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RESUMO 

 

A alta variabilidade da geração solar fotovoltaica (FV) dificulta a previsão de curto prazo, 

levando o Operador Nacional do Sistema Elétrico (ONS) a manter reservas operativas 

elevadas e, consequentemente, custos sistêmicos maiores. Esta tese propõe uma abordagem de 

previsão multissérie que integra Clusterização Hierárquica com distância DTW e a arquitetura 

Temporal Fusion Transformer (TFT), utilizando exclusivamente dados públicos de geração 

(ONS) e meteorologia (NASA POWER). A metodologia inclui: imputação de dados faltantes 

guiada pela curva de radiação solar, clusterização de dez usinas FV para identificar grupos 

com padrões de geração similares e desenvolvimento de quatorze modelos TFT, 

contemplando configurações univariadas e multipreditivas. A avaliação, baseada em 

validação por janela deslizante, dez inicializações independentes e métricas MAE, RMSE e 

nMAE na escala original (MW), mostrou que os melhores modelos univariados atingem 

nMAE em torno de 10%, combinando variáveis meteorológicas, atributos derivados da série 

de geração e codificações sazonais. Nos modelos multipreditivos, a previsão simultânea de 

duas ou três usinas manteve nMAEs muito próximos aos univariados, indicando que a 

acurácia relativa por usina praticamente não se deteriora ao adotar uma modelagem conjunta, 

ao mesmo tempo em que se reduz o número de modelos a serem treinados e operados. 

Comparativos com redes MLP, LSTM e com o método de Persistência evidenciaram a 

superioridade consistente do TFT. Os resultados estabelecem uma base reprodutível e 

escalável para previsão FV em múltiplas usinas, com potencial aplicação na melhoria da 

eficiência e da gestão do sistema elétrico brasileiro. 

 

Palavras-chave: Multiprevisão. Clusterização Hierárquica. Temporal Fusion Transformer. 

Geração Fotovoltaica. Validação com Janela Deslizante.  

 

 

 



 

 

ABSTRACT 

 

The high variability of solar photovoltaic (PV) generation poses a significant challenge for 

short-term forecasting, compelling the National Electric System Operator (ONS) to maintain 

high operating reserves and, consequently, incurring higher systemic costs. This thesis 

proposes a multi-series forecasting approach that integrates Hierarchical Clustering with 

Dynamic Time Warping (DTW) distance and the Temporal Fusion Transformer (TFT) 

architecture, relying exclusively on public generation (ONS) and meteorological (NASA 

POWER) data. The methodology includes missing data imputation guided by the solar 

radiation curve; clustering of ten PV plants to identify groups with similar generation 

patterns; and the development of fourteen TFT models, encompassing both univariate and 

multi-target configurations. The assessment, based on walk-forward validation, ten 

independent initializations, and MAE, RMSE, and nMAE metrics calculated on the original 

scale (MW), showed that the best univariate models achieve an nMAE of approximately 10% 

by combining meteorological variables, generation-derived features, and seasonal encodings. 

In multi-target models, the simultaneous forecasting of two or three plants maintained nMAE 

levels very close to those of univariate models, indicating that the relative accuracy per plant 

suffers virtually no degradation under joint modeling, while reducing the number of models to 

be trained and operated. Comparisons with MLP and LSTM networks, as well as the 

Persistence method, highlighted the consistent superiority of the TFT. The results establish a 

reproducible and scalable framework for multi-plant PV forecasting, with potential 

applications in enhancing the efficiency and management of the Brazilian power system. 

 

Keywords: Multiseries Forecasting. Hierarchical Clustering. Temporal Fusion Transformer. 

PV Power Generation. Sliding Window Validation. 
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𝐼𝐷 Covariável categórica estática de identificação de uma usina FV 

𝑈𝑠𝑖𝑛𝑎 
Covariável categórica estática que distingue cada uma das usinas dentro do 

mesmo conjunto de entrada 

𝑡𝑖𝑚𝑒_𝑖𝑑𝑥   Índice temporal do TFT 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑡𝑖𝑚𝑒_𝑖𝑑𝑥 Índice temporal relativo do TFT 
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1 INTRODUÇÃO 

 

No Brasil, a energia solar fotovoltaica (FV) tornou-se a fonte energética renovável com 

maior crescimento anual, pois sua capacidade instalada gerada aumentou de 49 MW em 2015 

para 53.113 MW no ano de 2024 (International Renewable Energy Agency, 2025). Esse fato 

se explica pelo decréscimo dos preços dos insumos verificados nos últimos anos devido à alta 

oferta no mercado, à inovação tecnológica tendo em vista que os fabricantes garantem muitos 

anos de funcionamento em seus projetos, ao vasto potencial técnico existente e a minimização 

da emissão de gases de efeito estufa (Empresa de Pesquisa Energética, 2020). 

Devido à sua localização geográfica, o Brasil recebe elevados índices de radiação solar, 

que são relativamente uniformes em todo o território nacional, o que permite o 

desenvolvimento de projetos solares viáveis em diferentes regiões. Assim, dada a redução de 

custos considerada, a fonte FV se apresenta como alternativa competitiva no fornecimento de 

energia. Além disso, a versatilidade e modularidade da tecnologia FV permitem o 

desenvolvimento de projetos em diferentes escalas, tanto centralizados quanto distribuídos.  

A Empresa de Pesquisa Energética (EPE, 2025) aponta que a Micro e Minigeração 

Distribuída (MMGD) é a principal responsável pela expansão da capacidade instalada de 

energia elétrica no Brasil. Pelo quarto ano consecutivo, em 2024, a fonte solar distribuída 

superou as demais fontes em termos de expansão da oferta de geração, como pode ser 

verificado na Figura 1. 

Figura 1 – Expansão da Oferta de Geração de Energia Elétrica em 2024 

 
Fonte: Adaptado de EPE (2025). 
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Considerando o cenário energético atual e a crescente participação da geração FV na 

matriz elétrica brasileira, projeta-se a continuidade do aumento dos investimentos nessa 

tecnologia. Esse avanço tem sido impulsionado pela queda dos custos dos módulos no 

mercado internacional e pela maior conscientização sobre os benefícios ambientais e 

econômicos das fontes renováveis. Nesse contexto, emerge o desafio de desenvolver um 

modelo preditivo robusto e preciso para a geração FV. Tal modelo é crucial para reduzir a 

necessidade de reserva operativa do sistema elétrico, acomodar as especificidades da geração 

distribuída e otimizar a operação do setor. Além disso, apoia decisões de despacho e gestão de 

risco, sobretudo frente às flutuações de preços no mercado de energia (Lee; Kim, 2019). 

O equilíbrio entre a produção e demanda de energia deve existir para que o Sistema 

Elétrico de Potência (SEP) opere com estabilidade, contudo, ao adicionar as fontes de energia 

alternativas, cuja geração varia ao longo das horas e de acordo com as condições 

meteorológicas, é vital que formas eficientes de previsão da produtividade energética, 

inclusive a FV, sejam concebidas, principalmente devido à característica estocástica desse 

formato de geração e para otimizar a operação do sistema elétrico. Para isso, modelos 

confiáveis de previsão, baseados em dados de medição das usinas geradoras e bases 

meteorológicas são necessários (Nespoli et al., 2019).  

A geração de energia FV está estreitamente relacionada à radiação solar e temperatura 

ambiente, conforme destacado por Cui et al. (2019). A Tabela 1 mostra os índices de 

correlação de variáveis meteorológicas, demonstrando a grande compatibilidade da radiação 

com a geração (0,82), seguida pela temperatura ambiente (0,60). Por outro lado, a umidade 

apresenta um comportamento inverso (-0,49) e, por fim, a velocidade do vento apresenta 

pouca representatividade (0,10). Portanto, é essencial utilizar séries históricas das variáveis 

meteorológicas para prever com maior precisão.  

Tabela 1 - Índices de correlação entre Meteorologia e Geração FV 

 Geração FV 
Radiação 

solar 

Temperatura 

ambiente 
Umidade 

Velocidade 

do vento 

Geração FV 1,00 0,82 0,60 -0,49 0,10 

Radiação solar 0,82 1,00 0,64 -0,40 0,08 

Temperatura 

ambiente 
0,60 0,64 1,00 -0,30 -0,30 

Umidade -0,49 -0,40 -0,30 1,00 -0,02 

Velocidade do 

vento 
0,10 0,08 -0,30 -0,02 1,00 

Fonte: Adaptado de Francisco et al. (2019). 
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1.1 Contextualização e Descrição do Problema 

 

A crescente inserção da energia FV na matriz elétrica brasileira, especialmente nas regiões 

Nordeste, Sul e Sudeste, aumenta a necessidade de modelos preditivos capazes de lidar com a 

intermitência e variabilidade dessa fonte. Essa variabilidade impõe desafios à operação do 

Sistema Interligado Nacional (SIN), exigindo que o Operador Nacional do Sistema Elétrico 

(ONS) mantenha reserva operativa elevada e recorra frequentemente ao despacho térmico. 

Essas ações elevam os custos operacionais, que tendem a ser repassados ao consumidor final. 

A Figura 2 sintetiza esse conjunto de efeitos. 

Figura 2 - Desafios associados à previsão de Geração FV 

 

Fonte: A Autora (2025). 

 

O aprimoramento da acurácia das previsões de geração FV permitem também planejar a 

expansão da matriz elétrica com maior confiança, aproveitando plenamente o potencial da 

energia solar. Além disso, um modelo capaz de prever simultaneamente a geração de 

múltiplas usinas FV, desde que agrupadas por similaridade de perfil, pode trazer ganhos 

operacionais diretos ao SIN, harmonizando o despacho térmico e reduzindo o esforço 

computacional necessário para execução de múltiplos processos de previsão isolados. 

Outro desafio é a escassez de bases públicas completas e integradas, tanto de geração 

quanto de variáveis meteorológicas, o que prejudica a reprodutibilidade dos resultados. Nesta 

pesquisa, foram utilizados dados públicos de geração horária média (MWmed) fornecidos 

pelo ONS. Como alternativa às medições meteorológicas locais, geralmente indisponíveis, 

recorreu-se à base de dados NASA POWER, que disponibiliza dados meteorológicos em 

escala horária ou diária de acordo com a coordenada geográfica. Essa base, derivada de 

sensoriamento remoto e modelos numéricos globais, supre a ausência de medições locais com 

ampla cobertura espacial e temporal. 
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As séries de geração FV, entretanto, frequentemente apresentam lacunas resultantes de 

falhas operacionais, limitações de sensoriamento ou interrupções na coleta de dados. Técnicas 

tradicionais de imputação, como médias móveis, interpolação linear ou k-vizinhos, nem 

sempre preservam a sazonalidade e a alta variabilidade da geração FV, podendo introduzir 

distorções. Neste trabalho, propõe-se uma heurística fundamentada na correlação entre perfis 

de radiação solar e geração, utilizando dias com padrões semelhantes de radiação para 

preencher lacunas de forma mais realista. 

Do ponto de vista metodológico, a presente pesquisa busca desenvolver modelos mais 

precisos, robustos e generalizáveis por meio da integração entre Clusterização Hierárquica e 

Temporal Fusion Transformer (TFT). A primeira agrupa usinas com padrões de geração 

similares, permitindo a construção de modelos especializados por grupo e reduzindo a 

variância entre amostras. O TFT, por sua vez, incorpora mecanismos de atenção, codificação 

temporal e inferência probabilística, sendo especialmente adequado para lidar com séries 

temporais multivariadas e heterogêneas. 

Assim, o problema central deste trabalho consiste em desenvolver e avaliar modelos 

preditivos multissérie, baseados em dados públicos. Os modelos devem ser capazes de 

aprender e prever de forma eficiente a geração FV em múltiplas usinas, mesmo diante de 

dados incompletos ou ruidosos. Nesse contexto, a arquitetura TFT, que é relativamente nova 

(Lim et al., 2021) e vem sendo adotada de forma crescente em previsão de séries temporais, 

com aplicações pontuais em geração FV. As configurações multissérie ainda são pouco 

exploradas (López Santos et al., 2022; Tao et al., 2024) e, até o presente momento, não foram 

encontrados trabalhos que combinam explicitamente o TFT com a Clusterização Hierárquica 

para orientar o aprendizado entre usinas FV. Essa lacuna fundamenta a contribuição original 

deste trabalho. 

Com base em estudos recentes sobre previsão de geração FV, a Tabela 2 resume de forma 

objetiva os principais problemas identificados na literatura e as soluções propostas nesta 

pesquisa, evidenciando as contribuições originais do estudo. 

Tabela 2 - Problemas identificados na literatura e soluções propostas 

Problema identificado na literatura Solução proposta nesta pesquisa 

Uso predominante de modelos de previsão de séries 

temporais individuais (Wu & Phan, 2022; Islam et 

al., 2023). 

Desenvolvimento de modelo multissérie capaz de 

prever simultaneamente múltiplas usinas, aproveitando 

padrões comuns entre elas. 

Baixa disponibilidade de bases públicas completas 

e integradas de geração FV e meteorologia, 

dificultando a reprodutibilidade (López Santos et 

al., 2022). 

Uso exclusivo de dados públicos tanto para geração FV 

(ONS) quanto para variáveis meteorológicas (NASA 

POWER), garantindo transparência e reprodutibilidade. 
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Ausência de abordagem sistemática para lidar com 

lacunas nas séries de geração FV (Zainuddin et al., 

2022; Park et al., 2023). 

Heurística baseada na similaridade entre perfis de 

radiação solar e geração FV para imputação mais 

realista. 

Escassez de estudos para previsão de geração FV 

com uso combinado de TFT e Clusterização 

Hierárquica em cenários multissérie (López Santos 

et al., 2022; Islam et al., 2023; Tao et al., 2024). 

Proposta original de combinar Clusterização 

Hierárquica e TFT para previsão FV multissérie, 

gerando modelos especializados por grupo. 

Validação restrita a partições fixas (treino/teste), 

com partição aleatória do conjunto de dados (López 

Santos et al., 2022). 

Validação com janela deslizante fixa para robustez 

estatística da avaliação dos modelos. 

Poucos estudos exploram o enriquecimento 

estruturado de covariáveis para capturar 

sazonalidade e interações não lineares (López 

Santos et al., 2022; Islam et al., 2023). 

Geração de atributos derivados e interações para 

enriquecer as entradas do TFT. 

Fonte: A Autora (2025). 

 

1.2 Objetivo-Geral 

 

Desenvolver e avaliar modelos de previsão de geração fotovoltaica baseados na 

arquitetura Temporal Fusion Transformer, integrados a técnicas de Clusterização Hierárquica 

para a otimização do desempenho preditivo em múltiplas usinas. 

 

1.2.1 Objetivos Específicos 

• Selecionar séries históricas de geração horária de dez usinas fotovoltaicas e as 

variáveis meteorológicas correlatas, provenientes de bases de dados públicas.  

• Implementar método próprio de imputação baseado na correlação entre radiação solar 

e geração FV para o tratamento de lacunas nas séries de geração. 

• Agrupar as usinas por meio da Clusterização Hierárquica com Dynamic Time Warping 

(DTW), identificando padrões de geração similares para a modelagem conjunta.  

• Implementar o enriquecimento de dados mediante a criação de atributos derivados e 

interações, visando capturar sazonalidades e relações não lineares.  

• Desenvolver e validar os modelos de previsão baseados em TFT, para uma horizonte 

de 11 horas, realizando a análise estatística do desempenho e a comparação com topologias 

preditivas de referência. 
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1.3 Organização do Trabalho 

 

Esta tese de doutorado está organizada em seis capítulos. Este primeiro constitui-se da 

introdução que contextualiza a geração solar FV no cenário mundial e brasileiro, além de 

apresentar a motivação para a pesquisa, a descrição do problema e os objetivos do trabalho.  

O Capítulo 2 apresenta o Estado da Arte em previsão de geração fotovoltaica, 

contextualizando o tema com as principais pesquisas e as suas contribuições mais recentes na 

literatura. 

O Capítulo 3 apresenta a fundamentação teórica necessária para a compreensão do estudo. 

Dividido em cinco subseções, o capítulo enfatiza conceitos que são essenciais para a 

compreensão do trabalho. 

No Capítulo 4, é apresentada a metodologia para desenvolvimento do modelo proposto 

nessa pesquisa.  Nesse capítulo são detalhados os métodos e técnicas utilizadas. 

Os resultados e as discussões da pesquisa são apresentados no Capítulo 5, que é dividido 

em cinco subseções, sendo cada uma delas referente às contribuições anteriormente propostas. 

O Capítulo 6 refere-se à conclusão do trabalho, destacando os principais resultados 

alcançados e suas implicações no desenvolvimento de modelo para previsão de geração FV, 

contribuições do trabalho e sugestões para trabalhos futuros. 
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2 ESTADO DA ARTE 

 

Na literatura existem diversos trabalhos que abordam de diferentes formas o problema da 

previsão da geração FV. A seleção adequada de técnicas de pré-processamento tem um 

grande impacto na precisão, a eliminação das horas noturnas e valores faltantes do conjunto 

de dados é muito necessário antes do aprendizado da rede. A escolha das variáveis de entrada 

é totalmente dependente do usuário, assim como os fatores climatológicos e parâmetros 

geográficos. O uso de dados de treinamento para um modelo é, no entanto, um processo 

experimental, uma base de dados de dois a três anos é considerada adequada para treinamento 

de uma modelagem (Singla; Duhan; Saroha, 2021). 

A ausência de dados em séries temporais impacta severamente a categorização e a 

previsão, pois métodos tradicionais de processamento podem introduzir vieses e suposições 

imprecisas. Para abordar essa questão, a pesquisa de Zainuddin et al. (2022) visa categorizar 

os tipos de dados e mecanismos de dados ausentes em séries temporais, além de revisar 

diversas abordagens para preencher essas lacunas. O estudo foca nas técnicas atuais de 

tratamento de valores ausentes no pré-processamento de dados para séries univariadas e 

multivariadas, bem como nos métodos para avaliar a performance da imputação. 

Zainuddin et al. (2022) descrevem os principais métodos para preencher valores ausentes 

em séries temporais, incluindo: a) k-Nearest Neighbors (kNN), que estima valores pela média 

ponderada de vizinhos próximos (Ivo Goltz et al., 2023); b) Local Average of Nearest 

Neighbors (LANN), que preenche lacunas com a média dos vizinhos mais próximos (Flores; 

Tito; Silva, 2019); o Modelo de Índice Único, que simplifica a estimação para uma única 

dimensão via abordagem de kernel (Ling et al., 2022); Cadeias de Markov de Ordem 

Superior, para grandes lacunas univariadas baseadas em padrões de transição (Velasco-

Gallego; Lazakis, 2022); e Imputação de Dados Sazonais, que utiliza redes neurais como 

MLP para lacunas longas em dados não lineares (Park et al., 2023). 

Considerando as particularidades de cada método de imputação de dados faltantes, 

percebeu-se que nenhum era ideal para a série temporal de geração FV estudada. Isso porque 

os dados ausentes ocorriam, na maioria das vezes, em horas consecutivas, o que inviabilizava 

técnicas baseadas em vizinhos próximos. Além disso, não foram identificadas lacunas longas 

o suficiente para justificar o uso de Cadeias de Markov ou Imputação de Dados Sazonais. 

Assim, a abordagem heurística adotada neste trabalho consistiu em equiparar a série 

temporal de geração FV com a de radiação solar global da mesma localidade. O objetivo foi 
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utilizar o padrão da curva diária de radiação global para inferir os valores de geração nas 

horas ausentes, aproveitando a forte correlação entre essas duas variáveis. 

Sobre a previsão da geração FV, na literatura são descritos diferentes métodos os quais 

podem ser divididos: físicos, estatísticos, por aprendizagem de máquina (Van Der Meer et al., 

2018) e modelos híbridos (Wang et al., 2019). De acordo com o processo de previsão, este 

pode ser segmentado por análise pontual ou regional, além disso, sendo necessário definir a 

escala de tempo de averiguação (Wang; Qi; Liu, 2019). 

Os modelos físicos simulam a dinâmica atmosférica com base em princípios físicos e 

condições de fronteira, utilizando dados meteorológicos e geográficos (Zhao et al., 2018; 

Wang et al., 2019), e são adequados para previsões de longo prazo, mas exigem alto esforço 

computacional (Hao; Tian, 2019). Os métodos estatísticos empregam relações matemáticas 

derivadas de dados históricos ambientais e de geração. Técnicas como ARMA, ARIMA, 

SMA e persistência são comuns, mas a persistência não é ideal para FV devido à não-

linearidade da irradiação solar. De modo geral, esses modelos lineares têm limitações para 

previsões de longo prazo (Abdel-Nasser; Mahmoud, 2019; Wang et al., 2019; Cunha, 2021). 

Por fim, os modelos de previsão por aprendizagem de máquina são amplamente utilizados, 

oferecendo melhores resultados devido à sua capacidade de tratar dados complexos. 

Abordagens como redes neurais artificiais, redes fuzzy adaptativas e DL são eficazes para 

lidar com relações não lineares entre entrada e saída, minimizando erros (Wang; Qi; Liu, 

2019). 

Shi et al. (2012) propuseram um modelo para prever a potência FV com 15 minutos de 

antecedência no dia seguinte. Essa abordagem se baseia na classificação meteorológica (céu 

nublado, claro, chuvoso e com neblina) e utiliza Support Vector Regression (SVR), um 

algoritmo de aprendizado de máquina supervisionado. O modelo utilizou como entradas o 

histórico de potência FV de 15 minutos do dia mais próximo com temperaturas máximas, 

mínimas e médias semelhantes às do dia seguinte, obtidas de um boletim meteorológico. 

Como esperado, os melhores resultados de previsão foram alcançados para dias ensolarados e 

nublados. 

Zhou et al. (2019) desenvolveram um método híbrido para previsão de energia FV 

utilizando uma rede LSTM combinada com um mecanismo de atenção (ALSTM). Esse 

mecanismo, uma rede neural que calcula uma soma ponderada das entradas, seleciona de 

forma adaptativa as informações mais relevantes, aprimorando a precisão. O estudo empregou 

duas redes LSTM, uma para prever a potência e outra para a temperatura dos módulos, usando 

dados de uma usina FV de 20 kWp, registrados a cada 7,5 minutos. A análise comparativa, 
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realizada nas quatro estações do ano, mostrou que o ALSTM superou o Modelo Persistente, 

ARIMAX, MLP e LSTM tradicional em todos os horizontes de previsão, de 7,5 a 60 minutos 

à frente, ao focar nos recursos de entrada mais significativos. 

Abdel-Nasser e Mahmoud (2019) propuseram e testaram cinco arquiteturas de rede LSTM 

para prever a potência de sistemas fotovoltaicos com uma hora de antecedência, utilizando 

apenas dados de produtividade. As variações incluíram: a) LSTM tradicional (modelo 1), que 

previa a geração da hora seguinte a partir da hora atual, treinada com diferentes épocas; b) 

LSTM com técnica da janela (modelo 2), que usava múltiplos instantes de tempo como 

entrada do modelo; c) LSTM com time step (modelo 3), que concentrava etapas de tempo 

anteriores como uma única entrada para prever a potência subsequente, considerada um 

enquadramento mais preciso do problema; d) LSTM com memória entre lote (modelo 4), que 

permitia manter o estado interno da rede através dos lotes de treinamento; e e) LSTM 

empilhada com memória entre lotes (modelo 5), que agrupava camadas LSTM para extrair 

mais conceitos e potencialmente melhorar as previsões. A análise de desempenho, usando a 

métrica RMSE, revelou que o modelo 3 (LSTM com time step) obteve os melhores resultados 

(Abdel-Nasser; Mahmoud, 2019). 

Paiva (2021) explorou a previsão intradiária da irradiância solar utilizando dois algoritmos 

de aprendizado de máquina: Programação Genética Multi-gene (PGMG), que deriva funções 

de regressão analítica, e redes neurais artificiais MLP. Ambos foram aplicados a dados de seis 

locais em três países, comparando previsões com horizontes de 15 a 120 minutos. Os 

resultados das simulações indicaram que a precisão do modelo dominante é influenciada pela 

localização, horizonte de previsão e erro de avaliação. PGMG e MLP demonstraram 

desempenho semelhante e consistente. Além disso, as previsões melhoraram 

significativamente com a inclusão de variáveis climáticas exógenas (como irradiância e 

temperatura ambiente) nas entradas dos modelos, reiterando a influência da localidade, 

horizonte de previsão e métrica de erro na acurácia. 

Phan, Wu e Phan (2022) propuseram um promissor modelo para prever a geração de 

energia FV com uma hora de antecedência, utilizando a arquitetura de rede Transformer. A 

seleção das variáveis de entrada foi realizada com o coeficiente de correlação de Pearson, que 

identificou nove dados relevantes, incluindo informações de Previsão Numérica do Tempo 

(NWP) e medições diretas de um parque solar em Taiwan. Conforme esperado, observou-se 

uma alta correlação (cerca de 0,99) entre a irradiância solar e a potência gerada. 

As simulações indicaram que o modelo Transformer superou outras arquiteturas como 

ANN, LSTM e GRU em métricas de desempenho (NRMSE e NMAPE). Além disso, sua 
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capacidade de processamento paralelo e a consequente redução do tempo de computação são 

vantagens significativas, especialmente em cenários onde a rapidez na previsão é crucial 

(Phan; Wu; Phan, 2022). Os resultados gerais demonstram que o mecanismo de atenção do 

Transformer pode aprender padrões complexos em séries temporais. Isso sugere que a 

exploração de modelos híbridos para previsão de geração de energia FV, combinando 

diferentes arquiteturas de redes neurais ou integrando informações de diversas fontes, pode 

levar a modelos mais robustos e precisos, dada a complexidade e variabilidade dos dados de 

energia FV. 

Phan, Wu e Phan (2023) propuseram um modelo para prever a geração FV com um dia de 

antecedência, combinando pré-processamento, pós-processamento e a arquitetura 

Transformer. No pré-processamento, dados ausentes foram imputados utilizando a rede 

XGBoost. A estrutura Transformer foi aprimorada com camadas adicionais de normalização e 

Dropout, além de atenção multi-cabeça. Para aumentar a precisão da previsão, uma técnica de 

pós-processamento foi aplicada, combinando curvas de ajuste numérico diário e uma Unidade 

Recorrente Gated (GRU). Simulados com dados históricos de dez fazendas solares em 

Taiwan e dados NWP, o modelo superou ANN, LSTM, XGBoost e GRU, demonstrando a 

importância do pré e pós-processamento para um bom desempenho preditivo. 

Al-Ali et al. (2023) propõem um modelo híbrido para previsão de geração FV que 

combina CNN, LSTM e Transformer em uma arquitetura codificador-decodificador. Na fase 

de pré-processamento, utilizaram mapas auto-organizáveis para agrupar e selecionar 

características relevantes oriundas de dados históricos de geração e variáveis meteorológicas, 

organizadas em quatro categorias. A CNN extrai padrões espaciais, a LSTM captura 

dependências temporais e o Transformer integra as informações para realizar a previsão. Os 

resultados demonstraram desempenho superior em relação a modelos como ARIMA, GRU-

CNN e Prophet, com menor complexidade computacional, evidenciando a eficácia da 

combinação entre pré-processamento por agrupamento e modelagem híbrida. 

Quanto à aplicação do modelo TFT para previsão de geração FV, as principais pesquisas 

são resumidas nos parágrafos seguintes. 

O estudo de López Santos et al. (2022) utilizou o TFT para prever a geração horária de 

energia FV com 24 horas de antecedência, utilizando dados históricos de produção, variáveis 

meteorológicas e informações de calendário de seis instalações na Alemanha e Austrália. A 

metodologia envolveu um pré-processamento de dados rigoroso, incluindo a detecção de 

outliers (DBSCAN), a seleção de atributos por Backward Elimination guiada pelo TFT 

(destacando irradiação solar horizontal e ângulos solares como cruciais) e padronização das 
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entradas contínuas com aplicação de logaritmo natural e escalonamento para a produção FV. 

Comparado a modelos como ARIMA, MLP, LSTM e XGBoost, o TFT demonstrou 

superioridade consistente, apresentando os menores erros e reduzindo-os em até 54% em 

relação ao LSTM. Sua interpretabilidade confirmou a irradiação solar horizontal e o ângulo de 

zênite como as variáveis mais influentes, com padrões de atenção cíclicos. Apesar da sua 

complexidade, o desempenho e a interpretabilidade do TFT o tornam uma ferramenta valiosa 

para previsões precisas de energia FV. 

Além disso, no trabalho de López Santos et al. (2022), foram empregadas covariáveis 

meteorológicas de uma estação próxima (irradiância solar, ângulo zenital, ângulo azimutal, 

temperatura e umidade relativa), transformação Log na variável-alvo e codificação da 

sazonalidade via seno e cosseno do mês, sem detalhar a distância entre usinas e estação. 

Ademais, a partição dos dados de treinamento, validação e teste foi realizada por amostragem 

aleatória. 

O artigo de Islam et al. (2023) propõe um modelo de previsão de energia FV utilizando o 

TFT, para prever a geração horária de energia. A metodologia empregada utilizou um 

conjunto de dados real de uma usina solar na Índia, com granularidade de 15 minutos ao 

longo de 34 dias, e que compreende 23 inversores. O estudo incorpora dados geográficos, 

como irradiação solar e temperatura dos módulos, além de características horárias e ID dos 

inversores como entrada do modelo TFT. Um ponto crucial destacado pelos autores é a 

capacidade do TFT de interpretar a importância de diferentes variáveis no processo de 

previsão. Os resultados da comparação com modelos como ARIMA, LSTM e Prophet 

demonstraram que o TFT superou consistentemente todos os outros modelos em todas as 

métricas de desempenho. Além da precisão, a interpretabilidade do TFT revelou que a 

irradiação é a característica mais importante no codificador e o ID do inversor a variável 

estática mais significativa, fornecendo recursos valiosos sobre os fatores que influenciam a 

previsão. 

O estudo de Tao et al. (2024) desenvolveu o PTFNet (Rede Paralela de Extração de 

Informação Temporal) para aprimorar a previsão de energia FV. A metodologia inovou ao 

apresentar um método de aumento de dados que incorpora informações de modelagem física 

específicas do sistema solar, como ângulos solares e irradiâncias (DHI, DNI, GTI), 

enriquecendo os Dados de Medição Local (LMD) e Previsão Numérica do Tempo (NWP). O 

PTFNet utiliza uma arquitetura baseada em Transformer com uma estrutura paralela para 

extrair explicitamente dependências temporais e entre características. A técnica emprega 

segmentação de dados para otimizar a extração de informações e a associação entre dados 
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passados e previsões futuras. As previsões são geradas para horizontes de 24, 36 e 40 horas, 

com resolução de 15 minutos. Os resultados demonstram que o aumento de dados foi eficaz 

em 78,57% dos casos, reduzindo o RMSE e o MAE. O PTFNet superou ou foi altamente 

competitivo em comparação com outros modelos populares de previsão de séries temporais 

longas, apresentando os valores ótimos de MAE e RMSE na maioria dos cenários e prevendo 

picos diurnos com maior precisão. A segmentação de dados também se mostrou eficaz na 

melhoria do desempenho. A pesquisa também ressaltou a importância da qualidade dos dados 

NWP para a precisão das previsões. 

A abordagem heurística desta pesquisa, quanto à seleção de atributos, combina a 

autocorrelação para uma pré-seleção inicial de variáveis relevantes com uma otimização 

iterativa do TFT baseada em métricas de perda. Essa abordagem difere do Backward 

Elimination guiado pelo TFT adotado por López Santos et al. (2022) e da Rede Paralela 

proposta por Tao et al. (2024) por incluir uma triagem temporal prévia, que direciona a 

seleção para atributos intrinsecamente relacionados à natureza de séries temporais. Essa 

metodologia híbrida, que une análise estatística clássica e refinamento por TFT, mostra-se 

robusta, prática, com menor esforço computacional e maximiza a precisão preditiva do TFT. 

Nas pesquisas recentes, o TFT tem apresentado resultados competitivos (e por vezes 

superiores) frente a modelos clássicos, nos conjuntos e configurações avaliados. A Tabela 3 

sintetiza os três trabalhos representativos acima e suas principais escolhas metodológicas. 

Tabela 3 - Estudos Correlatos sobre TFT na Previsão FV 

Fonte 

Modelo 

(Horizonte 

Previsão) 

Escopo 
Entradas 

(covariáveis) 

Principais 

Métodos 

Modelos 

utilizados 

Valida-

ção 

Resultados e 

observações 

López 

Santos 

et al. 

(2022) 

TFT 

(24 h) 

Multissérie 

06 Usinas  

(Alemanha 

Austrália) 

Irradiação Solar 

/ Ângulo Solar 

Zenital / 

Temperatura / 

Ângulo Solar 

Azimute / 

Mes_seno / 

Mes_cossseno / 

Umidade 

Relativa 

DBSCAN 

(outliers); 

Backward 

Elimination 

guiado pelo 

TFT; 

Transform. 

log 

TFT, 

ARIMA, 

MLP, LSTM, 

XGBoost 

Partição 

aleatória 

(treino/ 

val/teste) 

TFT com 

menores erros; 

irradiância e 

zênite como 

variáveis mais 

influentes; 

risco de 

leakage pelo 

split aleatório 

Islam 

et al. 

(2023) 

TFT 

(Hora-à-

frente) 

Unissérie; 

1 usina 

(Índia);  

23 

inversores 

Irradiação Solar 

/ Temperatura do 

Módulo / Hora / 

Mês / Energia 

Inversor 

Temperatura 

dos módulos; 

engenharia de 

atributos 

simples.  

TFT, 

ARIMA, 

LSTM, 

Prophet 

Temporal 

TFT supera 

modelos 

clássicos; 

irradiância e 

ID do inversor 

(estática); 

duração do 

conjunto de 

dados (34 

dias). 
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Tao et 

al. 

(2024) 

PTFNet 

(24 h, 36 

h, 40h) 

Multissérie 

02 Usinas  

(China) 

Previsão 

Numérica do 

Tempo / 

Modelos 

Climáticos 

Globais / 

Irradiação Solar 

/ Ângulo Solar / 

Temperatura 

Modelagem 

física 

específicas do 

sistema solar; 

segmentação 

de dados 

PTFNet 

(Transformer 

paralelo), 10 

modelos 

tradicionais 

Temporal 

Aumento de 

dados eficaz 

em 78,6%; 

predição de 

picos melhor; 

sensível à 

qualidade do 

NWP. 

Fonte: A Autora (2025). 

 

• Conclusão do Capítulo 

Em conclusão, pode-se afirmar que o estudo da previsão da geração de energia FV é um 

campo em constante evolução, impulsionado pelo avanço das tecnologias de inteligência 

artificial e pela crescente disponibilidade de dados. Ao longo deste capítulo, foi explorada 

uma variedade de abordagens e modelos utilizados na literatura para prever a produção de 

energia solar. 

Foi observado que as redes neurais têm se destacado como uma ferramenta poderosa para 

lidar com a complexidade dos dados de séries temporais e capturar padrões não lineares na 

geração de energia FV. Arquiteturas como LSTM, CNN, MLP, Transformer e TFT têm sido 

amplamente empregados com sucesso em diferentes contextos e cenários de previsão. Além 

disso, é válido destacar a importância do pré-processamento adequado dos dados, incluindo 

técnicas para imputação de dados faltantes, seleção de variáveis relevantes e análise de 

correlação. Essa etapa é essencial para garantir a qualidade dos dados de entrada e melhorar a 

precisão dos modelos de previsão. Por fim, o desenvolvimento de modelos de previsão mais 

precisos e eficazes é crucial para promover e ampliar a integração da energia solar na matriz 

energética global. 
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3 FUNDAMENTAÇÃO TEÓRICA 

 

3.1 Inteligência Artificial 

 

A expressão Inteligência Artificial (IA) foi definida em 1956 por J. McCarthy, um dos 

pioneiros da Ciência da Computação, que a definiu como a ciência e engenharia voltadas ao 

desenvolvimento de “máquinas inteligentes” (Gurkaynak; Yilmaz; Haksever, 2016). Apesar 

de sua origem na computação, a IA representa um campo de estudos multidisciplinar, que 

inclui engenharia, matemática, cibernética, psicologia, entre outros (Valdati, 2020). Sua 

definição, contudo, permanece desafiadora e multifacetada. Segundo Haugeland (1985), a IA 

representa um esforço interessante em fazer os computadores ou máquinas pensarem como 

mentes humanas no sentido total e literal.  

Com o avanço das pesquisas, a IA passou a abranger diferentes subáreas, destacando-se 

entre elas o Machine Learning (ML), que consiste em algoritmos capazes de aprender padrões 

a partir de dados para melhorar o desempenho em tarefas específicas e o Deep Learning (DL), 

um ramo do ML baseado em redes neurais profundas, representadas por várias camadas que 

conseguem aprender representações complexas a partir de grandes volumes de dados. A 

Figura 3 ilustra, de forma esquemática, a hierarquia conceitual entre IA, ML e DL. 

Figura 3 – Hierarquia Conceitual entre IA, ML e DL 

 

Fonte: Adaptado de Chollet (2021). 
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O subcampo ML está relacionado com a elaboração de algoritmos que aprendem e se 

aperfeiçoam automaticamente através da experiência, com o intuito de encontrar padrões em 

um conjunto de dados (Mitchell, 1997). Tais lógicas de programação envolvem a 

autoaprendizagem para, por exemplo, realizar previsões, substituindo atividades manuais por 

modelos construídos para analisar grande volume de elementos em uma base. Dessa forma, é 

possível afirmar que o ML se caracteriza pela utilização de códigos para extrair informações 

de dados brutos e representá-los através de algum modelo matemático.  

Por sua vez, o subconjunto DL representa uma forma de aprendizagem de representações 

hierárquicas ao longo de múltiplas camadas (Chollet, 2021). Cada uma dessas camadas 

processa as informações de entrada, criando uma interpretação distinta da base de dados 

(Alzubaidi et al., 2021).  

No campo da previsão de séries temporais, quanto ao avanço histórico, pode-se destacar: 

as redes Multilayer Perceptron (MLP), as redes Long Short-Term Memory (LSTM), as redes 

Transformer e, por fim, as redes Temporal Fusion Transformer (TFT).  

 

3.1.1 Redes Neurais MLP 

As redes MLP, propostas por Rumelhart, Hinton e Williams em 1986, são redes neurais 

clássicas, formadas pela camada de entrada, uma ou mais camadas ocultas, assim chamadas 

por não serem diretamente observáveis, e, uma camada de saída. Nessas redes, cada neurônio 

em qualquer camada (exceto a de entrada) está conectado a todos os nós ou neurônios da 

camada anterior. A Figura 4 mostra um exemplo de rede MLP com três camadas ocultas, onde 

o fluxo de sinal sempre progride no sentido da camada de entrada em direção à camada neural 

de saída.  

Figura 4 - Arquitetura de uma Rede MLP 

 

Fonte: Adaptado de Haykin (2001). 
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As redes MLP podem ter seu funcionamento explicado da seguinte forma: os dados de 

entrada (X) são processados nas camadas ocultas, nas quais há neurônios que aplicam uma 

mesma função de ativação, parametrizada por pesos e viés (bias). Cada neurônio calcula uma 

combinação linear de suas entradas e, em seguida, aplica uma função de ativação não linear, o 

que permite à rede aproximar relações complexas entre as variáveis de entrada e saída. Entre 

as funções de ativação mais utilizadas nas camadas ocultas destacam-se a ReLU (Unidade 

Linear Retificada), a tangente hiperbólica (tanh) e a função sigmoide, cuja escolha depende do 

tipo de problema e das características dos dados. 

A extração de características relevantes dos dados de entrada é feita por meio de um 

algoritmo que detecta automaticamente recursos significativos da base fornecida, para fins de 

treinamento, aprendizado e generalização. 

Para uma dada saída prevista (Y’), a função objetivo tem a missão de comparar as 

previsões da rede com o valor real esperado para aquela saída (Y) e calcular a distância entre 

ambas (erro). Essa informação é utilizada para, se necessário, realizar o ajuste dos valores dos 

pesos, de forma a minimizar o erro, por meio do algoritmo de retropropagação do erro 

(Backpropagation). Inicialmente, os valores dos pesos são aleatórios, resultando em um erro 

(ou perda) elevado, pois a saída prevista é, provavelmente, distinta do valor real (Goodfellow; 

Bengio; Courville, 2016). 

A Figura 5 mostra o fluxograma de treinamento da rede MLP. 

Figura 5 – Fluxograma do treinamento da rede MLP 

 

Fonte: Adaptado de Chollet (2021). 
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Apesar do avanço de arquiteturas sofisticadas, estudos recentes (Chen et al., 2023) 

sugerem que modelos lineares e baseados em MLP apresentam desempenho competitivo e, 

em alguns casos, superior. O estudo de Chen et al. (2023) demonstrou empiricamente que 

modelos lineares podem superar arquiteturas sequenciais mais complexas em tarefas de 

previsão de séries temporais, especialmente no caso univariado (com uma única variável). 

Isso ocorre porque modelos lineares possuem capacidade de representação adequada para 

capturar dependências temporais quando há suavidade ou periodicidade nos dados. 

A rede MLP apresenta formulação simples e eficiente. A saída do único neurônio da 

camada de saída, que representa uma função linear, é definida conforme Eq. (1):  

𝑦′ = ∑ 𝑊𝒌𝑦𝑘 + 𝑏

𝑁

𝑘=1

 (1) 

 

em que Wk representa os pesos que conectam as saídas dos neurônios da camada oculta ao 

neurônio de saída, yk são as saídas dos neurônios, b representa o viés (bias) e y’ é a saída da 

rede.  

Considerando a finalidade de previsão, sabe-se que as redes MLP não apresentam 

dependência temporal direta, assim, essa dependência temporal precisa ser simulada ao 

apresentar um conjunto de valores passados como entrada para o modelo, de modo que a 

informação temporal esteja implícita, e não incorporada diretamente na estrutura da rede 

(Lazcano; Jaramillo-Morán; Sandubete, 2024).  

Dessa forma, ao se utilizar uma MLP para previsão de séries temporais, o vetor de 

entrada é formado por um conjunto de observações passadas da série, que são processadas 

para gerar a previsão. Em termos formais, a rede recebe, no instante t, um vetor de entrada 

𝑥𝑡 = [𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−𝑀], o qual é processado para fornecer uma saída 𝑦′𝑡. Para viabilizar 

esse processo, a série temporal deve ser reorganizada em uma estrutura matricial, em que cada 

linha corresponde a um vetor de entrada de dimensão M, e essas linhas são apresentadas 

sequencialmente à rede para a geração das previsões correspondentes. 

 

3.1.2 Redes LSTM  

As Redes Neurais Recorrentes (RNR), são redes neurais artificiais que funcionam por 

meio de sequências ou loops, nas quais as informações úteis são armazenadas em memórias, 

persistem durante o treinamento e influenciam diretamente na saída resultante. Esse tipo de 

arquitetura foi elaborado para reconhecer padrões em uma série de dados, considerando tempo 
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e ordem, o aprendizado é feito a cada passo de treinamento, de modo que a saída no instante ‘t 

– 1’ é alimentada de volta à rede o que interfere no resultado do instante ‘t’ e assim 

sucessivamente. 

Uma RNR utiliza a ideia de que o estado oculto (ou memória) é atualizado a cada instante 

de tempo, de forma que o valor atual dependa do evento anterior, uma vez que tanto a entrada 

quanto a memória impactam na decisão (Bianchi et al., 2018). Considerando ℎ𝑡 como o 

estado oculto da RNR, a equação que define essa dinâmica pode ser expressa pela Eq. (2), 

conforme Goodfellow, Bengio e Courville (2016): 

ℎ(𝑡) = 𝑎(𝑾𝑥(𝑡) + 𝑼ℎ(𝑡−1) + 𝑏) (2) 

 

em que 𝑎(⋅) representa a função de ativação não linear, ℎ(𝑡−1) representa o estado oculto no 

instante anterior t – 1, 𝑥(𝑡) representa o vetor de entrada no instante t, 𝑏 representa o viés 

(bias), e, 𝑾 e 𝑼 representam as matrizes de peso de entrada–estado oculto e de estado oculto–

estado oculto. 

Sendo assim, pode-se afirmar que a RNR processa a informação da entrada no instante t 

𝑥(𝑡), mas incorpora o estado oculto anterior ℎ(𝑡−1) para definir o sinal de saída. Considerando 

que X e Y são os vetores de entrada e saída da rede, a Figura 6 ilustra esse processo. Na parte 

(a), apresenta-se a representação genérica da RNR; na parte (b), evidencia-se que a saída em 

cada instante t é determinada tanto pela entrada nesse instante quanto pela memória do 

instante anterior. 

Figura 6 - Esquema de Funcionamento de uma RNR 

 

Fonte: Adaptado de Goodfellow, Bengio e Courville (2016). 
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Apesar de seu ótimo desempenho, a RNR apresenta limitações quando a sequência de 

entrada é muito longa, pois as primeiras informações da cadeia são perdidas com o passar do 

tempo durante o processo de Backpropagation, que se constitui de uma função de otimização 

definida por derivadas parciais de um conjunto de parâmetros de entrada, com a finalidade de 

atualizar os valores dos pesos da rede neural. Dessa forma, se o valor do gradiente for muito 

pequeno significa que haverá pouca contribuição daquele dado para o aprendizado da rede 

(Lazzeri, 2021). 

Nesse contexto, o modelo de rede LSTM foi proposto por Hochreiter e Schmidhuber 

(1997) para mitigar o problema da dependência de longo prazo em RNRs convencionais, 

introduzindo portões (gates) de controle e um estado de célula (cell state) na arquitetura 

recorrente. Essa modificação torna a LSTM especialmente adequada para classificar, 

processar e prever séries temporais com intervalos de duração desconhecida, evitando a perda 

de informações úteis ao longo do tempo. 

A arquitetura da rede LSTM possui três camadas principais: entrada, oculta e saída. 

Entretanto, a camada oculta contém blocos de memória, chamados células, organizados em 

uma estrutura em cadeia que engloba quatro portões internos (Hochreiter; Schmidhuber, 

1997). A informação é retida nas células, enquanto as manipulações de memória são 

realizadas pelos gates. 

Uma rede LSTM utiliza três portões principais para controlar o fluxo de informação, 

mantendo o que é relevante e descartando o que é irrelevante. Em termos gerais, valores 

próximos de 0 indicam que determinada informação deve ser bloqueada, enquanto valores 

próximos de 1 indicam que ela deve ser preservada para o próximo passo temporal (Torres et 

al., 2020). Esses portões são conhecidos como Forget Gate, Input Gate e Output Gate. Em 

seu estudo, Wang et al. (2018) descrevem de forma simplificada o papel de cada um desses 

componentes. 

a)  Forget Gate: nesse portão, as informações que não são mais úteis para o estado da 

célula são atenuadas. O estado oculto do instante anterior ℎ(𝑡−1) e a entrada atual 𝑥(𝑡) são 

concatenados, multiplicados pela matriz de peso 𝑾𝑓 e adicionados ao bias 𝑏𝑓. Em seguida, o 

resultado passa por uma função de ativação sigmoide 𝜎, que produz valores na faixa (0,1), 

aplicados elemento a elemento ao estado da célula anterior 𝑐(𝑡−1). Valores próximos de 1 

indicam que a informação deve ser preservada; valores próximos de 0 indicam que deve ser 

esquecida. A Eq. (3) representa a expressão do Forget Gate (𝑓(𝑡)): 
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 𝑓(𝑡) = 𝜎(𝑾𝒇[ℎ(𝑡−1), 𝑥(𝑡)] + 𝑏𝑓) (3) 

 

b) Input Gate: a adição de novas informações relevantes ao estado da célula é feita por 

esse portão. Primeiro, calcula-se um vetor de ativação sigmoide 𝑖(𝑡), que controla quais 

componentes da nova informação serão incorporados, e, em paralelo, um vetor candidato 𝑔(𝑡), 

obtido pela aplicação da função tanh, cujos valores pertencem ao intervalo [−1,1]. As Eq. (4) 

e (5) descrevem as expressões de 𝑖(𝑡) e 𝑔(𝑡), respectivamente: 

 𝑖(𝑡) = 𝜎(𝑾𝒊[ℎ(𝑡−1), 𝑥(𝑡)] + 𝑏𝑖)  (4) 

 𝑔(𝑡) = 𝑡𝑎𝑛ℎ(𝑾𝒈[ℎ(𝑡−1), 𝑥(𝑡)] + 𝑏𝑔)  (5) 

 

em que 𝑾𝑖 e 𝑾𝑔 representam as matrizes de peso associados a cada etapa e 𝑏𝑖 e 𝑏𝑔 indicam o 

vetor bias de cada passo.  

Ao final das duas operações, o estado da célula é atualizado para o instante atual, 

combinando as contribuições de 𝑓(𝑡), 𝑖(𝑡) e 𝑔(𝑡), conforme Eq. (6): 

 𝑐(𝑡) = 𝑓(𝑡) ⨀ 𝑐(𝑡−1) + 𝑖(𝑡) ⨀ 𝑔(𝑡) (6) 

 

em que 𝑐(𝑡−1) representa o estado da célula no instante anterior e ⨀ denota o produto 

elemento a elemento. 

c) Output Gate: a extração de informações relevantes do estado da célula atual é feita 

nessa etapa. Primeiramente, o estado oculto do instante anterior ℎ(𝑡−1) e a entrada atual 𝑥(𝑡) 

são concatenados, multiplicados pela matriz de peso 𝑾𝑜, somados ao viés 𝑏𝑜 e, em seguida, 

passados por uma função de ativação sigmoide, gerando o vetor 𝑜(𝑡), que controla a saída da 

rede, conforme a Eq. (7):  

 𝑜(𝑡) = 𝜎(𝑾𝒐[ℎ(𝑡−1), 𝑥(𝑡)] + 𝑏𝑜) (7) 

 

em que 𝑾𝑜 e 𝑏𝑜 representam, respectivamente, a matriz de peso e o bias dessa fase. Por fim, 

aplcia-se a função tanh a 𝑐(𝑡) e a saída (estado oculto atual) é determinada conforme a Eq. (8): 

 𝑦(𝑡) = ℎ(𝑡) =  𝑜(𝑡) ⨀ 𝑡𝑎𝑛ℎ(𝑐(𝑡)) (8) 
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De forma resumida, a rede LSTM recebe duas entradas: o estado oculto do instante 

anterior ℎ(𝑡−1) e o vetor de entrada atual 𝑥(𝑡). A memória de longo prazo é simbolizada pelo 

estado da célula 𝑐(𝑡), que é modificado pelo Forget Gate e pelo Input Gate. O par (ℎ(𝑡), 𝑐(𝑡)) 

compõe o estado interno da rede no instante atual. Assim, a Figura 7 retrata a arquitetura da 

rede LSTM. 

Figura 7 - Diagrama Esquemático da rede LSTM 

 
Fonte: A Autora (2025). 

 

 

3.2 Arquitetura Transformer 

 

Até o ano de 2017, arquiteturas como MLPs, RNRs e, em especial, suas variantes LSTM 

figuravam entre as principais abordagens para o processamento de sequências temporais, 

ainda que continuem amplamente utilizadas em diversas aplicações. No entanto, esses 

modelos apresentavam problemas como: dependências sequenciais que tornavam o 

treinamento e a inferência lentos; dificuldade em capturar dependências longas de forma 

eficiente e limitação de paralelismo que dificultava a análise simultânea de elementos nas 

séries. Para superar essas barreiras, Vaswani et al. (2017) propuseram o modelo Transformer, 

que revolucionou o campo do processamento de linguagem natural e aprendizado de máquina 

e que depende inteiramente de mecanismos de atenção e elimina o uso de recorrência. 

O Transformer é um modelo DL cuja arquitetura é composta pela configuração de 

codificadores (Encoder) e decodificadores (Decoder), empilhados sequencialmente onde todas 

as camadas são idênticas. Cada um desses componentes desempenha um papel vital no 

processamento da sequência de entrada e na geração da sequência de saída, respectivamente. 

A Figura 8 mostra o diagrama esquemático do modelo desenvolvido por Vaswani et al. 

(2017). 
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Figura 8 - Diagrama Esquemático da Arquitetura Transformer 

 

Fonte: Adaptado de Vaswani et al. (2017). 

 

Analisando o Encoder, tem-se:  

a) Sequência de Entrada: representa a transformação dos dados de entrada em 

representações vetoriais de dimensão fixa e contínua, adequadas para serem processadas por 

modelos de aprendizado profundo. Essa técnica permite que variáveis categóricas ou 

temporais sejam representadas de forma densa e semântica no espaço vetorial.  

b) Codificação posicional: consiste no posicionamento dos elementos de entrada em uma 

sequência, para preservar a noção de temporalidade.  

c) Mecanismo de MultiAtenção: constitui-se de múltiplas “cabeças” de atenção que 

operam em paralelo para capturar diferentes padrões de dependência na sequência.  

d) Bloco “Add & Norm”: representa a conexão residual, que soma a entrada original da 

subcamada à sua saída. Em seguida, essa soma é processada por uma operação de 

normalização por camadas, que estabiliza o aprendizado ao normalizar as ativações dentro de 

cada amostra. Isso é crucial para mitigar problemas de instabilidade em redes profundas.  

e) Rede Feedforward: é uma subcamada aplicada a cada posição da sequência de entrada, 

composta por duas camadas densas totalmente conectadas com uma função de ativação 
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ReLU, que produz 0 como saída quando 𝑥 <  0, e uma saída linear com inclinação unitária 

quando 𝑥 >  0. Sua função é refinar e transformar as representações produzidas pela 

subcamada de atenção, permitindo ao modelo aprender transformações não lineares sobre as 

sequências de entrada.  

Da mesma forma, analisando o Decoder, tem-se:  

a) Sequência de Saída (t – 1): o modelo recebe os valores de saída anteriores como parte 

do seu contexto para prever o próximo valor, esse deslocamento garante que, no treinamento, 

o modelo aprenda a prever o valor no tempo 𝑡 com base apenas nas informações disponíveis 

até  𝑡 − 1 , evitando assim vazamento de informação. 

b) Codificação posicional: consiste no posicionamento dos elementos de saída em uma 

sequência, para preservar a noção de temporalidade. 

c) Masked MultiAtenção: é uma variação do mecanismo de MultiAtenção, o termo 

Masked refere-se à aplicação de uma máscara que impede o modelo de acessar posições 

futuras na sequência durante o treinamento, garantindo que a previsão de um determinado 

passo temporal utilize apenas informações passadas, o que é essencial em tarefas de previsão 

de séries temporais. 

d) Bloco “Add & Norm”, Mecanismo de MultiAtenção e Rede Feedforward: tem as 

mesmas funções do Encoder, utilizando a Sequência de Saída (t-1). 

e) Linear + Softmax: após passar as etapas anteriores, a saída final do Decoder é uma 

sequência de vetores contínuos. Para transformar esses vetores em saídas interpretáveis 

probabilísticas de valores discretos ou categóricos aplica-se a função Linear que projeta cada 

vetor para uma dimensão menor e a função Softmax, expressa matematicamente conforme 

Eq. (9), que transforma os vetores de valores reais em vetores de probabilidades (0 a 1), onde 

as probabilidades de cada valor são proporcionais à escala relativa de cada valor no vetor de 

origem (Ren; Wang, 2023). 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =  
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗
𝑗

 (9) 

 

em que 𝑧𝑖 é o elemento i no vetor z e j é o número total de classes. O denominador assegura 

que a soma das probabilidades é unitária. 

Por fim, o principal objetivo da arquitetura Transformer é assegurar que o modelo possua 

a habilidade de focar nos elementos mais relevantes durante o processamento de cada 

elemento da sequência de entrada (Vaswani et al., 2017). O foco seletivo é realizado pelo 
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mecanismo de atenção, que permite ao modelo ponderar dinamicamente diferentes partes da 

entrada.  

Mais especificamente, o cálculo da matriz de saída de atenção envolve três componentes 

fundamentais: Consulta (Q), Chave (K) e Valor (V). A matriz de atenção é determinada ao 

aplicar a função Softmax sobre o produto escalar entre Q e K, escalado pela raiz quadrada da 

dimensionalidade da chave (𝑑𝑘), que permite a ponderação dos valores, conforme expresso na 

Eq. (10):   

𝐴𝑡𝑒𝑛çã𝑜 (𝑄, 𝐾, 𝑉) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (10) 

 

em que 𝑄𝐾𝑇 representa o produto entre a matriz Q e a transposta da matriz K, possibilitando a 

compatibilidade dimensional para o cálculo. 

Para permitir o aprendizado paralelo em diferentes representações contextuais, a 

arquitetura Transformer utiliza o mecanismo MultiAtenção. Nesse mecanismo, o modelo 

projeta as matrizes 𝐴𝑡𝑒𝑛çã𝑜 (𝑄, 𝐾, 𝑉) em diferentes subespaços lineares, nos quais cada 

“cabeça” de Atenção atua de forma autônoma, capturando padrões específicos de dependência 

entre os elementos da sequência. Ao final, todas as saídas são concatenadas e processadas por 

uma camada linear, resultando em uma representação final robusta da entrada. 

Apesar da inegável contribuição dos Transformers para tarefas de processamento de 

linguagem natural e visão computacional, sua aplicação para previsão de séries temporais não 

apresentou resultados tão satisfatórios quanto o esperado. Estudos recentes indicam que, para 

diversas tarefas de previsão temporal, modelos mais simples, como redes recorrentes ou 

mesmo modelos lineares, podem superar os Transformers em termos de desempenho e 

estabilidade (Zeng et al., 2023).  

Isso se deve, em parte, ao fato de que a arquitetura original não foi projetada para lidar 

com características específicas das séries temporais, como variáveis exógenas, sazonalidade 

explícita e dependências multivariadas de longo prazo. Diante dessas limitações, em 2021 foi 

proposta a arquitetura TFT, projetada especificamente para tarefas de previsão temporal, 

combinando mecanismos de atenção com codificações temporais explícitas, modelagem de 

incertezas e suporte a variáveis estáticas e dinâmicas. 

 

3.3 Temporal Fusion Transformer 
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A estrutura TFT foi proposta inicialmente por Lim et al. (2021) como uma solução 

específica para os desafios da previsão de séries temporais em múltiplos horizontes, focando 

na sua interpretabilidade e flexibilidade em contextos complexos e multivariados. A ideia 

desse novo modelo foi integrar os pontos fortes das duas modelagens anteriores: as redes 

neurais recorrentes, que possuem excelente capacidade de capturar dependências de longo 

prazo, e os mecanismos de atenção dos Transformers, que permitem a seleção dinâmica das 

variáveis mais relevantes a cada momento. Assim, a TFT oferece uma abordagem unificada e 

robusta para lidar com séries temporais compostas por variáveis estáticas, variáveis 

observadas no passado e variáveis conhecidas no futuro. 

O modelo TFT foi projetado para lidar com múltiplos tipos de entradas, incluindo entradas 

passadas, entradas futuras e covariáveis estáticas. Ele emprega um mecanismo de controle de 

acesso para selecionar variáveis de entrada relevantes em cada passo de tempo, garantindo 

que apenas as informações mais pertinentes sejam usadas para previsões. Tal recurso ajuda a 

suprimir componentes desnecessários, melhorando seu desempenho. 

As entradas do modelo TFT são divididas em três categorias principais: variáveis 

estáticas, variáveis temporais passadas e variáveis temporais conhecidas no futuro. As 

variáveis estáticas representam informações invariantes ao longo do tempo, como a 

sazonalidade ou localização geográfica. Essas variáveis são processadas por codificadores 

específicos e utilizadas para gerar vetores de contexto que enriquecem as representações 

temporais ao longo de toda a sequência, fornecendo uma base personalizada para cada série. 

As variáveis temporais passadas incluem aquelas disponíveis apenas até o tempo presente  

{𝑥𝑡−𝑘 … 𝑥𝑡} como dados históricos de geração FV, enquanto as variáveis conhecidas no futuro 

{𝑥𝑡+1 … 𝑥𝑡+𝜏𝑚𝑎𝑥} englobam informações previsíveis ou agendadas, como hora do dia, dia da 

semana, feriados e eventos externos previamente definidos. Ao estruturar e processar essas 

diferentes categorias de entrada de forma independente e especializada, o TFT consegue 

capturar relações complexas e aprimorar sua capacidade de generalização em contextos reais 

e multivariados. 

 

3.3.1 Arquitetura TFT 

A arquitetura TFT é composta por diferentes módulos interligados, cada um responsável 

por processar um tipo específico de entrada ou realizar uma operação fundamental para a 

previsão de séries temporais multivariadas e multi-horizonte. A Figura 9 ilustra a estrutura 

TFT e seus principais componentes. 
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Figura 9 - Arquitetura da Rede TFT 

 

Fonte: Adaptado de Lim et al. (2021). 

 

A seguir, são descritos os principais componentes do modelo TFT: 

a) Entradas: Variáveis Estáticas 

As variáveis estáticas são processadas inicialmente por codificadores específicos, que 

geram representações vetoriais densas utilizadas ao longo de toda a arquitetura, tanto no 

processamento das variáveis temporais passadas quanto das conhecidas no futuro. Esses 

vetores de contexto são incorporados em diversas camadas do modelo, atuando como 

informações condicionantes globais. Essa estrutura permite que o TFT adapte seu 

comportamento preditivo às características específicas de cada série temporal, promovendo 

maior robustez e interpretabilidade. 

b) Entradas: Variáveis Temporais Passadas 

As variáveis observadas no passado são processadas por codificadores baseados em redes 

LSTM, responsáveis por capturar dependências temporais de longo prazo. O codificador 
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concentra-se exclusivamente nos padrões históricos da série. Após essa etapa, a camada “Add 

& Norm” é aplicada para estabilizar o fluxo de gradiente e acelerar o treinamento, ao 

normalizar as ativações e mitigar o surgimento de valores extremos, contribuindo para maior 

estabilidade numérica. 

c) Entradas: Variáveis Temporais Conhecidas no Futuro 

As variáveis conhecidas no futuro são tratadas separadamente e processadas por 

decodificadores LSTM, cuja função é gerar a sequência de saída. Essas entradas são 

fundamentais para capturar padrões sazonais e estruturais com antecedência. Assim como no 

caso anterior, a camada de normalização “Add & Norm” é utilizada para estabilizar as 

ativações. Além disso, conexões de salto (representadas na Figura 9 como setas tracejadas) 

preservam informações originais relevantes, reforçando a influência direta dos atributos de 

entrada e aumentando a precisão das previsões. 

d) Enriquecimento Estático 

O bloco de enriquecimento estático tem como função propagar o vetor de contexto gerado 

a partir das variáveis estáticas para os módulos de variáveis temporais. Esse mecanismo 

garante que o contexto fixo de cada instância influencie o processamento sequencial da série 

temporal. A interação entre variáveis estáticas e temporais é mediada por Redes Residuais 

Gated (GRNs), que permitem a seleção dinâmica dos atributos mais relevantes em cada 

instante de tempo. As GRNs são componentes centrais do TFT, responsáveis por transformar 

seletivamente os dados, filtrando ruídos e reforçando padrões significativos com alta 

flexibilidade e estabilidade durante o treinamento. 

e) Autoatenção Temporal  

A camada de autoatenção interpretável multi-cabeça permite que o modelo concentre sua 

atenção em diferentes momentos do passado, capturando dependências de longo alcance. 

Cada “cabeça” da atenção aprende padrões distintos de relevância temporal, tornando possível 

interpretar quais momentos exerceram maior influência sobre a previsão final. Esse 

componente é essencial para a transparência do modelo, contribuindo para a compreensão dos 

fatores que impactaram na análise preditiva. 

f) Rede Neural Feed-Forward Baseada em Posição 

Esta camada atua como um dos estágios finais do TFT e é responsável por refinar as 

representações enriquecidas ao longo do tempo. Diferente das redes recorrentes, a rede Feed-

Forward baseada em posição aplica a mesma transformação não linear de forma paralela a 

cada instante de tempo. O termo “baseada em posição” indica que as informações temporais 

são previamente preservadas por vetorizações e mecanismos de atenção. Essa arquitetura 
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permite o paralelismo computacional e reduz o custo de treinamento. Além disso, utiliza 

camadas GRN adicionais para garantir estabilidade e assegurar que os padrões aprendidos 

sejam adequadamente transformados em previsões robustas. 

g) Camada Dense 

Após a integração de todas as informações temporais e contextuais, os vetores resultantes 

são encaminhados para uma camada Dense (totalmente conectada), que tem como função 

gerar as previsões para cada horizonte temporal futuro. Essa camada pode ser adaptada para 

produzir estimativas pontuais ou distribuições probabilísticas, dependendo da abordagem 

adotada para modelagem da incerteza. 

h) Saídas 

A saída final do modelo corresponde aos valores previstos da variável-alvo ao longo do 

horizonte futuro definido. A modularidade da arquitetura TFT garante que as previsões sejam 

não apenas precisas, mas também interpretáveis, pois é possível rastrear a contribuição de 

cada variável e momento para o resultado. 

 

3.3.2 Rede de Seleção de Variáveis 

Esse mecanismo tem a função de identificar dinamicamente, em cada passo temporal, 

quais variáveis são mais informativas para o modelo, sendo aplicado tanto às covariáveis 

estáticas quanto às covariáveis dependentes do tempo (passadas e futuras). Além de oferecer 

interpretação sobre a importância de cada entrada, esse mecanismo tem um papel crucial em 

eliminar entradas irrelevantes ou ruidosas que poderiam comprometer o desempenho do 

modelo. Em cenários reais, conjuntos de dados frequentemente incluem atributos com baixo 

poder preditivo, e a capacidade do TFT de direcionar seletivamente a atenção às variáveis 

mais relevantes permite melhor utilização da capacidade de aprendizado e melhoria na 

generalização (Lim et al., 2021).   

Para representar as variáveis categóricas, o TFT utiliza processos codificação vetorial, que 

transformam cada categoria em um vetor contínuo em um espaço de dimensão fixa. No caso 

das variáveis dependentes do tempo são aplicadas transformações lineares. Assim, cada 

entrada é convertida em um vetor de dimensão 𝑑𝑚, correspondente ao tamanho das 

representações internas do modelo. As entradas são organizadas em três grupos distintos 

(estáticas, temporais passadas e futuras), cada um utilizando sua própria rede de seleção de 

variáveis (Ferreira; Leite, 2025). 

A cada passo de tempo t, as entradas transformadas são combinadas linearmente para 

formar um vetor de entradas achatado. Esse vetor é então submetido a uma GRN e a uma 
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camada da função Softmax, juntamente com o vetor de contexto obtido por meio da 

codificação das covariáveis estáticas. No caso de variáveis estáticas, o vetor de contexto é 

omitido, uma vez que essas já contêm a informação contextual necessária.  

Cada variável possui sua própria GRN, com pesos compartilhados entre todos os instantes 

de tempo. Assim, cada vetor transformado é processado individualmente por sua própria 

GRN, resultando em 𝜉𝑡
(𝑗)̃

, o vetor de características processadas para a variável j. Finalmente, 

todas os vetores processados são ponderados pelos respectivos pesos de seleção de variáveis 

𝑣𝑡
(𝑗)

 e combinados, formando o vetor final 𝜉𝑡̃, conforme Eq. (11): 

𝜉𝑡̃ =  ∑ 𝑣𝑡
(𝑗)

𝜉𝑡
(𝑗)̃

𝑚

𝑗=1

  (11) 

 

em que m representa o número total de variáveis do modelo.  

Esse processo permite que, a cada instante temporal, o TFT selecione de forma adaptável 

os atributos mais relevantes, atribuindo um grau de influência individual a cada entrada no 

momento da previsão. Tal capacidade não só melhora o desempenho preditivo como também 

confere transparência e interpretabilidade, facilitando a análise dos fatores mais impactantes 

no processo decisório do modelo e possibilitando ajustes estratégicos no uso de dados de 

entrada. 

 

3.3.3 Redes GRNs 

A GRN constitui uma sub-rede FeedForward composta por camadas totalmente 

conectadas, ativações não lineares e mecanismos de gating (portas). Estes mecanismos 

permitem que o modelo controle dinamicamente a quantidade de informação a ser propagada 

adiante. O componente de gating determina quanto da saída transformada e quanto da entrada 

original serão preservados, o que estabiliza o treinamento e possibilita o aprendizado de 

relações complexas sem a perda de informações úteis. Adicionalmente, a GRN implementa 

uma conexão residual ponderada, capacitando o modelo a aprender a combinar efetivamente a 

entrada com a saída da transformação, ou, se necessário, a ignorar a transformação quando 

esta não for útil. 

É comum que a relação exata entre variáveis de entrada (exógenas) e as variáveis-alvo 

seja desconhecida, dificultando a identificação das entradas mais relevantes. Além disso, nem 

sempre é claro o quão complexo deve ser o processamento não linear de um modelo, e em 

certos casos (como com poucos dados ou dados ruidosos), modelos mais simples podem ser 
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mais eficazes. Para dar ao modelo a flexibilidade de aplicar processamento não linear apenas 

quando necessário, os autores propuseram a GRN como um bloco de construção fundamental 

da topologia TFT (Lim et al., 2021).   

As GRNs permitem que o TFT aplique processamento não linear de forma seletiva, 

garantindo uma adaptação ideal a diversos conjuntos de dados e cenários. Essas camadas 

utilizam o bloqueio de componentes para eliminar blocos desnecessários na arquitetura, 

ajustando-se à complexidade da aplicação. A Figura 10 ilustra a estrutura de uma GRN. Ela 

recebe duas entradas: uma entrada primária (a) e um vetor de contexto opcional (c).  

Figura 10 – Estrutura da Rede GRN 

 

Fonte: Adaptado de Lim et al. (2021). 

 

O processo da GRN ocorre conforme descrito nas Eq. (12) – (14): 

𝐺𝑅𝑁𝜔 (𝒂𝒑, 𝒄𝒙) =  𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝒂𝒑 + 𝐺𝐿𝑈𝜔(𝜂1)) (12) 

𝜂1 =  𝑊1,𝜔𝜂2 +  𝑏1,𝜔 (13) 

𝜂2 = 𝐸𝐿𝑈(𝑊2,𝜔𝒂𝒑 + 𝑊3,𝜔𝒄𝒙 + 𝑏2,𝜔)  (14) 

 

em que ap é o vetor da entrada primária, cx é o vetor de contexto opcional, ω é um índice que 

denota o compartilhamento de peso, LayerNorm é uma camada de normalização Standard, a 

Unidade Linear Gated (GLU) é uma camada que controla o fluxo de transformações não 

lineares com capacidade para suprimir qualquer parte da arquitetura que não é requerida para 

um dado conjunto de dados, 𝜂1 e 𝜂2 representam camadas intermediárias, 𝑊(.) são os pesos, 
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ELU é uma função de ativação que age como função identidade quando 𝑊2,𝜔𝒂𝒑 + 𝑊3,𝜔𝒄𝒙 +

𝑏2,𝜔 ≫ 0 e como uma constante quando ocorre o contrário e 𝑏(.) representa o bias. 

A conexão residual, conforme expresso na Figura 10, funciona como um atalho, 

preservando informações e facilitando o treinamento das redes profundas ao mitigar o 

problema do gradiente. O Dropout atua como regularização, desativando neurônios 

aleatoriamente e aprimorando a generalização do modelo, antes da etapa final da GRN. O 

mecanismo de Gate, representado por uma porta sigmoide, controla o fluxo da informação 

transformada, ponderando de forma adaptativa o quanto da saída não linear (que vem de 

camadas densas com ativação ELU) deve ser retido. 

Por fim, a GRN também permite a injeção de contexto externo opcional (cx) para 

condicionar a previsão. Essa entrada auxiliar pode representar, por exemplo, variáveis 

estáticas categóricas, sendo incorporada à transformação por meio de uma segunda camada 

densa, o que favorece a condicionalidade da previsão ao contexto específico da série 

temporal. Essa combinação de transformações não lineares controladas, preservação de sinal e 

condicionamento contextual torna as GRNs essenciais para a expressividade e 

interpretabilidade do TFT. 

 

3.3.4 Função Preditiva 

A função preditiva do TFT, conforme proposta por Lim et al. (2021), que integra diversos 

tipos de entrada (temporal e estática) para a estimativa probabilística multi-horizonte, é 

expressa conforme a Eq. (15): 

 

 

(15) 

   

em que 𝑦𝑖(𝑞, 𝑡, 𝜏) representa o q-ésimo percentil da variável-alvo para a série i, previsto para 

o instante 𝑡 +  𝜏, e 𝐹𝑞 é a função de previsão implementada pelo modelo. Essa função leva em 

consideração:  
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• O histórico temporal da variável-alvo 𝑦𝑖(𝑡 − 𝑘: 𝑡);  

• As covariáveis passadas 𝑍𝑖(𝑡 − 𝑘: 𝑡), observadas até o instante 𝑡; 

• As covariáveis conhecidas no futuro 𝑋𝑖(𝑡: 𝑡 + 𝜏), disponíveis para o período de 

previsão;  

• E as covariáveis estáticas 𝑆𝑖 que são invariantes no tempo. 

 

3.3.5 Interpretabilidade do modelo TFT 

A atenção multi-cabeça, conforme originalmente proposta no modelo Transformer (ver 

Eq. (10)), utiliza múltiplos mecanismos de atenção para processar um mesmo conjunto de 

dados de entrada. Essa abordagem permite analisar as informações em diferentes subespaços e 

posições, facilitando a identificação de padrões relevantes e de longo prazo. No entanto, na 

modelagem TFT, esse processo é modificado para torná-lo interpretável.  

Em vez de concatenar as saídas das diferentes cabeças de atenção, os resultados são 

calculados por média e, em seguida, submetidos a uma transformação linear. Além disso, os 

pesos de Valor 𝑊𝑉 são compartilhados entre todas as cabeças, o que aumenta a 

interpretabilidade e reduz a complexidade computacional. 

Matematicamente, a função de atenção multi-cabeça interpretável (MCI) é definida pela 

Eq. (16): 

𝑀𝐶𝐼 (𝑄, 𝐾, 𝑉) =  𝐻̃𝑊𝐻 (16) 

 

em que 𝑊𝐻 representa o mapeamento linear final, e 𝐻̃ é a média das saídas de atenção de 

cada cabeça, calculada de acordo com a Eq. (17): 

𝐻̃ =  
1

𝑚𝐻
∑ 𝐴 (𝑄𝑊𝑄

(ℎ′)
, 𝐾𝑊𝐾

(ℎ′)
) 𝑉𝑊𝑉

𝐻

ℎ=1

 (17) 

 

em que A representa a função de atenção escalar, e Q, K e V representam Consulta, Chave e 

Valor, conforme explicado anteriormente. O peso 𝑊𝑉 é compartilhado em todas as cabeças, 

enquanto 𝑊𝑄
(ℎ′)

 e 𝑊𝐾
(ℎ′)

, são os pesos específicos de Consulta e Chave, respectivamente, para cada 

cabeça h’. Por fim, 𝑚𝐻 e h’ representam o número total de cabeças e o índice de cada cabeça, 

respectivamente.  
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3.4 Clusterização 

 

A clusterização consiste em uma técnica de aprendizado não supervisionado que agrupa 

dados semelhantes em conjuntos (clusters). Em algoritmos baseados em centróides, como o k-

means, cada cluster é representado por um centróide, normalmente localizado próximo ao 

“centro” do conjunto de pontos, e cada elemento da base de dados é associado ao cluster cujo 

centróide é o mais próximo, com base em uma medida de similaridade (por exemplo, 

distância). A Figura 11 demonstra, de forma simplificada, esse processo, enfatizando três 

clusters, seus centróides e a proximidade dos dados em cada grupo. 

Figura 11 - Algoritmo de Clusterização k-means 

 

Fonte: A Autora (2025). 

 

Uma função objetivo pode ser utilizada para expressar formalmente o problema de 

clusterização. Considere um conjunto de dados 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} ⊂ ℝ𝑑 , que deve ser 

particionado em 𝑘 clusters. No Algoritmo k-means tradicional, cada cluster é representado por 

um centróide 𝑐𝑖, dado pela média dos pontos atribuídos a esse grupo. A função objetivo 𝑓 

minimiza a soma do quadrado da distância Euclidiana de cada ponto ao centróide do cluster 

ao qual pertence, conforme Eq. (18) (Tan; Steinbach; Karpatne; Kumar, 2019): 

𝑓 = ∑ ∑ 𝑑𝑖𝑠𝑡(𝑥, 𝑐𝑖)2

𝑥∈𝐶𝑖

𝑘

𝑖=1

   (18) 

 

em que 𝑑𝑖𝑠𝑡(𝑥, 𝑐𝑖) representa a distância Euclidiana entre o ponto 𝑥 e o seu centroide 𝑐𝑖, 𝑘 é o 

número total de clusters, 𝐶𝑖 representa o i-ésimo cluster e 𝑐𝑖 é o centroide associado a esse 

cluster. 
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Essa técnica é amplamente utilizada em uma variedade de áreas, em casos de regressão, 

classificação, análise de imagens, entre outras, devido principalmente à sua simplicidade e 

eficácia. No entanto, tem desvantagens como a sensibilidade à inicialização dos centroides, o 

que pode resultar na convergência para um mínimo local, para minimizar isso, é usual 

executar o algoritmo várias vezes com diferentes inicializações e escolher o melhor resultado. 

O método não apresenta bons resultados quando os clusters não são globulares e possui alta 

sensibilidade a outliers ou valores discrepantes (Wu, 2012). 

A implementação computacional da clusterização basicamente ocorre em quatro etapas: 1) 

seleção de atributos que consiste na definição dos atributos da base de dados que serão 

agrupados; 2) implementação do algoritmo e realização de diversas iterações para garantia do 

ponto mínimo das distâncias; 3) avaliação do desempenho do agrupamento e 4) interpretação 

dos resultados (Xu; Wunsch, 2008). A Figura 12 sintetiza o fluxograma dessa técnica. 

Figura 12 - Diagrama Esquemático da Clusterização 

 

Fonte: Adaptado de Xu; Wunsch (2008). 

 

 

3.4.1 Clusterização de Séries Temporais  

A clusterização de séries temporais é realizada avaliando a similaridade entre elas, o que 

envolve medir a distância entre as séries para identificar padrões ou agrupamentos baseados 

em suas características.  

O procedimento refere-se ao processo de agrupar séries temporais que compartilham 

padrões ou características semelhantes ao longo do tempo. É uma técnica amplamente usada 

em diversas áreas, como previsão, análise financeira, saúde, entre outras. Dada sua 

característica, em vez de se concentrar em variáveis isoladas, a clusterização de séries 

temporais considera as sequências de dados em seu conjunto, levando em conta a dependência 

temporal e a correlação entre os pontos da série. A clusterização k-means, não é 

particularmente eficaz para séries temporais devido à sua dependência da distância 

Euclidiana, que não se aplica a esse caso. 
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O objetivo principal da clusterização de séries temporais consiste em agrupar séries que 

evoluem de forma semelhante ao longo do tempo, independentemente das diferenças nos 

valores absolutos. Assim, características como médias ou variâncias são substituídas por suas 

dinâmicas temporais.  

Os desafios incluem: a variabilidade de tempo, pois as séries temporais podem ter 

comprimentos diferentes, apresentando desafios em termos de comparação direta. O 

deslocamento temporal, considerando que os padrões temporais podem estar desfasados, ou 

seja, os máximos e mínimos podem ocorrer em momentos diferentes nas séries. O ruído ou 

variação aleatória que ocorre muitas vezes e que pode dificultar a identificação de padrões 

reais. E, por fim, a não linearidade, em que as séries temporais podem apresentar relações 

complexas e não lineares. 

Uma parte crucial da clusterização de séries temporais é definir uma métrica de 

similaridade ou distância entre as séries temporais. Embora a Distância Euclidiana seja 

simples e fácil de calcular, não é adequada para séries com diferentes escalas de tempo ou 

variações de fase. Assim, surge o conceito da Derivação Temporal Dinâmica (DTW), que é 

uma técnica utilizada para comparar sequências de pontos de dados que podem variar em 

comprimento ou velocidade. É particularmente útil na análise de dados de séries temporais, 

onde duas sequências podem ter padrões semelhantes, mas diferem em termos de 

temporização ou velocidade (Sakoe; Chiba, 1978). 

A DTW encontra um alinhamento ótimo entre duas sequências, distorcendo o eixo do 

tempo para minimizar a diferença entre elas. Isso permite a comparação de sequências que 

podem ter comprimentos diferentes ou podem estar ligeiramente fora de sincronia. 

Para ilustrar essa diferença, a Figura 13 retrata duas séries temporais aleatórias (Série 1 e 

Série 2), as quais possuem formatos, picos, vales e frequências distintos entre si.  

Figura 13 - Séries Temporais Comparadas 

 
Fonte: A Autora (2025). 
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A Distância Euclidiana é representada pela linha tracejada na Figura 14 e a Distância 

DTW pela linha contínua na Figura 15. É possível perceber que a primeira calcula a distância 

entre as séries ponto a ponto, enquanto a segunda realiza um alinhamento entre as séries de 

forma não linear para encontrar a correspondência ótima entre seus pontos. Em vez de 

comparar apenas os pontos correspondentes no tempo (como ocorre no caso da Distância 

Euclidiana), a DTW ajusta o alinhamento das séries para minimizar a diferença acumulada 

entre elas. 

Figura 14 - Diferenças com Distância Euclidiana 

 
Fonte: A Autora (2025). 

 

A DTW ainda permite que um ponto de uma série seja comparado com múltiplos pontos 

da outra série, conforme pode ser observado na Figura 15. Isso a torna robusta a mudanças na 

escala temporal e a ruídos, que é o caso da Série 2. Assim, é possível afirmar que a DTW tem 

maior flexibilidade para lidar com deformações temporais sendo aplicável para análises de 

séries temporais em que o alinhamento temporal contém variação. 

Figura 15 - Diferenças com Distâncias DTW 

 
Fonte: A Autora (2025). 
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Para a expressão de cálculo da DTW, considerando duas séries temporais 𝑀 =

[𝑚1, 𝑚2, … , 𝑚𝑝] com p elementos e 𝑁 = [𝑛1, 𝑛2, … , 𝑛𝑞] com q elementos, o alinhamento 

ótimo entre os elementos de M e N minimiza a distância acumulada entre elas. O objetivo da 

métrica consiste no cálculo da menor "distância de deformação" entre as duas séries, 

considerando que elementos de uma série podem ser comparados com múltiplos elementos da 

outra (Müller, 2007). 

Primeiramente é construída uma matriz p x q onde cada elemento (𝑣𝑖𝑗) representa o custo 

local, ou diferença absoluta quadrática, do ponto 𝑚𝑖 da série M com o ponto 𝑛𝑗  da série N, 

conforme Eq. (19): 

𝑣𝑖𝑗 = |𝑚𝑖 − 𝑛𝑗|
2

  (19) 

 

em que 𝑚𝑖 representa um ponto da série M, com i variando de 1 a p e 𝑛𝑗  representa um ponto 

da série N com j variando de 1 a q. 

Em seguida, calcula-se a matriz DTW que calcula o custo acumulado ótimo para alinhar 

as duas séries até cada ponto (i, j), utilizando uma programação dinâmica calculada 

recursivamente para minimizar o custo total de alinhamento, conforme Eq. (20). 

𝐶(𝑖, 𝑗) = 𝑣(𝑖, 𝑗) + 𝑚𝑖𝑛{𝐶𝑖−1,𝑗−1, 𝐶𝑖−1,𝑗, 𝐶𝑖,𝑗−1}  (20) 

 

em que 𝐶(𝑖, 𝑗) representa o elemento da matriz de custo acumulado ou de menor distância 

entre o alinhamento das duas séries M e N, considerando o custo local 𝑣(𝑖, 𝑗).  

Após a determinação da matriz C, o menor caminho entre as duas séries é uma sequência 

de índices que define como as duas séries estão alinhadas, começando do último elemento das 

séries 𝐶(𝑝, 𝑞) e terminando em 𝐶(1,1), minimizando o custo total. Assim, a distância DTW 

final é o custo acumulado até o último ponto (Müller, 2007).  

Quanto ao algoritmo, a clusterização hierárquica quando adaptada com a métrica 

específica DTW, torna-se uma ferramenta eficaz para identificar padrões em séries temporais, 

especialmente em contextos em que se deseja explorar relações estruturais e padrões de 

similaridade entre dados que variam ao longo do tempo, pois, dada sua característica, uma 

estrutura interpretável que permite identificar agrupamentos em diferentes níveis de 

hierarquias (Liao, 2005). A clusterização hierárquica constrói uma árvore de clusters e 

permite que diferentes níveis de agrupamento sejam analisados. 
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A aplicação da clusterização hierárquica requer etapas específicas, a primeira fase consiste 

no Pré-Processamento de Dados que se caracteriza na normalização das séries temporais, 

sendo essencial para evitar que diferenças de escala influenciem na análise dos resultados, e 

na suavização ou remoção de tendências para melhorar a qualidade do agrupamento. Em 

seguida a métrica DTW é então aplicada para o cálculo da distância entre as séries temporais. 

O agrupamento iterativo identifica os dois clusters mais próximos com base na DTW e 

combina esses clusters em um único cluster; o processo é repetido recursivamente até que 

todos os clusters estejam agrupados.  

Por fim, o Dendrograma representa graficamente o processo de agrupamento, mostrando 

como os clusters são combinados em diferentes níveis de distância. A Figura 16 exemplifica 

um dendrograma para dez amostras agrupadas em níveis hierárquicos com base na distância 

DTW. Observa-se, por exemplo, que os pares (1, 3), (2, 7) e (5, 9) são unidos nos níveis de 

distância mais baixos, indicando maior similaridade entre esses elementos dentro de seus 

respectivos clusters.  

Figura 16 – Exemplo de Dendrograma na Clusterização Hierárquica 

 
Fonte: A Autora (2025). 

 

3.5 Conceitos Adicionais 

 

3.5.1 Normalização dos Dados 

A presença de picos e componentes não estacionários nos dados de entrada (como 

informações meteorológicas e histórico de geração) prejudica o treinamento de modelos de 

previsão, elevando os erros. Isso ocorre porque essas variáveis são imprevisíveis e flutuantes 

devido às condições climáticas. Assim, o pré-processamento desses dados é crucial para 

reduzir problemas de treinamento, otimizar o custo computacional e melhorar 

significativamente a precisão da modelagem (Das et al., 2018). 
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Dados de energia FV costumam ter variáveis em escalas muito diferentes, o que reflete 

sua grande variabilidade. Essa diferença de escalas pode levar o modelo a dar prioridade 

indevida a certas informações, prejudicando o desempenho do algoritmo durante o 

treinamento. Por isso, a normalização dos dados é essencial para equalizar todos os valores e 

garantir um treinamento mais eficaz. Entre as principais técnicas de normalizar pode-se citar o 

Escalonamento MinMax, Escalonamento Z-Score ou Standard e Escalonamento Robusto.  

a) Escalonamento MinMax 

Este método, formalmente expresso na Eq. (21), aplica uma transformação linear que 

reescala os dados para o intervalo [0,1], preservando a ordem relativa das observações, mas 

alterando sua escala e amplitude. Como o MinMax depende diretamente dos valores mínimo e 

máximo observados no conjunto de treinamento, ele é mais indicado quando as variáveis 

possuem limites bem definidos e baixa incidência de valores discrepantes (outliers); caso 

contrário, esses extremos podem comprimir a maior parte dos dados e distorcer o 

reescalonamento. 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (21) 

 

em que 𝑥𝑚𝑖𝑛 e 𝑥𝑚𝑎𝑥 representam, respectivamente, os valores máximos e mínimos da 

variável 𝑥, e 𝑥𝑛𝑜𝑟𝑚 a variável normalizada. 

b) Escalonamento Standard 

Este método de normalização, expresso pela Eq. (22), envolve a transformação das 

variáveis pela subtração de suas respectivas médias, seguida da divisão pelo desvio padrão. 

Ao contrário do escalonamento MinMax, este método não impõe um limite definido aos 

valores resultantes. Sua aplicação é particularmente vantajosa em cenários nos quais as 

variáveis exibem uma distribuição aproximadamente normal. Contudo, é importante notar que 

o Escalonamento Standard é sensível à presença de outliers, que podem distorcer os valores 

da média e do desvio padrão, afetando a transformação.  

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝜇

𝜎̅
 (22) 

 

em que 𝜇 e 𝜎 representam, respectivamente, a média e o desvio padrão da variável 𝑥, e  𝑥𝑛𝑜𝑟𝑚 

a variável normalizada.  

c) Escalonamento Robusto 

Este método de normalização, expresso pela Eq. (23), distingue-se dos anteriores por sua 

menor sensibilidade à influência de outliers. Esta técnica utiliza a mediana e o intervalo 
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interquartil (IQR), o qual se constitui na diferença entre o terceiro quartil (Q3) e o primeiro 

quartil (Q1), para realizar a transformação. Essa característica confere ao Escalonamento 

Robusto uma vantagem significativa, tornando-o uma escolha ideal em cenários onde os 

dados contêm uma quantidade considerável de valores discrepantes.  

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑚𝑒𝑑

𝐼𝑄𝑅
 (23) 

 

em que 𝑚𝑒𝑑 e 𝐼𝑄𝑅 representam, respectivamente, a mediana e a diferença entre o terceiro 

quartil (Q3) e o primeiro quartil (Q1) da distribuição da variável 𝑥, e  𝑥𝑛𝑜𝑟𝑚 a variável 

normalizada.  

A Figura 17 sintetiza, em duas representações complementares, a dispersão central dos 

dados. Considerando que o quartil consiste na divisão dos dados em quatro partes, no boxplot 

(parte superior), o primeiro quartil (Q1) e o terceiro quartil (Q3) delimitam o intervalo que 

contém 50% dos valores intermediários. A amplitude desse intervalo é dada pelo Intervalo 

Interquartil (IQR = Q3 − Q1), uma métrica robusta à presença de outliers. A mediana, por sua 

vez, situa-se no centro desse bloco, dividindo a amostra em duas metades. 

Complementarmente, na curva inferior, a mesma ideia é expressa em termos de área sob 

uma distribuição aproximadamente normal: 25% dos dados estão abaixo de Q1, 50% 

concentram-se entre Q1 e Q3 e 25% acima de Q3. Isso evidencia que o IQR corresponde à 

região de maior densidade observacional e, portanto, constitui um indicador de variabilidade 

mais resiliente do que medidas baseadas na média e no desvio padrão. 

Figura 17 - Distribuição de dados em quartis 

 

Fonte: A Autora (2025). 
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3.5.2 Validação com Janela Deslizante 

A validação com janela deslizante é uma técnica robusta e amplamente utilizada na 

literatura para avaliar o desempenho de modelos de séries temporais. Em vez de uma única 

divisão estática entre dados de treino e teste, como na validação cruzada tradicional, a janela 

deslizante simula um cenário mais realista de previsão contínua, onde o modelo é avaliado 

sequencialmente no tempo em toda a amostra de dados. 

Esse é um procedimento de estimação de desempenho para séries temporais em que o 

conjunto de treino “desliza” ao longo do tempo, preservando a ordem temporal e evitando 

vazamento de dados. O processo começa com uma janela inicial de treinamento [𝐭𝟏, … , 𝐭𝐤]. O 

modelo é ajustado com esses dados e, em seguida, testado no bloco de tempo imediatamente 

seguinte [𝐭𝐤+𝟏, … , 𝐭𝐤+𝐡].  Em seguida, a janela é deslocada (por expansão ou tamanho fixo), o 

modelo é reajustado e um novo erro de previsão é calculado. Ao final, os erros de todas as 

janelas são combinados (por meio de média, mediana etc.), resultando em uma avaliação de 

desempenho mais estável e realista para dados fora da amostra. Essa estratégia é recomendada 

para problemas de previsão porque respeita a dependência temporal, diferindo da validação 

cruzada aleatória tradicional, inadequada para dados autocorrelacionados já que misturaria 

informações futuras com passadas, comprometendo a validade da avaliação. (Hota; Handa; 

Shrivas, 2017). 

A Figura 18 detalha o processo de validação com janela deslizante em um processo de 

análise de desempenho de série temporal. 

Figura 18 - Janela deslizante 

 

Fonte: A Autora (2025). 
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• Conclusão do Capítulo 

Este capítulo apresentou os fundamentos teóricos que embasam a proposta metodológica 

desta tese. Foram abordados inicialmente os conceitos de Inteligência Artificial e redes 

neurais, com ênfase nas arquiteturas MLP e LSTM, amplamente utilizadas em tarefas de 

previsão. Em seguida, foi discutida a arquitetura Transformer, que serve de base para o 

modelo central deste trabalho, o TFT. Detalhou-se sua estrutura interna, incluindo os 

mecanismos de seleção de variáveis, as redes GRNs, a função preditiva e os recursos que 

conferem interpretabilidade ao modelo. Complementarmente, foram abordados métodos de 

clusterização hierárquica e conceitos auxiliares essenciais à modelagem de séries temporais, 

como a normalização dos dados e a validação com janela deslizante. A fundamentação 

apresentada neste capítulo oferece o embasamento teórico necessário para o delineamento da 

metodologia e a realização dos experimentos descritos nos capítulos seguintes. 
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4 METODOLOGIA 

 

Neste capítulo, serão abordados com maior detalhamento os seguintes aspectos: a 

estrutura da base de dados, as técnicas utilizadas na etapa de pré-processamento dos dados, a 

topologia de rede e a forma escolhida para avaliação do desempenho dos modelos 

desenvolvidos. 

A Figura 19 apresenta a estrutura proposta para o estudo, resumindo as etapas a serem 

consideradas. Cada item dessa estrutura será abordado com maior detalhamento, 

individualmente, nas próximas seções deste capítulo. 

Figura 19 - Metodologia da Pesquisa 

 

Fonte: A Autora (2025). 
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Todos os códigos foram desenvolvidos no Google Colab®, utilizando a linguagem de 

programação Python. O ambiente de execução foi um desktop com sistema operacional 

Windows 11, processador Intel Core i7 de 8ª geração, 16 GB de memória RAM e uma placa 

de vídeo Nvidia GeForce com 2 GB de memória dedicada e GPU T4. Os modelos foram 

criados principalmente utilizando as bibliotecas Pandas, Numpy, Scikit-learn e PyTorch 

Forecasting. 

 

4.1 Base de Dados 

4.1.1 Dados de Geração FV 

As usinas de geração FV utilizadas nesta pesquisa foram coletadas no domínio público da 

base de Históricos de Operação do ONS. Foram selecionadas dez usinas FV estrategicamente 

distribuídas em regiões de elevado potencial solar, conhecidas como ‘cinturão solar brasileiro’ 

(Pereira et al., 2017). Esse cinturão estende-se principalmente pelo semiárido nordestino e por 

trechos das regiões Centro-Oeste e Sudeste, apresentando uma irradiação solar média diária 

superior à das demais regiões brasileiras. A Figura 20 destaca a posição geográfica das dez 

usinas FV no território brasileiro e suas posições no cinturão solar brasileiro.  

Figura 20 – Localização das Usinas FV selecionadas no Mapa do Brasil 

 
Fonte: Adaptado de Pereira et al. (2017). 
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O critério central de seleção dessas dez usinas FV foi justamente o fato de estarem 

localizadas no cinturão solar brasileiro, o que implica níveis de radiação solar próximos entre 

si e, portanto, maior comparabilidade nos experimentos. Adicionalmente, considerou-se a 

disponibilidade e qualidade dos dados operacionais necessários à pesquisa. 

A Tabela 4 detalha as principais informações técnicas de cada conjunto FV. Esta inclui a 

sigla de identificação da usina, sua respectiva localidade, coordenadas geográficas (latitude e 

longitude), e a capacidade instalada, expressa em megawatts (MW). Entre os 

empreendimentos analisados, destacam-se usinas de grande porte, com capacidade instalada 

igual ou superior a 60 MW, bem como usinas de médio porte, que contribuem 

significativamente para o Sistema Interligado Nacional (SIN).  

Tabela 4 – Informações Técnicas das Usinas FV 

Usina Sigla Usina Localidade 
Latitude 

(º) 

Longitude 

(º) 
Capacidade Instalada (MW) 

1 CSP Bom Jesus da Lapa (BA) -13,31 -43,35 67 

2 CBJ Bom Jesus da Lapa (BA) -13,30 -43,33 80 

3 CJS Juazeiro (BA) -9,53 -40,49 120 

4 PIR Pirapora (MG) -17,40 -44,92 321 

5 CSG São Gonçalo do Gurgueia (PI) -10,10 -45,27 864 

6 ITU Tabocas do Brejo Velho (BA) -12,31 -44,07 254 

7 CLA Bom Jesus da Lapa (BA) -13,31 -43,35 60 

8 HOR Tabocas do Brejo Velho (BA) -12,60 -44,08 103 

9 CNO Ribeira do Piauí (PI) -8,20 -42,55 292 

10 SOL Aquiraz (CE) -3,98 -38,39 81 

Fonte: A Autora (2025). 

 

4.1.2 Dados Meteorológicos 

As variáveis meteorológicas consideradas neste estudo consistem em radiação solar global 

(W/m²) e temperatura ambiente (°C).  

Considerando que todas as usinas analisadas foram obtidas em domínio público e que as 

estações meteorológicas do INMET localizadas nas proximidades dos empreendimentos 

apresentavam lacunas significativas nas variáveis de interesse, em alguns casos, com anos 

inteiros sem registros de radiação e/ou temperatura, optou-se por utilizar os dados 

meteorológicos da base internacional NASA POWER.  
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Essa base fornece séries temporais derivadas de observações por satélite e de esquemas de 

assimilação de dados em modelos atmosféricos, com cobertura espacial global e 

parametrização a partir das coordenadas geográficas (latitude e longitude) informadas pelo 

usuário. Neste trabalho, os dados foram extraídos para as coordenadas de cada usina 

fotovoltaica, em resolução horária no padrão UTC, sendo posteriormente convertidos para o 

horário local. 

A decisão pelo uso da NASA POWER é corroborada pelo estudo de Faccin et al. (2024), 

que analisou 476 locais no Brasil e demonstrou a boa concordância entre os dados de radiação 

solar global e temperatura ambiente do NASA POWER e aqueles medidos pelo INMET. 

 

4.1.3 Dados Temporais e Sazonalidade 

A análise abrangente realizada neste estudo baseou-se em dados de geração FV e em 

dados meteorológicos, ambos com registros em intervalos horários. O período de coleta e 

análise estendeu-se de 1º de janeiro de 2020 a 31 de dezembro de 2023, totalizando quatro 

anos de informações. Essa granularidade horária é crucial para a compreensão detalhada das 

variações diárias e sazonais na produção de energia e nas condições climáticas. A consistência 

temporal e a alta resolução dos dados são fundamentais para a acurácia do modelo. 

Esse intervalo (2020 – 2023) foi selecionado de forma a reduzir a influência de episódios 

recentes de curtailment no sistema elétrico brasileiro, buscando contemplar um horizonte 

temporal em que a geração FV estivesse menos sujeita a restrições operativas que pudessem 

distorcer o comportamento natural das séries de geração. 

Quanto à sazonalidade, o ano foi segmentado em suas quatro estações climáticas 

tradicionais: verão, primavera, outono e inverno. Essa divisão considerou tanto as variações 

climáticas predominantes em cada período quanto os meses específicos que as caracterizam.  

 

4.2 Pré-processamento dos Dados 

 

4.2.1 Eliminação de Dados Noturnos 

Os dados de geração FV coletados incluem valores noturnos, caracterizados por registros 

nulos ou muito próximo de zero no período das 00:00h às 06:00h e das 18:00h às 23:00h. 

Essa esparsidade de dados representa um desafio, pois a grande quantidade de informações 

zeradas pode resultar em um modelo inadequadamente treinado, comprometendo seu 

desempenho global. 
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Para mitigar esse problema, os valores noturnos foram removidos de toda a base de dados, 

retendo-se apenas as informações correspondentes ao intervalo das 07:00h às 17:00h. Essa 

filtragem resultou em 11 horas diárias de dados. Consequentemente, o conjunto de dados para 

cada usina FV, considerando o período de quatro anos, totalizou 16.071 observações. 

 

4.2.2 Imputação de Dados Faltantes 

Os dados ausentes frequentemente são resultantes de falhas no processo de coleta ou de 

sensores defeituosos e representam um desafio significativo na análise de séries temporais. 

Em muitos cenários práticos, a integridade das séries pode ser comprometida por interrupções 

no funcionamento dos equipamentos de medição ou por erros de registro.  

Para o tratamento dos dados ausentes nas séries de geração FV, a proposta metodológica 

deste trabalho consistiu em uma imputação baseada na curva de radiação solar global, 

considerando a alta correlação entre as duas variáveis. O processo adotado identifica, para 

cada horário ausente, um outro dia com perfil similar de radiação (que não apresenta lacunas) 

e utiliza a geração correspondente desse dia como valor imputado.  

Para verificar o perfil de similaridade da radiação solar, foram analisados os cinco dias 

imediatamente anteriores ao dia com dado ausente. Para cada um desses dias, calculou-se o 

erro médio absoluto entre o perfil horário de radiação e a curva correspondente ao dia com 

falha de registro, selecionando-se como dia mais semelhante, aquele que apresentou o menor 

valor desse erro. O fluxograma da Figura 21 mostra o processo de imputação proposto neste 

trabalho. 

Figura 21 - Fluxograma do método proposto para imputação de dados 

 
Fonte: A Autora (2025). 

 

Para avaliar a qualidade do método de imputação proposto, também foram testadas 

abordagens clássicas, a saber: interpolação linear; imputação pela média temporal, na qual os 

dados horários ausentes em um determinado dia são substituídos por um valor único igual à 

média dos dados não ausentes daquele dia; e o método dos k-vizinhos mais próximos (KNN), 

considerando-se a média dos cinco vizinhos mais próximos. 
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4.2.3 Seleção de Atributos 

A seleção de atributos é uma etapa crítica em modelos de previsão de séries temporais, 

pois reduz a complexidade, melhora a interpretabilidade e evita sobreajuste. No contexto 

desta pesquisa, foram selecionados quatro grupos iniciais de variáveis: (i) estáticas, como 

sazonalidade (estações e meses do ano); (ii) meteorológicas, como radiação solar global e 

temperatura ambiente; (iii) histórico de geração, representado por defasagens de geração (ℎ −

1, ℎ − 2, …, ℎ − 11) e estatísticas diárias; e (iv) horários cíclicos, todas passíveis de serem 

conhecidas ao longo do horizonte de previsão. 

As defasagens de geração podem ser definidas como o histórico da geração em horários 

específicos, nesta pesquisa foram considerados as defasagens horárias de geração ℎ − 1, ℎ −

2, ℎ − 3 e ℎ − 11. As estatísticas horárias de geração (valor médio, máximo e mínimo), 

foram definidas, conforme pode ser visto nas Eq. (24) - (26): 

 

𝐺𝑚𝑒𝑑_ℎ =
𝐺(ℎ) + 𝐺(ℎ − 1)

2
 (24) 

𝐺𝑚á𝑥_ℎ = 𝑚𝑎𝑥{𝐺(ℎ), 𝐺(ℎ − 1)} (25) 

𝐺min_ℎ = 𝑚𝑖𝑛{𝐺(ℎ), 𝐺(ℎ − 1)} (26) 

 

em que ℎ representa a hora e 𝐺(ℎ) a geração FV na hora ℎ. 

Os horários cíclicos foram transformados em funções seno e cosseno para que o modelo 

capte naturalmente a periodicidade diária e mensal, conforme Eq. (27) e (28): 

⟨ ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 = sen (
2𝜋 × ℎ

24 )  |  ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 = cos (
2𝜋 × ℎ

24 ) ⟩ (27) 

⟨ 𝑚𝑒𝑠_𝑠𝑒𝑛 = sen (
2𝜋 × 𝑀𝑒𝑠

12 )  |  𝑚𝑒𝑠_𝑐𝑜𝑠 = cos (
2𝜋 × 𝑀𝑒𝑠

12 ) ⟩ (28) 

 

em que 𝑀𝑒𝑠 representa o mês do ano. 

Para enriquecer o conjunto de dados, além dos atributos já definidos, foram geradas novas 

variáveis por meio da interação (produto) entre pares de atributos. A inclusão dessas 

interações é validada por Zheng e Casari (2018), que indicam um potencial ganho de precisão 

no modelo em relação ao uso de características isoladas. Essa abordagem permite que o 

modelo compreenda e utilize relações complexas que emergem da combinação de condições, 
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superando a análise de variáveis separadas. As interações específicas que foram consideradas 

podem ser consultadas na Tabela 5. 

Tabela 5 - Interação de Atributos 

Atributos 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ) ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑅𝑎𝑑 ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑇𝑒𝑚𝑝 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 ×  𝐺(ℎ) ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑅𝑎𝑑 ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑇𝑒𝑚𝑝 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1) ℎ𝑜𝑟𝑎_ cos  × 𝐺(ℎ − 1) 𝑅𝑎𝑑 × 𝑇𝑒𝑚𝑝 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 2) ℎ𝑜𝑟𝑎_ cos  × 𝐺(ℎ − 2) ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 3) 

ℎ𝑜𝑟𝑎_ cos  × 𝐺(ℎ − 3) ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 11) ℎ𝑜𝑟𝑎_ cos  × 𝐺(ℎ − 11) 

Fonte: A Autora (2025). 

 

Na primeira etapa da seleção de atributos, foi realizada uma análise de correlação de 

Pearson entre a geração FV (variável-alvo) e as demais 28 variáveis. Atributos como 𝐺𝑚𝑒𝑑_ℎ, 

𝐺min_ℎ, 𝐺𝑚á𝑥_ℎ, 𝑅𝑎𝑑 e variáveis derivadas como 𝐺(ℎ − 1) apresentaram correlações positivas 

fortes (r > 0,7), indicando alta relevância para o modelo. Interações específicas como  

𝑅𝑎𝑑 × 𝑇𝑒𝑚𝑝, 𝐺(ℎ − 11) e 𝐺(ℎ − 2) também se destacaram, com coeficientes de correlação 

acima de 0,5. Por outro lado, correlações negativas expressivas (r < -0,5) ocorreram como foi 

o caso das interações ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 ×  𝐺(ℎ), ℎ𝑜𝑟𝑎_ cos  × 𝐺(ℎ − 1), ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑅𝑎𝑑, 

ℎ𝑜𝑟𝑎_ cos  × 𝐺(ℎ − 2), ℎ𝑜𝑟𝑎_ cos  × 𝐺(ℎ − 11), ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑇𝑒𝑚𝑝, ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 e 

ℎ𝑜𝑟𝑎_ cos  × 𝐺(ℎ − 3). O resultado completo dessa análise pode ser visto na Figura 22. 

Figura 22 - Análise de Correlação das Variáveis com a Geração FV 

 

Fonte: A Autora (2025). 

 

Essa análise inicial permitiu priorizar os atributos mais relevantes e que foram o ponto de 

partida para a próxima etapa consistiu em treinar o modelo de base TFT de forma iterativa, 

analisando a importância das variáveis tanto no encoder quanto no decoder. Para cada 

treinamento, foram extraídas as métricas internas de importância de variáveis fornecidas pelo 

TFT. Essa análise permitiu identificar quais atributos exerciam maior influência na etapa de 
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codificação das entradas passadas (encoder), responsável por capturar dependências 

históricas, e na etapa de decodificação das entradas futuras (decoder), que incorpora variáveis 

conhecidas ao longo do horizonte de previsão. 

Com base nesses resultados, procedeu-se à remoção gradual das variáveis de menor 

relevância, guiada pelas informações de importância do próprio TFT. Esse processo buscou 

reduzir a dimensionalidade do conjunto de entrada, eliminando atributos com contribuição 

mínima para o desempenho do modelo, preservando aqueles capazes de capturar padrões 

relevantes para a previsão da geração FV. A eliminação sistemática de variáveis redundantes 

ou pouco informativas contribuiu para diminuir o risco de sobreajuste, reduzir o custo 

computacional e aumentar a interpretabilidade do modelo final. A relação final dos 11 

atributos considerados na pesquisa pode ser vista na Tabela 6. 

Tabela 6 - Atributos Selecionados para a Modelagem TFT 

Componentes do Tempo Covariáveis Meteorológicas Estatísticas de Geração FV 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑅𝑎𝑑 𝐺𝑚𝑒𝑑_ℎ 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑅𝑎𝑑 𝐺𝑚𝑎𝑥_ℎ 

 ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑇𝑒𝑚𝑝 𝐺𝑚𝑖𝑛_ℎ 

 ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑇𝑒𝑚𝑝 ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1) 

  ℎ𝑜𝑟𝑎_ cos  × 𝐺(ℎ − 1) 

Fonte: A Autora (2025). 

 

4.2.4 Transformação Log 

A alta variabilidade e as falhas nas séries temporais de geração diária, observadas nesta 

pesquisa, levaram à aplicação da transformação logarítmica. O objetivo foi minimizar ruídos e 

otimizar o desempenho do modelo preditivo. 

Essa abordagem é justificada por Zheng e Casari (2018), que explicam que a 

transformação logarítmica comprime a cauda longa na extremidade superior da distribuição, 

aproximando valores mais altos, enquanto expande a parte inferior, dispersando valores mais 

baixos. Esse processo resulta em uma distribuição mais simétrica e menos concentrada, 

normalizando distribuições assimétricas. Ao lidar melhor com dados de cauda longa e ruídos, 

a transformação torna os dados mais manejáveis, revela padrões ocultos na escala original e 

permite que os modelos capturem relações subjacentes com maior precisão. 

Para estabilizar a variância da base de dados de geração FV e evitar a ocorrência de 

valores negativos após a transformação, aplicou-se a escala logarítmica definida pela Eq. (29): 

𝐺𝑙𝑜𝑔10 = log10(𝐺(ℎ) + 1) (29) 
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em que 𝐺(ℎ) representa a geração FV em MW e o termo “+1” desloca toda a distribuição 

para valores não‐negativos, garantindo 𝐺𝑙𝑜𝑔10 ≥ 0 mesmo quando log10(𝐺(ℎ) + 1) for 

negativo.  

A Figura 23 mostra histogramas que comparam a distribuição da geração FV em toda a 

base de dados de uma usina FV antes e após a transformação logarítmica na base 10. No 

gráfico à esquerda, observa-se uma forte assimetria, com concentração em valores elevados e 

uma cauda longa de geração. Após aplicar o logaritmo, a distribuição torna-se muito mais 

simétrica e próxima de uma curva normal, o que reduz a influência de ruídos e facilita o ajuste 

e a interpretação dos modelos. Esse 'achatamento' da cauda direita é fundamental para 

melhorar a estabilidade numérica e a capacidade preditiva de algoritmos sensíveis a desvios 

extremos. 

Figura 23 - Comparativo da Transformação Log na Geração FV 

 
Fonte: A Autora (2025). 

 

É importante destacar que a Transformação Log foi aplicada exclusivamente para o 

treinamento dos modelos TFT. Posteriormente, durante a etapa de avaliação de desempenho 

dos modelos, as métricas foram calculadas com os dados revertidos à sua escala original em 

MW. 

 

4.2.5 Normalização dos Dados 

Para assegurar a comparabilidade entre as diversas entradas e promover estabilidade 

numérica durante o treinamento do TFT, empregou-se uma estratégia de normalização 

adaptada à distribuição empírica de cada variável. As covariáveis meteorológicas 

(ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑅𝑎𝑑, ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑅𝑎𝑑, ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑇𝑒𝑚𝑝, ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑇𝑒𝑚𝑝) e 
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componentes do tempo (ℎ𝑜𝑟𝑎_𝑠𝑒𝑛, ℎ𝑜𝑟𝑎_𝑐𝑜𝑠) apresentaram distribuições aproximadamente 

normal após tratamento inicial, por isso, foram submetidas à padronização Standard, que 

centra as observações em média zero e desvio-padrão unitário, facilitando a extração de 

padrões lineares e não lineares sem distorções significativas causadas por ruídos moderados.  

Por outro lado, a variável-alvo (𝐺(ℎ)) e suas estatísticas, que exibiram caudas longas e 

picos acentuados, foram escalonados por Escalonamento Robusto. Essa técnica baseada em 

mediana e IQR, é especialmente apropriada por ser insensível a valores extremos e por 

preservar a escala central dos dados. 

As variáveis categóricas sazonais e dependentes do tempo (𝐸𝑠𝑡𝑎𝑐𝑎𝑜 e 𝑀𝑒𝑠) não foram 

escalonadas, sendo a variável 𝐸𝑠𝑡𝑎𝑐𝑎𝑜 representada no intervalo [1, 2, 3,4], correspondente às 

quatro estações do ano, e a variável 𝑀𝑒𝑠 na faixa [1, 2, … , 11, 12] que representa os doze 

meses do ano. 

 

4.2.6 Clusterização Hierárquica 

A clusterização hierárquica foi empregada com o objetivo de identificar grupos de usinas 

FV com padrões de geração similares, de forma a explorar relações de dependência entre 

séries e subsidiar a etapa de modelagem multissérie apresentada no capítulo seguinte. A 

análise foi conduzida a partir das séries de geração FV das dez usinas selecionadas, 

considerando os dados previamente tratados e imputados conforme descrito nas seções 

anteriores. 

Para definir a medida de similaridade entre as usinas, foram construídas séries de médias 

diárias de geração referentes a 50 dias do ano de 2020 para cada usina. Esse conjunto de dias, 

pertencente ao primeiro ano do período de análise, foi utilizado como amostra representativa 

do comportamento de geração de cada empreendimento, de modo a viabilizar a comparação 

entre usinas em uma base temporal comum. Assim, para cada usina obteve-se uma sequência 

temporal de 50 pontos, cada um correspondente à média diária da geração registrada naquele 

dia. 

A partir da matriz de distâncias DTW entre todas as usinas, aplicou-se o algoritmo de 

clusterização hierárquica, no qual as usinas mais similares são agrupadas iterativamente em 

níveis sucessivos, formando uma estrutura em árvore. 

O resultado desse processo é representado por um dendrograma, que ilustra graficamente 

as fusões entre usinas (ou grupos de usinas) em diferentes níveis de distância. Esse 

dendrograma permite visualizar de maneira intuitiva quais usinas apresentam comportamento 

mais próximo entre si e em que ponto novos agrupamentos passam a incorporar usinas com 
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padrões mais distintos. A classificação final dos agrupamentos, bem como o dendrograma 

resultante da aplicação da distância DTW para cada usina, será apresentada e discutida no 

Capítulo 5. 

 

4.3 Algoritmo TFT 

 

Considerando a expressão da modelagem TFT vista na Eq. (15), para sua modelagem 

foram utilizadas as seguintes entradas por categorias: variável-alvo (𝐺(ℎ)), correspondente ao 

histórico de geração FV; covariáveis estáticas, que neste caso, variam com o tempo; 

covariáveis passadas e covariáveis conhecidas no futuro. A Tabela 7 sintetiza os atributos 

utilizados em cada uma dessas categorias. 

Tabela 7 - Atributos Selecionados para o Modelo TFT 

Variável-alvo Covariáveis Estáticas Covariáveis Passadas Covariáveis Conhecidas no Futuro 

𝐺(ℎ) 𝐸𝑠𝑡𝑎𝑐𝑎𝑜 𝐺𝑚𝑒𝑑_ℎ ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 

 𝑀𝑒𝑠 𝐺𝑚𝑎𝑥_ℎ ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 

  𝐺𝑚𝑖𝑛_ℎ ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑅𝑎𝑑 

  ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1) ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑅𝑎𝑑 

  ℎ𝑜𝑟𝑎_ cos  × 𝐺(ℎ − 1) ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑇𝑒𝑚𝑝 

   ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑇𝑒𝑚𝑝 

Fonte: A Autora (2025). 

 

Para uma avaliação abrangente do desempenho preditivo do TFT em distintas condições 

operacionais e ambientais, 14 modelos distintos foram treinados. Essa abordagem 

multifacetada permitiu investigar a robustez e a adaptabilidade do modelo a diferentes 

cenários de dados, otimizando sua capacidade de generalização. 

Além dos atributos listados na Tabela 7, foi incluída uma covariável categórica estática 

responsável por identificar a usina em cada série temporal. Nos modelos de previsão de uma 

única usina, essa identificação é feita pela variável 𝐼𝐷, que corresponde ao nome da usina. Já 

nos modelos multipreditivos, em que são previstas simultaneamente duas ou três usinas, 

utiliza-se a variável 𝑈𝑠𝑖𝑛𝑎, que distingue cada uma das usinas dentro do mesmo conjunto de 

entrada. 

Foram adicionados índices temporais absolutos e relativos (𝑡𝑖𝑚𝑒_𝑖𝑑𝑥 e 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑡𝑖𝑚𝑒_𝑖𝑑𝑥) para orientar o TFT sobre a cronologia das séries temporais. Tais 

variáveis são cruciais para a estrutura do modelo, pois permitem que o modelo reconheça a 

posição absoluta de cada ponto na linha do tempo.  
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A Figura 24 ilustra, de forma condensada, o fluxo de informação do sistema de previsão 

proposto. No núcleo do modelo TFT, camadas de atenção multi-cabeça e mecanismos de 

fusão temporal identificam padrões de curto e longo prazo, ao mesmo tempo em que 

quantificam a contribuição de cada variável ao longo do horizonte de previsão. Por fim, a 

saída da modelagem TFT fornece, para cada usina, um vetor de estimativas de geração FV 

para as 11 horas futuras consideradas, 𝐺[ℎ1, ℎ2, … , ℎ11], permitindo quantificar não apenas os 

valores previstos, mas também a relevância relativa das diferentes fontes de informação 

empregadas. 

Figura 24 - Diagrama Esquemático da Modelagem TFT 

 
Fonte: A Autora (2025). 

 

Os modelos M1 a M8 foram configurados para avaliar o desempenho preditivo do TFT 

em uma única usina FV, com foco no impacto da transformação logarítmica da variável-alvo. 

Nos casos M1, M3, M5 e M7, o modelo foi treinado com geração transformada (𝐺𝑙𝑜𝑔10), 

combinando diferentes configurações de variáveis. Nos casos M2, M4, M6 e M8, utilizou-se a 

variável-alvo em sua escala original (MW). A Tabela 8 apresenta em detalhes as 

configurações de cada um desses oito modelos.  

Tabela 8 - Configuração de entrada dos Modelos M1 a M8 

Modelo Variável-alvo 
Covariáveis 

estáticas 
Covariáveis passadas Covariáveis conhecidas no Futuro 

M1 Log10 
𝐸𝑠𝑡𝑎𝑐𝑎𝑜 

𝑀𝑒𝑠 

- ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 

M2 MW 
𝐸𝑠𝑡𝑎𝑐𝑎𝑜 

𝑀𝑒𝑠 

- ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 

M3 Log10 
𝐸𝑠𝑡𝑎𝑐𝑎𝑜 

𝑀𝑒𝑠 
- 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 

𝑅𝑎𝑑 

𝑇𝑒𝑚𝑝 

M4 MW 𝐸𝑠𝑡𝑎𝑐𝑎𝑜 - ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 
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𝑀𝑒𝑠 ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 

𝑅𝑎𝑑 

𝑇𝑒𝑚𝑝 

M5 Log10 
𝐸𝑠𝑡𝑎𝑐𝑎𝑜 

𝑀𝑒𝑠 

𝐺𝑚𝑒𝑑_ℎ 

𝐺𝑚𝑎𝑥_ℎ 

𝐺𝑚𝑖𝑛_ℎ 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1) 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 

M6 MW 
𝐸𝑠𝑡𝑎𝑐𝑎𝑜 

𝑀𝑒𝑠 

𝐺𝑚𝑒𝑑_ℎ 

𝐺𝑚𝑎𝑥_ℎ 

𝐺𝑚𝑖𝑛_ℎ 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)  

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 

M7 Log10 
𝐸𝑠𝑡𝑎𝑐𝑎𝑜 

𝑀𝑒𝑠 

𝐺𝑚𝑒𝑑_ℎ 

𝐺𝑚𝑎𝑥_ℎ 

𝐺𝑚𝑖𝑛_ℎ 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1) 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑅𝑎𝑑 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑅𝑎𝑑 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑇𝑒𝑚𝑝 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑇𝑒𝑚𝑝  

M8 MW 
𝐸𝑠𝑡𝑎𝑐𝑎𝑜 

𝑀𝑒𝑠 

𝐺𝑚𝑒𝑑_ℎ 

𝐺𝑚𝑎𝑥_ℎ 

𝐺𝑚𝑖𝑛_ℎ 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1) 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑅𝑎𝑑 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑅𝑎𝑑 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑇𝑒𝑚𝑝 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑇𝑒𝑚𝑝 

Fonte: A Autora (2025). 

Nota 1: “-” indica variável não utilizada no modelo correspondente.  

Nota 2: Em todas as configurações, é utilizada uma covariável categórica estática de identificação da usina (𝐼𝐷) 

para os modelos de usina única (M1–M8). 

 

É importante destacar que a transformação logarítmica foi aplicada apenas no treinamento 

do TFT; contudo, durante a avaliação, as métricas foram calculadas com os valores 

reconvertidos à escala original em MW. Adicionalmente, todos os oito modelos foram 

treinados com os dados de geração da Usina 1 (CSP). 

Os modelos M9 a M14 foram configurados para avaliar o desempenho multipreditivo do 

TFT na previsão simultânea da geração de duas ou três usinas. Para isso, foram formadas 

combinações de pares ou trios de usinas com base nos resultados da clusterização hierárquica. 

Em todos esses modelos, as variáveis-alvo foram transformadas para a escala logarítmica 

(𝐺𝑙𝑜𝑔10) durante o processo de treinamento.   

Especificamente, os modelos M9, M10, M11 e M12 consideraram usinas FV que 

compartilham o mesmo conjunto de variáveis meteorológicas, dada a localização geográfica 

em comum entre elas. Em contraste, os modelos M13 e M14 empregaram dois e três 

conjuntos distintos de bases de dados meteorológicos, respectivamente. A Tabela 9 detalha as 

configurações de entrada adotadas em cada um desses seis modelos. 
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Tabela 9 - Configuração de entrada dos Modelos M9 a M14 

Modelos 
Variáveis-

alvo 

Covariáveis 

estáticas 
Covariáveis passadas 

Covariáveis conhecidas no 

Futuro 

M9, M10, 

M11 

Log10 (I) 

 

Log10 (II)  

𝐸𝑠𝑡𝑎𝑐𝑎𝑜 

𝑀𝑒𝑠 

𝐺𝑚𝑒𝑑ℎ
(I) 

𝐺𝑚𝑎𝑥_ℎ
(I) 

𝐺𝑚𝑖𝑛_ℎ
(I) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)(I) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)(I) 

 

𝐺𝑚𝑒𝑑ℎ
(II) 

𝐺𝑚𝑎𝑥_ℎ
(II) 

𝐺𝑚𝑖𝑛_ℎ
(II) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)(II) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)(II) 
 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 

 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑅𝑎𝑑 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑅𝑎𝑑 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑇𝑒𝑚𝑝 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑇𝑒𝑚𝑝 

M12 

Log10 (I) 

 

Log10 (II) 

 

Log10 (III) 

𝐸𝑠𝑡𝑎𝑐𝑎𝑜 

𝑀𝑒𝑠 

𝐺𝑚𝑒𝑑ℎ
(I) 

𝐺𝑚𝑎𝑥_ℎ
(I) 

𝐺𝑚𝑖𝑛_ℎ
(I) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)(I) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)(I) 

 

𝐺𝑚𝑒𝑑ℎ
(II) 

𝐺𝑚𝑎𝑥_ℎ
(II) 

𝐺𝑚𝑖𝑛_ℎ
(II) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)(II) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)(II) 

 

𝐺𝑚𝑒𝑑ℎ
(III) 

𝐺𝑚𝑎𝑥_ℎ
(III) 

𝐺𝑚𝑖𝑛_ℎ
(III) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)(III) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)(III) 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑅𝑎𝑑 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑅𝑎𝑑 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑇𝑒𝑚𝑝 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑇𝑒𝑚𝑝 

M13 

Log10 (I) 

 

Log10 (II) 

 

𝐸𝑠𝑡𝑎𝑐𝑎𝑜 

𝑀𝑒𝑠 

𝐺𝑚𝑒𝑑ℎ
(I) 

𝐺𝑚𝑎𝑥_ℎ
(I) 

𝐺𝑚𝑖𝑛_ℎ
(I) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)(I) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)(I) 

 

𝐺𝑚𝑒𝑑ℎ
(II) 

𝐺𝑚𝑎𝑥_ℎ
(II) 

𝐺𝑚𝑖𝑛_ℎ
(II) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)(II) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)(II) 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 

 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑅𝑎𝑑(I) 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑅𝑎𝑑(I) 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑇𝑒𝑚𝑝(I) 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑇𝑒𝑚𝑝(I) 

 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑅𝑎𝑑(II) 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑅𝑎𝑑(II) 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑇𝑒𝑚𝑝(II) 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑇𝑒𝑚𝑝(II) 

M14 

Log10 (I) 

 

Log10 (II) 

 

Log10 (III) 

𝐸𝑠𝑡𝑎𝑐𝑎𝑜 

𝑀𝑒𝑠 

𝐺𝑚𝑒𝑑ℎ
(I) 

𝐺𝑚𝑎𝑥_ℎ
(I) 

𝐺𝑚𝑖𝑛_ℎ
(I) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)(I) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)(I) 

 

𝐺𝑚𝑒𝑑ℎ
(II) 

𝐺𝑚𝑎𝑥_ℎ
(II) 

𝐺𝑚𝑖𝑛_ℎ
(II) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)(II) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)(II) 

 

𝐺𝑚𝑒𝑑ℎ
(III) 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 

 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑅𝑎𝑑(I) 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑅𝑎𝑑(I) 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑇𝑒𝑚𝑝(I) 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑇𝑒𝑚𝑝(I) 

 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑅𝑎𝑑(II) 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑅𝑎𝑑(II) 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑇𝑒𝑚𝑝(II) 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑇𝑒𝑚𝑝(II) 

 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑅𝑎𝑑(III) 
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𝐺𝑚𝑎𝑥_ℎ
(III) 

𝐺𝑚𝑖𝑛_ℎ
(III) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)(III) 

ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1)(III) 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑅𝑎𝑑(III) 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑇𝑒𝑚𝑝(III) 

ℎ𝑜𝑟𝑎_𝑐𝑜𝑠 × 𝑇𝑒𝑚𝑝(III) 

Fonte: A Autora (2025). 

Nota 1: Os sobrescritos (I), (II) e (III) indicam, respectivamente, a primeira, segunda e terceira usinas 

contempladas em cada modelo multipreditivo (M9 a M14), não estando relacionados à numeração global das dez 

usinas do estudo. 

Nota 2: Em todas as configurações, é utilizada uma covariável categórica estática de identificação das usinas: 

𝑈𝑠𝑖𝑛𝑎 para os modelos multipreditivos para previsão de duas ou três usinas (M9–M14). 

 

4.4 Treinamento e Definição de Hiperparâmetros 

 

Para garantir a robustez e a capacidade de generalização dos modelos, adotou-se uma 

divisão temporal dos dados em três conjuntos sequenciais. 

O conjunto de treinamento abrange o período de 1º de janeiro de 2020 a 31 de outubro de 

2022 (aproximadamente 70,8% dos registros). Essa extensão forneceu ao TFT histórico 

suficiente para aprender padrões sazonais e a variabilidade intradiária. Em seguida, reservou-

se o intervalo de 1º de novembro a 31 de dezembro de 2022 (cerca de 4,2% dos dados) como 

conjunto de validação. Este conjunto foi utilizado para o ajuste de hiperparâmetros e para o 

monitoramento de sobreajuste por meio de uma abordagem de validação por janela deslizante. 

Por fim, o conjunto de teste corresponde ao ano completo de 2023 (os 25% restantes). Sua 

avaliação foi realizada por meio de janelas deslizantes, nas quais cada janela foi dividida em 

uma parte de codificação (as 33 horas anteriores) e uma parte de decodificação (as 11 horas 

previstas). Esse processo gerou 372 janelas ao longo de todos os experimentos, o que 

contribuiu significativamente para a robustez dos cálculos das métricas de avaliação dos 

modelos. 

A Figura 25 apresenta a estrutura de dependência temporal de uma das séries de geração 

FV utilizada na pesquisa, obtida a partir da função de autocorrelação (ACF). Observa-se 

correlações fortemente positivas nas primeiras horas e até a defasagem de aproximadamente 

33 horas, seguidas de uma queda brusca em períodos superiores. Essa janela de persistência 

indica que a informação passada até a 33ª hora anterior ainda carrega sinal útil para a 

previsão, enquanto a contribuição de instantes mais remotos se torna desprezível. 
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Figura 25 - Estrutura de Dependência Temporal da Geração FV 

 
Fonte: A Autora (2025). 

 

Com base nesse diagnóstico, o Encoder do modelo foi configurado para ingerir as 33 

horas antecedentes, garantindo a captura completa dos efeitos de memória. O Decoder, por 

sua vez, foi configurado para prever as próximas 11 horas, o que, para esta pesquisa, equivale 

à previsão do próximo dia, considerando que apenas 11 horas diárias de dados foram 

utilizadas. 

Para a definição dos hiperparâmetros dos modelos, utilizou-se a ferramenta de otimização 

automática Optuna. Os detalhes dos parâmetros adotados nas modelagens são descritos na 

Tabela 10. 

Tabela 10 - Hiperparâmetros dos modelos TFT 

Hiperparâmetro Valor Hiperparâmetro Valor 

Hidden_Size 128 Dropout 0.2 

Batch_Size 128 Loss Quantile Loss () 

Otimizador AdamW Attention_Head Size 4 

Learning Rate 0.0001 Épocas 100 

Fonte: A Autora (2025). 

 

No presente trabalho, os modelos TFT foram treinados utilizando a função de perda 

Quantile Loss, com o objetivo de estimar diferentes quantis da distribuição condicional da 

geração FV. Entretanto, dado que o foco da análise comparativa reside na qualidade das 

previsões pontuais, o quantil mediano (0,5) foi adotado como estimativa pontual da geração. 

Dessa forma, todas as métricas de desempenho reportadas nos resultados são calculadas a 
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partir desse quantil, permitindo uma comparação direta com os demais modelos 

determinísticos avaliados. 

O otimizador AdamW é uma variação do Adam em que a decaimento de peso é aplicado 

apenas após o ajuste do tamanho do passo individual de cada parâmetro. Ele foi adotado por 

ser apropriado para o treinamento de modelos maiores, com dados complexos e de alta 

dimensão, pois a redução de peso desacoplada ajuda a obter melhor generalização e 

convergência estável (LLUGSI et al., 2021).  

 

4.5 Avaliação 

 

O desempenho dos métodos de previsão é analisado por meio de métricas que estabelecem 

a diferença entre o valor real (𝑦) e o valor previsto (𝑦̂). Os índices utilizados nesta pesquisa 

foram o erro médio absoluto (MAE), a raiz do erro médio quadrático (RMSE), o erro médio 

absoluto normalizado (nMAE) e a raiz do erro médio quadrático normalizada (nRMSE). 

O MAE e o RMSE quantificam, em unidades da variável-alvo, o erro médio e sua 

dispersão, respectivamente. Já o nMAE expressa o erro em termos percentuais, normalizados 

pela capacidade instalada de cada usina, o que facilita a comparação entre empreendimento 

com diferentes potências e escalas de geração. As expressões desses indicadores estão 

apresentadas nas Eq. (30) a (32): 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑦̇̂𝑖|

𝑁

𝑖=1

 (30) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦̇̂𝑖)

2
𝑁

𝑖=1

 (31) 

𝑛𝑀𝐴𝐸 =
100%

𝐶𝐴𝑃

1

𝑁
∑|𝑦𝑖 − 𝑦̇̂𝑖|

𝑁

𝑖=1

 (32) 

 

em que 𝑦𝑖 representa o valor real, 𝑦̇̂𝑖 o valor previsto, 𝐶𝐴𝑃 a capacidade instalada da usina e 

N o tamanho do conjunto de teste. 

Para aumentar a confiabilidade dos resultados, cada um dos 14 modelos (M1 a M14) foi 

treinado e avaliado dez vezes, utilizando dez inicializações distintas (run 0, run 1, ..., run 9). 

Dessa forma, obteve-se, para cada modelo, uma distribuição de valores de MAE e RMSE ao 

longo das repetições, a partir da qual foram calculados o desvio-padrão do erro médio 

absoluto (dp-MAE) e o desvio-padrão da raiz do erro médio quadrático (dp-RMSE). Esses 
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indicadores descritivos permitem avaliar a estabilidade do treinamento e a variabilidade do 

desempenho entre diferentes inicializações. 

Além da análise descritiva, foi conduzida uma análise estatística inferencial para comparar 

o desempenho dos modelos TFT dois a dois. Para cada par de modelos, foram consideradas as 

dez observações de MAE obtidas em cada run, formando amostras pareadas. A partir dessas 

amostras, foram calculados: a diferença média entre os modelos; o intervalo de confiança de 

95% (IC95%) para essa diferença média; o valor do teste t pareado, para avaliar se a diferença 

média é estatisticamente distinta de zero sob a suposição de normalidade das diferenças; e, o 

teste não paramétrico de Wilcoxon para amostras pareadas, que não exige a hipótese de 

normalidade e serve como verificação complementar da robustez dos resultados. 

A combinação das duas abordagens (teste t e Wilcoxon) permite verificar se as diferenças 

observadas nas métricas de erro entre dois modelos são estatisticamente significativas ou se 

podem ser atribuídas apenas à variabilidade decorrente das diferentes inicializações. Gráficos 

de dispersão (MAE de um modelo em função do MAE de outro) e boxplots da distribuição de 

erros também foram utilizados para auxiliar na interpretação visual dessas diferenças. 

O procedimento detalhado para a reprodutibilidade desta pesquisa foi apresentado 

integralmente neste capítulo. No próximo capítulo, os resultados numéricos e gráficos, bem 

como as comparações estatísticas entre os modelos, serão discutidos em detalhe. 
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5 RESULTADOS E DISCUSSÃO 

 

5.1 Imputação de Dados Faltantes 

 

No contexto desta pesquisa, as bases de dados de geração FV apresentaram uma parcela 

de dados faltantes, cujos percentuais estão detalhados na Tabela 11. Em contrapartida, a base 

de dados meteorológicos utilizada manteve-se íntegra, sem qualquer registro de dados 

ausentes, o que constitui um ponto favorável para a confiabilidade das informações climáticas 

empregadas na modelagem preditiva. A necessidade de tratar adequadamente essas lacunas na 

série de geração FV é crucial para garantir a robustez e a precisão dos modelos de previsão 

desenvolvidos, evitando vieses e assegurando a representatividade das séries temporais 

analisadas. 

Tabela 11 - Dados Faltantes em Cada Usina FV 

Usina Sigla Dados faltantes (%) Usina Sigla Dados faltantes (%) 

1 CSP 0,01% 6 ITU 0,07% 

2 CBJ 0,03% 7 CLA 0,19% 

3 CJS 0,08% 8 HOR 0,07% 

4 PIR 0,01% 9 CNO 0,10% 

5 CSG 0,07% 10 SOL 0,26% 

Fonte: A Autora (2025). 

 

A Figura 26 apresenta a validação da metodologia de imputação de dados ausentes na 

geração FV por meio de um comparativo com as três técnicas clássicas citadas na seção 4.2.2: 

interpolação linear, imputação pela média temporal e método dos cinco vizinhos mais 

próximos (KNN). Foram analisados, quatro exemplos de dias com três horas consecutivas 

ausentes, em diferentes datas do conjunto de dados: 06/07/2023, 14/06/2023, 12/09/2023 e 

11/05/2023. Essas datas foram selecionadas aleatoriamente dentre os dias em que a série de 

referência (Usina 1 – CSP) apresentava as 11 horas de geração FV completas, permitindo 

simular artificialmente as lacunas e comparar diretamente os métodos de imputação em 

relação à curva original. 

As cores na Figura 26 representam: curva preta – série original (dados completos, 

utilizada como referência); curva vermelha – imputação baseada na curva de radiação; curva 

verde – imputação por interpolação linear; curva laranja – imputação via KNN; e curva azul – 

imputação pela média temporal.  
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Figura 26 - Validação da Imputação de Dados na Geração FV 

  

  

Fonte: A Autora (2025). 

 

Os gráficos comparativos evidenciam que, em todas as datas analisadas, a imputação pela 

curva de radiação apresentou maior proximidade dos valores originais, com desvios reduzidos 

e preservando o comportamento real da curva de geração. Em contrapartida, os métodos 

tradicionais mostram limitações, especialmente em situações com variações mais abruptas na 

produção. Por exemplo, no dia 12/09/2023, tanto a interpolação linear quanto o KNN 

apresentam discrepâncias significativas em relação ao padrão observado, suavizando ou 

distorcendo a queda de geração, enquanto a imputação baseada na radiação mantém trajetória 

coerente com a série original. A imputação pela média apresentou o pior desempenho em 

todos os cenários analisados. A imputação pela média temporal é a que apresenta pior 

desempenho em todos os cenários, por ignorar completamente a dinâmica de flutuações da 

geração FV ao longo do dia. 

Esses resultados ilustram, de forma empírica, a eficácia da metodologia proposta, 

demonstrando que a incorporação explícita de informações meteorológicas auxilia na 

reconstrução mais fidedigna das séries de geração FV e supera técnicas que desconsideram 
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tais variáveis contextuais. Assim, a estratégia adotada neste trabalho se mostra mais robusta, 

sobretudo em trechos com múltiplos intervalos de dados ausentes e maior variabilidade da 

radiação solar. 

 

5.2 Clusterização Hierárquica da Base de Dados de Geração FV 

 

A análise da clusterização hierárquica na base de dados de geração FV, com dez usinas, 

foi realizada utilizando a distância DTW e tomando como referência a Usina 1 (CSP). O 

dendrograma, apresentado na Figura 27, sintetiza a análise de similaridade entre as séries 

temporais. 

Figura 27 - Dendrograma resultante da Clusterização Hierárquica 

 

Fonte: A Autora (2025). 

 

O dendrograma evidencia que a Usina 1 (CSP) apresenta alta similaridade com a Usina 2 

(CBJ), seguida pela Usina 7 (CLA). Esse agrupamento inicial ocorre em níveis reduzidos de 

distância DTW, indicando que essas usinas possuem padrões temporais de geração muito 
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próximos. Esse resultado é justificável, pois as três usinas têm localização geográfica próxima 

e, consequentemente, condições climáticas semelhantes. 

Um segundo agrupamento é formado pela Usina 8 (HOR), que apresenta similaridade 

moderada com a usina de referência Usina 1 (CSP). Isso sugere que, embora compartilhem 

tendências gerais de variação da geração, exibem diferenças mais significativas na amplitude 

e/ou na dinâmica intradiária. O terceiro agrupamento compreende a Usina 5 (CSG) e a Usina 

10 (SOL), que apresentam uma distância DTW considerável (~100), sendo seguidas pelas 

Usinas 6 (ITU), 3 (CJS) e 9 (CNO). Essas diferenças são justificadas pela maior distância em 

relação à usina de referência e podem ser decorrentes de diferentes configurações de arranjos 

FV, variação na inclinação dos módulos, regimes distintos de manutenção ou particularidades 

operacionais. 

A Usina 4 (PIR) aparece em uma posição mais distante na árvore hierárquica e se une às 

demais apenas em patamares de distância muito elevados. Essa distinção acentuada pode 

decorrer da localização geográfica no sudeste brasileiro com regime solar e padrão de 

nebulosidade significativamente diferentes da usina de referência localizada no nordeste 

brasileiro, de particularidades no projeto da usina ou até mesmo de eventos operacionais que 

afetaram o desempenho no período analisado. 

Em síntese, a clusterização hierárquica permite identificar um núcleo de alta similaridade 

composto por CSP (1), CBJ (2) e CLA (7), um grupo intermediário com usinas de 

comportamento moderadamente similar, como HOR (8), CSG (5) e SOL (10), e um 

subconjunto mais afastado, no qual PIR (4) se destaca como um caso atípico no conjunto 

avaliado. 

A correlação de Pearson foi calculada com o objetivo de checar os resultados da 

clusterização hierárquica, oferecendo uma segunda opinião sobre o grau de proximidade entre 

as usinas. O resultado pode ser visto na Tabela 12. 

Tabela 12 - Matriz de Correlação de Pearson das Usinas FV 

 Usina 1 Usina 2 Usina 3 Usina 4 Usina 5 Usina 6 Usina 7 Usina 8 Usina 9 Usina 10 

 CSP CBJ CJS PIR CSG ITU CLA HOR CNO SOL 

CSP 1,00 0,99 0,59 0,67 0,53 0,91 0,98 0,87 0,34 -0,15 

CBJ 0,99 1,00 0,59 0,65 0,51 0,89 0,99 0,86 0,32 -0,14 

CJS 0,59 0,59 1,00 0,41 0,61 0,65 0,60 0,67 0,38 0,03 

PIR 0,67 0,65 0,41 1,00 0,41 0,61 0,66 0,63 0,14 -0,07 

CSG 0,53 0,51 0,61 0,41 1,00 0,53 0,50 0,54 0,47 0,02 

ITU 0,91 0,89 0,65 0,61 0,53 1,00 0,90 0,97 0,34 -0,19 

CLA 0,98 0,99 0,60 0,66 0,50 0,90 1,00 0,87 0,34 -0,17 

HOR 0,87 0,86 0,67 0,63 0,54 0,97 0,87 1,00 0,29 -0,18 
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CNO 0,34 0,32 0,38 0,14 0,47 0,34 0,34 0,29 1,00 -0,17 

SOL -0,15 -0,14 0,03 -0,07 0,02 -0,19 -0,17 -0,18 -0,17 1,00 

Fonte: A Autora (2025). 

 

A análise da primeira coluna da matriz de correlação indica que a Usina 1 (CSP) apresenta 

altíssima correlação com CBJ (0,99) e CLA (0,98), confirmando que essas três usinas 

compõem o núcleo mais próximo em termos de variação linear da geração. Esses resultados 

são coerentes com o dendrograma, no qual CSP se agrupa primeiramente com CBJ e CLA em 

níveis reduzidos de distância DTW.  

A Usina HOR apresenta correlação elevada com a CSP (0,87) e aparece próxima no 

dendrograma, embora um pouco mais distante que CBJ e CLA. Isso corrobora a consistência 

entre as duas análises. Porém, foram observadas algumas inconsistências. As usinas PIR 

(0,67) e CSG (0,53) têm correlação moderada com a CSP. No dendrograma, a PIR aparece 

mais afastada, enquanto a CSG se mostra mais próxima, o que contradiz a ordem de 

correlação. No caso da SOL, a correlação com a CSP é negativa (-0,15), indicando um 

comportamento oposto de geração, mas ela se agrupa na mesma hierarquia que a CSG no 

dendrograma.  

Portanto, enquanto as análises de correlação de Pearson (que descrevem a relação linear 

entre as séries) e Clusterização Hierárquica (que considera diferenças de forma e 

deslocamentos temporais) se mostraram consistentes em alguns casos, elas revelaram 

divergências em outros, destacando as limitações de se usar apenas uma métrica de 

similaridade. Por essa razão, os resultados da Clusterização Hierárquica foram considerados 

como a análise principal, pois fornecem uma visão mais completa da similaridade entre as 

usinas. 

 

5.3 Análise de Desempenho dos Modelos M1 a M8 

 

5.3.1 Desempenho médio e variabilidade 

A Tabela 13 compara o desempenho dos modelos M1 a M8, cujas configurações de 

entrada foram descritas na seção 4.3. Em todos os casos, as métricas de avaliação (MAE, dp-

MAE, RMSE, dp-RMSE e nMAE) foram calculadas na escala original de geração (MW), 

ainda que alguns modelos tenham sido treinados com a variável-alvo transformada em 

logaritmo decimal (𝐺log10). Todas as oito configurações foram aplicadas aos dados da Usina 1 

(CSP) e, para o cálculo de nMAE, considerou-se a capacidade instalada de 67 MW. Os 
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valores apresentados correspondem à média das dez inicializações (runs) realizadas para cada 

modelo, enquanto dp-MAE e dp-RMSE quantificam a variabilidade dos erros entre essas 

repetições. 

Tabela 13 – Comparativo de Desempenho - Modelos M1 a M8 

Modelo 
MAE 

(MW) 

dp-MAE 

(MW) 

RMSE 

(MW) 

dp-RMSE 

(MW) 
nMAE (%) 

M1 9,24 0,26 12,29 0,39 14% 

M2 8,99 0,17 12,27 0,33 13% 

M3 7,24 0,20 10,80 0,29 11% 

M4 7,11 0,36 10,71 0,40 11% 

M5 9,29 0,29 12,43 0,44 14% 

M6 9,27 0,53 12,76 0,70 14% 

M7 7,13 0,22 10,64 0,31 10% 

M8 7,03 0,20 10,64 0,40 10% 

Fonte: A Autora (2025). 

 

Os modelos M1 e M2 podem ser vistos como configurações de base (baseline). Eles 

utilizam apenas informações sazonais e de hora do dia como covariáveis adicionais, além do 

histórico de geração incorporado pela própria variável-alvo (este último presente em todas as 

configurações avaliadas). Nessa configuração, os erros médios demonstram-se relativamente 

elevados (MAE de 9,24 MW e nMAE de 14% para M1, e 8,99 MW e 13% para M2). Os 

desvios-padrão associados (dp-MAE de 0,26 e 0,17; dp-RMSE de 0,39 e 0,33, 

respectivamente) indicam uma variabilidade moderada entre as dez inicializações. A diferença 

entre M1 (log10) e M2 (MW) é pequena, o que sugere que a transformação logarítmica, 

isoladamente, não produz ganhos expressivos quando o conjunto de covariáveis adicionais é 

limitado. 

A inclusão de variáveis meteorológicas (radiação solar global e temperatura ambiente) nos 

modelos M3 e M4 está associada a uma redução consistente dos erros médios em relação aos 

modelos de referência. O MAE diminui para 7,24 MW (M3) e 7,11 MW (M4), com nMAE 

em torno de 11% e RMSE próximos de 10,8 MW. Os valores de dp-MAE (0,20 e 0,36) e dp-

RMSE (0,29 e 0,40) permanecem abaixo de 0,5 MW, indicando desempenho relativamente 

estável entre as execuções. Esses resultados apontam que as covariáveis meteorológicas 

contribuem de forma relevante para explicar a variabilidade da geração FV. 

Nos modelos M5 e M6, foram incorporados apenas atributos derivados da própria série de 

geração (média, máximo, mínimo diários e termos de defasagem), sem o uso das variáveis 

meteorológicas. Nessa configuração, os erros médios (MAE em torno de 9,3 MW e nMAE de 
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14%) são muito próximos aos dos modelos baseline M1 e M2, não se observando melhora 

expressiva de precisão. Além disso, verifica-se aumento da variabilidade, especialmente em 

M6, que apresenta os maiores valores de dp-MAE (0,53) e dp-RMSE (0,70) dentre os oito 

modelos, sugerindo maior sensibilidade às diferentes inicializações. 

A combinação simultânea de variáveis meteorológicas e atributos de geração histórica, 

implementada nos modelos M7 e M8, está associada aos menores valores médios de erro 

entre as configurações avaliadas. O modelo M7 (treinado na escala logarítmica) apresenta 

MAE de 7,13 MW, nMAE de 10% e RMSE de 10,64 MW, com dp-MAE de 0,22 e dp-RMSE 

de 0,31. O modelo M8, análogo em escala MW, obtém valores médios muito próximos (MAE 

de 7,03 MW, com dp-MAE de 0,20, mesmo RMSE de 10,64 MW e nMAE de 10%), embora 

com leve aumento na dispersão (dp-RMSE de 0,40). Esses resultados indicam, em termos 

médios, uma tendência de melhor desempenho das configurações mais completas, nas quais 

se combinam meteorologia, atributos históricos e transformação logarítmica. 

Por fim, destaca-se que as diferenças observadas na Tabela 13 refletem tendências médias 

de desempenho e não implicam, por si só, em superioridade estatisticamente comprovada de 

um modelo sobre outro. A verificação formal dessa significância é apresentada na subseção 

seguinte 5.3.2, por meio de testes estatísticos dois a dois (teste t pareado e teste de Wilcoxon), 

aplicados às distribuições de erro obtidas nas dez inicializações de cada modelo. 

Além da comparação das métricas de erro, é importante analisar como o TFT utiliza as 

diferentes entradas ao construir suas previsões, de modo a verificar se o modelo está de fato 

explorando informações coerentes do ponto de vista físico e operacional. Nesse sentido, a 

interpretabilidade é investigada por meio da importância relativa das variáveis no encoder e 

no decoder do modelo. Entre as configurações avaliadas (M1-M8), o modelo M7 foi 

selecionado como estudo de caso para a análise de interpretabilidade por representar uma das 

configurações mais completas de entradas, combinando variáveis meteorológicas, atributos 

derivados da própria série de geração e transformação logarítmica da variável-alvo. Ressalta-

se que os demais modelos exibem padrões de importância qualitativamente semelhantes. 

A interpretabilidade do modelo M7 pode ser analisada pela importância das variáveis no 

encoder e no decoder, apresentada na Figura 28. No encoder, observa-se que a variável mais 

relevante é a própria série de geração em escala logarítmica (𝐺𝑙𝑜𝑔10), seguida pelas interações 

ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑅𝑎𝑑 e ℎ𝑜𝑟𝑎_𝑠𝑒𝑛, que capturam o padrão diário modulando a geração pelo ciclo 

diurno da radiação solar. A variável agregada da própria série, 𝐺𝑚𝑖𝑛_ℎ, e a variável 𝑀𝑒𝑠 

também apresentam contribuição expressiva, indicando que o modelo utiliza simultaneamente 
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informação histórica de geração e sazonalidade anual para construir o contexto de longo 

prazo. 

Figura 28 - Interpretabilidade das Variáveis do Modelo M7 

  
Fonte: A Autora (2025). 

 

No decoder, a prioridade se desloca para as variáveis diretamente associadas ao passo de 

previsão corrente. A mais importante passa a ser a interação ℎ𝑜𝑟𝑎_ sen  × 𝐺(ℎ − 1), que 

combina a defasagem imediata da geração com a posição intradiária, evidenciando forte 

dependência de curto prazo entre instantes consecutivos. Em seguida destacam-se a interação 

com temperatura (ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑇𝑒𝑚𝑝) e radiação solar (ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑅𝑎𝑑). Já variáveis mais 

agregadas ou sazonais, têm importância relativamente baixa no decoder, sugerindo que a 

sazonalidade é principalmente capturada na etapa de codificação, enquanto a etapa de 

decodificação refina a previsão com base no estado imediatamente anterior e nas condições 

meteorológicas locais. 

A Figura 29 ilustra a comparação entre a geração real e a previsão pontual (quantil 0,5) do 

modelo M8 em dois dias distintos do conjunto de teste (16/02/2023 e 06/11/2023), 

considerando as 11 horas diárias utilizadas neste estudo. Esses dias foram selecionados como 

exemplos em que o perfil diário de geração FV não apresenta um comportamento “ideal”, 

observando-se discrepâncias pontuais possivelmente associadas à variabilidade intradiária do 

recurso solar. 

Além disso, destacam-se pontos de decaimento que podem ser indicativos de eventos 

operativos não puramente relacionados à radiação solar, como episódios de curtailment. Este 

fenômeno consiste no corte ou limitação da geração por parte do ONS e tem se tornado um 

desafio crescente na operação do SIN. Motivados por restrições de escoamento na rede ou 

excesso de oferta, esses cortes forçados impõem uma redução artificial na produção que não 
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depende da disponibilidade solar, representando um desafio adicional para a precisão de 

modelos preditivos como o TFT. 

Figura 29 - Comparativo Real x Previsto para o Modelo M8 

  
Fonte: A Autora (2025). 

 

Pode-se observar o comportamento da geração FV em 16/02/2023, em que a curva azul 

representa os valores medidos e a linha tracejada laranja indica a previsão pontual do modelo 

M8. A curva prevista do modelo segue de forma consistente o formato geral da curva diária, 

reproduzindo adequadamente a rápida subida matinal, o platô próximo ao pico de geração e o 

declínio ao final do dia. Pequenas discrepâncias ocorrem em horários específicos, com leve 

subestimação no pico e superestimação em parte do período vespertino, mas, no conjunto, a 

trajetória prevista permanece próxima da série observada. 

Referente ao dia 06/11/2023, nota-se novamente que a curva prevista segue o padrão da 

curva real, capturando a tendência de elevação e redução da geração. Entretanto, esse 

exemplo evidencia flutuações mais acentuadas na curva real, especialmente em torno do 

horário de pico, que possivelmente pode ser devido ao curtailment e que não são totalmente 

captadas pelo modelo, resultando em uma curva prevista mais suavizada. Esse 

comportamento é condizente com a natureza do modelo TFT, que tende a suavizar variações 

muito abruptas para manter a aderência global ao perfil diário. 

 

5.3.2 Testes de significância estatística 

Com o objetivo de complementar a análise descritiva apresentada na Seção 5.3.1, esta 

subseção investiga se as diferenças de desempenho entre os modelos M1 a M8 são 

estatisticamente relevantes ou se podem ser atribuídas apenas à variabilidade decorrente das 

diferentes inicializações. Para isso, foram consideradas, para cada modelo, as dez observações 

de MAE obtidas nas runs independentes, de forma a compor amostras pareadas de erro para 

cada par de modelos comparado. 
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A Tabela 14 apresenta os valores de MAE de cada um dos oito modelos em cada uma das 

dez inicializações. Essa matriz de resultados permite visualizar, de maneira mais detalhada, o 

comportamento de cada configuração ao longo das diferentes execuções: observa-se que 

alguns modelos apresentam valores de MAE mais concentrados em torno de uma faixa 

estreita, indicando maior estabilidade entre runs, enquanto outros exibem maior 

espalhamento, coerente com os maiores valores de dp-MAE discutidos anteriormente. Em 

particular, nota-se que os modelos com melhores métricas médias (como M3, M4, M7 e M8) 

tendem a concentrar seus MAEs em níveis mais baixos, ao passo que modelos como M1, M2, 

M5 e M6 apresentam, em geral, valores mais elevados e maior variabilidade entre 

inicializações, o que reforça as tendências já apontadas na análise descritiva. 

Tabela 14 - Resultados de MAE por run para os modelos M1 a M8 

run 
MAE (MW) 

M1 M2 M3 M4 M5 M6 M7 M8 

0 9,10 8,84 7,37 7,90 9,19 9,63 7,14 7,33 

1 8,83 9,02 7,51 6,96 9,07 9,71 7,20 7,26 

2 9,30 8,83 7,16 7,11 9,09 9,31 7,54 7,19 

3 9,62 9,38 6,96 6,97 8,96 9,15 7,42 6,99 

4 9,25 9,02 7,09 6,65 9,25 8,88 7,17 6,80 

5 9,18 8,91 7,20 7,23 9,08 9,18 6,88 7,09 

6 9,27 8,94 7,10 6,83 8,64 8,73 7,09 6,90 

7 9,13 8,80 7,47 7,50 9,49 8,86 6,96 6,87 

8 9,69 9,09 7,06 7,03 9,18 8,79 7,03 7,12 

9 8,99 9,09 7,51 6,97 8,77 10,41 6,89 6,77 

Média 9,24 8,99 7,24 7,11 9,07 9,27 7,13 7,03 

dp 0,26 0,17 0,20 0,36 0,24 0,53 0,22 0,20 

Fonte: A Autora (2025). 

 

A partir dos valores de MAE por inicialização, foram construídas as comparações dois a 

dois entre os modelos de interesse, a saber: M1 vs. M2, M3 vs. M4, M5 vs. M6, M7 vs. M8 e, 

por fim, M4 vs. M8, sendo estes os dois modelos com menores MAE médios. Para cada par, 

calculou-se: (i) a diferença média de MAE entre os modelos; (ii) o intervalo de confiança 

(IC95%) dessa diferença; e (iii) os testes t pareado e de Wilcoxon. A Tabela 15 apresenta os 

resultados do teste de significância dois a dois dos modelos M1 a M8. 



86 

 

Tabela 15 – Teste de significância estatística pareada dos modelos M1 a M8 

Par Diferença média IC 95% p Teste t p Teste Wilcoxon 

M1 vs. M2 0,25 [0,08 – 0,42] 0,0096 0,0098 

M3 vs. M4 0,13 [-0,11 – 0,36] 0,2517 0,2656 

M5 vs. M6 -0,19 [-0,65 – 0,27] 0,3666 0,4316 

M7 vs. M8 -0,10 [-0,07 – 0,27] 0,2104 0,2871 

M4 vs. M8 0,08 [-0.14 – 0,30] 0,4138 0,7695 

Fonte: A Autora (2025). 

 

Ao analisar os resultados, verifica-se que a única diferença com relevância estatística 

confirmada (p < 0,05) ocorre na configuração mais simples (baseline). Conclui-se que, para 

modelos que utilizam apenas informações sazonais e histórico, o treinamento na escala 

original (MW) é superior ao uso da escala logarítmica. 

Para os demais pares que envolvem variáveis meteorológicas ou atributos derivados (M3 a 

M8), a conclusão é de que não há evidência estatística de superioridade entre as diferentes 

escolhas de escala ou incrementos de atributos. Embora existam variações numéricas nas 

médias (como o M8 apresentando o menor MAE absoluto de 7,03 MW), os p-valores 

superiores a 0,05 indicam que essas diferenças podem ser fruto da variabilidade das 

inicializações e não de uma vantagem real do modelo. 

Em suma, a análise estatística revela que, embora existam tendências numéricas 

favoráveis às configurações mais completas, apenas a transição da escala logarítmica para a 

original no modelo baseline (M2 vs. M1) resultou em ganho de desempenho robusto. Para os 

demais modelos, as diferenças observadas não possuem significância estatística, sugerindo 

que a capacidade preditiva do modelo TFT proposto atinge um patamar de estabilidade a 

partir da inclusão das covariáveis meteorológicas. 

 

5.4 Análise de Desempenho dos Modelos Multipreditivos M9 a M14 

 

5.4.1 Desempenho médio e variabilidade 

Para analisar a aprendizagem multipreditiva do TFT, foram construídos modelos com 

duas usinas (M9, M10, M11 e M13) e com três usinas (M12 e M14). A formação desses pares 

e trios levou em conta os resultados da clusterização hierárquica apresentada na Seção 5.2, 

que permitiu agrupar usinas com comportamento semelhante. Os agrupamentos considerados 

em cada modelo, bem como a capacidade instalada de cada usina, estão descritos na Tabela 

16. 



87 

 

Tabela 16 - Descrição das usinas dos modelos M9 a M14 

Modelo Conjunto de usinas (CAP instalada em MW) 

M9 1 – CSP (67 MW); 2 – CBJ (80 MW) 

M10 1 – CSP (67 MW); 7 – CLA (60 MW) 

M11 2 – CBJ (80 MW); 7 – CLA (60 MW) 

M12 1 – CSP (67 MW); 2 – CBJ (80 MW); 7 – CLA (60 MW) 

M13 1 – CSP (67 MW); 8 – HOR (103 MW) 

M14 1 – CSP (67 MW); 5 – CSG (864 MW); 8 – HOR (103 MW) 

Fonte: A Autora (2025). 

 

A Tabela 17 sintetiza o desempenho dos modelos multipreditivos M9 a M14, 

apresentando a média e a variabilidade de dez inicializações para cada configuração. Todas as 

métricas foram calculadas na escala original (MW), embora os modelos tenham sido treinados 

com a variável-alvo em logaritmo decimal (𝐺𝑙𝑜𝑔10). 

Tabela 17 - Comparativo de Desempenho - Modelos M9 a M14 

Modelo Usinas MAE (MW) 
dp-MAE 

(MW) 
RMSE (MW) 

dp-RMSE 

(MW) 
nMAE (%) 

M9 
1 (CSP) 6,86 0,16 10,40 0,27 10% 

2 (CBJ) 7,86 0,21 11,68 0,40 10% 

M10 
1 (CSP) 7,04 0,33 10,60 0,33 11% 

7 (CLA) 7,30 0,40 10,93 0,31 12% 

M11 
2 (CBJ) 7,70 0,28 11,72 0,42 10% 

7 (CLA) 7,03 0,21 11,02 0,32 12% 

M12 

1 (CSP) 6,85 0,11 10,41 0,30 10% 

2 (CBJ) 7,53 0,24 11,43 0,44 9% 

7 (CLA) 6,95 0,07 10,80 0,23 12% 

M13 
1 (CSP) 6,84 0,09 10,56 0,19 10% 

8 (HOR) 11,06 0,30 15,56 0,30 11% 

M14 

1 (CSP) 6,90 0,08 10,42 0,21 10% 

5 (CSG) 52,91 0,75 77,76 1,35 6% 

8 (HOR) 10,76 0,25 15,37 0,34 10% 

Fonte: A Autora (2025). 

 

Nos modelos compostos por duas usinas que compartilham o mesmo conjunto de 

variáveis meteorológicas (M9, M10 e M11), observa-se que os valores médios de MAE se 

situam, em geral, na faixa de 6,8 MW a 7,9 MW, com nMAE variando entre 10% e 12%. Os 

desvios-padrão (dp-MAE e dp-RMSE) são relativamente baixos (tipicamente inferiores a 0,5 

MW), o que sugere uma variabilidade moderada dos erros entre as dez inicializações. Esses 

resultados evidenciam que a arquitetura TFT é capaz de aprender, de forma conjunta, o 
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comportamento de usinas no mesmo campo meteorológico sem perda de precisão, mantendo 

níveis de erro semelhantes aos obtidos na modelagem individual (como visto na Tabela 13). 

No caso do modelo M13, que passa a considerar duas usinas associadas a conjuntos 

distintos de dados meteorológicos, observa-se um comportamento ligeiramente mais 

heterogêneo entre as séries: enquanto uma das usinas mantém MAE em torno de 6,84 MW e 

nMAE de 10%, a outra apresenta MAE mais elevado (11,06 MW) e RMSE de 15,56 MW, 

embora com nMAE ainda em patamar próximo (11%). Essa diferença sugere que, quando o 

modelo passa a lidar simultaneamente com usinas submetidas a condições climáticas e bases 

meteorológicas distintas, a tarefa de previsão torna-se mais desafiadora, ainda que o 

desempenho relativo (em termos percentuais) permaneça adequado. 

Nos modelos com três usinas, a configuração M12 representa o cenário em que todas as 

usinas compartilham o mesmo conjunto de variáveis meteorológicas. Nessa configuração, os 

valores de MAE variam aproximadamente entre 6,85 e 7,53 MW, com nMAE entre 9% e 

12%. Os desvios-padrão de MAE e RMSE são particularmente baixos (dp-MAE entre 0,07 e 

0,24 MW), o que indica um comportamento bastante estável entre as inicializações. Esses 

resultados mostram que o TFT é capaz de acomodar a previsão conjunta de três usinas sob o 

mesmo regime meteorológico sem aumento expressivo dos erros médios, mantendo 

desempenho semelhante ao observado nos modelos com duas usinas. 

Por outro lado, o modelo M14 agrega três usinas associadas a bases meteorológicas 

distintas, incluindo uma usina de grande porte. Nessa configuração, observa-se maior 

heterogeneidade nos erros absolutos: enquanto duas usinas mantêm MAE em faixas próximas 

às anteriores (cerca de 6,90 e 10,76 MW, com nMAE de 10%), a usina de maior capacidade 

apresenta MAE e RMSE bastante elevados em termos absolutos (52,91 MW e 77,76 MW, 

respectivamente), embora com nMAE relativamente baixo (6%). Esse comportamento indica 

que, para usinas de grande porte, a escala em MW amplifica naturalmente o erro absoluto, de 

modo que a métrica normalizada (nMAE) torna-se mais adequada para comparação entre 

empreendimentos de diferentes tamanhos. Ainda assim, os desvios-padrão permanecem 

controlados, sugerindo que o treinamento multipreditivo é estável mesmo nesse cenário mais 

complexo. 

Quanto à interpretabilidade dos modelos multipreditivos, selecionou-se o modelo M12 

como estudo de caso por representar uma das configurações mais completas de entradas; nota-

se que os demais apresentam comportamento semelhante. Assim, a Figura 30 ilustra a 

importância das variáveis para a previsão realizada pelo modelo M12.  
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Figura 30 - Interpretabilidade das Variáveis do Modelo M12 

  
Fonte: A Autora (2025). 

 

Quanto ao Encoder do modelo M12, observa-se que quase um terço da sua atenção é 

conferida à variável-alvo transformada de geração (𝐺𝑙𝑜𝑔10), com cerca de 30%, o que 

confirma a primazia do histórico imediato da série no estabelecimento do estado anterior. Em 

seguida, a covariável 𝐸𝑠𝑡𝑎𝑐𝑎𝑜 assume papel relevante (~ 13%), pois a atenção visualiza 

padrões repetidos nas três usinas 1(CSP), 2 (CBJ) e 3 (CLA), tornando fatores de calendário 

mais relevantes para distinguir variações que não são capturadas por defasagens de tempo. A 

interação (ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑅𝑎𝑑) aparece logo após (~ 11%), indicando a importância do vínculo 

entre o ciclo diário e o recurso solar.  

No Decoder, a maior parte da atenção (~ 17%) é dedicada à interação entre a hora e o 

valor de geração do passo imediatamente anterior (ℎ𝑜𝑟𝑎_ cos  × 𝐺(ℎ − 1)), sinalizando que 

este é o principal guia para cada previsão. Em seguida, a variável 𝑀𝑒𝑠 (~ 14%) e a interação 

(ℎ𝑜𝑟𝑎_𝑠𝑒𝑛 × 𝑅𝑎𝑑) (~ 12%) se destacam. Esse rearranjo demonstra como o TFT combina 

informações de curto prazo com marcadores de calendário para refinar cada previsão horária, 

adaptando seu foco da construção de contexto (Encoder) para a geração de previsão 

(Decoder). 

A Figura 31 ilustra a comparação entre a geração real e a previsão pontual (quantil 0,5) do 

modelo M12 para o dia 16/02/2023, considerando as 11 horas diárias utilizadas neste estudo, 

para as três usinas consideradas (CSP, CLA e CBJ). Esse dia foi selecionado como exemplo 

em que o perfil diário de geração FV não apresenta um comportamento “ideal”, observando-

se discrepâncias pontuais possivelmente associadas à variabilidade intradiária do recurso 

solar. 
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Figura 31 – Comparativo 1 Real x Previsto para o Modelo M12 

  

 
Fonte: A Autora (2025). 

 

Em CSP, o modelo tende a suavizar o pico de geração e subestimar parte do período da 

tarde, embora permaneça próximo dos valores observados. Em CLA, nota-se um ligeiro 

deslocamento para baixo da curva prevista em relação à real, principalmente a partir do meio 

do dia, indicando subestimação moderada da produção. Já em CBJ, o comportamento é 

oposto pois o modelo superestima a geração ao longo do dia, mas acompanha bem o início e o 

final do período diurno. Essas discrepâncias pontuais ilustram a variabilidade intradiária do 

recurso solar e mostram que, embora o perfil diário não seja perfeitamente “ideal”, o modelo 

M12 consegue manter boa coerência global entre as previsões e as séries observadas nas três 

usinas. 

A Figura 32, por sua vez, ilustra a comparação entre a geração real e a previsão pontual 

(quantil 0,5) do modelo M12 para o dia 06/11/2023. Observa-se que o modelo M12 continua 

reproduzindo o formato geral da curva diária de geração das três usinas (CSP, CLA e CBJ). 

Nesse dia, em específico, verificam-se quedas abruptas de geração em horários centrais do 

dia, seguidas de recuperações rápidas, que não são acompanhadas pelas três curvas previstas, 

a qual mantém um perfil mais estável. Essas discrepâncias locais, especialmente em horários 

nos quais seria esperado um patamar quase constante de geração, podem estar associadas a 
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eventos operativos não estritamente relacionados à radiação solar, como episódios de 

curtailment ou restrições impostas pelo sistema elétrico. Nesses casos, o modelo tende a 

seguir o padrão médio condicionado às variáveis meteorológicas, o que explica o 

descolamento pontual entre a previsão e os valores medidos, mesmo mantendo boa aderência 

ao formato global da curva diária. 

Figura 32 - Comparativo 2 Real x Previsto para o Modelo M12 

  

 
Fonte: A Autora (2025). 

 

5.4.2 Testes de significância estatística 

Com o objetivo de complementar a análise descritiva, esta subseção investiga se as 

diferenças de desempenho entre os modelos M9 a M14 são estatisticamente relevantes ou se 

podem ser atribuídas apenas à variabilidade decorrente das diferentes inicializações. Para o 

estudo estatístico, foram considerados os modelos M9, M10, M12, M13 e M14, que incluem a 

Usina 1 (CSP) em sua configuração. Em cada um desses modelos, utilizaram-se as dez 

observações de MAE obtidas nas runs independentes, formando amostras pareadas de erro 

para cada par de modelos comparado. 

A Tabela 18 apresenta os valores de MAE de cada um dos cinco modelos em cada uma 

das dez inicializações. Essa matriz de resultados permite visualizar, de maneira mais 

detalhada, o comportamento de cada configuração ao longo das diferentes execuções. 
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Tabela 18 - Resultados de MAE por run para os modelos M9 a M14 

 MAE (MW) 

run M9 M10 M12 M13 M14 

0 6,87 6,89 6,77 6,86 6,99 

1 7,08 7,05 6,69 6,92 6,93 

2 6,98 7,78 7,07 7,00 6,85 

3 6,98 6,92 6,93 6,91 6,87 

4 6,8 6,69 6,91 6,72 6,92 

5 7,1 7,43 6,86 6,79 6,76 

6 6,67 7,03 6,9 6,81 6,89 

7 6,7 6,75 6,91 6,8 6,95 

8 6,71 7,00 6,67 6,73 7,01 

9 6,74 6,91 6,87 6,86 6,82 

Média 6,86 7,05 6,86 6,84 6,90 

dp 0,17 0,34 0,12 0,09 0,08 

Fonte: A Autora (2025). 

 

A partir dos valores de MAE por inicialização, foram construídas as comparações dois a 

dois entre os modelos de interesse, a saber: M9 vs. M10, M9 vs. M13, M10 vs. M13, M12 vs. 

M14 e, por fim, M12 vs. M13, sendo estes os dois modelos com menores MAE médios e dp-

MAE. Para cada par, calculou-se: (i) a diferença média de MAE entre os modelos; (ii) o 

intervalo de confiança (IC95%) dessa diferença; e (iii) os testes t pareado e de Wilcoxon. A 

Tabela 19 apresenta os resultados do teste de significância dois a dois dos modelos M9 a 

M14. 

Tabela 19 – Teste de significância estatística pareada dos modelos M9 a M14 

Par Diferença média IC 95% p Teste t p Teste Wilcoxon 

M9 vs. M10 -0,18 [-0,38 – 0,02] 0,0657 0,1055 

M9 vs. M13 0,04 [-0,06 – 0,14] 0,4082 0,4922 

M10 vs. M13 0,22 [-0,01 – 0,45] 0,0599 0,0371 

M12 vs. M13 0,02 [-0,07 – 0,10] 0,6445 0,4453 

M12 vs. M14 -0,04 [-0,17 – 0,08] 0,4741 0,7891 

Fonte: A Autora (2025). 

 

De modo geral, observa-se que as diferenças médias de erro entre os pares avaliados são 

pequenas em magnitude (entre –0,18 e 0,22 MW) e que, na maior parte dos casos, os 

intervalos de confiança de 95% incluem o zero, com p-valores acima de 0,05 tanto para o 
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teste t pareado quanto para o teste de Wilcoxon. Isso indica que, para os pares M9 vs. M10, 

M9 vs. M13, M12 vs. M13 e M12 vs. M14, não há evidência estatística de que um modelo 

supere consistentemente o outro em termos de MAE, sendo as diferenças observadas 

compatíveis com a variabilidade associada às diferentes inicializações. 

O único caso em que se observa algum indício de diferença é o par M10 vs. M13, cuja 

diferença média de 0,22 MW (M10 – M13) sugere um MAE ligeiramente maior para M10, 

com o teste de Wilcoxon indicando significância ao nível de 5% (p = 0,0371), enquanto o 

teste t apresenta um p-valor ligeiramente acima desse limiar (p = 0,0599). Esse resultado 

aponta para uma possível vantagem do modelo M13 em relação a M10, porém com evidência 

estatística mais fraca e dependente do teste considerado, o que recomenda uma interpretação 

cautelosa. 

Em síntese, a análise estatística dos modelos multipreditivos revela que, na maior parte 

das comparações, o TFT apresenta desempenho semelhante entre as diferentes configurações 

(pares e trios de usinas, com bases meteorológicas compartilhadas ou distintas). As diferenças 

numéricas em MAE observadas na Tabela 19 não se traduzem, em geral, em superioridade 

estatisticamente robusta de um modelo sobre outro, sugerindo que o esquema multipreditivo 

proposto é capaz de manter um patamar de desempenho relativamente estável frente às 

variações na composição dos conjuntos de usinas e de covariáveis meteorológicas. 

 

5.5 Comparativo com outras Topologias 

 

Para avaliar o desempenho da arquitetura TFT proposta, realizou-se uma análise 

comparativa com as topologias Persistência, MLP e LSTM. A Tabela 20 descreve os 

hiperparâmetros que foram considerados nos treinamentos das duas redes MLP e LSTM, os 

quais foram definidos por meio da técnica de busca em grade (grid search). Já a configuração 

da Persistência adota como valor previsto a observação imediatamente anterior à janela de 

previsão. 

Tabela 20 - Hiperparâmetros dos modelos MLP e LSTM 

Hiperparâmetro Valor Hiperparâmetro Valor 

MLP 

Activation SiLU (𝑆𝑖𝐿𝑈 = 𝑥 (
1

1+𝑒−𝑥)) Dropout 0,0 

Batch_Size 128 Patience 15 

Otimizador AdamW Min_delta 1e-4 
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Learning Rate 5e-4 Épocas 200 

    

LSTM 

Layers 1 Dropout 0,1 

Batch_Size 128 Patience 15 

Otimizador AdamW Min_delta 1e-4 

Learning Rate 5e-4 Épocas 200 

WeightDecay 0,0001   

Fonte: A Autora (2025). 

 

Foram treinados os modelos M7, M9 e M12 utilizando as topologias Persistência, MLP e 

LSTM e os resultados médios das métricas de desempenho obtidos são apresentados na 

Tabela 21. 

Tabela 21 – Comparativo do Desempenho das Topologias TFT, MLP e LSTM 

Modelo Usinas 

MLP LSTM 

MAE 

(MW) 

dp-

MAE 

(MW) 

RMSE 

(MW) 

dp-

RMSE 

(MW) 

nMAE 

(%) 

MAE 

(MW) 

dp-

MAE 

(MW) 

RMSE 

(MW) 

dp-

RMSE 

(MW) 

nMAE 

(%) 

M7 CSP 9,29 0,11 11,99 0,08 14% 10,08 0,16 12,82 0,13 15% 

M9 CSP/CBJ 10,15 0,13 12,95 0,09 15% 10,17 0,16 13,04 0,12 15% 

M12 CSP/CBJ/CLA 10,20 0,10 13,00 0,10 15% 10,39 0,19 13,07 0,10 15% 

Modelo Usinas 

TFT Persistência   

MAE 

(MW) 

dp-

MAE 

(MW) 

RMSE 

(MW) 

dp-

RMSE 

(MW) 

nMAE 

(%) 

MAE 

(MW) 

RMSE 

(MW) 

nMAE 

(%) 
  

M7 CSP 7,13 0,22 10,64 0,31 10%      

M9 CSP/CBJ 6,86 0,16 10,40 0,27 10% 26,77 30,58 40%   

M12 CSP/CBJ/CLA 6,85 0,11 10,41 0,30 10%      

 

Fonte: A Autora (2025). 

 

A Tabela 21 compara o desempenho das três topologias de redes neurais (MLP, LSTM e 

TFT) e do método de Persistência, para três configurações representativas, modelo univariado 

com uma usina (M7 – CSP), modelo multipreditivo com duas usinas (M9 – CSP/CBJ) e 

modelo multipreditivo com três usinas (M12 – CSP/CBJ/CLA). Em todas essas 

configurações, o TFT apresenta os menores valores médios de MAE e RMSE, além dos 

menores nMAE (≈10%), indicando clara vantagem em termos de precisão em relação às 

demais redes e ao modelo de Persistência. 
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No modelo M7 (CSP), por exemplo, o TFT atinge MAE de 7,13 MW e RMSE de 10,64 

MW (nMAE = 10%), enquanto o MLP e o LSTM apresentam erros mais elevados, com MAE 

de 9,29 MW e 10,08 MW, e nMAE de 14% e 15%, respectivamente. Tendência semelhante é 

observada nos modelos multipreditivos, em M9 (CSP/CBJ) e M12 (CSP/CBJ/CLA), o TFT 

mantém MAE em torno de 6,85–6,86 MW e RMSE próximos de 10,4 MW, com nMAE de 

10%, ao passo que MLP e LSTM apresentam MAE em torno de 10 MW e nMAE em torno de 

15%. Os desvios-padrão (dp-MAE e dp-RMSE) são baixos em todas as topologias, sugerindo 

que as diferenças observadas refletem, de fato, maior capacidade preditiva do TFT e não 

apenas flutuações entre inicializações. 

Ao comparar com o método de Persistência, a superioridade do TFT torna-se ainda mais 

evidente, pois, enquanto o TFT apresenta MAE de 6,86 MW e nMAE de 10%, a Persistência 

atinge MAE de 26,77 MW, RMSE de 30,58 MW e nMAE de 40%, demonstrando que, para 

horizontes de 11 horas à frente, a utilização de modelos de aprendizado profundo é essencial 

para reduzir os erros de previsão a patamares aceitáveis. 

Entre MLP e LSTM, os resultados indicam desempenhos muito próximos, com leve 

vantagem numérica para a MLP na maioria das configurações (MAE e RMSE ligeiramente 

menores). Isso sugere que, no contexto específico desta base de dados e horizonte de previsão, 

a complexidade adicional da LSTM não se traduz em ganhos substanciais sobre a MLP, ao 

passo que o TFT, ao explorar mecanismos de atenção e o uso estruturado de covariáveis 

temporais e estáticas, obtém melhorias consistentes em todas as configurações analisadas. 
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6 CONCLUSÃO 

 

Esta tese investigou a previsão horária da geração FV em múltiplas usinas brasileiras a 

partir da combinação entre clusterização hierárquica (DTW) e a arquitetura TFT. De forma 

geral, os resultados mostraram que é possível construir um sistema de previsão multipreditivo 

com bom desempenho, interpretável e estatisticamente robusto, mesmo em um contexto de 

alta variabilidade solar e heterogeneidade entre usinas. 

Do ponto de vista do pré-processamento de dados, um primeiro achado relevante foi a 

eficácia do método de imputação, nas séries de geração, guiado pela curva de radiação solar 

global. Ao incorporar diretamente a informação meteorológica na reconstrução de lacunas, 

essa abordagem superou, de forma consistente, técnicas clássicas como interpolação linear, 

média temporal e KNN. 

A aplicação da clusterização hierárquica com a métrica DTW às séries de geração 

permitiu identificar grupos de usinas com padrões de produção semelhantes, e esses 

agrupamentos foram explorados na construção dos modelos multipreditivos. Os resultados 

indicaram que, quando usinas de um mesmo cluster e sujeitas ao mesmo conjunto de variáveis 

meteorológicas são previstas em conjunto, o TFT mantém erros absolutos e normalizados 

semelhantes aos de modelos univariados, com baixa variabilidade entre inicializações. Em 

contrapartida, agrupamentos que combinam usinas de clusters distintos e bases 

meteorológicas diferentes tendem a produzir maior heterogeneidade de desempenho entre as 

usinas, ainda que os erros normalizados permaneçam em níveis adequados. Esses achados 

sugerem que a similaridade estrutural entre as séries e a coerência das covariáveis são fatores 

importantes para o desenho de modelos multipreditivos mais equilibrados. 

No que se refere à modelagem com TFT, a análise sistemática das 14 configurações 

avaliadas mostrou que a inclusão de variáveis meteorológicas e atributos derivados da própria 

série de geração é decisiva para reduzir os erros de previsão, enquanto o efeito isolado da 

escolha de escala (MW ou log10) tende a perder importância à medida que o conjunto de 

covariáveis se torna mais rico. A análise estatística pareada (testes t e Wilcoxon) confirmou 

que apenas em configurações mais simples houve diferença significativa entre escalas, ao 

passo que, nos modelos mais completos, as diferenças numéricas entre variantes em MW e 

log10 não se traduziram em superioridade estatisticamente robusta. Isso indica que a 

qualidade e a diversidade das covariáveis têm impacto mais consistente sobre o desempenho 

do que transformações pontuais da variável-alvo. 
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Adicionalmente, um resultado particularmente relevante diz respeito à comparação entre 

os modelos univariados e multipreditivos, visto que os erros das configurações multipreditivas 

mantiveram-se em patamares muito próximos aos das abordagens univariadas, mesmo com a 

previsão simultânea de duas ou três usinas. Isso indica que o desempenho preditivo individual 

não sofre decréscimo significativo ao adotar-se a modelagem conjunta. Na prática, essa 

característica permite que uma única arquitetura TFT gerencie múltiplas usinas, o que reduz o 

número de modelos a serem treinados e mantidos, simplificando a implantação em centros de 

controle e favorecendo uma visão integrada da geração FV no sistema elétrico brasileiro. 

A comparação entre TFT, MLP, LSTM e Persistência constitui outra contribuição 

importante. Em todas as configurações representativas analisadas, o TFT apresentou, de 

forma consistente, os menores valores de MAE, RMSE e nMAE, superando as redes MLP e 

LSTM e distanciando-se fortemente do modelo de Persistência. Além disso, MLP e LSTM 

mostraram desempenhos muito próximos entre si, o que sugere que, neste contexto específico, 

a simples adoção de uma arquitetura recorrente não garante ganhos significativos frente a 

redes densas, enquanto o TFT, ao combinar atenção multi-cabeça, tratamento estruturado de 

covariáveis e mecanismo encoder–decoder temporal, oferece ganhos tangíveis em precisão. 

Assim, o trabalho reforça o TFT como uma alternativa para previsão FV, com desempenho 

superior a arquiteturas amplamente utilizadas na literatura. 

Por fim, a análise de interpretabilidade do TFT mostrou que o modelo faz uso coerente 

das informações disponíveis: no encoder, a importância recai majoritariamente sobre o 

histórico de geração, sobre a interação com a radiação solar, sobre variáveis sazonais e de 

padrão diário; no decoder, ganham destaque defasagens imediatas e interações com radiação 

solar e temperatura ambiente. Esse comportamento é compatível com a natureza do problema 

físico, no qual tanto a memória recente quanto a sazonalidade e as condições meteorológicas 

locais desempenham papel central na determinação da geração FV. Dessa forma, além de 

preciso, o modelo proposto é interpretável em termos energéticos, aspecto fundamental para 

sua adoção em ambientes operacionais do setor elétrico. 

Em síntese, as principais contribuições deste trabalho podem ser assim destacadas: (i) a 

proposição de um método de imputação de dados faltantes baseado em radiação, adequado a 

séries de geração FV; (ii) a utilização da clusterização hierárquica DTW como ferramenta 

para estruturar modelos multipreditivos em grupos de usinas; (iii) a construção e avaliação 

sistemática de um conjunto de modelos TFT univariados e multipreditivos, abrangendo 

análises de desempenho médio, variabilidade e significância estatística das diferenças 

observadas; (iv) a demonstração quantitativa da superioridade do TFT em relação a MLP, 
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LSTM e Persistência em cenários realistas de previsão; e (v) a exploração da 

interpretabilidade do TFT, evidenciando como o modelo combina informação histórica, 

sazonal e meteorológica para produzir previsões consistentes. Juntos, esses resultados 

reforçam o potencial da abordagem proposta para apoiar o planejamento e a operação de 

sistemas elétricos com elevada penetração de geração FV, ao mesmo tempo em que apontam 

caminhos promissores para o aperfeiçoamento de modelos preditivos baseados em 

aprendizado profundo. 

Apesar dos resultados promissores, este estudo apresenta limitações que delimitam seu 

escopo e apontam caminhos para pesquisas futuras. Primeiramente, as variáveis 

meteorológicas foram obtidas exclusivamente da base NASA POWER; embora global e 

acessível, trata-se de uma estimativa via satélite que pode não capturar fenômenos de 

microclima com a mesma precisão de uma estação meteorológica no local. Além disso, a 

modelagem concentrou-se em um horizonte fixo de 11 horas. Extensões naturais deste 

trabalho incluem a avaliação de horizontes múltiplos, que são críticas para a estabilidade da 

rede em curtíssimo prazo. Por fim, o modelo não incorporou variáveis operativas, como 

estados de manutenção ou restrições de despacho (curtailment), que poderiam explicar 

discrepâncias residuais entre a geração real e a prevista. A integração dessas dimensões 

constitui uma linha promissora para o aperfeiçoamento da previsão de geração FV e para a 

sua aplicação direta em decisões operacionais no sistema elétrico brasileiro. 

 

6.1 Sugestões para trabalhos futuros 

 

Com relação à continuidade da pesquisa, sugere-se, para pesquisas futuras: 

a) Integrar dados meteorológicos de sensoriamento local para aumentar o desempenho da 

modelagem TFT; 

b) Avaliar os modelos em horizontes de previsão múltiplos, mais curtos e mais longos 

que o horizonte de 11 horas adotado neste trabalho, a fim de investigar a precisão da 

arquitetura TFT em diferentes escalas temporais;  

c) Incorporar variáveis operativas do setor elétrico (por exemplo, estados de manutenção 

e curtailment) nos modelos preditivos, de forma a capturar discrepâncias nas séries de 

geração FV;   

d) Explorar arquiteturas híbridas que combinem o TFT com outras topologias ou 

modelos físicos, avaliando possíveis ganhos adicionais de desempenho. 
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