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“Security is not a product, but a process.”

— Bruce Schneier



RESUMO

A deteccdo de ataques desconhecidos ou zero-day representa um dos principais desafios
da seguranca cibernética moderna, especialmente em ambientes com recursos computacionais
limitados como redes loT. Os sistemas tradicionais baseados em assinaturas s3o ineficazes
contra ameacas desconhecidas, enquanto abordagens existentes de aprendizado de maquina
apresentam limitacoes como dependéncia de parametros estaticos, complexidade arquitetural
excessiva e necessidade de ajustes manuais constantes. Este trabalho propée o HSAE (Hybrid
Scoring Autoencoder), uma arquitetura hibrida ndo supervisionada que combina um autoen-
coder profundo com uma saida auxiliar de pontuacao de anomalia, implementando deteccdo
multi-critério através de funcao de perda hibrida e threshold dinamico otimizado via Equal Er-
ror Rate (EER). Adicionalmente, desenvolve-se uma extensdo ensemble que integra o HSAE,
com PCA (Principal Component Analysis) e One-Class SVM (Support Vector Machine) para
aumentar a robustez da deteccdo. A metodologia empregada baseia-se no treinamento ex-
clusivo com dados benignos, permitindo identificacdo de padroes anémalos sem necessidade
de exemplos de ataques previamente rotulados. A validacdo experimental foi conduzida nos
conjuntos de dados CICIDS2017 e ToN_IloT, comparando o desempenho com o Variational
Autoencoder (VAE) como modelo de referéncia. Os resultados demonstram superioridade con-
sistente do HSAE, com o ensemble alcancando 94% de precisdo e 96% de AUC (Area Under
the Curve) na deteccdo de ransomware, e 96% de precisdo em cenarios de miltiplos ataques
simultaneos. Destaca-se a reducdo de 99,8% no consumo de meméria em relacdo a frameworks
existentes, viabilizando implementacdo em dispositivos com recursos restritos. As contribui-
¢des incluem uma arquitetura adaptativa que elimina dependéncia de configuracGes manuais,
metodologia transparente de pré-processamento que mitiga vieses experimentais, e validacao
abrangente com miltiplas métricas de desempenho. O trabalho estabelece uma solucao pratica
e escalavel para deteccao proativa de ameacas em ambientes dindmicos, equilibrando eficiéncia

computacional com alta acuracia na identificacdo de ataques desconhecidos.

Palavras-chaves: Deteccao de anomalias, Ataques zero-day, Autoencoder hibrido, Aprendi-

zado ndo supervisionado, Seguranca em loT, Ensemble learning.



ABSTRACT

Detection of unknown or zero-day attacks represents one of the main challenges in mod-
ern cybersecurity, especially in resource-constrained environments such as loT networks. Tradi-
tional signature-based systems are ineffective against unknown threats, while existing machine
learning approaches present limitations such as dependence on static parameters, excessive
architectural complexity, and the need for constant manual adjustments. This work proposes
the HSAE (Hybrid Scoring Autoencoder), an unsupervised hybrid architecture that combines
a deep autoencoder with an auxiliary anomaly scoring output, implementing multi-criteria
detection through a hybrid loss function and dynamic threshold optimized via Equal Error
Rate (EER). Additionally, an ensemble extension is developed that integrates HSAE, PCA
(Principal Component Analysis), and One-Class SVM (Support Vector Machine) to enhance
detection robustness. The methodology employed is based on exclusive training with benign
data, enabling identification of anomalous patterns without requiring previously labeled attack
examples. Experimental validation was conducted on the CICIDS2017 and ToN_loT datasets,
comparing performance with the Variational Autoencoder (VAE) as a reference model. Results
demonstrate consistent superiority of HSAE, with the ensemble achieving 94% precision and
96% AUC in ransomware detection, and 96% precision in multiple simultaneous attack sce-
narios. Notably, a 99.8% reduction in memory consumption compared to existing frameworks
was achieved, enabling implementation in resource-constrained devices. Contributions include
an adaptive architecture that eliminates dependence on manual configurations, a transparent
preprocessing methodology that mitigates experimental biases, and comprehensive validation
with multiple performance metrics. This work establishes a practical and scalable solution for
proactive threat detection in dynamic environments, balancing computational efficiency with

high accuracy in identifying unknown attacks.

Keywords: Anomaly detection, Zero-day attacks, Hybrid autoencoder, Unsupervised learning,

loT security, Ensemble learning.
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1 INTRODUCAO

1.1 CONTEXTO

A evolucdo das ameacas cibernéticas revela um crescimento preocupante tanto em volume
quanto em sofisticacdo. Um exemplo emblemético recente é o ransomware Clop, que em 2023

explorou vulnerabilidades do sistema MOVEit Transfer, afetando mais de 8 mil organizacdes

globalmente, segundo o relatério da [Agéncia de Seguranca Cibernética e Infraestrutura dos|

EUA (CISA)| citado pelo Verizon [Data Breach Investigations Report (DBIR)| 2024 (VERIZON,

2024). Esse tipo de ameaca, classificado como ransomware, um malware que sequestra os
dados por meio de criptografia e exige pagamento para devolucdo, continua sendo um dos
principais vetores de ataque, estando presente em 23% das violacGes, enquanto as técnicas
de extorsdo pura ja representam 9%, totalizando 32% das brechas associadas a esse tipo de
ameaca. Paralelamente, ataques tradicionais como o phishing, pratica fraudulenta que visa
enganar o usuario para obter dados sensiveis, mantém sua relevancia, sendo responsaveis por
uma parte significativa das violacGes motivadas financeiramente. O relatério ainda destaca
que o tempo médio para que um usudrio clique em um link malicioso apés abrir o e-mail de
phishing é de apenas 21 segundos, seguido por 28 segundos para o fornecimento de dados,
evidenciando a urgéncia de medidas preventivas (VERIZON, 2024).

A crescente conectividade no ambiente digital contemporaneo, impulsionada pela expansao

da Internet das Coisas (Internet of Things (loT)]), tem ampliado significativamente a superficie

de ataque em razao do nimero cada vez maior de dispositivos conectados. Muitos desses
dispositivos operam com recursos computacionais limitados, carecem de padronizacao em
protocolos de seguranca e permanecem vulnerdveis a ameacas como spoofing (falsificacdo
de identidade), jamming (interferéncia no canal de comunicacdo) e ataques distribuidos de
negacdo de servico (DDoS), representando desafios criticos para a seguranca da informac3o
nesse ecossistema (LONE; MUSTAJAB; ALAM, 2023)).

Neste trabalho, quando se fala em ‘ambientes com recursos computacionais limitados'
refere-se a dispositivos intermediarios, como roteadores de borda e gateways del[loT] que pos-
suem capacidade restrita de processamento e memoria. Estes equipamentos sdo responsaveis
por monitorar o trafego de uma rede composta por diversos dispositivos finais (como sensores
inteligentes e outros equipamentos , mas nao dispoem da alta capacidade computacional

de servidores ou clusters de alto desempenho, tornando inviavel a utilizacao de sistemas de
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deteccdo mais pesados. A Figura [I] ilustra o cendrio de aplicacdo descrito, posicionando o

sistema de deteccao no gateway de borda.

Figura 1 — Cenario de Aplicacdo: Ambientes com Recursos Computacionais Limitados

Zona de Detecgdo de Ataques

Dispositivos loT Finais Gateway/Roteador de Borda Equipamentos de Rede

Internet/Nuvem
ssamento de
Sensor Lampada Access Point Monitor Desempenho
Doméstico de Rede Clusters de Servidores
Recursos llimitados
Roteador loT Processamento Paralelo
Recursos Limitados
Fechadura Céamera IP

Digital Seguranca

Os sistemas de deteccdo convencionais se baseiam predominantemente em técnicas de re-

conhecimento de assinaturas digitais conhecidas, apresentando limitacdes operacionais criticas

(ABDULGANIYU; TCHAKOUCHT; SAHEED), 2023) (NEUPANE et al.,, 2022)). A deteccdo por assi-

natura demonstra limitacdes significativas contra ataques polimérficos, conforme evidenciado

por experimentos onde 63 produtos antivirus falharam na deteccao de variantes do Wanna-

Cry (CHEN; BRIDGES, [2017)). Adicionalmente, muitos sistemas baseados em machine learning

continuam falhando ao lidar com ameacas inéditas, pois operam sob a suposicdo de “mundo
fechado” — ou seja, assumem que os dados vistos no treinamento representam todas as pos-

siveis entradas —, o que os torna ineficazes diante de ataques ndo observados previamente e

conjuntos de dados desatualizados (AHMAD et al., 2023).

Entre as ameacas mais desafiadoras destacam-se os ataques zero-day, que exploram vul-

nerabilidades previamente desconhecidas pelos sistemas de defesa (BILGE; DUMITRAS, [2012)).

A literatura recente aponta que a deteccdo desses ataques permanece um dos grandes desa-

fios em aberto na pesquisa em seguranca cibernética (AHMAD et al., 2023) (LONE; MUSTAJAB;|

, . Estudos indicam que essas ameacas podem persistir por longos periodos antes
de serem descobertas, impactando significativamente a seguranca dos sistemas. Além disso,
a natureza imprevisivel dos ataques zero-day exige o desenvolvimento de técnicas capazes
de identificar padrdes anémalos, mesmo diante da auséncia de dados previamente rotulados,
ressaltando a importancia de abordagens voltadas a deteccdo em ambientes abertos e dina-

micos, isto é, contextos em que ha constante mudanca no trafego de rede, inclusao de novos

dispositivos e surgimento de vulnerabilidades desconhecidas (LONE; MUSTAJAB; ALAM, 2023).
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Diante da incapacidade dos métodos tradicionais em detectar essas ameacas desconheci-
das, a andlise comportamental automatizada emerge como uma abordagem promissora para
identificar ataques zero-day por meio de seus padroes anémalos. Tais técnicas visam detectar
desvios comportamentais no trafego de rede, mesmo em cenarios com dados ndo rotula-
dos ou auséncia de assinaturas conhecidas (LONE; MUSTAJAB; ALAM, [2023)). No contexto da
analise de trafego de rede, ataques zero-day sio detectaveis através de seus desvios compor-
tamentais, manifestando-se como padrdes anémalos em relacdo ao trafego legitimo (CHEN;

BRIDGES, [2017)). Os principais indicadores comportamentais incluem comunicacdo comando-

e-controle através de protocolos legitimos, estabelecimento de tineis [Domain Name System|

, padroes de trafego modificados, anomalias temporais e conexdes geograficas incomuns
(VISHWAKARMA; JAIN, 2020)).

O cenério evidencia uma transicdo em direcao a abordagens mais sofisticadas, destacando
a necessidade urgente de analise comportamental automatizada em tempo real e identificacdo
proativa de anomalias (ABDULGANIYU; TCHAKOUCHT; SAHEED, 2023) (VISHWAKARMA; JAIN,
2020)). Esta transicdo é coerente com tendéncias emergentes baseadas em reconhecimento de

padrdes andmalos e aprendizagem sem supervisdo (AHMAD et al,, 2023)).

1.2 PROBLEMA DE PESQUISA

A deteccao de ataques zero-day permanece um dos maiores desafios em seguranca ciber-
nética, especialmente em ecossistemas de alta complexidade e com recursos limitados, como a
Internet das Coisas . Conforme discutido, sistemas de deteccdo convencionais, baseados
em assinaturas, s3o ineficazes contra ameacas inéditas, e muitas abordagens de machine lear-
ning falham ao operar sob a premissa de "mundo fechado", tornando-se vulneraveis a ataques
nao vistos previamente.

Diante desse cenario, a literatura recente tem explorado diversas técnicas de aprendizado
profundo nao supervisionado. No entanto, uma analise critica dos trabalhos relacionados, apre-
sentada no Capitulo 3, revela limitacGes significativas que comprometem a aplicacio pratica
dessas solucdes em ambientes de producdo dindmicos. Estudos como o de (ZAVRAK; ISKE-
FIYELI, 2020) e (MBONA; ELOFF, [2022)) propdem modelos que dependem de pardmetros esta-
ticos, como limiares de decisdo fixos, o que os torna pouco adaptaveis as variacdes naturais
do trafego de rede.

Outros trabalhos, embora apresentem resultados promissores, introduzem uma complexi-
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dade arquitetdnica excessiva, resultando em alto custo computacional e laténcia, fatores que
inviabilizam sua implementacdo em dispositivos com recursos restritos (MINHAS et al., 2025)
(SOLTANI et al., 2023). Além disso, a necessidade de ajustes manuais constantes e a depen-
déncia de processos complexos de recalibragdo (ZAHOORA et al., 2022)) (SOLTANI et al., |2023)
reduzem a autonomia e a robustez dos sistemas em cenérios reais. Por fim, muitas propostas

sao validadas com um conjunto restrito de métricas, como o uso exclusivo da [Area Under|

ithe Curve (AUC)| o que oferece uma visdo limitada de seu desempenho operacional (ZAVRAK;

ISKEFIYELI, 2020)).

Essas lacunas, falta de adaptabilidade, dependéncia de parametros estaticos, complexidade
excessiva e avaliacdo incompleta evidenciam a necessidade de uma abordagem que seja, ao
mesmo tempo, precisa, eficiente em termos de recursos e capaz de se generalizar para dife-
rentes contextos de rede. Neste trabalho, o termo ataques zero-day refere-se especificamente
a ameacas que exploram vulnerabilidades desconhecidas no trafego de rede, com foco em
cenérios corporativos, loT e lloT. Incluem-se tanto ataques de negacdo de servico (DoS/D-
DoS) quanto comunicacdes associadas a malwares como ransomware, desde que apresentem
padrées comportamentais andmalos detectaveis em nivel de fluxo de rede. Assim, emerge o
seguinte problema de pesquisa:

Como desenvolver uma abordagem de deteccdo de anomalias ndo supervisionada eficiente
e precisa para identificar ataques zero-day em dispositivos com recursos limitados, que seja

generalizavel para diferentes ambientes de rede?

1.3 OBJETIVO

Este trabalho visa desenvolver uma abordagem de deteccao de anomalias nao supervisio-
nado que identifique ataques zero-day em redes com alta precisdo e baixo custo computacional
em diferentes tipos de ambiente de rede.

Para isso, foram estabelecidos os seguintes objetivos especificos:

» Desenvolver uma arquitetura de deteccao de anomalias baseado em autoencoder com

capacidade de identificacao de ataques zero-day.

» Analisar o impacto de diferentes técnicas de pré-processamento e selecdo de atributos

no desempenho da abordagem proposta.
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» Investigar a eficacia da integracdo de técnicas de reducao de dimensionalidade e de

classificacdo nao supervisionada na melhoria da deteccao de anomalias.

» Avaliar a robustez e desempenho da abordagem proposta em diferentes cenarios, utili-

zando conjuntos de dados com perfis distintos de trafego de rede.

1.4 METODOLOGIA

O desenvolvimento de uma solucdo eficaz para deteccdo de ataques zero-day demanda
uma abordagem metodolégica que combine pesquisa tedrica, desenvolvimento de arquiteturas
inovadoras e validacao experimental rigorosa. Esta metodologia se propde a guiar esse processo
de forma sistematica e abrangente.

O primeiro passo consiste em realizar uma revisao sistematica do estado da arte no campo
da deteccdo proativa de ameacas. Isso envolve a exploracao de literatura académica, estudos
de caso, trabalhos relacionados e padronizacoes reconhecidas. Serd conduzido um mapea-
mento das principais abordagens existentes, identificando suas contribuicoes e limitacoes. A
compreens3o dos desafios enfrentados e das praticas existentes é essencial para orientar o
desenvolvimento de solucdes mais eficazes e estabelecer o contexto cientifico da pesquisa.

Com base na revisao tedrica, o proximo passo é a definicdo dos requisitos técnicos e
funcionais que orientardo o desenvolvimento das solucdes. Serdo estabelecidas as restricGes
operacionais e os parametros de desempenho adequados ao contexto de aplicacao. Além disso,
é essencial definir os critérios de avaliacdo e selecionar os elementos de referéncia que per-
mitirdo a comparacdo objetiva com abordagens existentes. Os pardmetros definidos devem
ser suficientemente precisos para orientar o desenvolvimento, mas flexiveis o bastante para
contemplar diferentes cenérios de validacao.

Isso inclui o desenvolvimento e especificacdo detalhados das solucGes propostas para o pro-
blema investigado. Por meio desta especificacdo sera estabelecido o escopo de funcionamento,
as capacidades e limitacGes de cada abordagem, bem como os mecanismos de adaptacdo
para diferentes contextos de aplicacdo. O desenvolvimento seguird principios de eficiéncia e
praticidade, considerando as restricGes tipicas dos ambientes de aplicacao.

Uma vez estabelecida a especificacdo que norteia as propostas, é possivel seguir para a im-
plementacdo e otimizacdo subsequente. Nesta etapa serdao abordados os aspectos praticos de

desenvolvimento, desde a definicdo das arquiteturas até a implementac3do dos sistemas funcio-
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nais. As solucdes serdao desenvolvidas considerando os requisitos estabelecidos anteriormente,
buscando o equilibrio entre diferentes objetivos conflitantes identificados durante a fase de
especificacao.

Para demonstrar a eficacia das solucoes propostas e validar suas contribuicGes, serd de-
senvolvida uma estratégia de avaliacdo experimental abrangente. A experimentacdo seguira
protocolos rigorosos utilizando dados representativos e metodologias reconhecidas pela co-
munidade cientifica. Os resultados serdo analisados sob mudltiplas perspectivas, fornecendo
evidéncias empiricas sobre as contribuicdes, limitacSes e aplicabilidade de cada abordagem

metodolégica adotada.

1.5 ESTRUTURA DA DISSERTACAO

Este capitulo introdutério apresentou a contextualizacdo do problema de pesquisa, a mo-
tivacdo para o estudo, seus objetivos e a metodologia geral. Os capitulos subsequentes estao
estruturados para aprofundar a investigacao de forma légica e sequencial.

No Capitulo 2, é abordado o referencial tedrico que serve de alicerce para a pesquisa. Sdo
explorados os conceitos de ataques de rede, os fundamentos da deteccao de anomalias e as
técnicas ndo supervisionadas, com destaque para os autoencoders e as métricas de avaliacdo
de sistemas de seguranca.

O Capitulo 3, por sua vez, realiza uma anélise critica dos trabalhos relacionados na lite-
ratura. Nele, sdo discutidas as principais abordagens existentes para a deteccao de ataques
zero-day, identificando suas limitacdes e as lacunas que este trabalho se prop&e a preencher.

No Capitulo 4, detalha-se o método proposto. Especifica-se a arquitetura hibrida

IScoring Autoencoder (HSAE)| e de sua extensdo ensemble com |Principal Component Analy-|

sis (PCA)| e One-Class SVM. Adicionalmente, descreve-se toda a metodologia experimental,

incluindo o tratamento dos dados, o protocolo de treinamento e os parametros de avaliac3o.
O Capitulo 5 é dedicado a apresentacdo e a discussdo dos resultados experimentais. O
desempenho das abordagens propostas é rigorosamente comparado ao de uma abordagem de
referéncia em dois datasets distintos, e a eficiéncia computacional das solucGes é avaliada em
termos de consumo de memoéria.
Por fim, o Capitulo 6 reline as conclusdes do trabalho. Nele, destacam-se as contribuicdes
da pesquisa para o campo da deteccdo de ataques zero-day, e siao elencadas sugestdes para

investigacoes futuras.
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2 REFERENCIAL TEORICO

A deteccdo proativa de ataques zero-day constitui elemento-chave para o desenvolvimento
de sistemas de seguranca cibernética eficazes, especialmente em ambientes com recursos com-
putacionais limitados. Nesse sentido, este capitulo abordara as referéncias tedricas, as quais
permitirdo uma melhor compreensdo do HSAE e da abordagem ensemble proposta pelo pre-
sente trabalho. Para a correta compreensdo do escopo desta pesquisa, é necessario distinguir
trés conceitos correlacionados entre si: Seguranca da Informacao, Ciberseguranca e Ataques em
Redes. A Seguranca da Informacao é a disciplina mais ampla, dedicada a proteger a informacao
em todas as suas formas, e é historicamente fundamentada nos pilares de confidencialidade,
integridade e disponibilidade — a triade CIA (SAMONAS; COSS| 2014). A Ciberseguranca, por
sua vez, é frequentemente vista como uma evolucdo desse conceito, sendo um subconjunto
da Seguranca da Informacdo focado especificamente na protecdo de ativos no ciberespaco,
como redes, computadores e dados (CRAIGEN; DIAKUN-THIBAULT; PURSE, 2014). Dentro deste
dominio, os Ataques em Redes sdo uma das principais categorias de ameacas, envolvendo
acoes que buscam contornar mecanismos de seguranca explorando as vulnerabilidades de uma

rede-alvo (HOQUE et al, 2014), tema central que seréd detalhado a seguir.

2.1 CONCEITOS FUNDAMENTAIS SOBRE ATAQUES ZERO-DAY

2.1.1 Definicao de Ataques Zero-day

Um ataque classificado como zero-day ocorre quando uma vulnerabilidade é explorada
antes de ser divulgada publicamente e, portanto, antes que exista uma atualizacao ou assi-
natura capaz de corrigi-la (BILGE; DUMITRAS, 2012). Nesse cendrio, mecanismos de defesa
baseados em assinaturas tornam-se ineficazes, pois a ameaca ainda n3o foi documentada. O
termo “zero-day" deriva do fato de que, desde o inicio da exploracdo, ndo ha tempo de reacao
disponivel para desenvolvedores ou equipes de seguranca (NKONGOLO; TOKMAK, 2023)).

Tradicionalmente, o conceito restringia-se a vulnerabilidades inéditas. No entanto, estu-
dos recentes indicam que ele também se aplica a vulnerabilidades conhecidas exploradas por
métodos n3o previstos, capazes de contornar mecanismos de deteccdo (AHMAD et al., [2023)).
Essa ampliacdo reforca a necessidade de estabelecer limites claros entre o que é e o que nao

é um ataque zero-day. Nessa classificacao, distingue-se entre unknown unknowns — ameacas
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sem qualquer registro prévio — e known unknowns, que apresentam semelhancas parciais com
incidentes conhecidos, mas exigem deteccdo adaptativa (AHMAD et al., 2023).

O impacto de ataques zero-day pode afetar de forma critica a confidencialidade, integri-
dade e disponibilidade (ROUMANI, 2021, e seu risco é ampliado no contexto de Internet das
Coisas (loT) devido a diversidade de dispositivos, heterogeneidade de protocolos e restricdes
de processamento e memoéria. Nessas redes, a exploracdo de vulnerabilidades ainda desconhe-
cidas ou de vetores inéditos pode comprometer desde sensores domésticos até infraestruturas

criticas, muitas vezes sem possibilidade de atualizacdo rapida.

2.1.2 Taxonomias e Tipos de Ataques Zero-Day

A literatura apresenta diferentes formas de classificar ataques zero-day. Um critério é a

origem da vulnerabilidade:

» Vulnerabilidade nova: falha inédita, sem registro prévio.

» Vulnerabilidade conhecida com técnica nova: exploracao por meio de métodos

inéditos capazes de evitar deteccdo (AHMAD et al,, 2023)).

Outro critério é o alvo: sistemas corporativos, dispositivos loT, ou infraestruturas criticas —
onde a exploracdo pode interromper servicos essenciais (NKONGOLO; TOKMAK) 2023). Também
se classifica conforme o vetor de ataque, que pode envolver exploracdo de protocolos, servicos,
aplicacdes ou comportamento anomalo de rede.

Ha ainda casos que se destacam pelo método, como uso de cédigo malicioso inédito, téc-
nicas polimoérficas e ofuscacdo para dificultar analise e deteccdo (GANDOTRA; BANSAL; SOFAT,
2016). Ataques a protocolos, como manipulagcdo de pacotes e exploracdo de vulnerabilidades
em servicos de comunicacdo, diferem de ataques focados em padrées comportamentais, nos
quais o objetivo é imitar trafego legitimo para evitar alarmes (mimicry attacks). Ataques como
o Stuxnet e o WannaCry sao frequentemente citados na literatura por combinarem exploracao
de falhas inéditas com alta capacidade de propagacdo (CHEN; BRIDGES, 2017)). Esses casos

ilustram como diferentes categorias podem se sobrepor, aumentando o desafio para a defesa.
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2.1.3 Desafios Especificos na Deteccao

A deteccdo de ataques zero-day enfrenta obstaculos significativos devido a dependéncia
historica de mecanismos baseados em assinaturas e a premissa de um “mundo fechado”, onde
sé € identificado aquilo que ja foi previamente registrado (BILGE; DUMITRAS, 2012). No caso
de ataques inéditos, padrdoes andmalos no trafego ou no comportamento do sistema tornam-se
sinais precoces essenciais (AHMAD et al., [2023).

Entretanto, técnicas como mimicry e evasao polimérfica reduzem a eficacia de deteccao.
Malwares polimérficos, por exemplo, modificam continuamente suas assinaturas de arquivo e
podem também ofuscar o trafego de rede pds-infeccdo, como nas comunicacdes com servidores
de comando e controle (CHEN; BRIDGES, [2017)).

No contexto de loT e gateways, esses desafios sdo potencializados por limitacdes de re-
cursos e pela diversidade de plataformas, dificultando a aplicacdo de técnicas complexas de
inspecdo e andlise em tempo real (NKONGOLO; TOKMAK| [2023). Dessa forma, a deteccdo
efetiva exige modelos capazes de identificar anomalias comportamentais e padroes sutis de
desvios, indo além da simples correspondéncia com ataques previamente conhecidos. Para
compreender e detectar esses ataques, é necessario observar como padroes comportamentais
se manifestam também em ataques ja conhecidos. Embora n3o sejam zero-day, eles fornecem
insights valiosos para o treinamento e validacdo de modelos de deteccao.

Frente aos desafios expostos, este trabalho adota uma definicao operacional de 'zero-day’
focada em comportamento de rede. Definimos como 'zero-day’ uma anomalia de trafego em
nivel de fluxo, ausente no conjunto de treinamento, que se manifesta como um desvio do
perfil de normalidade aprendido exclusivamente com dados benignos. Tal delimitacdo direci-
ona nosso escopo experimental para ataques como DoS/DDoS e ransomware, cujos tracos
comportamentais na rede s3o o foco de nossa analise. A metodologia de avaliacdo completa

estd descrita na Secdo 4.5.

2.2 TAXONOMIA E COMPORTAMENTO DE ATAQUES EM REDES

Para desenvolver um sistema capaz de detectar o comportamento de ataques desconheci-
dos (zero-day), é necessario primeiro compreender e caracterizar as 'impressdes digitais com-
portamentais’ de ataques conhecidos. A premissa central desta abordagem é que, embora a

vulnerabilidade explorada por um ataque zero-day seja inédita, sua manifestacdo no trafego



28

de rede frequentemente compartilhard caracteristicas anomalas com familias de ataques ja
estudadas. Padrdes como picos de volume de trafego, conexdes de baixa taxa, exfiltracdo
de dados ou comunicacdo com servidores de Comando e Controle (C&C) s3o exemplos de
comportamentos que transcendem ataques especificos.

Portanto, esta secdo se aprofunda na analise comportamental de ameacas consolidadas,
como os ataques de Negac3o de Servico (DoS) e o Ransomware. O objetivo n3o é criar um
detector para essas ameacas especificas, mas sim utilizar seus padroes operacionais como uma
base de conhecimento para treinar e validar um modelo de deteccao de anomalias que seja
capaz de generalizar e identificar esses mesmos tipos de desvios comportamentais quando
originados por uma ameaca zero-day.

Os ataques em redes constituem uma das principais preocupacdes no cenario atual de
seguranca cibernética, representando acdes maliciosas deliberadas que visam comprometer a
confidencialidade, integridade ou disponibilidade de sistemas e dados em ambientes de comuni-
cacdo digital. Segundo (HOQUE et al., [2014)), "ataques em redes tentam contornar mecanismos
de seguranca de uma rede explorando vulnerabilidades da rede-alvo", podendo resultar em
perdas financeiras significativas, vazamento de informacGes sensiveis e interrupcdo de servicos
criticos.

A natureza distribuida e interconectada das redes modernas amplia consideravelmente a
superficie de ataque, criando miltiplos vetores pelos quais agentes maliciosos podem penetrar
nos sistemas. A crescente complexidade da infraestrutura tecnoldgica, aliada a proliferacao
de dispositivos conectados, torna o ambiente digital cada vez mais suscetivel a diferentes
modalidades de ataques cibernéticos. Importante salientar que a seguranca da informacao
depende coletivamente de cada individuo que pode ter acesso a infraestrutura organizacional

(PRABHU; THOMPSON, 2022).

2.2.1 Natureza dos Ataques: Ativo vs. Passivo

Os autores de (LATHA; PRAKASH, 2017)) estabelecem uma distincdo fundamental entre
ataques ativos e passivos. Os ataques ativos envolvem acdes que alteram recursos do sistema,
como quebra de seguranca ou modificacdo de dados. Esses ataques incluem diferentes ti-
pos, como mascaramento (masquerade), repeticdo de sessdo (session replay), modificacdo de
mensagens e negacao de servico. Tais acdes podem ser implementadas por meio de artefatos

maliciosos como virus, worms, cavalos de Tréia e insercao de cédigo malicioso.
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Ataques passivos, por outro lado, tentam conhecer ou utilizar informacdes importantes
sem afetar os recursos do sistema. Neste tipo de ataque, o atacante utiliza ferramentas de

farejamento (sniffer) e aguarda para capturar informacdes sensiveis que podem ser aplicadas

em outras acdes (LATHA; PRAKASH| 2017). Tais ataques incluem a liberacdo de contetdo

de mensagens, anélise de trafego, uso de sniffers, ferramentas de farejamento de pacotes e

filtragem de senhas.

2.2.2 Classificacao Geral dos Ataques em Redes

LLatha e Prakash (2017)) apresentam uma classificacdo estruturada onde qualquer ataque

pode ser categorizado em uma das quatro categorias principais: Ataques de Negacdo de Ser-
vico (DoS), Ataques de Sondagem (Probing), Ataques Remoto-para-Local (R2L) e Ataques
Usuario-para-Root (U2R), conforme ilustrado na Figura 2|

Figura 2 — Taxonomia dos Principais Ataques em Redes

Classificacao dos

Ataques em Redes
(Latha e Prakash, 2017)
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Smurf Saint Ataque de diciondrio Buffer Overflow
Ping of Death PortSweep Ataque de senha
Meptune MNmap
UDP Storm Ipsweep
Apache Macon

2.2.3 Analise Comportamental de Ataques de Negacao de Servico

Com o avanco das técnicas de ataque e a sofisticacdo dos atacantes, emergiram variantes

especificas de ataques de negacdo de servico. Embora as ameacas descritas a seguir sejam
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conhecidas, a anélise de seu modus operandi é fundamental para a deteccdo de ataques zero-
day. Portanto, esta secdo detalha ataques proeminentes como HULK, Slowhttptest, Slowloris
e GoldenEye, ndo como um fim em si mesmos, mas como estudos de caso dos padrdes com-
portamentais que um sistema de deteccdo de anomalias robusto deve ser capaz de generalizar
e identificar.

1. Ataques de Negacdo de Servico (DoS) Tipo de ataque onde o invasor sobrecar-
rega um sistema ou servico, tornando-o indisponivel para usuarios legitimos. Exemplos incluem
Smurf, Ping of Death, Neptune, UDP Storm e Apache. Uma variante especifica é o ataque dis-
tribuido (DDoS), que visa comprometer a disponibilidade dos servidores inundando o canal de
comunicacdo com solicitacGes falsas originadas de miltiplos dispositivos distribuidos. Segundo
Neira, Kantarci e Nogueira| (2023)), os ataques DDoS figuram entre as principais ameacas
cibernéticas globais, exigindo solucoes que antecipem e mitiguem esses eventos volumétricos.

2. Ataques de Sondagem (Probing) Ataque onde o hacker escaneia uma méaquina ou
dispositivo de rede para descobrir seu endereco IP valido, tipo de servico, sistema operacional
utilizado e vulnerabilidades do sistema usando ferramentas de hacking. Essas informacoes
podem ser usadas para explorar o sistema posteriormente. Exemplos: Saint, Portsweep, Nmap,
Ipsweep e Mscan.

3. Ataques Remoto-para-Local (R2L) O atacante que ndo possui conta naquela ma-
quina envia pacotes de rede para uma maquina vitima através da internet, estabelecendo uma
conexao com aquela maquina. O atacante entdo causa danos ao software da maquina e pode
explorar os privilégios do usuario original. Exemplos: Ataques de dicionéario e Ataques de senha.

4. Ataques Usuario-para-Root (U2R) Um atacante se introduz na rede como usua-
rio normal e, apds atingir uma zona mais segura, tenta agir como superusuario explorando
vulnerabilidades no mecanismo do computador, finalmente alcancando privilégios de superu-
suario. Como o atacante faz parte da rede, a identificacao é muito trabalhosa. Exemplo: buffer

overflow.

2231 HULK (HTTP Unbearable Load King)

O ataque HULK representa um método de ataque DoS especializado em sobrecarregar

servidores web através de requisicdes [HyperText Transfer Protocol (HTTP) massivas. Esta

técnica caracteriza-se por gerar um volume elevado de solicitacdes aparentemente le-

gitimas, mas que consomem recursos significativos do servidor alvo (SHOREY et al, 2018). O
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método HULK opera gerando URLs dnicos e requisicdes variadas para contornar mecanismos
basicos de deteccao baseados em padrdes, tornando cada requisicao aparentemente distinta
das anteriores.

A estratégia do ataque HULK fundamenta-se na exploracdo da capacidade limitada de pro-
cessamento simultaneo de conexdes dos servidores web. Ao inundar o servidor com requisicoes
GET e POST diversificadas, este tipo de ataque esgota recursos criticos como threads
de processamento, slots de conexao e meméria disponivel, resultando na indisponibilidade do

servico para usuarios legitimos (MALLIGA; NANDHINI; KOGILAVANI, 2022).

2.2.3.2 Slowhttptest

O Slowhttptest constitui uma técnica de ataque desenvolvida para explorar vulnerabilidades
de servidores web através de ataques DoS de baixa taxa (slow-rate attacks). Esta modalidade
de ataque implementa diferentes variantes de ataques lentos, incluindo Slow Headers, Slow
Body e Slow Read (SHOREY et al., 2018)).

A metodologia do ataque Slowhttptest baseia-se no principio de manter conexdes [HT TP
abertas por periodos prolongados, enviando dados em velocidades extremamente baixas. Di-
ferentemente dos ataques tradicionais de alta volumetria, esta abordagem explora a paciéncia
limitada dos servidores em aguardar a conclusdo de requisicoes aparentemente legitimas. O
ataque Slow Headers, por exemplo, envia cabecalhos[HT TP|de forma fragmentada e em inter-
valos prolongados, forcando o servidor a manter a conexdo aberta enquanto aguarda a chegada

completa dos dados (MALLIGA; NANDHINI; KOGILAVANI, 2022).

2.2.3.3 Slowloris

O Slowloris, desenvolvido por Robert “RSnake” Hansen, representa uma das técnicas de
ataque DoS mais elegantes e eficazes ja concebidas. A simplicidade desta modalidade de ataque
reside no fato de que apenas um computador é necessario para derrubar um servidor web, sem
afetar outras portas e servicos, impactando exclusivamente o alvo designado (SHOREY et al.,
2018).

O mecanismo de funcionamento do ataque Slowloris baseia-se na abertura de numerosas
conexdes com o servidor web direcionado, mantendo-as abertas por periodo indefinido. Utili-

zando essas conexdes, o método transmite requisicdes [HT TP| fracionérias de forma continua,
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resultando em servidores sob ataque que mantém as conexdes abertas enquanto aguardam a
conclusdo dessas requisicdes fragmentadas (SHOREY et al., [2018]).

A denominacdo “Slowloris” deriva da caracteristica do ataque de “lentamente” consumir
os recursos [HTTP| do servidor. Trata-se fundamentalmente de um ataque DDoS [HT TP} ndo

devendo ser confundido com um ataque DDoS TCP. Essencialmente, o método estabelece uma

conexdo [Transmission Control Protocol (TCP)| legitima com o host alvo e, posteriormente,

inunda a mesma com conexdes [HT TP| parciais que sdo mantidas abertas pelo maior tempo
possivel e continuamente enviadas até o esgotamento completo dos recursos do alvo.
Uma vantagem significativa do Slowloris é que o atacante nao envia pacotes malformados,

permitindo que esses pacotes parciais atravessem facilmente sistemas de prevencao de intrusao

Intrusion Prevention System (IPS)|— ferramentas que, diferentemente dos sistemas que apenas

detectam, sdo capazes de bloquear ativamente o trafego considerado malicioso. No entanto,
servidores web de geracOes atuais possuem recursos adequados para mitigar ataques Slowloris
através de estratégias como expansao do nimero maximo de clientes permitidos, restricao
do nimero de conexdes de um Unico endereco IP e limitacdo temporal para permanéncia de

conexdes (SHOREY et al., 2018).

2.2.3.4 GoldenEye

O GoldenEye constitui uma técnica de ataque DoS HTTP/S mais recente em comparacio
ao Slowloris. Esta modalidade de ataque, implementada originalmente em Python para fins
de teste de seguranca, demonstra capacidade de derrubar servidores web quando utilizada
maliciosamente (SHOREY et al., [2018)).

A estratégia do ataque GoldenEye consiste em utilizar o cabecalho Connection: Keep-Alive,
combinado com opcdes de Cache-Control, para estabelecer e manter mdltiplas conexdes com o
servidor. Essa tatica visa esgotar gradualmente todo o pool de sockets disponiveis, sufocando o
servidor e impedindo que usuarios legitimos consigam se conectar. O método também é descrito
como uma técnica sofisticada para a andlise de malwares, capaz de investigar ambientes de
forma adaptativa para determinar as provaveis configuracdes do sistema-alvo (SHOREY et al.,
2018).

O ataque pode alternar online sua condicao de estrutura de sistema adaptativamente para
promover investigacdo, sendo eficaz em descobrir qual é o ambiente almejado através de um

mecanismo de execucdo especifico para observar praticas sob situacdes eletivas. Embora o
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GoldenEye comprometa espaco em favor da velocidade, observou-se que pode efetivamente
utilizar menos espaco de memoria enquanto consegue velocidade significativamente superior

(SHOREY et al., 2018).

2.2.4 Ataques DDoS em loT: Papel dos Botnets e Malware

O papel dos botnets em ataques DDoS representa uma evolucao significativa das ame-
acas cibernéticas. Dispositivos [lo I| comprometidos, conhecidos como 'bots’, sdo controlados

por um servidor mestre (Master Bot Controller) que pode utilizar comunicacdo baseada em

Internet Relay Chat (IRC)| Peer-to-Peer ou [HTTP| A formac3o de botnets é facilitada

pela tendéncia desses dispositivos permanecerem conectados 24 x 7 x 365, tornando-os alvos
ideais para ataques de larga escala (VISHWAKARMA; JAIN, [2020).

Entre os malwares mais notérios, destaca-se o Mirai, responsavel pelo maior ataque DDoS
registrado até entdo, envolvendo até 15 milhdes de dispositivos com velocidade de inun-
dacdo de 1 Tbps. O cddigo-fonte do Mirai, disponibilizado publicamente, contém 62-68 pares
padrdo de nomes de usuario e senhas utilizados para ataques de forca bruta em dispositivos

desprotegidos (VISHWAKARMA; JAIN 2020)).

2.2.5 Desafios Especificos em Ambientes loT

O contexto [loT| apresenta desafios tnicos que amplificam as vulnerabilidades tradicionais
de seguranca. A Internet das Coisas emergiu como uma plataforma significativa para escalar
entidades maliciosas, aproveitando-se de vulnerabilidades resultantes de recursos limitados e

seguranca mais fraca dos dispositivos (VISHWAKARMA; JAIN, 2020)). Estes dispositivos herdam

vulnerabilidades de tecnologias base como |Radio Frequency ldentification (RFID)| e redes de

sensores sem fio (DEOGIRIKAR; VIDHATE, [2017)), enfrentando desafios tinicos devido as limita-
cOes de processamento e recursos computacionais restritos.

A complexidade computacional dos algoritmos sofisticados torna-se invidvel em ambientes
loT} especialmente em dispositivos com recursos limitados (VISHWAKARMA; JAIN, [2020)). As
limitacGes intrinsecas fazem com que as contramedidas tradicionais ndo possam ser aplicadas
diretamente para ameacas baseadas em (DEOGIRIKAR; VIDHATE, 2017)). A proliferacdo
de dispositivos [[oT]| heterogéneos cria um ambiente particularmente propicio para ataques

zero-day, uma vez que a diversidade de sistemas operacionais, protocolos e implementacdes
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amplia significativamente a superficie de ataque disponivel para exploracao de vulnerabilidades
previamente desconhecidas (AHMAD et al., 2023)).

Ataques DDoS [loT| tém se tornado cada vez mais frequentes devido a proliferacdo de
dispositivos [loT| vulneraveis e mal configurados, especialmente em redes [loT| onde o ataque
visa a disponibilidade dos servidores inundando o canal de comunicacdo com solicitacGes falsas
vindas de dispositivos distribuidos (VISHWAKARMA; JAIN, [2020).

Essa vulnerabilidade caracteristica dos ecossistemas [loT| evidencia uma mudanca de pa-
radigma na seguranca. Em redes tradicionais, a defesa é distribuida em miltiplas camadas,
incluindo protecdes no préprio dispositivo (host-based), como antivirus e firewalls locais, além
da aplicacao de patches. No entanto, as severas restricGes de processamento e memoria da
maioria dos dispositivos [[oT] inviabilizam a implementacdo dessas defesas locais sofisticadas.
Essa lacuna na seguranca do dispositivo eleva a importancia da monitoracdo da rede, tornando
os detectores de anomalias, que analisam o trafego de entrada e saida, uma camada de defesa

essencial e, muitas vezes, a principal forma de identificar que um dispositivo foi comprometido.

2.2.6 Taxonomia de Ataques DDoS em loT

Os ataques DDoS em redes podem ser categorizados com base no impacto nas cama-
das da arquitetura de rede. Os ataques de camada de aplicacdo tentam invadir a camada de
aplicacdo da infraestrutura de rede[loT| onde os pacotes sdo descartados em taxa de solicita-
¢Bes por segundo (Rps) devido a inundacdo do servidor de aplicacdo ou web por solicitacdes
HTTP| (Get/Post). J4 os ataques de camada de infraestrutura visam tornar o sistema alvo
inacessivel explorando vulnerabilidades nas camadas de transporte ou de rede da arquitetura
loT} podendo ser baseados em protocolo ou volume (VISHWAKARMA; JAIN, [2020)).

Estatisticas recentes mostram que ataques de camada de infraestrutura como SYN,

[Datagram Protocol (UDP)| e [TCP| flood obtiveram as maiores porcentagens comparados aos

ataques de camada de aplicacdo, embora ataques [HTTP| GET flood tenham mostrado cres-
cimento significativo. Além disso, botnets baseados em Linux tém se tornado mais comuns,
ndo devido a falta de seguranca do Linux, mas porque fornecedores frequentemente lancam
roteadores e equipamentos [oT] com kernels Linux desatualizados e protecdo de seguranca

limitada (VISHWAKARMA; JAIN, [2020).
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2.2.7 Ransomware

De forma anéloga aos ataques DoS, o ransomware, outra ameaca critica no cenéario atual,
também gera comportamentos de rede andomalos que podem ser detectados antes que o
dano principal (a criptografia dos arquivos) ocorra. A anélise de suas fases de comunicagdo
com servidores de Comando e Controle (C&C) e exfiltracdo de dados revela padrdes que, se
identificados, podem sinalizar a presenca de uma nova variante de ransomware agindo na rede.
Assim, o estudo a seguir sobre a taxonomia e o funcionamento do ransomware serve como
base para entender os desvios comportamentais que a solucdo proposta visa detectar.

O ransomware representa uma das ameacas cibernéticas mais devastadoras dos ultimos
anos, distinguindo-se por empregar técnicas avancadas de criptografia para bloquear o acesso
aos dados das vitimas e, posteriormente, exigir pagamentos para sua liberacdo. Essa moda-

lidade de ataque tem experimentado um crescimento exponencial em sofisticacdo, impulsio-

nado principalmente pela emergéncia de modelos comerciais como o [Ransomware-as-a-Service

(RaaS)| e pela diversificacdo de vetores de disseminacdo que incluem campanhas de phishing,

exploracdo de vulnerabilidades em protocolos remotos como [Remote Desktop Protocol (RDP))|

e a utilizagdo de kits de exploracdo automatizados (BEAMAN et al., 2021)).

No estudo de (RAZAULLA et al., 2023), é apresentada uma taxonomia abrangente do ecos-
sistema de ransomware, a qual classifica as variantes com base em seus tipos (como crypto,
locker, leakware e scareware), vetores de infeccdo, mecanismos de comunicacdo com servido-
res de comando e controle (C&C) e acBes maliciosas associadas. Essa estrutura é ilustrada
na Figura [3, que integra diferentes dimensdes comportamentais e técnicas, fornecendo um
referencial analitico para o estudo dessa ameaca.

Essa taxonomia evidencia como diferentes familias de ransomware podem compartilhar
caracteristicas técnicas, mesmo que variem em seus objetivos estratégicos ou métodos de
disseminacdo. Por exemplo, o mesmo artigo analisa variantes notérias como Ryuk, REvil e
Maze, e destaca como o Maze introduziu o modelo de dupla extorsdo, que combina criptografia
com exfiltracdo de dados para aumentar a pressdo sobre a vitima (RAZAULLA et al., [2023).

Complementando essa perspectiva classificatéria, Beaman et al.[(2021)) investigam os avan-

cos mais recentes na engenharia de ransomware, destacando a adocdo generalizada de esque-

mas de criptografia hibrida que combinam algoritmos |Advanced Encryption Standard (AES)|

e [Rivest-Shamir-Adleman (RSA)| Os autores também documentam como eventos disruptivos

globais, particularmente a pandemia de COVID-19, criaram janelas de oportunidade que foram
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Figura 3 — Taxonomia do Ransomware.
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Fonte: Razaulla et al. (2023).

amplamente exploradas por operadores maliciosos. Particularmente relevante é a demonstra-

cdo de como variantes experimentais, exemplificada pelo ransomware AESthetic, conseguem

contornar sistemas de detec¢do de intrusdo (Intrusion Detection System (IDS))) baseados em

assinatura, sublinhando a urgéncia no desenvolvimento de mecanismos de deteccao mais so-
fisticados.

Em uma abordagem complementar, estudos como o de (Chen e Bridges (2017) demons-
tram a eficacia da andlise comportamental automatizada para extrair padrées de malwares.
Essa técnica permite identificar caracteristicas distintivas de variantes de ransomware, como o
WannaCry, que possuem capacidades polimérficas projetadas para desafiar solucoes baseadas
em assinaturas estaticas. A relevancia dessa abordagem é particularmente evidente na detec-
cao precoce de ameacas, permitindo intervencdes preventivas antes da execucdo dos processos

de criptografia.

2.3 DETECCAO DE ANOMALIAS EM TRAFEGO DE REDE

No contexto deste trabalho, considera-se ‘anomalia’ qualquer padrao de trafego de rede que
se desvia significativamente do comportamento esperado, podendo ter origem em atividades
maliciosas (como ataques conhecidos e zero-day), falhas de configuracdo, erros operacionais

ou eventos legitimos raros. Embora nem toda anomalia represente uma ameaca, sua deteccao
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é fundamental para identificar comportamentos potencialmente prejudiciais.

Diante da crescente sofisticacdo dos ataques cibernéticos, especialmente os ataques do
tipo zero-day que se manifestam inicialmente como desvios comportamentais sutis no trafego
de rede, torna-se necessario compreender as abordagens de deteccdo de anomalias. Este tipo
de deteccdo representa uma alternativa promissora aos métodos tradicionais baseados em
assinaturas, ao permitir a identificacdo de ameacas ainda ndo catalogadas, ou mesmo variacGes
sofisticadas de ataques j& conhecidos (GARCIA-TEODORO et al., 2009).

A esséncia da deteccao por anomalias esta na identificacdo de padrdes de comportamento
que divergem de um perfil previamente estabelecido como normal. Essa abordagem envolve a
modelagem estatistica ou o uso de algoritmos de aprendizado de maquina treinados com dados
de trafego legitimo, a fim de detectar desvios que possam indicar atividades suspeitas. Por
ndo depender de uma base de assinaturas previamente definida, ela se mostra particularmente
eficaz contra ataques emergentes, como os zero-day, que exploram vulnerabilidades ainda
desconhecidas pelos sistemas convencionais de defesa (HOQUE et al., 2014).

Limitacoes e Desafios Especificos

No entanto, nem toda atividade maliciosa resulta em anomalias perceptiveis. Um dos prin-
cipais desafios enfrentados por essa abordagem é sua limitacdo diante de ameacas internas
(insider threats), as quais sdo executadas por individuos com acesso legitimo diante do sistema
e organizacao. Esses usudrios, por possuirem credenciais validas e conhecimento do funciona-
mento interno dos sistemas, conseguem muitas vezes operar dentro dos limites considerados
normais, escapando a deteccdo baseada em anomalias. [Liu et al| (2018) classificam essas
ameacas em trés categorias: traidores (usuarios maliciosos), mascarados (agentes externos
usando credenciais legitimas) e perpetradores n3o intencionais (usuarios que comprometem
a seguranca por negligéncia). Reforcando essa perspectiva, Yuan e Wu| (2021) afirmam que
as ameacas internas sdo particularmente dificeis de detectar. O desafio reside no fato de que
os insiders, por ja possuirem acesso legitimo, ndo necessariamente violam controles de acesso
diretos. Além disso, suas atividades maliciosas podem ser sutis, gerando comportamentos que,
embora anémalos, sdo muito préximos aos de usuarios benignos no espaco de caracteristi-
cas, dificultando a deteccao por métodos estatisticos tradicionais. Para superar essa barreira,
os autores defendem o uso de modelos de Deep Learning, como Redes Neurais Recorrentes
(RNNs) e Autoencoders, que sdo capazes de aprender representacdes complexas e modelar
sequéncias de comportamento para identificar esses padrées maliciosos sutis.

Além das ameacas internas, destaca-se uma classe de ataques especialmente desenhada
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para contaminar sistemas de deteccdo comportamental: os mimicry attacks. Como descrevem
Wagner e Soto| (2002), esses ataques consistem na imitacdo deliberada do comportamento
legitimo do sistema alvo, de forma a n3o acionar os mecanismos de deteccao. Um exemplo
pratico dessa estratégia é demonstrado por |Larson et al.| (2009), que mostram como é pos-
sivel construir longas sequéncias de chamadas de sistema que permanecem indetectaveis por
sistemas que validam apenas os nomes das chamadas, ignorando outros contextos importan-
tes como seus argumentos ou valores de retorno. A construcdo bem-sucedida desses ataques
baseia-se na identificacdo da intersecao entre comportamentos normais e maliciosos, conforme
ilustrado na Figura 4 onde essa intersecdo representa o espaco comportamental que pode ser
explorado para construir mimicry attacks eficazes.

Figura 4 — A intersecdo denota o comportamento que pode ser usado para construir mimicry attacks

Normal
behavior

Successful mimicry
attacks

Fonte: Larson et al. (2007).

O conceito de mimicry abrange miltiplas dimensdes, tais como:

» Mimicry temporal: onde a temporizacdo das acdes maliciosas é ajustada para se alinhar

ao ritmo normal de operacdo da rede;

= Mimicry estatistico: em que os pardmetros estatisticos do trafego (como frequéncia de
pacotes, tamanho de payloads e tempos de resposta) sdo manipulados para se manterem

dentro dos limites normais;

= Mimicry comportamental: que busca replicar precisamente sequéncias e fluxos de uso

tipicos de usuarios legitimos.
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Para esse fim, atacantes podem empregar diversas técnicas de fingerprinting de trafego de
rede, que operam em diferentes niveis de detalhe, como a anélise a nivel de pacote (packet-
level) ou a nivel de fluxo (flow-level), para mapear o comportamento de sistemas e identificar
alvos (SHENG et al., 2025). Um mecanismo adicional empregado é o uso de no-ops semanticos,
instrucdes que n3o alteram o estado do sistema, mas sao introduzidas para disfarcar a sequéncia
real de agdes, dificultando ainda mais a deteccdo (WAGNER; SOTO, 2002))). |Larson et al.
(2009)identificam que essas técnicas de no-ops podem incluir chamadas como write(-1,,0)
que falham propositalmente, mas mantém a aparéncia de atividade normal.

A modelagem do comportamento normal constitui, portanto, o alicerce da deteccdo de
anomalias, exigindo andlises estatisticas e algoritmos robustos capazes de lidar com variacoes
legitimas e adaptar-se a mudancas de padrdo sem comprometer a sensibilidade a ocorréncia de
eventos maliciosos. |Larson et al.[(2009) demonstram que a inclusdo de informagdes adicionais
das chamadas de sistema - como argumentos, valores de retorno e identidade do usuario -
pode reduzir significativamente as opcdes dos atacantes para construir mimicry attacks bem-
sucedidos, revelando manifestacdes de ataque previamente ocultas. Sistemas bem-sucedidos
nesse campo devem ser capazes de aprender com o trafego continuo, manter taxas aceitaveis
de falsos positivos e negativos e integrar, sempre que possivel, informacdes contextuais e
comportamentais para enriquecer sua capacidade preditiva (GARCIA-TEODORO et al., 2009)
(LATHA; PRAKASH, 2017)).

Portanto, embora a deteccdo baseada em anomalias n3o seja isenta de limitacoes, ela de-
sempenha papel fundamental no ecossistema de defesa cibernética moderno, principalmente
quando associada a abordagens hibridas e técnicas avancadas de machine learning. Ao possi-
bilitar a identificacdo de padrbes até entdo invisiveis a métodos tradicionais, essa estratégia
torna-se indispensavel para enfrentar ameacas furtivas e adaptativas. Nesse contexto, o estudo
de padrdoes comportamentais observados em ataques conhecidos fornece subsidios valiosos
para a construcao de modelos capazes de reconhecer manifestacGes equivalentes em ataques

zero-day, mesmo sem a existéncia prévia de assinaturas ou registros formais.

2.4 ABORDAGENS DE DETECCAO

Estabelecidos os principios da deteccdo por anomalias e seus desafios intrinsecos, é ne-
cessario analisar as diferentes abordagens. A deteccdo de anomalias em trafego de rede, por

exemplo, evoluiu significativamente nas Ultimas décadas, migrando de métodos tradicionais
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baseados em regras para técnicas modernas fundamentadas em aprendizado de maquina. A
deteccao de anomalias baseada em rede permanece como um importante campo de pesquisa
e desenvolvimento em deteccdo de intrusdo (JAVAHERI et al., [2023) (ABDULGANIYU; TCHA-
KOUCHT; SAHEED, 2023). Mais recentemente, a deteccdo de anomalias habilitada por deep
learning, ou deteccdo profunda de anomalias, emergiu como uma direcao relevante nesse con-
texto (GUO, [2023). O objetivo principal dessa abordagem, conforme destacam Pang et al.
(2021)), é aprender representacdes de caracteristicas ou pontuacdes de anomalia por meio de
redes neurais, visando identificar desvios de comportamento. Diversos métodos de deteccdo
profunda de anomalias foram introduzidos recentemente, demonstrando desempenho superior
em relacdo as técnicas convencionais, principalmente na resolucao de problemas desafiadores

e aplicagdes do mundo real (GUO, 2023) (BERAHMAND et al., 2024)).

2.4.1 Paradigmas de Aprendizado de Maquina

As abordagens modernas para deteccdo de ameacas se apoiam em técnicas de [Machine

[Learning (ML), que se mostram promissoras por sua capacidade de extrair caracteristicas

estatisticas de ataques (GUO, 2023). A escolha do paradigma de aprendizado é determinante
e depende da disponibilidade de dados rotulados. As técnicas podem ser classificadas em trés
categorias principais: supervisionada, ndo supervisionada e semi-supervisionada (BERAHMAND

et al., 2024).

» Aprendizado Supervisionado: Este paradigma exige um conjunto de dados de treina-
mento previamente rotulado, que deve conter exemplos tanto do trafego normal quanto
do andmalo (BERAHMAND et al., [2024). O objetivo do modelo é aprender a partir desses
rétulos a “capturar a diferenca” entre as classes (BERAHMAND et al/ [2024)), criando uma
funcdo que mapeia as caracteristicas do trafego a um rétulo especifico (GUO, 2023)). Sua
principal desvantagem ¢é a ineficicia contra ataques zero-day, pois, por definicdo, nao exis-
tem exemplos rotulados de ameacas desconhecidas durante a fase de treinamento (GUO,

2023).

» Aprendizado Nao Supervisionado: Em contraste, esta abordagem aprende padrdes a
partir de dados n3o rotulados (GUO, |2023)). Na deteccdo de anomalias, a estratégia con-
siste em treinar o modelo utilizando exclusivamente dados da classe normal (GUO) 2023)).

O objetivo n3o é diferenciar classes, mas sim construir um modelo robusto do que é a “nor-
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malidade”, geralmente ao tentar reconstruir os dados normais com o menor erro possivel.
Qualquer dado que n3o se ajuste a este modelo e resulte em um erro de reconstruc3o alto é
considerado uma anomalia (BERAHMAND et al., [2024)). E importante notar que, dentro deste
paradigma, é possivel utilizar rétulos auxiliares para guiar partes especificas do treinamento,
como forcar uma saida de score de anomalia a assumir um valor constante (e.g., zero) para
todos os dados normais. Essa técnica ndo caracteriza o método como semi-supervisionado,
pois 0 modelo nunca é exposto a dados da classe de anomalia durante o treinamento. Por
nao depender de assinaturas de ataques conhecidos, é uma abordagem inerentemente capaz
de detectar anomalias novas, como os ataques zero-day (GUO), [2023)), sendo este o foco do

presente trabalho..

» Aprendizado Semi-supervisionado: Este paradigma utiliza uma mistura de dados no
treinamento: uma pequena porcao de dados rotulados e um volume maior de dados nao
rotulados (BERAHMAND et al., 2024). Em deteccdo de anomalias, isso geralmente significa
ter alguns exemplos rotulados como “normal” em meio a uma grande massa de dados sem
rétulos (BERAHMAND et al., 2024)). O objetivo do modelo é usar os poucos dados rotulados
como “ancoras” para ajudar a estruturar e a classificar o restante dos dados nao rotulados,

otimizando o aprendizado em cenéarios onde a rotulagem completa é inviavel.

Considerando o desafio de identificar ameacas desconhecidas, as técnicas n3o supervisio-
nadas oferecem a flexibilidade necessaria para a construcao de sistemas de deteccao mais

robustos e independentes de assinaturas prévias.

2.4.2 Métodos Tradicionais vs. Modernos

Para uma melhor compreensao das estratégias de deteccdo, precisamos primeiro distinguir
os Sistemas de Deteccdo de Intrusdo (IDS) dos Sistemas de Prevencdo de Intrusdo (IPS).
Um [IDS] é o processo de monitorar os eventos em um sistema ou rede, analisando-os em
busca de sinais de possiveis incidentes. Sua atuacdo é essencialmente passiva, limitando-se a
detectar atividades maliciosas e gerar alertas, sem, no entanto, alterar o trafego de rede para
bloquear a ameaca. Em contraste, um IPS possui todas as capacidades de um [[DS] mas com
o diferencial de poder atuar ativamente para impedir que os incidentes sejam bem-sucedidos.
Ao identificar uma ameaca, o IPS pode tomar acdes como finalizar sessdes, bloquear conexdes

ou descartar pacotes, efetivamente interrompendo um ataque em andamento. A principal
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diferenca, portanto, é que o [[DS] é um sistema de monitoramento, enquanto o IPS é um
sistema de controle (ABBAS; NASER; KADHIM), 2023).

No panorama histérico, as técnicas tradicionais de deteccdo de intrusdo sdo predominan-
temente baseadas em assinaturas, regras predefinidas e limites estatisticos. Esses métodos
operam comparando o trafego de rede observado com padrdes conhecidos de ataques ou
comportamentos maliciosos previamente catalogados. O principio fundamental consiste na
criacao de uma base de conhecimento contendo assinaturas digitais de ataques conhecidos,
permitindo a identificacdo de ameacas através da correspondéncia de padrdes (JAVAHERI et al.,
2023)) (ABDULGANIYU; TCHAKOUCHT; SAHEED, 2023) (GUO, 2023).

Referente a classificacdo dos Sistemas de Deteccdo de Intrusdo (IDS), é possivel agrupé-los
segundo multiplos critérios (ABDULGANIYU; TCHAKOUCHT; SAHEED, [2023)):

Fonte de Dados Monitorados:

= NIDS (Network-based IDS): Monitoram o trafego em pontos estratégicos da rede,

sendo desafiados por questdes como escalabilidade e criptografia.

= HIDS (Host-based 1DS): Monitoram atividades em hosts individuais, sendo precisos

para rastreamento local, mas com custos e limitacdes de escalabilidade.
Estratégia de Deteccao:

» Baseados em Assinatura: Buscam padrdes especificos de ataques conhecidos.

» Baseados em Anomalia: Detectam desvios do comportamento normal, essenciais para

identificacdo de ataques zero-day, ainda que com maior taxa de falsos positivos.
Modo de Operacao:

= Tempo Real (Online): Anélise continua, com consumo elevado de recursos computa-

cionais.

= Off-line: Anélise pds-evento, menos intensiva em recursos, porém sem resposta imedi-

ata.
Arquitetura:

» Centralizada: Facilita o gerenciamento, mas apresenta ponto tnico de falha.
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= Distribuida: Mais escalavel e resiliente.

Conforme detalhado anteriormente, o paradigma atual da deteccdo de anomalias aposta em
abordagens de aprendizado de maquina por sua maior flexibilidade e capacidade de adaptacdo
(GUO, 2023) (BERAHMAND et al.,[2024)). Dentre elas, o deep learning se destaca por sua aptiddo

para lidar com a alta dimensionalidade e a complexidade dos dados de trafego de rede.

2.4.3 Pré-processamento de Dados

A qualidade e a representacao dos dados sdo fatores primordiais para o sucesso na deteccdo
de anomalias. Entre as principais técnicas de pré-processamento, destacam-se: limpeza de
dados, tratamento de dados desbalanceados, conversao, selecdo e extracao de caracteristicas,

conforme detalhado a seguir.

» Limpeza de dados: Consiste no processo de identificar e corrigir ou remover erros,
inconsisténcias e valores ausentes no conjunto de dados. Em dados de trafego de rede,
essa etapa é necessaria para garantir que o modelo de deteccao nao seja treinado com
informacoes corrompidas, o que poderia levar a uma baixa performance e a concluses

equivocadas sobre o que é um comportamento normal ou anémalo.

» Tratamento de dados desbalanceados: Aborda um desafio comum em seguranca
cibernética: a grande desproporcdo entre a quantidade de trafego benigno (muito abun-
dante) e o trafego de ataques (eventos raros). Sem um tratamento adequado, um mo-
delo poderia simplesmente aprender a classificar tudo como “normal”, atingindo uma
alta acuracia, mas sendo ineficaz para detectar ameacas. Técnicas para balancear os
dados garantem que o modelo dé a devida importancia aos ataques, mesmo que eles

sejam minoritarios.

» Conversao de dados: E a etapa que transforma todos os atributos do dataset em um
formato numérico, que é o (nico formato que os algoritmos de aprendizado de maquina
conseguem processar. Caracteristicas textuais, como os nomes de protocolos de rede (ex:

ITCP[, {UDPY), precisam ser codificadas em niimeros para que possam ser utilizadas pelo

modelo durante o treinamento.

= Selecdo e extracdo de caracteristicas: S3o técnicas de reducdo de dimensionalidade.

A selecdo busca identificar e manter apenas o subconjunto de atributos mais relevantes
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para a deteccdo, descartando os demais. Em particular, autoencoders e PCA s3o am-
plamente empregados para extracdo de caracteristicas, atuando respectivamente como

métodos nio lineares e lineares (BERAHMAND et al., 2024)).

2.5 TECNICAS NAO SUPERVISIONADAS PARA DETECCAO DE ANOMALIAS

Uma vez estabelecidas as abordagens gerais de deteccdo, esta secao examina em deta-
lhe as principais técnicas nao supervisionadas, que representam a base metodolégica para a
identificacdo de ataques zero-day sem dependéncia de dados rotulados. A deteccdo nao su-
pervisionada em trafego de rede compreende diferentes familias de algoritmos, cada uma com
sua proépria légica para diferenciar o comportamento normal do anémalo.

Algoritmos Baseados em Clusterizacao

A abordagem baseada em clusterizacao, como o K-Means, agrupa os dados em k clus-
ters distintos com base na similaridade de suas caracteristicas. O principio para deteccdo de
anomalias é que instancias normais estardo préximas dos centroides (o centro) de clusters
densos, enquanto anomalias serao pontos distantes de todos os centroides ou formarao clus-
ters muito pequenos e esparsos (AHMED; SERAJ; ISLAM, 2020)). Apesar de sua popularidade, o
K-Means tradicional possui limitacdes como a necessidade de pré-definir o nimero de clusters
e a sensibilidade a inicializacdo aleatéria dos centroides, o que pode impactar seu desempenho
(AHMED; SERAJ; ISLAM, 2020)).

Algoritmos Baseados em Fronteira de Decisao

Técnicas como o [One-Class Support Vector Machine (OCSVM)| operam aprendendo uma

fronteira de decisdo (ou hiperplano) que envolve a maior parte dos dados de treinamento,
que sdo considerados normais. Qualquer nova instancia de dados que caia fora dessa fronteira
é classificada como uma anomalia ou outlier (GUO, [2023)). Essa abordagem é eficaz para
identificar ataques que sdo significativamente diferentes do trafego benigno, mas pode ter
dificuldades com ataques mais complexos e sutis que se assemelham ao comportamento normal
(Guo, [2023)).

Algoritmos Baseados em Isolamento

Os algoritmos baseados em isolamento, como o Isolation Forest (iForest), partem de um
principio fundamental: anomalias s3o instancias “poucas e diferentes” nos dados (FARIZI; HI-
DAYAH; RIZAL, [2021)). Por serem raras e distintas, elas sdo mais faceis de serem isoladas do

que os pontos de dados normais. O método funciona construindo um conjunto de arvores de



45

decisdo aleatérias (chamadas de iTrees). A légica é que, por serem diferentes, as anomalias
precisarao de menos particoes para serem isoladas, resultando em um comprimento de caminho
(path length) menor desde a raiz da arvore até o ponto ser isolado (FARIZI; HIDAYAH; RIZAL,
2021). A pontuacdo de anomalia de uma instancia é, portanto, baseada nesse comprimento de
caminho médio: quanto menor o caminho, maior a probabilidade de ser uma anomalia (FARIZI;
HIDAYAH; RIZAL, [2021)).

Algoritmos Baseados em Densidade

ILocal Outlier Factor (LOF)|é um algoritmo baseado em densidade que identifica anomalias

comparando a densidade local de uma instancia com a de seus vizinhos. Uma instancia é
considerada anomala se sua densidade local for significativamente menor do que a densidade
de suas vizinhancas, indicando que ela estd em uma regido mais esparsa do que seus vizinhos.
Essa abordagem ¢é eficaz para identificar anomalias em conjuntos de dados com densidades
variadas e estruturas complexas (BUDIARTO; PERMANASARI; FAUZIATI, [2019).

Autoencoders

Autoencoders (AEs) sdo um tipo de rede neural artificial que aprende representacdes efi-
cientes dos dados de forma ndo supervisionada. A arquitetura de um autoencoder é composta
por duas partes: um encoder (codificador), que comprime os dados de entrada para uma
representacdo de dimensdo reduzida chamada de espaco latente, e um decoder (decodifica-
dor), que tenta reconstruir os dados de entrada originais a partir dessa representacdo latente
(BERAHMAND et al., 2024).

O principio fundamental para a deteccdo de ataques zero-day é treinar o autoencoder
utilizando exclusivamente dados de trafego normal (GUO, 2023)). Ao fazer isso, o modelo se
especializa em reconstruir com alta fidelidade apenas os padrdes de normalidade. Quando o
modelo treinado é apresentado a uma instancia anémala, como um ataque desconhecido, ele
falha em reconstrui-la adequadamente, gerando um erro de reconstrucdo elevado. Esse erro
serve como uma pontuacdo de anomalia, e instancias com erro acima de um determinado
limiar sdo classificadas como maliciosas (BERAHMAND et al., 2024) (GUO, 2023)). Estudos com-
parativos mostram que autoencoders geralmente superam o One-Class SVM na deteccdo de
ataques zero-day complexos (GUO, [2023) (ZAVRAK; ISKEFIYELI, 2020).

Variacoes de Autoencoders:

» Robust AE e Denoising AE: Focam na robustez em relacdo a ruidos.
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= Variational AE (VAE): Aprendem a distribuicdo de probabilidade dos dados, uteis

para geracao e regularizacdo do espaco latente.

Aprofundamento em Autoencoders

Para compreender melhor o funcionamento dos autoencoders na deteccdo de anomalias,
é necessario analisar sua arquitetura e processo de treinamento em detalhes. Sua arquitetura
basica compreende um encoder, um espaco latente (bottleneck) e um decoder, conforme
ilustra a Figura 5] Diversos hiperpardmetros, como niimero de camadas, neurdnios e fun¢des

de ativacdo, influenciam diretamente o desempenho do modelo (BERAHMAND et al., 2024).

Figura 5 — Estrutura do Autoencoder
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Fonte: IBM (2025).

O principio da deteccdo de anomalias por autoencoders baseia-se no erro de reconstrucao.
O encoder recebe o dado de entrada (como um vetor de caracteristicas do trafego de rede)
e 0 comprime em uma representacao de dimensao muito menor, chamada de espaco latente
ou bottleneck. Essa compressao forca o modelo a aprender apenas as caracteristicas mais
essenciais e recorrentes dos dados. Em seguida, o decoder recebe essa representacdo compacta
e tem a tarefa de reconstruir o dado de entrada original com a maior fidelidade possivel
(BERAHMAND et al., 2024).

Quando o autoencoder é treinado exclusivamente com dados normais, ele se torna um
especialista em comprimir e descomprimir apenas esse tipo de dado, e o espaco latente passa a

ser uma representacdo otimizada dos padrdes de normalidade (GUO, 2023). Consequentemente,
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ao ser apresentado a um dado andmalo (como um ataque zero-day), o modelo falha em
representa-lo adequadamente no espaco latente, pois nunca aprendeu os padrdes daquela
anomalia. Ao tentar reconstruir o dado original a partir dessa representacao falha, o decoder
produz uma saida, x', que é visivelmente diferente da entrada original, x (GUO, 2023).

Essa diferenca entre a entrada e a saida é o erro de reconstrucdo, geralmente quantificado
por uma métrica de distancia como o Erro Quadratico Médio (Mean Squared Error - MSE),
definida como L(x, x') = ||x - x'||? (GUO, |2023). Portanto, um erro de reconstrucdo baixo indica
que o dado se conforma ao padrdo de normalidade aprendido, enquanto um erro elevado é
um forte indicador de uma anomalia, que pode entdo ser sinalizada ao exceder um limiar de
deteccdo (BERAHMAND et al., 2024) (GUO, [2023).

Os autoencoders oferecem muiltiplos beneficios, como reducdo de dimensionalidade, extra-
cdo de caracteristicas, compressdo, remocao de ruido e deteccdo de anomalias. Como redutores
de dimensionalidade e extratores automaticos de caracteristicas, dispensam a necessidade de
engenharia manual. Entretanto, enfrentam desafios como a propensdo ao overfitting, a sensi-
bilidade na escolha de hiperparametros e a possibilidade de representacdes enviesadas quando
treinados com dados contaminados por outliers ou anomalias. Além disso, sua funcdo objetivo
é voltada a reconstrucao e ndo, necessariamente, a deteccao de anomalias, o que pode impactar
a qualidade da representacdo aprendida e limitar sua eficacia Berahmand et al.| (2024).

Para solucionar essas questdes, aplicam-se técnicas de regularizacao, cujo principio funda-
mental consiste em incorporar restricées na arquitetura do modelo ou em sua funcdo de perda,
com o objetivo de guiar o processo de aprendizado. Essas restricoes incentivam a formacao de
um espaco de caracteristicas mais discriminativo e com propriedades desejaveis, como impor
esparsidade, aumentar a robustez a pequenas variacdes nos dados de entrada, ou preservar a
estrutura intrinseca dos dados (BERAHMAND et al., [2024)).

Pang et al. (2021)) destacam que as vantagens dos métodos baseados em reconstrucdo
incluem simplicidade e aplicabilidade geral a diferentes tipos de dados, enquanto as desvanta-
gens envolvem o aprendizado de regularidades pouco frequentes e limitacdes na deteccdo de

irregularidades raras ou complexas.

2.6 METRICAS DE AVALIACAO

Estabelecidas as técnicas algoritmicas fundamentais, é necessario também compreender

como avaliar adequadamente o desempenho desses sistemas em cenarios praticos. A avaliacdo
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eficaz de sistemas de deteccao de anomalias requer um conjunto abrangente de métricas
que contemplem diferentes aspectos do desempenho e aplicabilidade pratica. Estas métricas
devem considerar nao apenas a acuracia da deteccao, mas também a viabilidade operacional
em ambientes de producdo.

Samariya e Thakkar| (2023) enfatizam a importancia de métricas especificas para detecgdo
de anomalias, incluindo Precision at n (P@n), que mede a proporcdo de anomalias corretas
nos primeiros n resultados classificados, e Average Precision (AP), que assume conhecimento
do nimero total de anomalias e calcula a média das precisdes em cada posicao de anomalia

verdadeira.

2.6.1 Precisao, Recall e F1-Score

A precisdo mede a proporcao de anomalias corretamente identificadas em relacdo ao total
de detecgdes realizadas pelo sistema, sendo matematicamente definida como TP/(TP+FP).
O recall, também conhecido como sensibilidade ou Taxa de Verdadeiros Positivos (TPR),
quantifica a proporcdo de anomalias reais que foram corretamente identificadas pelo sistema,
calculado como TP /(TP+FN). Conforme estabelecido por (RAINIO; TEUHO; KLEN, 2024), estas
métricas expressam respectivamente a porcentagem de instancias corretamente classificadas no
conjunto de instancias classificadas como positivas e no conjunto de instancias verdadeiramente
positivas.

A especificidade mede a capacidade do sistema de identificar corretamente instancias nor-
mais, sendo calculada como TN/(TN+FP). A Taxa de Falsos Positivos (FPR) relaciona-se
diretamente com a especificidade através da férmula FPR = 1 - Especificidade, conforme
detalhado por (NARKHEDE, 2018) e (RAINIO; TEUHO; KLEN, 2024).

O FI1-Score representa a média harmonica entre precisdo e recall, definido matematica-
mente como F1 = 2 - (Precisdo - Recall)/(Precisdo+Recall). Esta métrica oferece uma ava-
liacao balanceada que considera simultaneamente ambos os aspectos, sendo particularmente
valiosa em cenérios desbalanceados onde a acuracia simples pode ser enganosa (RAINIO; TEUHO;

KLEN, 2024).
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2.6.2 AUC-ROC

A Area Under the Curve - Receiver Operating Characteristic (AUC-ROC) avalia a capaci-
dade discriminativa geral do sistema através da analise da relacdo entre a taxa de verdadeiros
positivos e a taxa de falsos positivos em diferentes limites de decisao. Esta métrica oferece
uma visdo abrangente do desempenho do classificador independentemente do limiar especifico
escolhido, sendo particularmente (til para comparacdo entre diferentes algoritmos.

A curva ROC é obtida plotando a sensibilidade (TPR - True Positive Rate) contra a taxa de
falsos positivos (FPR - False Positive Rate) em todos os valores possiveis de limiar (Narkhede,
2018). Conforme descrito por (RAINIO; TEUHO; KLEN, 2024)), a curva ROC é sempre uma funcdo
monotonicamente crescente dentro do quadrado unitério ligada aos pontos (0,0) e (1,1), onde
quanto mais préxima a curva ROC estiver do ponto (0,1), melhores s3o as predicdes. A figura
6] apresenta um exemplo de curva ROC (Google Developers, [2024). Narkhede (2018) destaca
que a AUC-ROC representa o grau ou medida de separabilidade, indicando quanto o modelo

é capaz de distinguir entre classes.

1.0
o .
o K
=
AUC = 0.65
g |
0.0 FPR 1.0

Figura 6 — Exemplo de curva ROC

A interpretacao dos valores de AUC fornece insights importantes sobre o desempenho
do modelo: um modelo excelente apresenta AUC préximo a 1, indicando boa medida de
separabilidade; um modelo pobre apresenta AUC préoximo a 0, sugerindo que estd invertendo

as classificacoes; quando AUC é 0,5, o modelo ndo possui capacidade de separacdo de classes
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(NARKHEDE, 2018). Uma interpretacdo probabilistica util é que quando a AUC é 0,7, por
exemplo, ha 70% de chance de que o modelo seja capaz de distinguir corretamente entre a
classe positiva e negativa (NARKHEDE, 2018).

De acordo com |Narkhede| (2018), existe uma relacdo inversa entre sensibilidade e especifi-
cidade, que é diretamente controlada pelo ajuste do limiar de decisdo (threshold). Ao diminuir
o limiar, o modelo se torna mais permissivo e classifica mais instancias como positivas. Isso,
por consequéncia, aumenta a sensibilidade (a capacidade de encontrar ataques verdadeiros),
mas ao custo de diminuir a especificidade (pois mais trafego normal é classificado incorre-
tamente como ataque). De forma anéloga, ao aumentar o limiar, o modelo se torna mais
rigoroso, elevando a especificidade, mas reduzindo a sensibilidade. Como o FPR ¢ calculado
como 1 - especificidade, essa dindmica implica que a Taxa de Verdadeiros Positivos (TPR, ou
sensibilidade) e a FPR se movem na mesma direcdo: para aumentar uma, é necessario aceitar
um aumento na outra. A Figura|7]ilustra a relacdo inversa entre sensibilidade e especificidade

controlada pelo threshold.

Sensibilidade T, Especificidade | e Sensibilidade |, Especificidade |

Quando diminuimos o threshold, obtemos mais valores
positivos

— aumentamos a sensibilidade e diminuimos a especificidade

Quando aumentamos o threshold, obtemos mais valores
negativos

— obtemos maior especificidade e menor sensibilidade

Como FPR =1 - especificidade:

TPR 1,FPR ] e TPR |, FPR |

Figura 7 — Relacdo entre Sensibilidade, Especificidade, FPR e Threshold

Ao contrario das outras métricas, o valor da AUC n3o depende da escolha do limiar de

decisdo, tornando-se uma métrica robusta para comparacdo de diferentes algoritmos (RAINIO;
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TEUHO; KLEN, 2024). Para problemas de classificacdo multi-classe, pode-se plotar N curvas
AUC-ROC para N classes usando a metodologia “Um contra Todos" (One vs ALL), onde cada

classe é avaliada contra todas as demais combinadas (NARKHEDE, 2018).

2.6.3 Meétricas Especificas para Ambientes de Producao

Taxa de Falsos Positivos e Falsos Negativos (FPR/FNR)

As taxas de falsos positivos e falsos negativos assumem importancia critica em ambientes
produtivos de deteccdo de intrusdo. A taxa de falsos positivos (FPR) mede a proporcdo de
trafego normal incorretamente classificado como anémalo, impactando diretamente na carga

de trabalho dos analistas de seguranca que precisam analisar o evento e na credibilidade do

sistema. A taxa de [False Negative Rate (FNR)| quantifica a proporcdo de ataques reais que

passaram despercebidos, representando um risco direto a seguranca da infraestrutura.
Kumar, Selvi e Kannan| (2023) enfatizam a importancia de avaliar sistemas IDS em ambi-

entes|loT| com um conjunto mais abrangente de métricas. Além da tradicional Taxa de Falsos

Positivos (FPR), que os autores denominam |False Positive Intrusion Detection Rate (FPIDR),

a pesquisa destaca métricas operacionais como Deteccao de Intrusdo em Tempo Real

[Time Intrusion Detection (RTID)| Taxa de Toleréncia a Falhas [Fault Tolerance Rate (FTR)|

e Otimizagdo de Recursos de Rede [Network Resource Optimization (NRO)| como essenciais

para validar a viabilidade pratica desses sistemas em ambientes com recursos limitados.
Métricas de Qualidade de Servico (QoS) para
No contexto de , Kumar, Selvi e Kannan| (2023)) destacam que a medicdo de |Quality]

lof Service (QoS)| constitui uma tarefa imperativa e desafiadora. Os autores argumentam que

muitos estudos utilizam apenas a taxa de falsos positivos como métrica importante, mas que
uma avaliac3o efetiva deve incluir métricas como razdo de entrega de pacotes, delay, energia
consumida, pacotes esperados e acelerados pelos nds, e throughput geral da rede para medicao
eficaz de QoS e anélise comparativa.

Consumo de Meméria

O consumo de meméria avalia a adequacdo do sistema para implementacdo em disposi-
tivos com recursos limitados. Esta métrica é particularmente relevante em contextos de edge
computing e dispositivos [oT] onde as restricdes de hardware podem limitar a complexidade
dos algoritmos implementaveis. A eficiéncia de memodria também impacta a escalabilidade do

sistema em ambientes com miltiplos pontos de monitoramento.
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2.6.4 Equal Error Rate (EER)

Diante desses trade-offs inerentes aos sistemas de classificacdo, surge a necessidade de

identificar um ponto operacional que equilibre adequadamente os diferentes tipos de erro. O

[Equal Error Rate (EER)| constitui uma das principais métricas neste contexto, sendo definido

como o ponto onde a|False Acceptance Rate (FAR)|e a[False Rejection Rate (FRR)|se igualam.

Como destacado por (CHENG; WANG, 2004), oé "uma medida para avaliar o desempenho
do sistema", sendo matematicamente expresso como FAR(7*) = FRR(7*), onde 7* representa
o limiar étimo que satisfaz esta condicdo de igualdade.

A Figura [8|ilustra como o EER representa geometricamente a interseccdo das curvas FAR

e FRR quando plotadas em funcao do limiar de decisao, minimizando simultaneamente ambos

os tipos de erro. Em sistemas baseados em modelos de |Gaussian Mixture Models (GMM),

é calculado através de |Log-Likelihood Ratio (LLR)| scores, onde as taxas sdo formalmente

definidas como FAR(7) = P(s > 7 | Hy) e FRR(7) = P(s < 7 | H;), sendo s o score de

similaridade, Hj a hipdtese de impostor e H; a hip6tese de usuario genuino (CHENG; WANG,
2004).

A principal vantagem do EER é fornecer um critério objetivo para definicdo do limiar ope-
racional, eliminando ajustes empiricos que dependem da intuicdo do desenvolvedor. Cheng e
Wang (2004) demonstram que é possivel estimar o EER diretamente através dos pardmetros
dos modelos, sem necessidade de "um grande niimero de amostras de teste". Esta abordagem

objetiva estabeleceu o EER como métrica padrao para benchmarking de algoritmos biométri-

cos, sendo amplamente utilizada em competicdes como |National Institute of Standards and|

[Technology (NIST)| Speaker Evaluation.
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--- FAR — FERR @ EER
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Modelo: Medele de Mistura Gaussiana (GMM) com escores de Razio de Verossimilhanga Logaritmica

Figura 8 — Curvas FAR e FRR em fungdo do limiar de decisdo 7.

Valores menores de [EER| indicam melhor desempenho do sistema. Experimentos reporta-
dos em (CHENG; WANG, 2004) utilizando dados 1999 demonstraram EERs de 23.7%,
validando a eficacia da métrica para avaliacdo de sistemas reais. O [EER] correlaciona-se inver-
samente com a Area sob a Curva ROC e representa um caso especifico da Taxa de
Erro Balanceada onde os custos de FAR e FRR s3o considerados equivalentes.

As limitacdes do [EER] incluem a dependéncia de distribuices representativas e a nio
consideracao de custos assimétricos entre FAR e FRR. Como observado por (Cheng e Wang
(2004), "a distribuicdo dos scores computados é significativamente enviesada em relagdo a
distribuicdo dos scores obtidos de amostras de teste", exigindo cuidado na interpretacdo dos

resultados quando as condicoes operacionais diferem significativamente do ambiente de teste.
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3 TRABALHOS RELACIONADOS

Este capitulo apresenta uma andlise critica dos trabalhos mais relevantes que abordam
a deteccao ndo supervisionada de ataques zero-day, com foco particular em ambientes de
redes e sistemas criticos. A analise ndo se limita a descrever as abordagens existentes,
mas busca identificar suas principais contribuicdes e as lacunas e limitacGes que motivaram o
desenvolvimento do método proposto nesta dissertacdo. Ao contextualizar a pesquisa frente
a estudos com objetivos semelhantes, este capitulo constréi a justificativa para a arquitetura

HSAE e sua extensdo ensemble.

3.1 REVISAO DA LITERATURA

O estudo conduzido em (ZAVRAK; ISKEFIYELI, [2020)) propde uma abordagem baseada em
aprendizado profundo n3o supervisionado para deteccao de anomalias de trafego e ataques

desconhecidos, incluindo cendrios de zero-day, a partir de dados de fluxo. A investigacdo

compara trés métodos — |Autoencoder (AE)| [Variational Autoencoder (VAE) e [OCSVM| —

todos treinados exclusivamente com fluxos benignos. Os resultados experimentais indicam que
o VAE apresenta desempenho superior na maioria dos cendrios analisados, especialmente na
deteccdo de ataques com alta taxa de ocorréncia, como DoS e DDoS. O estudo tem sido
reconhecido na literatura como uma das referéncias relevantes no uso de autoencoders para a
deteccdo de intrusdes em redes, sendo citado em revisdes sistematicas recentes que discutem
o papel de modelos generativos na seguranca cibernética (HALVORSEN et al., 2024) e que
apresentam taxonomias atualizadas sobre sistemas de detec¢do de intrusées (ALKASASSBEH;
BADDAR, [2023)). Entretanto, os autores ndo exploram mecanismos adaptativos de deteccdo
nem estratégias de controle dindmico de falsos positivos, fatores importantes para aplicacdo
em ambientes reais e dindmicos. Além disso, a utilizacdo exclusiva da métrica AUC (Area
Under the Curve) das curvas ROC (Receiver Operating Characteristic) para avaliacdo limita a
compreensdo mais ampla do desempenho do modelo frente a diferentes aspectos do processo
de deteccao, como precisao, sensibilidade e taxas de erro.

Mbona e Eloffi (2022) propdem detectar ataques zero-day combinando a Lei de Benford

com aprendizado semi-supervisionado e OCSVM] Os experimentos realizados alcancam resul-

tados razoaveis com FI-score de 85% e [Matthews Correlation Coefficient (MCC)| de 74%.
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Apesar de os autores compararem diferentes métodos semi-supervisionados, o trabalho apre-
senta limitacGes para aplicacdo pratica, utilizacdo de thresholds fixos no [OCSVM] sem capa-
cidade de ajuste automatico as variacoes do trafego, dependéncia de scores simples baseados
exclusivamente na saida do classificador sem integracao de miltiplas fontes de informacao e
auséncia de mecanismos adaptativos para ambientes dinamicos. Essas limitacOes, particular-
mente a dependéncia de pardmetros estaticos (thresholds fixos) e a falta de adaptabilidade a
padrdes de trafego varidveis, comprometem a robustez do método em cenérios reais onde o

trafego de rede apresenta caracteristicas dinamicas e evolutivas.

Lu et al.|(2024) exploram aprendizado por transferéncia em sistemas|/Communication-Based|

[Train Control (CBTC)| usando |Convolutional Neural Network (CNN)| e [Long Short-Term Me-|

mory (LSTM)| para extrair automaticamente caracteristicas espaciais e temporais. Apesar de
obter resultados promissores com FI-score de 93,21% para zero-day, a necessidade constante
de fine-tuning com amostras inéditas implica alta complexidade e menor eficiéncia compu-
tacional. Essa necessidade constante de fine-tuning com dados novos e a alta complexidade
computacional prejudicam a aplicacao em tempo real.

Minhas et al.| (2025)) introduzem o [Fog-based One Solution For All (F-OSFA), solu¢do

fog-based generalizavel para deteccao de ataques DDoS zero-day, combinando CNN, arvores
de decisdo e autoencoders contrativos. Apesar da precisio elevada relatada de 96,77%, a
complexidade estrutural e treinamento intensivo resultam em maior laténcia operacional e
elevado consumo de recursos computacionais. A complexidade arquitetural excessiva e o alto
consumo de recursos computacionais limitam sua aplicacao pratica em determinados contextos.

(ZAHOORA et al., 2022)) apresentam uma abordagem baseada em Zero-shot Learning, mé-
todo de aprendizado de maquina onde um modelo é capaz de classificar objetos ou conceitos
que ele nunca viu durante o treinamento. A proposta utiliza autoencoder contrativo profundo
e ensemble heterogéneo com votacido, alcancando recall elevado de 95%. Contudo, os autores
destacam a forte dependéncia da qualidade das representacdes latentes e necessidade de ajus-
tes manuais nas regras do ensemble. Essa dependéncia critica da qualidade das representacdes
latentes e a necessidade de ajustes manuais nas regras do ensemble reduzem a robustez do
método em ambientes dinamicos.

Soltani et al. (2023) apresentam um framework adaptativo de quatro fases baseado em
aprendizado profundo para deteccdo de ataques zero-day, integrando multiplas implementa-
cOes de Open Set Recognition, técnica voltada a identificacdo de padrdes que ndo pertencem

a nenhuma das classes previamente conhecidas, permitindo a deteccdo de instancias inédi-
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tas. Essa abordagem é combinada com clustering otimizado para classificacdo dinamica de
ataques conhecidos e identificacdo continua de novos padrdes maliciosos. O sistema incor-
pora uma arquitetura end-to-end complexa que combina reconhecimento de conjunto aberto,
agrupamento inteligente, rotulagem supervisionada por grupos e atualizacao automética do
modelo. Apesar da adaptabilidade multi-modal demonstrada, o desempenho depende critica-
mente da convergéncia inicial dos algoritmos de clustering e da eficacia dos multiplos médulos
integrados, podendo resultar em degradacao significativa frente a ataques que mimetizam tra-
fego benigno, uma limitacdo que também afeta outras abordagens baseadas em deteccdo de
anomalias. A dependéncia da qualidade inicial do clustering, a necessidade de re-calibracao
periddica dos multiplos componentes e os custos computacionais elevados do treinamento si-
multaneo representam limitacdes para aplicacao pratica em ambientes de producdo, exigindo

expertise especializada para otimizacao e manutencao do pipeline completo.

3.2 SINTESE DAS LACUNAS E REQUISITOS PARA A NOVA ABORDAGEM

Os trabalhos discutidos demonstram que as técnicas atuais de deteccdo de ataques e
anomalias apresentam limitacGes significativas que comprometem sua aplicacdo pratica. As
cinco limitacdes principais identificadas direcionam o desenvolvimento desta pesquisa: falta de
mecanismos adaptativos para ambientes dinamicos, dependéncia de parametros estaticos sem
capacidade de ajuste automatico, complexidade arquitetural excessiva que compromete a efici-
éncia computacional, necessidade de ajustes manuais periddicos e dependéncia de intervencao
humana, e avaliacdo limitada com uso restrito de métricas de desempenho.

A andlise critica da literatura evidencia um conjunto de desafios recorrentes que limitam a
aplicacdo pratica das solucdes existentes. As principais lacunas identificadas, como a depen-
déncia de parametros estaticos, a complexidade arquitetural excessiva e a falta de mecanismos
adaptativos, apontam para a necessidade de uma nova abordagem. Portanto, para superar
essas barreiras, um sistema de deteccdo de ataques zero-day eficaz, especialmente para am-

bientes com recursos limitados, deve atender aos seguintes requisitos fundamentais:

» Adaptabilidade: Possuir mecanismos para ajustar dinamicamente seus parametros de
deteccdo, como o limiar de decisdo, em resposta as variacoes naturais do trafego de

rede.

» Eficiéencia Computacional: Apresentar uma arquitetura leve, com baixo consumo de
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memodria e laténcia, viabilizando sua implementacdo em dispositivos de borda e [loT]

» Autonomia: Reduzir a necessidade de ajustes manuais e intervencdo de especialistas,

automatizando o processo de calibracdo.

» Avaliacdao Abrangente: Ser validado por um conjunto diverso de métricas que reflitam

o desempenho operacional real, para além da acuracia ou da AUC.

O método proposto no capitulo seguinte foi desenvolvido com o objetivo de satisfazer esses

requisitos.
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4 ARQUITETURA PROPOSTA

Este capitulo é dedicado a apresentacdo de uma arquitetura proposta neste trabalho. O
objetivo é detalhar a arquitetura desenvolvida para superar as limitacdes dos autoencoders
convencionais, discutidas no referencial tedrico. Serdo descritos os fundamentos tedricos que

motivaram sua concepcao, a estrutura do modelo e a estratégia de deteccdo implementada.

4.1 A ARQUITETURA HSAE

A proposta central deste estudo reside na construcdo de uma arquitetura de autoencoder
denominado HSAE (Hybrid Scoring Autoencoder), desenvolvido para superar as limitacdes
dos autoencoders tradicionais identificadas na Secdo 2.4. Conforme discutido no referencial
tedrico, autoencoders convencionais dependem exclusivamente do erro de reconstrucdo, o
que pode ser insuficiente para detectar anomalias sutis ou ataques do tipo mimicry (Secdo
2.2). O HSAE aborda essas limitacdes através de uma arquitetura hibrida que combina um
autoencoder profundo com uma ramificacdo auxiliar, responsavel pela geracao de um score
de anomalia que emula uma probabilidade. Essa abordagem implementa uma estratégia de
deteccao multi-critério.

Esta arquitetura hibrida foi concebida com base em trés insights teéricos fundamentais: (i)
a necessidade de miltiplas perspectivas de deteccao para combater ataques evasivos, conforme
demonstrado na discussdo sobre mimicry attacks (Secdo 2.2.1); (ii) a importancia de meca-
nismos adaptativos de threshold, evidenciada pela anélise do Equal Error Rate (Secdo 2.5.4);
e (iii) as limitacGes inerentes de métodos baseados puramente em reconstrucdo, detalhadas na
Secao 2.4.1. A combinacao desses elementos resulta em um modelo mais robusto e adaptavel.

Formalmente, seja # € R? uma amostra de entrada. O encoder mapeia z em um espaco
latente z € R¥, onde k < d, por meio da funcdo hy : R? — RF. O decoder reconstroi
& = gy(2), onde g, : R* — RY. A saida auxiliar é uma funcio § = (W2 +b), com o sendo
a funcdo sigmoide.

A arquitetura completa é, portanto, uma composicao de funcdes parametrizadas:

fo(z) = (go(hu()), o(Why(2) + 1))

onde 0 = {1, ¢, W, b}.



59

A Figura[9 ilustra a arquitetura completa do HSAE, destacando o fluxo de dados desde a

entrada até as duas saidas: a reconstrucdo e a pontuacao de anomalia.
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Figura 9 — Arquitetura do HSAE com dupla saida

Para implementar esta arquitetura, o HSAE é composta por trés componentes principais:

= Encoder: Dense(1024) — Dense(512) — Dense(256), com LeakyRelLU, BatchNorma-

lization e Dropout;
= Decoder: Dense(512) — Dense(1024) — Output;
= Saida Auxiliar: Dense(1, sigmoid).

A concepcdo da arquitetura HSAE foi guiada pelo principio de equilibrar a capacidade repre-
sentacional com a eficiéncia computacional, evitando a “complexidade arquitetural excessiva”
identificada em abordagens correlatas. A complexidade de um modelo, neste contexto, ndo se
define apenas pelo niimero de camadas, mas por uma combinacdo de fatores que incluem a
profundidade da rede, o tipo de camadas utilizadas, a aplicacdo de técnicas de regularizacdo
e a natureza do pipeline de processamento.

A estrutura utiliza uma arquitetura simétrica decrescente-crescente (1024-512-256-512-

1024) baseada em compressdo progressiva de informacdo, seguindo os principios de reducdo
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dimensional efetiva discutidos na Secdo 2.5. Conforme definida na implementac3o, o encoder
com trés camadas densas (Dense) forca o modelo a aprender representacdes cada vez mais
compactas, criando um gargalo que preserva apenas as informacdes mais relevantes. Esta
profundidade foi deliberadamente escolhida por ser suficiente para aprender as relacdes ndo-
lineares complexas presentes nos dados de fluxo de rede, sem incorrer em um nlimero excessivo
de parametros que poderia levar ao overfitting e a um alto custo computacional. Essa con-
figuracdo equilibra dois requisitos conflitantes: (i) capacidade representacional suficiente para
evitar underfitting e (i) compressdo adequada para garantir sensibilidade a desvios anémalos,
conforme demonstrado por (BERAHMAND et al., 2024)). Adicionalmente, a escolha por camadas
Dense é estratégica, pois sdo mais eficientes e adequadas para os dados tabulares (vetores de
caracteristicas) deste trabalho, em contraste com frameworks que empregam Redes Neurais
Convolucionais (CNNs), arquiteturas mais pesadas e projetadas para dados com localidade
espacial, como imagens.

As técnicas de regularizacdo implementadas s3o importantes para este balanco, pois permi-
tem que uma arquitetura contida generalize de forma robusta, controlando sua complexidade
efetiva. Essas técnicas enderecam diretamente desafios de pré-processamento e dados desba-
lanceados (Secdo 2.4.3). O Dropout (0,5 e 0,3) mitiga o risco de overfitting mencionado por
Berahmand et al.|(2024)), enquanto o BatchNormalization garante estabilidade no treinamento
com dados de alta dimensionalidade tipicos de trifego de rede (Secdo 2.4.2). A regulariza-
cdo L2 (0,0001) foi calibrada para preservar a capacidade de deteccdo sem comprometer a
sensibilidade a anomalias sutis, um trade-off critico discutido na Secdo 2.6.1.

Finalmente, a simplicidade do HSAE também reside em sua arquitetura unificada. O deco-
der reconstréi os dados utilizando camadas de 512 e 1024 unidades, enquanto a saida auxiliar
gera uma pontuacdo de anomalia. Ambas as saidas sao geradas a partir de um (nico passe
pelo encoder e otimizadas conjuntamente por uma funcdo de perda hibrida, que combina o
erro de reconstrucdo (Mean Squared Error - MSE) com a entropia cruzada binéria, ponderada
por um fator de 0,03. Esta abordagem integrada é intrinsecamente menos complexa do que
sistemas multi-estagio que acoplam modelos distintos em sequéncia. Para a tomada de deci-
sao, é empregado um score combinado e um limiar adaptativo baseado na métrica Equal Error
Rate (EER), tornando o mecanismo mais sensivel e equilibrado. Portanto, a complexidade do
HSAE foi cuidadosamente calibrada em sua profundidade, tipo de camada e estrutura geral,

constituindo um modelo projetado para ser enxuto e eficaz para o problema em questao.
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4.2 FUNDAMENTACAO DA ARQUITETURA HIBRIDA: COMBINACAO ENTRE RECONS-
TRUCAO E PONTUACAO DIRETA DE ANOMALIAS

A concepcao da arquitetura HSAE foi orientada pela busca de um método de deteccdo de
anomalias que combinasse miltiplos critérios de decisdo — erro de reconstrucao e score de
classificacdo auxiliar —, com o objetivo de aumentar a robustez da deteccao, especialmente
em cendrios com ataques zero-day e do tipo mimicry. A seguir, detalha-se a fundamentacao
para a adocao de uma saida dupla — o erro de reconstrucao e o anomaly score — e como a

combinacao de ambos busca oferecer uma deteccdo mais robusta.

4.2.1 O Papel do Anomaly Score e a Funcao Classificatéria da Saida Sigmoide

O anomaly score foi proposto como uma saida auxiliar que, na pratica, atua como um
classificador binario sobre o espaco latente — a representacdo comprimida e significativa
dos dados gerada pelo encoder. A literatura aponta que essa representacao latente pode ser
utilizada como um extrator de caracteristicas para outras tarefas, como a propria classificacdo
(BANK; KOENIGSTEIN; GIRYES, 2023). Inspirado por essa capacidade, o anomaly score busca
avaliar e classificar se a prépria representacao latente de uma amostra é consistente com os
padroes de normalidade aprendidos.

A sua implementacao utiliza uma funcdo de ativacao sigmoide, uma escolha fundamentada
em suas propriedades matematicas. Uma funcdo de ativacdo sigmoide é nao linear e diferen-
ciavel, requisitos para o funcionamento de redes MLP (Multilayer Perceptron) treinadas com
retropropagacdo (backpropagation) (NARAYAN, |1997)). Seus principais beneficios no contexto

desta arquitetura sdo:

» Interpretabilidade e Classificacao: A funcdo sigmoide mapeia a saida para o intervalo
[0, 1], o que permite que o resultado seja interpretado como uma pontuacdo de anomalia,
analoga a uma probabilidade (PRATIWI et al., [2020)). Essa pontuacdo é a base para a
classificacdo: valores préximos de 0 sdo associados a classe "normal”, enquanto valores

préoximos de 1 s3o associados a classe "anémala”.

» Treinamento Direcionado: No treinamento com dados exclusivamente benignos, a
funcdo de perda hibrida, por meio do componente de entropia cruzada binaria (Binary

Cross-Entropy - BCE) — uma perda cléssica de classificacdo —, incentiva essa saida a
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se aproximar de zero (PRATIWI et al., 2020). Com isso, o modelo é treinado n3o apenas
para reconstruir dados normais, mas também para classificar a representacao latente de

trafego benigno com um score minimo.

Dessa forma, a proposta é que o anomaly score introduza um critério de deteccao classi-

ficatério e complementar, focado na consisténcia da representacdo latente dos dados.

4.2.2 Deteccao de Desvios Estruturais e Representacionais

A eficacia da arquitetura hibrida é demonstrada na fase de teste, momento em que o
modelo, ja treinado com dados normais, confronta dados brutos que nunca viu, incluindo
tanto trafego normal quanto ataques. Ao receber uma nova amostra, o modelo a submete a

duas avaliacGes simultdneas para decidir se é uma anomalia:

1. Verificacdao Estrutural (via Reconstrucdo): O modelo tenta reconstruir a amostra
de entrada. O erro de reconstrucio funciona como um sensor para desvios estruturais.
Se uma amostra de ataque possui padroes, fluxos ou caracteristicas que diferem da
estrutura normal aprendida, o modelo falhard em recrid-la fielmente, gerando um erro

alto.

2. Verificacdo Representacional (via Anomaly Score): O encoder mapeia a amostra
para o espaco latente, e a saida sigmoide a classifica. O anomaly score atua como
um sensor para desvios de representacdo. Mesmo que um ataque seja estruturalmente
similar ao trafego normal, sua representacao interna no modelo pode ser atipica. A
saida sigmoide, treinada para reconhecer apenas representacdes normais, ird sinalizar

essa inconsisténcia com um score alto (préximo de 1).

A necessidade dessa dupla verificacao no teste é justificada pela forma como o modelo
é treinado. Se o treinamento dependesse apenas do anomaly score, o encoder poderia ter
aprendido um atalho: colapsar a informacdo, mapeando todos os tipos de trafego normal para
uma representacao Unica e simplista. Isso destruiria a capacidade do modelo de generalizar, pois
ele ndo teria a sensibilidade para notar, no teste, as nuances que distinguem um ataque sutil de
um trafego normal. A tarefa de reconstrucdo, portanto, atua como um regularizador estrutural

durante o treino, forcando o encoder a criar um mapa rico e detalhado da normalidade, o que
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torna a verificacdo representacional na fase de teste muito mais confidvel e precisa (BANK;

KOENIGSTEIN; GIRYES, 2023).

4.2.3 Score Combinado: Uma Estratégia de Fusdo de Evidéncias

A fusdo dos dois scores em um resultado combinado busca implementar uma estraté-
gia de combinacdo de informacdes, visando criar um indicador de anomalia mais completo.
Esta abordagem encontra respaldo na literatura, onde autoencoders sao utilizados como uma
forma de regularizacao para redes de classificacdo, combinando a perda de reconstrucdo com
a perda de classificacdo em uma funcdo de custo unificada (BANK; KOENIGSTEIN; GIRYES,
2023). Abordagens similares sdo vistas em autoencoders semi-supervisionados, que também
integram diferentes tipos de perdas para alavancar tanto dados rotulados quanto nao rotulados
(BERAHMAND et al., 2024).

A adocdo de uma ponderacdo igualitaria (50/50) representa uma abordagem inicial equili-
brada, que busca assegurar que ambos os mecanismos de deteccdo — estrutural e representa-
cional — contribuam de maneira balanceada para a decisdo final. Essa escolha procura evitar
um viés prévio em favor de um tipo especifico de anomalia, contribuindo para a capacidade

de generalizacao do modelo.

43 ENSEMBLE

Embora o modelo HSAE integre mecanismos de reconstrucdo e uma saida auxiliar, ainda
assim pode apresentar limitacdes frente a certas anomalias que n3o geram distorcdes ex-
pressivas na reconstrucdo. Para aumentar a eficiéncia e reduzir falsos negativos, propomos
uma arquitetura ensemble hibrida sequencial que combina o HSAE com técnicas de reducdo
dimensional e classificacao de outliers.

A abordagem ensemble segue uma arquitetura sequencial onde cada componente contribui
com informacdes especificas para a deteccdo final, conforme ilustrado na Figura [I0] O HSAE
atua como extrator de caracteristicas, gerando representacdes compactas no espaco latente e
o erro de reconstrucdo normalizado. Sobre essas features, aplica-se PCA para preservar 95%
da variancia e eliminar ruidos. O One-Class SVM é treinado com essas features reduzidas para
identificar anomalias com base na fronteira de normalidade. A decisdo final é baseada em um

score combinado, dado por 50% do erro de reconstrucdo e 50% da pontuacdo de anomalia
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calculada pelo[OCSVM] O limiar de decisdo é determinado com base na métrica [EER] calculada

sobre os dados de validac3do, e posteriormente aplicado aos dados de teste para a classificacao

final.
' ™ ' ™\ ' ™
Dimensionality
Encoder-Decoder \
+ + Boundary
\_ J \_ Y, \_ J
HSAE PCA OCSVM

Score Final

Figura 10 — Arquitetura do Ensemble

4.4 DEFINICAO FORMAL E MATEMATICA DO HSAE

O modelo HSAE consiste em um autoencoder hibrido com duas saidas: reconstrucdo do vetor
de entrada & e um score de anomalia §anom € [0, 1]. O treinamento é realizado exclusivamente
com dados benignos, sem a necessidade de rétulos explicitos de ataque.

Seja x € R" uma instancia de trafego de rede. O autoencoder aprende as funcdes:

fo :R" = R" (reconstrucdo) (4.1)

sp: R" — [0, 1] (score de anomalia) (4.2)

A funcao de perda total do modelo é definida como:

Lusae(r,y) = E [[lo = 2| + A+ BCE(Y, fanom) (4.3)

onde:
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» ||z — 2||? é o erro de reconstruc3o;

= Rétulo auxiliar y = 0 para todas as instancias benignas, de modo a forcar a saida sy (z)
a assumir valores baixos em situacGes normais.

» BCE é a Binary Cross-Entropy;

= )\ é o hiperpardmetro de ponderacdo (neste caso, A = 0,03).

4.4.1 Score Combinado e Interpretacao Estatistica

A pontuacdo final atribuida a cada instancia é dada por:

scorecomp () = - RE(z) 4+ (1 — @) - sp(2) (4.4)

com:
= RE(z) =17, |z; — #;] (normalizado);
= «a € [0,1] é o fator de ponderacdo entre reconstrucdo e score de anomalia.
Este score é interpretado como uma variavel aleatéria continua S ~ P(S|z), indicando a
probabilidade de anomalia.
Interpretamos o score combinado como uma varidvel aleatéria continua S condicionada a

entrada x, com densidade pg(s | x). Assim, s = scorecomp() é uma amostra da distribuicdo

condicional de anomalia associada a z.

45 DEFINICAO FORMAL E MATEMATICA DO ENSEMBLE HSAE + PCA + OCSVM

No ensemble hibrido, temos trés estagios:

Codificador do HSAE gera vetores z = Encoder(x); PCA reduz a dimensionalidade: 2’ =
PCA(z); One-Class SVM aprende uma fronteira de decisdo a partir de z’.

A funcdo de decisdo do One-Class SVM ¢é dada por:

h(z) = sign ({w, ¢(2")) + p) (4.5)

O score continuo para cada instancia é a distancia ao hiperplano, invertida e normalizada:

socsvm(z) = = ((w, ¢(2)) + p) (4.6)

A pontuacdo final do ensemble é:
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SCOre€ensemble () = B - RE(x) 4+ (1 — ) - socsym(x) (4.7)

4.5.1 Teste de Hipé6teses para os Scores

Sejam:
= Sy distribuicdo dos scores para y = 0 (benigno);
= S;: distribuicdo dos scores para y = 1 (ataque).

As hipdteses estatisticas sao:

Hy:po=pr vs Hy:pp <y (4.8)

O teste t de Welch pode ser aplicado para validar a separabilidade estatistica entre as

distribuicdes.

4.6 DEFINICAO DOS EXPERIMENTOS

O objetivo dos experimentos é aferir a eficacia do HSAE em sua forma basica e como parte
de um ensemble, comparando-o com modelos representativos do estado da arte na deteccdo
de ataques do tipo zero-day. Para isso, define-se um projeto experimental que avaliard os
modelos em diferentes cendrios operacionais e cargas de ataque, considerando anomalias de
trafego em nivel de fluxo de rede. Em particular, os experimentos avaliam a capacidade do
sistema, treinado exclusivamente com trafego benigno, de: (i) detectar ataques DoS/DDoS;
(ii) identificar atividades precursoras de ransomware antes da criptografia; (iii) reconhecer
variantes e ataques zero-day que se manifestem como desvios do perfil benigno aprendido; e
(iv) manter desempenho robusto mesmo diante de mdltiplos ataques simultaneos.

Cenario de testes

O cendrio de testes representa uma abordagem genérica para a avaliacdo dos modelos de
deteccdo de anomalias, conforme ilustrado pela Figura . O fluxo consiste em treinar os
modelos exclusivamente com dados benignos e, posteriormente, avalid-los em um ambiente
com trafego misto (benigno e malicioso).

A abordagem geral segue as etapas de:
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Data Splitting

Benign

Dataset
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v

Normalization
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evaluation

Figura 11 — Cenério de Testes para Avaliacdo dos Modelos

Evaluation Metrics

Precision
F1-Score
Recall
AUC-ROC
FPR
FNR

1. Separacao dos Dados (Data Splitting): O trafego benigno é dividido, com uma

parte para treinamento e o restante para validacao e teste.

2. Pré-processamento (Data Preprocessing): Os dados sdo normalizados para garantir

a consisténcia e evitar vazamento de informacdes entre as etapas.

3. Treinamento ( Training): Os modelos aprendem o padrdo de normalidade a partir do

conjunto de treino.

4. Codificacao de Rétulos (Label Encoding): Transforma os rétulos textuais em valores

numéricos (0 e 1) para viabilizar o célculo das métricas de desempenho pelo modelo.

5. Avaliacdo (Evaluation): O desempenho dos modelos é medido em conjuntos de vali-

dacdo e teste, que contém tanto dados normais quanto anémalos.

Para avaliar a eficacia da abordagem proposta, o desenho experimental foi estruturado para

analisar o servico de deteccao de anomalias em trafego de rede, especificamente em cenarios

de ataques zero-day. O desempenho do sistema é mensurado a partir de suas respostas,

que podem ser classificadas em trés categorias: a correta deteccdo de anomalias (verdadeiros

positivos), a falha em detectar um ataque existente (falsos negativos) e a classificacdo errénea

de um trafego benigno como anémalo (falsos positivos).

A avaliacdo quantitativa dessa capacidade é realizada por meio de um conjunto de métri-

cas consolidadas. A Area sob a Curva ROC (AUC) é utilizada para medir a capacidade geral

do modelo em distinguir entre trafego normal e malicioso. Para uma anélise mais granular

do desempenho, sdo empregadas a Precisdo (Precision), que avalia a proporcdo de deteccdes
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corretas dentre todos os alertas gerados, e a Revocacdo (Recall), que mede a capacidade
do modelo de identificar todas as anomalias existentes. O FI-Score é entdo calculado como
a média harmdnica entre Precisdo e Revocacdo, fornecendo um balanco entre ambas. Adi-
cionalmente, a Taxa de Falsos Positivos (FPR) e a Taxa de Falsos Negativos (FNR) sdo
inspecionadas para compreender em detalhe os tipos de erro que o modelo comete.

O nicleo do projeto experimental envolve dois fatores principais. O primeiro, um parametro
de sistema, é o préprio modelo de deteccao, que é avaliado em quatro niveis: um modelo de
referéncia (VAE), a proposta principal (HSAE), um ensemble baseado no VAE (Ensemble VAE
+ One-Class SVM) e um ensemble baseado na proposta (Ensemble HSAE + PCA + One-Class
SVM). O segundo, um pardmetro de carga, é o conjunto de dados, que introduz variabilidade de
cendrio através de dois niveis: o dataset CICIDS2017, representando um ambiente corporativo
tradicional, e o ToN_loT, que simula infraestruturas modernas de Internet das Coisas.

Utilizamos como primeiro conjunto de dados, o CICIDS2017 (SHARAFALDIN et al., 2018),
desenvolvido pelo Canadian Institute for Cybersecurity, que simula um ambiente corporativo
real, englobando trafego legitimo e malicioso. Esse conjunto de dados é bastante utilizado em
pesquisas sobre sistemas de deteccao de intrusoes devido a diversidade de ataques modernos
que apresenta, com destaque para os ataques de negacdo de servico (DoS/DDoS). Escolhemos
esses ataques por sua alta frequéncia em redes reais e pelo impacto significativo que exercem
na disponibilidade dos servicos.

Esse conjunto de dados apresenta caracteristicas relevantes para a deteccdo de ataques

zero-day. Composto por 2.830.540 instancias rotuladas e 83 features, permite a extracao

de varidveis como tempo entre fluxos, estatisticas de pacotes e flags [Iransmission Controll

[Protocol /Internet Protocol (TCP/IP)l Conta ainda com o sistema B-Profile, que modela o

comportamento de 25 usuérios reais com base em protocolos como [HT TP [HyperText Trans-
ffer Protocol Secure (HTTPS), [File Transfer Protocol (FTP)| |Secure Shell (SSH)| e e-mail.

Além disso, 83,34% das instancias correspondem a trafego benigno, fornecendo um baseline
estatisticamente robusto para identificacdo de desvios.

Adotamos também o conjunto de dados ToN_loT, desenvolvido pelo Australian Centre
for Cyber Security (MOUSTAFA, 2021)), que representa ambientes modernos e complexos como
casas inteligentes e redes industriais. Esse conjunto de dados inclui miltiplas fontes de dados,
como trafego de rede, que é processado na forma de fluxos para a extracao de caracteristicas

detalhadas, registros de sistemas e dados de sensores, permitindo uma visao abrangente do

comportamento da rede em contextos de Internet das Coisas (loT]) e loT Industrial (Industrial
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Internet of Things (IloT))). A arquitetura que originou o ToN_loT integra as camadas de edge,

fog e cloud, utilizando tecnologias como [Software Defined Networking (SDN)| [Network Func-|

ttion Virtualization (NFV)| e Service Orchestration para coleta simultanea de eventos normais

e maliciosos em ambientes realistas (MOUSTAFA, 2021).

Embora o ToN_loT contenha uma grande variedade de vetores de ataque (Backdoor,

Injection, |Cross-Site Scripting (XSS), Password Cracking, Man-in-the-Middle, entre outros),

foram selecionados para este trabalho apenas os ataques |Denial of Service (DoS)| |Distributed|

[Denial of Service (DDoS)| e Ransomware. Incluimos o ataque de Ransomware devido ao seu

crescimento alarmante, sendo atualmente uma das ameacas mais sofisticadas e destrutivas,
conforme destacado por (RAZAULLA et al., 2023) (BEAMAN et al., 2021)). Essa escolha metodo-
l6gica alinha os experimentos com ameacas reais e criticas em redes operacionais modernas,
conforme discutido no contexto do CICIDS2017.

Utilizar esses dois conjuntos de dados possibilita avaliar a robustez da abordagem proposta
em diversos contextos operacionais e tipos de ameacas, desde ambientes corporativos tradicio-
nais (CICIDS2017) até infraestruturas modernas e heterogéneas (ToN_loT). Essa diversidade
é essencial para validar a generalizacdo dos modelos de deteccao de intrusdes, conforme reco-
mendado na literatura recente (ELOUARDI et al., 2024). Ambos os conjuntos de dados apresen-
tam caracteristicas que estdo em consonancia com os critérios técnicos propostos por (GHARIB
et al,, 20160) para datasets de deteccdo de intrusdo, favorecendo aplicacdes em deteccdo de
anomalias e ameacas previamente desconhecidas.

A combinacdo desses fatores resulta em um total de quarenta experimentos, sendo que no
dataset CICIDS2017 foram testados 5 ataques individuais mais ataques simultdneos, enquanto
no ToN_loT foram 3 ataques individuais mais ataques simultaneos. Na primeira etapa, a ana-
lise focou no desempenho contra ataques de forma isolada. A selecao de ameacas para esta
fase visou refletir os desafios mais criticos e frequentes encontrados em redes operacionais. Do
dataset CICIDS2017, que simula um ambiente corporativo, foram selecionados cinco tipos de
ataques de Negacdo de Servico: DDoS, DoS e suas variantes especificas (Slowloris, Slowhttp-
test, Hulk e GoldenEye). Do dataset ToN_loT, representativo de ambientes modernos de ,
foram escolhidas trés categorias de ameacas: DoS, DDoS e Ransomware. Este teste individual
de cada um dos quatro modelos contra essas ameacas permitiu criar um perfil detalhado da
eficacia de cada modelo contra vetores de ataque especificos.

Na segunda etapa, o foco foi avaliar a robustez dos modelos na presenca de multiplos

ataques simultaneos. O objetivo foi simular um ambiente de rede mais cadtico e realista, onde
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um defensor ndo sabe quantas ou quais ameacas est3o ativas. Nessa fase, os conjuntos de teste
foram compostos por uma mistura de diferentes ataques, testando a capacidade dos modelos
de manter a performance e a generalizacao mesmo sob condicoes de sobrecarga e com ameacas
coexistindo. Essa metodologia de duas fases visa garantir tanto uma compreensao detalhada
da performance dos modelos quanto uma avaliacdo clara de sua aplicabilidade e resiliéncia em

cenarios de seguranca complexos e atuais.

4.7 IMPLEMENTACAO DO CENARIO DE TESTES

Esta secao detalha os procedimentos metodolégicos e praticos adotados na implementacao
do cenario de testes. S3o abordados os detalhes de preparacao dos dados, a configuracdo de
implementacao das arquiteturas propostas e de comparacao, e os protocolos utilizados para o

treinamento e a avaliacdo dos modelos.

4.7.1 Rotulagem e Separacao dos dados

Os dados dos datasets selecionados foram rotulados e separados de acordo com os proce-
dimentos a seguir. Conduzimos o processo de rotulagem por meio do algoritmo LabelEncoder,

que atribui os seguintes valores:
BENIGNO — 0, ANOMALO — 1

Para o treinamento, foram selecionados 50% dos dados benignos, contendo exclusiva-
mente amostras benignas. O conjunto de validacdo foi composto por 20% de dados benignos
e a mesma quantidade de amostras maliciosas, estabelecendo o balanceamento entre as clas-
ses. O mesmo critério de balanceamento foi aplicado ao conjunto de teste, que recebeu os
30% restantes dos dados benignos e uma quantidade equivalente de ataques. A divisdo dos
dados foi realizada utilizando sementes de aleatoriedade fixas (random_state) em todas as
etapas de separacao. Esta metodologia opera sobre fluxos de rede, onde cada amostra indi-
vidual j& representa um resumo estatistico agregado de uma comunicacdo. As caracteristicas
temporais, portanto, estdo encapsuladas nos atributos de cada fluxo, tornando a divisdo por
amostras uma abordagem consistente com a pratica padrao da literatura para datasets desta

natureza (JAVAHERI et al., | 2023)) (ABDULGANIYU; TCHAKOUCHT; SAHEED, |2023)). O conjunto
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de treinamento D__train é definido como:
Dtrain = {(xly yz> S Xtrain X y | Yi = O}

ou seja, é composto exclusivamente por amostras benignas, permitindo ao modelo, neste caso,
o autoencoder aprender a estrutura normal do trafego de rede em auséncia de ruido malicioso.

Os conjuntos de validac3do e teste sdo definidos como:
Dval = {(%7%) c Xval X y | Yi € {07 1} € NO = Nl}

Dtest - {(%7%) S Xtest X y | Yi € {0, 1} € NO - Nl}

onde Ny e N; representam a cardinalidade dos subconjuntos de instancias benignas e malicio-
sas, respectivamente, garantindo o balanceamento entre as classes no conjunto de teste. Essa
divisdo estratégica permite avaliar a capacidade de generalizacdo do modelo frente a dados
ndo vistos, mitigando tendéncias enviesadas e evitando sobreajuste (overfitting) durante o

treinamento.

4.7.2 Pré-processamento dos Dados

A padronizacdo dos atributos foi realizada utilizando a transformacao z-score, dada por:

onde 1 e o s3o a média e o desvio padrdo, respectivamente, calculados sobre o conjunto
de treinamento Dy,..;,. Essa transformacao assegura que os dados possuam média zero e
variancia unitaria, propriedade essencial para estabilizar o processo de otimizacao em redes
neurais profundas.

Neste trabalho, a padronizacdo foi aplicada utilizando o StandardScaler, da biblioteca
Scikit-learn. Primeiramente, s3o calculados a média e o desvio padrdo de cada atributo com
base no conjunto de treinamento por meio do método fit_transform, que também rea-
liza a transformacdo dos dados de treino. Em seguida, a mesma transformacao é aplicada
aos conjuntos de validacdo e teste por meio do método transform, utilizando os parame-
tros previamente ajustados no treino. Essa abordagem evita vazamento de dados e assegura
consisténcia na escala das variaveis em todos os conjuntos.

Para a etapa de avaliacdo, os conjuntos de validacdo e teste, que contém trafego misto (be-

nigno e malicioso), foram transformados utilizando os mesmos parametros do StandardScaler
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ajustado no treino. Em seguida, para viabilizar o calculo das métricas de desempenho, os rétu-
los desses conjuntos foram convertidos em formato binério (0 para benigno, 1 para anomalia)
com o LabelEncoder. Esse procedimento permite uma avaliacao quantitativa da capacidade

do modelo em generalizar e identificar anomalias em dados ndo vistos.

4.7.3 Arquitetura Base: HSAE (Hybrid Scoring Autoencoder)

Como mencionado anteriormente, a arquitetura HSAE representa a primeira proposta deste
trabalho, constituindo uma arquitetura de autoencoder hibrida que combina aprendizado de
reconstrucdo com classificacdo direta de anomalias. Esta abordagem busca superar limita-
cOes dos autoencoders tradicionais, que dependem exclusivamente do erro de reconstrucao
para deteccao, incorporando uma saida auxiliar especializada em pontuacdo probabilistica de
anomalias.

A Figura apresenta a metodologia adotada nesta pesquisa para a avaliacdo do mo-
delo hibrido proposto. Ela descreve desde a divisdao dos dados utilizados, passando pelo pré-
processamento necessario, treinamento do modelo proposto (HSAE) e a etapa final de avali-

acao do desempenho por meio de diversas métricas.

Data Splitting A
Data Preprocessing o
Benign — Trainning
Normalization
—
| o (=N StandardScaler
» o ] ; >
= A FE | (Fit on Train)
Dataset (Transform on Validation/Test)
50% Train l
Evaluation Metrics
HSAE
Benign/Auack Reconstruction
—— P LabelEncoder Precision
— T \ 0 Normal Data I F1-Score
L — 1 Anomaly Data - Recall
20% V: Anomaly Score AUC-ROC
al.
» Benign FPR
30% Test —» Anomaly FNR

Figura 12 — Cenario de testes para o modelo proposto.

Nosso objetivo é simular um cenério realista de deteccdo de anomalias, onde treinamos o
modelo exclusivamente com dados benignos e, posteriormente, o expomos a trafego misto,
contendo instancias normais e maliciosas. Para isso, dividimos os dados da seguinte forma:
50% do trafego benigno foi destinado ao treinamento, 20% foram utilizados na validacio e

os 30% restantes compuseram o conjunto de teste. O threshold é definido via [EER| sobre o
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conjunto de validacdo e entdo aplicado ao teste.

Para os dados de treinamento, utilizamos a técnica de padronizacdo z-score apresentada
na secdo 4.6.3 para o pré-processamento dos atributos, por meio do StandardScaler. Os
parametros de média e desvio padrdo foram calculados exclusivamente sobre o conjunto de
treinamento, uma pratica que evita o vazamento de informacdes (data leakage) entre as
etapas. Esse conjunto de dados de treino, ja normalizado e composto unicamente por trafego
benigno, foi entdo utilizado para treinar o modelo HSAE, permitindo que ele aprendesse a

representar o padrao de normalidade da rede.

4.7.4 Extensao Ensemble: HSAE + PCA + One-Class SVM

Dando sequéncia a justificativa apresentada na Sec3do 4.2, esta secdo detalha a implemen-
tacdo do ensemble hibrido, concebido para superar as limitacées do modelo HSAE isolado. A
arquitetura integra o autoencoder para aprendizado de caracteristicas com um classificador
de fronteira para a deteccao de anomalias, buscando um score mais completo ao combinar a
sensibilidade do erro de reconstrucao com a precisao de um modelo de fronteira.

A Figura [13|ilustra a metodologia adotada nesta pesquisa. O fluxograma descreve o pro-
cesso completo, desde a divisdo dos dados, passando pelo pré-processamento, o treinamento
do ensemble (HSAE+PCA e OC-SVM) e a etapa final de avaliacido de desempenho por meio
de um conjunto de métricas. No pipeline do ensemble, o modelo HSAE, previamente treinado
com sua funcdo de perda hibrida, é empregado de forma especializada. Embora sua saida
auxiliar seja fundamental durante o treinamento para aprimorar a qualidade da representacio
latente, na etapa de inferéncia do ensemble, apenas duas de suas saidas sao utilizadas: o erro
de reconstrucdo, que é combinado com o score do One-Class SVM, e a representacdo latente,
que serve de entrada para o pipeline PCA4+OCSVM. Essa abordagem mantém a especializacdo
de cada componente: o HSAE para modelagem de padr&es normais e 0o [OCSVM| para definicdo

de fronteiras de decis3o.

Este componente utiliza kernel [Radial Basis Function (RBF)| com y="'auto’ e »=0.045,

gerando scores de anomalia baseados na distancia a fronteira.

O objetivo do desenho experimental é simular um cenario realista, onde o modelo é trei-
nado exclusivamente com dados benignos e, posteriormente, avaliado em um ambiente com
trafego misto. Para isso, os dados foram divididos da seguinte forma: 50% do trafego benigno

foi destinado ao treinamento; 20% foram utilizados para a validac3o; e os 30% restantes com-
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Figura 13 — Cenério de testes para o modelo ensemble.

puseram o conjunto de teste. O limiar de decisdo (threshold) é otimizado via Equal Error
Rate (EER) sobre o conjunto de validacdo e, entdo, aplicado ao conjunto de teste para a
classificacdo final.

Assim como no HSAE, para os dados de treinamento, utilizou-se a técnica de padroniza-
cdo z-score apresentada na secao 4.6.3 para o pré-processamento dos atributos por meio do
StandardScaler. A implementac3do segue etapas sequenciais: treinamento do HSAE com dados
benignos, extracdo de features latentes, aplicacao de PCA para reducao dimensional, e trei-
namento do One-Class SVM. Este componente utiliza kernel com y='auto’ e v=0.045,
gerando scores de anomalia baseados na distancia a fronteira. O score final é uma combina-
cdo ponderada: Score_final = 0.5 x Score_ HSAE + 0.5 x Score_OneClassSVM. Ambos os
scores sdo normalizados no intervalo [0,1] para garantir contribuicdo equilibrada, e o threshold
é definido via [EER] sobre o conjunto de validagdo antes de ser aplicado ao teste.

Essa abordagem oferece complementariedade entre métodos: o HSAE captura padrdes
de reconstrucdo, enquanto o One-Class SVM detecta desvios latentes. A combinacdo mitiga
fraquezas individuais e amplifica as forcas de cada técnica, resultando em um sistema de

deteccao mais robusto e preciso.

4.7.5 Modelo de Comparacao: VAE (Variational Autoencoder)

Seguindo a abordagem do estudo de (ZAVRAK; ISKEFIYELI, 2020). Entre os modelos avalia-
dos por aqueles autores, incluindo o Autoencoder tradicional e o One-Class SVM, o Variational
Autoencoder (VAE) apresentou os melhores resultados. Como apresentado anteriormente, o

VAE continua sendo valorizado na literatura atual como uma solucdo eficaz para deteccao
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de anomalias, especialmente em contextos relacionados a seguranca da informacao. Conforme
(BERAHMAND et al., [2024)), autoencoders como o VAE vém sendo empregados com frequéncia
em tarefas que envolvem a identificacdo de comportamentos irregulares em dados complexos.
Sua capacidade de modelar distribuicGes probabilisticas permite detectar desvios sutis em re-
lacdo ao padrdao normal, caracteristica fundamental para sistemas de deteccdo de intrusdes
(IDS). Nesse sentido, o VAE é classificado como um autoencoder generativo e figura entre as
abordagens mais promissoras para cenarios envolvendo trafego andmalo.

Embora o VAE seja uma referéncia importante no campo, o artigo de (ZAVRAK; ISKEFIYELI,
2020) n3o fornece descricdo suficientemente detalhada do processo de preparacdo dos dados.
Etapas essenciais, como os critérios adotados para normalizacdo, estratégias de validacdo e
o tratamento do desbalanceamento entre as classes, nao sao claramente especificadas, o que
compromete a reprodutibilidade dos experimentos.

Como n3o dispinhamos do cédigo original, reimplementamos o VAE ajustado ao nosso
cenario experimental, de modo a assegurar consisténcia metodoldgica em termos de pré-
processamento, divisdo dos dados e métricas de avaliacdo. Essa reimplementacdo preserva

a estrutura central proposta por (ZAVRAK; ISKEFIYELI, 2020), com encoder, decoder e regula-

rizacdo do espaco latente via penalizacdo [Kullback-Leibler divergence (KL)| No entanto, foram

adotadas adaptacdes praticas, como o uso do erro de reconstrucdo como score de detecgdo (em
substituicdo a probabilidade de reconstrucdo) (BERAHMAND et al., [2024) (YANG et al., 2022) e
treinamento com o otimizador Adam (BERAHMAND et al., 2024)). Tais escolhas sdo compativeis
com diretrizes amplamente aceitas na literatura para implementacées praticas de autoencoders
variacionais, que destacam a flexibilidade desses modelos quanto a funcao de ativac3o, tipo de
perda e estratégias de limiar baseadas em métricas estatisticas do erro de reconstrucdo ((YANG
et al} 2022). Essas modificacdes foram necessérias para permitir uma comparacdo justa com
o HSAE, sem comprometer os principios fundamentais do modelo variacional.

A arquitetura implementada para o VAE inclui um encoder com camadas Dense (512 e
256 neurdnios, LeakyRelLU), normalizacdo por lotes e dropout, espaco latente com dimensdo
64, e um decoder simétrico. A funcdo de perda combina MSE (Mean Squared Error) com
penalizacdo [KL}divergence, e o treinamento foi conduzido por 150 épocas. Para a deteccdo
de anomalias, utilizou-se o erro de reconstrucao como métrica base, sendo o limiar de decisado
otimizado através do [EER] O [EER] representa o ponto operacional onde a taxa de falsos
positivos (FPR) se iguala a taxa de falsos negativos (FNR), proporcionando um equilibrio

otimizado entre essas métricas (CHENG; WANG, [2004). O threshold foi calculado sobre
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o conjunto de validacao e posteriormente aplicado no conjunto de teste, garantindo uma
avaliacdo mais robusta e teoricamente fundamentada em comparacdo com métodos baseados
em percentis fixos (YANG et al., [2022)). Essa abordagem permite uma comparacdo mais justa

entre os modelos, uma vez que ambos operam sob condicdes de limiar otimizadas.

4.7.6 Modelo de Comparacao: VAE 4+ PCA + One-Class SVM

Para aprimorar a capacidade de deteccdo do modelo VAE isolado, foi desenvolvida uma ex-
tensdo que implementa uma abordagem hibrida, combinando o Variational Autoencoder (VAE)
com um classificador One-Class Support Vector Machine (OC-SVM). Essa arquitetura sinér-
gica busca superar as limitacdes de um sistema baseado unicamente no erro de reconstrucao,
criando um mecanismo de deteccdo de anomalias com duas camadas de anélise.

A légica fundamental deste modelo hibrido é utilizar o VAE n3o apenas para a reconstru-
cdo de dados, mas também como um extrator de caracteristicas n3o-lineares. O VAE aprende
a comprimir os dados de trafego normal em um espaco latente de dimensionalidade redu-
zida (64 dimensdes, neste caso), que captura as caracteristicas mais salientes e essenciais da
normalidade.

O processo de deteccdo ocorre em duas frentes simultaneas. Na primeira, as representacoes
latentes geradas pelo encoder a partir dos dados de treinamento s3o otimizadas via Analise
de Componentes Principais (PCA), que retém 95% da variancia e estabiliza o processo. Em
seguida, um modelo One-Class SVM é treinado com essas features para aprender uma fronteira
de decisao que delimita a normalidade no espaco de caracteristicas. Na segunda frente, o VAE
reconstroi a instancia de entrada, e o seu erro de reconstrucao é calculado como uma segunda
métrica de anomalia, que tende a ser maior para dados anémalos.

Para cada instancia, o score de anomalia do OC-SVM e o erro de reconstrucao do VAE
sao normalizados e combinados através de uma média ponderada. Isso gera um score de
anomalia hibrido e final, que reflete tanto a dificuldade de reconstrucdo da instancia quanto

sua conformidade com a distribuicdo de dados normais no espaco latente.

4.7.7 Etapa de Treinamento

O modelo foi treinado por 150 épocas com batch size 128, utilizando o algoritmo de

otimizacdo Adam com taxa de aprendizado igual a 5 x 107°. A funcdo de custo hibrida
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garante que o modelo seja sensivel a desvios sutis na estrutura do trafego.

O treinamento segue a estratégia de aprendizado n3o supervisionado, utilizando exclusiva-
mente dados normais (50% do conjunto de dados benignos, conforme descrito na secdo 4.3.3).
Todas as amostras benignas recebem o rétulo zero, estabelecendo o padrao de normalidade
que o autoencoder deve aprender, sem exposicao prévia a padroes maliciosos.

Durante o processo de treinamento, o modelo otimiza simultaneamente a capacidade de
reconstrucdo e a deteccao de anomalias através da funcdo de perda hibrida definida na equacao
(4.3). Essa abordagem permite que o modelo aprenda representacdes robustas do trafego

normal, essenciais para a posterior deteccao de anomalias.

4.7.8 Sintese da Proposta e Vantagens sobre as Abordagens Correlatas

Para abordar sistematicamente essas limitacdes, este trabalho propde inicialmente uma ar-
quitetura Autoencoder (HSAE) que incorpora uma camada adicional de classificacdo no espaco
latente e utiliza uma funcdo de perda hibrida, combinando reconstru¢do (MSE) e classifica-
cdo (binary cross-entropy). O modelo HSAE também emprega otimizacdo dindmica baseada
no Equal Error Rate (EER) para ajuste automatico da fronteira de decisdo, substituindo os
thresholds fixos utilizados em trabalhos como |Zavrak e Iskefiyeli (2020) por um threshold que
se adapta automaticamente as caracteristicas dos dados através de um score combinado que
integra o erro de reconstrucao com o score de anomalia da camada de classificacdo. Esta
proposta busca oferecer uma representacdo robusta e discriminativa dos padroes normais de
trafego, estabelecendo uma baseline com potencial eficiéncia computacional e reduzindo a
dependéncia de ajustes manuais ou processos complexos. Diferentemente de trabalhos como
Zavrak et al. que se restringem a métrica AUC, o modelo é avaliado utilizando um conjunto
mais amplo de métricas, incluindo precisdo, recall, F1-score, FPR e FNR.

Posteriormente, o modelo é ampliado em uma abordagem ensemble hibrida sequencial,
integrando o HSAE com PCA para reducdo dimensional das representacdes latentes e One-
Class SVM para classificacdo das representacSes reduzidas. Esta arquitetura ensemble utiliza
um score combinado que integra o erro de reconstrucdo do HSAE com o score de anomalia
do One-Class SVM, aplicando também a otimizacdo dindmica baseada no Equal Error Rate
(EER) para ajustar automaticamente a fronteira de decisdo as variacdes no trafego. Assim,
busca-se mitigar limitacdes especificas observadas nos trabalhos anteriores, incluindo controle

dindmico dos falsos positivos, menor complexidade estrutural, maior cobertura na avaliacao e
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maior adaptabilidade.

As duas propostas trabalham em conjunto para enderecar cada limitac3o identificada na
tabela comparativa. O modelo HSAE isolado resolve a dependéncia de pardmetros estaticos
através do aprendizado automético de representacGes discriminativas e da substituicdo de
thresholds fixos por otimizacao dindmica do aplicada ao score combinado (erro de re-
construcdo + score de anomalia da camada de classificacdo), enquanto o ensemble hibrido
sequencial (HSAE4+PCA+OCSVM) amplia essa capacidade adaptativa utilizando um score
combinado diferente (erro de reconstru¢do + score do One-Class SVM) com a mesma es-
tratégia de threshold dinamico baseado no Equal Error Rate, eliminando a necessidade de
configuracdo manual de pardmetros de deteccdo. A arquitetura simplificada contrasta com a
complexidade excessiva de modelos como [F~-OSFA] e o processo automatizado de combinacédo
de scores com otimizacdo [EER] elimina a necessidade de ajustes manuais presentes em traba-
lhos como Zahoora et al. A avaliacdao abrangente com miltiplas métricas supera a limitacao
de trabalhos que utilizam apenas AUC-ROC.

As propostas deste trabalho buscam contribuir com um avanco incremental na érea, funda-
mentado diretamente nas lacunas observadas na literatura e sistematizadas na tabela compara-
tiva apresentada. Espera-se oferecer maior adaptabilidade através de mecanismos automaticos
de ajuste baseados em [EER]e scores combinados, menor complexidade estrutural através da ar-
quitetura hibrida sequencial HSAE+PCA+OCSVM mantendo eficacia na deteccao, avaliacdo
mais abrangente com multiplas métricas de desempenho, e aplicabilidade pratica em cenarios
dindmicos e criticos como redes [[oT] e infraestruturas industriais.

Conforme discutido no Capitulo 3, a analise dos trabalhos relacionados revelou um conjunto
de limitacGes que motivaram esta pesquisa. As arquiteturas do HSAE e de sua extensdo
ensemble foram concebidas para superar diretamente cada uma dessas deficiéncias. A Tabela
[1} a seguir, sistematiza essa relacdo, ilustrando como cada limitacdo observada é abordada

por uma caracteristica especifica dos modelos aqui propostos.



79

Tabela 1 — LimitacSes Identificadas versus Solucdes Propostas

Limitacao Identifi-

cada

Trabalhos Afetados

Falta de mecanismos
adaptativos

Solucao Proposta Nesta Pesquisa

(ZAVRAK;  ISKEFIYELI|
2020), (MBONA; ELOFF
2022))

Dependéncia de para-
metros estaticos

Threshold dinamico via EER em subs-
tituicdo aos thresholds fixos, permitindo
ajuste automatico da fronteira de deci-
sao baseado nas caracteristicas dos da-
dos, combinado com scores adaptativos
que integram mudltiplas fontes de infor-
macao

(hABONA;ELOFFT2022L
(SOLTANI et al.| 2023)

Funcao de perda hibrida com apren-
dizado automatico de representacdes dis-
criminativas e scores combinados adap-
tativos

Complexidade arquite-
tural excessiva

LU et al| [2024)),

MINHAS et al.| 2025),

Necessidade de ajustes
manuais

Arquitetura hibrida
HSAE+PCA-+OCSVM
dimensional

sequencial
com reducdo

ZAHOORA et al.| [2022),

(
(
(SOLTANI et al.| 2023)
(
(SOLTANI et al.| 2023)

Avaliacao limitada

Processo automatizado de combina-
¢do de scores (reconstrucdo + classifica-
¢30/OCSVM) com otimiza¢do EER

(ZAVRAK; ISKEFIYELI|

2020)

Conjunto amplo de métricas incluindo
precisao, recall, F1-score, FPR e FNR
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5 RESULTADOS COMPARATIVOS

Este capitulo dedica-se a apresentacdo e analise dos resultados experimentais obtidos para
validar as propostas desta dissertacdo. O desempenho do modelo HSAE e de sua extensdo
Ensemble é rigorosamente avaliado por meio de uma anéalise comparativa com suas respectivas
contrapartes baseadas no modelo de referéncia VAE. A validacao ocorre em dois cenarios
distintos, representados pelos conjuntos de dados CICIDS2017 e ToN_loT. Por fim, a eficiéncia
computacional das arquiteturas é investigada para aferir sua viabilidade em ambientes com

recursos limitados.

5.1 COMPARACAO DE DESEMPENHO ENTRE OS MODELOS HSAE E VAE PARA O
CONJUNTO DE DADOS CICIDS2017

Nesta secdo obtivemos o desempenho do HSAE, utilizando o mesmo conjunto de dados
CICIDS2017 empregado no estudo sobre o VAE de (ZAVRAK; ISKEFIYELI, 2020). Para garantir
uma comparacao justa e atualizada, realizamos uma reimplementacdo metodolégica do modelo
VAE, detalhada na secdo 4.6.6, incorporando técnicas recentemente validadas pela literatura
cientifica atual. Essa atualizacdo metodoldgica resultou em melhorias no desempenho geral
do modelo adaptado para deteccao dos ataques avaliados. Ao comparar os valores da métrica
AUC obtidos por nosso modelo VAE atualizado com aqueles gerados pela implementacao
original de Zavrak e Iskefiyeli (2020), observou-se um ganho em praticamente todos os ataques
considerados. Embora para o ataque DoS Slowloris ndo tenha havido alteracdo significativa
no valor da AUC (0.87), houve aumento nos ataques DoS GoldenEye (de 0.80 para 0.92),
Hulk (de 0.81 para 0.91) e SlowHTTPTest (de 0.86 para 0.94). Essas melhorias
demonstram a eficacia das técnicas introduzidas, destacando-se o uso do erro de reconstrucdo
como métrica de deteccdo, a otimizagdo do threshold baseada no [EER] bem como as melhorias
arquiteturais na rede neural empregada. Além disso, esses resultados reforcam a importancia da
adocao de abordagens metodoldgicas modernas na area de seguranca cibernética, permitindo
avaliacbes mais robustas e eficazes em cenarios reais.

Além da métrica AUC adotada por Zavrak e Iskefiyeli (ZAVRAK; ISKEFIYELI, [2020), am-
pliamos a analise comparativa entre o VAE e o modelo HSAE, utilizando métricas adicionais

relevantes, tais como precisdo, recall, F1-score, taxa de falsos positivos (FPR) e taxa de falsos
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negativos (FNR). A Tabela [2| apresenta os resultados obtidos para cada tipo de ataque de ne-
gac3do de servico (DoS e DDoS), assim como para cendrios de mdltiplos ataques simultaneos,
considerando o conjunto de dados CICIDS2017, com os melhores valores de cada métrica des-
tacados em negrito para cada um dos dois modelos comparados. Essa abordagem visa garantir

uma comparacao justa e metodologicamente alinhada com os objetivos da proposta.

Tabela 2 — Comparacdo de desempenho para o conjunto de dados CICIDS2017.

Ataque Modelo | Precisao FPR FNR Recall | F1-Score | AUC
DDOS VAE 65% 34,76% | 34,49% | 66% 65% 0.75
HSAE 91% 6,36% | 35,95% 64% 75% 0.82

DoS GoldenEye VAE 87% 13,02% | 13,93% | 86% 86% 0.92
HSAE 90% 8,82% | 22,61% 77% 83% 0.92

DoS Hulk VAE 80% 20,10% | 20,32% | 80% 80% 0.91
HSAE 90% 8,30% | 26,53% 73% 81% 0.94

DoS SlowHTTPTest VAE 91% 8,95% | 11,71% | 88% 90% 0.94
HSAE 91% 8,73% | 13,88% 86% 88% 0.94

DoS Slowloris VAE 76% 24,21% | 21,79% 78% 77% 0.87
HSAE 77% 27,40% | 10,28% | 90% 83% 0.89

Miltiplos Ataques VAE 78% 23,42% | 18,03% 82% 80% 0.88
HSAE 80% 22,27% | 8,22% | 92% 86% 0.93

5.1.1 Analise Comparativa com ataques isolados

Os resultados revelam que o modelo HSAE apresenta desempenho superior em diversas
métricas relevantes. Por exemplo, no caso do ataque DDoS, o HSAE alcancou 91% de precis3o,
superando os 65% do VAE, com uma melhoria significativa no FIl-score (75% contra 65%).
Apesar do recall ter tido uma leve inferioridade (64% vs 66%), o HSAE apresentou uma boa
reducdo na FPR (6,36% contra 34,76%), demonstrando excelente controle de falsos positivos.
A métrica AUC do HSAE apresentou valor de 0,82, superando o VAE que obteve 0,75, refletindo
uma maior capacidade do HSAE em classificar corretamente o trafego malicioso e benigno.

No ataque DoS GoldenEye, ambos os modelos apresentaram desempenho equilibrado, com
o HSAE obtendo 90% de precisdo contra 87% do VAE. O FI-score do HSAE foi ligeiramente
inferior (83% vs 86%), assim como o recall (77% vs 86%). A FPR do HSAE foi de 8,82%, com-
parada aos 13,02% do VAE, evidenciando melhor controle de falsos positivos. A métrica AUC

manteve-se equivalente em 0,92 para ambos os modelos, demonstrando capacidade similar de
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discriminacdo entre as classes neste tipo especifico de ataque.

Em relacdo ao ataque DoS Hulk, o HSAE demonstrou melhorias expressivas, com FI-score
de 81% superando os 80% do VAE, precisao de 90% contra 80%. O recall apresentou leve
reducdo (73% vs 80%), porém a FPR do HSAE foi bastante inferior (8,30% vs 20,10%),
demonstrando melhor controle de falsos positivos. A métrica AUC do HSAE foi superior (0,94
contra 0,91 do VAE), indicando melhor desempenho geral na discriminacdo entre trafego
benigno e malicioso para este tipo de ataque.

Nos ataques DoS Slowhttptest, o HSAE apresentou resultados superiores com 91% de
precisdo, mesmo valor do VAE, mas com FI-score inferior (88% vs 90%). O recall do HSAE
foi de 86%, ligeiramente inferior aos 88% do VAE, enquanto a FPR ficou em 8,73% contra
8,95% do VAE. A métrica AUC manteve-se equivalente em 0,94 para ambos os modelos,
demonstrando capacidade similar de classificacao.

No caso do DoS Slowloris, os resultados apresentaram maior variabilidade. O HSAE obteve
77% de precisio, superior aos 76% do VAE, com Fl-score superior (83% vs 77%) e recall
expressi- vamente melhor (90% vs 78%). A FPR do HSAE foi de 27,40%, superior aos 24,21%
do VAE, indicando maior taxa de falsos positivos neste cenario especifico. A métrica AUC do
HSAE foi de 0,89, superior aos 0,87 do VAE.

Para avaliar a robustez dos modelos em cenarios mais complexos e realistas, foi conduzida
uma analise adicional envolvendo mudltiplos tipos de ataques simultaneos. Nesta abordagem,
foi utilizada uma metodologia de divisdo de dados onde o conjunto de validac3o incluiu ata-
ques DDoS, DoS Slowloris e DoS Slowhttptest, enquanto o conjunto de teste foi composto
por DDoS, DoS Slowloris, DoS Slowhttptest, DoS Hulk e DoS GoldenEye. Esta metodologia
permite avaliar tanto a capacidade dos modelos de detectar ataques individuais quanto sua
performance em ambientes com multiplas ameacas coexistentes e ataques também n3o vistos
na validacao.

Os resultados dos miiltiplos ataques revelam aspectos importantes sobre a generalizacdo
dos modelos. O HSAE demonstrou 80% de precisdo contra 78% do VAE, com FI-score superior
(86% vs 80%). O recall do HSAE foi notavelmente superior (92% vs 82%), evidenciando maior
capacidade de identificacdo de ataques em cendrios complexos. Embora a FPR tenha superado
o VAE (22,27% vs 23,42%), a diferenca é pequena. A métrica AUC do HSAE foi melhor (0,93
contra 0,88 do VAE), apresentando uma capacidade superior de discriminacdo em ambientes

com multiplas ameacas.
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5.1.2 Visualizacao Comparativa dos Resultados

As curvas ROC apresentadas na Figura ilustram a separacdo entre trafego benigno e
malicioso nos diferentes ataques, evidenciando visualmente o desempenho dos modelos ana-
lisados. Essa distincdo permite uma comparacao direta entre as abordagens, destacando o
desempenho superior do HSAE em termos de capacidade de discriminacao, especialmente em
cenarios com ataques variados.

Os resultados indicam que o HSAE mantém um desempenho eficaz mesmo em cenarios
complexos, nos quais diferentes tipos de ataques ocorrem simultaneamente. A comparacao
entre ataques isolados e multiplos ataques revela que, apesar de variacdes pontuais em algumas
métricas, o modelo preserva sua robustez, especialmente nos valores de recall e AUC, métricas
necessarias para a deteccdo de anomalias em ambientes reais.

Por fim, com o dataset CICIDS2017, o modelo HSAE demonstrou-se mais eficiente em
termos gerais, validando sua adocdo frente a abordagens tradicionais baseadas exclusivamente
em reconstrucdo. Os resultados obtidos, particularmente em cenarios de mdltiplos ataques, re-
forcam o potencial do HSAE para aplicacdes reais em ambientes corporativos, onde a deteccdo

confidvel de diversas ameacas simultaneas é fator fundamental.
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Figura 14 — Comparacdo das curvas ROC para os modelos HSAE e o VAE usando o dataset CICIDS2017.
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5.2 COMPARACAO DE DESEMPENHO ENTRE OS MODELOS HSAE E VAE PARA O
CONJUNTO DE DADOS TON_IOT

Foram realizados testes utilizando o ToN_/oT, um conjunto de dados que reflete padroes
de trafego oriundos de dispositivos [loT| em ambientes industriais e residenciais, abrangendo
uma variedade de vetores de ataque e condicOes realistas de operacdo. A Tabela (3| apresenta
os resultados obtidos para trés classes de ataques distintas, comparando o desempenho do

modelo proposto HSAE com o modelo de referéncia.

Tabela 3 — Comparacdo de desempenho para o conjunto de dados ToN_loT.

Ataque Modelo | Precisao FPR FNR Recall | F1-Score | AUC
DDOS VAE 70% 25,69% | 25,46% 75% 72% 0.79

° HSAE | 85% | 14,77% | 1555% | 84% | 85% | 0.91

DoS VAE 69% 26,34% | 26,78% 73% 71% 0.76
HSAE 91% 22,11% | 22,13% | 78% 84% 0.77

Ransomware VAE 67% 28,09% | 27,98% 71% 70% 0.76
HSAE 86% 13,93% | 15,07% | 85% 85% 0.86

Midltiplos VAE 85% 20,30% | 43,69% 56% 68% 0.81
Ataques HSAE 95% 10,31% | 9,71% | 90% 92% 0.89

5.2.1 Analise Comparativa com ataques individuais

No contexto do ataque DDoS, o modelo HSAE demonstrou ganhos consideraveis em
relacio ao VAE. A precisdo aumentou de 70% para 85%, evidenciando que o processo de
codificacdo-decodificacdo variacional apresenta limitacdes na captura completa de padrdes
caracteristicos do dataset ToN_loT. A taxa de falsos positivos (FPR) apresentou reducdo
expressiva de 25,69% para 14,77%, demonstrando que ambos os modelos alcancam patamares
operacionalmente viaveis, porém o HSAE mantém vantagem significativa em ambientes com
baixa tolerdncia a alarmes indevidos. A taxa de falsos negativos (FNR) reduziu de 25,46%
para 15,55%, indicando que o VAE apresenta maior propensdo a nio identificacdo de ataques
legitimos comparado ao HSAE. O FI-score aumentou de 72% para 85%, e o recall evoluiu
de 75% para 84%, evidenciando que a arquitetura hibrida proporciona cobertura superior na
identificacdo dos ataques. O valor da AUC passou de 0,79 para 0,91, representando um salto

qualitativo expressivo na capacidade discriminativa, sugerindo que a arquitetura hibrida do
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HSAE é particularmente efetiva na separacdo entre trafego benigno e malicioso.

Para ataques DoS, observou-se comportamento similar com nuances interessantes, onde
a precisio elevou-se de 69% para 91%, demonstrando superioridade consistente do HSAE. O
FPR diminuiu de 26,34% para 22,11%, indicando que ambos os modelos operam em faixas
de falsos positivos relativamente controladas, com o HSAE apresentando vantagem operacio-
nal. O recall apresentou aumento de 73% para 78%, evidenciando que o HSAE proporciona
cobertura superior na deteccdo de ataques. O FI-score progrediu de 71% para 84%, e a
AUC demonstrou evolucao de 0,76 para 0,77, confirmando o aprimoramento da capacidade
de distincdo entre trafego legitimo e malicioso, embora a diferenca seja menor neste cena-
rio especifico, possivelmente devido as caracteristicas menos complexas dos ataques DoS em
comparacdo com DDoS.

No cenéario de ataques Ransomware, o HSAE manteve a tendéncia de superioridade, com
diferencas proporcionalmente menores, evidenciando que o VAE demonstra competéncia con-
sideravel neste dominio especifico. A precisdo aumentou de 67% para 86%, e o FPR reduziu
de 28,09% para 13,93%, isso indica que ambos os modelos alcancam niveis de desempenho
relevantes para aplicacdes praticas, com o HSAE se destacando por apresentar resultados su-
periores. O recall evoluiu de 71% para 85%, acompanhado pelo FI-score que progrediu de
70% para 85%. A AUC apresentou melhoria de 0,76 para 0,86, sugerindo que as caracteristicas
especificas dos ataques ransomware s3o adequadamente capturadas por ambas as arquiteturas,
com vantagem maior para o modelo hibrido.

Na andlise de miltiplos ataques, onde a validacdo foi conduzida com ataques DoS, e o
teste realizado com ataques DDoS e ransomware, observou-se a menor diferenca relativa entre
os modelos, indicando robustez consideravel do VAE em cenérios de generalizacdo. O modelo
HSAE demonstrou desempenho superior, com precisdo alcancando 95% comparada aos 85%
do VAE, mantendo diferenca de aproximadamente 10 pontos percentuais. O FPR foi reduzido
de 20,30% para 10,31%, demonstrando que ambos os modelos operam em faixas aceitaveis,
com o HSAE proporcionando maior confiabilidade operacional. Destaca-se a reducao do FNR
de 43,69% para 9,71%, evidenciando que o VAE apresenta limitacdes na deteccdo de ataques
verdadeiros em cendrios generalizados. O recall atingiu 90% versus 56% do VAE, representando
a maior discrepancia observada e sugerindo que a capacidade de generalizacdo é o principal
diferencial arquitetural do HSAE. O FlI-score alcancou 92% comparado aos 68% do VAE,
e a AUC evoluiu de 0,81 para 0,89, confirmando a robustez superior do modelo hibrido em

cenarios diversificados.
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5.2.2 Visualizacao Comparativa dos Resultados

As curvas ROC apresentadas na Figura ilustram a separacdo entre trafego benigno e
malicioso nos diferentes ataques, evidenciando visualmente o desempenho dos modelos ana-
lisados. A linha vermelha representa o modelo 1, correspondente ao HSAE (Hybrid Scoring
Autoencoder). Ja a linha azul representa o modelo 2, correspondente ao VAE (Variational

Autoencoder).
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Figura 15 — Comparacdo das curvas ROC para os modelos HSAE e VAE usando o dataset ToN_loT.

Os melhores resultados do HSAE em todos os tipos de ataques avaliados sugerem que
as limitacoes observadas do VAE estdo relacionadas as caracteristicas préprias do dataset
ToN_loT, que trabalha com dados de trafego de rede [loT]| com complexidade temporal e

espacial especifica, onde a arquitetura hibrida do HSAE demonstra maior adequacdo para este
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tipo de dados.

5.3 COMPARACAO DE DESEMPENHO ENTRE OS ENSEMBLES NO CONJUNTO DE
DADOS CICIDS2017.

A avaliacdo da arquitetura ensemble HSAE+PCA+One-Class SVM representa uma ex-
tensao natural dos experimentos anteriores, visando investigar se a combinacdo de miltiplas
técnicas ndo supervisionadas pode superar as limitacGes identificadas no modelo isolado HSAE.
Esta abordagem ensemble busca aproveitar a complementariedade entre diferentes paradigmas
de deteccdo: o aprendizado de reconstrucdo do HSAE, a reducdo dimensional do PCA, e a
modelagem de fronteiras de normalidade do One-Class SVM.

A Tabela |4] apresenta os resultados obtidos comparando duas arquiteturas ensemble: En-
semble HSAE (HSAE+PCA+One-Class SVM) versus Ensemble VAE (VAE4PCA+One-Class
SVM), ambos utilizando a mesma metodologia experimental e configuracdo ensemble aplicada
nas secoes anteriores. Esta anélise permitira identificar os ganhos efetivos proporcionados pela
substituicdo do VAE pelo HSAE como componente base na arquitetura ensemble, além de
avaliar os trade-offs entre complexidade computacional e desempenho quando comparado ao

modelo HSAE isolado da Tabela 2l

Tabela 4 — Comparacdo de desempenho dos Ensembles para o conjunto de dados CICIDS2017.

Ataque Modelo | Precisao FPR FNR Recall | F1-Score | AUC
DDOS Ens.VAE 71% 30,72% | 25,20% | 75% 73% 0.81
Ens.HSAE 95% 4,53% | 19,03% | 81% 87% 0.87

DoS GoldenEye Ens.VAE 79% 21,31% | 21,37% | 79% 79% 0.86
Ens.HSAE 92% 8,52% | 7,58% | 92% 92% 0.93

DoS Hulk Ens.VAE 71% 31,28% | 24,12% | 76% 73% 0.81
Ens.HSAE 7% 28,37% | 2,70% | 97% 86% 0.95

Ens.VAE 89% 11,03% | 13,03% | 87% 88% 0.93

DS SIowHTTRTest | o HSAE | 07% | 2.73% | 3.55% | 96% | 97% | 0.97
DoS Slowloris Ens.VAE 84% 11,79% | 38,76% | 61% 71% 0.78
Ens.HSAE 91% 9,55% | 3,11% | 97% 94% 0.94

Maltiplos Ataques Ens.VAE 87% 24,12% | 31,17% | 69% 77% 0.79
Ens.HSAE 96% 19,00% | 8,21% | 92% 94% 0.94
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5.3.1 Analise Comparativa Com ataques individuais

Ataques DDoS: O Ensemble HSAE demonstrou superioridade expressiva sobre o Ensemble
VAE, alcancando 95% de precisdo comparado aos 71% do ensemble VAE, representando um
ganho de 24 pontos percentuais. A taxa de falsos positivos foi drasticamente reduzida de
30,72% (Ensemble VAE) para 4,53% (Ensemble HSAE), evidenciando controle superior de
alarmes indevidos - aspecto critico para a viabilidade operacional. O recall aumentou de 75%
para 81%, enquanto o FI-score evoluiu de 73% para 87%. A métrica AUC progrediu de 0,81
para 0,87, confirmando maior capacidade discriminativa. Comparando o Ensemble HSAE com o
HSAE isolado (Tabela 2: 90% preciséo, 0,82 AUC), o ensemble apresenta ganhos incrementais
mas consistentes: +5 pontos percentuais em precisdo e melhoria substancial no controle de
falsos positivos (6,36% no isolado vs 4,53% no ensemble).

DoS GoldenEye: Neste cenario, ambos os ensembles demonstraram desempenho robusto,
com o Ensemble HSAE alcancando 92% de precisdo contra 79% do Ensemble VAE. A FPR
foi reduzida de 21,31% para 8,52%, mantendo excelente controle de falsos positivos. O recall
permaneceu elevado em 92%, superando os 79% do ensemble VAE, enquanto o FI-score
atingiu 92% comparado aos 79% do baseline ensemble. A AUC evoluiu de 0,86 para 0,93,
indicando capacidade discriminativa superior.

Em relagdo ao HSAE isolado (Tabela 2: 89% precisdo, 0,92 AUC), o Ensemble HSAE
apresenta melhorias sutis, mas consistentes: +3 pontos percentuais em precisdao e +0,01 na
AUC, evidenciando robustez incremental.

DoS Hulk: O Ensemble HSAE demonstrou 77% de precisdo, superando os 71% do Ensemble
VAE, com FPR controlada em 28,37% versus 31,28% do ensemble VAE. O destaque estd no
recall excepcional de 97% comparado aos 76% do ensemble VAE, resultando em FI-score
superior (86% vs 73%). A AUC atingiu 0,95, superando significativamente os 0,81 do ensemble
VAE.

Comparando o Ensemble HSAE com o HSAE isolado (Tabela 2: 89% precisdo, 73% recall,
0,94 AUC), observa-se um trade-off estratégico interessante: reducdo na precisio (89% —
77%, -12 pontos percentuais) em contrapartida a um ganho substancial no recall (73% —
97%, +24 pontos percentuais). Este comportamento sugere que o ensemble estd adotando
uma postura mais conservadora na deteccdo, priorizando a captura de ataques verdadeiros,
mesmo ao custo de gerar mais falsos positivos.

Esta estratégia é particularmente relevante para ataques DoS Hulk, que s3o caracterizados



90

por seu volume elevado e potencial destrutivo significativo. Neste contexto, o custo de ndo
detectar um ataque real (falso negativo) supera o custo operacional de investigar alarmes
adicionais (falsos positivos). O aumento no FI-score (80% — 86%) e na AUC (0,94 —
0,95) confirma que, apesar do trade-off precision/recall, o ensemble mantém desempenho
geral superior, indicando que a arquitetura consegue encontrar um ponto operacional mais
adequado para este tipo especifico de ataque volumétrico.

DoS SlowHTTPTest: Representa o melhor desempenho absoluto do Ensemble HSAE, com
97% de precisdo superando os 89% do Ensemble VAE. A FPR foi reduzida para 2,73%,
demonstrando controle excepcional de falsos positivos. O recall alcancou 96%, superior aos
87% do ensemble VAE, resultando em FI-score de 97% contra 88%. A AUC atingiu 0,97,
proxima ao valor ideal. Comparando o Ensemble HSAE com o HSAE isolado (Tabela 2: 90%
precisdo, 0,94 AUC), o ensemble apresenta ganhos substanciais em todas as métricas: +7
pontos percentuais em precisao e +0,03 na AUC, evidenciando particular eficacia da arquitetura
ensemble para este tipo de ataque.

DoS Slowloris: O Ensemble HSAE alcancou 91% de precis3o, superando significativamente
os 84% do Ensemble VAE. A FPR foi controlada em 9,55% versus 11,79% do ensemble VAE,
enquanto o recall atingiu impressionantes 97% comparado aos 61% do ensemble VAE. O
FI-score evoluiu para 94% contra 71%, e a AUC atingiu 0,94 versus 0,78.

Comparando o Ensemble HSAE com o HSAE isolado (Tabela 2: 76% precisdo, 0,89 AUC),
o ensemble apresenta os maiores ganhos observados: +15 pontos percentuais em precisao e +8
pontos em recall, demonstrando particular adequacdo da arquitetura ensemble para ataques

mais dificeis de ser detectados.

5.3.2 Muiltiplos Ataques: Robustez em Cenarios Complexos

A avaliacdo com multiplos ataques simultaneos revelou aspectos fundamentais sobre a ro-
bustez dos ensembles. O Ensemble HSAE demonstrou 96% de precisdo contra 87% do Ensem-
ble VAE, evidenciando capacidade superior de manter performance em ambientes complexos.
A FPR foi reduzida de 24,12% para 19,00%, enquanto a FNR apresentou melhoria dramética
de 31,17% para 8,21%, indicando deteccdo superior de ataques verdadeiros. O recall atingiu
92% versus 69% do ensemble VAE, resultando em FI-score de 94% contra 77%. A AUC
evoluiu de 0,79 para 0,94, representando um salto qualitativo na capacidade discriminativa.

Comparando o Ensemble HSAE com o HSAE isolado em cenérios de miltiplos ataques
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(Tabela 2: 80% precisdo, 0,93 AUC), o ensemble apresenta ganhos expressivos: +16 pontos
percentuais em precisdo e +1 ponto em recall. Esta melhoria sugere que a arquitetura ensemble

é particularmente eficaz em cenérios heterogéneos, onde diferentes tipos de ataques coexistem.

5.3.3 Visualizacao Comparativa dos Resultados

Para complementar a analise quantitativa apresentada, a Figura apresenta as curvas
ROC comparativas entre as abordagens avaliadas: Ensemble VAE e Ensemble HSAE. As curvas
ROC permitem uma visualizacao clara da capacidade discriminativa de cada modelo, eviden-
ciando tanto as melhorias na separacdo entre trafego benigno e malicioso proporcionadas pela

arquitetura ensemble quanto a superioridade consistente sobre o ensemble VAE. As curvas

ilustram graficamente a relacdo entre|True Positive Rate (TPR)|e Taxa de [False Positive Rate|

para cada tipo de ataque, permitindo identificar visualmente os cenérios onde o en-
semble HSAE demonstra maior vantagem na capacidade de classificacdo. Esta representac3o
visual facilita a compreensdo da eficacia discriminativa das diferentes abordagens e reforca as
conclusdes da anélise de AUC-ROC apresentada anteriormente, onde valores mais préximos
ao canto superior esquerdo indicam desempenho superior.

Os resultados evidenciam que a arquitetura Ensemble HSAE (HSAE+PCA+One-Class
SVM) consegue capturar aspectos complementares dos padrdes anémalos que escapam tanto
ao Ensemble VAE quanto ao HSAE isolado. O componente PCA demonstra eficicia na re-
ducdo de ruido das representacdes latentes extraidas pelo HSAE, preservando informacdes
discriminativas relevantes. O One-Class SVM atua como um classificador de fronteira que
identifica outliers no espaco reduzido, proporcionando uma segunda linha de deteccao base-
ada em principios geométricos distintos do aprendizado de reconstrucao.

A superioridade do Ensemble HSAE sobre o Ensemble VAE confirma que o modelo base
HSAE fornece representacdes latentes mais adequadas para a deteccdo de anomalias quando
combinado com técnicas complementares. A combinacdo ponderada 50/50 entre os scores do
HSAE e do One-Class SVM mostrou-se equilibrada, evitando dominancia excessiva de qualquer
componente. Esta estratégia permite que o ensemble capture tanto anomalias baseadas em
erro de reconstrucao quanto desvios geométricos da regido de normalidade, resultando em
maior robustez frente a diversidade de padrdes anomalos.

A arquitetura ensemble apresenta trade-offs importantes que devem ser considerados em

aplicacdes praticas. O ganho em precisao e robustez vem acompanhado de maior complexidade
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computacional, envolvendo trés estagios sequenciais: extracdo de features pelo HSAE, reducio
dimensional via PCA, e classificacdo pelo One-Class SVM. Esta complexidade adicional resulta
em maior laténcia de deteccdo e consumo de recursos computacionais.

Para ataques como DoS SlowHTTPTest e Slowloris, onde o ensemble demonstra ganhos
substanciais (7-15 pontos percentuais em precisdo), a complexidade adicional se justifica pela
melhoria significativa na qualidade da deteccdo. Entretanto, para ataques como DoS Hulk,
onde o trade-off precision/recall é menos favoravel, a escolha entre modelo isolado e ensemble

deve considerar os requisitos especificos da aplicacao.

5.3.4 Sintese Estratégica

Os resultados do Ensemble HSAE (HSAE+PCA+One-Class SVM) estabelecem uma alter-
nativa robusta que supera tanto o Ensemble VAE quanto oferece melhorias significativas sobre
o HSAE isolado em cenérios que demandam alta precisdo e baixas taxas de falsos positivos.

A arquitetura demonstra particular eficacia em:

1. Ataques de baixa intensidade (Slowloris): onde o ensemble HSAE apresenta ganhos

de +15% em precisdo sobre o modelo isolado e +7% sobre o ensemble VAE

2. Cenarios de miiltiplos ataques: onde a diversidade de padrdes maliciosos exige abor-
dagens mais sofisticadas, com o ensemble HSAE superando o ensemble VAE em 9 pontos

percentuais de precisao

3. Ambientes criticos: onde falsos positivos representam custos operacionais elevados,

com reducdo consistente da FPR em todos os tipos de ataque

A escolha entre HSAE isolado, Ensemble HSAE e Ensemble VAE deve ser orientada pelos
requisitos especificos do ambiente de implantacao, balanceando precisdo desejada, recursos
computacionais disponiveis e tolerdncia a laténcia de deteccdo. Os resultados sugerem que
o Ensemble HSAE representa uma evolucdo natural tanto do HSAE isolado quanto uma
alternativa superior ao ensemble VAE para aplicacGes que priorizem maxima precisao e robustez

em detrimento da simplicidade computacional.
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5.4 COMPARACAO DE DESEMPENHO ENTRE OS ENSEMBLES NO CONJUNTO DE
DADOS TON_IOT.

A avaliacao da arquitetura ensemble no dataset ToN_loT oferece insights complementares

aos resultados obtidos no CICIDS2017, permitindo validar a robustez da abordagem proposta

em contextos de e ambientes industriais. O ToN_loT apresenta caracteristicas distintas

de trafego, incluindo padroes de comunicacido especificos de dispositivos [loT]| e vetores de

ataque adaptados a esses ambientes, tornando essencial avaliar como as diferentes arquiteturas

ensemble se comportam neste cenéario operacional especifico.

A Tabela apresenta os resultados comparativos entre Ensemble HSAE (HSAE+PCA+One-
Class SVM) e Ensemble VAE (VAE+PCA+One-Class SVM) no dataset ToN_loT, utilizando

a mesma metodologia experimental estabelecida nas secdes anteriores. Esta andlise permitira

identificar se os ganhos observados no CICIDS2017 se mantém em ambientes[loT], além de ava-

liar a adaptabilidade da arquitetura ensemble a diferentes perfis de trafego e tipos de ataques.

As curvas ROC correspondentes sdo apresentadas na Figura 8, proporcionando visualizacdo

detalhada do comportamento discriminativo de cada arquitetura ensemble nos diferentes tipos

de ataque.

Tabela 5 — Comparacdo de desempenho dos Ensembles para o conjunto de dados ToN_loT.

Ataque Modelo | Precisao | FPR FNR Recall | F1-Score | AUC

DDOS Ens.VAE 75% 25,34% | 24,80% | 75% 75% 0.83

Ens.HSAE 97% 2,15% | 26,28% 74% 84% 0.82

DoS Ens.VAE 78% 18,82% | 32,49% 68% 73% 0.82

Ens.HSAE 95% 4,45% | 10,10% | 90% 93% 0.93

Ransomware Ens.VAE 63% 42,35% | 28,73% 71% 67% 0.71

Ens.HSAE 94% 5,82% | 5,40% | 95% 94% 0.96

L Ens.VAE 77% 41,65% | 39,61% 70% 74% 0.70
Multiplos Ataques

Ens.HSAE 96% 7,38% | 5,15% | 95% 96% 0.95

5.4.1 Analise Comparativa Detalhada

Ataques DDoS: O Ensemble HSAE demonstrou precisdo excepcional de 97% comparado

aos 75% do Ensemble VAE, representando um ganho substancial de 22 pontos percentuais.

A taxa de falsos positivos foi drasticamente reduzida de 25,34% para 2,15%, evidenciando
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controle superior de alarmes indevidos - aspecto critico para ambientes [loT| onde recursos
computacionais sdo limitados. Entretanto, observa-se um trade-off no recall, que foi de 74%
para o Ensemble HSAE versus 75% para o Ensemble VAE, uma diferenca marginal de 1
ponto percentual. O FI-score do Ensemble HSAE atingiu 84% contra 75% do Ensemble VAE,
enquanto a AUC foi ligeiramente inferior (0,82 vs 0,83).

Comparando o Ensemble HSAE com o HSAE isolado (Tabela 3: 85% precisdo, 84% recall,
0,91 AUC), o ensemble apresenta ganhos significativos em precisdo (+12 pontos percentuais)
em contrapartida a uma redu¢do no recall (84% — 74%, -10 pontos percentuais). A AUC
apresenta reducdo de 0,91 para 0,82, sugerindo que para ataques DDoS no contexto [loT], o
ensemble prioriza precisao extremamente alta em detrimento da sensibilidade geral.

DoS: O Ensemble HSAE alcancou 95% de precisdo, superando significativamente os 78%
do Ensemble VAE. A FPR foi reduzida de 18,82% para 4,45%, demonstrando controle ex-
cepcional de falsos positivos. O recall atingiu 90% versus 68% do Ensemble VAE, resultando
em FI-score superior (93% vs 73%). A AUC evoluiu de 0,82 para 0,93, indicando capacidade
discriminativa substancialmente superior.

Comparando o Ensemble HSAE com o HSAE isolado (Tabela 3: 91% precisdo, 77% recall,
0,77 AUC), o ensemble apresenta melhorias consistentes em todas as métricas: +4 pontos
percentuais em precisdo, +13 pontos em recall, +8 pontos em FI-score e 40,16 na AUC.
Este comportamento sugere que a arquitetura ensemble é particularmente eficaz para ataques
DoS em ambientes [oTl

Ransomware: Representa o melhor desempenho absoluto do Ensemble HSAE, com 94% de
precisdo superando dramaticamente os 63% do Ensemble VAE. A FPR foi reduzida de 42,35%
para 5,82%, uma melhoria excepcional de 36,53 pontos percentuais. O recall alcancou 95%
versus 71% do Ensemble VAE, resultando em FI-score de 94% contra 67%. A AUC atingiu
0,96 comparado aos 0,71 do Ensemble VAE, representando um salto qualitativo na capacidade
discriminativa.

Comparando o Ensemble HSAE com o HSAE isolado (Tabela 3: 73% precisdo, 70% recall,
0,68 AUC), o ensemble apresenta os maiores ganhos observados no dataset ToN_loT: +21
pontos percentuais em precisao, +25 pontos em recall, +24 pontos em FI1-score e +0,28 na
AUC. Esta melhoria substancial indica que a arquitetura ensemble é especialmente adequada
para deteccdo de ransomware em ambientes [[oT] onde este tipo de ataque representa uma
ameaca critica. Mdltiplos Ataques: Robustez em Ambientes [loT| Complexos A avaliagdo com

mdltiplos ataques no contexto revelou aspectos fundamentais sobre a adaptabilidade dos
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ensembles. O Ensemble HSAE demonstrou 96% de precisdo contra 77% do Ensemble VAE,
evidenciando capacidade superior de manter performance em ambientes heterogéneos. A
FPR foi reduzida drasticamente de 41,65% para 7,38%, enquanto a FNR apresentou melhoria
de 39,61% para 5,15%. O recall atingiu 95% versus 70% do Ensemble VAE, resultando em
Fl-score de 96% contra 74%. A AUC evoluiu de 0,70 para 0,95, representando um salto

qualitativo excepcional na capacidade discriminativa.

5.4.2 Muiltiplos Ataques: Robustez em Cenarios Complexos

Comparando o Ensemble HSAE com o HSAE isolado em cenérios de miiltiplos ataques
(Tabela 3: 94% precisdo, 90% recall, 0,89 AUC), o ensemble apresenta ganhos consistentes:
+2 pontos percentuais em precisdo, +5 pontos em recall e +0,06 na AUC. Embora os ganhos
sejam mais modestos que em outros tipos de ataque, demonstram robustez incremental em
cendrios complexos.

Anidlise Contextualizada para Ambientes Os resultados no dataset ToN_loT revelam
caracteristicas distintas em relacdo ao CICIDS2017, particularmente na magnitude dos ga-
nhos proporcionados pelo ensemble. Para ransomware, onde o ensemble demonstra melhorias
de mais de 20 pontos percentuais em miultiplas métricas, observa-se que a arquitetura en-
semble consegue capturar padroes especificos deste tipo de ataque que sao particularmente
desafiadores no contexto [oTl

A reducdo consistente da FPR em todos os tipos de ataque (2,15% a 7,38% para o
Ensemble HSAE versus 18,82% a 42,35% para o Ensemble VAE) é especialmente relevante
em ambientes [[oT] onde recursos computacionais limitados tornam custosa a investigacdo de
falsos positivos. Esta caracteristica posiciona o Ensemble HSAE como uma solucio adequada

para implantacao em dispositivos com restricoes de processamento.

5.4.3 Visualizacao Comparativa dos Resultados

A anélise das curvas ROC na Figura [17] corrobora estes achados, evidenciando a superiori-
dade discriminativa do Ensemble HSAE, particularmente evidente nos ataques de ransomware
e cenarios de multiplos ataques, onde as curvas demonstram maior area sob a curva e melhor

separacdo entre classes.
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Figura 17 — Comparacdo das curvas ROC para os Ensembles usando o dataset ToN_loT.

5.4.4 Sintese Estratégica para loT

Os resultados do Ensemble HSAE no dataset ToN_loT estabelecem sua adequacdo supe-
rior para ambientes [loT], superando consistentemente o Ensemble VAE em todas as métricas
avaliadas. A arquitetura demonstra particular eficicia em:

Deteccdo de ransomware: onde apresenta os maiores ganhos absolutos (4+21% preciséo,
+25% recall sobre o modelo isolado), controle de falsos positivos: com FPR consistentemente
baixa (2,15% a 7,38%), fundamental para ambientes com recursos limitados e robustez em
mdltiplos ataques: mantendo precisdo >96% mesmo em cendrios complexos

A escolha do Ensemble HSAE para ambientes [[oT| deve considerar os ganhos substantivos

em precisdao e controle de falsos positivos, que compensam a complexidade computacional
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adicional em aplicacoes criticas onde a deteccao confidvel de ameacas é prioritaria.

5.5 EFICIENCIA DE RECURSOS COMPUTACIONAIS E CONSUMO DE MEMORIA

Para a viabilidade de sistemas de deteccao de intrusdo em ambientes reais, especialmente
sob restricGes de recursos, é necessario avaliarmos a eficiéncia de meméria dos modelos de
sistema de deteccdo de anomalias. Para isso, comparamos nosso ensemble HSAE com o fra-
mework proposto por (SOLTANI et al, 2023)), adotando a mesma métrica utilizada pelos autores
— o tamanho do modelo carregado em memoéria ("model size (in memory)"), que considera
exclusivamente os parametros do modelo, desconsiderando dados de entrada, bibliotecas ex-
ternas e overhead do sistema.

O framework proposto em (SOLTANI et al., 2023) foi selecionado como base de compara-
cdo nesta analise por representar a Unica obra, dentre os seis estudos analisados na secdo de
trabalhos relacionados, que explicitamente reporta o consumo de memoéria do modelo como
uma de suas métricas avaliativas. Essa escolha justifica-se ndo apenas pela relevancia do fra-
mework proposto pelos autores no contexto de deteccdo de ataques zero-day, mas também
pela possibilidade de estabelecer uma comparacao objetiva com base no tamanho do mo-
delo em meméria ("model size"), conforme definido no préprio artigo. Assim, a comparacdo
realizada nesta secao visa destacar, de forma justa e técnica, os ganhos obtidos em termos
de eficiéncia computacional pelo ensemble da proposta HSAE em relacdo aos métodos de
referéncia.

Embora a métrica de medicdo seja equivalente, é importante ressaltar uma diferenca fun-
damental entre as abordagens. Enquanto os autores de (SOLTANI et al., [2023) utilizaram o fra-
mework [Deep Intrusion Detection (DID)], que converte dados de rede brutos (formato
[Capture (PCAP))) em vetores de 20.000 dimensdes (200 bytes x 100 pacotes), nossa aborda-

gem opera diretamente sobre dados tabulares (formato|Comma-Separated Values (CSV))) com

78 features originais do dataset CICIDS2017. O objetivo é quantificar o impacto estrutural e

arquitetural de cada método sobre o consumo de meméria do modelo.

5.5.1 Resultados Comparativos e Analise Arquitetural

Na Fase 1 do framework adaptativo proposto por Soltani et al| (2023) — a etapa de

open set recognition, responsavel por detectar amostras desconhecidas enquanto identifica
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corretamente as conhecidas — os autores comparam cinco abordagens para medir desempenho
e custo computacional, buscando o melhor equilibrio entre precisao e viabilidade pratica. A
Tabela [f] sintetiza o tamanho do modelo na meméria de cada método considerado por [Soltani
et al.| (2023) e serve aqui como base para a nossa comparacdo: OpenMax (BENDALE; BOULT,
2016), 1,5 GB, baseado em com recalibracdo por distribuicoes de Weibull sobre o vetor

de ativacdes médias; [Deep Open Classification (DOC)| (SHU; XU; LIU, [2017), 1,5 GB, que

substitui softmax por camadas 1-vs-rest com decisao por limiar; |Classification-Reconstruction|

[Learning for Open-Set Recognition (CROSR)| (YOSHIHASHI et al., [2019), 4,5 GB, que concatena

a representacdo [Deep Hierarchical Representation Network (DHRNet)| a do classificador e

aplica OpenMax sobre essa concatenacdo, envolvendo treino em duas etapas e as propostas
dos préprios autores, DOC++ e AutoSVM (SOLTANI et al., 2023), com 1,5 GB e 4,5 GB,
respectivamente. No DOC++ os autores ensinam explicitamente, ainda no treino, a existéncia
de classes desconhecidas por meio de amostras suplementares, mantendo decisao por limiar,
enquanto no AutoSVM um Stacked Autoencoder reduz a dimensionalidade e quatro One-Class
SVMs (um por classe conhecida) fazem a rejeicdo do que n&o pertence a nenhuma classe. Nos
resultados reportados, o DOC++ aparece como o método de melhor desempenho na Fase 1.

Tabela 6 — Comparacdo de Consumo de Meméria por Componente

Framework Método Tamanho do Modelo | Componentes Princi-
pais

Bendale & Boult (2016) OpenMax 1.5 GB CNN + Weibull distri-
butions

Shu et al. (2017) DOC 1.5 GB CNN + 1-vs-rest layers

Yoshihashi et al. (2019) CROSR 4.5 GB DHRNet + Classifica-
dor CNN com Open-
Max aplicado na conca-
tenacdo das representa-
coes

Soltani et al. (2023) DOC++ 1.5 GB CNN + 1-vs-rest layers

Soltani et al. (2023) AutoSVM 45 GB Stacked AE + 4xOne-
Class SVMs

Ensemble HSAE Pipeline Integrado 7,89 MB HSAE + PCA + One-
Class SVM

Com essa linha de base, comparamos diretamente o nosso ensemble HSAE ao DOC++,
que apresentou o melhor desempenho. O tamanho do Ensemble HSAE medido em execucdo
é de 7,89 MB (CICIDS2017 em cenério multiclasse de ataques), o que permite comparagdo

direta com o cenario multiclasse do DOC++-. A diferenca de consumo de meméria, 99,8%
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menor em relacdo a CROSR/AutoSVM e 99,5% menor em relacdo ao préprio DOC++, de-
corre de quatro fatores arquiteturais do HSAE: (i) entrada e dimensionalidade otimizadas,
pois enquanto Soltani et al. (2023) utilizam o [DID|com 20.000 dimensbes extraidas de [PCAP]
operamos diretamente sobre 78 atributos estatisticos do [CSV| do CICIDS2017, reduzindo a
carga de entrada; (ii) arquitetura hibrida unificada, integrando reconstrucdo e classificacdo em
uma Unica estrutura com funcdo de perda combinada, ao passo que arranjos como o
exigem componentes adicionais (DHRNet + classificador + OpenMax); (iii) reducdo dimen-
sional via PCA com 95% de variancia antes do One-Class SVM, diminuindo a complexidade
do classificador frente a alternativas baseadas em miiltiplos SVMs de alta dimensionalidade;
e (iv) eliminacdo de redundancias, ja que, enquanto Soltani et al.| (2023) implementam cinco
métodos distintos para a Fase 1, o Ensemble HSAE adota um pipeline Gnico e enxuto, com

menos parametros e manutencao simplificada.

5.56.2 Consumo Total de Sistema e Implicacées Praticas

Embora as abordagens utilizem entradas distintas (PCAP vs. CSV), consideramos que a
métrica de comparacao escolhida — o consumo do modelo em meméria — pode oferecer uma
base comparativa (til. A escolha por dados tabulares busca equilibrar eficiéncia computacional
com aplicabilidade prética, procurando manter a capacidade de deteccdo dentro de limitacGes
aceitaveis.

Adicionalmente a medicdo do ensemble HSAE isolado, monitoramos também o consumo

total de meméria do processo Python, utilizando o indicador [Resident Set Size (RSS)| durante

a execucao do teste. Esse valor representa a quantidade total de meméria residente ocupada

em [Random Access Memory (RAM)| durante a execucdo do sistema completo, incluindo os

dados carregados em memoria, as bibliotecas Python e o overhead do interpretador. O valor
registrado foi de 3.547,51 MB, que corresponde ao pico de uso durante a inferéncia sobre
multiplos tipos de ataques. Ainda assim, esse total completo permanece aproximadamente
27% inferior ao tamanho isolado do modelo AutoSVM reportado por e (SOLTANI et al., 2023),
que é de 4.500 MB apenas para os parametros dos modelos, sem considerar o overhead
adicional do sistema.

A eficiéncia de meméria obtida pelo ensemble HSAE apresenta implicacdes praticas signi-
ficativas. O modelo de 7,89 MB permite deployment em dispositivos com recursos limitados,

incluindo edge computing e [loT| gateways, contextos onde os 4,5 GB do framework completo
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de Soltani seria proibitivo. O menor consumo de meméria traduz-se diretamente em reducio
de custos de infraestrutura em ambientes cloud e permite execucdo simultanea de mdltiplas
instancias do modelo em um Unico nd, aumentando a vaz3o do sistema.

Os resultados demonstram que o ensemble HSAE alcanca eficiéncia de meméria superior
através de design arquitetural otimizado, mantendo performance de deteccao competitiva. A
reducdo de 99,8% no consumo de meméria, combinada com a eliminacdo da necessidade de
intervencdo manual (clustering e rotulagem por especialistas), posiciona o ensemble HSAE
como uma alternativa mais pratica e escaldvel para deployment em ambientes de producao.
Esse resultado reforca que, mesmo considerando todos os fatores do ambiente de execucdo
real, o ensemble da proposta HSAE apresenta uma eficiéncia global superior, questionando
a necessidade de frameworks multi-fase complexos para problemas de deteccao de anomalias

em redes.
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6 CONCLUSAO E SUGESTOES

6.1 CONCLUSAO

Este trabalho apresentou o HSAE, uma arquitetura hibrida ndo supervisionada para de-
teccao de ataques Zero-Day, juntamente com sua extensiao baseada em ensemble. A solucao
proposta combina o erro de reconstrucdo com mecanismos de pontuacdo hibrida e limiares
de decisdao dinamicos otimizados via Equal Error Rate. Esta abordagem demonstrou superi-
oridade em relacdo ao modelo de referéncia baseado em Variational Autoencoder (VAE). A
arquitetura ensemble, que integra HSAE, PCA e One-Class SVM, apresentou robustez e capa-
cidade de generalizacdo em diferentes ambientes de rede. O método manteve altos niveis de
precisao e baixas taxas de falsos positivos, o que demonstra sua eficacia na identificacao de
trafego anémalo mesmo na auséncia de dados maliciosos previamente rotulados no processo
de treinamento.

A avaliacdo empirica nos conjuntos de dados CICIDS2017 e ToN_loT confirmou a supe-
rioridade de ambas as propostas em métricas-chave. O modelo ensemble apresentou um bom
desempenho, alcancando 94% de precisdo e 96% de AUC na deteccdo de Ransomware no con-
junto ToN_loT. Em cenérios de miltiplos ataques, a precisdo atingiu 96%. Esses resultados
evidenciam a eficacia das inovacdes introduzidas, como o sistema de pontuacao hibrida e o
limiar dinamico, além de sua capacidade de enderecar limitacGes documentadas na literatura.

A reducdo na taxa de falsos positivos ocorreu em quase todos os cenéarios testados. O
desempenho consistente acima de 90% na maioria das configuracdes valida a robustez da
arquitetura em ambientes heterogéneos. Estes incluem tanto redes corporativas tradicionais
quanto ambientes modernos de [oT] e [[loT]| Adicionalmente, o trabalho introduz uma meto-
dologia de pré-processamento transparente que contribui para a mitigacdo de vieses e falhas
comuns em experimentos com aprendizado ndo supervisionado. Essa caracteristica, aliada a le-
veza computacional da arquitetura, torna o HSAE uma alternativa promissora para aplicacGes
em tempo real e com restricdes de recursos.

O sistema desenvolvido pode ser aplicado em solucdes de seguranca de rede para a deteccao
proativa de uma vasta gama de ameacas. Quando integrado com recursos computacionais
adequados, ele aprimora as operacdes de seguranca como ferramenta complementar para
monitoramento e resposta a incidentes. Sua eficiéncia o torna particularmente valioso para

dispositivos com recursos limitados. E fundamental considerar a escolha entre o modelo HSAE
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isolado e sua versdo ensemble para garantir uma implementac3o confidvel. Essa decisdo permite
que a solucdo se ajuste aos requisitos especificos de laténcia, precisdo e custo computacional
de diferentes cenarios operacionais. Os cédigos dos modelos, contendo as principais funcdes,

est4 disponivel na plataforma Github]

6.2 CONTRIBUICOES DA PESQUISA

Abaixo foram listadas as contribuicdes realizadas por esta pesquisa:

» Proposicdo de uma abordagem hibrida ndo supervisionada baseada em autoencoder,
fundamentada na deteccdo comportamental e na combinacdo multi-critérios de erro de
reconstrucdo e pontuacdo direta de anomalias, com uso de funcdo de perda hibrida e

score ponderado, superando limitacdes de métodos tradicionais baseados em assinaturas;

» Desenvolvimento de uma arquitetura ensemble sequencial leve e adequada a dispositivos
com restricdo de recursos, integrando aprendizado de representacao, reducao dimensional
e modelagem de fronteiras de normalidade, com o objetivo de aprimorar a deteccdo de

ataques zero-day em ambientes [oT| e [[loT]

6.3 TRABALHOS FUTUROS

Para investigacGes futuras, a avaliacdo do desempenho do HSAE em ambientes reais com
restricoes computacionais pode ser expandida para diferentes contextos operacionais, como
gateways [loT], sensores industriais e dispositivos embarcados, sendo possivel implementar mé-
dulos de deteccdo em tempo real acoplados ao HSAE com estudos aprofundados de laténcia e

resposta em cendrios operacionais diversos. Expansdes do modelo para novos conjuntos de da-

dos também podem ser propostas, abrangendo redes médicas (Internet of Medical Things|
(IoMT))), sistemas veiculares (Vehicular Ad-hoc Network (VANETs)|) e ambientes de cidades

inteligentes, permitindo a integracao de mecanismos automaticos de resposta que incluem
aplicacdo de politicas de mitigacdo, geracao de alertas ou isolamento de nés comprometidos.
Adaptacdes do modelo para cenarios de aprendizado continuo podem ser desenvolvidas, possi-

bilitando atualizacGes incrementais e maior resiliéncia frente a padrdes de trafego em constante

1 Disponivel em: <https://github.com /fabianoinfosec/Dissertation_Codes>


https://github.com/fabianoinfosec/Dissertation_Codes
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evolucdo, o que representa um avanco significativo na capacidade de deteccdo e resposta a

ameacas em tempo real.
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