
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Lucas Augusto Mota de Alcantara

Aprendizagem Contínua para Classificação de Imagens

Recife

2024

Lucas Augusto Mota de Alcantara

Aprendizagem Contínua para Classificação de Imagens

Trabalho apresentado ao Programa de Pós-
graduação em Ciência da Computação do Centro
de Informática da Universidade Federal de Pernam-
buco, como requisito parcial para obtenção do grau
de Mestre Acadêmico em Ciência da Computação.

Área de Concentração: Ciência da Computação

Orientador (a): Tsang Ing Ren

Recife
2024

Alcantara, Lucas Augusto Mota de.
 Aprendizagem Contínua para Classificação de Imagens / Lucas
Augusto Mota de Alcantara. - Recife, 2024.
 56f.: il.

 Universidade Federal de Pernambuco, Centro de Informática,
Ciências da Computação/PPGCC.
 Orientação: Tsang Ing Ren.

 1. Aprendizado Contínuo; 2. Esquecimento Catastrófico; 3.
Pseudo Replay. I. Ren, Tsang Ing. II. Título.

UFPE-Centro de Ciencias Exatas e da Natureza

.Catalogação de Publicação na Fonte. UFPE - Biblioteca Central

Lucas Augusto Mota de Alcantara

“Aprendizagem Contínua para Classificação de Imagens”

Dissertação de Mestrado apresentada ao
Programa de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Mestre em Ciência da
Computação. Área de Concentração:
Inteligência Computacional

Aprovado em: 26/03/2024.

BANCA EXAMINADORA

Prof. Dr. George Darmiton da Cunha Cavalcanti

Centro de Informática / UFPE

Prof. Dr. Luiz Eduardo Soares de Oliveira

Departamento de Informática /UFPR

Prof. Dr. Tsang Ing Ren

Centro de Informática / UFPE
(orientador)

RESUMO

A habilidade de realizar Aprendizado Contínuo (Continual Learning) é crucial para o
desenvolvimento de modelos de Inteligência Artificial capazes de adquirir e manter conheci-
mento ao longo do tempo sem esquecer informações anteriores. Isso representa um grande
desafio técnico, dado que redes neurais são suscetíveis ao fenômeno de esquecimento catas-
trófico durante o processo de aprendizado de novas tarefas. Métodos basados na abordagem
de pseudo-replay utilizam redes gerativas para criar amostras sintéticas de tarefas anteriores,
que são então apresentadas ao modelo durante o aprendizado de novas tarefas com o intuito
de reduzir o esquecimento. Nesta dissertação, exploramos melhorias no então método estado
da arte baseado na abordagem de pseudo-replay, Invariant Representation for Continual Le-

arning (IRCL). Utilizamos como modelo gerativo uma cVAE-GAN (Conditional Variational

Autoencoder Generative Adversarial Network) e desacoplamos o seu treinamnto do restante
da arquitetura, de forma a otimizar as diferentes partes da rede de forma independente. Além
disso, utilizamos camadas convolucionais ao invés de camadas lineares. Os resultados experi-
mentais alcançados demonstram melhorias de até 10 pontos percentuais na Acurácia Média
e de até 8 pontos na média do Backward Transfer, superando o estado da arte nos conjuntos
de dados Split MNIST e Split FashionMNIST.

Palavras-chaves: Aprendizado Contínuo, Esquecimento Catastrófico, Pseudo Replay.

ABSTRACT

Continual Learning is the concept of having a model able to sequentially learn to solve
new tasks without losing the ability to solve previous tasks. Achieving this is challenging
because neural networks usually suffer from catastrophic forgetting of the preceding tasks
when they are learning new ones. To handle this issue, pseudo-replay approaches leverages
the performance of generative networks using them to generate samples related to past data
to serve as input to the model when it is learning new tasks. In this work, we propose an
improved architecture and training strategy based on the state-of-the-art pseudo-replay IRCL
method. We use a cVAE-GAN as the generative model and train it decoupled from the other
components of the architecture. Also, we make use of convolutional layers for the architecture
components instead of linear ones. Our experimental results show that the proposed method
outperforms the state-of-the-art IRCL method by up to 10% in Average Accuracy and up to
8.3% in Average Backward Transfer on both Split MNIST and Split FashionMNIST datasets.

Keywords: Continual Learning, Catastrophic Forgetting, Pseudo-Replay.

LISTA DE FIGURAS

Figura 1 – Aprendizado com dados acessados sequencialmente. 12
Figura 2 – Continuous Training - A cada vez que os dados são atualizados, o modelo

existente é descartado e um novo modelo é treinado. 13
Figura 3 – Ilustração de um neurônio artificial . 16
Figura 4 – Exemplos de funções de ativação . 17
Figura 5 – Exemplos de funções de ativação com diferentes pesos 17
Figura 6 – Exemplos de funções de ativação com diferentes valores de bias 18
Figura 7 – Ilustração de rede neural com uma camada linear escondida 20
Figura 8 – Ilustração de uma rede neural com camadas convolucionais 21
Figura 9 – Exemplo da operação de convolução . 21
Figura 10 – Exemplo de operação de convolução com diferentes tamanhos de passo . . 22
Figura 11 – Ilustração do efeito da aplicação de preenchimento 22
Figura 12 – Exemplo da operação de Max-Pooling . 23
Figura 13 – Ilustração de um autoencoder tradicional 23
Figura 14 – Ilustração de um VAE-GAN . 25
Figura 15 – Arquitetura proposta no artigo Learning Invariant Representation for Con-

tinual Learning . 37
Figura 16 – Arquitetura proposta . 41
Figura 17 – Exemplos de imagens do MNIST . 43
Figura 18 – Exemplos de imagens do Fashion-MNIST 44
Figura 19 – Divisão de classes entre tarefas para o Split MNIST 44
Figura 20 – a) Amostras do MNIST em comparação com b) imagens gerada pelo IRCL

e c) imagens gerada pelo método proposto 53
Figura 21 – a) Amostras do Fashion-MNIST em comparação com b) imagens gerada

pelo IRCL e c) imagens gerada pelo método proposto 53

LISTA DE TABELAS

Tabela 1 – Hiperparâmetros utilizados . 49
Tabela 2 – Comparação das Médias do SSIM, do BWT e da Acurácia 49
Tabela 3 – Hiperparâmetros utilizados . 51
Tabela 4 – Comparação das Médias do SSIM, do BWT e da Acurácia 51
Tabela 5 – Hiperparâmetros utilizados . 52
Tabela 6 – Comparação das Médias do SSIM, do BWT e da Acurácia 52

super

SUMÁRIO

1 INTRODUÇÃO . 11

1.1 MOTIVAÇÃO . 12

1.2 OBJETIVOS . 14

1.3 ESTRUTURA DA DISSERTAÇÃO . 15

2 FUNDAMENTAÇÃO TEÓRICA 16

2.1 REDES NEURAIS . 16

2.2 CAMADAS . 18

2.2.1 Lineares . 19

2.2.2 Convolucionais . 20

2.3 AUTOENCODERS . 23

2.3.1 Autoencoders Variacionais . 24

2.3.2 Autoencoders Variacionais Condicionais 24

2.3.3 VAE-GANs . 24

2.4 TAREFAS EM APRENDIZADO CONTÍNUO 25

2.5 CENÁRIOS DE PROBLEMAS DE APRENDIZADO CONTÍNUO . . . 26

2.5.1 Tarefa Incremental . 26

2.5.2 Domínio Incremental . 27

2.5.3 Classe Incremental . 28

2.6 ABORDAGENS PARA IMPLEMENTAR APRENDIZADO CONTÍNUO 28

2.6.1 Baseadas em Regularização . 29

2.6.2 Baseadas em Arquitetura . 29

2.6.3 Baseadas em Rehearsal . 29

3 TRABALHOS RELACIONADOS 31

3.1 INÍCIO . 31

3.2 PERÍODO RECENTE . 34

3.2.1 Estado da Arte . 36

3.2.2 IRCL . 36

4 MÉTODO PROPOSTO . 40

4.1 HIPÓTESES . 40

4.1.1 Treinamento desacoplado . 40

4.1.2 cVAE-GAN como Rede Generativa 41

4.1.3 Uso de Camadas Convolucionais 43

4.2 CONJUNTOS DE DADOS . 43

4.3 MÉTRICAS DE AVALIAÇÃO . 45

4.3.1 Média da Acurácia de Classificação 45

4.3.2 Média do Backward Transfer . 45

4.3.3 Medida do Índice de Similaridade Estrutural (SSIM) 46

5 EXPERIMENTOS E RESULTADOS 48

5.1 RESULTADOS . 49

5.1.1 Treinamento desacoplado . 49

5.1.2 cVAE-GAN como Rede Generativa 50

5.1.3 Uso de Camadas Convolucionais 51

6 CONCLUSÃO . 54

REFERÊNCIAS . 55

11

1 INTRODUÇÃO

As redes neurais artificiais são uma subárea da aprendizagem de máquina (machine lear-

ning) que revolucionou a forma como resolvemos problemas complexos em diversas aplicações,
desde processamento de imagens e áudio até processamento de linguagem natural e robótica.
Em essência, redes neurais são sistemas computacionais inspirados na estrutura e funcio-
namento do cérebro humano, capazes de aprender com dados a reconhecer padrões, fazer
previsões e gerar dados. Isso as torna uma ferramenta poderosa na resolução de problemas do
mundo real que podem ser muito complexos ou difíceis de serem resolvidos com algoritmos
tradicionais.

Embora o conceito de redes neurais exista desde a década de 1940 (MCCULLOCH; PITTS,
1943), seu verdadeiro potencial só começou a ser explorado com o surgimento da computação
moderna, que trouxe a capacidade de geração, armazenamento e processamento de grandes
volumes de dados. Isso permitiu treinar redes neurais profundas, que possuem múltiplas ca-
madas de processamento e que são capazes de aprender características complexas e abstratas
dos dados (CIREsAN et al., 2011) (KRIZHEVSKY; SUTSKEVER; HINTON, 2012) (CIREGAN; MEIER;

SCHMIDHUBER, 2012), o que impulsionou a subárea do aprendizado de máquina conhecida
como aprendizado profundo (deep learning). Desde então, esse é um campo de pesquisa em
rápida evolução, com novas arquiteturas, algoritmos e aplicações sendo desenvolvidas cons-
tantemente.

Como consequência, nos últimos anos houve um avanço significativo no desempenho das
redes profundas para solucionar problemas de visão computacional, tais como classificação de
imagens e reconhecimento de objetos, atividades onde, em muitos casos, as redes conseguem
superar o desempenho humano (HE et al., 2015). Por exemplo, em tarefas de detecção de
objetos, os modelos de aprendizado profundo são capazes de detectar e localizar com pre-
cisão múltiplos objetos em uma imagem, mesmo em cenas complexas, em uma fração de
segundo. Essa velocidade é muito superior à capacidade humana de processar informações
visuais, tornando esses modelos ideais para automatizar tarefas de processamento de imagens.

No entanto, esses modelos ainda têm limitações em comparação ao desempenho humano
em alguns aspectos. Por exemplo, os humanos têm a capacidade de raciocinar sobre o conteúdo
de uma imagem e, então, entender o contexto e o significado de uma forma que ainda não
é totalmente replicada pelos modelos de aprendizagem profunda. Humanos também podem

12

aprender a partir de poucos exemplos e generalizar para novas situações não vistas, enquanto
os modelos profundos frequentemente requerem dados rotulados de qualidade e em grande
quantidade para alcançar um alto desempenho.

Outra limitação significativa é que a maioria das abordagens usadas para resolver esses
problemas assume que os dados de treinamento são independentes e identicamente distribuídos
(i.i.d.). Isso significa que o desempenho desses modelos é muito reduzido em cenários em que os
dados de treinamento não estão de acordo com essa suposição, como quando o conhecimento
precisa ser ampliado a partir de dados recebidos de forma sequencial, como ilustrado na Figura
1.

Figura 1 – Aprendizado com dados acessados sequencialmente.

Por outro lado, os seres humanos têm a capacidade de aprender a realizar novas tarefas
enquanto acumulam o novo conhecimento com aquele adquirido no passado. Além disso,
durante o aprendizado das novas tarefas utilizam a experiência acumulada até então, como
quando primeiro aprendemos a falar e, posteriormente, a ler. Essa habilidade, chamada de
aprendizagem contínua (continual learning - CL) ou aprendizagem incremental (incremental

learning - IL), é uma capacidade que sistemas inteligentes devem possuir para lidar com
problemas do mundo real, uma vez que eles evoluem constantemente e padrões que não eram
conhecidos antes precisam ser aprendidos por um sistema já existente.

1.1 MOTIVAÇÃO

Apesar de se inspirar no funcionamento do cérebro humano, a abordagem tradicionalmente
usada para ensinar novas tarefas para redes neurais consiste em periodicamente descartar o
modelo atual (ou parte dele) e treinar um novo usando todos os dados coletados até o mo-
mento, em um processo chamado de Continuous Training (SYMEONIDIS et al., 2022), processo
ilustrado na Figura 2, algo que nem sempre é viável devido a restrições de tempo ou de
capacidade computacional, além de não reproduzir o aprendizado humano.

13

Figura 2 – Continuous Training - A cada vez que os dados são atualizados, o modelo
existente é descartado e um novo modelo é treinado.

Para resolver isso, métodos de aprendizagem contínua têm o objetivo de evitar a perda de
conhecimentos adquiridos no passado durante o aprendizado de novas tarefas, permitindo que
os modelos retenham o conhecimento obtido a partir de dados acessados sequencialmente, sem
a necessidade de treinar um novo modelo sempre que novas tarefas precisam ser aprendidas.

Consequentemente, adicionar a capacidade de aprendizado contínuo a sistemas inteligentes
também pode trazer benefícios significativos do ponto de vista da sustentabilidade (COSSU;

ZIOSI; LOMONACO, 2021), uma vez que possibilitaria a redução na quantidade de recursos com-
putacionais necessários para treinar modelos em novos dados. Como esses modelos poderiam
se aproveitar de um conhecimento já adquirido, eles exigiriam menos tempo e energia para
aprender novas informações, reduzindo a pegada de carbono do treinamento dos modelos,
tornando-os mais eficientes e sustentáveis.

Por exemplo, o treinamento do modelo CoAtNet (DAI et al., 2021), uma rede neural pro-
funda moderna para classificação de imagens, com o dataset JFT-3B (ZHAI et al., 2021) resulta
em um custo estimado de cerca de 83.000kg CO2eq (LI et al., 2022). Em comparação, o custo
anual médio gerado por um ser humano é de aproximadamente 5.000kg CO2eq (STRUBELL;

GANESH; MCCALLUM, 2020). Devido ao alto custo de treinamento, é desejável encontrar al-
ternativas que possibilitem a inclusão de novas classes de maneira mais eficiente, evitando o
custo do treinamento completo do modelo.

Entretanto, construir um sistema com a capacidade de aprender continuamente é algo
desafiador, porque as redes neurais geralmente otimizam seus pesos com base nos dados
mais recentes, o que pode fazer com que elas esqueçam o conhecimento relacionado a dados
passados, um fenômeno conhecido como esquecimento catastrófico (catastrophic forgetting)
ou interferência catastrófica (catastrophic interference).

Uma maneira comum de mitigar esse problema é armazenar os dados referentes ao conhe-
cimento já adquirido pelo modelo para que sejam utilizados posteriormente para atualizá-lo
quando necessário, mas sem descartá-lo por completo, uma abordagem conhecida como rehe-

14

arsal ou replay. No entanto, esses métodos tem a desvantagem de exigir muito espaço de
armazenamento, o que pode ser impraticável em muitas situações.

Por outro lado, outros métodos buscam mitigar o efeito de esquecimento catastrófico sem
depender do armazenamento dos dados através da geração de dados artificiais que representem
os dados vistos no passado, uma abordagem conhecida como pseudo-rehearsal ou pseudo-

replay. No entanto, esse é um campo de pesquisa que ainda está em estágio inicial na área
de visão computacional com modelos profundos, de forma que os métodos propostos até o
momento apresentam um desempenho limitado, que ainda não é adequado para aplicações
práticas.

1.2 OBJETIVOS

Este trabalho tem como objetivo desenvolver um novo método que aprimore o desempenho
de redes neurais treinadas continuamente, especificamente no contexto de classificação de
imagens com aprendizado incremental de classes, utilizando a abordagem de pseudo-rehearsal.
A proposta é melhorar o atual método estado-da-arte, IRCL (SOKAR; MOCANU; PECHENIZKIY,
2021), a partir da ideia de que, em métodos baseados em pseudo-rehearsal, o desempenho é
limitado pela qualidade dos dados gerados (SHIN et al., 2017).

A partir dessa ideia foram definidas três hipóteses visando melhorar a qualidade das ima-
gens geradas. A primeira delas consiste em modificar a arquitetura do IRCL para desacoplar
o treinamento do modelo gerador dos demais módulos. A segunda hipótese propõe a imple-
mentação de um cVAE-GAN, através da adição de um discriminador após o decodificador
presente na arquitetura original. Por fim, a terceira hipótese é a utilização de camadas convo-
lucionais em alguns módulos da arquitetura, visando aprimorar a extração de características
e, consequentemente, a geração de imagens.

O trabalho realizado resultou na seguinte publicação:
Convolutional Decoupled cVAE-GANs for Pseudo-Replay Based Continual Lear-

ning, L. A. M. De Alcantara, J. I. S. Da Silva, M. L. P. C. Silva, S. C. S. Machado and T.
I. Ren, 2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI),
Macao, China, 2022, pp. 585-590, doi: 10.1109/ICTAI56018.2022.00092.

15

1.3 ESTRUTURA DA DISSERTAÇÃO

Os capítulos desta dissertação estão divididos da seguinte forma:

• Capítulo 2: Apresentação dos conceitos fundamentais para o entendimento do trabalho.

• Capítulo 3: Histórico do campo de aprendizado contínuo, incluindo os trabalhos re-
lacionados mais relevantes e uma explicação do então método estado da arte para
classificação de imagens, baseado na abordagem de pseudo-rehearsal.

• Capítulo 4: Descrição detalhada do método proposto neste trabalho.

• Capítulo 5: Apresentação dos experimentos realizados e os resultados obtidos com a
aplicação do método proposto.

• Capítulo 6: Conclusões a respeito do trabalho.

16

2 FUNDAMENTAÇÃO TEÓRICA

Este capítulo tem como objetivo apresentar os conceitos fundamentais necessários para
a compreensão do trabalho. Nele serão abordados temas como redes neurais e seus diferen-
tes tipos de camadas, autoencoders e suas variações, além de conceitos essenciais para o
entendimento de aprendizado contínuo, como tarefas, cenários e abordagens existentes.

2.1 REDES NEURAIS

As Redes Neurais Artificiais (RNAs) são modelos computacionais inspirados pela estru-
tura e funcionamento do cérebro humano. Assim como o cérebro é composto por neurônios
interconectados que trabalham conjuntamente para realizar tarefas complexas, as RNAs são
formadas por neurônios artificiais, ilustrados na Figura 3, também conhecidos como nós, que
se organizam em camadas para processar e interpretar dados (HAYKIN, 2009). Cada nó realiza
cálculos sobre os dados de entrada, transformando esses dados em uma saída.

Figura 3 – Ilustração de um neurônio artificial

Isso confere às redes a habilidade de aprender a partir de dados, adaptando-se a novas
entradas e aprimorando sua capacidade de previsão. Essas características as tornam ferramen-
tas poderosas para resolver uma grande variedade de aplicações, como reconhecimento de
imagem, processamento de linguagem natural e previsão de séries temporais.

Cada nó em uma Rede Neural Artificial (RNA) está associado a um conjunto de pesos, que
determinam a influência das entradas no cálculo da saída. Além dos pesos, cada nó pode incluir
um termo adicional conhecido como bias. Os pesos são utilizados para gerar uma combinação
linear dos dados de entrada. Em seguida, o resultado dessa combinação é somado ao bias

17

e aplicado a uma função não linear, chamada de função de ativação. A função de ativação
introduz não-linearidade ao neurônio, permitindo que ele aprenda relações não lineares entre as
entradas e a saída, de tal forma que, sem uma função de ativação não linear, o neurônio seria
limitado a modelar apenas relações lineares (ZHANG et al., 2021), o que não seria suficiente
para muitos problemas práticos.

A Figura 4 ilustra duas funções de ativação comumente utilizadas em redes neurais: Sigmoid
e ReLU (Rectified Linear Unit). A função Sigmoid, definida como 𝑓(𝑥) = 1

1+𝑒−𝑥 , mapeia
qualquer valor de entrada para um intervalo entre 0 e 1, sendo útil em tarefas de classificação
binária. Já a função ReLU é definida como 𝑓(𝑥) = max(0, 𝑥) e é amplamente utilizada devido
à sua simplicidade e eficiência computacional.

(a) Sigmoid (b) ReLU

Figura 4 – Exemplos de funções de ativação

(a) Sigmoid (b) ReLU

Figura 5 – Exemplos de funções de ativação com diferentes pesos

18

O papel dos pesos pode ser interpretado como a definição da inclinação da função de
ativação, como ilustrado na Figura 5 para as funções Sigmoid e ReLU. O bias funciona como
um peso extra, mas com uma entrada constante de valor 1, permitindo que a função de ativação
de cada nó seja deslocada para a esquerda ou para a direita permitindo que o neurônio produza
uma saída diferente de 0 para uma entrada nula e, consequentemente, proporcionando maior
flexibilidade e capacidade da rede para modelar dados. O efeito causado pelo bias na saída
das funções de ativação Sigmoid e ReLU é ilustrado na Figura 6.

(a) Sigmoid (b) ReLU

Figura 6 – Exemplos de funções de ativação com diferentes valores de bias

Tanto os pesos quanto o bias são ajustados durante o processo de aprendizado da rede,
através de um processo iterativo conhecido como treinamento. Nesse processo, a rede ajusta os
pesos e os bias de seus nós com o objetivo de minimizar a diferença entre as saídas produzidas
pela rede e as saídas desejadas. Ao longo de várias iterações de treinamento, a rede neural
aprende a mapear as entradas às saídas corretas, melhorando a sua capacidade de previsão e
aumentando a precisão e eficácia do modelo final.

2.2 CAMADAS

Os neurônios que compõem as redes neurais artificiais são interconectados e organizados
em camadas, que podem ser divididas em camadas de entrada, camadas escondidas e camadas
de saída (HAYKIN, 2009), e ainda em dois tipos básicos: camadas lineares e camadas convo-
lucionais (ZHANG et al., 2021). As camadas de entrada são responsáveis por receber os dados
e repassá-los para as camadas escondidas onde será feito o processamento. Cada nó desta

19

camada corresponde a um atributo ou variável dos dados e recebe um valor numérico que o
representa. Em outras palavras, cada nó na camada de entrada corresponde a uma variável de
entrada.

As camadas escondidas são as camadas entre a camada de entrada e a camada de saída
e são responsáveis por extrair de características dos dados de entrada. Na primeira camada
escondida, que é diretamente conectada à camada de entrada, os neurônios identificam carac-
terísticas de baixo nível nos dados, que podem incluir, por exemplo, linhas ou bordas em uma
imagem, ou certos fonemas em um sinal de áudio.

À medida que as informações passam para as camadas escondidas subsequentes, a rede
neural começa a reconhecer padrões mais complexos e abstratos, usando as características
de baixo nível identificadas pelas camadas anteriores. Isso é possível porque cada camada
escondida recebe como entrada a saída da camada anterior, permitindo que a rede construa
uma hierarquia de características. Por exemplo, em uma rede neural treinada para o reco-
nhecimento de imagens, as primeiras camadas escondidas podem detectar bordas, enquanto
camadas subsequentes podem começar a reconhecer formas mais complexas, como texturas
ou objetos.

Assim, as camadas escondidas permitem que a rede neural transforme os dados brutos de
entrada em uma representação mais útil e informativa, que será usada pela camada de saída
para gerar o resultado desejado. Esta habilidade de aprender representações hierárquicas e
abstratas dos dados é uma das principais razões pela qual as redes neurais são tão eficazes
em uma ampla gama de tarefas de aprendizado de máquina. Essas camadas são chamadas
de “escondidas” porque suas saídas não são diretamente observáveis, sendo utilizadas apenas
internamente pela rede.

Por fim, as camadas de saída são responsáveis por gerar as saídas finais da rede neural.
Dependendo da natureza do problema, a camada de saída pode ser composta de um ou vários
nós. Por exemplo, em um problema de classificação binária, a camada de saída terá um nó,
enquanto em um problema de classificação multiclasse, haverá um nó para cada classe.

2.2.1 Lineares

As camadas lineares, também conhecidas como camadas totalmente conectadas (fully

connected) ou densas, são compostas por um conjunto de neurônios artificiais. Cada neurônio
desta camada é conectado a todos os neurônios da camada anterior e da camada seguinte,

20

daí o termo “totalmente conectado” (HAYKIN, 2009). A Figura 7 ilustra uma rede neural com
uma camada escondida do tipo linear.

Figura 7 – Ilustração de rede neural com uma camada linear escondida

A função de uma camada linear é aplicar uma transformação linear aos dados de entrada,
isso é feito multiplicando a matriz de entrada pelos pesos da camada e adicionando um vetor
de bias (ZHANG et al., 2021). O resultado dessa operação é uma nova matriz que representa
os dados transformados. A operação pode ser expressa como:

y = Xw + 𝑏 (2.1)

Onde 𝑋 é a matriz de entrada, 𝑤 é a matriz de pesos, 𝑏 é o vetor de bias e 𝑦 é a
matriz resultante. Após a transformação linear, é aplicada uma função de ativação aos dados
transformados.

Durante o treinamento, os pesos e os bias da camada linear são ajustados usando um
algoritmo de otimização, como o gradiente descendente, com base no feedback do erro de
saída da rede. O objetivo é minimizar a função de perda, que mede a diferença entre as
previsões da rede e os valores reais (rótulos).

2.2.2 Convolucionais

Camadas convolucionais são os componentes fundamentais das redes neurais convoluci-
onais (CNNs) (LECUN et al., 1989), que são um tipo de rede neural artificial projetada para
processar e analisar dados com uma estrutura espacial, como imagens ou sinais de áudio
(ZHANG et al., 2021). A Figura 8 ilustra uma rede convolucional.

21

Figura 8 – Ilustração de uma rede neural com camadas convolucionais

As camadas convolucionais são mais adequadas para tarefas de visão computacional do que
as camadas lineares devido à sua capacidade de capturar informações espaciais nas imagens. Ao
contrário das camadas lineares, que processam as entradas como um vetor unidimensional, as
camadas convolucionais consideram a estrutura espacial das entradas, o que ajuda na detecção
padrões e características locais nos dados, como bordas, texturas e formas.

A camada convolucional usa filtros (também conhecidos como kernels), que são pequenas
matrizes com valores ajustáveis (parâmetros). Esses filtros são aplicados aos dados de entrada
por meio de uma operação chamada convolução, que é o processo de deslizar o filtro sobre a
imagem (ou dados de entrada) e realizar uma multiplicação ponto a ponto (produto escalar)
entre os valores do filtro e os valores da imagem que estão sob o filtro. Em seguida, os resultados
dessas multiplicações são somados, gerando um único valor. Esse valor é armazenado em uma
nova matriz chamada mapa de características (feature map) (ZHANG et al., 2021).

Figura 9 – Exemplo da operação de convolução

A distância que o filtro se move ao deslizar pela imagem no processo de convolução é
determinada pelo hiperparâmetro tamanho do passo (stride) (ZHANG et al., 2021). Um passo
maior significa que o filtro se move mais rapidamente pela imagem, resultando em um mapa
de características menor. A Figura 10 ilustra o efeito do tamanho do passo na operação de
convolução utilizando o mesmo filtro da Figura 9.

Outro hiperparâmetro é o preenchimento (padding), que adiciona pixels extras ao redor

22

(a) Passo = 1 (b) Passo = 2

Figura 10 – Exemplo de operação de convolução com diferentes tamanhos de passo

da borda da imagem para permitir que o filtro seja aplicado nas bordas da imagem e manter o
tamanho da imagem após a convolução (ZHANG et al., 2021). A Figura 11 ilustra a aplicação
de convolução com preenchimento de pixels com valor zero (zero-padding), com o mesmo
filtro da Figura 9.

Figura 11 – Ilustração do efeito da aplicação de preenchimento

Após a convolução, uma função de ativação é aplicada a cada valor do mapa de carac-
terísticas para introduzir não-linearidade ao modelo, permitindo que a rede aprenda relações
mais complexas (ZHANG et al., 2021).

Embora não seja uma parte obrigatória das camadas convolucionais, o agrupamento (po-

oling) é frequentemente usado após a convolução para reduzir a dimensionalidade do mapa
de características (ZHANG et al., 2021). O agrupamento oferece benefícios como a redução da
sensibilidade a pequenas variações espaciais e a diminuição do número de parâmetros, o que
ajuda a evitar o sobreajuste (overfitting) e melhora a eficiência computacional. A Figura 12
ilustra a operação de max-pooling, que funciona selecionando o valor máximo em cada região
de agrupamento. Além do max-pooling, outra forma comum de agrupar valores do mapa de
características é através da seleção do valor médio (average-pooling) da região.

As camadas convolucionais são organizadas sequencialmente em uma CNN, permitindo
que a rede aprenda representações hierárquicas dos dados. As primeiras camadas costumam
capturar características mais simples, como retas e curvas, enquanto as camadas subsequentes
se concentram em características mais complexas, como texturas.

23

Figura 12 – Exemplo da operação de Max-Pooling

2.3 AUTOENCODERS

Os autoencoders (AE) são redes neurais que têm como objetivo principal aprender re-
presentações compactas e eficientes dos dados, frequentemente empregadas na redução de
dimensionalidade e geração de novos exemplos que possuem similaridade com os dados treina-
dos (??). A importância da redução de dimensionalidade reside em sua capacidade de tornar
o processamento de dados mais eficiente e de destacar as características mais significativas.
AEs são compostos por duas partes principais: um codificador (encoder) e um decodificador
(decoder), como ilustrado na Figura 13.

A função do codificador é transformar os dados de entrada em uma representação de
dimensão menor, chamada de representação latente, através de uma série de camadas que
gradualmente reduzem a dimensionalidade dos dados de entrada.

Figura 13 – Ilustração de um autoencoder tradicional

O decodificador, por sua vez, reconstrói os dados de entrada a partir da representação
latente. A arquitetura do decodificador é geralmente simétrica à do codificador, revertendo o
processo de redução e expandindo a dimensionalidade do código latente até atingir a dimensão
original dos dados de entrada.

Os autoencoders são treinados para minimizar a diferença entre os dados de entrada e a
reconstrução gerada pelo decodificador. Uma função de perda, como o erro quadrático médio,

24

pode ser usada para medir essa diferença.

2.3.1 Autoencoders Variacionais

Os autoencoders variacionais (VAEs) (KINGMA; WELLING, 2013) são uma extensão dos
autoencoders tradicionais onde, em vez de aprender apenas uma representação latente para
cada exemplo de entrada, os VAEs aprendem também a média e a variância de uma distribuição
de probabilidade a partir da qual a representação latente pode ser amostrada. Essa abordagem
permite que o VAE gere novos exemplos plausíveis a partir do espaço latente.

O treinamento de VAEs envolve a otimização de uma função de perda composta por duas
partes: uma que mede a reconstrução (semelhante aos AEs) e outra que mede a divergência de
Kullback-Leibler (KL) entre a distribuição de probabilidade aprendida e uma distribuição pré-
definida (geralmente uma distribuição normal). A divergência KL atua como um regularizador,
incentivando o espaço latente a seguir a distribuição definida.

2.3.2 Autoencoders Variacionais Condicionais

Autoencoders variacionais condicionais (CVAEs) (SOHN; LEE; YAN, 2015) são uma variação
dos autoencoders variacionais que incorporam informações adicionais, como rótulos ou outras
variáveis contextuais, no processo de codificação e decodificação. Essa abordagem permite
que a rede aprenda representações que são condicionadas à informação adicional, o que torna
os CVAEs mais flexíveis em tarefas como geração de dados condicionados.

No treinamento de CVAEs, a informação adicional é fornecida como entrada para o co-
dificador ou para o decodificador, juntamente com os dados de entrada. A função de perda
é semelhante à dos autoencoders variacionais, mas é calculada com base na reconstrução
condicionada à informação adicional.

2.3.3 VAE-GANs

Os VAE-GANs (LARSEN et al., 2016) combinam elementos dos autoencoders variacionais e
das redes generativas adversariais (GANs) (GOODFELLOW et al., 2020). GANs são uma classe
de modelos generativos que consistem em duas redes neurais, um gerador e um discriminador,
que competem entre si em um jogo de soma zero. O gerador tenta criar exemplos realistas,

25

enquanto o discriminador avalia a qualidade desses exemplos, tentando distinguir entre exem-
plos reais e gerados. Essa competição leva a um gerador capaz de criar exemplos altamente
realistas.

VAE-GANs aproveitam as vantagens dos VAEs e GANs, integrando o processo de geração
de VAEs com a estrutura adversarial das GANs, formando um modelo composto por três
componentes: codificador, decodificador e discriminador, conforme ilustrado na Figura 14.

Figura 14 – Ilustração de um VAE-GAN

Semelhante ao VAE tradicional, o codificador aprende a média e a variância de uma distri-
buição de probabilidade a partir da qual o código latente é amostrado. Já o decodificador atua
como o gerador de uma GAN, reconstruindo os dados de entrada a partir da representação
latente e tentando gerar exemplos realistas. O discriminador é treinado para distinguir entre
exemplos reais e gerados, avaliando a qualidade das reconstruções.

O treinamento dos VAE-GANs envolve a otimização de uma função de perda que combina
os objetivos de reconstrução e adversarial. A parte de reconstrução é semelhante à dos VAEs,
medindo a diferença entre os dados de entrada e a reconstrução gerada pelo decodificador e
a divergência KL. A parte adversarial é semelhante à das GANs, com o decodificador (gera-
dor) tentando enganar o discriminador e o discriminador tentando identificar corretamente os
exemplos gerados.

2.4 TAREFAS EM APRENDIZADO CONTÍNUO

Uma tarefa é uma unidade de aprendizado ou um objetivo que um sistema de aprendizado
de máquina deve realizar. Em geral, cada tarefa é definida por um conjunto de dados específicos
e possivelmente diferentes características, como uma função de perda própria e um conjunto
de métricas de desempenho associadas.

26

Em um cenário de aprendizado incremental, várias tarefas podem ser apresentadas ao
modelo sequencialmente, e ele deve ser capaz de aprender cada uma delas sem esquecer
completamente o que aprendeu anteriormente. Por exemplo, em uma tarefa de classificação
de imagens, cada tarefa pode envolver a classificação de um conjunto diferente de objetos,
como carros, flores ou animais. Além disso, espera-se que o modelo seja capaz de utilizar o
conhecimento adquirido ao longo do tempo no processo de aprendizado das novas tarefas,
combinando as informações relevantes das tarefas passadas com as informações das novas.

2.5 CENÁRIOS DE PROBLEMAS DE APRENDIZADO CONTÍNUO

Um cenário é um conjunto de condições específicas que definem como as tarefas serão
apresentadas ao modelo ao longo do tempo, além de quais informações estão disponíveis du-
rante o treinamento e inferência. Os diferentes cenários podem variar em termos de como as
tarefas são organizadas e apresentadas, de forma que as técnicas de aprendizado desenvolvidas
para cada cenário podem ser diferentes. Os cenários mais comuns são os de tarefa incremen-
tal, domínio incremental ou classe incremental (VEN; TOLIAS, 2019), onde cada um deles têm
suas próprias características e desafios específicos. O entendimento e escolha do cenário ade-
quado para cada aplicação é fundamental para obter bons resultados em implementações de
aprendizado contínuo.

2.5.1 Tarefa Incremental

O cenário de tarefa incremental é um dos cenários de aprendizado contínuo em que o
algoritmo deve aprender um conjunto de tarefas distintas de forma incremental, uma após
a outra, de forma que sempre está claro para o algoritmo, tanto no treinamento quanto na
inferência, qual tarefa deve ser realizada. Isso pode ser feito de forma explícita, fornecendo
identificadores de tarefa ou tornando as tarefas claramente distinguíveis entre si.

O papel do identificador da tarefa é distinguir as tarefas que o modelo deve resolver. Ele
é importante para garantir que o modelo possa separar as informações relacionadas a cada
tarefa e evitar de misturá-las durante o aprendizado. Em outras palavras, é necessário que o
modelo saiba em que tarefa está trabalhando no momento e que possa ajustar seus parâmetros
de acordo com ela.

Uma das principais dificuldades desse cenário é encontrar maneiras eficazes de compartilhar

27

representações aprendidas entre tarefas, otimizando o desempenho e a complexidade compu-
tacional. Uma abordagem comum é treinar modelos com componentes específicos para cada
tarefa, como as camadas de saída, ou até mesmo ter uma rede neural completamente separada
para cada tarefa, o que elimina o risco de esquecimento catastrófico. No entanto, isso pode
resultar em um grande número de parâmetros e pode não ser escalável em um grande número
de tarefas.

Exemplo do cenário de tarefa incremental na vida real seria aprender a tocar diferentes
instrumentos musicais, já que, em geral, instrumentos diferentes são bem distintos uns dos
outros. Além disso, a teoria musical aprendida e a coordenação motora obtida a partir do
aprendizado de um certo instrumento podem ser utilizadas no aprendizado de outro.

2.5.2 Domínio Incremental

O cenário de domínio incremental é descrito como a situação em que a estrutura das tarefas
é sempre a mesma, mas existe uma mudança do contexto ou da distribuição dos seus dados.
Nesse caso, o modelo deve aprender uma série de tarefas, ou domínios, incrementalmente,
mas, ao contrário do cenário de tarefa incremental, no momento da inferência, ele não sabe
a qual tarefa o dado de entrada pertence. Em outras palavras, as tarefas têm as mesmas
possíveis saídas, como classes, por exemplo, mas são apresentadas em diferentes contextos ou
situações.

O uso de componentes específicos para cada tarefa não é possível neste cenário, pois o
modelo não tem acesso ao identificador das tarefas e, consequentemente, não sabe a que tarefa
ao dado de entrada pertence. Mas isso acaba não sendo necessário, uma vez que a estrutura
das tarefas é sempre a mesma.

Um exemplo de aprendizado incremental de domínio seria uma aplicação de reconhecimento
de faces, onde deve ser feito o reconhecimento de pessoas em ambientes internos e externos,
com diferentes condições de iluminação e planos de fundo. Cada situação pode ser vista
como um domínio diferente, e o modelo deve ser capaz de se adaptar a novos domínios
incrementalmente sem esquecer o que aprendeu anteriormente. Nesse caso, cada tarefa teria
dados referentes sempre as mesmas pessoas, variando apenas a situação na qual a imagem foi
obtida. Neste cenário, o identificador da tarefa não está disponível no momento da inferência.
Portanto, o modelo precisa ser capaz de reconhecer as faces independentemente do contexto
em que elas aparecem, sem saber exatamente a qual domínio (ambiente interno, externo,

28

condições de iluminação, etc.) a imagem pertence. Isso torna o aprendizado contínuo neste
cenário mais desafiador, pois o modelo deve ser capaz de generalizar com base na informação
aprendida anteriormente, mesmo sem a presença de identificadores de tarefa explícitos.

2.5.3 Classe Incremental

O cenário de classe incremental é aquele em que o modelo deve aprender incrementalmente
a distinguir entre um número crescente de classes. Neste cenário, um conjunto de tarefas é
apresentado, onde cada tarefa contém diferentes classes e o modelo deve aprender a distinguir
entre todas as classes. Esse é o cenário mais desafiador, pois a identificação da tarefa não está
disponível, então o modelo deve identificar a classe dentre todas aquelas que já foram vistas
até o momento. Em síntese, o modelo deve ser capaz de resolver cada tarefa individualmente,
distinguindo entre as classes dentro de uma determinada tarefa, e identificar a qual tarefa o
dado de entrada pertence.

Exemplo de aplicação no cenário de classe incremental na vida real seria um sistema
de reconhecimento de atividades humanas, que precisaria aprender a identificar diferentes
atividades, como caminhar, correr ou andar de bicicleta, em ordem incremental. À medida
que novas atividades são adicionadas, o modelo utiliza o conhecimento prévio para melhorar
o reconhecimento de atividades posteriores.

2.6 ABORDAGENS PARA IMPLEMENTAR APRENDIZADO CONTÍNUO

As abordagens em aprendizado contínuo são um conjunto de técnicas usadas para que as
redes neurais aprendam e se adaptem de forma contínua a novas tarefas e dados, preservando
o conhecimento adquirido anteriormente. Essas abordagens podem ser categorizadas em três
grupos principais: as que são baseadas em regularização, arquitetura e rehearsal (LANGE et al.,
2022).

Cada uma dessas abordagens possui suas próprias características e vantagens, proporci-
onando soluções distintas para enfrentar os desafios do aprendizado contínuo. A seleção e
combinação adequadas dessas abordagens são fundamentais para alcançar um bom desempe-
nho em diferentes aplicações e cenários de aprendizado contínuo.

29

2.6.1 Baseadas em Regularização

As abordagens baseadas em regularização são uma forma de mitigar o esquecimento catas-
trófico através da adição de termos de regularização à função de perda utilizada no treinamento
do modelo. O intuito é impedir que, durante o aprendizado de novas tarefas, a atualização
dos parâmetros do modelo afete negativamente o desempenho nas tarefas anteriores.

Os termos de regularização têm o objetivo de restringir mudanças nos pesos importantes
para as informações já aprendidas, de forma a preservá-las, permitindo que o modelo mantenha
as informações aprendidas anteriormente enquanto adquire novas informações. O desafio, nesse
caso, é encontrar a melhor maneira de quantificar a importância de cada elemento da rede
para o desempenho de cada tarefa.

2.6.2 Baseadas em Arquitetura

As abordagens baseadas em arquitetura visam alterar a arquitetura da rede para permitir a
aprendizagem de novas tarefas sem afetar o desempenho nas tarefas anteriores. Isso é feito, por
exemplo, adicionando módulos específicos para cada tarefa, de forma que quando uma nova
tarefa é apresentada, os módulos correspondentes são treinados para resolvê-la. Tais módulos
podem ser camadas adicionadas à rede ou até mesmo redes completas.

Dessa forma, para que seja possível a sua implementação, normalmente os métodos ba-
seados nessa abordagem necessitam do identificador da tarefa, para que o modelo saiba qual
módulo utilizar ao receber um dado de entrada. Nessa abordagem, o desafio é encontrar a
maneira mais eficiente de aumentar o tamanho da rede e de compartilhar entre os módulos o
conhecimento obtido com cada tarefa.

2.6.3 Baseadas em Rehearsal

Essas abordagens funcionam armazenando os dados de cada tarefa e usando-os em con-
junto com os dados das novas tarefas durante o treinamento da rede neural. O desafio dos
métodos baseados nessa abordagem é encontrar maneiras mais eficientes de selecionar os da-
dos, de forma a escolher as amostras mais representativas, e de como reapresentar os dados
armazenados à rede neural durante o treinamento de novas tarefas.

Uma variação da abordagem de Rehearsal é a Pseudo-Rehearsal, que se baseia em gerar

30

dados sintéticos que representem os dados que foram vistos pela rede durante o treinamento
das tarefas passadas. Os dados gerados são chamados de “pseudo-exemplos” (pseudo-samples)
e são usados durante o treinamento da rede nas novas tarefas. A ideia é que a rede neural possa
manter o conhecimento relacionado as tarefas anteriores sem a necessidade de armazenar os
seus dados. Com o surgimento e desenvolvimento das redes generativas, métodos utilizando
essa abordagem para problemas de visão computacional começaram a ser desenvolvidos.

31

3 TRABALHOS RELACIONADOS

Este capítulo tem como objetivo fornecer uma visão abrangente do desenvolvimento his-
tórico do campo de aprendizado contínuo. Ele é estruturado em duas seções: na primeira, são
abordados os trabalhos pioneiros da área, que se baseiam em redes conexionistas ou em redes
neurais rasas; na segunda, são abordados os estudos contemporâneos, já no contexto das redes
neurais profundas, incluindo uma explicação do então método estado da arte, utilizado como
base do método desenvolvido nesse trabalho.

3.1 INÍCIO

O final da década de 80 e a década de 90 foi um período de desânimo e desinteresse
pela Inteligência Artificial (IA), marcando o segundo “Inverno da IA” (TOOSI et al., 2021).
Nessa época, uma série de problemas e limitações levaram a falta de avanços significativos
na resolução de problemas mais complexos e impediram que a IA atingisse expectativas que
foram criadas em torno dela.

Como consequência, investimentos em pesquisa e desenvolvimento diminuíram drastica-
mente em muitos países, incluindo os Estados Unidos, que era o principal centro de pesquisa
em IA na época e, com isso, muitos pesquisadores e cientistas acabaram deixando o campo
da inteligência artificial em busca de outras áreas de pesquisa.

No entanto, o Inverno da IA chegou ao fim na segunda metade dos anos 1990, quando
ocorreu um ressurgimento do interesse em IA devido ao surgimento de novas técnicas e algo-
ritmos que permitiram avanços significativos no desenvolvimento das redes neurais. Entre eles,
destaca-se o algoritmo de backpropagation, proposto em 1986 por David Rumelhart, Geoffrey

Hinton e Ronald Williams (RUMELHART; HINTON; WILLIAMS, 1986). Esse é um algoritmo de
treinamento supervisionado para redes neurais que permite ajustar os pesos das conexões entre
as unidades da rede de forma a minimizar o erro entre as saídas da rede e as saídas desejadas.
O algoritmo de backpropagation permitiu que as redes neurais fossem treinadas de forma mais
eficiente, o que foi fundamental para o ressurgimento do interesse em IA e início do fim do
Inverno da IA.

Enquanto alguns estudos apresentavam novas maneiras de aumentar as capacidades das
redes de resolver problemas, outros identificavam limitações desses modelos. Foi o caso, por

32

exemplo, dos trabalhos de McCloskey e Cohen (MCCLOSKEY; COHEN, 1989) e o de Ratcliff

(RATCLIFF, 1990), que demonstraram que o processo de aprendizagem de um novo conjunto
de padrões, ou tarefas, pode causar a perda do conhecimento que as redes já haviam adquirido
anteriormente. Eles mostraram que isso ocorre porque as redes neurais geralmente comparti-
lham um conjunto de pesos para aprender diferentes tarefas, o que faz com que o aprendizado
de novos dados interfira no conjunto de pesos relacionados a tarefas anteriores. Esse fenômeno
ficou conhecido como esquecimento catastrófico, ou interferência catastrófica.

A partir da identificação desse efeito, diversos métodos foram propostos com o objetivo de
reduzir a sua ocorrência. No próprio artigo em que descrevia o fenômeno, Ratcliff propôs um
método, chamado de Rehearsal Buffer Model (RATCLIFF, 1990), para reduzir o esquecimento
através do treinamento da rede com uma parte dos dados de padrões aprendidos no passado,
em conjunto com os dados dos novos padrões a serem aprendidos.

Estudos posteriores propuseram alterações baseadas no método de Ratcliff (ROBINS, 1993),
variando a maneira como os dados das tarefas anteriores eram selecionados e reapresentados
as redes durante o aprendizado de novas tarefas. Os algoritmos baseados no método de Ratcliff

ficaram conhecidos como métodos de rehearsal ou de replay.
Uma das limitações desses métodos é que eles exigem o armazenamento de todos ou de

alguns dos dados de treinamentos anteriores para que possam ser usados em treinamentos
futuros. Com isso, à medida que o tamanho do conjunto de dados aumenta, os custos com-
putacionais e de armazenamento necessários para treinamento de um modelo se tornam cada
vez maiores.

Além disso, o armazenamento explícito de dados de treinamento anteriores não é biologi-
camente plausível (MOE-HELGESEN; STRANDEN, 2005), uma vez que os humanos não precisam
acessar novamente todas as informações aprendidas no passado para aprender novas infor-
mações. Portanto, espera-se que um método de aprendizado contínuo de redes neurais seja
capaz de aprender continuamente com novos dados sem esquecer completamente os dados
anteriores e sem a necessidade de acessá-los novamente, de forma semelhante à capacidade
de aprendizado humano.

Por fim, o uso de técnicas de rehearsal também pode causar a ocorrência de overfitting e
limitar a capacidade de generalização do modelo para novos dados (VERWIMP; LANGE; TUYTE-

LAARS, 2021) caso apenas um mesmo subconjunto de dados anteriores seja utilizado durante
treinamentos futuros.

Para evitar esses problemas, algumas outras abordagens foram propostas para resolver

33

ou reduzir o efeito de esquecimento, entre elas, a de pseudorehearsal ou pseudoreplay. Essa
abordagem foi proposta inicialmente por (ROBINS, 1995) e se concentra em permitir que o
aprendizado continuo possa ser feito em situações onde os dados de tarefas anteriores não
estão mais acessíveis por meio da utilização de dados sintéticos ao invés dos dados reais.

A proposta inicial de Robins foi de gerar um conjunto de dados (pseudosamples) composto
de vetores com permutações aleatórias com 50% de valores 0 e 50% de valores 1. Quando uma
nova tarefa precisa ser aprendida, o conjunto de dados gerado é apresentado à rede, produzindo
os vetores de saída correspondentes. As entradas aleatórias e suas saídas são então adicionadas
ao conjunto de treinamento da rede e, após isso, a rede é treinada normalmente. A hipótese é
que, da mesma forma que reapresentar os dados originais das tarefas passadas impede a rede
de as esquecer, apresentar os pseudosamples que aproximam a função definida pelas tarefas
aprendidas também preveniria o esquecimento catastrófico.

Além de eliminar o requisito de armazenamento dos dados, a abordagem de pseudorehe-

arsal também é mais próxima da forma como ocorre biologicamente o aprendizado contínuo.
Um modelo de aprendizado humano (MCCLELLAND; MCNAUGHTON; O’REILLY, 1995) mostra a
relação entre o hipocampo e o neocórtex durante o processo de aprendizagem e sugere que
os neurônios do neocórtex podem sofrer de esquecimento catastrófico. O modelo mostra que
essa ocorrência é evitada através de um processo que reapresenta memórias armazenadas no
hipocampo para reforçar tarefas que não foram realizadas recentemente.

Na sequência da descoberta do esquecimento catastrófico, surgiram diversas propostas de
soluções para o problema. Além dos métodos baseados em replay e pseudo-replay, métodos
baseados em outras abordagens também foram propostos. Entre eles, French foi um dos
primeiros a propôr um método baseado em regularização, onde se busca reduzir a alteração
de pesos da rede referentes a tarefas já aprendidas.

O método proposto por French, Activation Sharpening (FRENCH, 1992), se baseia na
hipótese de que o esquecimento catastrófico é uma consequência direta da natureza distribuída
de uma rede neural, onde quase todos os nós contribuem para o armazenamento de cada
padrão.

O algoritmo funciona da seguinte forma: é feito um forward pass pela rede para identificar
os 𝑘 nós mais ativos. Em seguida, esses 𝑘 nós são “afiados”, ou seja, seus pesos são ajustados
para torná-los ainda mais ativos e relevantes para a tarefa em questão. Após isso, a diferença
na ativação desses nós afiados é usada como medida de erro, e propagada de volta pela rede
usando backpropagation. Por fim, é feito um forward e backward pass baseado apenas na

34

função de perda de classificação.
Com isso, a distribuição do aprendizado é reduzida, ou seja, menos nós na rede têm seus

pesos ajustados durante o treinamento. Isso ocorre porque, ao afiar apenas os 𝑘 nós mais
ativos, o ajuste nos pesos dos nós menos relevantes para a tarefa é reduzido, uma vez que a
backpropagation muda muito pouco os pesos quando a ativação de um nó é próxima de zero.

O algoritmo Growing Neural Gas (GNG) (FRITZKE, 1994) foi um dos primeiros a propor
o crescimento de uma rede com o objetivo de permitir o aprendizado a partir de distribuições
de dados dinâmicas. O método é baseado nas Neural Gas Networks, redes inspiradas nos
self-organizing maps (SOM), e propõe uma rede incremental capaz de aprender as relações
topológicas importantes para uma dada distribuição de dados de entrada utilizando o algoritmo
competitive Hebbian learning (CHL). A partir do aprendizado das relações importantes, o
método é capaz de aprender continuamente adicionando unidades e conexões até que um
determinado critério de performance seja alcançado. A principal proposição do método é a
adição sequencial de novas unidades a uma rede inicialmente pequena, sendo essa adição
determinada pelo algoritmo CHL.

3.2 PERÍODO RECENTE

Embora diversos métodos tenham sido propostos no passado, os algoritmos desenvolvidos
não eram capazes de apresentar desempenho satisfatório em cenários reais (MOE-HELGESEN;

STRANDEN, 2005). Dessa forma, a grande contribuição deixada pelos métodos pioneiros foi a
identificação das abordagens que podem ser utilizadas para lidar com o problema do esqueci-
mento catastrófico (REBUFFI et al., 2017).

Após um período de pouco interesse, o problema do esquecimento voltou a receber atenção
e novos métodos começaram a ser propostos após a deep learning renaissance (GOODFELLOW

et al., 2013). Entre eles, o algoritmo Elastic Weight Consolidation (EWC) (KIRKPATRICK et

al., 2017), que se baseia na abordagem de regularização, de forma que as conexões da rede
responsáveis por tarefas anteriores sejam preservadas. Para isso, os autores propõem o uso
da matriz de Fisher para estimar a importância de cada parâmetro do modelo em relação
às tarefas passadas. Eles introduzem um componente na função de perda que utiliza essa
estimativa para ponderar a penalidade aplicada à variação dos parâmetros atuais da rede em
relação aos parâmetros encontrados durante o treinamento das tarefas anteriores. Ou seja,
ao treinar uma nova tarefa, a variação dos parâmetros é penalizada de acordo com a sua

35

importância para as tarefas passadas, que é determinada pela matriz de Fisher.
A matriz de Fisher quantifica a informação que um conjunto de variáveis aleatória (os

dados) fornece sobre os parâmetros desconhecidos de uma distribuição de probabilidade (apro-
ximada pelo modelo). Ela faz isso medindo a curvatura da função de log-verossimilhança em
relação aos parâmetros do modelo. A função de log-verossimilhança representa a probabilidade
de observar os dados, dado um modelo e um conjunto de parâmetros. Uma maior curvatura
na função log-verossimilhança indica que os dados fornecem mais informações sobre os parâ-
metros, permitindo fazer estimativas mais precisas desses parâmetros.

O algoritmo EWC utiliza a matriz de Fisher para aproximar a curvatura da função log-
verossimilhança em relação aos parâmetros do modelo. Isso é feito calculando a matriz para
os parâmetros do modelo após o treinamento em uma tarefa, capturando a sensibilidade das
probabilidades previstas em relação aos parâmetros. Dessa forma, a matriz pode ser usada
para estimar a importância de cada parâmetro para essa tarefa.

Considerando a abordagem de rehearsal, o algoritmo iCaRL (Incremental Classifier and

Representation Learning) utiliza o conceito de amostras "exemplares", que são um subconjunto
dos dados de treinamento de tarefas anteriores. Os exemplares são as amostras que mais se
aproximam da representação média das classes, e são usados para manter a representação das
classes antigas enquanto novas classes são aprendidas. A quantidade de exemplares é definida
de acordo com a quantidade de memória disponível para armazenamento.

Ao aprender uma nova tarefa, o iCaRL atualiza a rede usando tanto os novos dados quanto
os exemplares das tarefas anteriores. Além da função de perda softmax tradicional usada para
treinar a rede para classificar corretamente os dados, o iCaRL utiliza também um componente
para minimizar a distância entre a representação dos exemplares e o centróide de sua classe
correspondente.

O iCaRL usa a estratégia de classificação “média mais próxima dos exemplares” onde,
para estimar a classe de uma dada amostra de entrada, o algoritmo primeiro calcula um vetor
protótipo para todas as classes já observadas a partir da média da representação de seus
protótipos e, em seguida, determina o vetor de características da amostra que precisa ser
classificada. Com base nisso, o iCaRL atribui à amostra o rótulo da classe cujo vetor protótipo
apresenta a maior similaridade com o seu vetor de características.

Já no contexto de métodos baseados em arquitetura, as Redes Neurais Progressivas (Pro-

gressive Neural Networks - PNN) mantêm uma rede (chamada de coluna) para cada tarefa
e, ao aprender uma nova tarefa, adiciona uma nova rede à estrutura sem alterar as redes

36

existentes.
O treinamento de uma PNN começa com uma única rede, ou coluna, e é treinada até a

convergência com os dados da primeira tarefa. Ao receber uma nova tarefa para treinamento,
os parâmetros da rede anterior são “congelados” e uma nova coluna é adicionada com uma
inicialização aleatória. Esta nova coluna é treinada não apenas com os dados da tarefa atual,
mas também com as saídas das camadas da coluna anterior por meio de conexões laterais.
Cada nova tarefa é tratada por uma nova coluna, e essas colunas são conectadas lateralmente
para permitir a transferência de conhecimento.

As conexões laterais permitem que a nova coluna de tarefas acesse e utilize características
aprendidas pelas colunas anteriores. Isso permite que a rede reutilize, modifique ou ignore as
características aprendidas anteriormente, conforme necessário para a nova tarefa. Como as
conexões laterais são apenas da coluna atual para as colunas anteriores, e os parâmetros das
colunas anteriores são mantidos congelados durante o treinamento da nova coluna, não há
interferência entre as tarefas.

3.2.1 Estado da Arte

3.2.2 IRCL

No artigo Learning Invariant Representation for Continual Learning (SOKAR; MOCANU; PE-

CHENIZKIY, 2021), foi proposto um método baseado em pseudo-rehearsal chamado Invariant

Representation for Continual Learning (IRCL), o qual é a base do método proposto nessa
dissertação. O foco do trabalho é o cenário de aprendizado de classe incremental, onde o
modelo não tem acesso a identidade da tarefa. Os autores propõem a utilização da represen-
tação dos dados dividida em duas partes: uma representação invariante e uma representação
discriminante. A representação invariante captura as características comuns entre as classes,
enquanto a representação discriminante se concentra nas características específicas de cada
classe.

A razão para usar uma representação desvinculada é que a representação invariante é menos
propensa ao esquecimento, além de capturar características que podem ser úteis durante o
aprendizado de novas tarefas (EBRAHIMI et al., 2020).

O método IRCL consiste em utilizar uma arquitetura unificada, ilustrada na Figura 15, para
classificação e geração de dados. A parte de classificação da arquitetura é composta por um

37

Figura 15 – Arquitetura proposta no artigo Learning Invariant Representation for Con-
tinual Learning

módulo extrator de características específicas (S), que gera uma representação discriminativa
dos dados de entrada, e um módulo de classificação (C) que aprende a classificar os dados da
sequência de tarefas com base nas representações discriminante e invariante.

A Equação 3.1 representa o objetivo do treinamento dos módulos de classificação da
arquitetura: a minimização da função de perda ℒ𝐶 , em função dos parâmetros do extrator de
características específicas (𝜃𝑆) e do módulo de classificação (𝜃𝐶). ℒ𝐶 é a função de perda que
mede o quão bem o modelo está classificando os dados, 𝑧 é a representação invariante, 𝐷𝑡 é
o conjunto de dados de treinamento da tarefa atual 𝑡 e 𝑀1:𝑡−1 é o conjunto de dados gerados
referentes as tarefas anteriores.

𝑚𝑖𝑛
𝜃𝑆 ,𝜃𝐶

ℒ𝐶(𝜃𝑆, 𝜃𝐶 ; 𝑧, 𝐷𝑡 ∪ℳ1:𝑡−1) (3.1)

A parte de geração de dados da rede, um Autoencoder Variacional Condicional (cVAE), é
composta por um codificador (encoder - E) que mapeia uma entrada 𝑥 para uma representação
latente 𝑧 ∼ 𝑝(𝑧|𝑥), e um decodificador (decoder - D) que mapeia a saída do codificador
combinada ao rótulo da classe de entrada 𝑦 de volta para o espaço de entrada 𝑥̂ ∼ 𝑝(𝑥|𝑧, 𝑦).
O espaço latente é regularizado de forma a seguir uma distribuição normal, permitindo a
extração de amostras dele e a geração de novos dados usando o decodificador, condicionando-
o às classes das tarefas anteriores.

A Equação 3.2 representa a função de perda otimizada no treinamento do cVAE. Ela é
composta por dois termos principais, onde o primeiro, ||𝑥 − 𝑥̂||2, é a diferença quadrática
entre os dados de entrada 𝑥 e os dados reconstruídos 𝑥̂. Esse termo penaliza o modelo com
base no erro de reconstrução dos dados de entrada, incentivando o cVAE a aprender uma

38

representação latente que possa reconstruir efetivamente os dados de entrada.

ℒcVAE = ||𝑥− 𝑥̂||2 + 𝐾𝐿(𝑞(𝑧|𝑥)||𝑝(𝑧)) (3.2)

O segundo termo, 𝐾𝐿(𝑞(𝑧|𝑥)||𝑝(𝑧)), é a divergência de Kullback-Leibler (KL), que pena-
liza o modelo de acordo com a divergência entre a representação latente gerada e a distribuição
normal, forçando o cVAE a aprender uma representação latente que siga essa distribuição.

A combinação desses dois termos na função objetivo permite que o cVAE aprenda efeti-
vamente representações latentes que podem ser usadas para reconstruir os dados de entrada,
além de permitir que novas representações sejam geradas através da amostragem de um vetor
aleatório a partir de uma distribuição normal.

Durante o treinamento, o cVAE aprende a produzir a representação invariante que capta as
características comuns a todas as classes e, em seguida, aprende a mapear essa representação
de volta ao espaço de entrada. Enquanto isso, o extrator de características específicas (S)
aprende a gerar uma representação específica de cada classe que capta suas características
exclusivas. A representação específica é então combinada com a representação invariante para
servir como entrada para o módulo classificador (C).

Antes de iniciar o treinamento de uma nova tarefa, o decodificador atua como o compo-
nente de memória da arquitetura, gerando dados referentes às tarefas anteriores que são então
combinados ao conjunto de treinamento da tarefa atual. Dessa forma, durante o treinamento
da nova tarefa, os dados gerados permitem à rede “lembrar” como eram os dados passados,
evitando assim o esquecimento e mantendo a rede capaz de classificar os dados de classes de
tarefas anteriores.

Em síntese, o IRCL pode ser representado pelo pseudo código a seguir. Note que, por
questão de objetividade, foram abstraídos alguns detalhes, como a definição dos parâmetros,
𝑎𝑛𝑜𝑡𝑎𝑐𝑜𝑒𝑠 e 𝑑𝑖𝑚𝑒𝑛𝑠𝑎𝑜_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 na chamada da funçao 𝐺𝐸𝑅𝐴𝑅_𝐼𝑀𝐺𝑆_𝐴𝑁𝑇𝐸𝑅𝐼𝑂𝑅𝐸𝑆,
assim como a definição do tamanho do vetor na chamada da função 𝑂𝑁𝐸𝐻𝑂𝑇_𝐸𝑁𝐶𝑂𝐷𝐼𝑁𝐺

e o número de épocas de treinamento.

39

Algorithm 1 IRCL - Invariant Representation for Continual Learning
1: function Aprendizado_Continuo(𝑖𝑚𝑔𝑠_𝑎𝑡𝑢𝑎𝑖𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠_𝑎𝑡𝑢𝑎𝑖𝑠)
2: if primeira_tarefa then
3: 𝑚𝑜𝑑𝑒𝑙𝑜← NovoModelo()
4: 𝑚𝑜𝑑𝑒𝑙𝑜← aprender_tarefa(𝑚𝑜𝑑𝑒𝑙𝑜, 𝑖𝑚𝑔𝑠_𝑎𝑡𝑢𝑎𝑖𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠_𝑎𝑡𝑢𝑎𝑖𝑠)
5: else
6: 𝑖𝑚𝑔𝑠_𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟𝑒𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠_𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟𝑒𝑠← gerar_imgs_anteriores(𝑚𝑜𝑑𝑒𝑙𝑜)
7: 𝑖𝑚𝑔𝑠← Concatenar(𝑖𝑚𝑔𝑠_𝑎𝑡𝑢𝑎𝑖𝑠, 𝑖𝑚𝑔𝑠_𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟𝑒𝑠)
8: 𝑙𝑎𝑏𝑒𝑙𝑠← Concatenar(𝑙𝑎𝑏𝑒𝑙𝑠_𝑎𝑡𝑢𝑎𝑖𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠_𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟𝑒𝑠)
9: 𝑚𝑜𝑑𝑒𝑙𝑜← aprender_tarefa(𝑚𝑜𝑑𝑒𝑙𝑜, 𝑖𝑚𝑔𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠)

10: end if
11: return 𝑚𝑜𝑑𝑒𝑙𝑜
12: end function

13: function aprender_tarefa(𝑚𝑜𝑑𝑒𝑙𝑜, 𝑖𝑚𝑔𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠)
14: for 𝑒𝑝𝑜𝑐𝑎 in 𝑒𝑝𝑜𝑐𝑎𝑠 do
15: 𝑙𝑎𝑏𝑒𝑙𝑠_𝑜𝑛𝑒ℎ𝑜𝑡← onehot_encoding(𝑙𝑎𝑏𝑒𝑙𝑠)
16: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ← 𝑚𝑜𝑑𝑒𝑙𝑜.encoder(𝑖𝑚𝑔𝑠)
17: 𝑒𝑛𝑡𝑟𝑎𝑑𝑎_𝑑𝑒𝑐𝑜𝑑𝑒𝑟 ← Concatenar(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑒𝑛𝑐𝑜𝑑𝑒𝑟, 𝑙𝑎𝑏𝑒𝑙𝑠_𝑜𝑛𝑒ℎ𝑜𝑡)
18: 𝑖𝑚𝑔𝑠_𝑔𝑒𝑟𝑎𝑑𝑎𝑠← 𝑚𝑜𝑑𝑒𝑙𝑜.decoder(𝑒𝑛𝑡𝑟𝑎𝑑𝑎_𝑑𝑒𝑐𝑜𝑑𝑒𝑟)
19: 𝑒𝑟𝑟𝑜_𝑔𝑒𝑟𝑎𝑐𝑎𝑜← funcao_de_perda_geracao(𝑖𝑚𝑔𝑠, 𝑖𝑚𝑔𝑠_𝑔𝑒𝑟𝑎𝑑𝑎𝑠)
20: 𝑚𝑜𝑑𝑒𝑙𝑜.atualizar_pesos(𝑒𝑟𝑟𝑜_𝑔𝑒𝑟𝑎𝑐𝑎𝑜)

21: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ← 𝑚𝑜𝑑𝑒𝑙𝑜.encoder(𝑖𝑚𝑔𝑠)
22: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑒𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑜← 𝑚𝑜𝑑𝑒𝑙𝑜.especifico(𝑖𝑚𝑔𝑠)
23: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠← Concatenar(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑒𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑜, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑒𝑛𝑐𝑜𝑑𝑒𝑟)
24: 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑜← 𝑚𝑜𝑑𝑒𝑙𝑜.classificador(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
25: 𝑒𝑟𝑟𝑜_𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑜← funcao_de_perda_classificacao(𝑙𝑎𝑏𝑒𝑙𝑠, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑜)
26: 𝑚𝑜𝑑𝑒𝑙𝑜.atualizar_pesos(𝑒𝑟𝑟𝑜_𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑜)
27: end for
28: return 𝑚𝑜𝑑𝑒𝑙𝑜
29: end function

30: function gerar_imgs_anteriores(𝑚𝑜𝑑𝑒𝑙𝑜)
31: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑎𝑙𝑒𝑎𝑡𝑜𝑟𝑖𝑎𝑠← GerarVetoresAleatorios(𝑑𝑖𝑚𝑒𝑛𝑠𝑎𝑜_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
32: 𝑎𝑛𝑜𝑡𝑎𝑐𝑜𝑒𝑠_𝑜𝑛𝑒ℎ𝑜𝑡← onehot_encoding(𝑎𝑛𝑜𝑡𝑎𝑐𝑜𝑒𝑠)
33: 𝑒𝑛𝑡𝑟𝑎𝑑𝑎_𝑑𝑒𝑐𝑜𝑑𝑒𝑟 ← Concatenar(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑎𝑙𝑒𝑎𝑡𝑜𝑟𝑖𝑎𝑠, 𝑎𝑛𝑜𝑡𝑎𝑐𝑜𝑒𝑠_𝑜𝑛𝑒ℎ𝑜𝑡)
34: 𝑖𝑚𝑎𝑔𝑒𝑛𝑠_𝑔𝑒𝑟𝑎𝑑𝑎𝑠← 𝑚𝑜𝑑𝑒𝑙𝑜.decoder(𝑒𝑛𝑡𝑟𝑎𝑑𝑎_𝑑𝑒𝑐𝑜𝑑𝑒𝑟)
35: return 𝑖𝑚𝑎𝑔𝑒𝑛𝑠_𝑔𝑒𝑟𝑎𝑑𝑎𝑠, 𝑎𝑛𝑜𝑡𝑎𝑐𝑜𝑒𝑠
36: end function

40

4 MÉTODO PROPOSTO

O método proposto no trabalho apresentado nessa dissertação se baseia no método IRCL
e parte da premissa de que, em uma abordagem de pseudo-replay, o modelo generativo é o
principal limitador para o desempenho da aprendizagem contínua (SHIN et al., 2017). A intuição
por trás disso é que, ao considerar um gerador ideal capaz de criar imagens artificiais idênticas
às reais, isso seria equivalente ao treinamento do modelo utilizando todos os dados reais como
uma única tarefa, ou seja, em um cenário de aprendizagem não contínua.

Este trabalho visa aprimorar o desempenho da aprendizagem contínua apresentado pelo
IRCL, através da melhoria da similaridade entre as imagens geradas e as reais, ao mesmo
tempo em que evita o problema do esquecimento catastrófico no modelo generativo. Para
isso, propomos alterações no método de treinamento, no modelo gerador utilizado e no tipo
de camada utilizada na implementação da arquitetura proposta no artigo do IRCL.

4.1 HIPÓTESES

4.1.1 Treinamento desacoplado

No método IRCL, todos os módulos da rede, incluindo o autoencoder, o módulo classifica-
dor e módulo específico, são treinados em conjunto. Essa abordagem de treinamento, que nós
chamamos de acoplada, exige a escolha de um conjunto de hiperparâmetros que seja capaz
de proporcionar um bom desempenho geral para todos os módulos. No entanto, esse conjunto
de hiperparâmetros pode não ser ideal para obter os melhores resultados individuais em cada
um dos módulos. Em outras palavras, ao buscar um bom desempenho global, o desempenho
individual dos componentes da rede pode ser comprometido.

Uma vez que não existe retropropagação entre os módulos de geração de imagens e os
demais módulos da arquitetura, elaboramos a hipótese de que desacoplar o treinamento do
cVAE dos demais módulos permitiria utilizar um conjunto ótimo, ou quase ótimo, de hiperpa-
râmetros para o treinamento de cada um deles. Ao fazer isso a expectativa é de que, ao final
do treinamento, tenhamos modelos com melhores capacidades de extração de características
e de geração de imagens, resultando em um melhor desempenho final na classificação e na
retenção do conhecimento passado.

41

4.1.2 cVAE-GAN como Rede Generativa

O Autoencoder Variacional Condicional (cVAE) utilizado no IRCL possui propriedades de-
sejáveis para o contexto de aprendizagem contínua baseada em pseudo-replay. Primeiramente,
por ser variacional, seu espaço latente segue uma distribuição pré-definida a partir da qual
é possível gerar novas amostras de dados. Em segundo lugar, por ser condicional, o modelo
pode ser usado para gerar dados de todas as classes aprendidas até então. Além disso, essa
característica induz o codificador a produzir uma representação invariante, uma vez que a
informação referente a classe é fornecida como entrada ao decodificador e não precisa ser
codificada. Por último, a representação invariante é menos propensa a esquecimento por não
conter informações específicas de cada classe e é especialmente útil no aprendizado de novas
tarefas (EBRAHIMI et al., 2020).

Apesar das propriedades benéficas, os VAEs têm a tendência de produzir imagens com baixa
nitidez (LARSEN et al., 2016), o que é indesejado devido à dependência que a abordagem de
pseudo-replay tem em relação à qualidade das amostras geradas. Portanto, para alcançar um
melhor desempenho na aprendizagem contínua, é desejável ter um modelo gerativo capaz de
produzir imagens de maior qualidade e que mantenha as propriedades positivas dos VAEs. Para
isso, elaboramos a hipótese de que o treinamento desacoplado do modelo generativo permitiria
utilizar um modelo generativo mais robusto, como um cVAE-GAN, capaz de gerar imagens
mais nítidas, ao mesmo tempo em que é condicional e produz representações invariantes. A
partir disso, propomos a arquitetura apresentada na Figura 16.

Figura 16 – Arquitetura proposta

Em síntese, o treinamento desacoplado com uso de um cVAE-GAN é representado na
função 𝐴𝑃𝑅𝐸𝑁𝐷𝐸𝑅_𝑇𝐴𝑅𝐸𝐹𝐴 do pseudo código a seguir. Note que, assim como no
pseudo código anterior, alguns detalhes foram abstraídos por questão de objetividade. Aqui,

42

além dos detalhes citados anteriormente, foi omitida também a definição das anotações usadas
para computar a 𝐹𝑈𝑁𝐶𝐴𝑂_𝑃𝐸𝑅𝐷𝐴_𝐷𝐼𝑆𝐶𝑅𝐼𝑀𝐼𝑁𝐴𝐶𝐴𝑂.

Algorithm 2 Treinamento desacoplado + cVAE-GAN
1: function AprendizadoContinuo(𝑖𝑚𝑔𝑠_𝑎𝑡𝑢𝑎𝑖𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠_𝑎𝑡𝑢𝑎𝑖𝑠)
2: if primeira_tarefa then
3: 𝑚𝑜𝑑𝑒𝑙𝑜← NovoModelo()
4: 𝑚𝑜𝑑𝑒𝑙𝑜← aprender_tarefa(𝑚𝑜𝑑𝑒𝑙𝑜, 𝑖𝑚𝑔𝑠_𝑎𝑡𝑢𝑎𝑖𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠_𝑎𝑡𝑢𝑎𝑖𝑠)
5: else
6: 𝑖𝑚𝑔𝑠_𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟𝑒𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠_𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟𝑒𝑠← gerar_imgs_anteriores(𝑚𝑜𝑑𝑒𝑙𝑜)
7: 𝑖𝑚𝑔𝑠← Concatenar(𝑖𝑚𝑔𝑠_𝑎𝑡𝑢𝑎𝑖𝑠, 𝑖𝑚𝑔𝑠_𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟𝑒𝑠)
8: 𝑙𝑎𝑏𝑒𝑙𝑠← Concatenar(𝑙𝑎𝑏𝑒𝑙𝑠_𝑎𝑡𝑢𝑎𝑖𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠_𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟𝑒𝑠)
9: 𝑚𝑜𝑑𝑒𝑙𝑜← aprender_tarefa(𝑚𝑜𝑑𝑒𝑙𝑜, 𝑖𝑚𝑔𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠)

10: end if
11: return 𝑚𝑜𝑑𝑒𝑙𝑜
12: end function

13: function aprender_tarefa(𝑚𝑜𝑑𝑒𝑙𝑜, 𝑖𝑚𝑔𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠)
14: for 𝑒𝑝𝑜𝑐𝑎 in 𝑒𝑝𝑜𝑐𝑎𝑠 do
15: 𝑙𝑎𝑏𝑒𝑙𝑠_𝑜𝑛𝑒ℎ𝑜𝑡← onehot_encoding(𝑙𝑎𝑏𝑒𝑙𝑠)
16: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ← 𝑚𝑜𝑑𝑒𝑙𝑜.encoder(𝑖𝑚𝑔𝑠)
17: 𝑒𝑛𝑡𝑟𝑎𝑑𝑎_𝑑𝑒𝑐𝑜𝑑𝑒𝑟 ← Concatenar(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑒𝑛𝑐𝑜𝑑𝑒𝑟, 𝑙𝑎𝑏𝑒𝑙𝑠_𝑜𝑛𝑒ℎ𝑜𝑡)
18: 𝑖𝑚𝑔𝑠_𝑔𝑒𝑟𝑎𝑑𝑎𝑠← 𝑚𝑜𝑑𝑒𝑙𝑜.decoder(𝑒𝑛𝑡𝑟𝑎𝑑𝑎_𝑑𝑒𝑐𝑜𝑑𝑒𝑟)
19: 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑐𝑎𝑜← 𝑚𝑜𝑑𝑒𝑙𝑜.discriminador(𝑖𝑚𝑔𝑠, 𝑖𝑚𝑔𝑠_𝑔𝑒𝑟𝑎𝑑𝑎𝑠)
20: 𝑒𝑟𝑟𝑜_𝑔𝑒𝑟𝑎𝑐𝑎𝑜← funcao_de_perda_geracao(𝑖𝑚𝑔𝑠, 𝑖𝑚𝑔𝑠_𝑔𝑒𝑟𝑎𝑑𝑎𝑠)
21: 𝑒𝑟𝑟𝑜_𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑐𝑎𝑜← funcao_perda_discriminacao(𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑐𝑎𝑜)
22: 𝑚𝑜𝑑𝑒𝑙𝑜.atualizar_pesos(𝑒𝑟𝑟𝑜_𝑔𝑒𝑟𝑎𝑐𝑎𝑜, 𝑒𝑟𝑟𝑜_𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑐𝑎𝑜)
23: end for

24: for 𝑒𝑝𝑜𝑐𝑎 in 𝑒𝑝𝑜𝑐𝑎𝑠 do
25: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ← 𝑚𝑜𝑑𝑒𝑙𝑜.encoder(𝑖𝑚𝑔𝑠)
26: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑒𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑜← 𝑚𝑜𝑑𝑒𝑙𝑜.especifico(𝑖𝑚𝑔𝑠)
27: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠← Concatenar(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑒𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑜, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑒𝑛𝑐𝑜𝑑𝑒𝑟)
28: 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑜← 𝑚𝑜𝑑𝑒𝑙𝑜.classificador(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
29: 𝑒𝑟𝑟𝑜_𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑜← funcao_de_perda_classificacao(𝑙𝑎𝑏𝑒𝑙𝑠, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑜)
30: 𝑚𝑜𝑑𝑒𝑙𝑜.atualizar_pesos(𝑒𝑟𝑟𝑜_𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑜)
31: end for
32: return 𝑚𝑜𝑑𝑒𝑙𝑜
33: end function

34: function gerar_imgs_anteriores(𝑚𝑜𝑑𝑒𝑙𝑜)
35: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑎𝑙𝑒𝑎𝑡𝑜𝑟𝑖𝑎𝑠← GerarVetoresAleatorios(𝑑𝑖𝑚𝑒𝑛𝑠𝑎𝑜_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
36: 𝑎𝑛𝑜𝑡𝑎𝑐𝑜𝑒𝑠_𝑜𝑛𝑒ℎ𝑜𝑡← onehot_encoding(𝑎𝑛𝑜𝑡𝑎𝑐𝑜𝑒𝑠)
37: 𝑒𝑛𝑡𝑟𝑎𝑑𝑎_𝑑𝑒𝑐𝑜𝑑𝑒𝑟 ← Concatenar(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑎𝑙𝑒𝑎𝑡𝑜𝑟𝑖𝑎𝑠, 𝑎𝑛𝑜𝑡𝑎𝑐𝑜𝑒𝑠_𝑜𝑛𝑒ℎ𝑜𝑡)
38: 𝑖𝑚𝑎𝑔𝑒𝑛𝑠_𝑔𝑒𝑟𝑎𝑑𝑎𝑠← 𝑚𝑜𝑑𝑒𝑙𝑜.decoder(𝑒𝑛𝑡𝑟𝑎𝑑𝑎_𝑑𝑒𝑐𝑜𝑑𝑒𝑟)
39: return 𝑖𝑚𝑎𝑔𝑒𝑛𝑠_𝑔𝑒𝑟𝑎𝑑𝑎𝑠, 𝑎𝑛𝑜𝑡𝑎𝑐𝑜𝑒𝑠
40: end function

43

4.1.3 Uso de Camadas Convolucionais

A implementação do oficial do IRCL, disponibilizada pelos autores, utiliza camadas lineares
em todos os módulos de sua arquitetura. No entanto, como discutido na subseção 2.2.2,
camadas convolucionais possuem uma melhor capacidade de lidar com dados que possuem
estruturas espaciais, como imagens.

Com base nisso, propomos implementar os módulos da arquitetura utilizando camadas
convolucionais, visando aprimorar a extração de características e a geração de imagens. Com
essa abordagem, esperamos obter melhorias no desempenho da classificação e na conservação
do conhecimento referente as tarefas anteriores.

4.2 CONJUNTOS DE DADOS

O MNIST e Fashion-MNIST são conjuntos de dados (datasets) amplamente utilizados
para avaliar e comparar o desempenho de algoritmos e modelos de aprendizado de máquina
em tarefas de visão computacional, como classificação de imagens.

O MNIST é composto por 70.000 imagens de dígitos manuscritos entre 0 e 9 dividido em
60.000 imagens de treinamento e 10.000 imagens de teste, com uma resolução de 28x28 pixels

em escala de cinza. Exemplos de imagens1 presentes no MNIST são apresentadas na Figura
17.

Figura 17 – Exemplos de imagens do MNIST

1 TensorFlow - MNIST

https://www.tensorflow.org/datasets/catalog/mnist

44

O Fashion-MNIST foi criado como uma alternativa ao MNIST, com o objetivo de fornecer
um desafio mais complexo para os algoritmos. Assim como o MNIST, ele consiste em 70.000
imagens em escala de cinza de 28x28 pixels, porém, ao invés de dígitos manuscritos, ele
representa 10 classes de artigos de vestuário, como camisetas, calças, casacos e vestidos.
Assim como o MNIST, o Fashion-MNIST também é dividido em um conjunto de treinamento
com 60.000 imagens e um conjunto de teste com 10.000 imagens. No entanto, o Fashion-

MNIST apresenta uma maior diversidade de padrões, formas e texturas em comparação ao
MNIST. A Figura 18 apresenta algumas imagens2 presentes no Fashion-MNIST.

Figura 18 – Exemplos de imagens do Fashion-MNIST

O Split MNIST e o Split Fashion-MNIST são variações do MNIST e Fashion-MNIST

utilizadas para avaliar métodos de aprendizado contínuo. A diferença está no fato de que
os datasets são divididos em tarefas, onde cada uma delas contém um conjunto de classes
dos dados originais. Neste trabalho, o Split MNIST e Split Fashion-MNIST foram definidos
contendo 5 tarefas com 2 classes cada. A Figura 19 ilustra como foi feita a divisão do MNIST
em tarefas.

Figura 19 – Divisão de classes entre tarefas para o Split MNIST

2 TensorFlow - Fashion-MNIST

https://www.tensorflow.org/datasets/catalog/fashion_mnist

45

4.3 MÉTRICAS DE AVALIAÇÃO

4.3.1 Média da Acurácia de Classificação

A Média da Acurácia de Classificação (𝐴𝑐𝑐𝑎𝑣𝑔) é uma medida que quantifica o desempenho
de um modelo na classificação de dados de tarefas aprendidas sequencialmente. Ela é uma
média simples das acurácias em cada tarefa individual, calculadas após o treinamento de todas
as tarefas. A Equação 4.1 representa a 𝐴𝑐𝑐𝑎𝑣𝑔, onde 𝑁 é a quantidade de tarefas e 𝐴𝑁,𝑖 é a
acurácia na 𝑖− é𝑠𝑖𝑚𝑎 tarefa após o treinamento de todas as 𝑁 tarefas.

𝐴𝑐𝑐𝑎𝑣𝑔 = 1
𝑁

𝑁∑︁
𝑖=1

𝐴𝑁,𝑖 (4.1)

Modelos com alta ACC são considerados melhores no aprendizado contínuo, pois conse-
guem aprender novas tarefas e manter o desempenho nas tarefas anteriores.

4.3.2 Média do Backward Transfer

A métrica “Backward Transfer” (BWT) é usada para avaliar o impacto do aprendizado de
novas tarefas no desempenho de um modelo em tarefas anteriores. Ela quantifica a capacidade
do modelo de manter ou até melhorar seu desempenho nas tarefas anteriores, enquanto aprende
novas tarefas.

Valores de BWT positivos indicam que o aprendizado de novas tarefas ajudou a melhorar o
desempenho nas tarefas anteriores, um efeito conhecido como transferência positiva. Valores
negativos indicam que o aprendizado de novas tarefas prejudicou o desempenho nas tarefas
anteriores, o que sugere esquecimento catastrófico. Um valor de BWT próximo a zero indica
que o desempenho nas tarefas anteriores não foi significativamente afetado pelo aprendizado
de novas tarefas. Modelos com alto valor de BWT são considerados melhores no aprendizado
contínuo, pois conseguem lidar com novas tarefas sem afetar negativamente o desempenho
nas tarefas anteriores. A BWT é representada na Equação 4.2, onde 𝐴𝑖,𝑖 é a acurácia na
𝑖− é𝑠𝑖𝑚𝑎 tarefa logo após o seu treinamento, e 𝐴𝑁,𝑖 é a acurácia na 𝑖− é𝑠𝑖𝑚𝑎 tarefa após
o treinamento de todas as N tarefas.

𝐵𝑊𝑇𝑎𝑣𝑔 = 1
𝑁 − 1

𝑁−1∑︁
𝑖=1

(𝐴𝑁,𝑖 − 𝐴𝑖,𝑖) (4.2)

46

4.3.3 Medida do Índice de Similaridade Estrutural (SSIM)

A métrica Structural Similarity Index Measure (SSIM) é uma medida de qualidade de ima-
gem que avalia a similaridade estrutural entre duas imagens. Diferente das métricas baseadas
em erro, como o erro quadrático médio (MSE) ou o erro absoluto médio (MAE), que com-
param a diferença de intensidade de pixel entre as imagens, o SSIM considera a percepção
humana e leva em conta a luminância, o contraste e a estrutura das imagens.

O SSIM é calculado em uma janela deslizante que compara regiões das duas imagens,
gerando um valor para cada região comparada. O valor do SSIM varia entre -1 e 1, onde
1 indica que as imagens são idênticas e valores menores indicam uma menor similaridade
estrutural. Ao calcular a média dos valores de SSIM de todas as regiões comparadas, obtém-se
um único valor que indica a similaridade estrutural geral entre as duas imagens. Esta métrica é
amplamente utilizada para avaliar a qualidade de imagens comprimidas, restauradas ou geradas
por algoritmos de aprendizado de máquina.

O SSIM é representado pela Equação 4.3 a seguir:

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 𝑙(𝑥, 𝑦)𝛼 · 𝑐(𝑥, 𝑦)𝛽 · 𝑠(𝑥, 𝑦)𝛾 (4.3)

onde 𝑥 e 𝑦 são as imagens comparadas ou regiões delas, 𝑙, 𝑐 e 𝑠 são funções de comparação
para luminância, contraste e estrutura, respectivamente, e 𝛼, 𝛽 e 𝛾 são os pesos para cada
função de comparação.

A função de luminância 𝑙 compara a média das intensidades dos pixels entre duas imagens,
buscando avaliar se as duas imagens têm brilho similar. Ela é definida por:

𝑙(𝑥, 𝑦) = 2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇2
𝑥 + 𝜇2

𝑦 + 𝐶1

onde 𝜇𝑥 e 𝜇𝑦 são as médias de intensidade dos pixels das imagens 𝑥 e 𝑦, respectivamente, e
𝐶1 é uma constante pequena para evitar divisão por zero.

A função de contraste 𝑐 mede a compatibilidade entre os desvios padrão das intensidades
dos pixels das duas imagens, refletindo se as duas imagens têm um grau similar de contraste.
Ela é expressa por:

𝑐(𝑥, 𝑦) = 2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎2
𝑥 + 𝜎2

𝑦 + 𝐶2

onde 𝜎𝑥 e 𝜎𝑦 são os desvios padrão de 𝑥 e 𝑦, respectivamente, e 𝐶2 é uma constante pequena
para evitar divisão por zero.

47

A função de estrutura 𝑠 compara a covariância entre as duas imagens em relação aos
seus desvios padrão, buscando avaliar se as duas imagens compartilham padrões de variação
espacial (ou estrutura). Esta função é dada por:

𝑠(𝑥, 𝑦) = 𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3

onde 𝜎𝑥𝑦 é a covariância entre 𝑥 e 𝑦, e 𝐶3 é uma constante pequena. Normalmente 𝐶3 = 𝐶2/2

para simplificar.

48

5 EXPERIMENTOS E RESULTADOS

Conforme discutido no Capítulo 4, o método apresentado nessa dissertação se baseia no
trabalho do artigo Learning Invariant Representation for Continual Learning (IRCL). Portanto,
nós comparamos diretamente nosso método com os resultados do IRCL. Por conta disso,
ao desenvolver nosso método, também implementamos a arquitetura e a abordagem de trei-
namento originais do IRCL para reproduzir seus resultados e estabelecer uma referência de
desempenho. Para o comparativo, realizamos experimentos para verificar o efeito da aplicação
das hipóteses elaboradas.

Na implementação oficial1 do artigo disponibilizada pelos autores, os módulos da arquite-
tura do IRCL possuem as seguintes características: o módulo específico (S) tem uma camada
oculta de 20 neurônios, o módulo classificador (C) tem uma camada com 40 neurônios, o
codificador (E) e decodificador (D) possuem uma camada oculta de 300 neurônios, com uma
representação latente de tamanho 32. Todos os módulos utilizam camadas lineares e função
de ativação ReLU.

Para reproduzir os resultados, treinamos a arquitetura utilizando os mesmos hiperparâme-
tros reportados no artigo, ou seja, usando Adam como otimizador, treinando por 5 e 10 épocas
para o Split MNIST e Split FashionMNIST, respectivamente, utilizando um tamanho de batch

de 128 e taxas de aprendizado de 2× 10−4 para os módulos específico e classificador2, e 10−2

para o cVAE. Ao treinar uma nova tarefa, foram geradas 5000 pseudo-amostras de cada uma
das classes anteriores.

Em todos os experimentos, utilizamos a mesma semente para os geradores de números
aleatórios das bibliotecas durante a implementação. Isso garante que as variações observadas
nos resultados não são resultado de fatores vinculados à aleatoriedade, como por exemplo, a
inicialização dos pesos das redes.
1 Implementation for the paper "Learning Invariant Representation for Continual Learning"

in PyTorch.
2 Embora no artigo seja reportado 10−2, no código, na verdade, é utilizado 2 × 10−4. Usar

10−2 não resulta nas métricas reportadas pelos autores.

https://github.com/GhadaSokar/Invariant-Representation-for-Continual-Learning
https://github.com/GhadaSokar/Invariant-Representation-for-Continual-Learning

49

5.1 RESULTADOS

5.1.1 Treinamento desacoplado

Neste experimento, preservamos a arquitetura original proposta pelo IRCL, alterando ape-
nas a sua forma de treinamento. O objetivo é verificar se desacoplar o treinamento do cVAE dos
demais módulos da arquitetura permite utilizar hiperparâmetros que resultem em modelos com
melhores capacidades de extração de características, geração de imagens e, consequentemente,
melhor desempenho na classificação de imagens e retenção do conhecimento passado.

Para isso, decidimos treinar primeiro o cVAE, pois a representação intermediária gerada
pelo seu codificador (E) é utilizada pelo módulo de classificação (C). Na sequência, os módulos
específicos (S) e de classificação (C) foram treinados em conjunto. Os hiperparâmetros usados
nesse experimentos são apresentados na Tabela 1.

Tabela 1 – Hiperparâmetros utilizados

Conjunto de Dados Módulo Épocas Taxa de Aprendizado

Split MNIST
Específico 5 2× 10−4

Classificação
cVAE 40 4× 10−3

Split FashionMNIST
Específico 5 2× 10−4

Classificação
cVAE 25 10−2

A Tabela 2 apresenta os resultados obtidos nos experimentos para cada método e conjunto
de dados. É possível observar que o método de treinamento desacoplado proporcionou nas
métricas quando comparado ao método original.

Tabela 2 – Comparação das Médias do SSIM, do BWT e da Acurácia

Método de Treino Split MNIST Split FashionMNIST
SSIM BWT (%) Acurácia (%) SSIM BWT (%) Acurácia (%)

Original 0,599 -11,314 87,143 0,517 -23,494 76,070
Desacoplado 0,643 -11,680 87,227 0,519 -17,887 77,940

Em relação ao SSIM, o treinamento desacoplado resultou em uma melhora em ambos
os conjuntos de dados, indicando uma melhoria na geração de imagens. Isso implica que, ao
treinar o cVAE de forma isolada dos outros módulos, foi possível obter uma representação
latente que codifica melhor as características das imagens.

50

Já em relação ao BWT, notou-se um comportamento distinto entre os conjuntos de dados.
Enquanto no Split FashionMNIST o método desacoplado apresentou uma grande redução do
fenômeno de esquecimento, indicado por valores de BWT menos negativos, o mesmo não foi
observado no Split MNIST onde, na verdade, houve uma pequena piora, com valores mais
negativos.

Apesar dos resultados mistos do BWT, o treinamento desacoplado levou a uma melhora
geral de acurácia em ambos os casos, embora pequena para o conjunto de dados Split MNIST
e mais notável no Split Fashion-MNIST. Esse incremento indica que desacoplar o treinamento
estimula o módulo classificador a desenvolver uma melhor generalização para novas amostras,
talvez devido a representações mais robustas fornecida pelo cVAE.

Em síntese, os resultados obtidos mostram que desacoplar o treinamento dos módulos da
arquitetura leva a uma melhora na acurácia de classificação das imagens.

5.1.2 cVAE-GAN como Rede Generativa

Neste experimento, utilizamos o treinamento desacoplado para treinar um cVAE-GAN
no lugar no cVAE usado originalmente na arquitetura do IRCL. O objetivo é verificar se o
desacoplamento viabiliza o treinamento de modelos generativos mais robustos, com melhor
capacidade de geração de imagens, levando a uma melhora no desempenho geral da arquite-
tura.

Para implementar o cVAE-GAN, adicionamos à arquitetura uma rede discriminadora após
o decodificador, composta por quatro camadas convolucionais e uma camada linear de saída.
Utilizamos batch normalization nas três camadas escondidas, usamos a ReLU como função
de ativação das camadas convolucionais e Sigmoid na camada de saída. Os hiperparâmetros
utilizados são apresentados na Tabela 3.

A Tabela 4 apresenta os resultados obtidos, onde é possível constatar que a adição do cVAE-
GAN influenciou de maneira distinta as métricas entre os dois conjuntos de dados testados.

Com relação ao SSIM, o cVAE-GAN levou à uma redução na qualidade das imagens
geradas para o conjunto Split MNIST, enquanto que houve uma melhora na qualidade das
imagens geradas para o Split Fashion-MNIST. Para o BWT, a adição do cVAE-GAN teve
um efeito positivo no Split MNIST, mas, no FashionMNIST, houve um aumento na taxa de
esquecimento. Por fim, em relação a Acurácia, observamos uma melhora no Split MNIST,
enquanto no Split FashionMNIST houve uma piora.

51

Tabela 3 – Hiperparâmetros utilizados

Conjunto de Dados Módulo Épocas Taxa de Aprendizado

Split MNIST

Específico 5 2× 10−4
Classificador
Codificador 100 2× 10−4

Decodificador
Discriminador 100 10−5

Split FashionMNIST

Específico 15 10−4
Classificador
Codificador 125 10−3

Decodificador
Discriminador 70 10−4

Tabela 4 – Comparação das Médias do SSIM, do BWT e da Acurácia

Método de Treino Split MNIST Split FashionMNIST
SSIM BWT (%) Acurácia (%) SSIM BWT (%) Acurácia (%)

Original 0,599 -11,314 87,143 0,517 -23,494 76,070
Desacoplado 0,643 -11,680 87,227 0,519 -17,887 77,940
Desacoplado
cVAE-GAN

0,618 -9,554 88,761 0,547 -21,964 77,160

Em suma, a inclusão do cVAE-GAN na estrutura de treinamento desacoplado ofereceu
vantagens para o conjunto de dados Split MNIST, mas o resultado positivo não se manteve
para o Split FashionMNIST. Isso impossibilita afirmar que a adição do cVAE-GAN, por si só,
leva a uma melhoria no desempenho de aprendizagem contínua em relação ao treinamento
desacoplado com o cVAE original.

5.1.3 Uso de Camadas Convolucionais

Para esse experimento, substituímos todos os módulos da arquitetura por implementações
com camadas convolucionais, exceto pelo módulo de classificação, que foi mantido o mesmo
da arquitetura original do IRCL. O objetivo é verificar se o uso desse tipo de camada leva a uma
melhora no desempenho obtido pela arquitetura. Apesar do desempenho misto apresentado no
experimento anterior, optamos por manter a utilização do cVAE-GAN visto que os resultados
obtidos com ele ainda foram melhores do que os obtidos pela arquitetura original.

Para isso, utilizamos um módulo específico composto de três camadas convolucionais e
ReLU como função de ativação, cada uma seguida por uma operação de max pooling e com

52

uma camada linear de saída. O codificador foi implementado com três camadas convolucionais,
aplicando batch normalization e a função de ativação ELU, com 𝛼 = 1.0. O decodificador
possui uma camada linear de entrada, com ELU como ativação, seguida por três camadas
convolucionais com a função de ativação ReLU. Foi aplicado batch normalization em todas as
suas camadas. O discriminador é composto por quatro camadas convolucionais, usando ReLU
como ativação, e uma camada linear de saída, com aplicação de batch normalization em todas
as camadas escondidas..

A Tabela 5 exibe os hiperparâmetros utilizados durante este experimento para todos os
módulos da arquitetura.

Tabela 5 – Hiperparâmetros utilizados

Conjunto de Dados Módulo Épocas Taxa de Aprendizado

Split MNIST

Específico 25 4× 10−4
Classificador
Codificador 70 10−3

Decodificador
Discriminador 70 2× 10−4

Split FashionMNIST

Específico 15 2× 10−4
Classificador
Codificador 70 10−3

Decodificador
Discriminador 70 2× 10−4

A Tabela 6 apresenta os resultados obtidos, onde é possível verificar que a utilização de
camadas convolucionais levou a uma melhora em todas as métricas avaliadas.

Tabela 6 – Comparação das Médias do SSIM, do BWT e da Acurácia

Método de Treino Split MNIST Split FashionMNIST
SSIM BWT (%) Acurácia (%) SSIM BWT (%) Acurácia (%)

Original 0,599 -11,314 87,143 0,517 -23,494 76,070
Desacoplado 0,643 -11,680 87,227 0,519 -17,887 77,940
Desacoplado
cVAE-GAN

0,618 -9,554 88,761 0,547 -21,964 77,160

Desacoplado
cVAE-GAN
Camadas Convolucionais

0.785 -2.989 97.168 0.599 -15.112 81.329

Ao analisar os valores de SSIM, o uso de camadas convolucionais resultou em uma melhora
na qualidade das imagens geradas nos dois conjuntos de dados avaliados. As Figuras 20 e 21

53

apresentam as imagens do MNIST e Fashion-MNIST em conjunto com as imagens geradas
utilizando o método IRCL e as produzidas através de nossa abordagem. É possível observar um
aumento na nitidez das imagens geradas pela nossa abordagem em comparação as imagens
geradas pelo IRCL.

(a) MNIST (b) IRCL (c) Método proposto

Figura 20 – a) Amostras do MNIST em comparação com b) imagens gerada pelo IRCL
e c) imagens gerada pelo método proposto

(a) FashionMNIST (b) IRCL (c) Método proposto

Figura 21 – a) Amostras do Fashion-MNIST em comparação com b) imagens gerada
pelo IRCL e c) imagens gerada pelo método proposto

Em relação ao BWT, houve uma melhora na taxa de esquecimento, possívelmente uma
consequência da maior qualidade das imagens geradas, que são usadas para manter o conhe-
cimento relativo as classes de tarefas anteriores. Finalmente, considerando a acurácia média,
foram obtidas as melhores taxas em ambos conjuntos avaliados.

Dessa forma, o experimento demonstrou que a combinação da utilização de camadas
convolucionais com o treinamento desacoplado e uso de um cVAE-GAN resulta na diminuição
do efeito de esquecimento catastrófico e, consequentemente, na melhora no desempenho de
classificação ao final do treinamento de todas as tarefas.

54

6 CONCLUSÃO

Neste trabalho, propusemos uma arquitetura aprimorada para Aprendizado Contínuo uti-
lizando a abordagem de pseudo-replay no cenário de classe incremental. O estudo se baseou
no método IRCL (Invariant Representation for Continual Learning), considerado o estado da
arte até então. A arquitetura proposta integra a utilização de camadas convolucionais com o
uso de um cVAE-GAN como modelo gerativo, além de utilizar um treinamento independente
para os módulos da arquitetura. Os conjuntos de dados avaliados foram o Split MNIST e Split

FashionMNIST.
Primeiramente, conduzimos experimentos para testar a hipótese de que o desacoplamento

do treinamento do modelo generativo dos demais módulos da arquitetura permitiria a utilização
de melhores hiperparâmetros. Como resultado, observamos que desacoplar o treinamento leva
a uma melhora na qualidade das imagens geradas e aumento no desempenho de classificação
das imagens.

Em seguida, avaliamos a hipótese de que o desacoplamento viabilizaria o treinamento
de modelos generativos mais robustos, com melhor capacidade de geração de imagens. Para
isso, utilizamos um cVAE-GAN no lugar do cVAE original, treinado de forma desacoplada. Os
resultados obtidos não foram suficientes para afirmar que o uso do cVAE-GAN leva a uma
melhora no desempenho em relação ao uso do cVAE tradicional.

Por fim, realizamos experimentos para testar a hipótese de que o uso de camadas convolu-
cionais levaria a um melhor geral desempenho da arquitetura. Os resultados demonstraram que
o uso de camadas convolucionais em conjunto com o treinamento desacoplado e a utilização
de um cVAE-GAN leva a uma melhora na qualidade das imagens geradas, um aumento na
acurácia da classificação e diminuição do efeito de esquecimento catastrófico.

Dessa forma, a abordagem desenvolvida neste estudo superou o método IRCL usado como
referência, sendo possível obter uma melhora de até 10 pontos percentuais na média da Acu-
rácia e de até 8 pontos na média do Backward Transfer nos conjuntos avaliados.

55

REFERÊNCIAS

CIREsAN, D. C.; MEIER, U.; MASCI, J.; GAMBARDELLA, L. M.; SCHMIDHUBER,
J. Flexible, high performance convolutional neural networks for image classification. In:
Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence
- Volume Volume Two. [S.l.]: AAAI Press, 2011. (IJCAI’11), p. 1237–1242. ISBN
9781577355144.

CIREGAN, D.; MEIER, U.; SCHMIDHUBER, J. Multi-column deep neural networks for image
classification. In: IEEE. 2012 IEEE conference on computer vision and pattern recognition.
[S.l.], 2012. p. 3642–3649.

COSSU, A.; ZIOSI, M.; LOMONACO, V. Sustainable Artificial Intelligence through Continual
Learning. Proceedings of the 1st International Conference on AI for People: Towards
Sustainable AI, CAIP 2021, 20-24 November 2021, Bologna, Italy, 2021. Disponível em:
<https://aiforpeople.org/conference/assets/papers/CAIP21-P11.pdf>.

DAI, Z.; LIU, H.; LE, Q. V.; TAN, M. CoAtNet: Marrying convolution and attention for all
data sizes. Advances in Neural Information Processing Systems, v. 34, p. 3965–3977, 2021.

EBRAHIMI, S.; MEIER, F.; CALANDRA, R.; DARRELL, T.; ROHRBACH, M. Adversarial
continual learning. In: VEDALDI, A.; BISCHOF, H.; BROX, T.; FRAHM, J.-M. (Ed.).
Computer Vision – ECCV 2020. Cham: Springer International Publishing, 2020. p. 386–402.
ISBN 978-3-030-58621-8.

FRENCH, R. M. Semi-distributed representations and catastrophic forgetting in connectionist
networks. Connection Science, Taylor Francis, v. 4, n. 3-4, p. 365–377, 1992. Disponível em:
<https://doi.org/10.1080/09540099208946624>.

FRITZKE, B. A growing neural gas network learns topologies. In: Proceedings of the 7th
International Conference on Neural Information Processing Systems. Cambridge, MA, USA:
MIT Press, 1994. (NIPS’94), p. 625–632.

GOODFELLOW, I.; POUGET-ABADIE, J.; MIRZA, M.; XU, B.; WARDE-FARLEY, D.;
OZAIR, S.; COURVILLE, A.; BENGIO, Y. Generative adversarial networks. Communications
of the ACM, ACM New York, NY, USA, v. 63, n. 11, p. 139–144, 2020.

GOODFELLOW, I. J.; MIRZA, M.; XIAO, D.; COURVILLE, A.; BENGIO, Y. An empirical
investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

HAYKIN, S. Neural Networks and Learning Machines. Prentice Hall, 2009. (Neural
networks and learning machines, v. 10). ISBN 9780131471399. Disponível em:
<https://books.google.com.br/books?id=K7P36lKzI_QC>.

HE, K.; ZHANG, X.; REN, S.; SUN, J. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In: 2015 IEEE International Conference on Computer
Vision (ICCV). [S.l.: s.n.], 2015. p. 1026–1034.

KINGMA, D. P.; WELLING, M. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

https://aiforpeople.org/conference/assets/papers/CAIP21-P11.pdf
https://doi.org/10.1080/09540099208946624
https://books.google.com.br/books?id=K7P36lKzI_QC

56

KIRKPATRICK, J.; PASCANU, R.; RABINOWITZ, N.; VENESS, J.; DESJARDINS, G.; RUSU,
A. A.; MILAN, K.; QUAN, J.; RAMALHO, T.; GRABSKA-BARWINSKA, A.; HASSABIS, D.;
CLOPATH, C.; KUMARAN, D.; HADSELL, R. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of Sciences, v. 114, n. 13, p. 3521–3526,
2017. Disponível em: <https://www.pnas.org/doi/abs/10.1073/pnas.1611835114>.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, AcM New York, NY, USA,
v. 60, n. 6, p. 84–90, 2012.

LANGE, M. D.; ALJUNDI, R.; MASANA, M.; PARISOT, S.; JIA, X.; LEONARDIS, A.;
SLABAUGH, G.; TUYTELAARS, T. A continual learning survey: Defying forgetting in
classification tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 44,
n. 7, p. 3366–3385, 2022.

LARSEN, A. B. L.; SØNDERBY, S. K.; LAROCHELLE, H.; WINTHER, O. Autoencoding
beyond pixels using a learned similarity metric. In: PMLR. International conference on
machine learning. [S.l.], 2016. p. 1558–1566.

LECUN, Y.; BOSER, B.; DENKER, J. S.; HENDERSON, D.; HOWARD, R. E.; HUBBARD,
W.; JACKEL, L. D. Backpropagation applied to handwritten zip code recognition. Neural
Computation, v. 1, n. 4, p. 541–551, 1989.

LI, C.; ZHUANG, B.; WANG, G.; LIANG, X.; CHANG, X.; YANG, Y. Automated progressive
learning for efficient training of vision transformers. In: CVPR. [S.l.: s.n.], 2022.

MCCLELLAND, J. L.; MCNAUGHTON, B. L.; O’REILLY, R. C. Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes and failures of
connectionist models of learning and memory. Psychological review, American Psychological
Association, v. 102, n. 3, p. 419, 1995.

MCCLOSKEY, M.; COHEN, N. J. Catastrophic Interference in Connectionist Networks:
The Sequential Learning Problem. In: BOWER, G. H. (Ed.). Academic Press,
1989, (Psychology of Learning and Motivation, v. 24). p. 109–165. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0079742108605368>.

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, Springer, v. 5, n. 4, p. 115–133, 1943.

MOE-HELGESEN, O.-M.; STRANDEN, H. Catastophic forgetting in neural networks. Dept.
Comput. & Information Sci., Norwegian Univ. Science & Technology (NTNU), Trondheim,
Norway, Tech. Rep, Citeseer, v. 1, p. 22, 2005.

RATCLIFF, R. Connectionist Models of Recognition Memory: Constraints Imposed by
Learning and Forgetting Functions. Psychological Review, v. 97, n. 2, p. 285–308, 1990.
Disponível em: <https://psycnet.apa.org/doi/10.1037/0033-295X.97.2.285>.

REBUFFI, S.-A.; KOLESNIKOV, A.; SPERL, G.; LAMPERT, C. H. icarl: Incremental
classifier and representation learning. In: Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition. [S.l.: s.n.], 2017. p. 2001–2010.

ROBINS, A. Catastrophic forgetting in neural networks: the role of rehearsal mechanisms. In:
Proceedings 1993 The First New Zealand International Two-Stream Conference on Artificial
Neural Networks and Expert Systems. [S.l.: s.n.], 1993. p. 65–68.

https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://psycnet.apa.org/doi/10.1037/0033-295X.97.2.285

57

ROBINS, A. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection
Science, Taylor Francis, v. 7, n. 2, p. 123–146, 1995. Disponível em: <https:
//doi.org/10.1080/09540099550039318>.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning representations by
back-propagating errors. nature, Nature Publishing Group UK London, v. 323, n. 6088, p.
533–536, 1986. Disponível em: <https://www.nature.com/articles/323533a0>.

SHIN, H.; LEE, J. K.; KIM, J.; KIM, J. Continual learning with deep generative replay.
Advances in neural information processing systems, v. 30, 2017.

SOHN, K.; LEE, H.; YAN, X. Learning structured output representation using deep
conditional generative models. Advances in neural information processing systems, v. 28,
2015.

SOKAR, G.; MOCANU, D. C.; PECHENIZKIY, M. Learning Invariant Representation for
Continual Learning. In: AAAI-21 International Workshop on Meta-Learning for Computer
Vision (MeL4CV), 2021. [S.l.: s.n.], 2021.

STRUBELL, E.; GANESH, A.; MCCALLUM, A. Energy and Policy Considerations
for Modern Deep Learning Research. Proceedings of the AAAI Conference on
Artificial Intelligence, v. 34, n. 09, p. 13693–13696, Apr. 2020. Disponível em:
<https://ojs.aaai.org/index.php/AAAI/article/view/7123>.

SYMEONIDIS, G.; NERANTZIS, E.; KAZAKIS, A.; PAPAKOSTAS, G. A. Mlops - definitions,
tools and challenges. In: 2022 IEEE 12th Annual Computing and Communication Workshop
and Conference (CCWC). [S.l.: s.n.], 2022. p. 0453–0460.

TOOSI, A.; BOTTINO, A.; SABOURY, B.; SIEGEL, E. L.; RAHMIM, A. A Brief History
of AI: How to Prevent Another Winter (A Critical Review). CoRR, abs/2109.01517, 2021.
Disponível em: <https://www.pet.theclinics.com/article/S1556-8598(21)00053-5/fulltex>.

VEN, G. M. van de; TOLIAS, A. S. Three scenarios for continual learning. 2019.

VERWIMP, E.; LANGE, M. D.; TUYTELAARS, T. Rehearsal revealed: The limits and merits
of revisiting samples in continual learning. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). [S.l.: s.n.], 2021. p. 9385–9394.

ZHAI, X.; KOLESNIKOV, A.; HOULSBY, N.; BEYER, L. Scaling vision transformers. CoRR,
abs/2106.04560, 2021. Disponível em: <https://arxiv.org/abs/2106.04560>.

ZHANG, A.; LIPTON, Z. C.; LI, M.; SMOLA, A. J. Dive into deep learning. arXiv preprint
arXiv:2106.11342, 2021.

https://doi.org/10.1080/09540099550039318
https://doi.org/10.1080/09540099550039318
https://www.nature.com/articles/323533a0
https://ojs.aaai.org/index.php/AAAI/article/view/7123
https://www.pet.theclinics.com/article/S1556-8598(21)00053-5/fulltex
https://arxiv.org/abs/2106.04560

	Folha de rosto
	Resumo
	Abstract
	Lista de Figuras
	Listing
	Lista de tabelas
	Sumário
	Introdução
	Motivação
	Objetivos
	Estrutura da Dissertação

	Fundamentação Teórica
	Redes Neurais
	Camadas
	Lineares
	Convolucionais

	Autoencoders
	Autoencoders Variacionais
	Autoencoders Variacionais Condicionais
	VAE-GANs

	Tarefas em Aprendizado Contínuo
	Cenários de problemas de Aprendizado Contínuo
	Tarefa Incremental
	Domínio Incremental
	Classe Incremental

	Abordagens para implementar Aprendizado Contínuo
	Baseadas em Regularização
	Baseadas em Arquitetura
	Baseadas em Rehearsal

	Trabalhos Relacionados
	Início
	Período Recente
	Estado da Arte
	IRCL

	Método Proposto
	Hipóteses
	Treinamento desacoplado
	cVAE-GAN como Rede Generativa
	Uso de Camadas Convolucionais

	Conjuntos de Dados
	Métricas de Avaliação
	Média da Acurácia de Classificação
	Média do Backward Transfer
	Medida do Índice de Similaridade Estrutural (SSIM)

	Experimentos e Resultados
	Resultados
	Treinamento desacoplado
	cVAE-GAN como Rede Generativa
	Uso de Camadas Convolucionais

	Conclusão
	Referências

