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RESUMO

A habilidade de realizar Aprendizado Continuo (Continual Learning) é crucial para o
desenvolvimento de modelos de Inteligéncia Artificial capazes de adquirir e manter conheci-
mento ao longo do tempo sem esquecer informacGes anteriores. Isso representa um grande
desafio técnico, dado que redes neurais sdo suscetiveis ao fendmeno de esquecimento catas-
tréfico durante o processo de aprendizado de novas tarefas. Métodos basados na abordagem
de pseudo-replay utilizam redes gerativas para criar amostras sintéticas de tarefas anteriores,
que sdo entdo apresentadas ao modelo durante o aprendizado de novas tarefas com o intuito
de reduzir o esquecimento. Nesta dissertacao, exploramos melhorias no entdo método estado
da arte baseado na abordagem de pseudo-replay, Invariant Representation for Continual Le-
arning (IRCL). Utilizamos como modelo gerativo uma cVAE-GAN (Conditional Variational
Autoencoder Generative Adversarial Network) e desacoplamos o seu treinamnto do restante
da arquitetura, de forma a otimizar as diferentes partes da rede de forma independente. Além
disso, utilizamos camadas convolucionais ao invés de camadas lineares. Os resultados experi-
mentais alcancados demonstram melhorias de até 10 pontos percentuais na Acuracia Média
e de até 8 pontos na média do Backward Transfer, superando o estado da arte nos conjuntos

de dados Split MNIST e Split FashionMNIST.

Palavras-chaves: Aprendizado Continuo, Esquecimento Catastréfico, Pseudo Replay.



ABSTRACT

Continual Learning is the concept of having a model able to sequentially learn to solve
new tasks without losing the ability to solve previous tasks. Achieving this is challenging
because neural networks usually suffer from catastrophic forgetting of the preceding tasks
when they are learning new ones. To handle this issue, pseudo-replay approaches leverages
the performance of generative networks using them to generate samples related to past data
to serve as input to the model when it is learning new tasks. In this work, we propose an
improved architecture and training strategy based on the state-of-the-art pseudo-replay IRCL
method. We use a cVAE-GAN as the generative model and train it decoupled from the other
components of the architecture. Also, we make use of convolutional layers for the architecture
components instead of linear ones. Our experimental results show that the proposed method
outperforms the state-of-the-art IRCL method by up to 10% in Average Accuracy and up to
8.3% in Average Backward Transfer on both Split MNIST and Split FashionMNIST datasets.

Keywords: Continual Learning, Catastrophic Forgetting, Pseudo-Replay.
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1 INTRODUCAO

As redes neurais artificiais sdo uma subdrea da aprendizagem de maquina (machine lear-
ning) que revolucionou a forma como resolvemos problemas complexos em diversas aplicagdes,
desde processamento de imagens e dudio até processamento de linguagem natural e robdtica.
Em esséncia, redes neurais sdo sistemas computacionais inspirados na estrutura e funcio-
namento do cérebro humano, capazes de aprender com dados a reconhecer padrdes, fazer
previsdes e gerar dados. Isso as torna uma ferramenta poderosa na resolucdo de problemas do
mundo real que podem ser muito complexos ou dificeis de serem resolvidos com algoritmos
tradicionais.

Embora o conceito de redes neurais exista desde a década de 1940 (MCCULLOCH; PITTS,
1943)), seu verdadeiro potencial s6 comecou a ser explorado com o surgimento da computacdo
moderna, que trouxe a capacidade de geracdo, armazenamento e processamento de grandes
volumes de dados. Isso permitiu treinar redes neurais profundas, que possuem muiltiplas ca-
madas de processamento e que sao capazes de aprender caracteristicas complexas e abstratas
dos dados (CIREsAN et al., 2011)) (KRIZHEVSKY; SUTSKEVER; HINTON| [2012) (CIREGAN; MEIER;
SCHMIDHUBER, 2012), o que impulsionou a subérea do aprendizado de méaquina conhecida
como aprendizado profundo (deep learning). Desde entdo, esse é um campo de pesquisa em
rapida evolucdo, com novas arquiteturas, algoritmos e aplicacdes sendo desenvolvidas cons-
tantemente.

Como consequéncia, nos ultimos anos houve um avanco significativo no desempenho das
redes profundas para solucionar problemas de visdo computacional, tais como classificacdo de
imagens e reconhecimento de objetos, atividades onde, em muitos casos, as redes conseguem
superar o desempenho humano (HE et al., [2015)). Por exemplo, em tarefas de deteccdo de
objetos, os modelos de aprendizado profundo sdo capazes de detectar e localizar com pre-
cisao multiplos objetos em uma imagem, mesmo em cenas complexas, em uma fracdo de
segundo. Essa velocidade é muito superior a capacidade humana de processar informacdes
visuais, tornando esses modelos ideais para automatizar tarefas de processamento de imagens.

No entanto, esses modelos ainda tém limitacGes em comparacdo ao desempenho humano
em alguns aspectos. Por exemplo, os humanos tém a capacidade de raciocinar sobre o contetido
de uma imagem e, entdo, entender o contexto e o significado de uma forma que ainda nao

é totalmente replicada pelos modelos de aprendizagem profunda. Humanos também podem
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aprender a partir de poucos exemplos e generalizar para novas situacoes nao vistas, enquanto
os modelos profundos frequentemente requerem dados rotulados de qualidade e em grande
quantidade para alcancar um alto desempenho.

Outra limitacdo significativa é que a maioria das abordagens usadas para resolver esses
problemas assume que os dados de treinamento sao independentes e identicamente distribuidos
(i.i.d.). Isso significa que o desempenho desses modelos é muito reduzido em cenérios em que os
dados de treinamento nao estdo de acordo com essa suposicdo, como quando o conhecimento

precisa ser ampliado a partir de dados recebidos de forma sequencial, como ilustrado na Figura

................... Treinamento ...,

| O O > <4 A i} O

/|Classe 1 Classe2 Classe 3 Nede Classe4 | [Classe5 Classe 6
t=0 t=1 t=2

\ 4

Figura 1 — Aprendizado com dados acessados sequencialmente.

Por outro lado, os seres humanos tém a capacidade de aprender a realizar novas tarefas
enquanto acumulam o novo conhecimento com aquele adquirido no passado. Além disso,
durante o aprendizado das novas tarefas utilizam a experiéncia acumulada até ent3ao, como
quando primeiro aprendemos a falar e, posteriormente, a ler. Essa habilidade, chamada de
aprendizagem continua (continual learning - CL) ou aprendizagem incremental (incremental
learning - IL), é uma capacidade que sistemas inteligentes devem possuir para lidar com
problemas do mundo real, uma vez que eles evoluem constantemente e padrGes que ndo eram

conhecidos antes precisam ser aprendidos por um sistema ja existente.

1.1 MOTIVACAO

Apesar de se inspirar no funcionamento do cérebro humano, a abordagem tradicionalmente
usada para ensinar novas tarefas para redes neurais consiste em periodicamente descartar o
modelo atual (ou parte dele) e treinar um novo usando todos os dados coletados até o mo-
mento, em um processo chamado de Continuous Training (SYMEONIDIS et al., 2022), processo
ilustrado na Figura [2| algo que nem sempre é vidvel devido a restricdes de tempo ou de

capacidade computacional, além de n3o reproduzir o aprendizado humano.
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Figura 2 — Continuous Training - A cada vez que os dados sdao atualizados, o modelo
existente é descartado e um novo modelo é treinado.

Para resolver isso, métodos de aprendizagem continua tém o objetivo de evitar a perda de
conhecimentos adquiridos no passado durante o aprendizado de novas tarefas, permitindo que
os modelos retenham o conhecimento obtido a partir de dados acessados sequencialmente, sem
a necessidade de treinar um novo modelo sempre que novas tarefas precisam ser aprendidas.

Consequentemente, adicionar a capacidade de aprendizado continuo a sistemas inteligentes
também pode trazer beneficios significativos do ponto de vista da sustentabilidade (COSSU;
Z10SI; LOMONACO), 2021)), uma vez que possibilitaria a reducdo na quantidade de recursos com-
putacionais necessarios para treinar modelos em novos dados. Como esses modelos poderiam
se aproveitar de um conhecimento ja adquirido, eles exigiriam menos tempo e energia para
aprender novas informacdes, reduzindo a pegada de carbono do treinamento dos modelos,
tornando-os mais eficientes e sustentaveis.

Por exemplo, o treinamento do modelo CoAtNet (DAI et al., [2021)), uma rede neural pro-
funda moderna para classificagdo de imagens, com o dataset JFT-3B (ZHAI et al., [2021) resulta
em um custo estimado de cerca de 83.000kg CO2eq (LI et al, 2022). Em comparac3o, o custo
anual médio gerado por um ser humano é de aproximadamente 5.000kg CO2eq (STRUBELL;
GANESH; MCCALLUM, 2020). Devido ao alto custo de treinamento, é desejavel encontrar al-
ternativas que possibilitem a inclusdo de novas classes de maneira mais eficiente, evitando o
custo do treinamento completo do modelo.

Entretanto, construir um sistema com a capacidade de aprender continuamente é algo
desafiador, porque as redes neurais geralmente otimizam seus pesos com base nos dados
mais recentes, o que pode fazer com que elas esquecam o conhecimento relacionado a dados
passados, um fenémeno conhecido como esquecimento catastréfico (catastrophic forgetting)
ou interferéncia catastréfica (catastrophic interference).

Uma maneira comum de mitigar esse problema é armazenar os dados referentes ao conhe-
cimento ja adquirido pelo modelo para que sejam utilizados posteriormente para atualiza-lo

quando necessario, mas sem descarta-lo por completo, uma abordagem conhecida como rehe-
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arsal ou replay. No entanto, esses métodos tem a desvantagem de exigir muito espaco de
armazenamento, o que pode ser impraticadvel em muitas situacoes.

Por outro lado, outros métodos buscam mitigar o efeito de esquecimento catastréfico sem
depender do armazenamento dos dados através da geracdo de dados artificiais que representem
os dados vistos no passado, uma abordagem conhecida como pseudo-rehearsal ou pseudo-
replay. No entanto, esse € um campo de pesquisa que ainda estd em estagio inicial na area
de visdo computacional com modelos profundos, de forma que os métodos propostos até o
momento apresentam um desempenho limitado, que ainda nao é adequado para aplicacoes

praticas.

1.2 OBJETIVOS

Este trabalho tem como objetivo desenvolver um novo método que aprimore o desempenho
de redes neurais treinadas continuamente, especificamente no contexto de classificacdo de
imagens com aprendizado incremental de classes, utilizando a abordagem de pseudo-rehearsal.
A proposta é melhorar o atual método estado-da-arte, IRCL (SOKAR; MOCANU; PECHENIZKIY,
2021), a partir da ideia de que, em métodos baseados em pseudo-rehearsal, o desempenho é
limitado pela qualidade dos dados gerados (SHIN et al., 2017)).

A partir dessa ideia foram definidas trés hipéteses visando melhorar a qualidade das ima-
gens geradas. A primeira delas consiste em modificar a arquitetura do IRCL para desacoplar
o treinamento do modelo gerador dos demais médulos. A segunda hipotese propde a imple-
mentacao de um cVAE-GAN, através da adicao de um discriminador apds o decodificador
presente na arquitetura original. Por fim, a terceira hipotese é a utilizacdo de camadas convo-
lucionais em alguns mddulos da arquitetura, visando aprimorar a extracdo de caracteristicas
e, consequentemente, a geracdo de imagens.

O trabalho realizado resultou na seguinte publicac3o:

Convolutional Decoupled cVAE-GANSs for Pseudo-Replay Based Continual Lear-
ning, L. A. M. De Alcantara, J. I. S. Da Silva, M. L. P. C. Silva, S. C. S. Machado and T.
I. Ren, 2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI),
Macao, China, 2022, pp. 585-590, doi: 10.1109/ICTAI56018.2022.00092.
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1.3 ESTRUTURA DA DISSERTACAO

Os capitulos desta dissertacao estdo divididos da seguinte forma:

» Capitulo 2: Apresentacdo dos conceitos fundamentais para o entendimento do trabalho.

» Capitulo 3: Histérico do campo de aprendizado continuo, incluindo os trabalhos re-
lacionados mais relevantes e uma explicacdo do entdo método estado da arte para

classificacdo de imagens, baseado na abordagem de pseudo-rehearsal.
» Capitulo 4: Descricao detalhada do método proposto neste trabalho.

» Capitulo 5: Apresentaciao dos experimentos realizados e os resultados obtidos com a

aplicacdo do método proposto.

= Capitulo 6: Conclusdes a respeito do trabalho.



16

2 FUNDAMENTACAO TEORICA

Este capitulo tem como objetivo apresentar os conceitos fundamentais necessarios para
a compreensao do trabalho. Nele serdo abordados temas como redes neurais e seus diferen-
tes tipos de camadas, autoencoders e suas variacoes, além de conceitos essenciais para o

entendimento de aprendizado continuo, como tarefas, cenarios e abordagens existentes.

2.1 REDES NEURAIS

As Redes Neurais Artificiais (RNAs) sdo modelos computacionais inspirados pela estru-
tura e funcionamento do cérebro humano. Assim como o cérebro é composto por neurdnios
interconectados que trabalham conjuntamente para realizar tarefas complexas, as RNAs sao
formadas por neurénios artificiais, ilustrados na Figura [3, também conhecidos como nés, que
se organizam em camadas para processar e interpretar dados (HAYKIN| 2009)). Cada né realiza

calculos sobre os dados de entrada, transformando esses dados em uma saida.

Entrada ! Bias
e Pesos o
g P b~ Funcéo de
x1 7 -~ Ativagdo
wl 7
x2 f(z) a
w2 Saida

o

Figura 3 — llustracao de um neurénio artificial

Neurdnio

x3

Isso confere as redes a habilidade de aprender a partir de dados, adaptando-se a novas
entradas e aprimorando sua capacidade de previsdo. Essas caracteristicas as tornam ferramen-
tas poderosas para resolver uma grande variedade de aplicacdes, como reconhecimento de
imagem, processamento de linguagem natural e previsao de séries temporais.

Cada né em uma Rede Neural Artificial (RNA) esté associado a um conjunto de pesos, que
determinam a influéncia das entradas no calculo da saida. Além dos pesos, cada n6 pode incluir
um termo adicional conhecido como bias. Os pesos s3o utilizados para gerar uma combinacdo

linear dos dados de entrada. Em seguida, o resultado dessa combinacdo é somado ao bias
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e aplicado a uma funcdo n3o linear, chamada de funcdo de ativacdo. A funcdo de ativacdo
introduz ndo-linearidade ao neurdnio, permitindo que ele aprenda relacdes nao lineares entre as
entradas e a saida, de tal forma que, sem uma funcao de ativacdo ndo linear, o neurdnio seria
limitado a modelar apenas relacdes lineares (ZHANG et al., |2021)), o que ndo seria suficiente
para muitos problemas praticos.

A Figuraldilustra duas funcdes de ativacdo comumente utilizadas em redes neurais: Sigmoid

e ReLU (Rectified Linear Unit). A funcdo Sigmoid, definida como f(z) = mapeia

_ 1
1+e—2?
qualquer valor de entrada para um intervalo entre 0 e 1, sendo util em tarefas de classificacdo
binéria. J& a funcdo ReLU é definida como f(z) = max(0,x) e é amplamente utilizada devido

a sua simplicidade e eficiéncia computacional.
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Figura 4 — Exemplos de fungoes de ativacao
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Figura 5 — Exemplos de func¢oes de ativacao com diferentes pesos
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O papel dos pesos pode ser interpretado como a definicao da inclinacdo da funcao de
ativacao, como ilustrado na Figura [5| para as funcdes Sigmoid e ReLU. O bias funciona como
um peso extra, mas com uma entrada constante de valor 1, permitindo que a funcdo de ativacao
de cada né seja deslocada para a esquerda ou para a direita permitindo que o neurdnio produza
uma saida diferente de 0 para uma entrada nula e, consequentemente, proporcionando maior
flexibilidade e capacidade da rede para modelar dados. O efeito causado pelo bias na saida

das funcdes de ativacdo Sigmoid e ReLU é ilustrado na Figura [6]

. 6_ 1T : ' -
1.0 + — sig(0.5*x + -1) [Z:Egg Z*: : 01))
R * :
sgq(o.s X+ 0) — relu(0.5%x + 1)
— sig(0.5%x + 1) 51

0.8 -

0.6 1

g :r-f 3 B
2 7
w

0.4 1

2 r
0.2 14
0.0 0+
T T T T T T T T T T T T i T T T T T
-100 -75 -50 =25 0.0 2.5 5.0 7.5 10.0 -100 -75 -5.0 =25 0.0 2.5 5.0 7.5 10.0
Entrada Entrada
(a) Sigmoid (b) ReLU

Figura 6 — Exemplos de funcoes de ativacao com diferentes valores de bias

Tanto os pesos quanto o bias sdo ajustados durante o processo de aprendizado da rede,
através de um processo iterativo conhecido como treinamento. Nesse processo, a rede ajusta os
pesos e os bias de seus nds com o objetivo de minimizar a diferenca entre as saidas produzidas
pela rede e as saidas desejadas. Ao longo de varias iteracdes de treinamento, a rede neural
aprende a mapear as entradas as saidas corretas, melhorando a sua capacidade de previsao e

aumentando a precisdo e eficacia do modelo final.

2.2 CAMADAS

Os neur6nios que compdem as redes neurais artificiais s3o interconectados e organizados
em camadas, que podem ser divididas em camadas de entrada, camadas escondidas e camadas
de saida (HAYKIN, 2009), e ainda em dois tipos basicos: camadas lineares e camadas convo-
lucionais (ZHANG et al., [2021). As camadas de entrada sdo responsaveis por receber os dados

e repassa-los para as camadas escondidas onde serad feito o processamento. Cada né desta
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camada corresponde a um atributo ou varidvel dos dados e recebe um valor numérico que o
representa. Em outras palavras, cada n6 na camada de entrada corresponde a uma variavel de
entrada.

As camadas escondidas sao as camadas entre a camada de entrada e a camada de saida
e sao responsaveis por extrair de caracteristicas dos dados de entrada. Na primeira camada
escondida, que é diretamente conectada a camada de entrada, os neurdnios identificam carac-
teristicas de baixo nivel nos dados, que podem incluir, por exemplo, linhas ou bordas em uma
imagem, ou certos fonemas em um sinal de 4udio.

A medida que as informacBes passam para as camadas escondidas subsequentes, a rede
neural comeca a reconhecer padroes mais complexos e abstratos, usando as caracteristicas
de baixo nivel identificadas pelas camadas anteriores. Isso é possivel porque cada camada
escondida recebe como entrada a saida da camada anterior, permitindo que a rede construa
uma hierarquia de caracteristicas. Por exemplo, em uma rede neural treinada para o reco-
nhecimento de imagens, as primeiras camadas escondidas podem detectar bordas, enquanto
camadas subsequentes podem comecar a reconhecer formas mais complexas, como texturas
ou objetos.

Assim, as camadas escondidas permitem que a rede neural transforme os dados brutos de
entrada em uma representacao mais util e informativa, que serd usada pela camada de saida
para gerar o resultado desejado. Esta habilidade de aprender representacdes hierdrquicas e
abstratas dos dados é uma das principais razdes pela qual as redes neurais sdo t3o eficazes
em uma ampla gama de tarefas de aprendizado de maquina. Essas camadas sdo chamadas
de “escondidas” porque suas saidas nao sao diretamente observaveis, sendo utilizadas apenas
internamente pela rede.

Por fim, as camadas de saida s3o responsaveis por gerar as saidas finais da rede neural.
Dependendo da natureza do problema, a camada de saida pode ser composta de um ou varios
nés. Por exemplo, em um problema de classificacao binéria, a camada de saida terd um né,

enquanto em um problema de classificacdo multiclasse, havera um né para cada classe.

2.2.1 Lineares

As camadas lineares, também conhecidas como camadas totalmente conectadas (fully
connected) ou densas, sdo compostas por um conjunto de neurdnios artificiais. Cada neurénio

desta camada é conectado a todos os neurdnios da camada anterior e da camada seguinte,
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dai o termo “totalmente conectado” (HAYKIN, 2009). A Figura [7|ilustra uma rede neural com

uma camada escondida do tipo linear.

/

Camada . Camada
de entrada Camada escondida de saida

Figura 7 — Ilustracao de rede neural com uma camada linear escondida

A funcdo de uma camada linear é aplicar uma transformacao linear aos dados de entrada,
isso é feito multiplicando a matriz de entrada pelos pesos da camada e adicionando um vetor
de bias (ZHANG et al} 2021). O resultado dessa operacdo é uma nova matriz que representa

os dados transformados. A operacao pode ser expressa como:

y=Xw+1b (2.1)

Onde X é a matriz de entrada, w é a matriz de pesos, b é o vetor de bias e y é a
matriz resultante. Apds a transformacao linear, é aplicada uma func3o de ativacdo aos dados
transformados.

Durante o treinamento, os pesos e os bias da camada linear sdo ajustados usando um
algoritmo de otimizacdo, como o gradiente descendente, com base no feedback do erro de
saida da rede. O objetivo é minimizar a funcao de perda, que mede a diferenca entre as

previsGes da rede e os valores reais (rétulos).

2.2.2 Convolucionais

Camadas convolucionais sao os componentes fundamentais das redes neurais convoluci-
onais (CNNs) (LECUN et al.,, 1989), que sdo um tipo de rede neural artificial projetada para
processar e analisar dados com uma estrutura espacial, como imagens ou sinais de audio

(ZHANG et al., | 2021)). A Figura 3| ilustra uma rede convolucional.
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Convolucio Pooling Linear

Figura 8 — Ilustracao de uma rede neural com camadas convolucionais

As camadas convolucionais s3o mais adequadas para tarefas de visdo computacional do que
as camadas lineares devido a sua capacidade de capturar informacoes espaciais nas imagens. Ao
contrario das camadas lineares, que processam as entradas como um vetor unidimensional, as
camadas convolucionais consideram a estrutura espacial das entradas, o que ajuda na deteccao
padrdes e caracteristicas locais nos dados, como bordas, texturas e formas.

A camada convolucional usa filtros (também conhecidos como kernels), que s3o pequenas
matrizes com valores ajustaveis (parametros). Esses filtros sdo aplicados aos dados de entrada
por meio de uma operacao chamada convolucao, que é o processo de deslizar o filtro sobre a
imagem (ou dados de entrada) e realizar uma multiplicacdo ponto a ponto (produto escalar)
entre os valores do filtro e os valores da imagem que estdo sob o filtro. Em seguida, os resultados
dessas multiplicacoes sdao somados, gerando um dnico valor. Esse valor é armazenado em uma

nova matriz chamada mapa de caracteristicas (feature map) (ZHANG et al., 2021).
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Mapa de
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1*0+2*2+0*%1=12

Figura 9 — Exemplo da operacao de convolugao

A distancia que o filtro se move ao deslizar pela imagem no processo de convolucdo é
determinada pelo hiperpardmetro tamanho do passo (stride) (ZHANG et al} 2021). Um passo
maior significa que o filtro se move mais rapidamente pela imagem, resultando em um mapa
de caracteristicas menor. A Figura ilustra o efeito do tamanho do passo na operacdo de
convolugdo utilizando o mesmo filtro da Figura [9]

Outro hiperpardmetro é o preenchimento (padding), que adiciona pixels extras ao redor
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Figura 10 — Exemplo de operagao de convolucao com diferentes tamanhos de passo

da borda da imagem para permitir que o filtro seja aplicado nas bordas da imagem e manter o
tamanho da imagem apés a convolucdo (ZHANG et al}, [2021). A Figura [11]ilustra a aplicaco
de convolucdo com preenchimento de pixels com valor zero (zero-padding), com o mesmo

filtro da Figura[9
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Figura 11 — Ilustragao do efeito da aplicacao de preenchimento

Apos a convolucdo, uma funcdo de ativacdo é aplicada a cada valor do mapa de carac-
teristicas para introduzir n3o-linearidade ao modelo, permitindo que a rede aprenda relacdes
mais complexas (ZHANG et al., 2021)).

Embora ndo seja uma parte obrigatéria das camadas convolucionais, o agrupamento (po-
oling) é frequentemente usado apds a convolucdo para reduzir a dimensionalidade do mapa
de caracteristicas (ZHANG et al., 2021). O agrupamento oferece beneficios como a reducdo da
sensibilidade a pequenas variacdes espaciais e a diminuicdo do nimero de parametros, o que
ajuda a evitar o sobreajuste (overfitting) e melhora a eficiéncia computacional. A Figura
ilustra a operacdo de max-pooling, que funciona selecionando o valor médximo em cada regido
de agrupamento. Além do max-pooling, outra forma comum de agrupar valores do mapa de
caracteristicas é através da selecdo do valor médio (average-pooling) da regio.

As camadas convolucionais s3o organizadas sequencialmente em uma CNN, permitindo
que a rede aprenda representacoes hierdrquicas dos dados. As primeiras camadas costumam
capturar caracteristicas mais simples, como retas e curvas, enquanto as camadas subsequentes

se concentram em caracteristicas mais complexas, como texturas.
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Figura 12 — Exemplo da operagao de Max-Pooling
2.3 AUTOENCODERS

Os autoencoders (AE) s&o redes neurais que tém como objetivo principal aprender re-
presentacdes compactas e eficientes dos dados, frequentemente empregadas na reducdo de
dimensionalidade e geracdo de novos exemplos que possuem similaridade com os dados treina-
dos (?7?). A importéncia da reducdo de dimensionalidade reside em sua capacidade de tornar
o processamento de dados mais eficiente e de destacar as caracteristicas mais significativas.
AEs s3o compostos por duas partes principais: um codificador (encoder) e um decodificador
(decoder), como ilustrado na Figura [13|

A funcdo do codificador é transformar os dados de entrada em uma representacao de
dimensdo menor, chamada de representacdo latente, através de uma série de camadas que

gradualmente reduzem a dimensionalidade dos dados de entrada.

Representagao
latente

A

X —» — X
Entrada Reconstrugdo
0O
\O
Codificador Decodificador

Figura 13 — Ilustragdo de um autoencoder tradicional

O decodificador, por sua vez, reconstréi os dados de entrada a partir da representacio
latente. A arquitetura do decodificador é geralmente simétrica a do codificador, revertendo o
processo de reducdo e expandindo a dimensionalidade do cédigo latente até atingir a dimensao
original dos dados de entrada.

Os autoencoders sio treinados para minimizar a diferenca entre os dados de entrada e a

reconstrucdo gerada pelo decodificador. Uma funcao de perda, como o erro quadratico médio,
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pode ser usada para medir essa diferenca.

2.3.1 Autoencoders Variacionais

Os autoencoders variacionais (VAEs) (KINGMA; WELLING, 2013) s3o uma extensdo dos
autoencoders tradicionais onde, em vez de aprender apenas uma representacdo latente para
cada exemplo de entrada, os VAEs aprendem também a média e a variancia de uma distribuicdo
de probabilidade a partir da qual a representacdo latente pode ser amostrada. Essa abordagem
permite que o VAE gere novos exemplos plausiveis a partir do espaco latente.

O treinamento de VAEs envolve a otimizacdo de uma funcdo de perda composta por duas
partes: uma que mede a reconstruco (semelhante aos AEs) e outra que mede a divergéncia de
Kullback-Leibler (KL) entre a distribuicdo de probabilidade aprendida e uma distribuicdo pré-
definida (geralmente uma distribuicdo normal). A divergéncia KL atua como um regularizador,

incentivando o espaco latente a seguir a distribuicdo definida.

2.3.2 Autoencoders Variacionais Condicionais

Autoencoders variacionais condicionais (CVAEs) (SOHN; LEE; YAN, 2015]) s3o uma variacdo
dos autoencoders variacionais que incorporam informacdes adicionais, como rétulos ou outras
variaveis contextuais, no processo de codificacdo e decodificacdo. Essa abordagem permite
que a rede aprenda representacdes que sao condicionadas a informacdo adicional, o que torna
os CVAEs mais flexiveis em tarefas como geracao de dados condicionados.

No treinamento de CVAEs, a informacdo adicional é fornecida como entrada para o co-
dificador ou para o decodificador, juntamente com os dados de entrada. A func3o de perda
é semelhante a dos autoencoders variacionais, mas é calculada com base na reconstrucdo

condicionada a informacao adicional.

2.3.3 VAE-GANs

Os VAE-GANs (LARSEN et al., [2016) combinam elementos dos autoencoders variacionais e
das redes generativas adversariais (GANs) (GOODFELLOW et al., 2020). GANs sdo uma classe
de modelos generativos que consistem em duas redes neurais, um gerador e um discriminador,

que competem entre si em um jogo de soma zero. O gerador tenta criar exemplos realistas,
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enquanto o discriminador avalia a qualidade desses exemplos, tentando distinguir entre exem-
plos reais e gerados. Essa competicdo leva a um gerador capaz de criar exemplos altamente
realistas.

VAE-GANs aproveitam as vantagens dos VAEs e GANSs, integrando o processo de geracdo
de VAEs com a estrutura adversarial das GANs, formando um modelo composto por trés

componentes: codificador, decodificador e discriminador, conforme ilustrado na Figura [14]

Representacao

Real
X —> > O ou
Entrada Gerado

Codificador Decodificador/Gerador Discriminador
Figura 14 — Ilustracdo de um VAE-GAN

Semelhante ao VAE tradicional, o codificador aprende a média e a variancia de uma distri-
buicdo de probabilidade a partir da qual o cédigo latente é amostrado. J& o decodificador atua
como o gerador de uma GAN, reconstruindo os dados de entrada a partir da representacao
latente e tentando gerar exemplos realistas. O discriminador é treinado para distinguir entre
exemplos reais e gerados, avaliando a qualidade das reconstrucdes.

O treinamento dos VAE-GANSs envolve a otimizacdo de uma funcdo de perda que combina
0s objetivos de reconstrucdo e adversarial. A parte de reconstrucdo é semelhante a dos VAEs,
medindo a diferenca entre os dados de entrada e a reconstrucdo gerada pelo decodificador e
a divergéncia KL. A parte adversarial é semelhante a das GANs, com o decodificador (gera-
dor) tentando enganar o discriminador e o discriminador tentando identificar corretamente os

exemplos gerados.

2.4 TAREFAS EM APRENDIZADO CONTINUO

Uma tarefa é uma unidade de aprendizado ou um objetivo que um sistema de aprendizado
de maquina deve realizar. Em geral, cada tarefa é definida por um conjunto de dados especificos
e possivelmente diferentes caracteristicas, como uma funcdo de perda prépria e um conjunto

de métricas de desempenho associadas.
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Em um cenario de aprendizado incremental, vérias tarefas podem ser apresentadas ao
modelo sequencialmente, e ele deve ser capaz de aprender cada uma delas sem esquecer
completamente o que aprendeu anteriormente. Por exemplo, em uma tarefa de classificacdo
de imagens, cada tarefa pode envolver a classificacio de um conjunto diferente de objetos,
como carros, flores ou animais. Além disso, espera-se que o modelo seja capaz de utilizar o
conhecimento adquirido ao longo do tempo no processo de aprendizado das novas tarefas,

combinando as informacGes relevantes das tarefas passadas com as informacGes das novas.

2.5 CENARIOS DE PROBLEMAS DE APRENDIZADO CONTINUO

Um cenéario é um conjunto de condicoes especificas que definem como as tarefas serdo
apresentadas ao modelo ao longo do tempo, além de quais informacdes estdo disponiveis du-
rante o treinamento e inferéncia. Os diferentes cenérios podem variar em termos de como as
tarefas sdo organizadas e apresentadas, de forma que as técnicas de aprendizado desenvolvidas
para cada cenario podem ser diferentes. Os cenarios mais comuns s3o os de tarefa incremen-
tal, dominio incremental ou classe incremental (VEN; TOLIAS, 2019), onde cada um deles tém
suas proprias caracteristicas e desafios especificos. O entendimento e escolha do cenério ade-
quado para cada aplicacao é fundamental para obter bons resultados em implementacdes de

aprendizado continuo.

2.5.1 Tarefa Incremental

O cendrio de tarefa incremental é um dos cenarios de aprendizado continuo em que o
algoritmo deve aprender um conjunto de tarefas distintas de forma incremental, uma apéds
a outra, de forma que sempre esta claro para o algoritmo, tanto no treinamento quanto na
inferéncia, qual tarefa deve ser realizada. Isso pode ser feito de forma explicita, fornecendo
identificadores de tarefa ou tornando as tarefas claramente distinguiveis entre si.

O papel do identificador da tarefa é distinguir as tarefas que o modelo deve resolver. Ele
é importante para garantir que o modelo possa separar as informacdes relacionadas a cada
tarefa e evitar de mistura-las durante o aprendizado. Em outras palavras, é necessario que o
modelo saiba em que tarefa esta trabalhando no momento e que possa ajustar seus parametros
de acordo com ela.

Uma das principais dificuldades desse cenario é encontrar maneiras eficazes de compartilhar
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representacdes aprendidas entre tarefas, otimizando o desempenho e a complexidade compu-
tacional. Uma abordagem comum é treinar modelos com componentes especificos para cada
tarefa, como as camadas de saida, ou até mesmo ter uma rede neural completamente separada
para cada tarefa, o que elimina o risco de esquecimento catastréfico. No entanto, isso pode
resultar em um grande nimero de parametros e pode nao ser escaldvel em um grande nimero
de tarefas.

Exemplo do cenério de tarefa incremental na vida real seria aprender a tocar diferentes
instrumentos musicais, ja que, em geral, instrumentos diferentes sdo bem distintos uns dos
outros. Além disso, a teoria musical aprendida e a coordenacdo motora obtida a partir do

aprendizado de um certo instrumento podem ser utilizadas no aprendizado de outro.

2.5.2 Dominio Incremental

O cenario de dominio incremental é descrito como a situacdo em que a estrutura das tarefas
é sempre a mesma, mas existe uma mudanca do contexto ou da distribuicao dos seus dados.
Nesse caso, o modelo deve aprender uma série de tarefas, ou dominios, incrementalmente,
mas, ao contrario do cenario de tarefa incremental, no momento da inferéncia, ele ndo sabe
a qual tarefa o dado de entrada pertence. Em outras palavras, as tarefas tém as mesmas
possiveis saidas, como classes, por exemplo, mas s3o apresentadas em diferentes contextos ou
situacoes.

O uso de componentes especificos para cada tarefa ndo é possivel neste cenario, pois o
modelo n3o tem acesso ao identificador das tarefas e, consequentemente, ndo sabe a que tarefa
ao dado de entrada pertence. Mas isso acaba ndo sendo necessario, uma vez que a estrutura
das tarefas é sempre a mesma.

Um exemplo de aprendizado incremental de dominio seria uma aplicacao de reconhecimento
de faces, onde deve ser feito o reconhecimento de pessoas em ambientes internos e externos,
com diferentes condicoes de iluminacdo e planos de fundo. Cada situacdo pode ser vista
como um dominio diferente, e 0 modelo deve ser capaz de se adaptar a novos dominios
incrementalmente sem esquecer o que aprendeu anteriormente. Nesse caso, cada tarefa teria
dados referentes sempre as mesmas pessoas, variando apenas a situacao na qual a imagem foi
obtida. Neste cenario, o identificador da tarefa nao estad disponivel no momento da inferéncia.
Portanto, o modelo precisa ser capaz de reconhecer as faces independentemente do contexto

em que elas aparecem, sem saber exatamente a qual dominio (ambiente interno, externo,
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condi¢bes de iluminagdo, etc.) a imagem pertence. Isso torna o aprendizado continuo neste
cenario mais desafiador, pois 0 modelo deve ser capaz de generalizar com base na informacao

aprendida anteriormente, mesmo sem a presenca de identificadores de tarefa explicitos.

2.5.3 Classe Incremental

O cenario de classe incremental é aquele em que o modelo deve aprender incrementalmente
a distinguir entre um nGmero crescente de classes. Neste cenario, um conjunto de tarefas é
apresentado, onde cada tarefa contém diferentes classes e o modelo deve aprender a distinguir
entre todas as classes. Esse é o cendrio mais desafiador, pois a identificacdo da tarefa ndo esta
disponivel, entdo o modelo deve identificar a classe dentre todas aquelas que ja foram vistas
até o momento. Em sintese, o modelo deve ser capaz de resolver cada tarefa individualmente,
distinguindo entre as classes dentro de uma determinada tarefa, e identificar a qual tarefa o
dado de entrada pertence.

Exemplo de aplicacdo no cenério de classe incremental na vida real seria um sistema
de reconhecimento de atividades humanas, que precisaria aprender a identificar diferentes
atividades, como caminhar, correr ou andar de bicicleta, em ordem incremental. A medida
que novas atividades sao adicionadas, o modelo utiliza o conhecimento prévio para melhorar

o reconhecimento de atividades posteriores.

2.6 ABORDAGENS PARA IMPLEMENTAR APRENDIZADO CONTINUO

As abordagens em aprendizado continuo sao um conjunto de técnicas usadas para que as
redes neurais aprendam e se adaptem de forma continua a novas tarefas e dados, preservando
o conhecimento adquirido anteriormente. Essas abordagens podem ser categorizadas em trés
grupos principais: as que sdo baseadas em regularizacdo, arquitetura e rehearsal (LANGE et al.,
2022).

Cada uma dessas abordagens possui suas proprias caracteristicas e vantagens, proporci-
onando solucdes distintas para enfrentar os desafios do aprendizado continuo. A selecdo e
combinac3o adequadas dessas abordagens sdo fundamentais para alcancar um bom desempe-

nho em diferentes aplicacdes e cenéarios de aprendizado continuo.
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2.6.1 Baseadas em Regularizacao

As abordagens baseadas em regularizacdo sao uma forma de mitigar o esquecimento catas-
tréfico através da adicao de termos de regularizacdo a funcdo de perda utilizada no treinamento
do modelo. O intuito é impedir que, durante o aprendizado de novas tarefas, a atualizacido
dos parametros do modelo afete negativamente o desempenho nas tarefas anteriores.

Os termos de regularizacdo tém o objetivo de restringir mudancas nos pesos importantes
para as informacdes ja aprendidas, de forma a preserva-las, permitindo que o modelo mantenha
as informacdes aprendidas anteriormente enquanto adquire novas informacées. O desafio, nesse
caso, é encontrar a melhor maneira de quantificar a importancia de cada elemento da rede

para o desempenho de cada tarefa.

2.6.2 Baseadas em Arquitetura

As abordagens baseadas em arquitetura visam alterar a arquitetura da rede para permitir a
aprendizagem de novas tarefas sem afetar o desempenho nas tarefas anteriores. Isso é feito, por
exemplo, adicionando médulos especificos para cada tarefa, de forma que quando uma nova
tarefa é apresentada, os médulos correspondentes sao treinados para resolvé-la. Tais médulos
podem ser camadas adicionadas a rede ou até mesmo redes completas.

Dessa forma, para que seja possivel a sua implementacdo, normalmente os métodos ba-
seados nessa abordagem necessitam do identificador da tarefa, para que o modelo saiba qual
moédulo utilizar ao receber um dado de entrada. Nessa abordagem, o desafio é encontrar a
maneira mais eficiente de aumentar o tamanho da rede e de compartilhar entre os médulos o

conhecimento obtido com cada tarefa.

2.6.3 Baseadas em Rehearsal

Essas abordagens funcionam armazenando os dados de cada tarefa e usando-os em con-
junto com os dados das novas tarefas durante o treinamento da rede neural. O desafio dos
métodos baseados nessa abordagem é encontrar maneiras mais eficientes de selecionar os da-
dos, de forma a escolher as amostras mais representativas, e de como reapresentar os dados
armazenados a rede neural durante o treinamento de novas tarefas.

Uma variacao da abordagem de Rehearsal é a Pseudo-Rehearsal, que se baseia em gerar



30

dados sintéticos que representem os dados que foram vistos pela rede durante o treinamento
das tarefas passadas. Os dados gerados sdo chamados de “pseudo-exemplos” ( pseudo-samples)
e sdo usados durante o treinamento da rede nas novas tarefas. A ideia é que a rede neural possa
manter o conhecimento relacionado as tarefas anteriores sem a necessidade de armazenar os
seus dados. Com o surgimento e desenvolvimento das redes generativas, métodos utilizando

essa abordagem para problemas de visao computacional comecaram a ser desenvolvidos.
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3 TRABALHOS RELACIONADOS

Este capitulo tem como objetivo fornecer uma visao abrangente do desenvolvimento his-
térico do campo de aprendizado continuo. Ele é estruturado em duas secoes: na primeira, sao
abordados os trabalhos pioneiros da area, que se baseiam em redes conexionistas ou em redes
neurais rasas; na segunda, sao abordados os estudos contemporaneos, ja no contexto das redes
neurais profundas, incluindo uma explicacdo do entdo método estado da arte, utilizado como

base do método desenvolvido nesse trabalho.

3.1 INICIO

O final da década de 80 e a década de 90 foi um periodo de desdnimo e desinteresse
pela Inteligéncia Artificial (IA), marcando o segundo “Inverno da IA" (TOOSI et al., 2021).
Nessa época, uma série de problemas e limitacoes levaram a falta de avancos significativos
na resolucdo de problemas mais complexos e impediram que a |A atingisse expectativas que
foram criadas em torno dela.

Como consequéncia, investimentos em pesquisa e desenvolvimento diminuiram drastica-
mente em muitos paises, incluindo os Estados Unidos, que era o principal centro de pesquisa
em IA na época e, com isso, muitos pesquisadores e cientistas acabaram deixando o campo
da inteligéncia artificial em busca de outras areas de pesquisa.

No entanto, o Inverno da |IA chegou ao fim na segunda metade dos anos 1990, quando
ocorreu um ressurgimento do interesse em |IA devido ao surgimento de novas técnicas e algo-
ritmos que permitiram avancos significativos no desenvolvimento das redes neurais. Entre eles,
destaca-se o algoritmo de backpropagation, proposto em 1986 por David Rumelhart, Geoffrey
Hinton e Ronald Williams (RUMELHART; HINTON; WILLIAMS) 1986)). Esse é um algoritmo de
treinamento supervisionado para redes neurais que permite ajustar os pesos das conexdes entre
as unidades da rede de forma a minimizar o erro entre as saidas da rede e as saidas desejadas.
O algoritmo de backpropagation permitiu que as redes neurais fossem treinadas de forma mais
eficiente, o que foi fundamental para o ressurgimento do interesse em |A e inicio do fim do
Inverno da IA.

Enquanto alguns estudos apresentavam novas maneiras de aumentar as capacidades das

redes de resolver problemas, outros identificavam limitacSes desses modelos. Foi o caso, por
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exemplo, dos trabalhos de McCloskey e Cohen (MCCLOSKEY; COHEN, 1989) e o de Ratcliff
(RATCLIFF, |1990)), que demonstraram que o processo de aprendizagem de um novo conjunto
de padrdes, ou tarefas, pode causar a perda do conhecimento que as redes ja haviam adquirido
anteriormente. Eles mostraram que isso ocorre porque as redes neurais geralmente comparti-
lham um conjunto de pesos para aprender diferentes tarefas, o que faz com que o aprendizado
de novos dados interfira no conjunto de pesos relacionados a tarefas anteriores. Esse fenémeno
ficou conhecido como esquecimento catastréfico, ou interferéncia catastroéfica.

A partir da identificacdo desse efeito, diversos métodos foram propostos com o objetivo de
reduzir a sua ocorréncia. No préprio artigo em que descrevia o fendmeno, Ratcliff propds um
método, chamado de Rehearsal Buffer Model (RATCLIFF, [1990)), para reduzir o esquecimento
através do treinamento da rede com uma parte dos dados de padrdes aprendidos no passado,
em conjunto com os dados dos novos padroes a serem aprendidos.

Estudos posteriores propuseram alteracdes baseadas no método de Ratcliff (ROBINS,1993),
variando a maneira como os dados das tarefas anteriores eram selecionados e reapresentados
as redes durante o aprendizado de novas tarefas. Os algoritmos baseados no método de Ratcliff
ficaram conhecidos como métodos de rehearsal ou de replay.

Uma das limitacoes desses métodos é que eles exigem o armazenamento de todos ou de
alguns dos dados de treinamentos anteriores para que possam ser usados em treinamentos
futuros. Com isso, a medida que o tamanho do conjunto de dados aumenta, os custos com-
putacionais e de armazenamento necessarios para treinamento de um modelo se tornam cada
vez maiores.

Além disso, o armazenamento explicito de dados de treinamento anteriores nao é biologi-
camente plausivel (MOE-HELGESEN; STRANDEN, 2005), uma vez que os humanos n3o precisam
acessar novamente todas as informacGes aprendidas no passado para aprender novas infor-
macdes. Portanto, espera-se que um método de aprendizado continuo de redes neurais seja
capaz de aprender continuamente com novos dados sem esquecer completamente os dados
anteriores e sem a necessidade de acessa-los novamente, de forma semelhante a capacidade
de aprendizado humano.

Por fim, o uso de técnicas de rehearsal também pode causar a ocorréncia de overfitting e
limitar a capacidade de generalizacdo do modelo para novos dados (VERWIMP; LANGE; TUYTE-
LAARS, 2021)) caso apenas um mesmo subconjunto de dados anteriores seja utilizado durante
treinamentos futuros.

Para evitar esses problemas, algumas outras abordagens foram propostas para resolver
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ou reduzir o efeito de esquecimento, entre elas, a de pseudorehearsal ou pseudoreplay. Essa
abordagem foi proposta inicialmente por (ROBINS, [1995) e se concentra em permitir que o
aprendizado continuo possa ser feito em situacoes onde os dados de tarefas anteriores nao
estdo mais acessiveis por meio da utilizacdo de dados sintéticos ao invés dos dados reais.

A proposta inicial de Robins foi de gerar um conjunto de dados (pseudosamples) composto
de vetores com permutacdes aleatérias com 50% de valores 0 e 50% de valores 1. Quando uma
nova tarefa precisa ser aprendida, o conjunto de dados gerado é apresentado a rede, produzindo
os vetores de saida correspondentes. As entradas aleatdrias e suas saidas sao entao adicionadas
ao conjunto de treinamento da rede e, apds isso, a rede é treinada normalmente. A hipétese é
que, da mesma forma que reapresentar os dados originais das tarefas passadas impede a rede
de as esquecer, apresentar os pseudosamples que aproximam a funcao definida pelas tarefas
aprendidas também preveniria o esquecimento catastréfico.

Além de eliminar o requisito de armazenamento dos dados, a abordagem de pseudorehe-
arsal também é mais préxima da forma como ocorre biologicamente o aprendizado continuo.
Um modelo de aprendizado humano (MCCLELLAND; MCNAUGHTON; O'REILLY [1995) mostra a
relacdo entre o hipocampo e o neocértex durante o processo de aprendizagem e sugere que
os neurdnios do neocértex podem sofrer de esquecimento catastréfico. O modelo mostra que
essa ocorréncia é evitada através de um processo que reapresenta memorias armazenadas no
hipocampo para reforcar tarefas que ndo foram realizadas recentemente.

Na sequéncia da descoberta do esquecimento catastréfico, surgiram diversas propostas de
solucdes para o problema. Além dos métodos baseados em replay e pseudo-replay, métodos
baseados em outras abordagens também foram propostos. Entre eles, French foi um dos
primeiros a propor um método baseado em regularizacdo, onde se busca reduzir a alteracao
de pesos da rede referentes a tarefas ja aprendidas.

O método proposto por French, Activation Sharpening (FRENCH, 1992), se baseia na
hipétese de que o esquecimento catastréfico € uma consequéncia direta da natureza distribuida
de uma rede neural, onde quase todos os nés contribuem para o armazenamento de cada
padrdo.

O algoritmo funciona da seguinte forma: é feito um forward pass pela rede para identificar
os k ndés mais ativos. Em seguida, esses k nés sao “afiados”, ou seja, seus pesos sdo ajustados
para torna-los ainda mais ativos e relevantes para a tarefa em questdo. Apds isso, a diferenca
na ativacao desses nds afiados é usada como medida de erro, e propagada de volta pela rede

usando backpropagation. Por fim, é feito um forward e backward pass baseado apenas na
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funcdo de perda de classificacdo.

Com isso, a distribuicdo do aprendizado é reduzida, ou seja, menos nés na rede tém seus
pesos ajustados durante o treinamento. Isso ocorre porque, ao afiar apenas os k nds mais
ativos, o ajuste nos pesos dos nés menos relevantes para a tarefa é reduzido, uma vez que a
backpropagation muda muito pouco os pesos quando a ativacao de um né é préxima de zero.

O algoritmo Growing Neural Gas (GNG) (FRITZKE, |1994) foi um dos primeiros a propor
o crescimento de uma rede com o objetivo de permitir o aprendizado a partir de distribuicGes
de dados dindmicas. O método é baseado nas Neural Gas Networks, redes inspiradas nos
self-organizing maps (SOM), e propde uma rede incremental capaz de aprender as relacdes
topolégicas importantes para uma dada distribuicdo de dados de entrada utilizando o algoritmo
competitive Hebbian learning (CHL). A partir do aprendizado das relacdes importantes, o
método é capaz de aprender continuamente adicionando unidades e conexdes até que um
determinado critério de performance seja alcancado. A principal proposicdo do método é a
adicdo sequencial de novas unidades a uma rede inicialmente pequena, sendo essa adicao

determinada pelo algoritmo CHL.

3.2 PERIODO RECENTE

Embora diversos métodos tenham sido propostos no passado, os algoritmos desenvolvidos
ndo eram capazes de apresentar desempenho satisfatério em cendrios reais (MOE-HELGESEN;
STRANDEN, [2005)). Dessa forma, a grande contribuicdo deixada pelos métodos pioneiros foi a
identificacdo das abordagens que podem ser utilizadas para lidar com o problema do esqueci-
mento catastréfico (REBUFFI et al., [2017)).

Apos um periodo de pouco interesse, o problema do esquecimento voltou a receber atencao
e novos métodos comecaram a ser propostos apds a deep learning renaissance (GOODFELLOW.
et al, 2013). Entre eles, o algoritmo Elastic Weight Consolidation (EWC) (KIRKPATRICK et
al., 2017)), que se baseia na abordagem de regularizacdo, de forma que as conexdes da rede
responsaveis por tarefas anteriores sejam preservadas. Para isso, os autores propdem o uso
da matriz de Fisher para estimar a importancia de cada pardmetro do modelo em relacdo
as tarefas passadas. Eles introduzem um componente na funcdo de perda que utiliza essa
estimativa para ponderar a penalidade aplicada a variacdo dos parametros atuais da rede em
relacdo aos parametros encontrados durante o treinamento das tarefas anteriores. Ou seja,

ao treinar uma nova tarefa, a variacao dos parametros é penalizada de acordo com a sua



35

importancia para as tarefas passadas, que é determinada pela matriz de Fisher.

A matriz de Fisher quantifica a informacdo que um conjunto de varidveis aleatéria (os
dados) fornece sobre os pardmetros desconhecidos de uma distribuicdo de probabilidade (apro-
ximada pelo modelo). Ela faz isso medindo a curvatura da funcdo de log-verossimilhanca em
relacdo aos parametros do modelo. A funcao de log-verossimilhanca representa a probabilidade
de observar os dados, dado um modelo e um conjunto de parametros. Uma maior curvatura
na funcdo log-verossimilhanca indica que os dados fornecem mais informacdes sobre os para-
metros, permitindo fazer estimativas mais precisas desses parametros.

O algoritmo EWC utiliza a matriz de Fisher para aproximar a curvatura da funcdo log-
verossimilhanca em relacao aos parametros do modelo. Isso é feito calculando a matriz para
os parametros do modelo apds o treinamento em uma tarefa, capturando a sensibilidade das
probabilidades previstas em relacdo aos parametros. Dessa forma, a matriz pode ser usada
para estimar a importancia de cada pardmetro para essa tarefa.

Considerando a abordagem de rehearsal, o algoritmo iCaRL (/ncremental Classifier and
Representation Learning) utiliza o conceito de amostras "exemplares", que sdo um subconjunto
dos dados de treinamento de tarefas anteriores. Os exemplares sdo as amostras que mais se
aproximam da representacdo média das classes, e sao usados para manter a representacao das
classes antigas enquanto novas classes sdo aprendidas. A quantidade de exemplares é definida
de acordo com a quantidade de memdria disponivel para armazenamento.

Ao aprender uma nova tarefa, o iCaRL atualiza a rede usando tanto os novos dados quanto
os exemplares das tarefas anteriores. Além da funcdo de perda softmax tradicional usada para
treinar a rede para classificar corretamente os dados, o iCaRL utiliza também um componente
para minimizar a distancia entre a representacdo dos exemplares e o centrdide de sua classe
correspondente.

O iCaRL usa a estratégia de classificacdo “média mais préoxima dos exemplares” onde,
para estimar a classe de uma dada amostra de entrada, o algoritmo primeiro calcula um vetor
protétipo para todas as classes ja observadas a partir da média da representacao de seus
protétipos €, em seguida, determina o vetor de caracteristicas da amostra que precisa ser
classificada. Com base nisso, o iCaRL atribui a amostra o rétulo da classe cujo vetor protétipo
apresenta a maior similaridade com o seu vetor de caracteristicas.

Ja no contexto de métodos baseados em arquitetura, as Redes Neurais Progressivas ( Pro-
gressive Neural Networks - PNN) mantém uma rede (chamada de coluna) para cada tarefa

e, ao aprender uma nova tarefa, adiciona uma nova rede a estrutura sem alterar as redes
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existentes.

O treinamento de uma PNN comeca com uma unica rede, ou coluna, e é treinada até a
convergéncia com os dados da primeira tarefa. Ao receber uma nova tarefa para treinamento,
os parametros da rede anterior s3o “congelados” e uma nova coluna é adicionada com uma
inicializacdo aleatéria. Esta nova coluna é treinada ndo apenas com os dados da tarefa atual,
mas também com as saidas das camadas da coluna anterior por meio de conexdes laterais.
Cada nova tarefa é tratada por uma nova coluna, e essas colunas sdo conectadas lateralmente
para permitir a transferéncia de conhecimento.

As conexdes laterais permitem que a nova coluna de tarefas acesse e utilize caracteristicas
aprendidas pelas colunas anteriores. Isso permite que a rede reutilize, modifique ou ignore as
caracteristicas aprendidas anteriormente, conforme necessario para a nova tarefa. Como as
conexdes laterais s3o apenas da coluna atual para as colunas anteriores, e os parametros das
colunas anteriores sao mantidos congelados durante o treinamento da nova coluna, ndo ha

interferéncia entre as tarefas.

3.2.1 Estado da Arte

3.2.2 IRCL

No artigo Learning Invariant Representation for Continual Learning (SOKAR; MOCANU; PE-
CHENIZKIY, [2021)), foi proposto um método baseado em pseudo-rehearsal chamado Invariant
Representation for Continual Learning (IRCL), o qual é a base do método proposto nessa
dissertacdo. O foco do trabalho é o cendrio de aprendizado de classe incremental, onde o
modelo n3o tem acesso a identidade da tarefa. Os autores propdem a utilizacdo da represen-
tacao dos dados dividida em duas partes: uma representacdo invariante e uma representacao
discriminante. A representacdo invariante captura as caracteristicas comuns entre as classes,
enquanto a representacdo discriminante se concentra nas caracteristicas especificas de cada
classe.

A razdo para usar uma representacao desvinculada é que a representacdo invariante é menos
propensa ao esquecimento, além de capturar caracteristicas que podem ser (teis durante o
aprendizado de novas tarefas (EBRAHIMI et al., [ 2020)).

O método IRCL consiste em utilizar uma arquitetura unificada, ilustrada na Figura[15], para

classificacdo e geracdo de dados. A parte de classificacdo da arquitetura é composta por um
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Figura 15 — Arquitetura proposta no artigo Learning Invariant Representation for Con-
tinual Learning

modulo extrator de caracteristicas especificas (S), que gera uma representacdo discriminativa
dos dados de entrada, e um mddulo de classificacdo (C) que aprende a classificar os dados da
sequéncia de tarefas com base nas representacoes discriminante e invariante.

A Equacdo [3.1] representa o objetivo do treinamento dos mddulos de classificacdo da
arquitetura: a minimizacdo da funcdo de perda L, em funcdo dos parametros do extrator de
caracteristicas especificas (fs) e do médulo de classificacdo (6¢). L é a funcdo de perda que
mede o quio bem o modelo esté classificando os dados, z é a representacdo invariante, D' é
o conjunto de dados de treinamento da tarefa atual t e M*~! é o conjunto de dados gerados

referentes as tarefas anteriores.

min Lo(0s,00; 2, DU MY (3.1)
0s,0¢c

A parte de geracdo de dados da rede, um Autoencoder Variacional Condicional (cVAE), é
composta por um codificador (encoder - E) que mapeia uma entrada z para uma representacdo
latente z ~ p(z|z), e um decodificador (decoder - D) que mapeia a saida do codificador
combinada ao rétulo da classe de entrada y de volta para o espaco de entrada & ~ p(z|z,y).
O espaco latente é regularizado de forma a seguir uma distribuicdo normal, permitindo a
extracdo de amostras dele e a geracdo de novos dados usando o decodificador, condicionando-
o0 as classes das tarefas anteriores.

A Equacao representa a funcdo de perda otimizada no treinamento do cVAE. Ela é
composta por dois termos principais, onde o primeiro, ||z — Z||?, é a diferenca quadratica
entre os dados de entrada = e os dados reconstruidos Z. Esse termo penaliza o modelo com

base no erro de reconstrucdo dos dados de entrada, incentivando o cVAE a aprender uma
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representacdo latente que possa reconstruir efetivamente os dados de entrada.

Leae = ||z — 2|* + K L(q(2|2)||p(2)) (3.2)

O segundo termo, K L(q(z|z)||p(z)), é a divergéncia de Kullback-Leibler (KL), que pena-
liza 0 modelo de acordo com a divergéncia entre a representacdo latente gerada e a distribuicdo
normal, forcando o cVAE a aprender uma representacdo latente que siga essa distribuic3o.

A combinacdo desses dois termos na funcdo objetivo permite que o cVAE aprenda efeti-
vamente representacoes latentes que podem ser usadas para reconstruir os dados de entrada,
além de permitir que novas representacoes sejam geradas através da amostragem de um vetor
aleatério a partir de uma distribuicao normal.

Durante o treinamento, o cVAE aprende a produzir a representacdo invariante que capta as
caracteristicas comuns a todas as classes e, em seguida, aprende a mapear essa representacao
de volta ao espaco de entrada. Enquanto isso, o extrator de caracteristicas especificas (S)
aprende a gerar uma representacao especifica de cada classe que capta suas caracteristicas
exclusivas. A representacdo especifica é entdo combinada com a representacdo invariante para
servir como entrada para o médulo classificador (C).

Antes de iniciar o treinamento de uma nova tarefa, o decodificador atua como o compo-
nente de meméria da arquitetura, gerando dados referentes as tarefas anteriores que sdo entao
combinados ao conjunto de treinamento da tarefa atual. Dessa forma, durante o treinamento
da nova tarefa, os dados gerados permitem a rede “lembrar” como eram os dados passados,
evitando assim o esquecimento e mantendo a rede capaz de classificar os dados de classes de
tarefas anteriores.

Em sintese, o IRCL pode ser representado pelo pseudo cddigo a seguir. Note que, por
questao de objetividade, foram abstraidos alguns detalhes, como a definicdo dos parametros,
anotacoes e dimensao__features na chamada da funcao GERAR_IMGS_ANTERIORES,
assim como a definicao do tamanho do vetor na chamada da funcaio ONEHOT_ENCODING

e o numero de épocas de treinamento.
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: function APRENDIZADO__CONTINUO(imgs_atuais, labels_atuais)
if primeira_tarefa then
modelo < NOVOMODELO()
modelo <~ APRENDER__TAREFA(modelo, imgs_atuais, labels_atuais)
else
imgs_anteriores, labels_anteriores <— GERAR__IMGS__ ANTERIORES(modelo)
imgs <— CONCATENAR(imgs_atuais, imgs_anteriores)
labels <~ CONCATENAR(labels_atuais, labels_anteriores)
modelo < APRENDER__TAREFA(modelo, imgs, labels)
end if
return modelo
: end function

. function APRENDER__TAREFA(modelo, imgs, labels)

for epoca in epocas do
labels_onehot <— ONEHOT__ENCODING (labels)
features_encoder <— modelo.ENCODER(imgs)
entrada_decoder < CONCATENAR( features_encoder, labels_onehot)
imgs_geradas < modelo.DECODER(entrada_decoder)
erro_geracao < FUNCAO__DE__ PERDA__GERACAO(imgs, imgs_geradas)
modelo.ATUALIZAR,_PESOS(erro_geracao)

features_encoder <— modelo.ENCODER(imgs)
features_especi fico < modelo.ESPECIFICO(imgs)
features < CONCATENAR( features_especi fico, features_encoder)
predicao <— modelo.CLASSIFICADOR( features)
erro_predicao < FUNCAO__DE_ PERDA__CLASSIFICACAO(labels, predicao)
modelo.ATUALIZAR__ PESOS(erro_predicao)

end for

return modelo

end function

. function GERAR__IMGS__ ANTERIORES(modelo)
features_aleatorias < GERARVETORESALEATORIOS(dimensao_features)
anotacoes_onehot <~ ONEHOT__ENCODING (anotacoes)
entrada_decoder < CONCATENAR( features_aleatorias, anotacoes_onehot)
imagens_geradas <— modelo.DECODER(entrada_decoder)
return tmagens_geradas, anotacoes

end function
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4 METODO PROPOSTO

O método proposto no trabalho apresentado nessa dissertacao se baseia no método IRCL
e parte da premissa de que, em uma abordagem de pseudo-replay, o modelo generativo é o
principal limitador para o desempenho da aprendizagem continua (SHIN et al., |2017)). A intuicdo
por tras disso é que, ao considerar um gerador ideal capaz de criar imagens artificiais idénticas
as reais, isso seria equivalente ao treinamento do modelo utilizando todos os dados reais como
uma Unica tarefa, ou seja, em um cenéario de aprendizagem n3o continua.

Este trabalho visa aprimorar o desempenho da aprendizagem continua apresentado pelo
IRCL, através da melhoria da similaridade entre as imagens geradas e as reais, ao mesmo
tempo em que evita o problema do esquecimento catastréfico no modelo generativo. Para
isso, propomos alteracdes no método de treinamento, no modelo gerador utilizado e no tipo

de camada utilizada na implementacdo da arquitetura proposta no artigo do IRCL.

4.1 HIPOTESES

4.1.1 Treinamento desacoplado

No método IRCL, todos os médulos da rede, incluindo o autoencoder, o médulo classifica-
dor e médulo especifico, sdo treinados em conjunto. Essa abordagem de treinamento, que nds
chamamos de acoplada, exige a escolha de um conjunto de hiperpardmetros que seja capaz
de proporcionar um bom desempenho geral para todos os médulos. No entanto, esse conjunto
de hiperparametros pode nao ser ideal para obter os melhores resultados individuais em cada
um dos médulos. Em outras palavras, ao buscar um bom desempenho global, o desempenho
individual dos componentes da rede pode ser comprometido.

Uma vez que ndo existe retropropagacao entre os médulos de geracao de imagens e os
demais médulos da arquitetura, elaboramos a hipétese de que desacoplar o treinamento do
cVAE dos demais médulos permitiria utilizar um conjunto étimo, ou quase 6timo, de hiperpa-
rametros para o treinamento de cada um deles. Ao fazer isso a expectativa é de que, ao final
do treinamento, tenhamos modelos com melhores capacidades de extracdao de caracteristicas
e de geracdo de imagens, resultando em um melhor desempenho final na classificacdo e na

retencao do conhecimento passado.
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4.1.2 cVAE-GAN como Rede Generativa

O Autoencoder Variacional Condicional (cVAE) utilizado no IRCL possui propriedades de-
sejaveis para o contexto de aprendizagem continua baseada em pseudo-replay. Primeiramente,
por ser variacional, seu espaco latente segue uma distribuicdo pré-definida a partir da qual
é possivel gerar novas amostras de dados. Em segundo lugar, por ser condicional, o modelo
pode ser usado para gerar dados de todas as classes aprendidas até entdo. Além disso, essa
caracteristica induz o codificador a produzir uma representacao invariante, uma vez que a
informacao referente a classe é fornecida como entrada ao decodificador e ndo precisa ser
codificada. Por (ltimo, a representacdo invariante é menos propensa a esquecimento por n3o
conter informacdes especificas de cada classe e é especialmente (til no aprendizado de novas
tarefas (EBRAHIMI et al., [2020)).

Apesar das propriedades benéficas, os VAEs tém a tendéncia de produzir imagens com baixa
nitidez (LARSEN et al/, [2016)), o que é indesejado devido a dependéncia que a abordagem de
pseudo-replay tem em relacdo a qualidade das amostras geradas. Portanto, para alcancar um
melhor desempenho na aprendizagem continua, é desejavel ter um modelo gerativo capaz de
produzir imagens de maior qualidade e que mantenha as propriedades positivas dos VAEs. Para
isso, elaboramos a hipétese de que o treinamento desacoplado do modelo generativo permitiria
utilizar um modelo generativo mais robusto, como um cVAE-GAN, capaz de gerar imagens
mais nitidas, ao mesmo tempo em que é condicional e produz representacdes invariantes. A

partir disso, propomos a arquitetura apresentada na Figura [16]

Specific (S) Classifier (C) — %

Current

Latent invariant
representation

F R Real
T aKe

Figura 16 — Arquitetura proposta

Em sintese, o treinamento desacoplado com uso de um cVAE-GAN é representado na
funcdo APRENDER_TAREFA do pseudo cédigo a seguir. Note que, assim como no

pseudo cddigo anterior, alguns detalhes foram abstraidos por questdo de objetividade. Aqui,
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além dos detalhes citados anteriormente, foi omitida também a definicdo das anotacdes usadas

para computar a FUNCAO_PERDA_DISCRIMINACAOQO.
Algorithm 2 Treinamento desacoplado + cVAE-GAN
1: function APRENDIZADOCONTINUO(imgs_atuais, labels_atuais)
2: if primeira_tarefa then
3: modelo < NOVOMODELO()
4: modelo <~ APRENDER,__TAREFA(modelo, imgs_atuais, labels_atuais)
5: else
6: imgs_anteriores, labels_anteriores < GERAR__IMGS__ANTERIORES(modelo)
7. imgs <— CONCATENAR (imgs_atuais, imgs_anteriores)
8: labels <~ CONCATENAR(labels_atuais, labels_anteriores)
9: modelo <~ APRENDER__TAREFA(modelo,imgs, labels)
10: end if
11 return modelo
12: end function
13: function APRENDER,__TAREFA(modelo, imgs, labels)
14: for epoca in epocas do
15: labels_onehot <~ ONEHOT__ENCODING (labels)
16: features_encoder < modelo.ENCODER(imgs)
17: entrada_decoder < CONCATENAR( features_encoder, labels_onehot)
18: imgs_geradas < modelo.DECODER (entrada_decoder)
10: discriminacao <— modelo.DISCRIMINADOR (imgs, imgs_geradas)
20: erro_geracao <— FUNCAO__DE_ PERDA__GERACAO(imgs, imgs_geradas)
21: erro_discriminacao <~ FUNCAO__PERDA__DISCRIMINACAO(discriminacao)
22: modelo. ATUALIZAR__PESOS(erro_geracao, erro_discriminacao)
23: end for
24: for epoca in epocas do
25: features_encoder < modelo.ENCODER(imgs)
26: features_especi fico < modelo.ESPECIFICO(imgs)
27: features < CONCATENAR( features_especi fico, features_encoder)
28: predicao < modelo.CLASSIFICADOR( features)
29: erro_predicao < FUNCAO__DE__ PERDA__CLASSIFICACAO(labels, predicao)
30: modelo.ATUALIZAR,__PESOS(erro_predicao)
31 end for
32: return modelo
33: end function
34: function GERAR__IMGS__ANTERIORES(modelo)
35: features_aleatorias < GERARVETORESALEATORIOS(dimensao_features)
36: anotacoes_onehot <~ ONEHOT__ENCODING (anotacoes)
37: entrada_decoder <+ CONCATENAR( features_aleatorias, anotacoes_onehot)
38: imagens_geradas < modelo.DECODER(entrada_decoder)
39: return imagens_geradas, anotacoes

40:

end function
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4.1.3 Uso de Camadas Convolucionais

A implementac3o do oficial do IRCL, disponibilizada pelos autores, utiliza camadas lineares
em todos os moédulos de sua arquitetura. No entanto, como discutido na subsecdo [2.2.2]
camadas convolucionais possuem uma melhor capacidade de lidar com dados que possuem
estruturas espaciais, como imagens.

Com base nisso, propomos implementar os mdédulos da arquitetura utilizando camadas
convolucionais, visando aprimorar a extracao de caracteristicas e a geracao de imagens. Com
essa abordagem, esperamos obter melhorias no desempenho da classificacdo e na conservacao

do conhecimento referente as tarefas anteriores.

4.2 CONJUNTOS DE DADOS

O MNIST e Fashion-MNIST sdo conjuntos de dados (datasets) amplamente utilizados
para avaliar e comparar o desempenho de algoritmos e modelos de aprendizado de maquina
em tarefas de visdo computacional, como classificacdo de imagens.

O MNIST é composto por 70.000 imagens de digitos manuscritos entre 0 e 9 dividido em
60.000 imagens de treinamento e 10.000 imagens de teste, com uma resolucao de 28x28 pixels

em escala de cinza. Exemplos de imagenf] presentes no MNIST s3o apresentadas na Figura

iz

4(4)

21(2)

Figura 17 — Exemplos de imagens do MNIST

L TensorFlow - MNIST


https://www.tensorflow.org/datasets/catalog/mnist
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O Fashion-MNIST foi criado como uma alternativa ao MNIST, com o objetivo de fornecer
um desafio mais complexo para os algoritmos. Assim como o MNIST, ele consiste em 70.000
imagens em escala de cinza de 28x28 pixels, porém, ao invés de digitos manuscritos, ele
representa 10 classes de artigos de vestudrio, como camisetas, calcas, casacos e vestidos.
Assim como o MNIST, o Fashion-MNIST também é dividido em um conjunto de treinamento
com 60.000 imagens e um conjunto de teste com 10.000 imagens. No entanto, o Fashion-
MNIST apresenta uma maior diversidade de padrdes, formas e texturas em comparacdo ao

MNIST. A Figura [18] apresenta algumas imagend?] presentes no Fashion-MNIST.

Pullover (2) Trouser (1) Bag (8)

Coat (4) Trouser (1) Ankle boot (9)

Pullover (2) Pullover (2) T-shirt/top (0)

Figura 18 — Exemplos de imagens do Fashion-MNIST

O Split MNIST e o Split Fashion-MNIST sao variacoes do MNIST e Fashion-MNIST
utilizadas para avaliar métodos de aprendizado continuo. A diferenca esta no fato de que
os datasets sao divididos em tarefas, onde cada uma delas contém um conjunto de classes
dos dados originais. Neste trabalho, o Split MNIST e Split Fashion-MNIST foram definidos
contendo 5 tarefas com 2 classes cada. A Figura[19]ilustra como foi feita a divisdo do MNIST

em tarefas.

Tarefa 5

6§17

Tarefa 1 Tarefa 2 Tarefa 3

Ol /.

Classe 1 Classe 2 Classe 1 Classe 2 Classe 1 Classe 2 Classe 1 Classe 2 Classe 1 Classe 2

Figura 19 — Divisao de classes entre tarefas para o Split MNIST

2 |TensorFlow - Fashion-MNIST


https://www.tensorflow.org/datasets/catalog/fashion_mnist
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4.3 METRICAS DE AVALIACAO
4.3.1 Meédia da Acuracia de Classificacao

A Média da Acurécia de Classificacdo (Acc,,y) é uma medida que quantifica o desempenho
de um modelo na classificacdo de dados de tarefas aprendidas sequencialmente. Ela é uma
média simples das acuracias em cada tarefa individual, calculadas apds o treinamento de todas
as tarefas. A Equacdo representa a Acc,yg, onde N é a quantidade de tarefas e Ay ; é a

acuracia na i — ésima tarefa apds o treinamento de todas as NV tarefas.

1 N
ACCavg = N Z AN,i (41)
i=1

Modelos com alta ACC s3o considerados melhores no aprendizado continuo, pois conse-

guem aprender novas tarefas e manter o desempenho nas tarefas anteriores.

4.3.2 Meédia do Backward Transfer

A métrica "Backward Transfer" (BWT) é usada para avaliar o impacto do aprendizado de
novas tarefas no desempenho de um modelo em tarefas anteriores. Ela quantifica a capacidade
do modelo de manter ou até melhorar seu desempenho nas tarefas anteriores, enquanto aprende
novas tarefas.

Valores de BWT positivos indicam que o aprendizado de novas tarefas ajudou a melhorar o
desempenho nas tarefas anteriores, um efeito conhecido como transferéncia positiva. Valores
negativos indicam que o aprendizado de novas tarefas prejudicou o desempenho nas tarefas
anteriores, o que sugere esquecimento catastréfico. Um valor de BWT préximo a zero indica
que o desempenho nas tarefas anteriores ndo foi significativamente afetado pelo aprendizado
de novas tarefas. Modelos com alto valor de BWT sao considerados melhores no aprendizado
continuo, pois conseguem lidar com novas tarefas sem afetar negativamente o desempenho
nas tarefas anteriores. A BWT ¢é representada na Equacdo , onde A;; é a acuracia na
© — ésima tarefa logo apés o seu treinamento, e Ay ; é a acurdcia na ¢ — ésima tarefa apds
o treinamento de todas as N tarefas.

N-1

1
BW Ty = 57— 2 (Ani = Aiy) (4.2)

=1
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4.3.3 Medida do Indice de Similaridade Estrutural (SSIM)

A métrica Structural Similarity Index Measure (SSIM) é uma medida de qualidade de ima-
gem que avalia a similaridade estrutural entre duas imagens. Diferente das métricas baseadas
em erro, como o erro quadratico médio (MSE) ou o erro absoluto médio (MAE), que com-
param a diferenca de intensidade de pixel entre as imagens, o SSIM considera a percepcao
humana e leva em conta a luminancia, o contraste e a estrutura das imagens.

O SSIM é calculado em uma janela deslizante que compara regides das duas imagens,
gerando um valor para cada regido comparada. O valor do SSIM varia entre -1 e 1, onde
1 indica que as imagens sdo idénticas e valores menores indicam uma menor similaridade
estrutural. Ao calcular a média dos valores de SSIM de todas as regides comparadas, obtém-se
um anico valor que indica a similaridade estrutural geral entre as duas imagens. Esta métrica é
amplamente utilizada para avaliar a qualidade de imagens comprimidas, restauradas ou geradas
por algoritmos de aprendizado de maquina.

O SSIM é representado pela Equacdo [4.3] a seguir:

SS]M<I7y) :l(x7y)a'c<$7y)6's(x7y>’y (43)

onde x e y sdo as imagens comparadas ou regides delas, [, ¢ e s sdo funcdes de comparacao
para luminancia, contraste e estrutura, respectivamente, e «, (5 € v sdo os pesos para cada
funcao de comparacao.

A func3o de luminancia [ compara a média das intensidades dos pixels entre duas imagens,
buscando avaliar se as duas imagens tém brilho similar. Ela é definida por:

Uz, y) = QQM“y—;rCl
pz + s + Gy

onde i, e 1, sao as médias de intensidade dos pixels das imagens x e y, respectivamente, e
C7 é uma constante pequena para evitar divisdo por zero.

A funcao de contraste ¢ mede a compatibilidade entre os desvios padrao das intensidades

dos pixels das duas imagens, refletindo se as duas imagens tém um grau similar de contraste.

Ela é expressa por:
20,0, + Cy
oz to,+ Cy

onde o, e 0, sdo os desvios padrdo de = e y, respectivamente, e (s € uma constante pequena

para evitar divisdao por zero.
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A funcdo de estrutura s compara a covariancia entre as duas imagens em relacdo aos
seus desvios padrdo, buscando avaliar se as duas imagens compartilham padrdes de variacao
espacial (ou estrutura). Esta funcdo é dada por:

Ozy + Cs

s(x,y) = m

onde o, é a covariancia entre z e y, e C'5 é uma constante pequena. Normalmente C5 = C/2

para simplificar.
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5 EXPERIMENTOS E RESULTADOS

Conforme discutido no Capitulo 4] o método apresentado nessa dissertacdo se baseia no
trabalho do artigo Learning Invariant Representation for Continual Learning (IRCL). Portanto,
n6és comparamos diretamente nosso método com os resultados do IRCL. Por conta disso,
ao desenvolver nosso método, também implementamos a arquitetura e a abordagem de trei-
namento originais do IRCL para reproduzir seus resultados e estabelecer uma referéncia de
desempenho. Para o comparativo, realizamos experimentos para verificar o efeito da aplicacdo
das hipéteses elaboradas.

Na implementacdo oficiaE] do artigo disponibilizada pelos autores, os médulos da arquite-
tura do IRCL possuem as seguintes caracteristicas: o0 mddulo especifico (S) tem uma camada
oculta de 20 neurdnios, o médulo classificador (C) tem uma camada com 40 neurdnios, o
codificador (E) e decodificador (D) possuem uma camada oculta de 300 neurénios, com uma
representacdo latente de tamanho 32. Todos os médulos utilizam camadas lineares e funcao
de ativacao RelLU.

Para reproduzir os resultados, treinamos a arquitetura utilizando os mesmos hiperparame-
tros reportados no artigo, ou seja, usando Adam como otimizador, treinando por 5 e 10 épocas
para o Split MNIST e Split FashionMNIST, respectivamente, utilizando um tamanho de batch
de 128 e taxas de aprendizado de 2 x 10~* para os médulos especifico e classificadorﬂ e 1072
para o cVAE. Ao treinar uma nova tarefa, foram geradas 5000 pseudo-amostras de cada uma
das classes anteriores.

Em todos os experimentos, utilizamos a mesma semente para os geradores de nldmeros
aleatérios das bibliotecas durante a implementac3o. Isso garante que as variacoes observadas
nos resultados n3o sao resultado de fatores vinculados a aleatoriedade, como por exemplo, a

inicializacdo dos pesos das redes.

v Implementation for the paper "Learning Invariant Representation for Continual Learning"
in PyTorch.

2 Embora no artigo seja reportado 1072, no cédigo, na verdade, é utilizado 2 x 10~%. Usar
1072 n3o resulta nas métricas reportadas pelos autores.


https://github.com/GhadaSokar/Invariant-Representation-for-Continual-Learning
https://github.com/GhadaSokar/Invariant-Representation-for-Continual-Learning
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5.1 RESULTADOS

5.1.1 Treinamento desacoplado

Neste experimento, preservamos a arquitetura original proposta pelo IRCL, alterando ape-
nas a sua forma de treinamento. O objetivo é verificar se desacoplar o treinamento do cVAE dos
demais médulos da arquitetura permite utilizar hiperparametros que resultem em modelos com
melhores capacidades de extracado de caracteristicas, geracao de imagens e, consequentemente,
melhor desempenho na classificacdo de imagens e retencdo do conhecimento passado.

Para isso, decidimos treinar primeiro o cVAE, pois a representacdo intermediaria gerada
pelo seu codificador (E) é utilizada pelo mddulo de classificacdo (C). Na sequéncia, os médulos
especificos (S) e de classificacdo (C) foram treinados em conjunto. Os hiperpardmetros usados

nesse experimentos s3o apresentados na Tabela [1}

Tabela 1 — Hiperparametros utilizados

Conjunto de Dados Moédulo Epocas Taxa de Aprendizado
E =
| spe<.:|f|co 5 9 % 10
Split MNIST Classificacdo
cVAE 40 4 %1073
E s
| | Spe(.ZIfICO 5 9 % 10-4
Split FashionMNIST | Classificacdo
cVAE 25 1072

A Tabela 2| apresenta os resultados obtidos nos experimentos para cada método e conjunto
de dados. E possivel observar que o método de treinamento desacoplado proporcionou nas

métricas quando comparado ao método original.

Tabela 2 — Comparacgao das Médias do SSIM, do BWT e da Acuracia

; ] Split MNIST Split FashionMNIST
Método de Treino
SSIM BWT (%) Acuracia (%) | SSIM BWT (%) Acuracia (%)
Original 0599 -11,314 87,143 0,517 -23,494 76,070
Desacoplado 0,643 -11,680 87,227 0,519 -17,887 77,940

Em relacdo ao SSIM, o treinamento desacoplado resultou em uma melhora em ambos
os conjuntos de dados, indicando uma melhoria na geracdo de imagens. Isso implica que, ao
treinar o cVAE de forma isolada dos outros médulos, foi possivel obter uma representacao

latente que codifica melhor as caracteristicas das imagens.
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Ja em relacao ao BWT, notou-se um comportamento distinto entre os conjuntos de dados.
Enquanto no Split FashionMNIST o método desacoplado apresentou uma grande reducdo do
fendomeno de esquecimento, indicado por valores de BWT menos negativos, o mesmo nao foi
observado no Split MNIST onde, na verdade, houve uma pequena piora, com valores mais
negativos.

Apesar dos resultados mistos do BWT, o treinamento desacoplado levou a uma melhora
geral de acuracia em ambos os casos, embora pequena para o conjunto de dados Split MNIST
e mais notavel no Split Fashion-MNIST. Esse incremento indica que desacoplar o treinamento
estimula o médulo classificador a desenvolver uma melhor generalizacdo para novas amostras,
talvez devido a representacoes mais robustas fornecida pelo cVAE.

Em sintese, os resultados obtidos mostram que desacoplar o treinamento dos médulos da

arquitetura leva a uma melhora na acuracia de classificacdo das imagens.

5.1.2 c¢VAE-GAN como Rede Generativa

Neste experimento, utilizamos o treinamento desacoplado para treinar um cVAE-GAN
no lugar no cVAE usado originalmente na arquitetura do IRCL. O objetivo é verificar se o
desacoplamento viabiliza o treinamento de modelos generativos mais robustos, com melhor
capacidade de geracdo de imagens, levando a uma melhora no desempenho geral da arquite-
tura.

Para implementar o cVAE-GAN, adicionamos a arquitetura uma rede discriminadora apéds
o decodificador, composta por quatro camadas convolucionais e uma camada linear de saida.
Utilizamos batch normalization nas trés camadas escondidas, usamos a ReLU como funcao
de ativacdo das camadas convolucionais e Sigmoid na camada de saida. Os hiperparametros
utilizados sdo apresentados na Tabela 3]

A Tabela[4]apresenta os resultados obtidos, onde é possivel constatar que a adi¢do do cVAE-
GAN influenciou de maneira distinta as métricas entre os dois conjuntos de dados testados.

Com relacdo ao SSIM, o cVAE-GAN levou a uma reducao na qualidade das imagens
geradas para o conjunto Split MNIST, enquanto que houve uma melhora na qualidade das
imagens geradas para o Split Fashion-MNIST. Para o BWT, a adicdo do cVAE-GAN teve
um efeito positivo no Split MNIST, mas, no FashionMNIST, houve um aumento na taxa de
esquecimento. Por fim, em relacdo a Acuracia, observamos uma melhora no Split MNIST,

enquanto no Split FashionMNIST houve uma piora.
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Tabela 3 — Hiperparametros utilizados

Conjunto de Dados Médulo Epocas Taxa de Aprendizado
Espc.ac.n‘lco 5 5 % 10-4
Split MNIST CIass.nf|cador
Codlflc.ador 100 5 5 10-4
Decodificador
Discriminador 100 107°
ESpé(IZIfICO 15 104
Split FashionMNIST | 2ssificador
COdIfIC.adOI’ 195 10-3
Decodificador
Discriminador 70 1074

Tabela 4 — Comparacao das Médias do SSIM, do BWT e da Acuracia

3 ] Split MNIST Split FashionMNIST

Método de Treino
SSIM BWT (%) Acuracia (%) | SSIM BWT (%) Acuracia (%)

Original 10599 -11314 87,143 | 0517 -23,494 70070
Desacoplado 0,643 -11,680 87,227 0,519 -17,887 77,940
D lad

eeacoplado 0618 -9,554 88,761 | 0,547 -21964 77,160
cVAE-GAN

Em suma, a inclusdo do cVAE-GAN na estrutura de treinamento desacoplado ofereceu
vantagens para o conjunto de dados Split MNIST, mas o resultado positivo ndo se manteve
para o Split FashionMNIST. Isso impossibilita afirmar que a adicdo do cVAE-GAN, por si so,
leva a uma melhoria no desempenho de aprendizagem continua em relacdo ao treinamento

desacoplado com o cVAE original.

5.1.3 Uso de Camadas Convolucionais

Para esse experimento, substituimos todos os mddulos da arquitetura por implementacdoes
com camadas convolucionais, exceto pelo médulo de classificacdo, que foi mantido o mesmo
da arquitetura original do IRCL. O objetivo é verificar se o uso desse tipo de camada leva a uma
melhora no desempenho obtido pela arquitetura. Apesar do desempenho misto apresentado no
experimento anterior, optamos por manter a utilizacdo do cVAE-GAN visto que os resultados
obtidos com ele ainda foram melhores do que os obtidos pela arquitetura original.

Para isso, utilizamos um moédulo especifico composto de trés camadas convolucionais e

ReLU como funcao de ativacdo, cada uma seguida por uma operacdo de max pooling e com
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uma camada linear de saida. O codificador foi implementado com trés camadas convolucionais,
aplicando batch normalization e a funcido de ativacdo ELU, com a = 1.0. O decodificador
possui uma camada linear de entrada, com ELU como ativacdo, seguida por trés camadas
convolucionais com a funcdo de ativacao RelLU. Foi aplicado batch normalization em todas as
suas camadas. O discriminador é composto por quatro camadas convolucionais, usando RelLU
como ativacdo, e uma camada linear de saida, com aplicacao de batch normalization em todas
as camadas escondidas..

A Tabela [5| exibe os hiperparametros utilizados durante este experimento para todos os

modulos da arquitetura.

Tabela 5 — Hiperparametros utilizados

Conjunto de Dados Médulo Epocas Taxa de Aprendizado
Espé(.ZIfICO o5 4 x 10-4
Split MNIST CIass-nflcador
Codlflc.ador 20 10-3
Decodificador
Discriminador 70 2 x 1074
ESpé(IZIfICO 15 5 5 10-4
Split FashionMNIST |- C2ssificador
COdIfIC.adOI’ 20 10-3
Decodificador
Discriminador 70 2 x 1074

A Tabela [f] apresenta os resultados obtidos, onde é possivel verificar que a utilizacdo de

camadas convolucionais levou a uma melhora em todas as métricas avaliadas.

Tabela 6 — Comparacao das Médias do SSIM, do BWT e da Acuracia

; . Split MNIST Split FashionMNIST

Método de Treino - -
SSIM - BWT (%) Acurécia (%) | SSIM BWT (%) Acuracia (%)
Original 0,599 -11,314 87,143 0,517 -23,494 76,070
Desacoplado | 0643 -11680 8r227 10519 -l7.887 71,940

D lad

esacoprado 0,618  -9,554 88,761 | 0,547  -21,064 77,160
cVAE-GAN
Desacoplado
cVAE-GAN 0.785 -2.989 97.168 0.599 -15.112 81.329
Camadas Convolucionais

Ao analisar os valores de SSIM, o uso de camadas convolucionais resultou em uma melhora

na qualidade das imagens geradas nos dois conjuntos de dados avaliados. As Figuras [20| e
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apresentam as imagens do MNIST e Fashion-MNIST em conjunto com as imagens geradas
utilizando o método IRCL e as produzidas através de nossa abordagem. E possivel observar um

aumento na nitidez das imagens geradas pela nossa abordagem em comparacao as imagens

geradas pelo IRCL.

\ 56

247
34‘?

) MNIST (b) IRCL (c) Método proposto

Figura 20 — a) Amostras do MNIST em comparagao com b) imagens gerada pelo IRCL
e ¢) imagens gerada pelo método proposto

(a) FashionMNIST (b) IRCL (¢) Método proposto

Figura 21 — a) Amostras do Fashion-MNIST em comparagdo com b) imagens gerada
pelo IRCL e ¢) imagens gerada pelo método proposto

Em relacao ao BWT, houve uma melhora na taxa de esquecimento, possivelmente uma
consequéncia da maior qualidade das imagens geradas, que sdo usadas para manter o conhe-
cimento relativo as classes de tarefas anteriores. Finalmente, considerando a acuracia média,
foram obtidas as melhores taxas em ambos conjuntos avaliados.

Dessa forma, o experimento demonstrou que a combinacdo da utilizacdo de camadas
convolucionais com o treinamento desacoplado e uso de um cVAE-GAN resulta na diminuicdo
do efeito de esquecimento catastréfico e, consequentemente, na melhora no desempenho de

classificacdo ao final do treinamento de todas as tarefas.
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6 CONCLUSAO

Neste trabalho, propusemos uma arquitetura aprimorada para Aprendizado Continuo uti-
lizando a abordagem de pseudo-replay no cenario de classe incremental. O estudo se baseou
no método IRCL (/nvariant Representation for Continual Learning), considerado o estado da
arte até entdo. A arquitetura proposta integra a utilizacdo de camadas convolucionais com o
uso de um cVAE-GAN como modelo gerativo, além de utilizar um treinamento independente
para os médulos da arquitetura. Os conjuntos de dados avaliados foram o Split MNIST e Split
FashionMNIST.

Primeiramente, conduzimos experimentos para testar a hipétese de que o desacoplamento
do treinamento do modelo generativo dos demais médulos da arquitetura permitiria a utilizacdo
de melhores hiperparametros. Como resultado, observamos que desacoplar o treinamento leva
a uma melhora na qualidade das imagens geradas e aumento no desempenho de classificacao
das imagens.

Em seguida, avaliamos a hipdtese de que o desacoplamento viabilizaria o treinamento
de modelos generativos mais robustos, com melhor capacidade de geracao de imagens. Para
isso, utilizamos um cVAE-GAN no lugar do cVAE original, treinado de forma desacoplada. Os
resultados obtidos nao foram suficientes para afirmar que o uso do cVAE-GAN leva a uma
melhora no desempenho em relacdo ao uso do cVAE tradicional.

Por fim, realizamos experimentos para testar a hipotese de que o uso de camadas convolu-
cionais levaria a um melhor geral desempenho da arquitetura. Os resultados demonstraram que
o uso de camadas convolucionais em conjunto com o treinamento desacoplado e a utilizacao
de um cVAE-GAN leva a uma melhora na qualidade das imagens geradas, um aumento na
acuracia da classificacao e diminuicdo do efeito de esquecimento catastrofico.

Dessa forma, a abordagem desenvolvida neste estudo superou o método IRCL usado como
referéncia, sendo possivel obter uma melhora de até 10 pontos percentuais na média da Acu-

racia e de até 8 pontos na média do Backward Transfer nos conjuntos avaliados.
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