações dis-
criminativas e scores combinados adap-
tativos

Complexidade arquite-
tural excessiva

(LU et al., 2024)),
(MINHAS et al., 2025),
(SOLTANI et al., 2023)

Arquitetura híbrida sequencial
HSAE+PCA+OCSVM com redução
dimensional

Necessidade de ajustes
manuais

(ZAHOORA et al., 2022),
(SOLTANI et al., 2023)

Processo automatizado de combina-
ção de scores (reconstrução + classifica-
ção/OCSVM) com otimização EER

Avaliação limitada (ZAVRAK; ISKEFIYELI,
2020)

Conjunto amplo de métricas incluindo
precisão, recall, F1-score, FPR e FNR
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5 RESULTADOS COMPARATIVOS

Este capítulo dedica-se à apresentação e análise dos resultados experimentais obtidos para
validar as propostas desta dissertação. O desempenho do modelo HSAE e de sua extensão
Ensemble é rigorosamente avaliado por meio de uma análise comparativa com suas respectivas
contrapartes baseadas no modelo de referência VAE. A validação ocorre em dois cenários
distintos, representados pelos conjuntos de dados CICIDS2017 e ToN_IoT. Por fim, a eficiência
computacional das arquiteturas é investigada para aferir sua viabilidade em ambientes com
recursos limitados.

5.1 COMPARAÇÃO DE DESEMPENHO ENTRE OS MODELOS HSAE E VAE PARA O
CONJUNTO DE DADOS CICIDS2017

Nesta seção obtivemos o desempenho do HSAE, utilizando o mesmo conjunto de dados
CICIDS2017 empregado no estudo sobre o VAE de (ZAVRAK; ISKEFIYELI, 2020). Para garantir
uma comparação justa e atualizada, realizamos uma reimplementação metodológica do modelo
VAE, detalhada na seção 4.6.6, incorporando técnicas recentemente validadas pela literatura
científica atual. Essa atualização metodológica resultou em melhorias no desempenho geral
do modelo adaptado para detecção dos ataques avaliados. Ao comparar os valores da métrica
AUC obtidos por nosso modelo VAE atualizado com aqueles gerados pela implementação
original de Zavrak e Iskefiyeli (2020), observou-se um ganho em praticamente todos os ataques
considerados. Embora para o ataque DoS Slowloris não tenha havido alteração significativa
no valor da AUC (0.87), houve aumento nos ataques DoS GoldenEye (de 0.80 para 0.92),
DoS Hulk (de 0.81 para 0.91) e DoS SlowHTTPTest (de 0.86 para 0.94). Essas melhorias
demonstram a eficácia das técnicas introduzidas, destacando-se o uso do erro de reconstrução
como métrica de detecção, a otimização do threshold baseada no EER, bem como as melhorias
arquiteturais na rede neural empregada. Além disso, esses resultados reforçam a importância da
adoção de abordagens metodológicas modernas na área de segurança cibernética, permitindo
avaliações mais robustas e eficazes em cenários reais.

Além da métrica AUC adotada por Zavrak e Iskefiyeli (ZAVRAK; ISKEFIYELI, 2020), am-
pliamos a análise comparativa entre o VAE e o modelo HSAE, utilizando métricas adicionais
relevantes, tais como precisão, recall, F1-score, taxa de falsos positivos (FPR) e taxa de falsos
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negativos (FNR). A Tabela 2 apresenta os resultados obtidos para cada tipo de ataque de ne-
gação de serviço (DoS e DDoS), assim como para cenários de múltiplos ataques simultâneos,
considerando o conjunto de dados CICIDS2017, com os melhores valores de cada métrica des-
tacados em negrito para cada um dos dois modelos comparados. Essa abordagem visa garantir
uma comparação justa e metodologicamente alinhada com os objetivos da proposta.

Tabela 2 – Comparação de desempenho para o conjunto de dados CICIDS2017.

Ataque Modelo Precisão FPR FNR Recall F1-Score AUC

DDoS VAE 65% 34,76% 34,49% 66% 65% 0.75
HSAE 91% 6,36% 35,95% 64% 75% 0.82

DoS GoldenEye VAE 87% 13,02% 13,93% 86% 86% 0.92
HSAE 90% 8,82% 22,61% 77% 83% 0.92

DoS Hulk VAE 80% 20,10% 20,32% 80% 80% 0.91
HSAE 90% 8,30% 26,53% 73% 81% 0.94

DoS SlowHTTPTest VAE 91% 8,95% 11,71% 88% 90% 0.94
HSAE 91% 8,73% 13,88% 86% 88% 0.94

DoS Slowloris VAE 76% 24,21% 21,79% 78% 77% 0.87
HSAE 77% 27,40% 10,28% 90% 83% 0.89

Múltiplos Ataques VAE 78% 23,42% 18,03% 82% 80% 0.88
HSAE 80% 22,27% 8,22% 92% 86% 0.93

5.1.1 Análise Comparativa com ataques isolados

Os resultados revelam que o modelo HSAE apresenta desempenho superior em diversas
métricas relevantes. Por exemplo, no caso do ataque DDoS, o HSAE alcançou 91% de precisão,
superando os 65% do VAE, com uma melhoria significativa no F1-score (75% contra 65%).
Apesar do recall ter tido uma leve inferioridade (64% vs 66%), o HSAE apresentou uma boa
redução na FPR (6,36% contra 34,76%), demonstrando excelente controle de falsos positivos.
A métrica AUC do HSAE apresentou valor de 0,82, superando o VAE que obteve 0,75, refletindo
uma maior capacidade do HSAE em classificar corretamente o tráfego malicioso e benigno.

No ataque DoS GoldenEye, ambos os modelos apresentaram desempenho equilibrado, com
o HSAE obtendo 90% de precisão contra 87% do VAE. O F1-score do HSAE foi ligeiramente
inferior (83% vs 86%), assim como o recall (77% vs 86%). A FPR do HSAE foi de 8,82%, com-
parada aos 13,02% do VAE, evidenciando melhor controle de falsos positivos. A métrica AUC
manteve-se equivalente em 0,92 para ambos os modelos, demonstrando capacidade similar de
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discriminação entre as classes neste tipo específico de ataque.
Em relação ao ataque DoS Hulk, o HSAE demonstrou melhorias expressivas, com F1-score

de 81% superando os 80% do VAE, precisão de 90% contra 80%. O recall apresentou leve
redução (73% vs 80%), porém a FPR do HSAE foi bastante inferior (8,30% vs 20,10%),
demonstrando melhor controle de falsos positivos. A métrica AUC do HSAE foi superior (0,94
contra 0,91 do VAE), indicando melhor desempenho geral na discriminação entre tráfego
benigno e malicioso para este tipo de ataque.

Nos ataques DoS Slowhttptest, o HSAE apresentou resultados superiores com 91% de
precisão, mesmo valor do VAE, mas com F1-score inferior (88% vs 90%). O recall do HSAE
foi de 86%, ligeiramente inferior aos 88% do VAE, enquanto a FPR ficou em 8,73% contra
8,95% do VAE. A métrica AUC manteve-se equivalente em 0,94 para ambos os modelos,
demonstrando capacidade similar de classificação.

No caso do DoS Slowloris, os resultados apresentaram maior variabilidade. O HSAE obteve
77% de precisão, superior aos 76% do VAE, com F1-score superior (83% vs 77%) e recall

expressi- vamente melhor (90% vs 78%). A FPR do HSAE foi de 27,40%, superior aos 24,21%
do VAE, indicando maior taxa de falsos positivos neste cenário específico. A métrica AUC do
HSAE foi de 0,89, superior aos 0,87 do VAE.

Para avaliar a robustez dos modelos em cenários mais complexos e realistas, foi conduzida
uma análise adicional envolvendo múltiplos tipos de ataques simultâneos. Nesta abordagem,
foi utilizada uma metodologia de divisão de dados onde o conjunto de validação incluiu ata-
ques DDoS, DoS Slowloris e DoS Slowhttptest, enquanto o conjunto de teste foi composto
por DDoS, DoS Slowloris, DoS Slowhttptest, DoS Hulk e DoS GoldenEye. Esta metodologia
permite avaliar tanto a capacidade dos modelos de detectar ataques individuais quanto sua
performance em ambientes com múltiplas ameaças coexistentes e ataques também não vistos
na validação.

Os resultados dos múltiplos ataques revelam aspectos importantes sobre a generalização
dos modelos. O HSAE demonstrou 80% de precisão contra 78% do VAE, com F1-score superior
(86% vs 80%). O recall do HSAE foi notavelmente superior (92% vs 82%), evidenciando maior
capacidade de identificação de ataques em cenários complexos. Embora a FPR tenha superado
o VAE (22,27% vs 23,42%), a diferença é pequena. A métrica AUC do HSAE foi melhor (0,93
contra 0,88 do VAE), apresentando uma capacidade superior de discriminação em ambientes
com múltiplas ameaças.
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5.1.2 Visualização Comparativa dos Resultados

As curvas ROC apresentadas na Figura 14 ilustram a separação entre tráfego benigno e
malicioso nos diferentes ataques, evidenciando visualmente o desempenho dos modelos ana-
lisados. Essa distinção permite uma comparação direta entre as abordagens, destacando o
desempenho superior do HSAE em termos de capacidade de discriminação, especialmente em
cenários com ataques variados.

Os resultados indicam que o HSAE mantém um desempenho eficaz mesmo em cenários
complexos, nos quais diferentes tipos de ataques ocorrem simultaneamente. A comparação
entre ataques isolados e múltiplos ataques revela que, apesar de variações pontuais em algumas
métricas, o modelo preserva sua robustez, especialmente nos valores de recall e AUC, métricas
necessárias para a detecção de anomalias em ambientes reais.

Por fim, com o dataset CICIDS2017, o modelo HSAE demonstrou-se mais eficiente em
termos gerais, validando sua adoção frente a abordagens tradicionais baseadas exclusivamente
em reconstrução. Os resultados obtidos, particularmente em cenários de múltiplos ataques, re-
forçam o potencial do HSAE para aplicações reais em ambientes corporativos, onde a detecção
confiável de diversas ameaças simultâneas é fator fundamental.
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(a) Curva ROC para DDoS (b) Curva ROC para DoS Slowhttptest

(c) Curva ROC para DoS GoldenEye (d) Curva ROC para DoS Slowloris

(e) Curva ROC para DoS Hulk (f) Curva ROC para Múltiplos Ataques

Figura 14 – Comparação das curvas ROC para os modelos HSAE e o VAE usando o dataset CICIDS2017.
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5.2 COMPARAÇÃO DE DESEMPENHO ENTRE OS MODELOS HSAE E VAE PARA O
CONJUNTO DE DADOS TON_IOT

Foram realizados testes utilizando o ToN_IoT, um conjunto de dados que reflete padrões
de tráfego oriundos de dispositivos IoT em ambientes industriais e residenciais, abrangendo
uma variedade de vetores de ataque e condições realistas de operação. A Tabela 3 apresenta
os resultados obtidos para três classes de ataques distintas, comparando o desempenho do
modelo proposto HSAE com o modelo de referência.

Tabela 3 – Comparação de desempenho para o conjunto de dados ToN_IoT.

Ataque Modelo Precisão FPR FNR Recall F1-Score AUC

DDoS VAE 70% 25,69% 25,46% 75% 72% 0.79
HSAE 85% 14,77% 15,55% 84% 85% 0.91

DoS VAE 69% 26,34% 26,78% 73% 71% 0.76
HSAE 91% 22,11% 22,13% 78% 84% 0.77

Ransomware VAE 67% 28,09% 27,98% 71% 70% 0.76
HSAE 86% 13,93% 15,07% 85% 85% 0.86

Múltiplos
Ataques

VAE 85% 20,30% 43,69% 56% 68% 0.81
HSAE 95% 10,31% 9,71% 90% 92% 0.89

5.2.1 Análise Comparativa com ataques individuais

No contexto do ataque DDoS, o modelo HSAE demonstrou ganhos consideráveis em
relação ao VAE. A precisão aumentou de 70% para 85%, evidenciando que o processo de
codificação-decodificação variacional apresenta limitações na captura completa de padrões
característicos do dataset ToN_IoT. A taxa de falsos positivos (FPR) apresentou redução
expressiva de 25,69% para 14,77%, demonstrando que ambos os modelos alcançam patamares
operacionalmente viáveis, porém o HSAE mantém vantagem significativa em ambientes com
baixa tolerância a alarmes indevidos. A taxa de falsos negativos (FNR) reduziu de 25,46%
para 15,55%, indicando que o VAE apresenta maior propensão à não identificação de ataques
legítimos comparado ao HSAE. O F1-score aumentou de 72% para 85%, e o recall evoluiu
de 75% para 84%, evidenciando que a arquitetura híbrida proporciona cobertura superior na
identificação dos ataques. O valor da AUC passou de 0,79 para 0,91, representando um salto
qualitativo expressivo na capacidade discriminativa, sugerindo que a arquitetura híbrida do
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HSAE é particularmente efetiva na separação entre tráfego benigno e malicioso.
Para ataques DoS, observou-se comportamento similar com nuances interessantes, onde

a precisão elevou-se de 69% para 91%, demonstrando superioridade consistente do HSAE. O
FPR diminuiu de 26,34% para 22,11%, indicando que ambos os modelos operam em faixas
de falsos positivos relativamente controladas, com o HSAE apresentando vantagem operacio-
nal. O recall apresentou aumento de 73% para 78%, evidenciando que o HSAE proporciona
cobertura superior na detecção de ataques. O F1-score progrediu de 71% para 84%, e a
AUC demonstrou evolução de 0,76 para 0,77, confirmando o aprimoramento da capacidade
de distinção entre tráfego legítimo e malicioso, embora a diferença seja menor neste cená-
rio específico, possivelmente devido às características menos complexas dos ataques DoS em
comparação com DDoS.

No cenário de ataques Ransomware, o HSAE manteve a tendência de superioridade, com
diferenças proporcionalmente menores, evidenciando que o VAE demonstra competência con-
siderável neste domínio específico. A precisão aumentou de 67% para 86%, e o FPR reduziu
de 28,09% para 13,93%, isso indica que ambos os modelos alcançam níveis de desempenho
relevantes para aplicações práticas, com o HSAE se destacando por apresentar resultados su-
periores. O recall evoluiu de 71% para 85%, acompanhado pelo F1-score que progrediu de
70% para 85%. A AUC apresentou melhoria de 0,76 para 0,86, sugerindo que as características
específicas dos ataques ransomware são adequadamente capturadas por ambas as arquiteturas,
com vantagem maior para o modelo híbrido.

Na análise de múltiplos ataques, onde a validação foi conduzida com ataques DoS, e o
teste realizado com ataques DDoS e ransomware, observou-se a menor diferença relativa entre
os modelos, indicando robustez considerável do VAE em cenários de generalização. O modelo
HSAE demonstrou desempenho superior, com precisão alcançando 95% comparada aos 85%
do VAE, mantendo diferença de aproximadamente 10 pontos percentuais. O FPR foi reduzido
de 20,30% para 10,31%, demonstrando que ambos os modelos operam em faixas aceitáveis,
com o HSAE proporcionando maior confiabilidade operacional. Destaca-se a redução do FNR
de 43,69% para 9,71%, evidenciando que o VAE apresenta limitações na detecção de ataques
verdadeiros em cenários generalizados. O recall atingiu 90% versus 56% do VAE, representando
a maior discrepância observada e sugerindo que a capacidade de generalização é o principal
diferencial arquitetural do HSAE. O F1-score alcançou 92% comparado aos 68% do VAE,
e a AUC evoluiu de 0,81 para 0,89, confirmando a robustez superior do modelo híbrido em
cenários diversificados.
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5.2.2 Visualização Comparativa dos Resultados

As curvas ROC apresentadas na Figura 15 ilustram a separação entre tráfego benigno e
malicioso nos diferentes ataques, evidenciando visualmente o desempenho dos modelos ana-
lisados. A linha vermelha representa o modelo 1, correspondente ao HSAE (Hybrid Scoring

Autoencoder). Já a linha azul representa o modelo 2, correspondente ao VAE (Variational

Autoencoder).

(a) Curva ROC para DDoS (b) Curva ROC para DoS

(c) Curva ROC para Ramsoware (d) Curva ROC para Múltiplos Ataques

Figura 15 – Comparação das curvas ROC para os modelos HSAE e VAE usando o dataset ToN_IoT.

Os melhores resultados do HSAE em todos os tipos de ataques avaliados sugerem que
as limitações observadas do VAE estão relacionadas às características próprias do dataset

ToN_IoT, que trabalha com dados de tráfego de rede IoT com complexidade temporal e
espacial específica, onde a arquitetura híbrida do HSAE demonstra maior adequação para este
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tipo de dados.

5.3 COMPARAÇÃO DE DESEMPENHO ENTRE OS ENSEMBLES NO CONJUNTO DE
DADOS CICIDS2017.

A avaliação da arquitetura ensemble HSAE+PCA+One-Class SVM representa uma ex-
tensão natural dos experimentos anteriores, visando investigar se a combinação de múltiplas
técnicas não supervisionadas pode superar as limitações identificadas no modelo isolado HSAE.
Esta abordagem ensemble busca aproveitar a complementariedade entre diferentes paradigmas
de detecção: o aprendizado de reconstrução do HSAE, a redução dimensional do PCA, e a
modelagem de fronteiras de normalidade do One-Class SVM.

A Tabela 4 apresenta os resultados obtidos comparando duas arquiteturas ensemble: En-

semble HSAE (HSAE+PCA+One-Class SVM) versus Ensemble VAE (VAE+PCA+One-Class
SVM), ambos utilizando a mesma metodologia experimental e configuração ensemble aplicada
nas seções anteriores. Esta análise permitirá identificar os ganhos efetivos proporcionados pela
substituição do VAE pelo HSAE como componente base na arquitetura ensemble, além de
avaliar os trade-offs entre complexidade computacional e desempenho quando comparado ao
modelo HSAE isolado da Tabela 2.

Tabela 4 – Comparação de desempenho dos Ensembles para o conjunto de dados CICIDS2017.

Ataque Modelo Precisão FPR FNR Recall F1-Score AUC

DDoS Ens.VAE 71% 30,72% 25,20% 75% 73% 0.81
Ens.HSAE 95% 4,53% 19,03% 81% 87% 0.87

DoS GoldenEye Ens.VAE 79% 21,31% 21,37% 79% 79% 0.86
Ens.HSAE 92% 8,52% 7,58% 92% 92% 0.93

DoS Hulk Ens.VAE 71% 31,28% 24,12% 76% 73% 0.81
Ens.HSAE 77% 28,37% 2,70% 97% 86% 0.95

DoS SlowHTTPTest Ens.VAE 89% 11,03% 13,03% 87% 88% 0.93
Ens.HSAE 97% 2,73% 3,55% 96% 97% 0.97

DoS Slowloris Ens.VAE 84% 11,79% 38,76% 61% 71% 0.78
Ens.HSAE 91% 9,55% 3,11% 97% 94% 0.94

Múltiplos Ataques Ens.VAE 87% 24,12% 31,17% 69% 77% 0.79
Ens.HSAE 96% 19,00% 8,21% 92% 94% 0.94
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5.3.1 Análise Comparativa Com ataques individuais

Ataques DDoS: O Ensemble HSAE demonstrou superioridade expressiva sobre o Ensemble

VAE, alcançando 95% de precisão comparado aos 71% do ensemble VAE, representando um
ganho de 24 pontos percentuais. A taxa de falsos positivos foi drasticamente reduzida de
30,72% (Ensemble VAE) para 4,53% (Ensemble HSAE), evidenciando controle superior de
alarmes indevidos - aspecto crítico para a viabilidade operacional. O recall aumentou de 75%
para 81%, enquanto o F1-score evoluiu de 73% para 87%. A métrica AUC progrediu de 0,81
para 0,87, confirmando maior capacidade discriminativa. Comparando o Ensemble HSAE com o
HSAE isolado (Tabela 2: 90% precisão, 0,82 AUC), o ensemble apresenta ganhos incrementais
mas consistentes: +5 pontos percentuais em precisão e melhoria substancial no controle de
falsos positivos (6,36% no isolado vs 4,53% no ensemble).

DoS GoldenEye: Neste cenário, ambos os ensembles demonstraram desempenho robusto,
com o Ensemble HSAE alcançando 92% de precisão contra 79% do Ensemble VAE. A FPR
foi reduzida de 21,31% para 8,52%, mantendo excelente controle de falsos positivos. O recall

permaneceu elevado em 92%, superando os 79% do ensemble VAE, enquanto o F1-score

atingiu 92% comparado aos 79% do baseline ensemble. A AUC evoluiu de 0,86 para 0,93,
indicando capacidade discriminativa superior.

Em relação ao HSAE isolado (Tabela 2: 89% precisão, 0,92 AUC), o Ensemble HSAE
apresenta melhorias sutis, mas consistentes: +3 pontos percentuais em precisão e +0,01 na
AUC, evidenciando robustez incremental.

DoS Hulk: O Ensemble HSAE demonstrou 77% de precisão, superando os 71% do Ensemble

VAE, com FPR controlada em 28,37% versus 31,28% do ensemble VAE. O destaque está no
recall excepcional de 97% comparado aos 76% do ensemble VAE, resultando em F1-score

superior (86% vs 73%). A AUC atingiu 0,95, superando significativamente os 0,81 do ensemble

VAE.
Comparando o Ensemble HSAE com o HSAE isolado (Tabela 2: 89% precisão, 73% recall,

0,94 AUC), observa-se um trade-off estratégico interessante: redução na precisão (89% →
77%, -12 pontos percentuais) em contrapartida a um ganho substancial no recall (73% →
97%, +24 pontos percentuais). Este comportamento sugere que o ensemble está adotando
uma postura mais conservadora na detecção, priorizando a captura de ataques verdadeiros,
mesmo ao custo de gerar mais falsos positivos.

Esta estratégia é particularmente relevante para ataques DoS Hulk, que são caracterizados
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por seu volume elevado e potencial destrutivo significativo. Neste contexto, o custo de não
detectar um ataque real (falso negativo) supera o custo operacional de investigar alarmes
adicionais (falsos positivos). O aumento no F1-score (80% → 86%) e na AUC (0,94 →
0,95) confirma que, apesar do trade-off precision/recall, o ensemble mantém desempenho
geral superior, indicando que a arquitetura consegue encontrar um ponto operacional mais
adequado para este tipo específico de ataque volumétrico.

DoS SlowHTTPTest: Representa o melhor desempenho absoluto do Ensemble HSAE, com
97% de precisão superando os 89% do Ensemble VAE. A FPR foi reduzida para 2,73%,
demonstrando controle excepcional de falsos positivos. O recall alcançou 96%, superior aos
87% do ensemble VAE, resultando em F1-score de 97% contra 88%. A AUC atingiu 0,97,
próxima ao valor ideal. Comparando o Ensemble HSAE com o HSAE isolado (Tabela 2: 90%
precisão, 0,94 AUC), o ensemble apresenta ganhos substanciais em todas as métricas: +7
pontos percentuais em precisão e +0,03 na AUC, evidenciando particular eficácia da arquitetura
ensemble para este tipo de ataque.

DoS Slowloris: O Ensemble HSAE alcançou 91% de precisão, superando significativamente
os 84% do Ensemble VAE. A FPR foi controlada em 9,55% versus 11,79% do ensemble VAE,
enquanto o recall atingiu impressionantes 97% comparado aos 61% do ensemble VAE. O
F1-score evoluiu para 94% contra 71%, e a AUC atingiu 0,94 versus 0,78.

Comparando o Ensemble HSAE com o HSAE isolado (Tabela 2: 76% precisão, 0,89 AUC),
o ensemble apresenta os maiores ganhos observados: +15 pontos percentuais em precisão e +8
pontos em recall, demonstrando particular adequação da arquitetura ensemble para ataques
mais difíceis de ser detectados.

5.3.2 Múltiplos Ataques: Robustez em Cenários Complexos

A avaliação com múltiplos ataques simultâneos revelou aspectos fundamentais sobre a ro-
bustez dos ensembles. O Ensemble HSAE demonstrou 96% de precisão contra 87% do Ensem-

ble VAE, evidenciando capacidade superior de manter performance em ambientes complexos.
A FPR foi reduzida de 24,12% para 19,00%, enquanto a FNR apresentou melhoria dramática
de 31,17% para 8,21%, indicando detecção superior de ataques verdadeiros. O recall atingiu
92% versus 69% do ensemble VAE, resultando em F1-score de 94% contra 77%. A AUC
evoluiu de 0,79 para 0,94, representando um salto qualitativo na capacidade discriminativa.

Comparando o Ensemble HSAE com o HSAE isolado em cenários de múltiplos ataques
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(Tabela 2: 80% precisão, 0,93 AUC), o ensemble apresenta ganhos expressivos: +16 pontos
percentuais em precisão e +1 ponto em recall. Esta melhoria sugere que a arquitetura ensemble

é particularmente eficaz em cenários heterogêneos, onde diferentes tipos de ataques coexistem.

5.3.3 Visualização Comparativa dos Resultados

Para complementar a análise quantitativa apresentada, a Figura 16 apresenta as curvas
ROC comparativas entre as abordagens avaliadas: Ensemble VAE e Ensemble HSAE. As curvas
ROC permitem uma visualização clara da capacidade discriminativa de cada modelo, eviden-
ciando tanto as melhorias na separação entre tráfego benigno e malicioso proporcionadas pela
arquitetura ensemble quanto a superioridade consistente sobre o ensemble VAE. As curvas
ilustram graficamente a relação entre True Positive Rate (TPR) e Taxa de False Positive Rate
(FPR) para cada tipo de ataque, permitindo identificar visualmente os cenários onde o en-

semble HSAE demonstra maior vantagem na capacidade de classificação. Esta representação
visual facilita a compreensão da eficácia discriminativa das diferentes abordagens e reforça as
conclusões da análise de AUC-ROC apresentada anteriormente, onde valores mais próximos
ao canto superior esquerdo indicam desempenho superior.

Os resultados evidenciam que a arquitetura Ensemble HSAE (HSAE+PCA+One-Class
SVM) consegue capturar aspectos complementares dos padrões anômalos que escapam tanto
ao Ensemble VAE quanto ao HSAE isolado. O componente PCA demonstra eficácia na re-
dução de ruído das representações latentes extraídas pelo HSAE, preservando informações
discriminativas relevantes. O One-Class SVM atua como um classificador de fronteira que
identifica outliers no espaço reduzido, proporcionando uma segunda linha de detecção base-
ada em princípios geométricos distintos do aprendizado de reconstrução.

A superioridade do Ensemble HSAE sobre o Ensemble VAE confirma que o modelo base
HSAE fornece representações latentes mais adequadas para a detecção de anomalias quando
combinado com técnicas complementares. A combinação ponderada 50/50 entre os scores do
HSAE e do One-Class SVM mostrou-se equilibrada, evitando dominância excessiva de qualquer
componente. Esta estratégia permite que o ensemble capture tanto anomalias baseadas em
erro de reconstrução quanto desvios geométricos da região de normalidade, resultando em
maior robustez frente à diversidade de padrões anômalos.

A arquitetura ensemble apresenta trade-offs importantes que devem ser considerados em
aplicações práticas. O ganho em precisão e robustez vem acompanhado de maior complexidade
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(a) Curva ROC para DDoS (b) Curva ROC para DoS Slowhttptest

(c) Curva ROC para DoS GoldenEye (d) Curva ROC para DoS Slowloris

(e) Curva ROC para DoS Hulk (f) Curva ROC para Múltiplos Ataques

Figura 16 – Comparação das curvas ROC para o modelos Ensemble HSAE e Ensemble VAE usando o dataset
CICIDS2017.
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computacional, envolvendo três estágios sequenciais: extração de features pelo HSAE, redução
dimensional via PCA, e classificação pelo One-Class SVM. Esta complexidade adicional resulta
em maior latência de detecção e consumo de recursos computacionais.

Para ataques como DoS SlowHTTPTest e Slowloris, onde o ensemble demonstra ganhos
substanciais (7-15 pontos percentuais em precisão), a complexidade adicional se justifica pela
melhoria significativa na qualidade da detecção. Entretanto, para ataques como DoS Hulk,
onde o trade-off precision/recall é menos favorável, a escolha entre modelo isolado e ensemble

deve considerar os requisitos específicos da aplicação.

5.3.4 Síntese Estratégica

Os resultados do Ensemble HSAE (HSAE+PCA+One-Class SVM) estabelecem uma alter-
nativa robusta que supera tanto o Ensemble VAE quanto oferece melhorias significativas sobre
o HSAE isolado em cenários que demandam alta precisão e baixas taxas de falsos positivos.
A arquitetura demonstra particular eficácia em:

1. Ataques de baixa intensidade (Slowloris): onde o ensemble HSAE apresenta ganhos
de +15% em precisão sobre o modelo isolado e +7% sobre o ensemble VAE

2. Cenários de múltiplos ataques: onde a diversidade de padrões maliciosos exige abor-
dagens mais sofisticadas, com o ensemble HSAE superando o ensemble VAE em 9 pontos
percentuais de precisão

3. Ambientes críticos: onde falsos positivos representam custos operacionais elevados,
com redução consistente da FPR em todos os tipos de ataque

A escolha entre HSAE isolado, Ensemble HSAE e Ensemble VAE deve ser orientada pelos
requisitos específicos do ambiente de implantação, balanceando precisão desejada, recursos
computacionais disponíveis e tolerância à latência de detecção. Os resultados sugerem que
o Ensemble HSAE representa uma evolução natural tanto do HSAE isolado quanto uma
alternativa superior ao ensemble VAE para aplicações que priorizem máxima precisão e robustez
em detrimento da simplicidade computacional.
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5.4 COMPARAÇÃO DE DESEMPENHO ENTRE OS ENSEMBLES NO CONJUNTO DE
DADOS TON_IOT.

A avaliação da arquitetura ensemble no dataset ToN_IoT oferece insights complementares
aos resultados obtidos no CICIDS2017, permitindo validar a robustez da abordagem proposta
em contextos de IoT e ambientes industriais. O ToN_IoT apresenta características distintas
de tráfego, incluindo padrões de comunicação específicos de dispositivos IoT e vetores de
ataque adaptados a esses ambientes, tornando essencial avaliar como as diferentes arquiteturas
ensemble se comportam neste cenário operacional específico.

A Tabela 5 apresenta os resultados comparativos entre Ensemble HSAE (HSAE+PCA+One-
Class SVM) e Ensemble VAE (VAE+PCA+One-Class SVM) no dataset ToN_IoT, utilizando
a mesma metodologia experimental estabelecida nas seções anteriores. Esta análise permitirá
identificar se os ganhos observados no CICIDS2017 se mantêm em ambientes IoT, além de ava-
liar a adaptabilidade da arquitetura ensemble a diferentes perfis de tráfego e tipos de ataques.
As curvas ROC correspondentes são apresentadas na Figura 8, proporcionando visualização
detalhada do comportamento discriminativo de cada arquitetura ensemble nos diferentes tipos
de ataque.

Tabela 5 – Comparação de desempenho dos Ensembles para o conjunto de dados ToN_IoT.

Ataque Modelo Precisão FPR FNR Recall F1-Score AUC

DDoS Ens.VAE 75% 25,34% 24,80% 75% 75% 0.83
Ens.HSAE 97% 2,15% 26,28% 74% 84% 0.82

DoS Ens.VAE 78% 18,82% 32,49% 68% 73% 0.82
Ens.HSAE 95% 4,45% 10,10% 90% 93% 0.93

Ransomware Ens.VAE 63% 42,35% 28,73% 71% 67% 0.71
Ens.HSAE 94% 5,82% 5,40% 95% 94% 0.96

Múltiplos Ataques Ens.VAE 77% 41,65% 39,61% 70% 74% 0.70
Ens.HSAE 96% 7,38% 5,15% 95% 96% 0.95

5.4.1 Análise Comparativa Detalhada

Ataques DDoS: O Ensemble HSAE demonstrou precisão excepcional de 97% comparado
aos 75% do Ensemble VAE, representando um ganho substancial de 22 pontos percentuais.
A taxa de falsos positivos foi drasticamente reduzida de 25,34% para 2,15%, evidenciando



95

controle superior de alarmes indevidos - aspecto crítico para ambientes IoT onde recursos
computacionais são limitados. Entretanto, observa-se um trade-off no recall, que foi de 74%
para o Ensemble HSAE versus 75% para o Ensemble VAE, uma diferença marginal de 1
ponto percentual. O F1-score do Ensemble HSAE atingiu 84% contra 75% do Ensemble VAE,
enquanto a AUC foi ligeiramente inferior (0,82 vs 0,83).

Comparando o Ensemble HSAE com o HSAE isolado (Tabela 3: 85% precisão, 84% recall,
0,91 AUC), o ensemble apresenta ganhos significativos em precisão (+12 pontos percentuais)
em contrapartida a uma redução no recall (84% → 74%, -10 pontos percentuais). A AUC
apresenta redução de 0,91 para 0,82, sugerindo que para ataques DDoS no contexto IoT, o
ensemble prioriza precisão extremamente alta em detrimento da sensibilidade geral.

DoS: O Ensemble HSAE alcançou 95% de precisão, superando significativamente os 78%
do Ensemble VAE. A FPR foi reduzida de 18,82% para 4,45%, demonstrando controle ex-
cepcional de falsos positivos. O recall atingiu 90% versus 68% do Ensemble VAE, resultando
em F1-score superior (93% vs 73%). A AUC evoluiu de 0,82 para 0,93, indicando capacidade
discriminativa substancialmente superior.

Comparando o Ensemble HSAE com o HSAE isolado (Tabela 3: 91% precisão, 77% recall,
0,77 AUC), o ensemble apresenta melhorias consistentes em todas as métricas: +4 pontos
percentuais em precisão, +13 pontos em recall, +8 pontos em F1-score e +0,16 na AUC.
Este comportamento sugere que a arquitetura ensemble é particularmente eficaz para ataques
DoS em ambientes IoT.

Ransomware: Representa o melhor desempenho absoluto do Ensemble HSAE, com 94% de
precisão superando dramaticamente os 63% do Ensemble VAE. A FPR foi reduzida de 42,35%
para 5,82%, uma melhoria excepcional de 36,53 pontos percentuais. O recall alcançou 95%
versus 71% do Ensemble VAE, resultando em F1-score de 94% contra 67%. A AUC atingiu
0,96 comparado aos 0,71 do Ensemble VAE, representando um salto qualitativo na capacidade
discriminativa.

Comparando o Ensemble HSAE com o HSAE isolado (Tabela 3: 73% precisão, 70% recall,
0,68 AUC), o ensemble apresenta os maiores ganhos observados no dataset ToN_IoT: +21
pontos percentuais em precisão, +25 pontos em recall, +24 pontos em F1-score e +0,28 na
AUC. Esta melhoria substancial indica que a arquitetura ensemble é especialmente adequada
para detecção de ransomware em ambientes IoT, onde este tipo de ataque representa uma
ameaça crítica. Múltiplos Ataques: Robustez em Ambientes IoT Complexos A avaliação com
múltiplos ataques no contexto IoT revelou aspectos fundamentais sobre a adaptabilidade dos
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ensembles. O Ensemble HSAE demonstrou 96% de precisão contra 77% do Ensemble VAE,
evidenciando capacidade superior de manter performance em ambientes IoT heterogêneos. A
FPR foi reduzida drasticamente de 41,65% para 7,38%, enquanto a FNR apresentou melhoria
de 39,61% para 5,15%. O recall atingiu 95% versus 70% do Ensemble VAE, resultando em
F1-score de 96% contra 74%. A AUC evoluiu de 0,70 para 0,95, representando um salto
qualitativo excepcional na capacidade discriminativa.

5.4.2 Múltiplos Ataques: Robustez em Cenários Complexos

Comparando o Ensemble HSAE com o HSAE isolado em cenários de múltiplos ataques
(Tabela 3: 94% precisão, 90% recall, 0,89 AUC), o ensemble apresenta ganhos consistentes:
+2 pontos percentuais em precisão, +5 pontos em recall e +0,06 na AUC. Embora os ganhos
sejam mais modestos que em outros tipos de ataque, demonstram robustez incremental em
cenários complexos.

Análise Contextualizada para Ambientes IoT Os resultados no dataset ToN_IoT revelam
características distintas em relação ao CICIDS2017, particularmente na magnitude dos ga-
nhos proporcionados pelo ensemble. Para ransomware, onde o ensemble demonstra melhorias
de mais de 20 pontos percentuais em múltiplas métricas, observa-se que a arquitetura en-

semble consegue capturar padrões específicos deste tipo de ataque que são particularmente
desafiadores no contexto IoT.

A redução consistente da FPR em todos os tipos de ataque (2,15% a 7,38% para o
Ensemble HSAE versus 18,82% a 42,35% para o Ensemble VAE) é especialmente relevante
em ambientes IoT, onde recursos computacionais limitados tornam custosa a investigação de
falsos positivos. Esta característica posiciona o Ensemble HSAE como uma solução adequada
para implantação em dispositivos com restrições de processamento.

5.4.3 Visualização Comparativa dos Resultados

A análise das curvas ROC na Figura 17 corrobora estes achados, evidenciando a superiori-
dade discriminativa do Ensemble HSAE, particularmente evidente nos ataques de ransomware

e cenários de múltiplos ataques, onde as curvas demonstram maior área sob a curva e melhor
separação entre classes.
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(a) Curva ROC para DDoS (b) Curva ROC para DoS

(c) Curva ROC para Ramsoware (d) Curva ROC para Múltiplos Ataques

Figura 17 – Comparação das curvas ROC para os Ensembles usando o dataset ToN_IoT.

5.4.4 Síntese Estratégica para IoT

Os resultados do Ensemble HSAE no dataset ToN_IoT estabelecem sua adequação supe-
rior para ambientes IoT, superando consistentemente o Ensemble VAE em todas as métricas
avaliadas. A arquitetura demonstra particular eficácia em:

Detecção de ransomware: onde apresenta os maiores ganhos absolutos (+21% precisão,
+25% recall sobre o modelo isolado), controle de falsos positivos: com FPR consistentemente
baixa (2,15% a 7,38%), fundamental para ambientes com recursos limitados e robustez em
múltiplos ataques: mantendo precisão >96% mesmo em cenários complexos

A escolha do Ensemble HSAE para ambientes IoT deve considerar os ganhos substantivos
em precisão e controle de falsos positivos, que compensam a complexidade computacional
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adicional em aplicações críticas onde a detecção confiável de ameaças é prioritária.

5.5 EFICIÊNCIA DE RECURSOS COMPUTACIONAIS E CONSUMO DE MEMÓRIA

Para a viabilidade de sistemas de detecção de intrusão em ambientes reais, especialmente
sob restrições de recursos, é necessário avaliarmos a eficiência de memória dos modelos de
sistema de detecção de anomalias. Para isso, comparamos nosso ensemble HSAE com o fra-

mework proposto por (SOLTANI et al., 2023), adotando a mesma métrica utilizada pelos autores
— o tamanho do modelo carregado em memória ("model size (in memory)"), que considera
exclusivamente os parâmetros do modelo, desconsiderando dados de entrada, bibliotecas ex-
ternas e overhead do sistema.

O framework proposto em (SOLTANI et al., 2023) foi selecionado como base de compara-
ção nesta análise por representar a única obra, dentre os seis estudos analisados na seção de
trabalhos relacionados, que explicitamente reporta o consumo de memória do modelo como
uma de suas métricas avaliativas. Essa escolha justifica-se não apenas pela relevância do fra-

mework proposto pelos autores no contexto de detecção de ataques zero-day, mas também
pela possibilidade de estabelecer uma comparação objetiva com base no tamanho do mo-
delo em memória ("model size"), conforme definido no próprio artigo. Assim, a comparação
realizada nesta seção visa destacar, de forma justa e técnica, os ganhos obtidos em termos
de eficiência computacional pelo ensemble da proposta HSAE em relação aos métodos de
referência.

Embora a métrica de medição seja equivalente, é importante ressaltar uma diferença fun-
damental entre as abordagens. Enquanto os autores de (SOLTANI et al., 2023) utilizaram o fra-

mework Deep Intrusion Detection (DID), que converte dados de rede brutos (formato Packet
Capture (PCAP)) em vetores de 20.000 dimensões (200 bytes × 100 pacotes), nossa aborda-
gem opera diretamente sobre dados tabulares (formato Comma-Separated Values (CSV)) com
78 features originais do dataset CICIDS2017. O objetivo é quantificar o impacto estrutural e
arquitetural de cada método sobre o consumo de memória do modelo.

5.5.1 Resultados Comparativos e Análise Arquitetural

Na Fase 1 do framework adaptativo proposto por Soltani et al. (2023) — a etapa de
open set recognition, responsável por detectar amostras desconhecidas enquanto identifica
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corretamente as conhecidas — os autores comparam cinco abordagens para medir desempenho
e custo computacional, buscando o melhor equilíbrio entre precisão e viabilidade prática. A
Tabela 6 sintetiza o tamanho do modelo na memória de cada método considerado por Soltani
et al. (2023) e serve aqui como base para a nossa comparação: OpenMax (BENDALE; BOULT,
2016), 1,5 GB, baseado em CNN com recalibração por distribuições de Weibull sobre o vetor
de ativações médias; Deep Open Classification (DOC) (SHU; XU; LIU, 2017), 1,5 GB, que
substitui softmax por camadas 1-vs-rest com decisão por limiar; Classification-Reconstruction
Learning for Open-Set Recognition (CROSR) (YOSHIHASHI et al., 2019), 4,5 GB, que concatena
a representação Deep Hierarchical Representation Network (DHRNet) à do classificador e
aplica OpenMax sobre essa concatenação, envolvendo treino em duas etapas e as propostas
dos próprios autores, DOC++ e AutoSVM (SOLTANI et al., 2023), com 1,5 GB e 4,5 GB,
respectivamente. No DOC++ os autores ensinam explicitamente, ainda no treino, a existência
de classes desconhecidas por meio de amostras suplementares, mantendo decisão por limiar,
enquanto no AutoSVM um Stacked Autoencoder reduz a dimensionalidade e quatro One-Class
SVMs (um por classe conhecida) fazem a rejeição do que não pertence a nenhuma classe. Nos
resultados reportados, o DOC++ aparece como o método de melhor desempenho na Fase 1.

Tabela 6 – Comparação de Consumo de Memória por Componente

Framework Método Tamanho do Modelo Componentes Princi-
pais

Bendale & Boult (2016) OpenMax 1.5 GB CNN + Weibull distri-
butions

Shu et al. (2017) DOC 1.5 GB CNN + 1-vs-rest layers
Yoshihashi et al. (2019) CROSR 4.5 GB DHRNet + Classifica-

dor CNN com Open-
Max aplicado na conca-
tenação das representa-
ções

Soltani et al. (2023) DOC++ 1.5 GB CNN + 1-vs-rest layers
Soltani et al. (2023) AutoSVM 4.5 GB Stacked AE + 4xOne-

Class SVMs
Ensemble HSAE Pipeline Integrado 7,89 MB HSAE + PCA + One-

Class SVM

Com essa linha de base, comparamos diretamente o nosso ensemble HSAE ao DOC++,
que apresentou o melhor desempenho. O tamanho do Ensemble HSAE medido em execução
é de 7,89 MB (CICIDS2017 em cenário multiclasse de ataques), o que permite comparação
direta com o cenário multiclasse do DOC++. A diferença de consumo de memória, 99,8%
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menor em relação a CROSR/AutoSVM e 99,5% menor em relação ao próprio DOC++, de-
corre de quatro fatores arquiteturais do HSAE: (i) entrada e dimensionalidade otimizadas,
pois enquanto Soltani et al. (2023) utilizam o DID com 20.000 dimensões extraídas de PCAP,
operamos diretamente sobre 78 atributos estatísticos do CSV do CICIDS2017, reduzindo a
carga de entrada; (ii) arquitetura híbrida unificada, integrando reconstrução e classificação em
uma única estrutura com função de perda combinada, ao passo que arranjos como o CROSR
exigem componentes adicionais (DHRNet + classificador + OpenMax); (iii) redução dimen-
sional via PCA com 95% de variância antes do One-Class SVM, diminuindo a complexidade
do classificador frente a alternativas baseadas em múltiplos SVMs de alta dimensionalidade;
e (iv) eliminação de redundâncias, já que, enquanto Soltani et al. (2023) implementam cinco
métodos distintos para a Fase 1, o Ensemble HSAE adota um pipeline único e enxuto, com
menos parâmetros e manutenção simplificada.

5.5.2 Consumo Total de Sistema e Implicações Práticas

Embora as abordagens utilizem entradas distintas (PCAP vs. CSV), consideramos que a
métrica de comparação escolhida — o consumo do modelo em memória — pode oferecer uma
base comparativa útil. A escolha por dados tabulares busca equilibrar eficiência computacional
com aplicabilidade prática, procurando manter a capacidade de detecção dentro de limitações
aceitáveis.

Adicionalmente à medição do ensemble HSAE isolado, monitoramos também o consumo
total de memória do processo Python, utilizando o indicador Resident Set Size (RSS) durante
a execução do teste. Esse valor representa a quantidade total de memória residente ocupada
em Random Access Memory (RAM) durante a execução do sistema completo, incluindo os
dados carregados em memória, as bibliotecas Python e o overhead do interpretador. O valor
registrado foi de 3.547,51 MB, que corresponde ao pico de uso durante a inferência sobre
múltiplos tipos de ataques. Ainda assim, esse total completo permanece aproximadamente
27% inferior ao tamanho isolado do modelo AutoSVM reportado por e (SOLTANI et al., 2023),
que é de 4.500 MB apenas para os parâmetros dos modelos, sem considerar o overhead

adicional do sistema.
A eficiência de memória obtida pelo ensemble HSAE apresenta implicações práticas signi-

ficativas. O modelo de 7,89 MB permite deployment em dispositivos com recursos limitados,
incluindo edge computing e IoT gateways, contextos onde os 4,5 GB do framework completo
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de Soltani seria proibitivo. O menor consumo de memória traduz-se diretamente em redução
de custos de infraestrutura em ambientes cloud e permite execução simultânea de múltiplas
instâncias do modelo em um único nó, aumentando a vazão do sistema.

Os resultados demonstram que o ensemble HSAE alcança eficiência de memória superior
através de design arquitetural otimizado, mantendo performance de detecção competitiva. A
redução de 99,8% no consumo de memória, combinada com a eliminação da necessidade de
intervenção manual (clustering e rotulagem por especialistas), posiciona o ensemble HSAE
como uma alternativa mais prática e escalável para deployment em ambientes de produção.
Esse resultado reforça que, mesmo considerando todos os fatores do ambiente de execução
real, o ensemble da proposta HSAE apresenta uma eficiência global superior, questionando
a necessidade de frameworks multi-fase complexos para problemas de detecção de anomalias
em redes.
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6 CONCLUSÃO E SUGESTÕES

6.1 CONCLUSÃO

Este trabalho apresentou o HSAE, uma arquitetura híbrida não supervisionada para de-
tecção de ataques Zero-Day, juntamente com sua extensão baseada em ensemble. A solução
proposta combina o erro de reconstrução com mecanismos de pontuação híbrida e limiares
de decisão dinâmicos otimizados via Equal Error Rate. Esta abordagem demonstrou superi-
oridade em relação ao modelo de referência baseado em Variational Autoencoder (VAE). A
arquitetura ensemble, que integra HSAE, PCA e One-Class SVM, apresentou robustez e capa-
cidade de generalização em diferentes ambientes de rede. O método manteve altos níveis de
precisão e baixas taxas de falsos positivos, o que demonstra sua eficácia na identificação de
tráfego anômalo mesmo na ausência de dados maliciosos previamente rotulados no processo
de treinamento.

A avaliação empírica nos conjuntos de dados CICIDS2017 e ToN_IoT confirmou a supe-
rioridade de ambas as propostas em métricas-chave. O modelo ensemble apresentou um bom
desempenho, alcançando 94% de precisão e 96% de AUC na detecção de Ransomware no con-
junto ToN_IoT. Em cenários de múltiplos ataques, a precisão atingiu 96%. Esses resultados
evidenciam a eficácia das inovações introduzidas, como o sistema de pontuação híbrida e o
limiar dinâmico, além de sua capacidade de endereçar limitações documentadas na literatura.

A redução na taxa de falsos positivos ocorreu em quase todos os cenários testados. O
desempenho consistente acima de 90% na maioria das configurações valida a robustez da
arquitetura em ambientes heterogêneos. Estes incluem tanto redes corporativas tradicionais
quanto ambientes modernos de IoT e IIoT. Adicionalmente, o trabalho introduz uma meto-
dologia de pré-processamento transparente que contribui para a mitigação de vieses e falhas
comuns em experimentos com aprendizado não supervisionado. Essa característica, aliada à le-
veza computacional da arquitetura, torna o HSAE uma alternativa promissora para aplicações
em tempo real e com restrições de recursos.

O sistema desenvolvido pode ser aplicado em soluções de segurança de rede para a detecção
proativa de uma vasta gama de ameaças. Quando integrado com recursos computacionais
adequados, ele aprimora as operações de segurança como ferramenta complementar para
monitoramento e resposta a incidentes. Sua eficiência o torna particularmente valioso para
dispositivos com recursos limitados. É fundamental considerar a escolha entre o modelo HSAE
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isolado e sua versão ensemble para garantir uma implementação confiável. Essa decisão permite
que a solução se ajuste aos requisitos específicos de latência, precisão e custo computacional
de diferentes cenários operacionais. Os códigos dos modelos, contendo as principais funções,
está disponível na plataforma Github1.

6.2 CONTRIBUIÇÕES DA PESQUISA

Abaixo foram listadas as contribuições realizadas por esta pesquisa:

• Proposição de uma abordagem híbrida não supervisionada baseada em autoencoder,
fundamentada na detecção comportamental e na combinação multi-critérios de erro de
reconstrução e pontuação direta de anomalias, com uso de função de perda híbrida e
score ponderado, superando limitações de métodos tradicionais baseados em assinaturas;

• Desenvolvimento de uma arquitetura ensemble sequencial leve e adequada a dispositivos
com restrição de recursos, integrando aprendizado de representação, redução dimensional
e modelagem de fronteiras de normalidade, com o objetivo de aprimorar a detecção de
ataques zero-day em ambientes IoT e IIoT.

6.3 TRABALHOS FUTUROS

Para investigações futuras, a avaliação do desempenho do HSAE em ambientes reais com
restrições computacionais pode ser expandida para diferentes contextos operacionais, como
gateways IoT, sensores industriais e dispositivos embarcados, sendo possível implementar mó-
dulos de detecção em tempo real acoplados ao HSAE com estudos aprofundados de latência e
resposta em cenários operacionais diversos. Expansões do modelo para novos conjuntos de da-
dos também podem ser propostas, abrangendo redes IoT médicas (Internet of Medical Things
(IoMT)), sistemas veiculares (Vehicular Ad-hoc Network (VANETs)) e ambientes de cidades
inteligentes, permitindo a integração de mecanismos automáticos de resposta que incluem
aplicação de políticas de mitigação, geração de alertas ou isolamento de nós comprometidos.
Adaptações do modelo para cenários de aprendizado contínuo podem ser desenvolvidas, possi-
bilitando atualizações incrementais e maior resiliência frente a padrões de tráfego em constante
1 Disponível em: <https://github.com/fabianoinfosec/Dissertation_Codes>

https://github.com/fabianoinfosec/Dissertation_Codes
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evolução, o que representa um avanço significativo na capacidade de detecção e resposta a
ameaças em tempo real.
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