|| [~
[[~
e~

4

Zﬂ

3

RTUS IMPAVIDA

L

v

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
PROGRAMA DE POS-GRADUAGCAO EM CIENCIA DA COMPUTACAO

RUAN CARLOS ALVES DA SILVA

DSL PARA CRIAGAO DE TESTES UNITARIOS EM JAVA: Uma abordagem

inspirada na linguagem Racket

Recife
2025

RUAN CARLOS ALVES DA SILVA

DSL PARA CRIAGAO DE TESTES UNITARIOS EM JAVA: Uma abordagem

inspirada na linguagem racket

Tese/Dissertagao apresentada ao
Programa de Pés-Graduagédo em Ciéncia
da Computacdo da Universidade Federal
de Pernambuco, como requisito parcial
para obtengado do titulo de mestre(a) em
Ciéncia da Computacao.

Area de Concentragdo: Engenharia de

Software

Orientador (a): Prof. Dr. Henrique

Emanuel Mostaert Rebélo

Recife
2025

Catalogacdo de Publicacdo na Fonte. UFPE - Biblioteca Central

Silva, Ruan Carlos Alves da.

DSL para criacdo de testes unitarios em Java: uma
abordagem inspirada na linguagem Racket / Ruan Carlos
Alves da Silva. - Recife, 2025.

72f.: i1.

Dissertacdo (Mestrado)- Universidade Federal de
Pernambuco, Centro de Informatica, Programa de
Pbs-Graduacdo em Ciéncia da Computacdo, 2025.

Orientacdo: Dr. Henrique Emanuel Mostaert Rebélo.

1. DSL; 2. Racket; 3. TDD; 4. JUnit 5; 5. ANTLR4. I.
Rebélo, Henrique Emanuel Mostaert. II. Titulo.

UFPE-Biblioteca Central

Ruan Carlos Alves da Silva

“DSL PARA CRIAGAO DE TESTES UNITARIOS EM JAVA: Uma
abordagem inspirada na linguagem Racket”

Dissertagao de mestrado apresentada ao Programa de
Pos-Graduagdo em Ciéncia da Computacdo da
Universidade Federal de Pernambuco, como
requisito parcial para a obtencdo do titulo de Mestre
em Ciéncia da Computagido. Area de Concentragio:
Engenharia de Software e Linguagens de
Programagao.

Aprovado em: 29/08/2025.

BANCA EXAMINADORA

Profa. Dra. Paola Rodrigues de Godoy Accioly
Centro de Informatica / UFPE

Prof. Dr. Mércio de Medeiros Ribeiro
Instituto de Computagao / UFAL

Prof. Dr. Henrique Emanuel Mostaert Rebélo
Centro de Informatica / UFPE
(orientador)

RESUMO

Desenvolver software de qualidade continua sendo um desafio, devido a
complexidade dos sistemas, a velocidade de entrega, a equipes desalinhadas, a
mudancas frequentes de escopo e outros fatores. Nesse cenario, praticas como o
Test-Driven Development (TDD) podem facilitar a implementacdo de testes e
contribuir para a melhoria da qualidade do software. Contudo, sua adogao ainda
apresenta limitagdes, como a complexidade na elaboragao e na manutengao manual
dos testes a medida que a aplicagdo cresce, o que exige tempo e esforgo
consideraveis para sustentar a pratica. Para enfrentar essas dificuldades, esta
dissertagao propde uma abordagem que simplifica a implementagdo e manutencao
de testes unitarios em Java, incentivando a pratica do TDD. A solugdo consiste em
uma Domain-Specific Language (DSL) chamada JCheck, inspirada na linguagem
Racket e integrada ao framework JUnit 5. O parser da DSL foi gerado com ANother
Tool for Language Recognition, versao 4 (ANTLR4) e a DSL foi incorporada em uma
anotacao Java aplicada a métodos, simplificando a especificagdo dos casos de teste
e integrando-os de forma natural ao processo de desenvolvimento. A abordagem foi
validada por meio de uma prova de conceito em um cenario realista, executando
testes com diferentes instru¢gdes da DSL e avaliando o esforgo de escrita da DSL por
meio da contagem de linhas de cédigo. Como resultado da prova de conceito, a DSL
apresentada atingiu os objetivos da pesquisa, realizando com sucesso testes
unitarios em Java de acordo com as instrugdes fornecidas, além de demonstrar, por
meio da analise da contagem de linhas de codigo, que sua utilizagao pode reduzir o
esforco na escrita dos testes unitarios. Dessa forma, podemos concluir que a
JCheck é uma ferramenta promissora para facilitar a criacdo de testes unitarios em
Java. Além disso, por adotar uma abordagem que aproxima a definicdo dos testes

dos préprios métodos, a DSL torna mais facil a pratica do TDD.

Palavras-chave: DSL; Racket; TDD; JUnit 5; ANTLRA4.

ABSTRACT

Developing high-quality software remains a challenge due to system complexity,
delivery speed, misaligned teams, frequent scope changes, and other factors. In this
scenario, practices such as Test-Driven Development (TDD) can facilitate test
implementation and contribute to improving software quality. However, its adoption
still presents limitations, such as the complexity in the creation and manual
maintenance of tests as the application grows, requiring considerable time and effort
to sustain the practice. To address these difficulties, this dissertation proposes an
approach that simplifies the implementation and maintenance of unit tests in Java,
encouraging the practice of TDD. The solution consists of a Domain-Specific
Language (DSL) called JCheck, inspired by the Racket language and integrated with
the JUnit 5 framework. The DSL parser was generated with ANother Tool for
Language Recognition, version 4 (ANTLR4), and the DSL was incorporated into a
Java annotation applied to methods, simplifying the specification of test cases and
integrating them naturally into the development process. The approach was validated
through a proof of concept in a realistic scenario, executing tests with different DSL
instructions and evaluating the effort required to write the DSL by counting lines of
code. As a result of the proof of concept, the presented DSL achieved the research
objectives, successfully performing unit tests in Java according to the provided
instructions, and demonstrating, through the analysis of the line count, that its use
can reduce the effort in writing unit tests. Therefore, we can conclude that JCheck is
a promising tool to facilitate the creation of unit tests in Java. Furthermore, by
adopting an approach that brings the definition of tests closer to the methods

themselves, the DSL makes the practice of TDD easier.

Keywords: DSL; Racket; TDD; JUnit 5; ANTLRA4.

LISTA DE ILUSTRAGOES

Figura 1 — Exemplo de USO dO checKk—eXPeCt.iiiiiiiiiiiiiiieeiiiiiiiiicieee e e e e e e e e e eeeeeeeeees 18
Figura 2 — Reconhecedor de liINQUagem...........ccooooiiiiiiiii e 20
Cdédigo 1 — Exemplo de gramatica ANTLRA ... 21
Figura 3 — Arquitetura JUnit 5: Componente de Alto Nivel.............cccooeiiiiiiiiiiiiiiiinns 22
Quadro 1 — Anotagdes do JUNIit JUPItEF.........coevviviieieieeeieeeeeeeeeeeee e 23
Cddigo 2 — Exemplo da configuragao das dependéncias do JUnit 5........................ 24
Cdédigo 3 — Exemplo da classe USer €m java.............eeeeeeeeiiiiiiiieiiieieeeeeeeieeee 25
Cddigo 4 — Exemplo de testes unitarios com JUNIit 5..........ceeiiiiiiiiiiiiiiin 26
Cdédigo 5 — Gramatica da DSL Proposta............eeeeeeiiiiieiiiieeeee e 30
Cddigo 6 — Implementacdo da ANotagao @CheCK...uuiiiuiriiiieiiiiiiiieee e 33
Caodigo 7 — Definicao da Anotacado Contéiner @Checks para Multiplos Testes......... 34

Cddigo 8 — Implementacao do Executor de Testes Baseado na Anotagédo @Check..34

Caodigo 9 — Execucéo reflexiva de métodos anotados com @Check.......ceevvvvvevennnnnnn. 36
Cd6digo 10 — Interpretador da DSL..........ooiiiiiiiii e 37
Figura 4 — Fluxo de exeCuGao da SOIUGAOD.........ccceeiiiiiiiiiieeeeiii et e e a e e 40
Cédigo 11 — Testes em métodos get/set com tipo Long por meio da DSL............ 43
Caodigo 12 — Testes em métodos get/set com tipo String por meio da DSL....... 44

Cddigo 13 — Uso da anotagdo @Check em método com manipulagédo de datas do

L]0 To TN [] €= o | 44
Caodigo 14 — Testando formatos de e-mail com diferentes entradas por meio da

= 0] r=Toz= Lo I CY Ol o L= o PP 45
Cddigo 15 — Testando valor total com suporte da anotagdo @Check.........cceeeveeeennne 45
Caodigo 16 — Anonimizacao de CPF com suporte a testes viaDSL........................... 46
Cddigo 17 — Validador de pregos com anotagdo embutida para testes unitarios....... 46

Cddigo 18 — Converséao de valores monetarios para o formato brasileiro com suporte
A1ESIE VIA DS .. e e e e e aaaaa 47

Quadro 2 — Resultado da execugéo dos cddigos apresentados na seg¢ao “4.1 -

Descricao da implementagao’..........ooeuuiiiiiiiiiie e 47
Cdédigo 19 — Primeiro exemplo de uso da DSL extraido do Codigo 1., 50
Caddigo 20 — Implementacao do exemplo do Codigo 19 apenas com JUnit............... 50

Quadro 3 — Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método getId,

IVS] (r=To [o T o To I @7 o [T o Tt It L PPPPPPPPPPRPR 50
Caddigo 21 — Segundo exemplo de uso da DSL extraido do Cédigo 11.........ccccennn... 51
Cdédigo 22 — Implementagao do exemplo do Cddigo 21 apenas com JUnit............... 51

Quadro 4 — Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método setId,

[0S = To (o TN o To T @Z'o o [Te T Tt It U 51
Cdédigo 23 — Primeiro exemplo de uso da DSL extraido do Codigo 12...................... 51
Caddigo 24 — Implementacéo do exemplo do Codigo 23 apenas com JUnit............... 51

Quadro 5 — Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método

getName, ilustrado NO COAIgO 12.... .. 52
Cddigo 25 — Segundo exemplo de uso da DSL extraido do Cédigo 12..................... 52
Caddigo 26 — Implementacédo do exemplo do Codigo 25 apenas com JUnit............... 52

Quadro 6 — Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método

setName, ilustrado N0 COAIJO 12........eeiiiiiiiiiiii e 52
Cédigo 27 — Exemplo de uso da DSL extraido do COdigo 13.......cceveveiiiiiiiiiiiiiiiinns 53
Caddigo 28 — Implementacédo do exemplo do Codigo 13 apenas com JUnit............... 53

Quadro 7 — Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método

addDaysToInstant, ilustrado Nno COdigo 13.......ccooiiiiiiiiiiiee e 53
Cddigo 29 — Exemplo de uso da DSL extraido do Codigo 14..........coovveevvvviiivnnnnnnnnnn. 53
Cddigo 30 — Implementacédo do exemplo do Codigo 14 apenas com JUnit............... 54
Quadro 8 — Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método

isValidEmail, ilustrado N0 COAIgO 14.......oomemeeiiiiiiie e 54
Cddigo 31 — Exemplo de uso da DSL extraido do Codigo 15..........coovvveviiiiiiiiinnnnnnnn. 54
Cddigo 32 — Implementacéo do exemplo do Codigo 15 apenas com JUnit............... 54

Quadro 9 — Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método
calculateTotal, ilustrado N0 CAOAIgO 15.......eueiiiiei i 55

Caodigo 33 — Exemplo de uso da DSL extraido do Codigo 16.............coevvevvivivvnnnnnnnnn. 55

Caodigo 34 — Implementacao do exemplo do Codigo 16 apenas com JUnit............... 55

Quadro 10 — Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método

maskCPF, ilustrado N0 COAIGO 16......covviiiiiieeiiieeeeceeeee e 55
Cddigo 35 — Exemplo de uso da DSL extraido do COdigo 17.......ccoeeveeiiiiiiiiiiiiniinnes 56
Cdédigo 36 — Implementagao do exemplo do Cddigo 17 apenas com JUnit............... 56

Quadro 11 — Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método

isValidPrice, ilustrado N0 COAIgO 17oommiieiiiiiiiiee e 56
Cdédigo 37 — Exemplo de uso da DSL extraido do COdigo 18........cceeeviiiiiiiiiiiiiiiinns 57
Caddigo 38 — Implementacédo do exemplo do Codigo 18 apenas com JUnit............... 57

Quadro 12 — Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método
formatPrice, ilustrado NO COAIgo 18..... .. e 57

ANTLR4
Clo
DbC
DSL
JML
JSON
LL(k)
LOC
MBT
NASA
TDD
XP

LISTA DE ABREVIATURAS E SIGLAS

ANother Tool for Language Recognition, versao 4
Chief Information Officer

Design by Contract

Domain-Specific Language

Java Modeling Language

JavaScript Object Notation

Left-to-right, Leftmost derivation with k lookahead symbols
Lines of Code

Model-Based Testing

National Aeronautics and Space Administration
Test-Driven Development

Extreme Programming

SUMARIO

O LV 200 010 03 o 2 12
1.1 OBUETIVO. ..ttt e et e e et e e e e e e e e e e e e aneeeas 13
1.2 CONTRIBUICOES DA DISSERTAGAO........cceeieieeeiteeeieeeeeeeeeee e 14
1.3 ESBOCO DA DISSERTACAO........coiieeeeeee e, 14
040 111 03 = I 10 16
2.1 UMA VISAO GERAL SOBRE TESTES DE SOFTWARE.........cccceeeeeieeeienenne. 16
2.1.1 Testes UNItarios........cccccmmrriiiiiiinmmnsn s s snnns 16
2.1.2 Test-Driven Development...........eecciiiiiiiiniiirirrnn s s s s s s nssnssnses 17
2.2 UMA VISAO GERAL SOBRE RACKET.....cooiiotceeteeeeeeeee e, 17
2.2.1 Sistema De MACIOS........ccouiiimmmmrriisrr s s 18
2.2.2 Expressao ChecCK-EXPEeCt.......cccoociiiiiiieeiiiiiirriccs s rreesss s s s s s e s s emnss e s e e enna 19
2.3 UMA VISAO GERAL SOBRE O ANTLRA.......cuiiiieeeeeeeeeeeeee e, 20
28 2 I VT T Fe g = 114 =Y o | T 21
R By €] - 14T 1 T 21
2.3.3 Importancia da Ferramenta.............ccccouiiiiiiimmmmmmnnrcessssssss s ssssssssssns 22
2.4 UMA VISAO GERAL SOBRE O JUNIT 5.....ooiiiieeceeeeeeeeeeeeeeeee e, 23
2.4.1 Execugdo e Organizacao de TeStes.......cccccrmrrrrrrrrriiiiisssssssssssssmmsnnnnneeneeeeees 24
2.4.2 Vantagens Do Junit 5 Sobre Versoes Anteriores.........ccccccuuuuecccciiiisinnnnnnnns 24
2.4.3 JUNIit 5 Na PratiCa.....ccceeeeeeciiiiiiiiiiiiir s s s nn s 25
2.4.4 Importancia da Ferramenta.............ccccooiiiiimiimmmmmnnnieesse s ssssssssas 28
3 DESENVOLVIMENTO DA SOLUGAO PROPOSTA.......cccoreereererereseseresenenaes 28
3.1 QUESTOES DE PESQUISA.......cootieeeieeteeeete et 30
3.2 METODOLOGIA. ...ttt ettt e e e et e e e et e e e snnteeesanneeeeannneeeeannes 31
3.3 CONSTRUGCAO DA GRAMATICA........ooouieeeeee oo, 31
3.4 IMPLEMENTACAO DA INFRAESTRUTURA......cooiiieeeeeeeee e 33
4 PROVA DE CONCEITO.......coiiiiiriiirs s sssss s ssssss s ssss s s ssss s s ssnnas 43
4.1 DESCRICAO DA IMPLEMENTAGAO........ooi oo 43

4.2 RESULTADOS DA EXECUGAO.........cocuiiiieeeeeeeeeeeeeeteee e, 48

4.3 ANALISE DE ESFORGCO POR LINHAS DE CODIGO.........cccccovereeerererereereeen. 50

4.4 AMEAGCAS A VALIDADE.........cooieeeeeeeeeeeeeeeeeee et en et 58
4.4.1 Validade Interna............ooooiiiiiiiiiiieeerrrrnr s 59
4.4.2 Validade EXterna..........ccccccemmmmmmmmminiiiiinsssssssssssssss s 59
4.4.3 Validade de CONStrUGAOD.......cceuuuueeiiiiiiiiis i i e e e e rrrseennnnnsssssssss s s s s s s e e e e e e e e e e nnnnnnnnes 59
4.4.4 Validade de CONCIUSAO0.........ccceeriiiiunmmmrinnns s 60
5 TRABALHOS RELACIONADOS.........cccooerimrrrinnnessssnnessssnse s sssns s s s ssmsesssssmsesaas 61
5.1 ASPECT-ORIENTED PROGRAMMING RELOADED.........cccctiiiiieeeiieee e 61
5.2 TEASY FRAMEWORK: UMA SOLUCAO PARA TESTES AUTOMATIZADOS EM
APLICACOES WEB........ ettt ettt aeeeenens 61
5.3 TESTE BASEADO EM MODELOS EM PROJETOS AGEIS, UMA ABORDAGEM
BASEADA EM LINGUAGEM DE DOMINIO ESPECIFICO........ccccooeoveeeeeeeeeeeee. 62
5.4 ATESTING TOOL FOR WEB APPLICATIONS USING A DOMAIN-SPECIFIC
MODELLING LANGUAGE AND THE NUSMV MODEL CHECKER...............c.c....... 63
5.5 ACCELERATING TEST AUTOMATION THROUGH A DOMAIN SPECIFIC
LANGUAGEttt e e e et e e e e e e e e ameeeeeeanteeeeaneeeeeanneeas 64
5.6 UMA METODOLOGIA PARA A GERACAO DE TESTES UNITARIOS BASEADA
EM EXTRAGAQO DE MODELOS.......ooeoeeeeeeeeeeeeeeee e, 65
6 CONCLUSAD.......ceeceeecreecre e re e s e sas e sae e eae st sae e s e e sae e s sas e e as e sas e ene e sae e nanaes 66
7 TRABALHOS FUTUROS.......cooiiciiriimresssessssssnsssssssss s s s s s smn s s ssssmn e s ssssmnessssnns 68

REFERENCIAS.........ccoieirteererteeeccreresasssasassssesesesssssassssssssesessssasssasasssnssssessssasssans 69

12

1 INTRODUGAO

Segundo Pressman (2005), na década de 1990, grandes empresas
perceberam que bilhdes de dodlares eram desperdicados anualmente em softwares
que nao atendiam as funcionalidades prometidas. Além disso, tanto setores
governamentais quanto a industria expressavam preocupagdo com falhas criticas
em sistemas que poderiam comprometer infraestruturas essenciais, gerando
prejuizos ainda maiores. Ainda segundo Pressman (2005), a situagdo foi noticiada
por veiculos de comunicagdo, como a revista Chief Information Officer (ClO), que
alertavam sobre os altos custos desperdicados com softwares ineficazes,
evidenciando a necessidade de melhores praticas de engenharia de software. Esse
contexto histérico destaca a importancia de concentrar esforcos na produgao de
software confiavel e eficiente, uma preocupagao que permanece central na industria
tecnolégica atual. Nesse sentido, o processo de producédo de software de alta
qualidade tornou-se uma incessante busca na industria desde que a computacao
passou a desempenhar papel fundamental nos mais diversos tipos de dominios de
aplicacao (ANDRADE, 2023).

Contudo, controlar a qualidade de sistemas de software € um grande desafio
devido a alta complexidade dos produtos e as inumeras dificuldades relacionadas ao
processo de desenvolvimento, que envolve questdes humanas, técnicas,
burocraticas, de negdcio e politicas (BERNARDO; KON, 2008). Nesse cenario, Umar
e Zhanfang (2019) afirmam que a escolha de métodos de teste adequados, bem
como de ferramentas apropriadas, representa um fator fundamental para o sucesso
de projetos com teste de software.

Diante desses métodos, destacam-se algumas praticas que tém o propdsito
de otimizar a implementacdo de testes. Entre essas praticas, observa-se a
metodologia TDD, que, segundo Maximilien e Williams (2003), consiste em uma
pratica de desenvolvimento de software em que os testes unitarios sdo escritos
antes do cdédigo de implementagdo, seguindo um ciclo iterativo no qual o
desenvolvedor cria os testes, implementa o cédigo necessario para satisfazé-los e
refina a solugao de forma incremental.

Com base nessas informacdes, € possivel afirmar que o TDD n&o apenas
pode organizar o processo de desenvolvimento, mas também pode produzir

impactos concretos na qualidade do produto e na experiéncia dos desenvolvedores.

13

Para apoiar essa afirmacédo, Agha et al. (2023) argumenta que o TDD
contribui para a melhoria da qualidade do software, pois possibilita a detecgao
precoce de defeitos e favorece a criagdo de um codigo consistente. Os autores
também destacam que a pratica aumenta a produtividade ao reduzir o tempo de
depuracédo, impactando positivamente os desenvolvedores ao elevar a confianca e a
satisfagao no trabalho.

Contudo, para que a utilizacdo do TDD seja feita de uma forma ainda mais
otimizada, o uso de ferramentas que facilitem a implementacdo de testes é
essencial. Entre essas ferramentas, destaca-se o JUnit. Segundo Garcia et al.
(2022), o JUnit é um dos frameworks de teste mais populares e influentes para a
linguagem Java. Além disso, segundo Gorla et al. (2025), mesmo com o JUnit
consolidado como uma das principais estruturas para testes unitarios em Java, a
elaboragdo e a manutengao manuais desses testes ainda representam um desafio,
sobretudo em projetos de grande porte, o que tem impulsionado o desenvolvimento
de solugbes voltadas a criagdo automatica de testes.

Para solucionar o desafio citado anteriormente, uma alternativa eficiente seria
a utilizacao de linguagens especificas de dominio, conhecidas como DSL. Uma DSL
€ um meio de descrever e gerar membros de uma familia de programas dentro de
um determinado dominio, sem a necessidade de conhecimento sobre programacao
geral (KOSAR et al., 2008, p. 390). Além disso, de acordo com Jahi¢; Guelfi e Ries
(2023), as linguagens especificas de dominio favorecem a criagdo de um ambiente
adequado para que especialistas fiquem mais concentrados na resolugao de
problemas especificos de sua area de conhecimento. Nesse contexto, a utilizagao
de DSL é uma solugdo estratégica para potencializar o uso do TDD. Segundo
Gundlach; Jung e Hasselbring (2023), o uso de linguagens especificas de dominio
pode facilitar a aplicagdo do TDD, permitindo maior abstracédo e reducéo do esforgo

necessario para escrever os testes.

1.1 OBJETIVO

O objetivo principal desta dissertagao é apresentar uma solugao que facilite a
implementagéo de testes unitarios em Java e incentive a pratica do TDD. Dito isso, a
proposta consiste em uma DSL para a criagdo de testes unitarios, denominada

JCheck, baseada em instrugdes inspiradas na linguagem Racket, utilizando o

14

framework JUnit 5 como mecanismo de execucdo desses testes e aplicada no
cédigo por meio da anotagcdo @Check, restrita apenas a métodos. A escolha do
Racket como inspiragdo para a DSL se justifica especificamente pela presenca da
expressdo check-expect, que se encaixa perfeitamente no contexto de instrugoes
para testes.

De acordo com Felleisen et al. (2018), Racket foi originalmente desenvolvida
como uma linguagem de ensino, voltada para a construgdo de outras linguagens de
programacgao, embora atualmente também seja utilizada em aplicagdes praticas,
como jogos e controle de sistemas complexos. Além disso, de acordo com
Culpepper et al. (2019), a linguagem Racket adota a programacido orientada a
linguagens, abordagem defendida em seu manifesto.

Sob o contexto do objetivo, este trabalho também propde a geragao do parser
da DSL apresentada, utilizando a gramatica desenvolvida com a ferramenta
ANTLR4. De acordo com Ladeinde (2023), o ANTLR4 é amplamente reconhecido
por possibilitar a criagcdo de gramaticas que vao desde linguagens de programacao
consolidadas até linguagens personalizadas para contextos especificos.

Outro objetivo € criar uma prova de conceito para validar o funcionamento da
DSL JCheck. Essa prova de conceito busca demonstrar, em um cenario mais
realista, que € possivel executar testes em Java a partir de instrugdes escritas em
uma DSL, além de realizar uma analise do esforco de uso da DSL por meio da
contagem de linhas de cddigo. Dessa forma, também sera possivel verificar se, de

fato, essa solugao apoia a pratica do TDD.

1.2 CONTRIBUICOES DA DISSERTACAO

A principal contribuicdo desta dissertagdo € a criacdo de uma DSL para a
escrita de testes unitarios em Java, inspirada na linguagem Racket e integrada ao
framework JUnit 5. Essa contribuicdo se estende ao uso da ferramenta ANTLR4

para a geragao do parser da DSL.

1.3 ESBOCO DA DISSERTACAO

15

A estrutura da dissertagdo esta organizada nas seguintes sec¢des. A Secéao 2
fornece os conceitos relacionados ao desenvolvimento da solugdo proposta. A
Secao 3 descreve o desenvolvimento dessa solugdo. A Secao 4 apresenta a prova
de conceito criada para validar a solugdo. A Seg¢do 5 discute os trabalhos
relacionados. A Secao 6 apresenta as conclusdes, e a Secdo 7 aborda os trabalhos
futuros.

16

2 CONCEITOS

Esta seg¢do tem o objetivo de apresentar os principais elementos utilizados
para propor a solucdo do problema destacado neste trabalho, sdo eles: Testes de
Software, Racket, ANTLR4 e JUnit 5.

2.1 UMA VISAO GERAL SOBRE TESTES DE SOFTWARE

De acordo com Crespo et al. (2004), o teste de software pode ser entendido
como um processo organizado e controlado, cujo objetivo é verificar se um sistema
funciona conforme as especificagcbes previamente estabelecidas. Em outras
palavras, trata-se de uma pratica fundamental para garantir que o que foi planejado
seja realmente implementado e se comporte adequadamente, atuando como um
mecanismo de validagdo da qualidade do produto final. Com o intuito de aprofundar
a discussao sobre a utilizacdo dos testes de software nesta pesquisa, a seguir serao

apresentados conceitos que deram suporte a este trabalho.

2.1.1 Testes Unitarios

Dentre os processos de teste de software existentes, destacam-se os testes
unitarios, que desempenham um papel especialmente importante. Segundo Gomes
(2020), esse tipo de teste verifica a logica interna de uma pequena parte do
software, conhecida como unidade, entendida como o menor componente funcional.
Com os testes unitarios, € possivel avaliar de forma precisa a confiabilidade de
métodos ou funcdes isoladamente, o que contribui para detectar problemas desde

as fases iniciais e aumentar a robustez do sistema como um todo.

Com base nos conceitos apresentados, fica evidente que os testes de
software, especialmente os unitarios, sdo fundamentais para assegurar a qualidade
e a confiabilidade dos sistemas. Ao possibilitar a verificacdo de cada componente e
a validagdo das funcionalidades, esses testes permitem identificar falhas
precocemente, reduzir custos de manutencdo e elevar a seguranga durante o

desenvolvimento. Dessa forma, compreender e aplicar corretamente os testes

17

unitarios torna-se essencial para uma abordagem de desenvolvimento orientada a

qualidade.

2.1.2 Test-Driven Development

Embora os testes unitarios sejam uma pratica consolidada no
desenvolvimento de software, seu potencial pode ser ainda mais bem aproveitado
com a utilizagado do Test-Driven Development (TDD). Essa abordagem consiste em
escrever os testes antes da implementacdo do cddigo. Segundo Abushama,
Alassam e Elhaj (2021), o TDD inverte a ldégica tradicional do ciclo de vida do
software, no qual o codigo precede os testes. Nesse modelo, o processo se inicia
pela elaboragdo e execucédo de casos de teste, que orientam tanto a implementacao

quanto a validagao das funcionalidades do sistema.

Além disso, de acordo com Mylsamy (2025), o TDD €& uma pratica
fundamentada na escrita de testes antes da implementacéo da légica da aplicacao,
estruturando-se em um ciclo disciplinado conhecido como Red-Green-Refactor.
Nesse processo, o desenvolvedor escreve inicialmente um teste que falha, em
seguida implementa o cédigo minimo necessario para fazé-lo passar e, por fim,
realiza a refatoracdo para melhorar a qualidade interna do cédigo sem alterar seu

comportamento externo.

Com base nessa natureza de implementagao do TDD, é possivel afirmar que
a adocao dessa abordagem traz impactos positivos durante o desenvolvimento do
software. Segundo Calais e Franzini (2023), embora o TDD possa parecer
inicialmente contraintuitivo, seus praticantes defendem que comecar pelo teste
permite maior foco nos requisitos, favorece a escrita de cédigos mais simples e de
melhor qualidade e, como consequéncia, garante que o sistema esteja sempre

coberto por testes unitarios.

2.2 UMA VISAO GERAL SOBRE RACKET

De acordo com Felleisen et al. (2015), Racket pode ser compreendida nao

apenas como uma linguagem de programacdo, mas como uma familia de

18

linguagens. A ferramenta vai desde uma verséo funcional e ndo tipada, baseada em
valores, até variagdes que incorporam recursos adicionais, como pilhas internas e
suporte a tipagem estatica.

Ainda mais, de acordo com Felleisen e Flatt (2020), a linguagem Racket teve
seu inicio em 1995. Desde o comego, ela foi criada para ajudar no ensino de
matematica e programacao nas escolas de ensino fundamental e médio, adotando
uma abordagem voltada para a programacéao funcional. Inicialmente, a linguagem foi
nomeada como Jam, uma linguagem simples baseada no Scheme, uma linguagem
minimalista da familia Lisp, criada na década de 1970. Em 2001, apdés algumas
melhorias, a linguagem mudou de nome e passou a se chamar PLT Scheme, dessa
vez utilizando diretamente o Scheme. Ainda os autores, afirmam que no mesmo
periodo, foi desenvolvido um ambiente grafico nomeado como DrScheme, que mais
tarde passou a se chamar DrRacket. Esse ambiente foi projetado para uso
educacional. E somente em 2010 a linguagem foi rebatizada como Racket, nome
pelo qual € conhecida atualmente.

O tempo passou e hoje, segundo Racket (2025), a linguagem pode ser
interpretada de trés formas diferentes: como uma linguagem de programacgao, uma
familia de linguagens ou como um conjunto de ferramentas voltadas para o uso e
desenvolvimento de linguagens. Além disso, Racket (2025) é amplamente utilizada
para fins educacionais e a sua estrutura fornece apoio a iniciativas pedagdgicas, e
também dispbe de ambiente para realizacdo de experimentos e implementacao de
linguagem de programagao. Para acrescentar mais detalhes sobre a estrutura da
linguagem apresentada, a seguir serdo explicados os mecanismos e conceitos que

deram suporte a este trabalho.

2.2.1 Sistema De Macros

De acordo com o guia oficial do Racket (2025), as macros sao estruturas
sintaticas que tém um transformador ligado a elas, permitindo expandir a forma
original. Elas funcionam como uma extensdo do compilador, ajudando na
manipulagdo do codigo. Além disso, o guia também aponta que muitas das formas
sintaticas do Racket (2025) sdo implementadas como macros, e que o sistema
oferece suporte tanto a macros baseadas em padrées quanto a transformadores

mais complexos. Além disso, ele fornece facilidades como ferramentas de

19

depuragdo e mensagens de erro especificas no nivel da macro. Dito isso, &

importante destacar que a expressdo check-expect, abordada neste trabalho,

implementa o sistema de macros.

2.2.2 Expressao Check-Expect

Essa expressdo funciona fazendo a comparacado entre o resultado de uma
funcdo ou de um valor fornecido, com o resultado esperado informado ao final da
expressdo. Ela foi desenvolvida para ser utilizada no contexto educacional,
normalmente testando fungdes definidas pelo aluno. Para mais detalhes, a imagem
da Figura 1 apresenta um exemplo de uso da expressao, extraido da documentagéo

oficial.

Figura 1 — Exemplo de uso do check-expect

00

(check-expect (fahrenheit->celsius 212) 100)
(check-expect (fahrenheilt->celsius -40) -40)

(define (fahrenheit->celsius f)
(* 5/9 (- f 32)))

Fonte: RACKET. The Racket Language Levels: Advanced Student. 2025.

A Figura 1 mostra um trecho de cbédigo onde € usada a expressao
check-expect. Nesse trecho, ha uma fungdo nomeada fahrenheit->celsius,
que tem como objetivo receber um valor em Fahrenheit e converté-lo para Celsius.
Na funcao, sao feitas duas verificagdes usando check-expect: a primeira testa se,
ao converter 212°F, o resultado € 100°C. A segunda verifica se, ao converter -40°F, o
resultado é -40°C. Se os valores obtidos estiverem corretos, o programa continua
normalmente, sem mostrar nenhuma mensagem. Mas, se algum resultado nao for o
esperado, o ambiente sinaliza um erro. Ao analisar este exemplo, € possivel afirmar
que a expressao apresentada dispoe de uma sintaxe simples e pratica. Com isso,
ela demonstra eficiéncia e clareza na criacdo de instru¢des para execucao de testes

de cadigo.

20

2.3 UMA VISAO GERAL SOBRE O ANTLR4

Nesta secdo, serdo apresentados conceitos relevantes para este trabalho
sobre o gerador de parsers ANTLR4. Os autores Parr e Quong (1995) explicam que
o ANTLR foi criado para atender a certas necessidades que surgiram na utilizagao
das ferramentas de geragcdo de analisadores sintaticos disponiveis na época.
Embora essas ferramentas oferecessem uma boa capacidade de analise, a maioria
dos desenvolvedores preferia escrever seus analisadores manualmente. Essa
abordagem buscava maior flexibilidade, um tratamento de erros mais preciso e uma
depuracédo mais facil. Foi nesse cenario que Parr e Quong (1995) criaram o ANTLR,
pensando em oferecer uma alternativa que atendesse as necessidades dos
desenvolvedores.

Segundo Parr e Quong (1995), a ferramenta trouxe ideias inovadoras, como o
uso de predicados sintaticos e semanticos para orientar a analise, suporte a
gramaticas LL(k) (Left-to-right, Leftmost derivation with k lookahead symbols),
integracéo entre analise Iéxica e sintatica, além da geragéo de arvores de sintaxe.
Dai em diante, o ANTLR passou por varias melhorias, chegando na versao atual, o
ANTLR4. Essa versdao mantém os principios originais da ferramenta, mas trouxe
avangos importantes, facilidade de uso e flexibilidade. Com essas mudangas, o
ANTLR4 ficou ainda mais popular, tornando-se uma ferramenta bastante utilizada
em diferentes projetos.

De acordo com a documentagcao oficial ANTLR (2025), o ANTLR4 é um
gerador de parsers que pode ser utilizado para ler, processar, executar e traduzir
textos estruturados. Além disso, o guia oficial também destaca que essa ferramenta
estd presente na criagdo de uma grande variedade de linguagens e frameworks. E
ainda mais, segundo Tarazona Bernal (2021), algumas funcionalidade de aplica¢des
ja consolidadas no mercado usam o ANTLR4, nelas estdo incluidas, a analise
sintatica de consultas no Twitter, a extracdo de informacdes juridicas com a Lex
Machina, ferramentas da Oracle, andlise de cdédigo C++ no NetBeans IDE e a
construcédo da linguagem HQL no framework Hibernate. Diante disso, € evidente que
o gerador de parsers apresentado € robusto, possui maturidade consolidada e é

utilizado por ferramentas amplamente reconhecidas no mercado.

21

2.3.1 Funcionamento
O ANTLR4 tem como funcdo ler uma gramatica e, com base nela, gerar um

cbdigo capaz de interpretar instrugées de uma DSL. A Figura 2, a seguir, apresenta

uma ilustragéo do funcionamento da ferramenta em questao.

Figura 2 — Reconhecedor de linguagem

parse tree
; AT
chars I tokens
(ISSI I'J\‘
- 100; [) LEXER [) sp = 100 ; [) PARSER |_>
_,,> |—/ = :I.I'l.'
_ Language recognizer 100

Fonte: PARR, 2013. The Definitive ANTLR 4 Reference. Dallas: Pragmatic Bookshelf, 2013.
Disponivel em: https://media.pragprog.com/titles/tpantir2/picture.pdf. Acesso em: 10 jul. 2025.

Na imagem, é possivel observar que, para reconhecer uma linguagem, o
processo é dividido em etapas. A primeira consiste em receber os caracteres e
transforma-los em tokens. Na segunda etapa, esses tokens sdo organizados em
estruturas que fazem sentido para a gramatica definida, formando o resultado do
parser, uma estrutura de dados construida a partir da derivagao especificada na
gramatica. Para reforcar essa explicagdo, Tarazona Bernal (2021) destaca que a
geracao de um parser com o ANTLR é dividida em duas etapas: a analise lexical e a
analise sintatica. A analise lexical corresponde a tokenizagdo, em que os caracteres
sdo agrupados em palavras ou simbolos e classificados em diferentes tipos, como
identificadores, inteiros ou numeros de ponto flutuante. Ja a andlise sintatica tem
como objetivo reconhecer a estrutura da frase a partir da sequéncia de tokens
produzida pelo analisador léxico, resultando em uma representagao hierarquica

denominada arvore sintatica.
2.3.2 Gramatica
Segundo o ANTLR (2025), a gramatica utilizada pelo ANTLR4 corresponde a

uma versao ampliada das gramaticas LL(k), o que lhe confere maior poder de

analise e flexibilidade na definicdo das regras. Essa caracteristica permite que a

22

ferramenta trate estruturas de linguagem mais complexas de maneira eficiente,
possibilitando a criagdo de parsers robustos e ao mesmo tempo adaptaveis as

necessidades do desenvolvedor.

Cadigo 1 — Exemplo de gramatica ANTLR4.

grammar Expr;
pProg: (expr NEWLINE)* ;
expr: expr ('*'|'/') expr
| expr ('+'|'-') expr
| INT
’ l(' expr l)l
NEWLINE : [\r\n]+ ;
INT : [0-9]+ ;

Fonte: ANTLR (2025). ANTLR4 Documentation. Disponivel em: https://www.antlr.org/. Acesso em: 18
jul. 2025.

O Cddigo 1 ilustra um exemplo de gramatica utilizada pela ferramenta
ANTLR4, que define uma linguagem para expressdes aritméticas. E possivel
observar que ela permite processar uma sequéncia de expressdes, separadas por
quebras de linha. As expressdes contemplam todas as operagdes aritméticas para
nameros inteiros e também permitem o agrupamento de sub-expressdes. As regras
|éxicas descrevem os tokens basicos, como numeros inteiros e quebras de linha.
Diante disso, é possivel afirmar que essa gramatica possibilita a leitura de calculos

matematicos simples.

2.3.3 Importancia da Ferramenta

Com base nas informacgdes apresentadas, é possivel afirmar que o ANTLR4 é
uma ferramenta com bom nivel de maturidade e, por isso, € utilizada na constru¢cao
de funcionalidades em linguagens consolidadas no mercado. Sua capacidade de
lidar com gramaticas mais complexas torna a ferramenta util para projetos que
envolvem analise de texto. Diante disso, neste trabalho, o0 ANTLR4 foi utilizado na
construgdo de uma DSL, desenvolvida para ser utilizada na linguagem Java. Essa

DSL é capaz de interpretar instrucbes como check-expect 1 1, as quais tém a

funcdo de comparar valores esperados com resultados obtidos. Esta DSL tem o

23

propésito de simplificar a criagao de testes unitarios na linguagem Java, conforme o

processo sera detalhado nas préximas segoes.
2.4 UMA VISAO GERAL SOBRE O JUNIT 5

Nesta secdo, sdo apresentados os principais conceitos sobre o framework
JUnit 5. O JUnit trata-se de uma ferramenta amplamente utilizada no
desenvolvimento e na execugao de testes unitarios em codigo Java, sendo uma das
solugdes mais consolidadas nesse contexto. Segundo a documentagdo oficial do
JUnit (2025), a versdo atual da ferramenta é organizada em trés subprojetos
principais: Platform, Jupiter e Vintage, cada um responsavel por diferentes aspectos
da execugao e compatibilidade dos testes. A Figura 3 ilustra em maior detalhe os

componentes que integram a arquitetura do JUnit 5.

Figura 3 — Arquitetura JUnit 5: Componente de Alto Nivel

J—

Third party

Fonte: GARCIA, Boni. Mastering Software Testing with JUnit 5. Packt Publishing Ltd, 2017, p. 56.

Ainda segundo a documentagao oficial JUnit (2025), o Platform serve como
base para frameworks de testes na Java Virtual Machine (JVM), facilitando a
integracdao com ferramentas como IDEs e sistemas de build. O Jupiter funciona
como um nucleo que reune os componentes essenciais para criar os testes. Ja o
Vintage atua como uma ponte, garantindo compatibilidade com versdes mais antigas
do JUnit.

24

2.4.1 Execucao e Organizagao de Testes

De acordo com o que foi apresentado, € possivel afirmar que o JUnit 5 dispde
de uma arquitetura moderna, focada em modularidade e flexibilidade, o que facilita
tanto a execugdo quanto a organizagéo dos testes unitarios.

Convém acrescentar que a estrutura dos testes possui um ciclo de vida bem
definido, com funcionalidades que ajudam a organizar e facilitar o processo. Para
oferecer um panorama mais detalhado sobre essas estruturas mencionadas, o
Quadro 1 apresenta as principais anotacbdes fornecidas pela versao atual da

ferramenta, conforme descrito na documentacéo oficial JUnit (2025).

Quadro 1 — Anotacdes do JUnit Jupiter

Anotacao Descrigao
@Test Marca um método como caso de teste que sera executado.
Executa o método antes de cada teste, preparando o ambiente
@BeforeEach .
necessario.
@AfterEach Executa o método apds cada teste, para limpeza ou reset de
estados.
Executa o método uma unica vez antes de todos os testes da
@BeforeAll
classe.
@AfterAll Executa o método uma unica vez apés todos os testes da
classe.
eNested Permite agrupar testes em classes internas, organizando-os
hierarquicamente.
. Atribui um nome descritivo ao teste ou a classe para facilitar a
@DisplayName) -
leitura dos relatérios.
@Tag Permite categorizar testes para execucgéo seletiva, como por
grupos ou caracteristicas comuns.

Fonte: Elaborado pelo autor a partir de JUNIT (2025).

2.4.2 Vantagens Do Junit 5 Sobre Versoes Anteriores

Em comparagdo com as versdes anteriores, o JUnit 5 dispde de uma
arquitetura mais modular e extensivel. A versao é dividida em trés componentes

principais, e essa fragmentagao facilita a execugao de testes em versdes antigas,

25

como o JUnit 4 e o JUnit 3, e também a integragdo com ferramentas de apoio, como
IDEs, ferramentas de build, como Maven e Gradle, e outras bibliotecas.

O uso de anotagdes intuitivas, como @BeforeEach, Q@AfterEach,
@DisplayName e @Disabled, permite escrever testes mais legiveis, organizados e

com menos codigo desnecessario. Além disso, a ferramenta passou a oferecer
suporte a criacdo de testes wunitarios dinadmicos por meio da anotagao

@QTesFactory, essa funcionalidade é especialmente util para a execucdo de

multiplos testes.

2.4.3 JUnit 5 na pratica

A seguir, serdo apresentados exemplos simples de como criar testes unitarios
em Java, com o objetivo de mostrar na pratica como usar o JUnit. Essa abordagem
ajuda a entender como a ferramenta pode ser usada para estruturar e executar
testes de forma organizada, facilitando a verificagdo do funcionamento do codigo e
promovendo boas praticas de desenvolvimento.

Para utilizar o JUnit 5, é necessario configurar a dependéncia da ferramenta
no projeto. Isso pode ser feito por meio de ferramentas de build, como Maven e
Gradle. A biblioteca utilizada para a versado atual é a junit-jupiter, que oferece
suporte a engine e a API do JUnit 5. Para mais informagdes, o Cadigo 2 ilustra um

exemplo de como realizar a configuragdo das dependéncias.

Cédigo 2 — Exemplo da configuracdo das dependéncias do JUnit 5.

plugins {
id 'java'

}

group 'org.example'
version '1l.0-SNAPSHOT'

repositories {
mavenCentral ()

}

dependencies {
testImplementation 'org.junit.jupiter:junit-jupiter-api:5.8.1"
testRuntimeOnly 'org.junit.jupiter:junit-jupiter-engine:5.8.1"

}

test {

26

useJUnitPlatform()

Fonte: O autor (2025).

A seguir, o Codigo 3 demonstra a estrutura da classe usada nos testes com
JUnit 5. Essa classe, chamada User, tem dois atributos: name e email. Ela também
possui métodos getters € setters para acessar e modificar esses valores. Essa
€ uma versao bem simples, criada apenas para ilustrar como implementar os testes
unitarios.

Codigo 3 — Exemplo da classe User em java.

package org.example.user;

public class User {
private String name;
private String email;

public User (String name, String email) {
this.name = name;
this.email = email;

}

public String getName () {
return name;

}

public void setName (String name) {
this.name = name;

}

public String getEmail ()
return email;

}

public void setEmail (String email) {
this.email = email;

}

Fonte: O autor (2025).

Para dar continuidade, o Cdodigo 4 apresenta a classe UserTest, utilizada
para escrever os testes unitarios da classe User. Nela, é possivel observar o uso da
APl JUnit Jupiter, com testes que cobrem os métodos getters e setters da

classe mencionada anteriormente.

Codigo 4 — Exemplo de testes unitarios com JUnit 5.

27

import org.example.user.User;
import org.junit.jupiter.api.Beforekach;
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertNull;
class UserTest {
private User user;
@BeforeEach
void setUp () {
user = new User ("User01", "user(Ol@example.com");
}
@Test
volid testGetName () {
assertEquals ("User0l", user.getName());
}
@Test

void testGetEmail () {
assertEquals ("userOllexample.com", user.getEmail());

@Test
volid testSetName () {
user.setName ("User02") ;
assertEquals ("User02", user.getName()):;
1
@Test

volid testSetEmail () {
user.setEmail ("user02@example.com") ;
assertEquals ("user02@example.com", user.getEmail()):;

@Test

volid testConstructorWithNulls () {
User newUser = new User(null, null);
assertNull (newUser.getName ()) ;
assertNull (newUser.getEmail ()) ;

Fonte: O autor (2025).

A classe de teste UserTest utiliza a anotagdo @ReforeEach para criar uma

nova instancia da classe User antes de cada teste, garantindo que todos os testes

sejam executados com valores consistentes e aumentando a confiabilidade dos

resultados.

28

Entre os testes implementados, estdo a verificacdo de que os valores de
name € email sdo corretamente retornados apds a criagéo do objeto, a atualizagao
desses atributos por meio dos métodos setName € setEmail, € a criagdo de
objetos com valores nulos, assegurando que a classe mantenha seu comportamento
esperado. Para validar os resultados, foram utilizadas fungdes de assergcédo do JUnit
5, como assertEquals € assertNull, que comparam os valores obtidos com os
esperados. Esse exemplo evidencia como o JUnit 5 facilita a implementagao de
testes unitarios claros, robustos e eficientes, gracas as suas anotagodes intuitivas e a

API bem estruturada.

2.4.4 Importancia da Ferramenta

Com base nos beneficios destacados, podemos afirmar que o JUnit 5 é uma
ferramenta indispensavel para quem trabalha com testes em Java. Sua estrutura
organizada, uma API forte, suporte a testes mais dindmicos e facil integragdo com
outras ferramentas de desenvolvimento fazem do JUnit 5 uma escolha assertiva
para projetos de todos os tamanhos e objetivos. Além disso, por tornar a escrita de
testes mais simples e acessivel, essa ferramenta ajuda a fortalecer a pratica de
implementacédo dos testes unitarios, que é fundamental para o desenvolvimento do
software.

Diante disso, justifica-se a escolha do JUnit 5 para compor a solugao proposta
neste trabalho. A ferramenta citada é utilizada como base para a validagao dos
testes definidos por meio da DSL.

A linguagem especifica de dominio desenvolvida nesta pesquisa tem como
objetivo simplificar a criagdo de testes unitarios, tornando-os mais legiveis e
alinhados ao fluxo natural de desenvolvimento. Para atingir esse propdsito de forma
eficaz, é fundamental dispor de uma base de execugao confiavel e consolidada, e ao
adotar o JUnit 5 como suporte, a DSL passa a contar com uma estrutura moderna,
segura e amplamente utilizada, o que facilita sua aceitagcdo e favorece sua adogao

pela comunidade.

3 DESENVOLVIMENTO DA SOLUGAO PROPOSTA

29

Nesta secdo, sera apresentado como a solugcao proposta neste trabalho foi
desenvolvida. Trata-se de uma DSL criada especialmente para facilitar a definigao
de testes unitarios em cddigo Java e incentivar a pratica do TDD. A ideia surgiu da
necessidade de tornar a escrita desses testes mais simples e alinhada a forma de
pensar dos desenvolvedores. Com esta abordagem, espera-se superar obstaculos
que muitas vezes levam os programadores a evitar a criagdo de testes unitarios
utilizando ferramentas tradicionais, como o JUnit. Entre as principais limitagdes do
JUnit, destacam-se a elaboracdo manual de testes, que pode ser repetitiva e
trabalhosa, e a necessidade de lidar com uma API detalhada, que requer
conhecimento prévio sobre anotacdes, métodos de assercdo e ciclo de vida dos
testes. Esses fatores frequentemente desestimulam a producdo de testes
consistentes e abrangentes.

A DSL JCheck, proposta neste trabalho, foi criada com o objetivo de superar
essas dificuldades. Ela permite que os testes sejam definidos de forma mais natural
e direta, usando instru¢des inspiradas na expressao check-expect, amplamente
utilizada na linguagem Racket. Essa expressao € comum em ambientes educativos,
pois auxilia na validagdo do comportamento de fungdes durante o desenvolvimento
do codigo. Baseando-se no funcionamento dessa expressao, a DSL surge como
uma solugdo que simplifica a criagdo e manutencdo de testes. A DSL JCheck
oferece aos desenvolvedores Java uma maneira mais facil de escrever testes
unitarios proximos da linguagem natural, tornando o processo de criacao e revisao
mais agil e eficiente.

Para facilitar a construgcao da DSL, foi utilizada a ferramenta ANTLR4. Ela é
responsavel pela geragdo do parser, utilizado para interpretar as instrugdes
fornecidas na linguagem de especificagdo de dominio. A escolha dessa ferramenta
foi fundamentada em sua ampla adogao, compatibilidade com o ecossistema Java e
capacidade de gerar parser robusto a partir de uma gramatica descomplicada.

Para executar os testes unitarios definidos na DSL, foi utilizado o framework
JUnit 5. Essa ferramenta é bastante popular por oferecer um suporte completo na
execucao de testes em codigo Java, além de ser confiavel e facil de integrar com
outras ferramentas do ecossistema. A escolha do JUnit 5 se deu principalmente
pelos relatérios detalhados que sdo gerados apds a execugao dos testes unitarios, o
que ajuda bastante a entender o funcionamento da aplicagdo. Outro ponto

importante € seu funcionamento intuitivo, que torna a escrita e organizacdo dos

30

testes mais simples e pratica. Esses beneficios fazem do framework uma das
opgdes mais utilizadas pela comunidade, sendo uma escolha sélida e eficiente para
desenvolver e executar testes de software.

Dessa forma, apos a apresentagao dos critérios que justificam a escolha das
ferramentas, € importante destacar que os conceitos por tras das ferramentas
Racket, ANTLR4 e JUnit 5 ja foram abordados na secédo “2. Conceitos” deste
trabalho. Nesta secdo, o objetivo € demonstrar de que maneira essas tecnologias
foram efetivamente integradas a estrutura da solugéo, destacando o papel de cada
uma no funcionamento da DSL. Além disso, pode-se afirmar que a escolha destas
tecnologias foram essenciais para garantir que a implementagao estivesse alinhada
ao proposito do trabalho, fortalecendo a conexao entre a pesquisa e sua aplicagao
técnica.

Com base nesses mecanismos, foi possivel construir uma solugdo que
combina a simplicidade da expressao inspirada na linguagem Racket, o poder de
analise do ANTLR4 e a robustez do JUnit 5, essa solugao oferece uma abordagem
pratica, acessivel e eficiente para a implementagao de testes unitarios em Java. A
seguir, serdo apresentados os detalhes da implementagédo da solugdo, no qual sera
descrita a forma como ela foi criada, interpretada e integrada a execugao dos testes

unitarios.

3.1 QUESTOES DE PESQUISA

Com o objetivo de orientar o desenvolvimento da solugdo proposta, foram

elaboradas as seguintes questdes de pesquisa:

e Como construir uma expressao similar ao check-expect do Racket em

Java, utilizando uma DSL?

e Como integrar a DSL com ferramentas de execucgao de teste existentes na

linguagem Java?

e Como a DSL desenvolvida se comporta em um ambiente que simula o

desenvolvimento de software real?

31

Essas questdes tém como objetivo direcionar o estudo, orientando o design da DSL
e a avaliagdo de sua aplicabilidade e eficacia no contexto do desenvolvimento de

software.

3.2 METODOLOGIA

Para atingir o objetivo geral da pesquisa, que é desenvolver uma DSL voltada
a criacao de testes unitarios em Java, com o intuito de facilitar a criacdo dos testes e
estimular a pratica do TDD, foi necessario dividir o trabalho em trés etapas
principais. A primeira etapa foi a investigagao, que envolveu estudos sobre testes de

software, a linguagem Racket, o gerador de parsers ANTLR4 e o framework JUnit 5.

A segunda etapa correspondeu ao desenvolvimento da solugao proposta, na

qual foi criada a DSL denominada JCheck, inspirada na expressdo check-expect.
Nessa fase, também foram definidos o funcionamento da anotacdo @Check e a

gramatica da linguagem, elaborada com o uso da ferramenta ANTLRA4.

Por fim, a terceira etapa consistiu na prova de conceito, na qual a DSL foi
aplicada a uma variedade de métodos em Java e foi realizada uma anadlise de
esforco baseada na contagem de linhas de cédigo, com o objetivo de validar seu

funcionamento e demonstrar sua aplicabilidade pratica.

3.3 CONSTRUCAO DA GRAMATICA

A criacdo da gramatica é uma etapa fundamental na implementagao da DSL,
pois € a partir dela que a estrutura da linguagem é formalmente definida. Para esta
solugdo, a estrutura foi desenvolvida utilizando a ferramenta ANTLR4, que facilita a
criacdo de gramaticas e produz um codigo consistente na geragédo do parser. Com
base nessa ferramenta, o cédigo da gramatica foi escrito seguindo o padréo
recomendado, em um arquivo com extensao .g4, no qual sdo definidas as regras
sintaticas necessarias para interpretar as instru¢ées da DSL. O Cdédigo 5 apresenta

a gramatica utilizada como base para gerar o parser da linguagem proposta.

32

Codigo 5 — Gramatica da DSL Proposta.

grammar CheckGrammar;
prog: stmt* EOF;
stmt
: 'check-expect' expr expr # checkExpect
| 'check-effect' expr expr # checkEffect
expr
: FLOAT # floatExpr
| INT # intExpr
| STRING # stringExpr
| ID # idExpr
| '(' expr ") # parenExpr
FLOAT: '=-'? [0-9]+ '.'" [0-9]+;
INT: '='? [0-9]+;
STRING:
[NI] (N[u\\] | '\\l _)* T
| '\ll (N['\\] | '\\l .)* l\ll,
ID: [a-zA-Z] [a-zA-Z 0-9]%;
WS: [\t\r\n]+ -> skip;

Fonte: O autor (2025).

A gramatica apresentada no Codigo 5 define a estrutura sintatica da DSL
proposta neste trabalho. A linguagem gerada por estas definigdes permite a escrita
declarativa de testes que comparam expressdes ou efeitos resultantes da execucgao
do cddigo. A seguir, o texto apresenta com mais detalhes as definigdes ilustradas no
cédigo.

A regra prog define um programa como uma sequéncia de instru¢des
encerradas obrigatoriamente por EOF, que marca o fim do arquivo. Isso garante que
toda a entrada seja consumida. Ja a regra stmt define as instrugdes validas, como
0s comandos check-expect € check-effect.

A regra expr define as expressdes validas da DSL. Nela, sdo incorporados
tipos literais como inteiros, pontos flutuantes e strings. Além disso, espagcos em
branco e quebras de linha n&o afetam a sintaxe da linguagem. Quem cuida disso é a
regra WS, que usa a diretiva skip para ignorar esses elementos na hora da analise.

Com base nisso, € possivel afirmar que a gramatica apresentada serve como

ponto de partida para a criagdo do parser da linguagem proposta. O cddigo gerado a

33

partir dela permite que as instru¢cdes definidas na DSL sejam interpretadas e

acessadas por meio da estrutura fornecida pelo ANTLR4.

3.4 IMPLEMENTACAO DA INFRAESTRUTURA

A implementacao da DSL proposta é realizada por meio da combinagao de
duas tecnologias: ANTLR4 e JUnit 5. Essa integragao permite que os testes sejam
processados e executados no ambiente Java, com base nas instrugdes escritas pelo
desenvolvedor na propria DSL.

Para possibilitar essa integragdo, o primeiro passo foi a construgdo da
gramatica da linguagem. Apds o desenvolvimento da gramatica, conforme explicado
na “Secao 3.3 Construcdo da Gramatica”, o passo seguinte foi utilizar o ANTLR4
para gerar o parser da linguagem. O cddigo gerado nesse processo € capaz de
reconhecer e interpretar as instrugdes da DSL. Além disso, o parser apresenta uma
estrutura que reproduz a arvore sintatica da linguagem, o que possibilita a
separacgao dos valores e o correto reconhecimento das instru¢gées no ambiente Java.

Para facilitar a comunicacéo entre o parser gerado e o JUnit 5, foi adotado o
padrao visitor, fornecido pela ferramenta. Esse padrao permite associar cada regra
sintatica a um comportamento especifico na aplicagdo. Com isso, a infraestrutura
fornecida percorre a arvore sintatica e executa as agdes correspondentes de
maneira eficiente. Dessa forma, as expressdes reconhecidas pela DSL sao
transformadas em operagdes logicas concretas no ambiente Java, tornando o
processo mais fluido e organizado.

Além disso, a infraestrutura conta com uma camada de organizacao
responsavel por carregar as instru¢ées da DSL a partir da anotagdo @Check. Para
realizar esse processo, € utilizada a API de reflexdo do Java, acessivel pelo pacote
java.lang.reflect, que faz parte da Java Standard Library e esta disponivel em
qualquer ambiente Java. Esse mecanismo permite representar classes e interfaces
no momento da execucgao, fornecendo acesso a estruturas como meétodos e
atributos.

Para ajudar a entender melhor, os Cddigos 6, 7, 8, 9 e 10 dispdem de trechos
da implementagcdo que mostram, de forma mais detalhada, como funciona a

infraestrutura. Esses trechos de cdédigo ilustram como as instru¢des da DSL séo

34

reconhecidas, processadas e transformadas em testes unitarios, por meio da

anotagao @Check e da API de reflexdo do Java.

Caédigo 6 — Implementacdo da Anotagdo @Check.

package com.example.ecommerce.annotation;
import Jjava.lang.annotation.*;

@Retention (RetentionPolicy.RUNTIME)
@Target (ElementType.METHOD)
@Repeatable (Checks.class)
public @interface Check {
String validation();
String[] args () default {};
String mockValues () default "{}";

Fonte: O autor (2025).

A anotagéo @Check, apresentada no Cdédigo 6, foi criada com o objetivo de
permitir a definicdo de testes unitarios diretamente associados aos métodos da
aplicagao, utilizando a DSL proposta como linguagem de validacéo. Essa anotacéao é
marcada com @Retention (RetentionPolicy.RUNTIME), O que garante que
suas informagdes estejam disponiveis em tempo de execucgdo, possibilitando o
acesso por meio da API de reflexao.

Na mesma interface, utiliza-se Q@Target (ElementType.METHOD), que
garante que a anotagdo seja aplicada exclusivamente a métodos. Além disso, o
cédigo emprega @Repeatable (Checks.class), permitindo a aplicagao multipla
da mesma anotacdo sobre um unico método. Dessa forma, o desenvolvedor pode
criar diferentes testes para um mesmo método, cobrindo variados cenarios de
validacao.

Ainda em relagcdo a interface, observa-se que ela possui trés elementos
principais. O primeiro € o validations (), responsavel por indicar a instrucdo que
sera interpretada pelo mecanismo da DSL, como nos exemplos check-expect %s
4.0 e check-effect currentValue 0. O segundo é o args (), que define os
argumentos a serem passados para o método testado, possibilitando sua utilizagao
durante a execugao do teste. Um exemplo seria args = {"2.0", "2.0"}. Por
fim, o terceiro elemento € o mockvValues (), de uso opcional, cuja finalidade é

configurar valores simulados a serem atribuidos a determinados elementos no

35

momento da execugédo, permitindo maior controle sobre o ambiente de teste. Esses
trés elementos funcionam de forma integrada, contribuindo para a correta defini¢cao e

execucao dos testes dentro do ambiente Java.

Cddigo 7 — Definigdo da Anotagéao Contéiner @Checks para Multiplos Testes.

package com.example.ecommerce.annotation;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Retention (RetentionPolicy.RUNTIME)
@Target (ElementType.METHOD)
public @interface Checks {
Check[] wvalue():;
}

Fonte: O autor (2025).

O Caodigo 7 apresenta um trecho que define a anotagdo @Checks, a qual atua
como contéiner para multiplas anotagdes @Check. No Java, a partir da versao 8,
para que uma anotagao possa ser aplicada varias vezes sobre 0 mesmo elemento,
ela deve ser marcada com @Repeatable, indicando qual anotagdo contéiner a
agrupa. Nesse contexto, a anotagdo @Check €& definida com
@Repeatable (Checks.class), 0 que permite que multiplas instancias de
@Check sejam aplicadas a um unico método, enquanto @Checks funciona como o

recipiente dessas anotagdes.

Cddigo 8 — Implementagao do Executor de Testes Baseado na Anotagao @Check.

package com.example.ecommerce.check;

import com.example.ecommerce.annotation.Check;

import com.example.ecommerce.check.utils.JsonUtil;

import com.fasterxml.jackson.core.JsonProcessingException;
import org.junit.jupiter.api.DynamicTest;

import org.junit.jupiter.api.TestFactory;

import java.lang.reflect.Method;
import java.util.Arrays;

import java.util.HashMap;

import java.util.Map;

import java.util.Set;

import java.util.stream.Stream;

36

import static org.junit.jupiter.api.DynamicTest.dynamicTest;
class CheckTest {

@TestFactory
Stream<DynamicTest> dynamicCheckTests () {
Set<Method> allMethods =
TestHelper.getMethodsForTesting () ;

return allMethods.stream()
.flatMap (method -> {
Check[] checks =
method.getAnnotationsByType (Check.class) ;
return Arrays.stream(checks) .map (check -> {
String displayName = String.format (
"Test: %s(%s)", method.getName (),

String.join(", ", check.args()));
return dynamicTest (displayName, () -> {
try |
String[] args = check.args();

Object[] parsedArgs =
TestHelper.parseArguments (args,

method.getParameterTypes ()) ;

Map<String, Object> mock = new
HashMap<> () ;
if
(!check.mockValues () .equals("{}")) {
mock =
JsonUtil.readJsonString (check.mockValues());

}

TestHelper.methodExecute (method,
check,
parsedArgs, mock);
} catch (JsonProcessingException |
NoSuchFieldException
| IllegalAccessException e) {
throw new RuntimeException (e);

Fonte: O autor (2025).

E o Cddigo 8 ilustra como os métodos sado organizados para que seus testes
unitarios sejam executados corretamente. A estratégia emprega a anotagéo
@QTestFactory, que faz parte da APl do JUnit 5 e permite a criacao de testes a

partir de uma colecdo de dados. No cdédigo apresentado, essa colegdo é

37

representada por um array que reune os métodos da aplicagdo anotados com
@Check.

A execucgao dos testes tem inicio com a recuperacdo dos métodos que estao
marcados com a anotagdo @Check. Em seguida, sdo extraidas as instancias dessa
anotacdo para cada método identificado. Dessa forma, torna-se possivel executar
multiplos cenarios de teste para um mesmo método.

Ainda em relagdo a execugao, cada instancia da anotagdo é convertida em
um teste dindmico e, para facilitar a identificacdo de cada execugao, o nhome do teste
€ gerado com base no nome do método e nos argumentos declarados na anotagao.
Essa estratégia contribui para um acompanhamento mais eficiente dos casos
durante a execucéao dos testes.

Ademais, como o Java é uma linguagem fortemente tipada, torna-se
necessario converter os argumentos para os tipos esperados pelos parametros do
meétodo antes de sua execugao.

Além disso, caso a instancia disponha de valores simulados no momento da
execugao, esses sao convertidos de uma string em formato JavaScript Object
Notation (JSON) para um objeto do tipo Map.

Apos todos os parametros necessarios para a execugao estarem prontos, €
chamado o0 método TestHelper.methodExecute (method, check,
parsedArgs, mock). Esse método € responsavel por invocar o método testado
por meio do mecanismo de reflexdo da linguagem Java e encaminhar a instrugdo da
DSL para o processamento pelo parser. O Cédigo 9 ilustra esse método com mais

detalhes.

Cdédigo 9 — Execucéo reflexiva de métodos anotados com @Check.

public static void methodExecute (Method method, Check check,
Object[] parsedArgs, Map<String,

Object> mock) throws IllegalAccessException,
NoSuchFieldException {

Class<?> clazz = method.getDeclaringClass{() ;
Object classInstance = mockValues (mock, clazz);
try {

if (method.getReturnType () .equals (Void.TYPE)) {
method.invoke (classInstance, parsedArgs);

38

DSLRunner.execute (check.validation (), method,

classInstance) ;
} else {

Object methodResponse =
ConverterUtil.convertNonNumberToQuotedString (method.invoke (classI
nstance, parsedArgs));

DSLRunner.execute (

String.format (check.validation(),
JsonUtil.isdsonString (methodResponse)

2
JsonUtil.wrapWithSingleQuotes (String.valueOf (methodResponse))
methodResponse),

method,
classInstance) ;
}
} catch (IllegalAccessException | InvocationTargetException |
JsonProcessingException e) {
throw new RuntimeException (e);

}

Fonte: O autor (2025).

O método apresentado no Codigo 9, por meio de reflexdo, invoca outro
método da aplicagdo e passa para ele os argumentos necessarios. Em seguida, faz
a validacao de acordo com as instrugdes definidas na DSL. Para isso, ele precisa de
alguns insumos: o proprio método a ser invocado, a anotagédo associada a ele, os
argumentos ja convertidos para os tipos corretos e, se existirem, os valores
simulados reunidos em um Map.

ApoOs obter os parametros, o método inicia buscando a classe na qual o
método testado esta contido. Em seguida, insere os valores simulados nos atributos
dessa classe, conforme as definicbes presentes no Map<String, Object> mock.
Depois, um bloco try-catch € iniciado, contendo uma verificagdo do tipo do
meétodo: se € void ou se possui valor de retorno. Apds essa verificagdo, o método &
invocado. Caso seja void, a proxima etapa é a execugao da DSL. Caso contrario, o
valor de retorno é armazenado em uma variavel e utilizado para substituir o
marcador de retorno dentro da string da DSL, permitindo a comparagao entre o valor

esperado e o obtido.

Caodigo 10 — Interpretador da DSL.

package com.example.ecommerce.check.antlr4;

import
com.example.ecommerce.check.antlr4.gen.CheckGrammarBaseVisitor;

39

import com.example.ecommerce.check.antlr4.gen.CheckGrammarParser;
import com.example.ecommerce.check.utils.CheckHelper;
import com.example.ecommerce.check.utils.ConverterUtil;

import java.lang.reflect.Field;

public class Interpreter extends CheckGrammarBaseVisitor<Object>

{
private final ExecutionContext executionContext;

public Interpreter (ExecutionContext executionContext) {
this.executionContext = executionContext;

}

@QOverride
public Object
visitCheckExpect (CheckGrammarParser.CheckExpectContext ctx) {

Object actual = visit (ctx.expr (0));
Object expected = visit(ctx.expr(l));
executeCheckExpect (actual, expected);

return actual;

@Override
public Object
visitCheckEffect (CheckGrammarParser.CheckEffectContext ctx) {
Object attributeName = visit(ctx.expr(0));
String expected String.valueOf (visit (ctx.expr(1l)));
try {

Field field
executionContext.methodClass.getDeclaredField ((String)
attributeName) ;

field.setAccessible (true);

Object value = field.get (executionContext.instance);

executeCheckExpect (value,
ConverterUtil.convertToSameType (expected, value));

}catch (NoSuchFieldException | IllegalAccessException
exception) {

throw new RuntimekException (exception);

}

return null;

@Override
public Object visitIntExpr (CheckGrammarParser.IntExprContext
ctx) |
return Integer.valueOf (ctx.INT () .getText())

@Override
public Object
visitFloatExpr (CheckGrammarParser.FloatExprContext ctx) |

40

return Double.valueOf (ctx.FLOAT () .getText ())
}

@Override
public Object
visitStringExpr (CheckGrammarParser.StringExprContext ctx) {
String raw = ctx.STRING() .getText ()

if ((raw.startsWith ("\"") && raw.endsWith ("\"")) ||
(raw.startsWith("'") && raw.endsWith("'"))) {
return raw.substring(l, raw.length() - 1);

}

return raw;

}

@Override
public Object visitIdExpr (CheckGrammarParser.IdExprContext
ctx) {
return ctx.ID() .getText (),
}

private void executeCheckExpect (Object actual, Object
expected) {
CheckHelper.checkExpect (
actual,
expected,
Test to method %s failed
Actual: %s
Expected: %s
Path: %s
" formatted(executionContext.methodName,
actual,
expected,
executionContext.methodPath)

Fonte: O autor (2025).

E o Codigo 10 ilustra a classe Interpreter, responsavel por percorrer e
interpretar a estrutura sintatica da DSL. Essa classe estende
CheckGrammarBaseVisitor, 0 que permite implementar o padrao visitor sobre os
nds da arvore sintatica.

A classe recebe informacdes do contexto da execugcdo da DSL, essas
informagdes sao cruciais para acessar estruturas dos meétodos através da reflexao.
Essas estruturas contém dados como a classe e a instancia do método no teste

corrente, além do nome e do caminho do mesmo.

41

E nessa etapa do processo que sdo executados os métodos responsaveis
pelas instrugdes check-expect € check-effect. O método referente a instrugao
check-expect acessa dois atributos do contexto: o primeiro corresponde ao valor
retornado pelo método invocado, e o segundo, ao valor esperado. Apds obter esses
atributos, ambos sdo passados a um método auxiliar denominado
executeCheckExpect, responsavel por verificar a igualdade entre os valores
fornecidos e retornar uma resposta coerente com o resultado da validagao.

De forma analoga, o método associado a instru¢do check-effect também
acessa dois atributos do contexto. O primeiro indica o nome do atributo da classe
onde o método esta declarado, e o segundo, o valor esperado que esse atributo
deve conter ao final da execucdo. Com essas informacdes, o fluxo cria uma
instancia do campo com base no nome do atributo e, em seguida, recupera o valor
associado. Por fim, assim como ocorre na instru¢do check-expect, 0 método
executeCheckExpect € acionado para realizar a comparagao entre os valores e
retornar uma resposta coerente com o resultado da validacao.

Com base nas informacdes apresentadas nesta segao, € possivel afirmar que
a infraestrutura desenvolvida permite a execucédo de testes definidos por meio da
DSL proposta. A seguir, o diagrama apresenta o fluxo completo da execugédo da

solucao.

42

Figura 4 — Fluxo de execugao da solugéo

_?

[Localizar métodos anctados com @Check |
\ J
|/- ¢ -\u
| Criar testes dindmicos |

-

| Invocar método alvo |
h A

EE<O método & do tipo uoid?>ﬁj°

| Executar DSL | | Obter o retorno e executar DSL |
h o h A
| - = |
~
| Interpretar instrugdes da DSL |
L

v

|/- -\u
| walidar resultado |

y ™
| Retornar resultado |
. A

e

Fonte: O autor (2025).
Os componentes apresentados foram desenvolvidos para que as instrugdes

escritas na DSL sejam corretamente interpretadas e aplicadas. Este mecanismo é
potencializado pelo uso das tecnologias mencionadas na secédo “2. Conceitos”,
somadas a anotacido @Check, criada especialmente para este trabalho, e ao uso de
reflexdo em tempo de execucgdo, resultando em uma conexdo eficiente entre a
linguagem de dominio especifico e os testes unitarios. Com isso, obteve-se uma
pratica de criagado de testes mais acessivel, organizada e com menor necessidade
de escrita de codigo. Além disso, devido a proximidade entre os meétodos e as
instrugdes de teste, é facilitada a adogdo da metodologia TDD, na escrita dos testes

utilizando a DSL proposta.

43

4 PROVA DE CONCEITO

Com o objetivo geral de validar a solugdo proposta neste trabalho, foi
elaborada uma prova de conceito. Segundo Neto et al. (2023), uma prova de
conceito € compreendida como uma atividade exploratoria e experimental que visa
produzir e difundir conhecimento sobre artefatos tecnologicos e seus
comportamentos, contribuindo para o avanco de determinada area do saber. Dessa
forma, a motivacao desta secao é demonstrar, na pratica, que a solugcao proposta
pode ser utilizada em um cenario mais realista, validando, assim, a aplicabilidade
dos conceitos tedricos discutidos nas se¢des anteriores.

Para isso, esta prova de conceito tem como objetivo especifico comprovar
que € possivel executar testes unitarios em Java utilizando instrucdes definidas em
uma DSL e que o uso da DSL pode demandar menor esfor¢o na construgdo dos
testes unitarios do que a utilizagdo exclusiva do JUnit. Para alcancgar isso, foram
aplicados na pratica os recursos apresentados na secdo ‘3.2 Implementacdo da
Infraestrutura’ e foi desenvolvida uma analise de esforgo baseada na contagem de
linhas de codigo. Além disso, por meio dessa validagdo, busca-se também
evidenciar que a DSL proposta pode simplificar a escrita dos testes e promover a

adocéo da metodologia TDD.

4.1 DESCRICAO DA IMPLEMENTACAO

A prova de conceito foi desenvolvida utilizando métodos escritos em Java,
com foco na diversidade de tipos de dados e de comportamentos. Para isso, os
métodos foram marcados com a anotagdo @Check, previamente mencionada na
secado "3.2 Implementacdo da Infraestrutura". Cada uma dessas anotacdes define
uma instrucdo diferente, escrita por meio da DSL proposta, juntamente com os
argumentos para os métodos e os valores simulados. O processamento dessa DSL
ocorre no momento da execucdo dos testes unitarios, por meio do comando mvn
clean test -Dtest=CheckTest#dynamicCheckTests.

Para realizar este estudo, foi utilizada uma APl desenvolvida com o
framework Spring Boot, projetada para simular algumas funcionalidades comuns em

um ambiente de e-commerce. Esse sistema forneceu um cenario mais realista,

44

permitindo utilizar a DSL em diferentes camadas da aplicagao e verificar sua eficacia
em casos variados de uso, como manipulagédo de dados e validacdes. O repositorio
com os codigos executados na prova de conceito esta disponivel no GitHub de Silva
(2025).

Os trechos de cddigo a seguir apresentam os métodos utilizados no estudo,
evidenciando como a DSL deve ser utilizada. Essa abordagem refor¢a que ao utilizar
a solugao proposta nesta pesquisa, o processo de escrita dos testes se torna mais
simples, fluido e alinhado aos principios da metodologia TDD.

O codigo 11 apresenta um método de acesso e modificagdo de atributos do
tipo Long. Nesse caso, foi utilizado o atributo id para demonstrar tanto a validagao
de retorno, por meio da instrucdo check-expect, quanto a verificacdo de efeitos
colaterais, utilizando a instrugdo check-effect. No método getId, a DSL define
que o valor retornado deve ser igual a 1, simulando esse valor por meio do
parametro mockValues. Ja no método setId, a anotagao estabelece que, ao
receber o argumento 1, o atributo id deve refletir corretamente essa alteracéo,

validando o comportamento esperado. O codigo correspondente € apresentado a

seqguir:
Cdédigo 11 — Testes em métodos get/set com tipo Long por meio da DSL.
@Id
@GeneratedValue (strategy = GenerationType.IDENTITY)
Long id;

private String name;

@Check (validation = "check-expect %s 1", mockValues = "{ \"id\":
1 }u)
public Long getId() {

return id;

}

@Check (validation = "check-effect id 1", args = { "1" })
public void setId(Long id) {

this.id = id;
}

Fonte: O autor (2025).

7 7

Outro exemplo é apresentado no Cddigo 12. Neste caso, o método &

responsavel por acessar e alterar atributos do tipo String, sendo o atributo em

questdo o0 name. No método getName, a DSL testa se o valor retornado € igual a

45

"name", utilizando o parédmetro mockvValues para simular o valor esperado
durante o teste. Ja no método setName, a DSL verifica se, ao passar o argumento
"Category", O atributo name reflete essa mudanga corretamente. A seguir,

apresenta-se o codigo correspondente:

Caédigo 12 — Testes em métodos get/set com tipo String por meio da DSL.

private String name;

@Check (validation = "check-expect %s 'name'", mockValues = "/{
\"name\": \"name\" }™)
public String getName () {

return name;

}

@Check (validation = "check-effect name 'category'", args = {
"category" })
public void setName (String name) {

this.name = name;

}

Fonte: O autor (2025).

Ja o Cddigo 13 demonstra que a DSL também da suporte a métodos que
lidam com tipos temporais, evidenciando, assim, sua flexibilidade. O exemplo abaixo

apresenta 0 método addDaysToInstant, responsavel por adicionar um numero

especifico de dias a uma data, langando uma excegao caso a data fornecida seja

nula. Para testa-lo, através da DSL foi definido o uso do comando check-expect,

especificando que, ao receber como argumentos a data
"2025-08-05T14:30:00Z" e o numero 15, o resultado esperado deve ser

"2025-08-20T14:30:00z". O codigo correspondente é apresentado a seguir:

Codigo 13 — Uso da anotagdo @Check em método com manipulagcido de datas do tipo Instant.

@Check (validation = "check-expect %s '2025-08-20T14:30:00z2"'",
args = {"2025-08-05T14:30:00z", "15"})
public static Instant addDaysToInstant (Instant baseDate, int
daysToAdd) {

if (baseDate == null) {

throw new IllegalArgumentException ("The base date cannot

be null.");

}

return baseDate
.atZone (ZoneOffset.UTC)
.plusDays (daysToAdd)

46

.toInstant () ;

Fonte: O autor (2025).

E o Codigo 14 demonstra como a DSL pode ser utilizada para validar
multiplas entradas em um método que verifica o formato de enderegcos de e-mail.
Por meio da linguagem de dominio especifico, foram definidas duas instrugdes do
tipo check-expect, uma para validar se 0 endere¢co "user@gmail.com" é valido
e outra para verificar uma entrada invalida, como "user@gmail". Esse tipo de teste
comprova que a DSL permite cobrir diferentes casos de teste para o mesmo método.

O caodigo correspondente é apresentado a seguir:

Caodigo 14 — Testando formatos de e-mail com diferentes entradas por meio da anotagdo @Check.

@Check (validation =
{"user@gmail.com"})
@Check (validation =
{"user@gmail"})
public static boolean isValidEmail (String email) {
if (email == null || email.isBlank()) {
return false;

"check-expect %$s true", args =

"check-expect %$s false", args =

}
return EMAIL PATTERN.matcher (email) .matches();

Fonte: O autor (2025).

O trecho do Cddigo 15 ilustra como a DSL pode ser aplicada em métodos de
célculo com retorno numérico. Para isso, a instrugao definida utiliza o comando
check-expect para verificar se, ao multiplicar o valor 19,99 por 3, o resultado
retornado sera 59,97. Esse tipo de teste € especialmente util em operagdes do
dominio financeiro, em que a precisao e a consisténcia dos calculos sao essenciais.

O cddigo correspondente é apresentado a seguir:

Caodigo 15 — Testando valor total com suporte da anotacdo @Check.

@Check (validation = "check-expect %s 59.97", args = {"19.99",
"3"})
public static BigDecimal calculateTotal (BigDecimal unitPrice, int
quantity) {
if (unitPrice == null || unitPrice.compareTo (BigDecimal.ZERO)
< 0)
throw new IllegalArgumentException("Unit price invalid.");

}

47

if (quantity < 0) {
throw new IllegalArgumentException ("Quantity invalid.");

}

return unitPrice.multiply(BigDecimal.valueOf (quantity));

Fonte: O autor (2025).

O Cddigo 16 ilustra o uso da DSL em um método responsavel pela
anonimizacéo de numeros de CPF, ocultando os seis primeiros digitos. Para isso, o
método recebe uma String como paradmetro e, inicialmente, remove todos os
caracteres que nao sao digitos. Em seguida, verifica se o valor resultante contém
exatamente 11 digitos. Caso essa condicdo seja atendida, ele retorna o CPF
formatado com os seis primeiros digitos mascarados por asteriscos. Para validar
esse meétodo, é definida, por meio da DSL, uma instrugdo que utiliza o comando
check-expect para verificar se a saida do CPF "123.456.789-01", passado
como parametro, € de fato "x**_ *x*_789-01". A seguir, esta o codigo

correspondente:

Codigo 16 — Anonimizacdo de CPF com suporte a testes via DSL.

@Check (validation = "check-expect %s '*** **x*_789-01"'", args =
{"123.456.789-01"})
public static String maskCPF (String cpf) {

if (cpf == null) return null;

cpf = cpf.replaceAll ("\\D", "");
if (cpf.length() != 11) return cpf;
return "*** ***x " + cpf.substring(6, 9) + "-" +

cpf.substring(9);
}

Fonte: O autor (2025).

O Cddigo 17 apresenta um método utilitario responsavel por validar valores
monetarios, assegurando que estes nao sejam nulos nem negativos. Para testar
esse cenario, multiplas instrucbes em DSL descrevem o0s comportamentos

esperados em diferentes situagdes, como o retorno de true para valores positivos e

zero, e false para valores negativos. A seguir, esta o codigo correspondente:

48

Codigo 17 — Validador de precos com anotacdo embutida para testes unitarios.

@Check (validation = "check-expect %s true", args = {"19.99"})
@Check (validation = "check-expect %s false", args = {"-19.99"})
@Check (validation = "check-expect $%$s true", args = {"0"})
public static boolean isValidPrice (BigDecimal price) {

return price !'= null && price.compareTo (BigDecimal.ZERO) >= 0;
}

Fonte: O autor (2025).

O Cdodigo 18 apresenta um método responsavel por formatar valores do tipo
BigDecimal no padrdo monetario brasileiro. Para realizar o teste unitario desse
método, é utilizada a linguagem de dominio especifico. Neste caso, a expresséo da
DSL indica que, ao receber o argumento 9.00, o método deve retornar exatamente a

string formatada R$ 9,00. A seguir, esta o codigo correspondente:

Cddigo 18 — Conversao de valores monetarios para o formato brasileiro com suporte a teste via DSL.

@Check (validation = "check-expect %s 'RS$ 9,00'", args = {"9.00"})
public static String formatPrice (BigDecimal price) {

if (price == null) return null;

NumberFormat format = NumberFormat.getCurrencylnstance (new

Locale("pt", "BR")),’
return format.format (price);

}

Fonte: O autor (2025).

4.2 RESULTADOS DA EXECUCAO

A primeira etapa da prova de conceito teve como resultado o sucesso da
execugao da DSL para a execugdo dos testes unitarios dos métodos, abrangendo
casos em que o método retorna um valor e aqueles em que o método é do tipo void.
Além disso, o mecanismo desenvolvido demonstrou capacidade de lidar com
diferentes cenarios de execucgao, retornando respostas consistentes em todos eles.
O Quadro 2 apresenta o resultado das execucgdes dos testes durante a prova de

conceito.

Quadro 2 — Resultado da execucgao dos codigos apresentados na secao “4.1 - Descri¢cdo da
implementacao”.

Método DSL Argumento(s) | Mock(s) | Resultado

getId check-expect %s - id: 1 Sucesso

1

o°
0

check-expect

1 - id: 2 Falha
check-effect id
1 1 - Sucesso
setId
iheck—effect id 5 _ Falha
check-expect %s name:
X , - Sucesso
name name
getName
check-expect %s name:
‘name’ usuario Falha
check-effect
\ , category - Sucesso
name ‘category
setName
check-effect categoria B Falh
name ‘category’ g aiha
check-expect %s 22i?;8?68;T
‘2025-08-20T14: T - Sucesso
30:00z" 15
addDaysToInstan
t
check-expect %s Zgi?38?08;T
‘2025-08-20T14:)) - Falha
. 4
30:00% 16
check-expect %s
il.
true user@gmai _ Sucesso
com
isValidEmail ;hick—expect oS
aise user@gmail - Sucesso
check-expect %s user@gmail _ Falha
true
check-expect %s 19.99 _ s
59.97 3 ucesso
calculateTotal
check-expect $%s 19.99 B Falh
59.97 alha
4
check-expect %s
PRAK Axx T789-01 123‘%?'789 - Sucesso
maskCPF
check-expect $%s 123.456.789 B Falh
Tkkk x%G789-01 -01 alha

50

]
check-expect %s
P 19.99 - Sucesso
true
check-expect %s
P -19.99 - Sucesso
false
isValidPrice
check-expect %s
N P 0 - Sucesso
rue
check-expect %s
P -1 - Falha
true
check-expect %s
'RS 9,00° 9.00 Sucesso
formatPrice
check-expect $%s
‘s 9,00 9.00 Falha

Fonte: O autor (2025).

Com base nos resultados ilustrados no Quadro 2, foi possivel confirmar que
esta solugdo demonstrou capacidade de validar os métodos com base nas
instrucdes fornecidas pela DSL e nas propriedades passadas para a anotagao
@Check.

Além disso, também evidenciou a capacidade da DSL de lidar com diferentes
tipos de métodos, desde aqueles que retornam valores até os que produzem efeitos
colaterais. Para mais, a integracdo com a anotagdo @Check mostrou-se eficiente
para parametrizar os cenarios de teste, permitindo a definicdo clara e objetiva das
condicdes esperadas para cada meétodo testado.

Além de validar a viabilidade técnica, a prova de conceito também evidenciou
os beneficios praticos da abordagem para o desenvolvimento de testes unitarios em
Java. A DSL proposta demonstrou ser uma ferramenta expressiva e flexivel, capaz
de simplificar a definicdo e execugao dos testes, promovendo maior organizagao e
reduzindo a complexidade no processo de validagdo do cédigo.

Além de tudo, os resultados obtidos também reforcam a contribuicido deste
trabalho para o aprimoramento das praticas de teste de software, especialmente no
contexto do desenvolvimento orientado por testes, além de abrir caminho para

futuras investigagcdes e melhorias na linguagem e em sua infraestrutura de suporte.

51

4.3 ANALISE DE ESFORGO POR LINHAS DE CODIGO

Com o objetivo de destacar o ganho em termos de esforco no
desenvolvimento de testes unitarios utilizando a DSL JCheck, em comparagcdo com
a escrita de testes unitarios usando apenas JUnit, foi realizada uma analise de
esforgo baseada na quantidade de linhas de codigo. Para a contagem, foi utilizada a
medida Lines of Code (LOC), que, segundo Ochodek et al. (2023), € amplamente
empregada para estimar o esforgo no desenvolvimento de software.

Ainda segundo Ochodek et al. (2023), esse tipo de contagem deve considerar
apenas as linhas que efetivamente contribuem para a execucdo da tarefa em
analise, neste caso, a implementacdo da logica de testes unitarios. Foram
contabilizadas linhas referentes a criagcdo de instancias, chamadas de métodos e
asserts, enquanto linhas em branco foram excluidas da contagem. Anotagdes
como @Test foram incluidas para refletir o esforgo completo de implementagao.
Essa abordagem garante que a métrica LOC esteja mais fortemente correlacionada
com o esforco real de desenvolvimento e manutencdo dos testes, evitando
distorcbes comuns em contagens de LOC padrao. Para tornar mais clara a forma
como foi feita a contagem das linhas de cédigo e destacar o ganho em agilidade na
implementacgéo dos testes unitarios, a seguir sdo apresentadas comparagdes entre o

cédigo desenvolvido com a DSL JCheck e a abordagem usando apenas JUnit.

Codigo 19 — Primeiro exemplo de uso da DSL extraido do Cédigo 11.

@Check (validation = "check-expect %s 1", mockValues = "{ \"id\":
1 }ll)

Fonte: O autor (2025).

Codigo 20 — Implementacdo do exemplo do Cédigo 19 apenas com JUnit.

@Test

volid shouldReturnIdWhenIdIsOne () {
Category category = new Category(lL, "");
assertEquals (1L, category.getId()):

Fonte: O autor (2025).

Quadro 3 — Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método get1d, ilustrado no
Cadigo 11.

Tipo de Implementagao LOC Totais Reducgao (%)

52

DSL JCheck 1

80%
JUnit 5 5

Fonte: O autor (2025).

No Codigo 19, a DSL JCheck é utilizada para testar o método getId. Por

outro lado, o Codigo 20 mostra como o teste seria feito manualmente com JUnit,

exigindo a criagcdo da instédncia da classe Category, a chamada do método e a

verificagdo com assertEquals. Esse método manual ocupa mais linhas e exige

mais esfor¢o no desenvolvimento. Como evidencia o Quadro 3, a versao com a DSL

requer apenas uma linha, enquanto o teste com JUnit puro precisa de cinco, o que

representa uma reducgéo de cerca de 80% do total de linhas de cédigo.

Caodigo 21 — Segundo exemplo de uso da DSL extraido do Codigo 11.

@Check (validation = "check-effect id 1", args = { "1" })

Fonte: O autor (2025).

Codigo 22 — Implementacao do exemplo do Cédigo 21 apenas com JUnit.

@Test

void shouldUpdateIdWhenValueIsOne () {
Category category = new Category();
category.setId(1lL);
assertEquals (1L, category.getId()):

Fonte: O autor (2025).

Quadro 4 — Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método set1d, ilustrado no

Codigo 11.
Tipo de Implementagao LOC Totais Reducao (%)
DSL JCheck 1
83,33%
JUnit 5 6

Fonte: O autor (2025).

No Caodigo 21, a DSL JCheck é empregada para testar o método set1d. Com

o intuito de fazer a comparacao, o Cédigo 22 mostra a implementagao manual do

mesmo teste com JUnit puro, que exige criar uma instancia da classe Category,

invocar o método setld e verificar o resultado com assertEquals. Essa abordagem

manual consome mais linhas e requer maior esforco de implementagdo. Como

demonstra o Quadro 4, a versao com a DSL utiliza apenas uma linha, enquanto

o

53

teste em JUnit ocupa seis, representando uma reducao de cerca de 83,33% no total

de linhas de cédigo.

Caodigo 23 — Primeiro exemplo de uso da DSL extraido do Codigo 12.

@Check (validation = "check-expect %s 'name'", mockValues = "/{
\"name\" . \nname\" }n)

Fonte: O autor (2025).

Codigo 24 — Implementacdo do exemplo do Cédigo 23 apenas com JUnit.

@Test
void shouldReturnNameWhenNameIsSet () {
Category category = new Category(lL, "name");
assertEquals ("name", category.getName()) ;
}

Fonte: O autor (2025).

Quadro 5 — Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método getName, ilustrado no

Cédigo 12.
Tipo de Implementagao LOC Totais Reducgéo (%)
DSL JCheck 1
80%
JUnit 5 5

Fonte: O autor (2025).

No Codigo 23, a DSL JCheck é utilizada para validar o retorno do método
getName. Em contraste, o Cdédigo 24 mostra a mesma verificagdo implementada
manualmente com JUnit, onde é preciso instanciar a classe Category, inicializar
seus atributos e realizar a verificagdo com assertEquals. Essa abordagem

tradicional demanda mais linhas e maior detalhamento da logica do teste. Conforme
apresentado no Quadro 5, a versdo com a DSL requer apenas uma linha de cdodigo,
enquanto a implementacdo com JUnit puro utiliza cinco, resultando em uma reducéao

de cerca de 80% no total de linhas.

Cadigo 25 — Segundo exemplo de uso da DSL extraido do Codigo 12.

@Check (validation = "check-effect name 'category'", args = {
"category" })

Fonte: O autor (2025).

Codigo 26 — Implementacdo do exemplo do Cédigo 25 apenas com JUnit.

@Test

void shouldSetNameWhenCategoryIsGiven () {
Category category = new Category();
category.setName ("category") ;
assertEquals ("category", category.getName());

54

Fonte: O autor (2025).

Quadro 6 — Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método setName, ilustrado no

Codigo 12.
Tipo de Implementagao LOC Totais Reducao (%)
DSL JCheck 1
83,33%
JUnit 5 6

Fonte: O autor (2025).

No Cadigo 25, a DSL JCheck é empregada para validar o comportamento do
método setName. Ja 0 Cdodigo 26 apresenta a mesma verificagdo implementada
manualmente com JUnit, exigindo a criagcdo de uma instancia da classe Category,
a chamada explicita do método setName e a posterior validacdo com
assertEquals. Essa forma tradicional demanda mais etapas e maior detalhamento

na escrita do teste. Como evidenciado no Quadro 6, a versdo com a DSL utiliza
apenas uma linha de cddigo, enquanto a implementagcdo com JUnit puro requer seis,

resultando em uma redugao de cerca de 83,33% no total de linhas de cédigo.

Cadigo 27 — Exemplo de uso da DSL extraido do Cédigo 13.

@Check (validation = "check-expect %$s '2025-08-20T14:30:00z"'",
args = {"2025-08-05T14:30:00z", "15"})

Fonte: O autor (2025).

Caodigo 28 — Implementacao do exemplo do Cédigo 13 apenas com JUnit.

@Test

void shouldReturnInstantPluslbDays () {
Instant baseDate = Instant.parse("2025-08-05T14:30:002");
Instant result = DateUtil.addDaysToInstant (baseDate, 15);
assertEquals (Instant.parse ("2025-08-20T14:30:002"), result);

Fonte: O autor (2025).

Quadro 7 — Comparativo de LOC entre a DSL JCheck e 0 JUnit 5 no método addbaysToInstant,
ilustrado no Cédigo 13.

Tipo de Implementagao LOC Totais Reducgao (%)
DSL JCheck 1
83,33%
JUnit 5 6

Fonte: O autor (2025).

55

No Codigo 27, a DSL JCheck é utilizada para verificar o comportamento do
método addDaysToInstant. Ja o Codigo 28 mostra a mesma validagao feita
manualmente com JUnit, exigindo a criagdo da data base, a chamada explicita do
método e a comparagdo do resultado com assertEquals. Essa implementagao
tradicional demanda mais instrugdes e detalhamento da légica do teste. Conforme
apresentado no Quadro 7, a versdao com a DSL requer apenas uma linha, enquanto
o teste em JUnit ocupa seis, representando uma reducao de cerca de 83,33% no

total de linhas de codigo necessarias para realizar o teste.

Caodigo 29 — Exemplo de uso da DSL extraido do Cdédigo 14.

@Check (validation =
{"user@gmail.com"})
@Check (validation =
{"user@gmail"})

"check-expect %s true", args =

"check-expect %$s false", args =

Fonte: O autor (2025).

Caodigo 30 — Implementagao do exemplo do Cédigo 14 apenas com JUnit.

@QTest
void shouldReturnTrueWhenEmailIsValid () {
boolean result = EmailUtil.isValidEmail ("user@gmail.com");

assertTrue (result) ;

}

@Test
void shouldValidateEmailCorrectly () {
boolean resultForCorrectEmail =
EmailUtil.isValidEmail ("user@gmail.comn");
assertTrue (resultForCorrectEmail) ;
boolean resultForInCorrectEmail =
EmailUtil.isValidEmail ("user@gmail") ;
assertFalse (resultForInCorrectEmail) ;

}

Fonte: O autor (2025).

Quadro 8 — Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método isvalidEmail,
ilustrado no Cédigo 14.

Tipo de Implementagao LOC Totais Reducgao (%)
DSL JCheck 2
71,42%
JUnit 5 7

Fonte: O autor (2025).

No Cadigo 29, a DSL JCheck € empregada para validar o comportamento do
método isvValidEmail. Ja o Cdédigo 30 apresenta a mesma verificagdo

implementada manualmente com JUnit, onde é necessario criar dois testes distintos,

56

invocar explicitamente o método e realizar assercdes separadas com assertTrue
e assertFalse. Essa abordagem demanda mais instrugdes e maior detalhamento
da légica de verificagdo. Conforme evidenciado no Quadro 8, a implementagdo com
a DSL udtiliza apenas duas linhas, enquanto a versdo com JUnit requer sete,

representando uma redugao de cerca de 71,42% no total de linhas de cddigo.

Codigo 31 — Exemplo de uso da DSL extraido do Codigo 15.

@Check (validation = "check-expect %s 59.97", args = {"19.99",
"3"})

Fonte: O autor (2025).

Codigo 32 — Implementacao do exemplo do Cédigo 15 apenas com JUnit.

@Test

void shouldCalculateTotalCorrectly () {
BigDecimal unitPrice = new BigDecimal ("19.99");
BigDecimal result = PriceUtil.calculateTotal (unitPrice,

assertEquals (new BigDecimal ("59.97"), result);

Fonte: O autor (2025).

Quadro 9 — Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método calculateTotal,
ilustrado no Codigo 15.

Tipo de Implementagao LOC Totais Reducgao (%)
DSL JCheck 1
83,33%
JUnit 5 6

Fonte: O autor (2025).

No Cddigo 31, a DSL JCheck é utilizada para validar o resultado do método
calculateTotal. Ja no Cdodigo 32 mostra a mesma validagdo implementada
manualmente com JUnit, exigindo a criagdo de uma instancia de Bighecimal, a
chamada explicita do método e a comparacido do resultado com assertEquals.
Essa abordagem precisa de mais etapas e maior detalhamento na configuracao do
teste. Como mostra o Quadro 9, a versdo com a DSL requer apenas 1 linha de
cbdigo, enquanto a implementagdo com JUnit necessita de 6, o que representa uma

reducéo de cerca de 83,33% no total de linhas de cddigo.

Cadigo 33 — Exemplo de uso da DSL extraido do Cdédigo 16.

@Check (validation = "check-expect %s '*** **x%x _789-01'", args =
{"123.456.789-01"})

Fonte: O autor (2025).

57

Caodigo 34 — Implementacgao do exemplo do Cédigo 16 apenas com JUnit.

@Test

void shouldMaskCpfCorrectly () {
String result = CpfUtil.maskCPF ("123.456.789-01");
assertEquals ("***x **x* _789-01", result);

Fonte: O autor (2025).

Quadro 10 — Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método maskCPF, ilustrado no

Codigo 16.
Tipo de Implementagao LOC Totais Reducgéo (%)
DSL JCheck 1
80%
JUnit 5 5

Fonte: O autor (2025).

No Codigo 33, a DSL JCheck é empregada para validar o comportamento do
método maskCPF. Ja o Cddigo 34 apresenta o mesmo teste implementado
manualmente com JUnit, realizando a chamada explicita do método maskCPF, o
armazenamento do resultado em uma variavel e a verificacdo por meio do
assertEquals. Essa implementacdo requer mais instrugdes e detalhamento do
fluxo de teste. Conforme demonstrado no Quadro 10, a versdo com a DSL utiliza
apenas 1 linha de cédigo, enquanto a abordagem com JUnit demanda 5, resultando

em uma reducgéao de cerca de 80% no total de linhas de cddigo.

Cadigo 35 — Exemplo de uso da DSL extraido do Codigo 17.

@Check (validation = "check-expect %s true", args = {"19.99"})
@Check (validation = "check-expect %s false", args = {"-19.99"})
@Check (validation = "check-expect %s true", args = {"0"})

Fonte: O autor (2025).

Codigo 36 — Implementacao do exemplo do Cédigo 17 apenas com JUnit.

@Test
void shouldValidatePriceCorrectly () {
boolean resultPositive = PriceUtil.isValidPrice (new
BigDecimal ("19.99™));
assertTrue (resultPositive) ;
boolean resultNegative = PriceUtil.isValidPrice (new
BigDecimal ("-19.99"));
assertFalse (resultNegative) ;
boolean resultZero =
PriceUtil.isValidPrice (BigDecimal.ZERO) ;
assertTrue (resultZero);

}

Fonte: O autor (2025).

Quadro 11 — Comparativo de LOC entre a DSL JCheck e 0 JUnit 5 no método isvalidPrice,

ilustrado no Codigo 17.

58

Tipo de Implementagao LOC Totais Reducgéo (%)
DSL JCheck 3
66,66%
JUnit 5 9

Fonte: O autor (2025).

No Cdédigo 35, a DSL JCheck é usada para validar o método isvalidPrice,

cobrindo trés situagdes diferentes: quando o prego é positivo, negativo e igual a

zero. Essa forma de escrita torna possivel representar varios cenarios de teste de

maneira simples e compacta. Ja no Cddigo 36, a mesma verificagao é feita

manualmente com JUnit, o que exige criar trés chamadas explicitas ao método

isvalidPrice e usar diferentes asser¢des para cada caso. Essa abordagem

tradicional acaba gerando mais linhas e repetigdo de cédigo. Como mostra o Quadro

11, a versdo feita com a DSL precisa de apenas trés linhas, enquanto a

implementagcdo com JUnit utiliza nove, o que representa uma redugdo de

aproximadamente 66,66% no total de cédigo.

Codigo 37 — Exemplo de uso da DSL extraido do Codigo 18.

@Check (validation = "check-expect %s 'R$ 9,00'", args = {"9.00"})

Fonte: O autor (2025).

Codigo 38 — Implementacdo do exemplo do Cédigo 18 apenas com JUnit.

@Test
vold shouldReturnFormattedPriceWhenValueIsNine () {
String result = PriceUtil.formatPrice (new
BigDecimal ("9.00")) ;
result = result.replace ('\u00AOQ0', ' ');
assertEquals ("RS$ 9,00", result);

Fonte: O autor (2025).

Quadro 12 — Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método formatPrice,
ilustrado no Caodigo 18.

Tipo de Implementagao LOC Totais Reducgéo (%)
DSL JCheck 1
83,33%
JUnit 5 6

Fonte: O autor (2025).

59

No Codigo 37, a DSL JCheck é empregada para validar o formato retornado
pelo método formatPrice, verificando se o valor numérico é corretamente
convertido para o padrdo monetario esperado. Ja no Cddigo 38, a mesma
verificacdo € realizada com JUnit, exigindo a criacdo explicita de um objeto
BigDecimal, a chamada ao método, o tratamento do caractere de espacgo nao
separavel e a assergcdo do resultado. Essa abordagem resulta em maior
detalhamento e numero de instrugdes. Conforme evidenciado no Quadro 12, a
implementacdo com a DSL requer apenas uma linha, enquanto a versdo com JUnit
utiliza seis, representando uma reducgéo de cerca de 83,33% no total de linhas de

codigo.

4.4 AMEACAS A VALIDADE

De acordo com Wohlin et al. (2012), a analise das ameagas a validade é
fundamental para garantir a confiabilidade dos resultados obtidos em estudos
empiricos, pois permite compreender as limitagdes relacionadas ao desenho
experimental adotado. A seguir, sdo apresentadas as principais ameacas a validade

associadas a prova de conceito desenvolvida neste trabalho.

4.4.1 Validade Interna

A principal ameaca a validade interna esta relacionada a possibilidade de que
fatores nédo controlados tenham afetado os resultados observados. Como a
execucdo dos testes foi realizada em um ambiente controlado, utilizando uma
aplicagcdo adaptada para esta pesquisa, ha o risco de que particularidades do
cbdigo, tenham favorecido o desempenho da DSL JCheck. Para mitigar esse risco,
foram incluidos métodos com diferentes tipos de dados e comportamentos,
abrangendo tanto métodos com retorno quanto métodos void, a fim de diversificar os

cenarios avaliados.

4.4.2 Validade Externa

60

A validade externa diz respeito a capacidade de generalizar os resultados
obtidos para outros contextos de software. A prova de conceito foi aplicada em um
sistema de pequeno porte, com escopo limitado a uma aplicagdo simulada. Dessa
forma, os resultados ndo podem ser generalizados diretamente para sistemas com
estruturas mais complexas. No entanto, como o objetivo principal foi demonstrar a
aplicabilidade da DSL em um cenario especifico, considera-se que os resultados

fornecem uma base consistente para futuras avaliagbes em contextos mais amplos.

4.4.3 Validade de Construgao

A validade de construcéo esta ligada a coeréncia entre os conceitos teodricos
adotados e as medicdes realizadas. Nesta pesquisa, a métrica LOC foi utilizada para
estimar o esforco necessario na implementacdo dos testes unitarios. Embora
conforme apontam Ochodek et al. (2023), essa métrica seja amplamente
reconhecida e utilizada na area, ela nao reflete aspectos qualitativos importantes.
Assim, a reducdo observada em LOC deve ser entendida como um indicador

quantitativo de simplificagdo, e ndo como uma medida absoluta de produtividade.

4.4.4 Validade de Conclusao

A validade de conclusdo refere-se a robustez das inferéncias realizadas a
partir dos dados obtidos. Como a analise foi baseada em uma amostra limitada de
métodos, ha um risco de que as conclusdes sobre a reducdo de esforgco possam
variar em outros contextos. Ainda assim, a consisténcia observada entre diferentes
exemplos e tipos de dados sugere que a tendéncia de redugao no numero de linhas
de cddigo é plausivel e sustentada pelos resultados obtidos.

De forma geral, mesmo que existam fatores que possam limitar a ampliagao
dos resultados, as agdes adotadas para lidar com essas limitagdes, como a escolha
de casos de teste variados, o uso de métricas reconhecidas e a execucao cuidadosa
dos experimentos, ajudam a fortalecer a prova de conceito, tornando suas

conclusdes mais seguras e confiaveis.

61

5 TRABALHOS RELACIONADOS

Nesta secao serao apresentados os principais trabalhos relacionados para

esta pesquisa.

5.1 ASPECT-ORIENTED PROGRAMMING RELOADED

Segundo Rebelo e Leavens (2017), o AspectJML, é uma extensao do Aspectd
que integra a Java Modeling Language (JML) ao paradigma de programacgao
orientada a aspectos, permitindo a definicdo de pré-condi¢des, pds-condicdes e
invariantes como contratos formais que podem ser verificados em pontos de jungéo
durante a execugao do programa.

A ferramenta AspectJML, e a DSL proposta neste estudo dividem o objetivo
central de reforgar a especificagdo do comportamento do software por meio da
incorporagao de anotagdes no préprio codigo, utilizando linguagens especificas de
dominio para executar instrugdes.

Contudo, enquanto o AspectJML utiliza a programagao orientada a aspectos
para verificar contratos Design by Contract (DbC), a DSL apresentada nesta
pesquisa foca na especificacdo de testes unitarios por meio de anotagdes que
incorporam instrugbes de verificagdo, como check-expect e check-effect.
Além disso, a DSL também desempenha um papel importante na promog¢ao da
adogao da metodologia TDD, que, segundo Beck (2003) e Astels (2003), assegura a
correta escrita e facilita a manutencdo dos testes unitarios nas fases iniciais do
desenvolvimento, promovendo maior qualidade no processo de construcido do
software. Diante disso, é possivel afirmar que a relagao entre os trabalhos existe no
fato de que os mecanismos citados promovem a expressividade do cdédigo ao dar

suporte a verificagdo de comportamentos de forma declarativa.

5.2 TEASY FRAMEWORK: UMA SOLUCAO PARA TESTES AUTOMATIZADOS EM
APLICACOES WEB

Segundo Lima (2021), o Teasy Framework funciona como uma ferramenta

para a execugao de testes funcionais em aplicagdes web. O autor também destaca

62

que a ferramenta inclui uma linguagem especifica de dominio, chamada Teasy
Language, que facilita a escrita dos testes.

O Teasy Framework, apresentado por Lima (2021), e a DSL desenvolvida
neste estudo compartilham o objetivo de simplificar a criagdo de testes por meio de
uma linguagem especifica de dominio. Segundo Lima, o Teasy foi concebido para
automatizar testes funcionais de aplicagdes web, utilizando a metodologia
Model-Based Testing (MBT), o que possibilita descrever cenarios de teste de forma
intuitiva e executa-los automaticamente.

Contudo, enquanto o Teasy funciona com foco nos testes funcionais,
executando scripts que interagem com a aplicagdo web, a DSL apresentada nesta
pesquisa é focada em especificar testes unitarios diretamente no cédigo Java. Para
isso, utiliza a anotagdo personalizada @Check, que permite incorporar comandos
textuais de verificagdo, como check-expect € check-effect.

A relacédo entre esses trabalhos acontece pelo uso de DSLs para tornar a
definicao de testes mais expressiva. No entanto, eles diferem em relagéo ao escopo,
pois o Teasy é focado na automacéao de testes funcionais de alto nivel, enquanto a
proposta deste estudo é voltada para integrar testes unitarios ao ciclo de
desenvolvimento. Contudo, apesar de funcionarem em contextos distintos, as
solugcdes se alinham no propodsito de tornar a escrita de testes uma tarefa mais

simples e rapida.

5.3 TESTE BASEADO EM MODELOS EM PROJETOS AGEIS, UMA ABORDAGEM
BASEADA EM LINGUAGEM DE DOMINIO ESPECIFICO

Segundo Zanin (2019), a abordagem proposta no seu trabalho é baseada em
Model-Based Testing (MBT) para equipes de desenvolvimento agil, para isso é
utilizada uma DSL chamada Aquila, que permite a especificagcdo de cenarios de
testes através de palavras chaves genéricas. A partir desses cenarios, sao gerados
automaticamente modelos comportamentais e scripts de teste, reduzindo o esforgo
manual de criacdo e manutencdo dos testes, além de facilitar a adaptacao as
mudangas frequentes tipicas de ambientes ageis.

A ferramenta Aquila e a DSL apresentada neste estudo tém como objetivo

facilitar a definicdo e a execugao de verificagbes de comportamento do software.

63

Para isso, elas permitem que instrugdes sejam inseridas diretamente no cdodigo,
usando linguagens especificas de dominio que tornam esse processo mais
automatico e intuitivo.

No entanto, enquanto a Aquila foca na geracdo de modelos e na automacgéao
de testes funcionais, a DSL JCheck se dedica a especificacdo de testes unitarios,
incorporando instrugcdes como check-expect € check-effect por meio de
anotacdes Java aplicadas diretamente aos métodos.

Diante disso, os dois trabalhos se conectam porque compartilham o objetivo
de diminuir o esforco manual e tornar o cédigo mais expressivo, aproximando a
definicdo do comportamento do préprio processo de desenvolvimento. Apesar disso,
cada um atua em um nivel diferente, com a Aquila focada em testes funcionais por
meio de modelos e a JCheck concentrada em testes unitarios diretamente no codigo

Java.

54 A TESTING TOOL FOR WEB APPLICATIONS USING A DOMAIN-SPECIFIC
MODELLING LANGUAGE AND THE NUSMV MODEL CHECKER

Segundo Toarsel (2013), o trabalho propde uma abordagem para automatizar
o teste de aplicagdes web por meio do MBT. Para isso, foi desenvolvida uma DSL
que descreve o comportamento do sistema, considerando as paginas e as
transicoes que o usuario pode acionar. Esse modelo, apresentado de forma textual e
abstrata, é transformado em uma entrada para o verificador formal NuSMV, que cria
sequéncias de teste com base em critérios de cobertura definidos pelo usuario. Em
seguida, essas sequéncias sao transformadas em testes executaveis para
ferramentas de automacédo, como o Selenium, permitindo que os testes sejam
rapidamente ajustados sempre que houver alteragdes nos requisitos.

A DSL apresentada neste estudo e a solugao proposta por Torsel (2013)
compartilham a meta de reduzir o esforco manual na criagdo de testes utilizando
DSL para esse fim. No entanto, enquanto a abordagem baseada no NuSMV é
voltada para testes de integracdo e fluxo em aplicagbes web, a DSL JCheck
concentra-se em testes unitarios em Java, incorporando instrugdées de verificagao

diretamente nos métodos por meio de anotacgdes.

64

Dessa forma, ambos os trabalhos evidenciam a relevancia das linguagens
especificas de dominio como mecanismos para aproximar a especificagdo de
comportamento do processo de desenvolvimento, ainda que atuem em diferentes

niveis de teste e tipos de aplicacao.

5.5 ACCELERATING TEST AUTOMATION THROUGH A DOMAIN SPECIFIC
LANGUAGE

Segundo Dwarakanath et al. (2017), testar o software € uma das etapas mais
caras do processo de desenvolvimento, podendo representar entre 30% e 90% do
esforgco total de um projeto. Apesar da existéncia de diversas ferramentas de
automacgao, o uso delas ainda pode ser uma tarefa complexa e trabalhosa. Isso
ocorre, principalmente, porque a criagdo dos scripts de automacido exige
conhecimentos em programacao e, muitas vezes, demanda um esforgo consideravel
para manter esses scripts, que costumam ser complexos e dificeis de compreender
para testadores que ndo possuem um conhecimento mais aprofundado em
programagao.

Buscando contornar essas dificuldades, Dwarakanath et al. (2017)
desenvolveram a ferramenta Automation Test Acceleration Platform (ATAP). A
proposta se baseia em uma DSL que permite criar scripts de automacgao de forma
simples e préxima da linguagem natural. Com isso, testadores manuais, mesmo sem
experiéncia em programagao, conseguem descrever cenarios de teste de maneira
clara e intuitiva. As instrugbes escritas nessa linguagem sdo automaticamente
convertidas em codigo Java executavel com o uso do Selenium WebDriver, por meio
da linguagem Xtend. O resultado € um processo de automagdo menos verboso,
mais acessivel e que reduz a dependéncia de conhecimentos técnicos avangados.

Assim como o ATAP, a DSL JCheck desenvolvida nesta pesquisa também
busca facilitar o trabalho com testes de software, especialmente no que diz respeito
a sua criacdo e manutencdo. No entanto, cada uma atua em um contexto diferente.
Enquanto o ATAP ¢ voltado para testes de integracao e interface web, a JCheck foi
pensada para o universo dos testes unitarios em Java. Nessa abordagem, as

verificagbes sao escritas diretamente no cddigo por meio da anotagdo @Check,

65

tornando o processo mais natural para o desenvolvedor e reduzindo a distancia
entre o cédigo da aplicagéo e seus testes.

Dessa forma, tanto a solugao proposta por Dwarakanath et al. (2017) quanto
a DSL JCheck evidenciam que o uso de linguagens especificas de dominio pode
tornar a criacao de testes mais proxima da forma como os desenvolvedores pensam.
Ao aproximar a especificagdo de testes do raciocinio humano, essas abordagens
ajudam a reduzir o esforco necessario para escrever € manter os testes, ao mesmo
tempo em que contribuem para aumentar a qualidade e a confiabilidade do processo

de verificacédo de software.

5.6 UMA METODOLOGIA PARA A GERACAO DE TESTES UNITARIOS BASEADA
EM EXTRACAO DE MODELOS

De acordo com Brito (2021), gerar testes para sistemas legados € uma tarefa
que exige bastante cuidado, especialmente quando ndo ha documentagdo
atualizada ou quando o sistema nao possui testes anteriores. Para lidar com esse
desafio, o autor propés uma metodologia semiautomatica que combina técnicas de
teste de software com métodos formais de verificagdo de modelos.

A metodologia consiste na criagdo automatica de um modelo que descreve o
comportamento do sistema, construido a partir de informacdes coletadas durante a
execucgao do codigo. Esse modelo, denominado Labelled Transition System (LTS), é
entdo analisado por uma ferramenta que busca identificar possiveis inconsisténcias.
Com base nas inconsisténcias identificadas, novos testes unitarios sdo gerados,
estabelecendo um ciclo continuo em que os testes sdo criados, executados e
aprimorados constantemente. Esse processo amplia a cobertura de verificagao e,
consequentemente, reforga a confiabilidade do sistema.

A proposta apresentada por Brito (2021) e a DSL JCheck discutida nesta
dissertagdo compartilham o objetivo de tornar o processo de criagdo e manutengéo
de testes unitarios mais simples e eficiente. Apesar de buscarem o mesmo
resultado, cada solucao utiliza abordagens distintas. A metodologia de Brito (2021)
consiste na extragdo de modelos e na aplicacdo de técnicas formais de verificacio.
Por sua vez, a DSL JCheck segue um percurso mais direto e intuitivo, permitindo
que o desenvolvedor escreva as verificagdes diretamente no codigo. Dessa forma,

embora suas estratégias sejam diferentes, ambas as solugdes convergem para o

66

propodsito comum de aumentar a produtividade do desenvolvedor e reforcar a

confiabilidade do software por meio de testes bem construidos e consistentes.

67

6 CONCLUSAO

Neste trabalho, apresentamos a implementacdo de uma nova DSL, baseada
na sintaxe da linguagem Racket, denominada JCheck. Essa DSL tem como objetivo
promover o uso da metodologia TDD durante o desenvolvimento de codigo Java.
Para isso, foi criada uma linguagem especifica de dominio, utilizada por meio da
anotacdo @Check, restrita apenas a métodos. A sintaxe da DSL é baseada na
expressado check-expect da linguagem Racket. Contudo, nesse contexto, a DSL é
empregada para validar métodos por meio de testes unitarios em Java, executados
com JUnit 5. Para esse efeito, a DSL foi desenvolvida utilizando a gramatica do
gerador de analisador sintatico ANTLR4, a partir da qual foi gerado o parser da
linguagem.

Realizamos uma prova de conceito para validar a implementacao da DSL
JCheck utilizando uma API Spring Boot. Segundo Webb et al. (2013), o Spring Boot
€ uma ferramenta que simplifica a criagdo de aplicagcdes independentes, prontas
para producgao, e baseadas no framework Spring.

A prova de conceito envolveu dez métodos escolhidos por suas
caracteristicas distintas, com o objetivo de demonstrar a capacidade da solugao
JCheck de lidar com comportamentos variados e de evidenciar que o uso da DSL
pode demandar menor esforgo na implementacdo dos testes unitarios. Para isso,
foram considerados métodos que retornam diferentes tipos de dados, assim como
métodos que, quando executados, resultam em efeitos nos atributos da classe. Os
resultados mostraram que a DSL foi executada com sucesso em todos os cenarios,
evidenciando sua aplicabilidade em contextos diversos. Além disso, foi possivel
executar multiplos casos de teste para o mesmo método, comprovando a
escalabilidade na cobertura dos cenarios. Para mais, a integragdo com a anotagao
@Check facilitou a incorporagdo dos testes diretamente aos métodos, permitindo a
definicdo clara das instrucbes da DSL e promovendo a adog¢ao de praticas como a
metodologia TDD.

Com base neste estudo, concluimos que a solucdo proposta mostrou-se
eficaz para a criagdo de testes unitarios em Java, oferecendo expressividade,
clareza e integracao direta com o codigo. A prova de conceito confirmou que a DSL

€ capaz de lidar com diferentes cenarios de testes e que sua utilizagdo pode

68

demandar menor esforco na implementagdo dos testes unitarios, reforcando seu
potencial como ferramenta de apoio a pratica da metodologia TDD. Os resultados
indicam que a JCheck pode ser expandida e aprimorada em trabalhos futuros,
possibilitando a inclusdo de novas instrugbes, maior automagdo na geragao de
testes e integragdo com outras ferramentas de analise e validagdo de software,

contribuindo assim para o desenvolvimento de aplicagdes mais consistentes.

69

7 TRABALHOS FUTUROS

Embora a implementacdo da DSL JCheck tenha atingido os objetivos

propostos, diversas direcbes podem ser exploradas em trabalhos futuros. Uma
possibilidade € a ampliagdo do conjunto de instru¢ées da linguagem, incorporando
novas expressoes além do check-expect € check-effect, como instrucdes
especificas para validagao de excecdes esperadas, comparagdes aproximadas de
valores numeéricos ou suporte para estruturas de dados mais complexas, como
colecdes, objetos aninhados e expressdes aritméticas. Essa expansao permitiria
lidar com cenarios de teste mais ricos e proximos da realidade do mercado.
Outro mecanismo que também pode ser acrescentado a solucdo € uma ferramenta
de apoio a depuragdo e analise de falhas, para auxiliar os desenvolvedores na
identificacdo de inconsisténcias durante a execugdo da DSL. Essa ferramenta pode
oferecer relatérios mais detalhados, mensagens de erro mais explicativas e
integragdo com Integrated Development Environments (IDE), tornando a experiéncia
de uso mais intuitiva.

Para finalizar, outro trabalho significativo seria a realizacdo de um estudo de
caso, aplicando a solugdo proposta neste trabalho em projetos de maior porte,
envolvendo aplicagdes com maior complexidade arquitetural. Essa avaliagao teria o
propésito de verificar o impacto da DSL JCheck em termos de produtividade e

facilidade de manutencao ao longo do ciclo de desenvolvimento do software.

70

REFERENCIAS

ABUSHAMA, Hisham M.; ALASSAM, Hanaa Altigani; ELHAJ, Fatin A. The effect of
test-driven development and behavior-driven development on project success
factors: A systematic literature review based study. In: 2020 International
Conference on Computer, Control, Electrical, and Electronics Engineering
(ICCCEEE). IEEE, 2021.

AGHA, Dua et al. Test Driven Development and Its Impact on Program Design and
Software Quality: A Systematic Literature Review. VAWKUM Transactions on
Computer Sciences, v. 11, n. 1, p. 268-280, 2023.

ANDRADE, Stevao et al. Uma abordagem de teste de software para aplicagoes
de realidade virtual utilizando testes metamorficos. Tese de Doutorado.
Universidade de Sao Paulo. 2023.

ANTLR. What is ANTLR? In: ANother Tool for Language Recognition. 2025.
Disponivel em: <https://www.antlr.org/>. Acesso em: 10 jul. 2025.

ASTELS, Dave. Test driven development: A practical guide. Prentice Hall
Professional Technical Reference, 2003.

BECK, Kent. Test-driven Development: By Example. Addison-Wesley
Professional, 2003.

BERNARDO, Paulo Cheque; KON, Fabio. A importancia dos testes automatizados.
Engenharia de Software Magazine, v. 1, n. 3, p. 54-57, 2008.

BRITO, lara Ramos. Uma metodologia para a geracgao de testes unitarios baseada
em extracao de modelos. 2021.

CALAIS, Pedro; FRANZINI, Lissa. Test-driven development benefits beyond design
quality: Flow state and developer experience. In: 2023 IEEE/ACM 45th International
Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER). IEEE, 2023. p. 106-111.

CRESPO, Adalberto Nobiato et al. Uma metodologia para teste de Software no
Contexto da Melhoria de Processo. In: Simpédsio Brasileiro de Qualidade de
Software (SBQS). SBC, 2004. p. 204-218.

CULPEPPER, Ryan et al. From macros to dsls: The evolution of racket. In: 3rd
summit on advances in programming languages (snapl 2019). Schloss
Dagstuhl-Leibniz-Zentrum fur Informatik, 2019. p. 5: 1-5: 19.

DWARAKANATH, Anurag et al. Accelerating test automation through a domain
specific language. In: 2017 IEEE International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 2017. p. 460-467.

71

FELLEISEN, Matthias et al. How to design programs: an introduction to
programming and computing. Mit Press, 2018.

FELLEISEN, Matthias et al. The racket manifesto. In: 1st Summit on Advances in
Programming Languages (SNAPL 2015). Schloss Dagstuhl-Leibniz-Zentrum flr
Informatik, 2015. p. 113-128.

FELLEISEN, Matthias; FLATT, Matthew. Racket is 25. Blog oficial do Racket, 4 maio
de 2020. Disponivel em: <https://blog.racket-lang.org/2020/05/racket-is-25.html>.
Acesso em: 8 jul. 2025.

GARCIA, Boni. Mastering Software Testing with JUnit 5: Comprehensive guide
to develop high quality Java applications. Packt Publishing Ltd, 2017.

GARCIA, Boni et al. Selenium-jupiter: A junit 5 extension for selenium webdriver.
Journal of Systems and Software, v. 189, p. 111298, 2022.

GOMES, Renata Faria. Uma metodologia remota gamificada para o ensino de testes
unitarios. 2020.

GORLA, Daniele et al. CubeTesterAl: Automated JUnit Test Generation Using the
LLaMA Model. In: 2025 IEEE Conference on Software Testing, Verification and
Validation (ICST). IEEE, 2025. p. 565-576.

GUNDLACH, Sven; JUNG, Reiner; HASSELBRING, Wilhelm. Facilitating
test-driven development via domain-specific languages in computational
science software engineering. Research Square preprint deposition service, 2023.

JAHIC, Benjamin; GUELFI, Nicolas; RIES, Benoit. SEMKIS-DSL: A domain-specific
language to support requirements engineering of datasets and neural network
recognition. Information, v. 14, n. 4, p. 213, 2023.

JUNIT. User Guide — JUnit 5. Disponivel em:
<https://junit.org/junitd/docs/current/user-guide/>. Acesso em: 19 jul. 2025.

KOSAR, Tomaz et al. A preliminary study on various implementation approaches of
domain-specific language. Information and software technology, v. 50, n. 5, p.
390-405, 2008.

LADEINDE, Opeoluwa Joseph. An adaptive feedback framework for a
language-independent intelligent programming tutor (IPT) using ANTLR. 2023.

LIMA, Yury Alencar. Teasy framework: uma solugéo para testes automatizados em
aplicagdes web. 2021.

MAXIMILIEN, E. Michael; WILLIAMS, Laurie. Assessing test-driven development at
IBM. In: 25th International Conference on Software Engineering, 2003.
Proceedings. IEEE, 2003. p. 564-569.

MYLSAMY, Sekar. Test-Driven Development (TDD) and Code Quality. 2025.

72

NETO, Antbnio José Rodrigues et al. Um Modelo de Contexto das Praticas e
Redes de Conhecimento nas Provas de Conceito. 2023. Tese de Doutorado.
Universidade de Coimbra.

OCHODEK, Miroslaw et al. Mining Task-Specific Lines of Code Counters. IEEE
Access, v. 11, p. 100218-100233, 2023.

PARR, Terence. The Definitive ANTLR 4 Reference. Dallas: Pragmatic Bookshelf,
2013. Disponivel em: <https://media.pragprog.com/titles/tpantir2/picture.pdf>. Acesso
em: 10 jul. 2025.

PARR, Terence J.. ; QUONG, Russell W. ANTLR: A predicated-LL (k) parser
generator. Software: Practice and Experience, v. 25, n. 7, 1995.

PRESSMAN, Roger S. Software engineering: a practitioner's approach. Palgrave
Macmillan, 2005.

RACKET. The Racket Guide. [S.l.]: PLT, 2025. Disponivel em:
<https://docs.racket-lang.org/guide/index.html>. Acesso em: 1 jul. 2025.

REBELO, Henrique; LEAVENS, Gary T. Aspect-Oriented Programming Reloaded. In:
Proceedings of the 21st Brazilian Symposium on Programming Languages.
Association for Computing Machinery, New York, NY, USA, Article 10, 1-8.
https://doi.org/10.1145/3125374.3125383, 2017.

SILVA, Ruan Carlos Alves da. poc-dsl-check-springboot. Repositorio GitHub,
2025. Disponivel em: <https://github.com/ruaanc/poc-dsl-check-springboot>. Acesso
em: 15 ago. 2025.

TARAZONA BERNAL, Yeisson Steven. ANTLR 4 grammar of the Swift 5 programing
language. 2021.

TORSEL, Arne-Michael. A testing tool for web applications using a domain-specific
modelling language and the nusmv model checker. In: 2013 IEEE Sixth
International Conference on Software Testing, Verification and Validation. IEEE,
2013. p. 383-390.

UMAR, Mubarak Albarka; ZHANFANG, Chen. A study of automated software testing:
Automation tools and frameworks. International Journal of Computer Science
Engineering (IJCSE), v. 6, n. 217-225, p. 47-48, 2019.

WEBB, Phillip et al. Spring boot reference guide. Part IV. Spring Boot features, v.
24, 2013.

WOHLIN, Claes et al. Experimentation in software engineering. Berlin: Springer,
2012.

ZANIN, Aline. Teste baseado em modelos em projetos ageis, uma abordagem
baseada em linguagem de dominio especifico. 2019.

	
	1 INTRODUÇÃO
	1.1 OBJETIVO
	
	1.2 CONTRIBUIÇÕES DA DISSERTAÇÃO
	
	1.3 ESBOÇO DA DISSERTAÇÃO

	
	2 CONCEITOS
	
	2.1 UMA VISÃO GERAL SOBRE TESTES DE SOFTWARE
	2.1.1 Testes Unitários
	
	2.1.2 Test-Driven Development

	2.2 UMA VISÃO GERAL SOBRE RACKET
	2.2.1 Sistema De Macros
	2.2.2 Expressão Check-Expect
	Figura 1 – Exemplo de uso do check-expect

	2.3 UMA VISÃO GERAL SOBRE O ANTLR4
	2.3.1 Funcionamento
	Figura 2 – Reconhecedor de linguagem

	2.3.2 Gramática
	Código 1 – Exemplo de gramática ANTLR4.

	2.3.3 Importância da Ferramenta

	2.4 UMA VISÃO GERAL SOBRE O JUNIT 5
	Figura 3 – Arquitetura JUnit 5: Componente de Alto Nível
	2.4.1 Execução e Organização de Testes
	Quadro 1 – Anotações do JUnit Jupiter

	2.4.2 Vantagens Do Junit 5 Sobre Versões Anteriores
	2.4.3 JUnit 5 na prática
	Código 2 – Exemplo da configuração das dependências do JUnit 5.
	Código 3 – Exemplo da classe User em java.
	Código 4 – Exemplo de testes unitários com JUnit 5.

	2.4.4 Importância da Ferramenta

	3 DESENVOLVIMENTO DA SOLUÇÃO PROPOSTA
	3.1 QUESTÕES DE PESQUISA
	3.2 METODOLOGIA
	3.3 CONSTRUÇÃO DA GRAMÁTICA
	Código 5 – Gramática da DSL Proposta.

	3.4 IMPLEMENTAÇÃO DA INFRAESTRUTURA
	Código 6 – Implementação da Anotação @Check.
	Código 7 – Definição da Anotação Contêiner @Checks para Múltiplos Testes.
	Código 8 – Implementação do Executor de Testes Baseado na Anotação @Check.
	Código 9 – Execução reflexiva de métodos anotados com @Check.
	Código 10 – Interpretador da DSL.
	Figura 4 – Fluxo de execução da solução

	4 PROVA DE CONCEITO
	4.1 DESCRIÇÃO DA IMPLEMENTAÇÃO
	Código 11 – Testes em métodos get/set com tipo Long por meio da DSL.
	Código 12 – Testes em métodos get/set com tipo String por meio da DSL.
	Código 13 – Uso da anotação @Check em método com manipulação de datas do tipo Instant.
	Código 14 – Testando formatos de e-mail com diferentes entradas por meio da anotação @Check.
	Código 15 – Testando valor total com suporte da anotação @Check.
	Código 16 – Anonimização de CPF com suporte a testes via DSL.
	Código 17 – Validador de preços com anotação embutida para testes unitários.
	Código 18 – Conversão de valores monetários para o formato brasileiro com suporte a teste via DSL.

	4.2 RESULTADOS DA EXECUÇÃO
	Quadro 2 – Resultado da execução dos códigos apresentados na seção “4.1 - Descrição da implementação”.

	4.3 ANÁLISE DE ESFORÇO POR LINHAS DE CÓDIGO
	Código 19 – Primeiro exemplo de uso da DSL extraído do Código 11.
	Código 20 – Implementação do exemplo do Código 19 apenas com JUnit.
	Quadro 3 – Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método getId, ilustrado no Código 11.
	Código 21 – Segundo exemplo de uso da DSL extraído do Código 11.
	Código 22 – Implementação do exemplo do Código 21 apenas com JUnit.
	Quadro 4 – Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método setId, ilustrado no Código 11.
	Código 23 – Primeiro exemplo de uso da DSL extraído do Código 12.
	Código 24 – Implementação do exemplo do Código 23 apenas com JUnit.
	Quadro 5 – Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método getName, ilustrado no Código 12.
	Código 25 – Segundo exemplo de uso da DSL extraído do Código 12.
	Código 26 – Implementação do exemplo do Código 25 apenas com JUnit.
	Quadro 6 – Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método setName, ilustrado no Código 12.
	
	Código 27 – Exemplo de uso da DSL extraído do Código 13.
	Código 28 – Implementação do exemplo do Código 13 apenas com JUnit.
	Quadro 7 – Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método addDaysToInstant, ilustrado no Código 13.
	
	Código 29 – Exemplo de uso da DSL extraído do Código 14.
	
	Código 30 – Implementação do exemplo do Código 14 apenas com JUnit.
	Quadro 8 – Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método isValidEmail, ilustrado no Código 14.
	Código 31 – Exemplo de uso da DSL extraído do Código 15.
	
	Código 32 – Implementação do exemplo do Código 15 apenas com JUnit.
	Quadro 9 – Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método calculateTotal, ilustrado no Código 15.
	
	Código 33 – Exemplo de uso da DSL extraído do Código 16.
	
	Código 34 – Implementação do exemplo do Código 16 apenas com JUnit.
	Quadro 10 – Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método maskCPF, ilustrado no Código 16.
	Código 35 – Exemplo de uso da DSL extraído do Código 17.
	Código 36 – Implementação do exemplo do Código 17 apenas com JUnit.
	Quadro 11 – Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método isValidPrice, ilustrado no Código 17.
	
	Código 37 – Exemplo de uso da DSL extraído do Código 18.
	Código 38 – Implementação do exemplo do Código 18 apenas com JUnit.
	Quadro 12 – Comparativo de LOC entre a DSL JCheck e o JUnit 5 no método formatPrice, ilustrado no Código 18.

	
	4.4 AMEAÇAS À VALIDADE
	
	4.4.1 Validade Interna
	4.4.2 Validade Externa
	4.4.3 Validade de Construção
	4.4.4 Validade de Conclusão

	5 TRABALHOS RELACIONADOS
	5.1 ASPECT-ORIENTED PROGRAMMING RELOADED
	5.2 TEASY FRAMEWORK: UMA SOLUÇÃO PARA TESTES AUTOMATIZADOS EM APLICAÇÕES WEB
	5.3 TESTE BASEADO EM MODELOS EM PROJETOS ÁGEIS, UMA ABORDAGEM BASEADA EM LINGUAGEM DE DOMÍNIO ESPECÍFICO
	5.4 A TESTING TOOL FOR WEB APPLICATIONS USING A DOMAIN-SPECIFIC MODELLING LANGUAGE AND THE NUSMV MODEL CHECKER
	5.5 ACCELERATING TEST AUTOMATION THROUGH A DOMAIN SPECIFIC LANGUAGE
	5.6 UMA METODOLOGIA PARA A GERAÇÃO DE TESTES UNITÁRIOS BASEADA EM EXTRAÇÃO DE MODELOS

	
	6 CONCLUSÃO
	7 TRABALHOS FUTUROS
	REFERÊNCIAS

