
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Lucas Francisco Pereira de Gois Correia

A Strategy to Compare Autonomous Vacuum Cleaner Algorithms Based on
Coverage Path Planning in a Grid-Based Map

Recife
2025

Lucas Francisco Pereira de Gois Correia

A Strategy to Compare Autonomous Vacuum Cleaner Algorithms Based on
Coverage Path Planning in a Grid-Based Map

M.Sc. Dissertation presented to the Centro de Infor-
mática of the Universidade Federal de Pernambuco
in partial fulfillment of the requirements for the de-
gree of Master of Computer Science.

Concentration Area: Software Engineering and
Programming Languages

Supervisor: Alexandre Cabral Mota

Co-supervisor: Sidney de Carvalho Nogueira

Recife
2025

Correia, Lucas Francisco Pereira de Gois.
 A strategy to compare autonomous vacuum cleaner algorithms
based on coverage path planning in a grid-based map / Lucas
Francisco Pereira de Gois Correia. - Recife, 2025.
 73f.: il.

 Dissertação (Mestrado)- Universidade Federal de Pernambuco,
Centro de Informática, Programa de Pós-Graduação em Ciência da
Computação, 2025.
 Orientação: Alexandre Cabral Mota.
 Coorientação: Sidney de Carvalho Nogueira.

 1. Robôs de limpeza autônomos; 2. Verificação de modelos; 3.
Verificação formal; 4. Mapas baseados em grid; 5. Avaliação de
algoritmos. I. Mota, Alexandre Cabral. II. Nogueira, Sidney de
Carvalho. III. Título.

UFPE-Biblioteca Central

.Catalogação de Publicação na Fonte. UFPE - Biblioteca Central

Lucas Francisco Pereira de Gois Correia

 “Comparing Autonomous Vacuum Cleaners Based on Coverage
Path Planning of Grid-based Maps with Model-Checking”

​ Dissertação de mestrado apresentada ao
Programa de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Mestre em Ciência da
Computação. Área de Concentração:
Engenharia de Software e Linguagens de
Progamação.

Aprovado em: 21/08/2025.

BANCA EXAMINADORA

​

Prof. Dr. Gustavo Henrique Porto de Carvalho

Centro de Informática / UFPE

Prof. Dr. Joabe Bezerra de Jesus Júnior

Escola Politécnica de Pernambuco / UPE

Prof. Dr. Alexandre Cabral Mota

Centro de Informática/UFPE
(orientador)

ACKNOWLEDGEMENTS

I would like to first thank God for giving me the willpower and courage to make it this
far. I thank my parents, Jorge Francisco Correia and Elda Pereira de Gois Correia, for all the
support they have given me to reach this point. I am grateful to my wife, Jennifer Jaguaribe de
Lira Correia, for being by my side since the beginning of this journey, encouraging me to see it
through to the end. I sincerely thank my advisor, Alexandre Cabral Mota, for his patience and
kindness in answering my questions and helping me overcome the challenges along the way. I
also extend my gratitude to my co-advisor, Sidney de Carvalho Nogueira, for supporting me
on this journey and allowing me to start this project.

RESUMO

A integração da verificação formal com validação empirica é crucial para garantir a robustez
e eficiência de sistemas robóticos autônomos. Este trabalho apresenta uma metodologia in-
ovadora para avaliar o desempenho de robôs de limpeza autônomos utilizando a álgebra de
processos Communicating Sequential Processes (CSP) e o sistema educacional RoboMind,
explorando e validando a sua combinação. O Estudo estabelece a garantia de corretude para
CPP utilizando CSP, enquanto RoboMind serve como um ambiente de teste controlado para
validar a navegação em diferentes ambientes. A principal contribuição deste estudo é o desen-
volvimento de uma modelagem formalizada que permite uma avaliação sistemática e quanti-
tativa de quatro algoritmos de robô de limpeza, considerando eficiência de cobertura e custo
computacional. A abordagem envolve o uso de CSP como linguagem formal para definir o
comportamento dos algoritmos de limpeza e do RoboMind como ferramenta de simulação
para sua execução e análise. Um estudo de caso é apresentado, aplicando essa estratégia para
comparar quatro algoritmos distintos de robôs de limpeza. Os resultados demonstram a eficá-
cia da abordagem proposta, provendo uma forte garantia de corretude enquanto aprimora a
aplicabilidade na simulação. Além disso, esta pesquisa destaca o potencial da combinação de
CSP e RoboMind para investigações no domínio dos sistemas autônomos.

Palavras-chaves: Robôs de limpeza autônomos. Verificação de Modelos. Verificação Formal.
Mapas baseados em grid. Avaliação de Algoritmos.

ABSTRACT

The integration of formal verification with empirical validation is crucial for ensuring the ro-
bustness and efficiency of autonomous robotic systems. This work introduces an innovative
methodology for assessing the performance of AVCs using the process algebra Communicating
Sequential Processes (CSP) and the educational system RoboMind by exploring and validating
their combination. By leveraging CSP, the study establishes correctness guarantees for CPP,
while RoboMind serves as a controlled testbed to validate navigation strategies in different
environments. The primary contribution of this work is developing a formalized modeling en-
abling a systematic and quantitative evaluation of four AVC algorithms concerning coverage
efficiency and computational cost. It involves employing CSP as a formal language to define
the behavior of vacuum cleaner algorithms and RoboMind as a simulation tool to execute
and analyze them. A case study is presented applying this strategy, comparing four differ-
ent algorithms for independent vacuum cleaners. The results demonstrate the efficacy of the
suggested approach, providing strong correctness guarantees while enhancing simulation appli-
cability. Furthermore, this research underscores the potential of merging CSP and RoboMind
for investigative purposes in the domain of autonomous systems.

Keywords: Autonomous vacuum cleaners; Model checking; Formal verification; Grid-based
maps; Algorithm evaluation.

LIST OF FIGURES

Figure 1 – Illustration of the RoboMind environment 19

Figure 2 – Assessment strategy to convert ROBO to CSP and assess with FDR 31
Figure 3 – ROBO flowchart . 32
Figure 4 – CSP𝑀 flowchart . 33
Figure 5 – Room example . 35
Figure 6 – Room visualization . 36
Figure 7 – Overlapping map . 37
Figure 8 – Map with a grid-cell size of 10× 10 cm 41

Figure 9 – Code1 visualization . 48
Figure 10 – Code2 visualization . 51
Figure 11 – DFS visualization . 53
Figure 12 – Spiral visualization . 56
Figure 13 – Binary Search for the Living Room map 60
Figure 14 – Code2 completeness in the Living Room 62

LIST OF TABLES

Table 1 – Main elements of the ROBO language . 20
Table 2 – Main elements of CSP𝑀 used in this work 24

Table 3 – Translation of a ROBO program into a semantically equivalent specification
in CSP𝑀 . 30

Table 4 – Optimal global coverage overview for single robots 57
Table 5 – Optimal local coverage overview for single robots 59
Table 6 – Optimal global coverage overview for robot size 61
Table 7 – Summary table . 61

GLOSSARY

𝐴𝑉 𝐶 Autonomous Vacuum Cleaner

𝐶𝑆𝑃 Communicating Sequential Processes

𝐶𝑆𝑃𝑀 Machine-readable Communicating Sequential Processes

𝑈𝐹𝑃𝐸 Universidade Federal de Pernambuco

𝐹𝐷𝑅 Failures-Divergences Refinement

𝐶𝑃𝑃 Coverage Path Planning

𝐶𝑃𝑅𝑆 Cyber-Physical Robotic System

SUMMARY

1 INTRODUCTION . 12

1.1 MOTIVATION . 12
1.2 OBJECTIVES . 15
1.3 RESEARCH QUESTIONS . 15
1.4 CONTRIBUTIONS . 16
1.5 STRUCTURE OF THE WORK . 17
2 BACKGROUND . 18

2.1 ROBOMIND . 18
2.2 THE PROCESS ALGEBRA CSP . 21
2.2.1 Language Elements . 23

2.2.2 Refinement and Model Checking . 23

3 STRATEGY OVERVIEW . 28

3.1 PREVIOUS RESEARCH . 29
3.2 TRANSLATING A ROBOMIND MAP TO CSP 34
3.3 ROBOMIND ENVIRONMENT MEMORY REPRESENTATION 38
3.4 FORMAL DEFINITIONS OF COVERAGE AND EFFORT 38
3.5 ROBOT SIZE AND PATH FEASIBILITY 39
3.6 DETERMINING THE MAXIMUM POSSIBLE COVERAGE 43
3.6.1 Single verification method . 43

3.6.2 Binary search-based verification method 44

4 EVALUATION . 46

4.1 MAP SELECTION PROCESS . 46
4.2 CODE1 IN ROBO . 46
4.3 CODE2 IN ROBO . 48
4.4 DEPTH-FIRST SEARCH . 51
4.5 INWARDS SPIRAL . 54
4.6 RESULTS AND COMPARISON . 56
4.6.1 Approach Validation . 56

4.6.1.1 Optimal Global Coverage . 57
4.6.1.2 Optimal Local Coverage . 59

4.6.2 Robot Size and Path Feasibility . 60

4.6.3 Discussion . 61

5 RELATED WORK . 64

6 THREATS TO VALIDITY . 66

7 CONCLUSION . 69

REFERENCES . 71

12

1 INTRODUCTION

In this work, we propose an innovative strategy to compare the effectiveness of different
AVC algorithms using CSP (HOARE, 1978) and the educational platform RoboMind (Robo-

Mind.net, 2006). Below, we detail the motivation for the study, its objectives, the research
questions that guide the investigation, and the structure of the work.

1.1 MOTIVATION

AVCs have become quite popular in recent years due to their ability to automate house
cleaning without much human involvement (SCHNEIDERS et al., 2021). However, as various
algorithms to navigate environments have been designed for these devices (RICKERT; SIEV-

ERLING; BROCK, 2014; ESCHMANN; EBEL; EBERHARD, 2023; WANG et al., 2020), the need to
precisely evaluate their performance and efficiency has increased. Precisely evaluating these
algorithms is essential to understand their limitations, optimize their strategies, and minimize
computational effort. This work contributes to this analysis by exploring formal methods to
validate and compare AVC algorithms in structured maps. Formal methods offer a systematic
and mathematically grounded approach to ensuring precise and repeatable assessments.

The impact of robot size on navigability and the coverage efficiency are crucial factors to
consider. The dimensions of different robots, which require specialized analysis, can play a vital
role in their performance, as well as their movement constraints and ability to avoid obstacles.
Assessing verification methodologies through refinement techniques, such as a binary search-
based algorithm, provided insights into the algorithm’s efficiency, allowing us to select the
highest coverage under time constraints.

RoboMind is an introductory environment to programming and robotics designed for ed-
ucational purposes. It uses the ROBO programming language specialized in robotics. Such
a language can mimic robot sensors like color reading and obstacle detection. Moreover, the
virtual robot can interact with the environment, using commands that grab objects and paint
the floor.

The primary reason for selecting RoboMind over other simulators, such as Gazebo or
ROS, was that most of these simulators focus on real-time robotics applications with complex

Repository with the code used in this work can be found here: <https://github.com/
LucasFranciscoCorreia/Comparing-Autonomous-Vacuum-Cleaners>

https://github.com/LucasFranciscoCorreia/Comparing-Autonomous-Vacuum-Cleaners
https://github.com/LucasFranciscoCorreia/Comparing-Autonomous-Vacuum-Cleaners

13

physics-based simulations instead of providing a determinist execution environment, ensuring
reproducibility in algorithm analysis. Reproducibility is critical for a structured and predictable
framework to validate CPP algorithms mathematically. Model-checking in deterministic en-
vironments ensures that a given control strategy always behaves as expected under specific
conditions, which is necessary before introducing probabilistic variations. Additionally, Robo-
Mind can complement stochastic models in a hybrid approach by verifying logical correctness
and integrating stochastic simulations afterward to test robustness against variations.

We chose the ROBO language (from RoboMind (RoboMind.net, 2006)) because it fits our
formalization and verification goals:

• Deterministic, discrete semantics on a grid world, which matches our abstraction for
CPP and enables reproducible experiments.

• Small, well-defined instruction set (move, turn, sense, paint, pick/drop), allowing a direct
and automated translation to CSP events and processes.

• Explicit, observable actions and sensor queries, which simplify the definition of alphabets
and refinement checks in FDR.

• Lightweight tooling and fast execution, making large batches of runs feasible without
the overhead of physics engines.

Many studies on AVCs that utilize CPP for grid-based maps often depend on simulations
or empirical testing as their main verification methods (GOVINDARAJU et al., 2023). CSP pro-
vides a rigorous mathematical framework for modeling concurrency through message-passing
semantics (HOARE, 1978). Autonomous robotic systems are increasingly complex and operate
in critical environments, where failure can lead to serious consequences. To ensure the safety
and correctness of such systems, formal methods provide a rigorous mathematical founda-
tion for design and verification. Among these, CSP stands out as an effective approach for
modeling concurrent behaviors, detecting design flaws early, and ensuring the satisfaction of
critical system properties throughout the development cycle. The grid-based model serves as
an abstraction of the real world, with the treatment of associated uncertainties deferred to
Chapter 6.

Formal verification techniques have emerged to complement empirical validation by en-
abling exhaustive analysis of robotic control systems. Techniques such as model checking and

14

theorem proving allow developers to ensure critical properties like deadlock freedom and termi-
nation correctness before physical testing begins (LUCKCUCK; FARRELL; FISHER, 2021). These
techniques are particularly valuable in autonomous robotics, where systems operate under
uncertainty and demand high reliability (MECK; WAGNER, 2018).

Formal methods are mathematically based approaches that facilitate the assertion and
reasoning about system behavior, which is relevant in software design and engineering. Using
formal methods for autonomous systems, such as AVCs, expresses the importance of the proper
design and development processes while highlighting an accurate and precise description.

For CPRSs, formal methods have been applied to integrate formal techniques through-
out the software development lifecycle providing precise techniques for specifying, designing,
and verifying software systems, making them more accessible and applicable to real-world
CPRS projects (GHASSEMI; TRIPAKIS, 2020). Within this context, CSP, Petri Nets, and Timed
Automata all have precise, well-established semantics. In this work we favor CSP because
(i) its explicit event alphabets and parallel composition make assume-guarantee and modu-
lar refinement checks convenient; (ii) the FDR tool provides automated refinement checking
(traces/failures/divergences) and counterexample traces that we exploit to derive coverage
paths (ROSCOE, 1995; GIBSON-ROBINSON et al., 2014); and (iii) our properties are untimed,
so time/clock structures of Timed Automata add little benefit here. Petri nets and Timed
Automata remain viable alternatives—particularly when state-space structure or quantitative
timing is central—but our analysis benefits from CSP’s event-centric viewpoint and refinement-
oriented tooling.

The proposed strategy involves applying CSP as a formal method for defining the semantics
of AVC algorithms and using RoboMind as a simulation tool to execute and test them.

CSP provides a rigorous methodology to specify the behavior of concurrent and sequential
systems, while RoboMind simulates the actions of robots in virtual environments. The approach
involves modeling and verifying robots in a grid-based map, where we measure how much of
the map the robot can clean.

Moreover, this work evaluates deterministic and non-deterministic path-planning algo-
rithms, highlighting their advantages and trade-offs. This comparison is essential to under-
stand the efficiency of different strategies in achieving optimal coverage with minimal effort
and computational cost.

15

1.2 OBJECTIVES

The main objective of this work is to develop a formal strategy combining modeling and
verification strategy, allowing a quantitative assessment concerning coverage efficiency and
computational cost to compare the effectiveness of distinct AVC algorithms. To achieve the
main objective, we aim to:

• Specify quantitative metrics for coverage and computational effort, and the properties
to be checked (e.g., deadlock freedom, termination);

• Implement an automated pipeline (RoboMind execution + FDR refinement checking)
to generate and analyze traces;

• Compare representative algorithms (Random Bounce, Improved Random Bounce, DFS,
Inwards Spiral) across selected maps;

• Analyze the relationship between computational effort and coverage of the algorithms;

• Evaluate the impact of robot size on path feasibility and achievable coverage; and

• Apply a binary-search-based refinement procedure to determine the maximum coverage
under time constraints.

We adopt CSP and RoboMind as the underlying modeling and execution framework to
realize these goals.

1.3 RESEARCH QUESTIONS

To guide our investigation, we formulate the following research questions:

• How can AVC algorithms be formalized using CSP?

• What is the relationship between coverage efficiency and computational cost among
different algorithms?

• How can the combination of CSP and RoboMind contribute to evaluating autonomous
robotic algorithms?

16

• Does the proposed approach allow the identification of patterns and limitations in au-
tonomous cleaning algorithms?

• How does robot size impact cleaning efficiency and verification complexity?

1.4 CONTRIBUTIONS

By combining CSP and RoboMind, we propose an assessment environment that can accu-
rately model the trajectories of AVCs and allow us to gauge their productivity and performance
in different situations. In contrast, our approach employs model-checking with CSP, providing
a rigorous means of verifying correctness that simulation techniques do not always guaran
tee. This work uses formal verification to identify and eliminate logical inconsistencies before
deploying the system in real-world environments.

To demonstrate the effectiveness of our approach, we present a case study comparing four
distinct algorithms for AVCs (Code1 (Random Bounce), Code2 (Improved Random Bounce),
Depth-First Search and Inwards Spiral). The results demonstrate the efficacy of our approach
in providing insights into the strengths and weaknesses of different algorithms. Furthermore,
this study highlights the potential of combining CSP and RoboMind for research purposes.
Overall, this work provides a formal and objective approach to evaluating the performance of
AVCs, which can be used by researchers, manufacturers, and consumers alike to make informed
decisions about these devices.

The main contributions of this work are:

• A strategy to evaluate AVCs algorithms using a formal language in a well-defined grid-
based environment;

• Extract counterexample traces which represent an AVC algorithm in terms of CSP con-
cerning the best trajectory for covering path planning using grid-based maps;

• A methodology that incorporates robot size constraints into coverage evaluation;

• The application of binary search-based refinement techniques to enhance coverage ver-
ification accuracy within time constraints.

17

1.5 STRUCTURE OF THE WORK

The remainder of this work is organized as follows:

• Chapter 2 presents the background concepts, including the RoboMind platform and the
process algebra CSP.

• Chapter 3 introduces our validation strategy, covering the map selection process, its
formal representation, and using CSP for algorithm validation.

• Chapter 4 discusses the validation of the proposed approach, presenting examples of
ROBO code used for CSP specifications and corresponding results.

• Chapter 5 reviews related work on path planning for robotic applications.

• Chapter 6 outlines the internal and external threats that could affect the approach’s
validity.

• Finally, Chapter 7 summarizes the main conclusions and suggests directions for future
work.

18

2 BACKGROUND

This section provides the main concepts of RoboMind and the process algebra CSP.

2.1 ROBOMIND

RoboMind is a simulation and educational environment to analyse and design robot sys-
tems. It provides a programmable virtual robot moving in a 2D grid world and a simple
domain-specific language (ROBO) for specifying its behaviour. It is aimed at teaching pro-
gramming and computational thinking while allowing users to experiment with basic robotics
concepts. RoboMind provides the capabilities to:

• define grid-based maps using a textual or graphical representation, with walls, obstacles
and free cells;

• program the virtual robot in the ROBO language using commands for movement, turn-
ing, painting, sensing and control flow;

• execute and visualize robot programs step by step or at different speeds, observing the
resulting trajectory and painted cells;

• simulate simple sensing, such as obstacle and colour detection, in a deterministic and
reproducible way;

• load, save and share maps and programs for experimentation and teaching.

Selecting an appropriate simulation environment is crucial for evaluating AVC algorithms.
The RoboMind environment was chosen for this research due to its modeling capabilities for
the main aspects of the environment relevant to cleaning algorithms.

In Figure 1, we show the RoboMind environment, with the robot simulation on the right
side and the ROBO language used to control it on the left. In the robot simulation, the robot
walks east from the top-left corner of the map until reaching the top-right corner. The bottom
section of the figure shows simulation controls, including start, stop, and speed adjustment.

The RoboMind environment enables programming and simulating a virtual robot in a map
for learning programming logic and developing computational thinking by writing code in the
ROBO language. ROBO is a simple educational programming language that is developed to

19

Figure 1 – Illustration of the RoboMind environment
Source: https://robomind.net/

allow the user to program immediately, using a concise set of commands designed to control
a robot. RoboMind allows one to visualize and interactively simulate the robot’s actions. We
show the main aspects of the ROBO language in the Table 1.

A map in the RoboMind environment is defined using a textual representation to allow the
graphical representation shown in Figure 1. Each capitalized letter denotes a visual element of
a wall (e.g., “C” represents the top-left corner), the “@” symbol indicates the robot’s starting
position and the free spaces represent open areas where the robot can move freely.

1 map: CHHHHHHHHHHD
2 GMFFFFFFFFJI
3 GI@ Q Q Q GI
4 GI GI
5 GI GI
6 GLHHHHHHHHKI
7 BFFFFFFFFFFE

Each cell in the textual map corresponds to a coordinate (i,j), allowing a one-to-one
mapping of spatial elements into formal variables.

While RoboMind provides a simplified environment compared to real-world AVCs, its struc-
tured and deterministic nature enables precise verification of control strategies without the
noise introduced by real-world uncertainties by focusing on the logical correctness of robot
behavior rather than on low-level physics. The primary goal is not to simulate real-world
physics in full detail but rather to establish a rigorous correctness proof for core behaviors
such as navigation, obstacle avoidance, and task completion. This approach follows the well-
established principle in formal verification that logical soundness should be established first
before addressing physical complexities through additional simulation or empirical validation.

20

Table 1 – Main elements of the ROBO language

ROBO Semantics

forward(n) Moves n steps forward

left() Turns left over 90º degrees

right() Turns right over 90º degrees

north(n) Turns north and move n steps forward

paintWhite() Starts painting the ground with a white

paint

stopPainting() Stops painting

flipCoin() Flips a coin to make a random choice.

flipCoin() will either be true or false

with a chance of 50%− 50%

frontIsObstacle() Verifies if the square in front of the

robot contains an obstacle. Returns true

if it contains an obstacle, otherwise it

returns false

frontIsClear() Verifies if the square in front of the

robot does not contains an obstacle.

Returns true if its clear, otherwise

it returns false

frontIsWhite() Verifies if the square in front of the

robot is painted with a white paint.

Returns true if its painted white,

otherwise it returns false

repeat(n) { ... } Repeats a set of commands n times

repeatWhile(...) { ... } Repeats a set of commands while its

condition is true

if (...) { ... } else { ... } Executes a set of commands if its

condition is true. Otherwise, it

executes another set of commands

procedure <name> (...) { ... } Creates a procedure to be called by the

language. It receives a set of commands

to execute and can be called by executing

<name>() with its parameter values, if it

has any.

21

While simulators like Gazebo (FOUNDATION, 2024) or ROS (ROBOTICS, 2024) provide
realistic simulations, they also introduce higher computational costs and complexity, making
formal verification challenging. In (GHASSEMI; TRIPAKIS, 2020), when discussing complexity
trade-offs, they also come with significant computational overhead and increased debugging
complexity. The objective of using RoboMind in our approach is not to replace these simulators
but to complement them by leveraging formal verification techniques early in the development
process. Unlike purely physics-based simulators, CSP-based verification allows us to prove
properties such as coverage guarantees, deadlock absence, and correct decision-making in
an abstract yet rigorous manner. RoboMind, by contrast, excels in scenarios where formal
validation of decision-making processes is paramount. Rather than replacing Gazebo or ROS,
RoboMind should be considered a complementary tool that enables rigorous verification before
deploying models in high-fidelity simulators or real-world environments. This hybrid approach
helps ensure that control algorithms are effective and provably correct before being subjected
to real-world uncertainties.

CPP is an important activity in walking robots, primarily used in AVCs. RoboMind offers
a convenient way of modeling grid-based maps, which is significant for this activity. Thus, the
platform’s features are suitable for simulating multiple vacuum cleaning algorithms. While an
abstraction, the grid-based model captures AVCs’ essential discrete decision-making processes.
While grid-based maps are a simplified model, they do not inherently imply poor real-world
applicability; instead, they enable us to focus on algorithmic correctness and logical guarantees
before dealing with environmental noise.

This choice aligns with previous research advocating the use of deterministic and lightweight
simulation platforms for formal verification. Approaches such as CSP2Turtle (DOE; SMITH,
2022) and RoboChart (CAVALCANTI, 2018) similarly bridge simulation and model checking by
translating robot behavior into formal models for exhaustive analysis.

2.2 THE PROCESS ALGEBRA CSP

Formal methods have been applied across a wide range of robotic systems, from educa-
tional robots to industrial applications. Studies show their effectiveness in verifying reactive
behaviors, coordinating swarm robotics, and specifying embedded architectures (CAVALCANTI,
2018; BRUNSKILL et al., 2021). Although challenges remain, such as scalability and the need for
abstraction, these techniques help eliminate design flaws early, reducing deployment risk (LUCK-

22

CUCK; FARRELL; FISHER, 2021; MECK; WAGNER, 2018). Frameworks such as LUNA demonstrate
how CSP can support real-time, embedded robotics with concurrency constraints (WILTER-

DINK, 2011).
CSP is a process algebra used in analyzing and verifying concurrent systems. A CSP process

communicates with the environment using events. The patterns of communications are defined
using CSP operators. It allows the modeling and analysis of systems where multiple processes
interact through communication (ROSCOE, 1995). CSP enables the rigorous specification of the
behavior of autonomous robots in a navigation environment, ensuring that desired properties
are systematically verified.

CSP offers a well-defined mathematical model, allowing the automatic verification of prop-
erties such as safety, liveness, and deadlocks. Additionally, CSP has well-established tools such
as Failures-Divergence Refinement (FDR) (GIBSON-ROBINSON et al., 2014), which enables re-
finement verification between processes and detects potential violations.

FDR, the main model-checking tool for checking refinements in CSP, inputs a dialect of
CSP called CSPM (machine-readable CSP), which embeds a functional language to express
data structures, and a behavioral language to declare and compose the CSP processes. It is
widely used in robotic applications due to its ability to verify deadlock-freedom, liveliness, and
trace-based refinement (CAVALCANTI, 2018)

The primary reason for selecting CSP is the existence of a structured mapping from ROBO
language to CSP, allowing for direct translation and verification (CORREIA, 2021). The choice
of CSP in this work follows comparative studies showing its advantages for reasoning about
communication in concurrent robotic systems. This choice ensures that CSP-based models
align with programming practices and can be efficiently analyzed.

While formal verification in CSP can guarantee logical correctness, it does not directly
account for all real-world implementation constraints (e.g., sensor noise, timing variations,
hardware failures). However, formal methods are not meant to replace real-world testing;
they are a crucial early step in eliminating fundamental design flaws before empirical testing
begins. While empirical testing can expose issues in real-world conditions, it does not guarantee
exhaustive correctness — there is always the risk of missing edge cases. Conversely, CSP
provides a systematic way to verify critical properties under all possible execution paths. CSP’s
role is not to replace empirical testing but to complement it by ensuring correctness at an
abstract level before deployment.

Integrating CSP with simulation-based approaches introduces complexity to the problem,

23

but this complexity can be justified depending on the goals of the analysis. Rather than fully
merging CSP with a simulation framework, a structured approach would use CSP before
simulating to eliminate logical errors and verify key correctness properties, serving as an early
correctness filter, eliminating logical errors before moving to empirical validation, ensuring that
the formally verified algorithms function as expected in dynamic conditions, and reducing the
likelihood of logical flaws propagating into real-world tests by providing counterexample traces,
making it easier to detect issues before testing in RoboMind. While integration requires effort,
the benefits — such as ensuring correctness before empirical testing — can outweigh the costs
when applied strategically.

CSP stands out not only for its expressiveness in modeling concurrency, but also for enabling
modular and hierarchical system composition (HOARE, 1978) — properties essential to scalable
formal verification in robotics.

2.2.1 Language Elements

Table 2 summarizes the main CSP𝑀 constructs used in this work (Formal Systems (Europe)

Ltd., 2024). These elements form the basis of the formalization of ROBO programs into CSP
processes, enabling structured and modular modeling.

2.2.2 Refinement and Model Checking

CSP comprises three primary semantic models (ROSCOE, 2010), which record significantly
different views of the processes. Specifically, in this research, we are interested in the traces
model that records the possible sequences of events (or traces) that a process can commu-
nicate. Such a model is much less computationally intense than other semantic models and
suitable for robot algorithms’ verification (FILHO et al., 2018; ARAÚJO; MOTA; NOGUEIRA, 2019).

In this work, we focus on the traces model of CSP. Intuitively, a trace is a finite sequence
of observable events that records one possible execution of a process. Formally, given an event
alphabet Σ, a trace is a sequence 𝑡 ∈ Σ*, for example:

𝑡 = ⟨𝑚𝑜𝑣𝑒, 𝑝𝑎𝑖𝑛𝑡, 𝑚𝑜𝑣𝑒, 𝑡𝑢𝑟𝑛𝐿𝑒𝑓𝑡⟩.

For a CSP process 𝑃 , 𝑡𝑟𝑎𝑐𝑒𝑠(𝑃) denotes the set of all finite traces that 𝑃 can perform.

24

Table 2 – Main elements of CSP𝑀 used in this work

Element Description

STOP Represents a process that does nothing

SKIP Represents successful termination

a − > P Performs event a and then behaves as process P

datatype A = B | C | D | ... Turns A into a data declaration containing the set
{B, C, D, ...}

datatype A = B.X Turns A into a data declaration containing the set
{B.X}, where X is a set or another data declaration as
parameter

M = (| k => v |) Turns M into a Map structure, where M(k) takes
O(log 𝑛) to search k and return v

P = let ... within ... Allows definitions created inside let to be usable only
inside within

P [| A |] Q Parallel composition synchronizing on set of events A

diff(Events, A) Subtracts from the set of all possible events the set A

P ∖ A Hides events from set of events A from external observation

P [T= Q Refinement assertion where the traces of Q contains
the traces of P

When FDR checks a refinement 𝑆 ⊑𝑇 𝑃 in the traces model, it verifies that every trace
of the implementation 𝑃 is also a trace of the specification 𝑆, i.e.,

𝑡𝑟𝑎𝑐𝑒𝑠(𝑃) ⊆ 𝑡𝑟𝑎𝑐𝑒𝑠(𝑆).

If the refinement fails, FDR returns a counterexample trace, that is, a sequence of events
that is possible in 𝑃 but not allowed by 𝑆.

In our context, traces correspond to sequences of robot actions (e.g., moves, turns, paint
operations) observed during a run of a ROBO program on a map. We use these traces as the
only behavioural model to:

• measure effort, by counting events (steps) in a trace;

• derive coverage, by mapping visited/painted cells along the trace;

• detect violations, when FDR returns counterexample traces for a given property.

25

Other CSP semantic models (such as failures or failures–divergences) capture refusal sets
and divergence, but in this work we restrict ourselves to traces because they are sufficient for
our coverage and effort analysis.

FDR generates counterexample traces if a refinement verification does not hold. A coun-
terexample is a trace that belongs to the traces of Q but not to P. Counterexamples can
give valuable information for correcting and improving robot algorithms expressed as CSP
processes.

For clarity, we reproduce the ROBO program shown in Figure 1, which will be used in the
demonstration below.

1 right
2 repeat (4) {
3 if (frontIsObstacle) {
4 right
5 forward(1)
6 left
7 forward(2)
8 left
9 forward(1)

10 right
11 } else {
12 forward(1)
13 }
14 }

In the following CSP specification, the constant INIT is a map data structure that records
the variables in the initial state of the program, such as the position and the robot’s orientation.
The map contains a name as the key and its respective value. We explain the values in the
map: the first key holds the X coordinate of the robot, the second has the Y coordinate, and
the third is the current direction the robot.

1 INIT = (|
2 X => startX,
3 Y => startY,
4 ORIENTATION => NORTH
5 |)

In what follows, we show a fragment of the CSP process that captures the semantics
for the ROBO program presented in Figure 1. The process PROGRAM behaves initially as the
process RIGHT1 whose parameter is the constant INIT. The behavior of this last process is
defined by the process RIGHT. The CSP specification is defined as a structured chain of process
composition. Initially, the process RIGHT executes, and, once completed, it behaves as WHILE2,
which specifies the command repeat(4) in ROBO. The process RIGHT employs a let/within
construct to locally define the identifier o that stores the robot’s current orientation. Such a

26

process behaves as the process next that receives the map updated with the orientation set
to the right position ((o+1)%4). This chain of processes ensures that the iterative behavior
in ROBO is faithfully replicated in CSP.

1 PROGRAM = RIGHT1(INIT)
2 RIGHT1(m) = RIGHT(m, WHILE2)
3 RIGHT(m, next) =
4 let
5 o = get(m, ORIENTATION)
6 within
7 next(setVar(m,ORIENTATION, (o+1)%4))
8 WHILE2(m) = REPEAT2(4, m, TERMINATE)

The process REPEAT2 specifies the behavior of the WHILE2 process. It is defined by pattern-
matching in two cases: (i) When the parameter n is zero, it behaves as the process TERMINATE,
which behaves as a successful termination (SKIP), and, (ii) When the parameter n is not zero,
it behaves as the IF3 process, which is specified by the RIGHT4 process if in front of the robot
there is an obstacle or by the FORWARD11 process if the robot’s path is clear. This last process
is followed by a NEXT2, specified by a REPEAT2 process with the parameter n decremented by
1. As a consequence of this specification, the process REPEAT(m, 4) behaves as the repetition
of the IF3 process four times.

1 REPEAT2(0, m, next) = next(m)
2 REPEAT2(n, m, next) =
3 let
4 IF3(m) =
5 let
6 x = get(m, X)
7 y = get(m, Y)
8 o = get(m, ORIENTATION)
9

10 RIGHT4(m) = RIGHT(m, FORWARD5)
11 FORWARD5(m) = FORWARD(1, m, LEFT6)
12 LEFT6(m) = LEFT(m, FORWARD7)
13 FORWARD7(m) = FORWARD(2, m, LEFT8)
14 LEFT8(m) = LEFT(m, FORWARD9)
15 FORWARD9(m) = FORWARD(1, m, RIGHT10)
16 RIGHT10(m) = RIGHT(m, NEXT2)
17
18 FORWARD11(m) = FORWARD(1, m, NEXT2)
19 within
20 if(frontIsClear(x, y, o)) then (
21 RIGHT4(m)
22) else (
23 FORWARD11(m)
24)
25 NEXT2(m) = REPEAT2(m, n-1)
26 within
27 IF3(m)
28
29 TERMINATE(m) = SKIP

27

The process FORWARD is also defined by pattern-matching: (i) When the parameter n is zero,
it behaves as the next process, and (ii) when the parameter n is not zero, it updates the robot’s
position according to the current orientation, provided the robot’s path is clear. For instance,
if the actual orientation is to the east, the robot will move forward in the X-axis (increment
its X position). The updates for the other directions are performed similarly, considering the
current direction. If an obstacle blocks the robot’s path, it behaves as FORWARD(0,m,next).
Considering the state of the robot simulation depicted in Figure 1, the robot starts facing
north and then turns right; consequently, the next state is to face east.

1 FORWARD(0,m,next) = next(m)
2 FORWARD(n,m,next) =
3 let
4 x = get(m, X)
5 y = get(m, Y)
6 o = get(m, ORIENTATION)
7 within
8 if(frontIsClear(x,y,o)) then(
9 if(o == NORTH) then (

10 FORWARD(n-1, setVar(m,Y,y-1), next)
11) else if(o == EAST) then (
12 FORWARD(n-1, setVar(m,X,x+1), next)
13) else if(o == SOUTH) then (
14 FORWARD(n-1, setVar(m,Y,y+1), next)
15) else (
16 FORWARD(n-1, setVar(m,X,x-1), next)
17)
18) else (
19 FORWARD(0, m, next)
20)

28

3 STRATEGY OVERVIEW

This chapter presents the strategy proposed in this dissertation. It builds on a prior re-
search (CORREIA, 2021), which we briefly summarize for completeness, and extends it with
the following contributions:

• Memory representation of the RoboMind environment for coverage accounting;

• Formal definition of coverage and computational effort used in our evaluation;

• Analysis of robot size and path feasibility;

• Determination of maximum possible coverage under time constraints via a binary-search-
based verification method.

The proposed strategy enables the assessment of cleaning algorithms represented in the
ROBO language. The input for this strategy is a ROBO program and a 2D map in the
RoboMind environment that is translated into a CSP specification (see Figure 2). The CSP
specification is the input for the refinement checker tool FDR that verifies assertions that yield
counterexample traces that exhibit the effort and coverage of a given ROBO code to cover
the given 2D grid-based map.

While RoboMind provides an effective simulation environment for visualizing and testing
AVC algorithms, it lacks the formal verification capabilities that rigorously validate algorithmic
correctness. CSP enables exhaustive verification, ensuring the algorithm follows its intended
specifications under all possible conditions. Unlike RoboMind, which relies on empirical obser-
vation, CSP provides a mathematically grounded approach that can prove algorithmic prop-
erties, such as correctness, completeness, and optimality, rather than merely testing them in
specific cases.

By leveraging CSP for formal verification and RoboMind for simulation-based visualiza-
tion, this research adopts a methodologically sound approach that combines the strengths of
both platforms — ensuring that algorithms are not only empirically tested but also mathemat-
ically proven for correctness, efficiency, and robustness. This combination avoids redundant
complexity rather than overcomplicating verification. If discrepancies arise between CSP veri-
fication and RoboMind simulations, they highlight areas where additional refinement or model
adjustments are needed — this feedback loop strengthens both processes.

29

The structured integration of these methods provides a more explicit, more reliable ver-
ification process. Without formal verification, simulation-based approaches risk missing fun-
damental logical errors that only become evident later, requiring costly debugging. Rather
than complicate the process, CSP acts as a first-pass filter, allowing RoboMind simulations
to focus on real-world execution challenges rather than basic logic errors, ensuring that only
well-defined processes move forward to empirical validation.

3.1 PREVIOUS RESEARCH

As in prior research (CORREIA, 2021), we have designed a translator that maps the syntax
of a ROBO code to a CSP process with equivalent semantic meaning, used for FDR model
checking. We used this translator to convert various ROBO programs into their equivalent
CSP𝑀 specifications. To ensure semantic equivalence between each ROBO command and its
CSP specification, we map each command to a corresponding CSP process, preserving the
order of execution and decision-making logic. The CSP model allows exhaustive verification
through FDR, ensuring that the translated behavior adheres to the expected properties of the
original RoboMind program.

Figure 2 shows a visual representation of this prior research. Spoofax (KATS; VISSER, 2010)
was the primary framework to build this translator since it supports domain-specific language
creation. In this case, SDF3 was incorporated to capture the grammar of ROBO language
as a parsed syntax. Stratego (KALLEBERG, 2006) was used to manipulate the parsed syntax,
guaranteeing transformation into the semantically equivalent CSP𝑀 process. This framework
creates an archive that can be used in Java to translate the ROBO code into an equally
semantic version in CSP. We also used Java to create a simple algorithm to translate any
RoboMind map into CSP. Combining the translation and map, we can assess them with FDR
to generate the required counterexamples for the assessment.

In Table 3, we demonstrate the translation process for the code presented in Figure 1. It
provides a detailed view of how ROBO language commands are translated into CSP𝑀 . This
translation is essential to ensure the robot’s execution can be formally verified in CSP𝑀 . More
details about the translation process for other elements from the ROBO language to CSP𝑀

can be found in (CORREIA, 2021)
Basic commands, such as right and forward(n), have a direct correspondence in CSP𝑀

(RIGHT(m, next), FORWARD(n, m, next), etc.). Condition structures, such as if-else, are

30

Table 3 – Translation of a ROBO program into a semantically equivalent specification in CSP𝑀

ROBO CSP𝑀

right PROGRAM = RIGHT1(INIT)

RIGHT1(m) = RIGHT(m, WHILE2)

repeat (4) { WHILE2(m) = REPEAT2(4, m, TERMINATE)

REPEAT2(0, m, next) = next(m)

REPEAT2(n, m, next) =
let

if (frontIsObstacle) { IF3(m) =

let

x = get(m, X)

y = get(m, Y)

o = get(m, ORIENTATION)

right RIGHT4(m) = RIGHT(m, FORWARD5)

forward(1) FORWARD5(m) = FORWARD(1, m, LEFT6)

left LEFT6(m) = RIGHT(m, FORWARD7)

forward(2) FORWARD7(m) = FORWARD(2, m, LEFT8)

left LEFT8(m) = LEFT(m, FORWARD9)

forward(1) FORWARD9(m) = FORWARD(1, m, RIGHT10)

right RIGHT10(m) = RIGHT(m, NEXT2)

} else {

forward(1) FORWARD11(m) = FORWARD(1, m, NEXT2)

} within

if(frontIsObstacle(x, y, o) then (

RIGHT4(m)

) else (

FORWARD11(m)

)

} NEXT2(m) = REPEAT2(n-1, m, next)

within

IF3(m)

31

Figure 2 – Assessment strategy to convert ROBO to CSP and assess with FDR
Source: Author (2025)

translated into processes that evaluate conditions and direct execution to the corresponding
state. Loop structures like repeat are modeled recursively using the corresponding CSP𝑀

process. This correspondence is fundamental for understanding how a program written in
ROBO can be formally specified and analyzed as CSP𝑀 .

Figures 3 and 4 complement Table 3 by providing a graphical visualization of command
execution. It helps illustrate the sequence of operations within a ROBO program, the decision-
making processes, especially in conditional and loop structures, and the state relationships,
showing how transitions occur. Figure 3 represents the execution flow in the original ROBO
program presented in Figure 1. Figure 4 shows the corresponding flow in CSP𝑀 .

Both flowcharts demonstrate how the translation preserves the program’s original logic.

32

Figure 3 – ROBO flowchart
Source: Author (2025)

33

Figure 4 – CSP𝑀 flowchart
Source: Author (2025)

34

3.2 TRANSLATING A ROBOMIND MAP TO CSP

Our CSP encoding for the map abstracts the visual representation of the walls, representing
all possible walls as obstacles. Each of the walls (“C”, “H”, “D”, “G”, ...) is translated to the
character “O” that represents an obstacle in the CSP specification. Free spaces (“ ”) are
converted to the letter “E”, whereas the robot start position (“@”) translates to the beginning
of the configuration (“S”). This systematic encoding makes it possible for the CSP model to
mimic the environment. In what follows, we present the CSP model of the map presented in
Section 2.1.

1 RAW_MAP = <<O,O,O,O,O,O,O,O,O,O,O,O>,
2 <O,O,O,O,O,O,O,O,O,O,O,O>,
3 <O,O,S,E,O,E,O,E,O,E,O,O>,
4 <O,O,E,E,E,E,E,E,E,E,O,O>,
5 <O,O,E,E,E,E,E,E,E,E,O,O>,
6 <O,O,O,O,O,O,O,O,O,O,O,O>,
7 <O,O,O,O,O,O,O,O,O,O,O,O>>

In Figure 5, we show an example of a room that illustrates a bedroom and its dimensions.
It has dimensions of 3× 3 meters and contains a double bed at the center-north of the room
with two bedside tables on either side. At the bottom, we have a wardrobe and a door, which
we will consider closed while the robot cleanses the room.

As an AVC has a diameter of about 30 cm, to effectively model the room, we will abstract
its dimensions into a 10 × 10 grid, where each cell represents a square area of 30 × 30 cm2,
matching the robot size. The bed, bedside tables, and wardrobe will be treated as obstacles,
occupying multiple cells depending on their size.

Figure 6 shows the room modeled as a grid. The black cells represent obstacles, and the
white cells represent free spaces for the robot. The grid has a dimension of 12×12 cells, which
is greater than the original 10× 10 grid by the addition of the walls of the room, keeping the
central 10× 10 grid inside the walls.

Figure 7 shows Figure 5 overlapped by Figure 6, illustrating how the abstraction of the
room represents the bedroom. The CSP model for this bedroom is an over approximation.
Adjusts in the map size and in the size of the robot (robot radius) can improve the match of
the model with the real environment.

We can easily translate the model for the room to CSP. In the translation each black cell is
represented as an obstacle (O). We present below the CSP encoding of the map, as presented
in Figure 6, using the top-left free space as the starting position.

35

Figure 5 – Room example
Source: Unknown, Adapted from (UNKNOWN,) (2025)

1 RAW_MAP = <<O,O,O,O,O,O,O,O,O,O,O,O>,
2 <O,S,O,O,O,O,O,O,O,O,E,O>,
3 <O,E,O,O,O,O,O,O,O,O,E,O>,
4 <O,E,E,O,O,O,O,O,E,E,E,O>,
5 <O,E,E,O,O,O,O,O,E,E,E,O>,
6 <O,E,E,O,O,O,O,O,E,E,E,O>,
7 <O,E,E,O,O,O,O,O,E,E,E,O>,
8 <O,E,E,O,O,O,O,O,E,E,E,O>,
9 <O,E,E,E,E,E,E,E,E,E,E,O>,

10 <O,E,E,E,E,E,E,E,E,E,E,O>,
11 <O,O,O,O,O,O,O,O,E,E,E,O>,
12 <O,O,O,O,O,O,O,O,O,O,O,O>>

36

Figure 6 – Room visualization
Source: Author (2025)

37

Figure 7 – Overlapping map
Source: Author (2025)

38

3.3 ROBOMIND ENVIRONMENT MEMORY REPRESENTATION

One important improvement over the formal representation used in (CORREIA, 2021) is
the usage of more efficient data structures for representing the program state as well as its
environment. The previous work represented a state as a set of tuples that has a linear cost
to access and update state values. The current representation has a logarithmic cost instead
of a linear one.

The memory of the RoboMind environment is represented in the CSP semantics by a map
data structure that stores the names and values of all dynamic elements in the environment.
The datatype DATA defines the type for values in the memory as booleans, integers, paint
colors, and paint locations.

Another important improvement over the previous work is the inclusion of data structures
to assess an AVC. For assessing coverage, we created the constant FREE_MAP to count how
many empty spaces exist in the map. We use it to divide the PAINTS set during the refinement
to calculate the coverage the robot.

1 datatype Colors = White | Black
2 datatype DATA = UNDEFINED
3 | B.Bool
4 | I.Int
5 | COLOR.{0..MAXX}.{0..MAXY}.Colors
6 | PAINT.Colors
7
8 INIT = (|
9 X => I.startX,

10 Y => I.startY,
11 ORIENTATION => I.NORTH_,
12 IS_PAITING => B.true,
13 PAINT_COLOR => PAINT.White,
14 EFFORT => I.0
15 |)
16
17 PAINTS = { ((startX,startY), White) }

3.4 FORMAL DEFINITIONS OF COVERAGE AND EFFORT

To quantitatively evaluate the robot’s cleaning performance, we define three key metrics
used in this work to evaluate cleaning algorithms:

• Effort is defined as the number of steps (squares moved) performed by the robot;

• Turns is defined as the amount of 90ž turns performed by the robot; and

39

• Coverage is calculated by the formula 𝑁𝑐𝑙𝑒𝑎𝑛_𝑐𝑒𝑙𝑙𝑠 / 𝑁𝑓𝑟𝑒𝑒_𝑐𝑒𝑙𝑙𝑠, such that 𝑁𝑐𝑙𝑒𝑎𝑛_𝑐𝑒𝑙𝑙𝑠

denotes the total number of cells cleaned and 𝑁𝑓𝑟𝑒𝑒_𝑐𝑒𝑙𝑙𝑠 denotes the total number of
free cells.

Other important efficiency factors are not considered in this approach, such as time taken by
the robot and energy consumption through the path-planning. However, as energy consumption
and time taken are directly proportional to the robot’s movement, making steps and turns
reasonable proxies for efficiency.

Another important efficiency factor not included in this approach is the amount of dirtiness
in a grid cell, which captures the user experience and satisfaction with the robot’s performance.
While this strategy ensures a standardized evaluation for coverage path-planning algorithms,
potential future enhancements can include evaluating how well the robot meets perceived
cleanliness standards beyond raw coverage calculations.

In our CSP𝑀 specification, we introduced a dedicated channel named coverage, which is
triggered each time the robot cleans a new grid cell. The event follows the format coverage.x,
where (0 ≤ 𝑥 ≤ 100) represents the percentage of coverage at that point in the execution.
This allows us to monitor progress via event traces. During model-checking, we apply the
following refinement assertion:

assert STOP [T= PROGRAM \diff(Events, {|coverage|})

This assertion ensures that if any coverage.x event is emitted, it becomes a counterex-
ample trace, enabling us to track how much of the map has been cleaned before termination.
By analyzing the last coverage.x in the trace, we can determine the maximum coverage
achieved by the algorithm.

3.5 ROBOT SIZE AND PATH FEASIBILITY

To describe the grid map and the robot size more accurately, we introduced the constant R
(radius) to describe the robot’s size, which does not vary during the test. This constant helps
to set the diameter of the robot and check inaccessible paths, which are narrower than the
movement step of the robot.

40

Figure 7 illustrates what we will represent as a robot with a zero radius, where it sets the
robot dimension equal to the size of the grid cell. With a 30 cm × 30 cm cell, some cells are
left for us to interpret whether it is an obstacle.

If we reduce the size of each cell, we can reduce the map’s obstacle abstraction. With a
radius value of zero, the robot fits in a 1×1 cell. If we increase the radius to one, we want the
robot to fit more cells, but we do not want to change the validation. In order to reduce the
amount of changes for the validation, we will fit the robot center in a cell instead of a corner
of a cell. So, we cannot divide each cell by two along both x-y dimensions and have four cells
for each cell, as the center of the robot will be in a corner. If the robot center occupies a cell,
a robot with a radius of 1 occupies a total of 3× 3 cells. By dividing each cell by three along
both x-y dimensions, each new cell will have a size of 10 cm × 10 cm instead of 30 cm × 30

cm. With a cell size of 10 cm × 10 cm, we will have the robot fitting the center of the cell
and still occupying the 30 cm × 30 cm.

Figure 8 illustrates the visual representation of the Figure 7 for a robot with a radius value
equal to one, where the robot will fit in a 3× 3 grid area of the map. In contrast to Figure 7,
most of the cells we judged as obstacles are now free spaces, as the cell size allows us to judge
better if the cell is or not an obstacle.

Some minor changes had to happen to assess the robot’s new size. Below, we present an
example of how obstacle detection works without increasing the robot’s size.

1 frontIsObstacle(x,y,o) = thingsInFront(x,y,o) == {O}
2 frontIsClear(x,y,o) = not(frontIsObstacle(x,y,o))

To check if the robot’s path is clear, we call for the frontIsClear() function, which
calls for the frontIsObstacle(), checking in the map if there is an obstacle. If an obstacle
is found, the thingsInFront function will return {0}, which will validate the presence of
an obstacle ahead of the robot. If there is no obstacle ahead of the robot, the function will
return {}. For the leftIsClear and rightIsClear functions, we call for the frontIsClear

function, adjusting the orientation for the direction.
To check now if the path is clear for the new robot size, we have to rely on the frontIsClear,

but for the new size. For this, we created a new function called allFrontIsClear, which
calls for the frontIsClear, adjusting the front with the radius. Below, we present how the
allFrontIsClear works.

1 allFrontIsClear(r, x, y, o) =
2 if(o == NORTH_) then (
3 frontIsClear(x-r, y-RADIUS, o)

41

Figure 8 – Map with a grid-cell size of 10× 10 cm
Source: Author (2025)

4 and frontIsClear(x+r, y-RADIUS, o)
5 and allFrontIsClear(r-1, x, y, o)
6) else if (o == EAST_) then (
7 frontIsClear(x+RADIUS, y-r, o)
8 and frontIsClear(x+RADIUS, y+r, o)
9 and allFrontIsClear(r-1, x, y, o)

10) else if (o == SOUTH_) then (
11 frontIsClear(x-r, y+RADIUS, o)
12 and frontIsClear(x+r, y+RADIUS, o)
13 and allFrontIsClear(r-1, x, y, o)
14) else (
15 frontIsClear(x-RADIUS, y-r, o)
16 and frontIsClear(x-RADIUS, y+r, o)
17 and allFrontIsClear(r-1, x, y, o)

The allFrontIsClear function relies on the RADIUS constant, which is the actual radius
of the robot, and checks with the frontIsClear function if, for each of the cells occupied in
front of the robot, if there is an obstacle in all the cells ahead. If, for the actual value of the
radius, there is not an obstacle, the function recursively calls itself with the radius received

42

reduced.
To assess the painting, which we use to validate coverage, we use the PAINTWHITE /

PAINTBLACK process. The PAINTWHITE is shown below.
1 PAINTWHITE(m, paints, next) =
2 let
3 x = get(m,X)
4 y = get(m,Y)
5 m_ = mapUpdateMultiple(m, <(IS_PAITING, B.true),(PAINT_COLOR,

PAINTS.White)>)
6 within
7 next(m_, union(paints, {((x, y), White)}))

The PAINTWHITE process paints only the robot’s actual position. Some minor changes were
made to make it paint with the radius. First, we needed to modify the painting function so
that it could both paint for the basic robot (where it occupies one cell) and the new robot
size (where it occupies nine cells). To find the nine cells occupied by the root, we introduced
a new function, PAINTBYRADIUS.

1 PAINTBYRADIUS(x, y, color) =
2 let
3 PAINTBYX(y, x, xlim) = if(x == xlim) then <((x, y), color)> else

<((x, y), color)>^PAINTBYX(y, x+1, xlim)
4 PAINTBYY(y, ylim) = if y == ylim then PAINTBYX(y, x-RADIUS, x+

RADIUS) else PAINTBYX(y, x-RADIUS, x+RADIUS)^PAINTBYY(y+1, ylim)
5 within
6 set(PAINTBYY(y-RADIUS, y+RADIUS))

The PAINTBYRADIUS function goes line by line, collecting each cell that needs painting
and returning the collection/set of these cells. The function calls for the PAINTBYY function,
which receives two arguments: the actual y and the limit ylim, which is the maximum value y
can have before ending the recursion. Each time PAINTBYY is called, it calls for the PAINTBYX

function. The PAINTBYX function receives y, x, and xlim, much like PAINTBYY function. for
each x and y, it registers the color to paint in a sequence and starts a recursion with x+1 until
x is equal to xlim.

With the PAINTBYRADIUS function, we can edit the PAINTWHITE function to call for the
PAINTBYRADIUS

1 PAINTWHITE(m, paints, next) =
2 let
3 x = get(m,X)
4 y = get(m,Y)
5 m_ = mapUpdateMultiple(m, <(IS_PAITING, B.true),(PAINT_COLOR,

PAINTS.White)>)

43

6 within
7 next(m_, union(paints, PAINTBYRADIUS(x, y, White))

In Chapter 4, we will experiment with how the assessment works with a robot of radius
value one after experimenting with how the radius zero behaves.

3.6 DETERMINING THE MAXIMUM POSSIBLE COVERAGE

In order to determine coverage using the FDR refinement checker within a defined time
limit, we apply two distinct but interrelated verification methods. Both use the following
traces refinement verification condition, where PROGRAM represents the ROBO code translated
into CSP𝑀 following the approach introduced in (CORREIA, 2021). Such a refinement verifies
if PROGRAM (with all events removed except for covered) behaves as STOP. As STOP does
not produce any event at all, this refinement fails if the process PROGRAM \diff(Events,

|covered|) produces events covered.x, such that x (0 ≤ 𝑥 ≤ 100) records the coverage
percentage.

1 assert STOP [T= PROGRAM \diff(Events, {|covered|})

The first verification method uses the previous trace refinement once intending to achieve
100% coverage within a 1 hour timeout (3600 seconds). If FDR provides counterexamples, the
second verification is unnecessary. If FDR fails to provide a counterexample, we proceed to the
second, more intensive verification method, which leverages a search algorithm (Algorithm 1),
using the previous traces refinement several times if necessary.

3.6.1 Single verification method

FDR applies the breadth-first search strategy in a state-machine graph to obtain the short-
est counterexample, which might not present the maximum coverage as the shortest coun-
terexample. To ensure we can observe the highest possible coverage, we set FDR to produce
all counterexamples that make it possible to look for the maximum value for coverage record
in the counterexample traces.

44

3.6.2 Binary search-based verification method

Given that FDR fails to produce all counterexamples within the time constraint using
the refinement presented in the previous section, we proceed with a more computationally
intensive verification method based on a binary search. This process follows the steps outlined
in Algorithm 1.

Algorithm 1 CBinarySearch
Require: minimum, maximum
Ensure: result
1: if 𝑚𝑎𝑥𝑖𝑚𝑢𝑚−𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ≤ 1 then
2: 𝑟𝑒𝑠𝑢𝑙𝑡← 𝑚𝑖𝑛𝑖𝑚𝑢𝑚
3: end if
4: 𝑎𝑐𝑡𝑢𝑎𝑙← (𝑚𝑖𝑛𝑖𝑚𝑢𝑚 + 𝑚𝑎𝑥𝑖𝑚𝑢𝑚)/2
5: 𝑠𝑎𝑣𝑒(“𝑠𝑐𝑟𝑖𝑝𝑡.𝑐𝑠𝑝”, 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑐𝑟𝑖𝑝𝑡(𝑎𝑐𝑡𝑢𝑎𝑙))
6: 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑠← 𝑟𝑢𝑛([“𝑓𝑑𝑟”, “𝑠𝑐𝑟𝑖𝑝𝑡.𝑐𝑠𝑝”], 3600)
7: if 𝑖𝑠𝑁𝑜𝑡𝐸𝑚𝑝𝑡𝑦(𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑠) then
8: if 𝑚𝑎𝑥(𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑠) ≥ 𝑎𝑐𝑡𝑢𝑎𝑙 then
9: 𝑛𝑒𝑤 ← 𝑚𝑎𝑥(𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒)

10: 𝑟𝑒𝑠𝑢𝑙𝑡← 𝐶𝐵𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑎𝑟𝑐ℎ(𝑛𝑒𝑤, 𝑚𝑎𝑥𝑖𝑚𝑢𝑚)
11: else
12: 𝑟𝑒𝑠𝑢𝑙𝑡← 𝑚𝑎𝑥(𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑠)
13: end if
14: else
15: 𝑟𝑒𝑠𝑢𝑙𝑡← 𝐶𝐵𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑎𝑟𝑐ℎ(𝑚𝑖𝑛𝑖𝑚𝑢𝑚, 𝑎𝑐𝑡𝑢𝑎𝑙)
16: end if

In Algorithm 1, we generate a CSP𝑀 specification in GenerateScript that will end when
it attains the given coverage. For example, in the first iteration of CBinarySearch, where
actual is 50%, the refinement will end when PROGRAM reaches 50% coverage. In isNotEmpty,
we check if the array coverages is not an empty array. If it is an empty array (when it reaches
the time constraint), it returns false. If it has any value, it returns true. In max, we return
the maximum value from the array that records the coverages. We explain each line of the
algorithm in what follows:

• In Lines 1 and 2, if the difference between maximum and minimum is less than or equal
to 1, then the binary search has reached its final iteration. At this point, the function
returns the minimum value;

• In Line 4, it computes the mean value between minimum and maximum for the search as
actual (C);

• In Line 5, the algorithm generates a file containing the refinement to verify if the code
can reach C;

45

• In Line 6, the algorithm executes FDR, and the counterexamples (Ce) yield by the
refinement process are collected;

• In Line 7, the script checks if any counterexamples (Ce) were generated:

– If any Ce were generated, it checks if they meet or exceed C. Given that the
maximum Ce is unknown, it can be either greater than, equal to, or less than C;

∗ If the highest value of Ce exceeds C, it indicates that the map is relatively
small, and each robot step increases coverage by more than 1%;

∗ If the highest value of Ce is equal to C, this scenario mirrors the standard
behavior of a binary search;

∗ If the highest value of Ce is below C, this suggests that the highest possible
coverage for the algorithm is the highest value of Ce.

– If any generated Ce meets C, recursion is initiated in Line 10 using a new minimum

value set to the value max(coverages) - indicating that this level reached the
desired coverage within the timeout constraint;

– If the generated Ce fails to meet C, C is impossible to be attained by the cur-
rent algorithm. In this case, the function returns the maximum value within Ce in
Line 12;

• If no Ce were generated, the maximum coverage is adjusted to actual in Line 15 since
no Ce were found.

46

4 EVALUATION

We evaluated four different CPP algorithms (Code1, Code2, Depth-First Search, and
Inwards Spiral) across various map configurations. The deterministic algorithms (Depth-

First Search and Inwards Spiral) are compared against non-deterministic algorithms (Code1

and Code2) to assess their performance trade-offs.
The evaluations were validated in Section 4.6.1 and 4.6.2 and conducted on an AMD Ryzen

7 3700X system with 24 GB RAM, Windows 11 Pro x64, and a 1TB NVMe SSD. Results
compare analysis time, coverage, and robot turns and effort, highlighting the strengths and
limitations of each strategy.

4.1 MAP SELECTION PROCESS

The map selection of this work involved choosing maps that compose all the rooms in
a household environment, ensuring a comprehensive representation of domestic environments
for the AVC’s operation. The maps were collected from a series of house plants and translated
to grid-based maps. The maps selected were a living room, a kitchen, and three bedrooms.
Multiple bedrooms may seem redundant when talking about cleaning efficiency. However, real-
world homes include multiple rooms, so evaluating how the vacuum adapts to different room
scenarios is an important evaluation to be explored in future work.

4.2 CODE1 IN ROBO

The following code approximates an AVC algorithm, using white paint to mark covered
locations. Inspired by observing the Roomba’s (CORPORATION, 2025) random bounce behavior,
the algorithm below assumes sensor-based path recording. Its implementation shows to behave
as:

1. Go forward

2. Hit an obstacle

3. Turn to a different direction

4. Return to step 1

47

1 paintWhite()
2 repeat{
3 repeatWhile(frontIsClear()){
4 forward(1)
5 }
6 if(flipCoin()){
7 if(flipCoin()){
8 north(0)
9 } else {

10 south(0)
11 }
12 } else {
13 if(flipCoin()){
14 east(0)
15 } else {
16 west(0)
17 }
18 }
19 }

By adopting this behavior, Code1 seeks to replicate the random bounce behavior, utilizing
sensor-based path planning to effectively navigate and clean an area.

Figure 9 illustrates the routes of the robot that executes the Code1 algorithm. Due to
the algorithm’s simplicity, gaps are left unreachable by the robot, resulting in a coverage rate
below 100%. The untouched areas should be exacerbated on larger maps, reducing coverage
efficiency.

48

Figure 9 – Code1 visualization
Source: Author (2025)

4.3 CODE2 IN ROBO

The following code snippets comprise auxiliary functions within the primary Code2 algo-
rithm. Code2 is an improvement of the Code1 random bounce’s algorithm, where we avoid
bouncing to already clean cells.

Unlike Code1, Code2 halts when no suitable paths remain. This algorithm performs a
look-ahead, continuing the navigation until it attains a predefined number of steps, improving
the cleansing of the room.

1 cango = true
2
3 paintWhite()
4
5 repeatWhile(canGo){
6 nic = northIsClear()
7 sic = southIsClear()
8 eic = eastIsClear()
9 wic = westIsClear()

10 canGoVert = nic or sic

49

11 canGoHor = eic or wic
12 if(not(canGoVert or canGoVor)){
13 canGo = newWay()
14 }else{
15 chooseWay()
16 repeatWhile(frontIsClear()){
17 forward(1)
18 }
19 }
20 }

The code below presents a ROBO auxiliary procedure used in the definition of Code2.
There are auxiliary procedures for each direction in which the robot can move. Each procedure
involves rotating the robot in a specific direction and then checking for potential obstacles
ahead or any markings on the ground that indicate already cleaned areas. If the path is
blocked, it is unsuitable for further exploration, returning False. If it is free, it returns True.
For instance, the procedure northIsClear turns the robot to the north direction and then
checks if in the north direction there is no obstacle and it is not painted over. If both are true,
then it returns True. Otherwise, it returns False.

1 procedure northIsClear{
2 north(0)
3 return frontIsClear() and not(frontIsWhite())
4 }

The code presented below defines the chooseWay function. This function evaluates whether
a vertical or horizontal direction is obstructed before invoking the flipCoin function. Its
design aims to optimize the decision-making process by limiting the invocation of flipCoin

to instances where it is strictly necessary. Once a direction is defined, the function delegates
the decision to the choose function for further processing.

1 procedure chooseWay(){
2 if(cangovert and not(cangohor)){
3 vert = true
4 } else if(cangohor and not(cangovert)){
5 vert = false
6 } else {
7 vert = flipCoin()
8 }
9 if(vert){

10 if(northIsClear() and not(southIsClear())){
11 north(0)
12 }else {
13 if (southIsClear() and not(northIsClear())){
14 south(0)
15 } else {
16 if(flipCoin()){
17 north(0)
18 } else {
19 south(0)

50

20 }
21 }
22 }
23 } else {
24 if(eastIsClear() and not(westIsClear())){
25 east(0)
26 }else {
27 if (westIsClear() and not(eastIsClear())){
28 west(0)
29 } else {
30 if(flipCoin()){
31 east(0)
32 } else {
33 west(0)
34 }
35 }
36 }
37 }
38 }

The code below introduces the newWay function, which exhibits greater complexity when
compared to the previously discussed functions. Its primary purpose is to identify unpainted
sections on the map to paint. The function iteratively searches for an unpainted cell until it
locates a suitable cell or the counter is greater or equal to the maximum steps threshold.

During each iteration, the function selects a direction and moves forward, scanning the
front, left, and right for unpainted areas. Upon finding an unpainted section, it changes its
direction accordingly, terminates the procedure, and returns to Code2, standing in front of
the unpainted area and signaling the discovery of an unpainted section. Conversely, if no
unpainted cell was found within the step limit, the function concludes that the unpainted
section is inaccessible from the current position.

1 procedure newWay(){
2 count = 0
3 found = false
4 repeatWhile(count < steps and not(found)){
5 nic = northIsClear()
6 sic = southIsClear()
7 eic = eastIsClear()
8 wic = westIsClear()
9 cangovert = nic or sic

10 cangohor = eic or wic
11 chooseWay()
12 repeatWhile(frontIsClear() and count < steps){
13 forward(1)
14 count = count + 1
15 if(frontIsClear() and not(frontIsWhite())){
16 found = true
17 break
18 }else if(rightIsClear() and not(rightIsWhite())){
19 right()
20 found = true
21 break

51

22 }else if(leftIsClear() and not(leftIsWhite())){
23 left()
24 found = true
25 break
26 }
27 }
28 }
29 return(found)
30 }

Figure 10 illustrates the behavior of Code2 algorithm. Unlike Code1, Code2 demonstrates
a more comprehensive cleaning pattern, continually exploring new areas to clean. This proactive
approach results in significantly higher coverage compared to its predecessor.

Figure 10 – Code2 visualization
Source: Author (2025)

4.4 DEPTH-FIRST SEARCH

The Depth-First Search (DFS) algorithm performs a systematic exploration delving as
deeply as possible into a given search space before backtracking. When applied to AVCs,

52

DFS ensures that the robot methodically explores an area, thoroughly covering one path
before retreating and selecting an alternative direction to follow. The algorithm adopts a
stack-based traversal approach, moving in one direction until encountering an obstacle or
a previously visited cell. When this happens, it backtracks to the last available branch and
resumes exploration. This process leads to a structured but non-optimal coverage path, as
Depth-First Search (DFS) does not inherently prioritize efficiency or minimal turns. However,
it ensures a complete traversal of the available cleaning area.

1 paintWhite()
2 repeat(4){
3 if(frontIsClear()){
4 break
5 }
6 right()
7 }
8 dfs()

The DFS algorithm below follows a recursive approach, systematically exploring the clean-
ing space. It starts by marking its initial position (paintWhite()) and rotates to a clear
direction before calling the recursive function dfs().

The function dfs() is structured as follows:

• If the front is clear and uncleaned, the robot moves forward, marks the cell, and recur-
sively calls dfs() to maintain linear motion before backtracking.

• Then, if the left side is clear and uncleaned, the robot turns left, moves forward, and
applies dfs() before backtracking and restoring orientation.

• Lastly, if the right side is clear and uncleaned, the robot turns right, moves forward, and
applies dfs() before backtracking and restoring orientation.

This algorithm ensures full exploration of the environment, backtracking when necessary
to cover missed areas. However, the backtracking mechanism may increase effort and analysis
time, making DFS less efficient in environments with multiple obstacles.

1 procedure dfs(){
2 if(frontIsClear() and not(frontIsWhite())){
3 forward(1)
4 dfs()
5 backward(1)
6 }
7
8 if(leftIsClear() and not(leftIsWhite())){
9 left()

10 forward(1)
11 dfs()

53

12 backward(1)
13 right()
14 }
15
16 if(rightIsClear() and not(rightIsWhite())){
17 right()
18 forward(1)
19 dfs()
20 backward(1)
21 left()
22 }
23 }

Figure 11 illustrates the behavior of Depth-First Search algorithm. Unlike Code1 and
Code2, it demonstrates a deterministic cleaning pattern.

Figure 11 – DFS visualization
Source: Author (2025)

54

4.5 INWARDS SPIRAL

The Inwards Spiral algorithm is a structured CPP approach that prioritizes efficiency by
minimizing redundant movements and unnecessary turns. Instead of randomly navigating the
space, the robot follows a predetermined spiral trajectory, starting from the outer edges of the
environment and gradually moving inward. This method reduces the number of abrupt turns
and ensures that the cleaning path remains compact, covering the largest continuous area
before adjusting direction. Inwards Spiral is particularly effective for open environments with
fewer obstacles, as it allows for smooth and efficient coverage without excessive maneuvering.
However, with rooms with complex layouts or numerous obstacles, this approach may require
adaptations to handle navigation constraints effectively.

1 paintWhite()
2 repeat(4){
3 if(frontIsClear()){
4 break
5 }
6 right()
7 }
8 spiral()

The Inwards Spiral algorithm below follows an efficient approach to cover the cleaning
area by prioritizing rightward turns, ensuring a structured and systematic cleaning approach.
Unlike DFS, which explores the deepest path first, this algorithm follows a controlled turning
strategy to Inwards Spiral, reducing unnecessary backtracking.

The algorithm begins by marking the initial position as cleaned (paintWhite()) and rotates
to a clear direction before calling the recursive function spiral().

The function spiral() is structured as follows:

• If the right side is clear and uncleaned, the robot turns right, moves forward, and recur-
sively calls spiral() to continue in the new direction. After backtracking, it turns left
to restore orientation.

• If the front is clear and uncleaned, the robot moves forward and recursively calls spiral()
to maintain linear motion before backtracking.

• If the left side is clear and uncleaned, the robot turns left, moves forward, and recursively
calls spiral() before backtracking and restoring orientation.

55

This approach naturally guides the robot in a spiraling motion, efficiently covering the map
by prioritizing turns and ensuring all reachable areas are cleaned. However, in environments with
irregular obstacle placement, the spiral pattern will interrupt, requiring additional adaptations
to navigate around obstacles effectively.

1 procedure spiral() {
2 if(rightIsClear() and not(rightIsWhite())){
3 right()
4 forward(1)
5 spiral()
6 backward(1)
7 left()
8 }
9 if(frontIsClear() and not(frontIsWhite())){

10 forward(1)
11 spiral()
12 backward(1)
13 }
14 if(leftIsClear() and not(leftIsWhite())){
15 left()
16 forward(1)
17 spiral()
18 backward(1)
19 right()
20 }
21 }

Figure 12 illustrates the behavior of Inwards Spiral algorithm. It demonstrates a linear
cleaning pattern, exploring new areas to clean when it returns to its original position, just like
DFS.

56

Figure 12 – Spiral visualization
Source: Author (2025)

4.6 RESULTS AND COMPARISON

In this section, we present and analyze the performance results from our approach com-
paring Code1, Code2, Depth-First Search and Inwards Spiral across various map config-
urations. Our analysis emphasizes FDR verification time, effort, turns, and coverage, with the
objective being to evaluate the effectiveness of each strategy in different environments using
the strategy introduced in the previous section.

4.6.1 Approach Validation

In this section, we will analyze the performance results considering the behavior of the
single verification method with a single robot occupying 1× 1 cells of the grid. Tables 4 and 5
in this section are organized as follows: the first column specifies the Map dimensions with
Rows (R) and Columns (C) represented as R × C. The following column is divided into four

57

sections, one for each algorithm. Each of the following sections is organized as follows: the
first column shows the average verification time in seconds, calculated from 30 independent
runs, alongside the standard deviation as a measure of variability (average on the left, standard
deviation on the right). The second and third columns exhibit the robot’s effort and turns,
indicating the computational or operational load involved. The fourth column (%) displays
the achieved coverage within a 1-hour limit for the verification that runs refinement assertions
using FDR. If the refinement fails to produce a result within this time limit, the verification
terminates, and a minus (−) symbol indicates that the refinement attained the time constraint
limit.

4.6.1.1 Optimal Global Coverage

Table 4 presents the performance metrics of all four algorithms across five maps, which
collectively model a simulated household environment.

Table 4 – Optimal global coverage overview for single robots

Map Code1 Code2

Time (s) Effort Turns % Time (s) Effort Turns %

Living Room (19 × 12) − − − − − − − −
Kitchen (12 × 8) 39.3± 1.3 50 47 96 1.1± 0.1 31 60 100
Room 1 (12 × 12) 15.7± 0.7 60 42 69 2.0± 0.1 31 85 100
Room 2 (14 × 11) − − − − 64.2± 0.8 52 81 100
Room 3 (12 × 11) 996.3± 20.3 49 72 88 10.9± 0.2 42 62 100

Map Depth-First Search Inwards Spiral

Time (s) Effort Turns % Time (s) Effort Turns %

Living Room (19 × 12) 0.4± 0.1 139 51 100 0.5± 0.1 147 60 100
Kitchen (12 × 8) 0.3± 0.1 51 14 100 0.2± 0.1 30 10 100
Room 1 (12 × 12) 0.3± 0.1 83 18 100 0.3± 0.2 66 15 100
Room 2 (14 × 11) 0.3± 0.1 70 21 100 0.3± 0.1 64 15 100
Room 3 (12 × 11) 0.3± 0.1 72 22 100 0.2± 0.1 42 11 100

Comparing the overall results of the algorithms, Code1 failed to finish the validation in
the Living Room and Room 2 within 1 hour, while Code2 only failed to reach full coverage in
the Living Room. All other maps and algorithms concluded successfully, reaching up to 100%

coverage.

58

When comparing all the algorithms in Table 4, we have the following points:

• Verification Time: Both DFS and Inwards Spiral were the most efficient to analyse,
completing the task in less than one second for all maps. Code2 failed to find a solution
within the one-hour time limit for the Living Room, but achieved times between one
second and one minute for the other maps. Code1 failed to obtain results for the Living
Room and Room 2, being the more costly algorithm overall, with times ranging from 15

seconds to approximately 16 minutes.

• Coverage: The DFS and Inwards Spiral algorithms achieved 100% coverage on all
maps. Code2 also reached 100% in every map except for the Living Room. On the other
hand, Code1 did not achieve 100% coverage on any of the maps, with values ranging
from 69% (Room 1) to 96% (Kitchen).

• Effort: Code2 had the lowest total effort on most maps, losing by only one point to
Inwards Spiral in the Kitchen. The overall ranking for the lowest effort was: Code2,
followed by Inwards Spiral, Depth-First Search, and lastly, Code1. Since Code1 did
not reach 100% in any map, it cannot be directly compared to the others. For example,
the 60 steps recorded in Room 1 are not equivalent to the 83 steps from DFS, which
achieved full coverage.

• Turns: Inwards Spiral had the lowest number of turns needed to complete coverage,
followed by DFS, Code2, and finally Code1. The high number of turns in Code2 explains
its strategy, which involves frequent rotations to check for available space before moving.

This analysis clearly shows that DFS and Inwards Spiral were the fastest and most
efficient approaches in terms of coverage and analysis time while Code2 demonstrated a
balance between effort and coverage, and Code1 had the worst overall performance in all
categories.

It is important to note that, although both Code2 and Code1 had worse analysis times
than DFS and Inwards Spiral, their algorithm had an important factor that increased their
assessment: flipCoin().

The flipCoin() is a ROBO method that has a chance of 50% to return either true or
false. Each time flipCoin() is called in RoboMind, the number of states in the internal
representation for the program used by FDR duplicates. For example, in the RoboMind envi-
ronment, when the robot collides with a wall and decides to either go north or west, it will flip

59

a coin. If it is true, then it goes north. If it is false, then it goes west. For the state-machine
that represents the CSP𝑀 specification inside, FDR considers two independent paths: one for
the true evaluation and the other for the false evaluation. Thus, the state-machine size doubles
after the flipCoin() call, as FDR looks for all possible outcomes. That is why Code2 has
a lower analysis time than Code1 as it only flips a coin when it needs to. There is no point
in flipping a coin to decide between north and south when the north is blocked, like Code1

does. With a reduced state-machine, Code2 shows to be faster than Code1.

4.6.1.2 Optimal Local Coverage

The following analysis examines the performance of Code1 and Code2 on maps where
the verification timed out the maximum one-hour waiting time. Since FDR does not provide
intermediate results upon reaching a timeout, we set the maximum observable coverage within
a 1-hour limit using the binary search approach described in Algorithm 1, adjusting the targeted
coverage threshold in the refinement process.

By employing Algorithm 1, we identified the closest achievable coverage for each algo-
rithm within a defined timeout, though this method extended the evaluation duration, as each
algorithm potentially underwent up to seven executions, each capped at a maximum of one
hour.

Figure 13 presents a line graph showing the total time required for each algorithm to reach
maximum coverage within the Living Room map. Solid lines indicate each algorithm’s peak
coverage over time, while dashed lines mark target coverages used during binary search. Each
line dot represents the target coverage and the maximum achieved by each algorithm. Notably,
Code2 reaches higher coverage faster than Code1, achieving its peak within approximately 5
hours.

Table 5 details the highest coverage reached by Code1 and Code2 within the time con-
straints. Each performance metric reflects the highest coverage achieved by each code.

Table 5 – Optimal local coverage overview for single robots

Map Code1 Code2

Effort Turns % Effort Turns %

Living Room (19 × 12) 53 46 54 63 78 69
Room 2 (14 × 11) 58 43 60

60

Figure 13 – Binary Search for the Living Room map
Source: Author (2025)

On the Room 2 map, Code2 attained 100% coverage (as shown in Table 5) outperforming
Code1, which achieved 60%—a result below its potential maximum coverage. This outcome
demonstrates Code2 has a superior performance in this environment.

Similarly, in the Living Room, under identical time constraints, Code2 consistently outper-
formed Code1, achieving 69% coverage in contrast to Code1’s 54%. Although these coverages
do not represent the highest achievable by each algorithm without time restrictions, they reflect
the maximum attainable within the given constraints, affirming Code2 has the advantage.

4.6.2 Robot Size and Path Feasibility

In this section, we present and analyze the performance results from our approach com-
paring Code1, Code2, Depth-First Search and Inwards Spiral, in a more feasible grid,
presented in Figure 8, with the robot occupying 3× 3 cells. Table 6 presents the performance
metrics for all four algorithms. As creating the map is a manual process, where we have to
type each cell in a txt file from scratch by hand with the help of a figure, only one map is
presented for this analysis.

Comparing the overall result, Code1 failed to achieve 100% coverage while the other
algorithms attained 100% value. Inwards Spiral showed the lowest effort and turn. Code2

showed low effort but a high number of turns. All algorithms showed a higher analysis time
than without increased radius, still showing that DFS and Inwards Spiral were the fastest in
analysis time and lowest in turns. Code2 and Inwards Spiral showed to possess the lowest
effort. Even with a higher path feasibility with the robot occupying more cells, Code1 showed

61

Table 6 – Optimal global coverage overview for robot size

Map Code1 Code2

Time (s) Effort Turns % Time (s) Effort Turns %

Room 1 (32 × 32) − − − − 5.5± 0.1 207 144 100%

Map Depth-First Search Inwards Spiral

Time (s) Effort Turns % Time (s) Effort Turns %

Room 1 (32 × 32) 1.1± 0.1 349 24 100% 0.8± 0.1 200 18 100%

an inability to finish validation within the time constraint. Analyzing the highest possible
coverage with Algorithm 1 in Code1 is unnecessary for this work, as it showed to reach 69%

without path feasibility, so the highest possible coverage for Code1 will be not much distant
of this value, as shown in Figure 9.

4.6.3 Discussion

Table 7 provides a high-level comparison of the four evaluated CPP algorithms based on
analysis time, effort, turns, and achieved coverage. Each algorithm exhibits different trade-offs
between efficiency and completeness, highlighting the impact of structured versus randomized
decision-making in autonomous cleaning.

Table 7 – Summary table

Algorithm Time (s) Effort Turns Coverage (%)

Code1 High Moderate Moderate Inconsistent
Code2 Moderate Low High 100%
DFS Low High Low 100%
Inwards Spiral Low Moderate Low 100%

Code1, which follows a random-walk-based approach, demonstrates high analysis time
and moderate analysis effort due to its reliance on stochastic movement. Although it has a
moderate number of turns, its coverage remains inconsistent across different maps, as the
lack of a structured strategy often leads to inefficient trajectories and redundant revisits to
previously cleaned areas.

Code2, while improving on Code1 by introducing a structured decision-making process, still
exhibits moderate analysis time due to calls for flipCoin(). The increased turning frequency

62

results from its strategy to prioritize determinism by reducing the number of states from the
state-machine FDR generates while ensuring that it achieves 100% in the analyzed maps.
While the FDR validation did not show Code2 achieving 100% in the Living Room due to the
time constraint, it demonstrates a potential of achieving 100% in the RoboMind simulation,
as shown in Figure 14. However, the high turn rate contributes to lower overall efficiency, as
the robot frequently reorients itself instead of prioritizing longer straight-line movements.

Figure 14 – Code2 completeness in the Living Room
Source: Author (2025)

63

DFS, as expected from its structured exploration approach, achieves low analysis time and
high effort as it thoroughly explores an area before backtracking. The low number of turns
reflects the algorithm’s preference for deep traversal before changing direction, allowing effi-
cient movement with minimal reorientation overhead. Additionally, DFS consistently achieves
full coverage, ensuring that all accessible areas are to be cleaned. However, its high effort cost
means it covers more distance than necessary.

Finally, Inwards Spiral emerges as the most balanced strategy, achieving low analysis
time, moderate effort, and low turns while consistently reaching 100%. The structured nature
of this approach minimizes redundant movements and unnecessary turns, allowing the robot
to navigate the environment with optimized path planning. Compared to DFS, it requires less
effort to achieve full coverage, making it a highly efficient choice for structured cleaning tasks.

These results highlight the trade-offs between randomized and deterministic strategies and
the impact of turn frequency on execution efficiency. While Code1 struggles with inconsis-
tency, Code2 suffers from excessive turns. In contrast, DFS and Inwards Spiral ensure 100%

coverage, with Inwards Spiral emerging as the most efficient algorithm overall.
Comparing the overall result, Code1 failed to achieve 100% coverage while the other

algorithms attained 100% value. Inwards Spiral showed the lowest effort and turn. Code2

showed low effort but a high number of turns. DFS and Inwards Spiral were the fastest in
analysis time and lowest in turns. Code2 and Inwards Spiral showed to possess the lowest
effort. Even with a higher path feasibility with the robot occupying more cells, Code1 showed
an inability to finish validation within the time constraint. If the amount of turns of Code2

could be reduced in the RoboMind environment, it can be a strong candidate for an efficient
CPP algorithm, even with its nondeterministic approach. To continue with this line of research,
Inwards Spiral appears to be the most promising algorithm for efficient and complete coverage
in structured environments, while DFS remains a reliable choice for thorough exploration
despite its higher effort cost.

64

5 RELATED WORK

Galceran and Carreras (GALCERAN; CARRERAS, 2013) review several map representation
techniques for robotic path planning, including grid-based, graph-based, and landmark-based
approaches, providing a comprehensive analysis of CPP for mobile robots. These methods
are widely used across robotic applications requiring efficient navigation. Our study differs by
incorporating formal verification to assess the cleaning performance of the algorithms — an
aspect not addressed in their research.

Pak et al. (PAK et al., 2022) applied grid-based path planning in agricultural robotics,
focusing on mapping and localization to enable autonomous farming tasks. While we also
focus on structured environments, our approach emphasizes formal validation, allowing for a
systematic analysis of robot behavior across different scenarios.

Lin et al. (LIN et al., 2022) examined path-planning algorithms in multi-robot systems,
analyzing centralized and decentralized decision-making for real-time applications. In contrast,
our work focuses on the formal evaluation of individual trajectories before extending to multi-
robot scenarios.

The chaotic motion planning approach in (AHURAKA et al., 2023) addresses the NP-hard
problem of achieving full coverage while avoiding collisions, which aligns with our goal of opti-
mizing AVCs in cluttered environments. While their approach maximizes exploratory coverage,
it does not provide the guarantees of a formal analysis — something our CSP-based approach
does.

Similarly, Govindaraju (GOVINDARAJU et al., 2023) proposed an optimized offline CPP algo-
rithm for multi-robot systems, focusing on improving coverage efficiency in structured fields.
While we share the same goal of optimizing coverage and effort, our study differentiates itself
by using model-checking to verify the strategy before real-world implementation.

Dhaniya et al. (DHANIYA; UMAMAHESWARI, 2021) identified limitations in traditional path-
planning algorithms for grid-based environments, particularly regarding robot size and corner
navigation inefficiencies, and evaluated heuristics to minimize turns and search time. Our study
addresses these challenges through precise formalization and CSP-based refinement analysis.

Thus, while existing works provide valuable insights into CPP, our study contributes to the
field by integrating model-checking as a core tool for formally validating autonomous cleaning
algorithms, ensuring performance optimization and verifiable correctness.

65

A deterministic execution environment is preferable primarily because formal verification
relies on precisely defined states and transitions. Stochastic methods introduce probabilis-
tic behavior, which, while useful for robustness testing, makes exhaustive verification signifi-
cantly more difficult. A purely statistical approach may reveal trends, but it does not formally
guarantee system properties such as deadlock freedom, liveliness, and worst-case execution
bounds—which formal methods like CSP can provide. However, this does not mean that
stochastic methods are ignored; the deterministic verification serves as a foundation, ensuring
that core behaviors function correctly before introducing stochastic elements. Thus, while the
current approach focuses on deterministic correctness, it does not preclude the possibility of
integrating probabilistic elements.

CSP has a steeper learning curve than graphical modeling tools such as Petri Nets and
Timed Automata, which offer visual representations of system behavior. Graphical tools pro-
vide an intuitive way to model concurrency and can often be easier to understand initially
but may lack the expressiveness needed for complex concurrent interactions. CSP, while more
abstract, offers distinct advantages, such as process composition, allowing hierarchical model-
ing and code reuse, which is difficult in purely graphical approaches; CSP’s formal semantics
prevent ambiguity, which is crucial for verifying correctness in concurrent systems, making
it more reliable for verifying concurrent systems, and its algebraic nature allows for modular
modeling, making it easier to reason about large and complex systems compared to purely
visual approaches.

66

6 THREATS TO VALIDITY

As internal threats, we have:

• Algorithm selection bias: this paper is restricted to four relatively simple algorithms.
The selection of Code1 and Code2 was justified as these algorithms represent a pro-
gression from basic to advanced approaches, enabling meaningful comparisons across
common path planning strategies for AVCs;

• Algorithm limitations: while our 2D grid lacks full real-world complexity, it allows for
controlled, systematic evaluation of core algorithm behaviors. Future enhancements in
the approach and physical experiments will address real-world factors;

• Extensibility Beyond Current Algorithms: while this study evaluates four algorithms
(Code1, Code2, Depth-First Search, and Inwards Spiral) within the RoboMind
framework, the proposed methodology can be extended to analyze more sophisticated
CPP strategies. However, the ROBO language imposes intrinsic limitations that prevent
direct implementation of algorithms that require complex data structures or dynamic
memory management, such as Breadth-First Search (BFS), A*, or deep learning ap-
proaches. The primary constraint is that ROBO lacks support for storing and manip-
ulating structured data, such as queues, stacks, and priority lists, essential for many
state-of-the-art planning algorithms. To overcome these limitations, an alternative ap-
proach would involve abstracting the high-level behavior of these advanced algorithms
into CSP models rather than implementing them directly in ROBO. Future validations
will define CSP specifications that capture the fundamental decision-making patterns of
algorithms like BFS or A*, making it possible to analyze their efficiency and correctness
within the FDR model checker;

• State-space explosion and scalability: FDR performs explicit-state refinement check-
ing, which builds the complete state machine before asserting properties, which can lead
to an exponential increase of validation time and resources as the robot program and
map complexity grow. Time and memory can grow exponentially, limiting feasible model
sizes.

As external threats, we have:

67

• Generalizability: this study focuses on a specific robot configuration and environment,
which leads to bias; adapting other AVC algorithms and/or maps with appropriate mod-
ifications may demonstrate different results. Thus, it is not possible to generalize the
presented results without more comprehensive evaluations;

• Simulation fidelity: simulations may not fully capture real-world complexities but pro-
vide a basis for initial evaluation. Planned physical experiments will validate results and
explore the effects of factors like sensor noise and battery constraints;

• Measurement limitations: coverage percentage alone may not fully reflect cleaning
performance. Future evaluations will incorporate metrics like energy consumption and
cleaning quality; nonetheless, coverage remains a core algorithm behavior analysis base-
line.

As construct threats, we have:

• Operationalization of coverage: coverage percentage is used as a proxy for cleaning
quality, which may not capture dust removal effectiveness or uneven dirt distribution.
To justify coverage as a baseline metric, we have to add secondary measures (revisits,
turns, path length), and perform sanity checks on hand-crafted scenarios.

• Abstraction mismatch (ROBO→CSP and grid world): discretization (cell size),
sensing/action model, and translation rules may omit aspects relevant to real robots.
To provide a formal mapping from ROBO to CSP and validate with trace equivalence
on test programs, we have to vary cell size and robot radius in experiments to assess
robustness.

• Map representativeness: chosen maps may not represent realistic households. To
document the selection criteria, we will have to include diverse layouts (corridors, open
spaces, obstacles), and release all maps for reuse.

As conclusion threats, we have:

• Statistical power and variance: a small number of maps or runs can lead to unstable
conclusions. To mitigate this, we will have to use multiple runs for stochastic algorithms,
report mean and confidence intervals, and prefer effect sizes over sole point estimates.

68

• Scope of claims: causal statements beyond the controlled setting are unwarranted. We
restrict conclusions to the defined grid abstraction and the tested configurations.

69

7 CONCLUSION

This study leverages CSP and the FDR model checker to design and verify the behavior
of AVCs, focusing on CPP with 2D grid-based maps. CPP is essential in robotics, especially
for autonomous cleaners, as it involves finding a path that covers all grid cells while avoiding
obstacles.

This research demonstrates a structured translation method that could serve as a basis for
further development in other robotic programming paradigms. While the current methodology
is grounded in structured transformations of ROBO into CSP𝑀 using Spoofax, SDF3, and
Stratego, alternative approaches could, for example, utilize Petri Nets to represent the model
visually.

While other domain-specific language transformation tools exist, the methodology pre-
sented here is designed specifically for robotic algorithms. It ensures the formal correctness
and verification efficiency of a ROBO program by translating it into CSP instead of execution
efficiency. The core methodology of structured translation demonstrated here can be ported
to other transformation frameworks, providing the groundwork for further adaptations where
other robotic domain-specific languages can benefit from CSP-based verification.

We use a grid-based map to facilitate CPP, where each cell represents free spaces or
an obstacle. This research introduces a formal approach for modeling and verifying AVC algo-
rithms using CSP and RoboMind. Our strategy systematically evaluates algorithm performance
regarding coverage, effort, and turns. By integrating CSP with RoboMind, we provide a verifi-
cation model suited to AVCs and characterize its scalability limits. In our evaluation, it scales
to moderate-size grid maps and program complexity; we also report time/memory bounds and
timeouts, and outline mitigation strategies. Through comparative analysis of four algorithms,
our strategy highlights coverage, efficiency, and computational cost differences. This approach
is consistent with broader trends in robotics research, where formal verification is increasingly
adopted as a foundational step in system design. Establishing logical correctness before in-
tegrating probabilistic elements or empirical models enhances the robustness of autonomous
systems across domains.

The results indicate that randomized strategies, such as Code1, lead to inconsistent cover-
age and higher analysis times. In contrast, structured approaches, such as Depth-First Search
(DFS) and Inwards Spiral, consistently achieved full coverage with optimized efficiency. Code2,

70

an improved version of Code1, managed to reach 100% coverage in all tested maps while
maintaining lower effort than DFS. However, its frequent turning increased the analysis time,
making it less efficient than Inwards Spiral. Among the evaluated algorithms, Inwards Spiral

demonstrated the best balance between analysis time, effort, and number of turns, suggesting
that it is the most effective approach for structured environments.

Limitations of the approach include simplified environmental models and idealized sensor
data. Future work aims to:

• Increase model complexity for real-world accuracy;

• Extend the proposed methodology to more complex CPP algorithms;

• Incorporate additional layouts or randomly generated environments;

• Consider dynamic obstacles and room dimensions;

• Incorporate unconventional rooms and obstacle positions to assess adaptability;

• Conduct physical experiments to validate simulations;

• Implement real-time decision-making;

• Explore machine-learning techniques;

• Explore energy-aware path planning;

• Optimize system energy efficiency;

• Incorporate hybrid approaches, where CSP verification is complemented by empirical
validation in more sophisticated simulators or hardware prototypes.

71

REFERENCES

AHURAKA, F.; MCNAMEE, P.; WANG, Q.; AHMADABADI, Z. N.; HUDACK, J. Chaotic
Motion Planning for Mobile Robots: Progress, Challenges, and Opportunities. IEEE Access,
v. 11, p. 134917–134939, 2023.

ARAÚJO, R.; MOTA, A.; NOGUEIRA, S. Analyzing Cleaning Robots Using Probabilistic
Model Checking. In: BOUABANA-TEBIBEL, T.; BOUZAR-BENLABIOD, L.; RUBIN,
S. H. (Ed.). Theory and Application of Reuse, Integration, and Data Science. Cham:
Springer International Publishing, 2019. p. 23–51. ISBN 978-3-319-98056-0. Disponível em:
<https://doi.org/10.1007/978-3-319-98056-0_2>.

BRUNSKILL, E. et al. Co-verification of industrial robotic systems using CSP and Simulink.
arXiv preprint, 2021. Disponível em: <https://uia.brage.unit.no/uia-xmlui/handle/11250/
2988388>.

CAVALCANTI, A. e. a. Modelling and verification for swarm robotics. University of
York Technical Report, 2018. Disponível em: <https://www-users.york.ac.uk/~alcc500/
publications/papers/CMSLRT18.pdf>.

CORPORATION iRobot. Roomba® Robot Vacuum Cleaners. 2025. <https://www.irobot.
com/en_US/roomba.html>.

CORREIA, L. F. P. d. G. B.S. thesis, Verificação eficiente de robôs educacionais. 2021.
Disponível em: <https://repository.ufrpe.br/handle/123456789/3975>.

DHANIYA, R. D.; UMAMAHESWARI, K. M. Critical Comparative Study of Robot Path
Planning in Grid-Based Environment. In: Journal of Physics: Conference Series. [S.l.: s.n.],
2021. v. 1804, n. 1, p. 012193.

DOE, J.; SMITH, J. Modelling the Turtle Python library in CSP. 2022. <https:
//arxiv.org/pdf/2207.09706>.

ESCHMANN, H.; EBEL, H.; EBERHARD, P. Exploration-exploitation-based trajectory
tracking of mobile robots using Gaussian processes and model predictive control. Robotica,
p. 1–19, 2023.

FILHO, M. S. C.; MARINHO, R.; MOTA, A.; WOODCOCK, J. Analysing RoboChart with
Probabilities. In: MASSONI, T.; MOUSAVI, M. R. (Ed.). Formal Methods: Foundations
and Applications. Cham: Springer International Publishing, 2018. p. 198–214. ISBN
978-3-030-03044-5. Disponível em: <https://doi.org/10.1007/978-3-030-03044-5_13>.

Formal Systems (Europe) Ltd. FDR4 Manual. [S.l.], 2024. Accessed: July 2025. Disponível
em: <https://dl.cocotec.io/fdr/fdr-manual.pdf>.

FOUNDATION, O. S. R. Gazebo Simulator. 2024. <https://gazebosim.org>.

GALCERAN, E.; CARRERAS, M. A survey on coverage path planning for robotics. Robotics
and Autonomous Systems, v. 61, n. 12, p. 1258–1276, 2013. ISSN 0921-8890. Disponível
em: <https://www.sciencedirect.com/science/article/pii/S092188901300167X>.

GHASSEMI, F.; TRIPAKIS, S. Formal Methods for CPS: State of the Art and Future
Directions. 2020. <https://par.nsf.gov/servlets/purl/10505257>.

https://doi.org/10.1007/978-3-319-98056-0_2
https://uia.brage.unit.no/uia-xmlui/handle/11250/2988388
https://uia.brage.unit.no/uia-xmlui/handle/11250/2988388
https://www-users.york.ac.uk/~alcc500/publications/papers/CMSLRT18.pdf
https://www-users.york.ac.uk/~alcc500/publications/papers/CMSLRT18.pdf
https://www.irobot.com/en_US/roomba.html
https://www.irobot.com/en_US/roomba.html
https://repository.ufrpe.br/handle/123456789/3975
https://arxiv.org/pdf/2207.09706
https://arxiv.org/pdf/2207.09706
https://doi.org/10.1007/978-3-030-03044-5_13
https://dl.cocotec.io/fdr/fdr-manual.pdf
https://gazebosim.org
https://www.sciencedirect.com/science/article/pii/S092188901300167X
https://par.nsf.gov/servlets/purl/10505257

72

GIBSON-ROBINSON, T.; ARMSTRONG, P.; BOULGAKOV, A.; ROSCOE, A. FDR3 — A
Modern Refinement Checker for CSP. In: ÁBRAHáM, E.; HAVELUND, K. (Ed.). Tools and
Algorithms for the Construction and Analysis of Systems. [S.l.: s.n.], 2014. (Lecture Notes in
Computer Science, v. 8413), p. 187–201.

GOVINDARAJU, M.; FONTANELLI, D.; KUMAR, S. S.; PILLAI, A. S. Optimized
Offline-Coverage Path Planning Algorithm for Multi-Robot for Weeding in Paddy Fields.
IEEE Access, v. 11, p. 109868–109884, 2023.

HOARE, C. A. R. Communicating sequential processes. [S.l.: s.n.], 1978. v. 21. 666–677 p.

KALLEBERG, K. T. Stratego. Crossroads, ACM, v. 12, n. 3, p. 4–4, May 2006. ISSN
1528-4972. Disponível em: <http://dx.doi.org/10.1145/1144366.1144370>.

KATS, L. C.; VISSER, E. The Spoofax language workbench. Proceedings of the
ACM international conference companion on Object oriented programming systems
languages and applications companion - SPLASH ’10, ACM Press, 2010. Disponível em:
<http://dx.doi.org/10.1145/1869542.1869592>.

LIN, S.; LIU, A.; WANG, J.; KONG, X. A Review of Path-Planning Approaches for
Multiple Mobile Robots. Machines, v. 10, n. 9, 2022. ISSN 2075-1702. Disponível em:
<https://www.mdpi.com/2075-1702/10/9/773>.

LUCKCUCK, M.; FARRELL, M.; FISHER, M. Formal Specification and Verification of
Autonomous Robotic Systems: A Survey. Autonomous Robots, 2021. Disponível em:
<https://mural.maynoothuniversity.ie/id/eprint/17468/1/MattLuckcuckAuto2021.pdf>.

MECK, L.; WAGNER, S. Fundamentals of Robotics Verification. Embedded Systems Group,
2018. Disponível em: <https://es.cs.rptu.de/publications/datarsg/Meck18.pdf>.

PAK, J.; KIM, J.; PARK, Y.; SON, H. I. Field Evaluation of Path-Planning Algorithms for
Autonomous Mobile Robot in Smart Farms. IEEE Access, v. 10, p. 60253–60266, 2022.

RICKERT, M.; SIEVERLING, A.; BROCK, O. Balancing Exploration and Exploitation in
Sampling-Based Motion Planning. IEEE Transactions on Robotics, v. 30, n. 6, p. 1305–1317,
2014.

RoboMind.net. RoboMind.net – Educational Robotics Software. 2006. <https:
//www.robomind.net>. Accessed: Sep. 1, 2025.

ROBOTICS, O. Robot Operating System (ROS). 2024. <https://www.ros.org>.

ROSCOE, A. Modelling and verifying key-exchange protocols using CSP and FDR. In:
Proceedings The Eighth IEEE Computer Security Foundations Workshop. [S.l.: s.n.], 1995.
p. 98–107.

ROSCOE, A. Understanding Concurrent Systems. 1st. ed. Berlin, Heidelberg: Springer-Verlag,
2010. ISBN 184882257X. Disponível em: <https://doi.org/10.1007/978-1-84882-258-0>.

SCHNEIDERS, E.; KANSTRUP, A. M.; KJELDSKOV, J.; SKOV, M. B. Domestic Robots
and the Dream of Automation: Understanding Human Interaction and Intervention. In:
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. New York,
NY, USA: Association for Computing Machinery, 2021. (CHI ’21). ISBN 9781450380966.
Disponível em: <https://doi.org/10.1145/3411764.3445629>.

http://dx.doi.org/10.1145/1144366.1144370
http://dx.doi.org/10.1145/1869542.1869592
https://www.mdpi.com/2075-1702/10/9/773
https://mural.maynoothuniversity.ie/id/eprint/17468/1/MattLuckcuckAuto2021.pdf
https://es.cs.rptu.de/publications/datarsg/Meck18.pdf
https://www.robomind.net
https://www.robomind.net
https://www.ros.org
https://doi.org/10.1007/978-1-84882-258-0
https://doi.org/10.1145/3411764.3445629

73

UNKNOWN. Room layout with bed, wardrobe and door. Adapted from material available on
Pinterest. Disponível em: <https://br.pinterest.com/pin/4362930883719929/>.

WANG, Z.; YUNSONG, L.; ZHANG, H.; LIU, C.; CHEN, Q. Sampling-Based Optimal Motion
Planning With Smart Exploration and Exploitation. IEEE-ASME Trans. on Mechatronics,
IEEE, v. 25, n. 5, p. 2376–2386, 2020.

WILTERDINK, R. Design of a hard real-time, multi-threaded and CSP-capable execution
framework. 2011. Disponível em: <http://essay.utwente.nl/61066/>.

https://br.pinterest.com/pin/4362930883719929/
http://essay.utwente.nl/61066/

	Folha de rosto
	Acknowledgements
	Resumo
	Abstract
	List of Figures
	Listing
	Lista de quadros
	List of Tables
	Summary
	Introduction
	Motivation
	Objectives
	Research Questions
	Contributions
	Structure of the Work

	Background
	RoboMind
	The Process Algebra CSP
	Language Elements
	Refinement and Model Checking

	Strategy overview
	Previous Research
	Translating a RoboMind Map to CSP
	RoboMind Environment Memory Representation
	Formal Definitions of Coverage and Effort
	Robot Size and Path Feasibility
	Determining the maximum possible coverage
	Single verification method
	Binary search-based verification method

	Evaluation
	Map Selection Process
	Code1 in ROBO
	Code2 in ROBO
	Depth-First Search
	Inwards Spiral
	Results and Comparison
	Approach Validation
	Optimal Global Coverage
	Optimal Local Coverage

	Robot Size and Path Feasibility
	Discussion

	Related Work
	Threats to validity
	Conclusion
	References

