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RESUMO

A alta variabilidade da geracdo solar fotovoltaica (FV) dificulta a previsdo de curto prazo,
levando o Operador Nacional do Sistema Elétrico (ONS) a manter reservas operativas
elevadas e, consequentemente, custos sisttmicos maiores. Esta tese propde uma abordagem de
previsdo multissérie que integra Clusterizagdo Hierarquica com distancia DTW e a arquitetura
Temporal Fusion Transformer (TFT), utilizando exclusivamente dados publicos de geracao
(ONS) e meteorologia (NASA POWER). A metodologia inclui: imputacdo de dados faltantes
guiada pela curva de radiacdo solar, clusterizacdo de dez usinas FV para identificar grupos
com padrdes de geracdo similares e desenvolvimento de quatorze modelos TFT,
contemplando configuracBes univariadas e multipreditivas. A avaliacdo, baseada em
validacdo por janela deslizante, dez inicializacGes independentes e métricas MAE, RMSE e
NMAE na escala original (MW), mostrou que os melhores modelos univariados atingem
nMAE em torno de 10%, combinando variaveis meteoroldgicas, atributos derivados da série
de geracdo e codificacbes sazonais. Nos modelos multipreditivos, a previsdo simultanea de
duas ou trés usinas manteve nMAEs muito préximos aos univariados, indicando que a
acurécia relativa por usina praticamente ndo se deteriora ao adotar uma modelagem conjunta,
ao mesmo tempo em que se reduz o numero de modelos a serem treinados e operados.
Comparativos com redes MLP, LSTM e com o método de Persisténcia evidenciaram a
superioridade consistente do TFT. Os resultados estabelecem uma base reprodutivel e
escalavel para previsdo FV em multiplas usinas, com potencial aplicacdo na melhoria da

eficiéncia e da gestdo do sistema elétrico brasileiro.

Palavras-chave: Multiprevisdo. Clusterizacdo Hierarquica. Temporal Fusion Transformer.

Geracdo Fotovoltaica. Validagcdo com Janela Deslizante.



ABSTRACT

The high variability of solar photovoltaic (PV) generation poses a significant challenge for
short-term forecasting, compelling the National Electric System Operator (ONS) to maintain
high operating reserves and, consequently, incurring higher systemic costs. This thesis
proposes a multi-series forecasting approach that integrates Hierarchical Clustering with
Dynamic Time Warping (DTW) distance and the Temporal Fusion Transformer (TFT)
architecture, relying exclusively on public generation (ONS) and meteorological (NASA
POWER) data. The methodology includes missing data imputation guided by the solar
radiation curve; clustering of ten PV plants to identify groups with similar generation
patterns; and the development of fourteen TFT models, encompassing both univariate and
multi-target configurations. The assessment, based on walk-forward validation, ten
independent initializations, and MAE, RMSE, and nMAE metrics calculated on the original
scale (MW), showed that the best univariate models achieve an nMAE of approximately 10%
by combining meteorological variables, generation-derived features, and seasonal encodings.
In multi-target models, the simultaneous forecasting of two or three plants maintained nMAE
levels very close to those of univariate models, indicating that the relative accuracy per plant
suffers virtually no degradation under joint modeling, while reducing the number of models to
be trained and operated. Comparisons with MLP and LSTM networks, as well as the
Persistence method, highlighted the consistent superiority of the TFT. The results establish a
reproducible and scalable framework for multi-plant PV forecasting, with potential

applications in enhancing the efficiency and management of the Brazilian power system.

Keywords: Multiseries Forecasting. Hierarchical Clustering. Temporal Fusion Transformer.

PV Power Generation. Sliding Window Validation.
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1 INTRODUCAO

No Brasil, a energia solar fotovoltaica (FV) tornou-se a fonte energética renovavel com
maior crescimento anual, pois sua capacidade instalada gerada aumentou de 49 MW em 2015
para 53.113 MW no ano de 2024 (International Renewable Energy Agency, 2025). Esse fato
se explica pelo decréscimo dos precos dos insumos verificados nos Gltimos anos devido a alta
oferta no mercado, a inovacao tecnoldgica tendo em vista que os fabricantes garantem muitos
anos de funcionamento em seus projetos, ao vasto potencial técnico existente e a minimizacéo
da emissdo de gases de efeito estufa (Empresa de Pesquisa Energética, 2020).

Devido a sua localizacdo geografica, o Brasil recebe elevados indices de radiacao solar,
que sdo relativamente uniformes em todo o territério nacional, o que permite o
desenvolvimento de projetos solares viaveis em diferentes regides. Assim, dada a reducédo de
custos considerada, a fonte FV se apresenta como alternativa competitiva no fornecimento de
energia. Além disso, a versatilidade e modularidade da tecnologia FV permitem o
desenvolvimento de projetos em diferentes escalas, tanto centralizados quanto distribuidos.

A Empresa de Pesquisa Energética (EPE, 2025) aponta que a Micro e Minigeracdo
Distribuida (MMGD) é a principal responsavel pela expansdo da capacidade instalada de
energia elétrica no Brasil. Pelo quarto ano consecutivo, em 2024, a fonte solar distribuida
superou as demais fontes em termos de expansdo da oferta de geracdo, como pode ser

verificado na Figura 1.

Figura 1 — Expanséo da Oferta de Geragdo de Energia Elétrica em 2024
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Fonte: Adaptado de EPE (2025).
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Considerando o cenario energético atual e a crescente participacdo da geracdo FV na
matriz elétrica brasileira, projeta-se a continuidade do aumento dos investimentos nessa
tecnologia. Esse avanco tem sido impulsionado pela queda dos custos dos mddulos no
mercado internacional e pela maior conscientizacdo sobre os beneficios ambientais e
econdmicos das fontes renovaveis. Nesse contexto, emerge o desafio de desenvolver um
modelo preditivo robusto e preciso para a geracdo FV. Tal modelo é crucial para reduzir a
necessidade de reserva operativa do sistema elétrico, acomodar as especificidades da geracéo
distribuida e otimizar a operacao do setor. Além disso, apoia decisdes de despacho e gestdo de
risco, sobretudo frente as flutuacGes de precos no mercado de energia (Lee; Kim, 2019).

O equilibrio entre a producdo e demanda de energia deve existir para que o Sistema
Elétrico de Poténcia (SEP) opere com estabilidade, contudo, ao adicionar as fontes de energia
alternativas, cuja geracdo varia ao longo das horas e de acordo com as condicdes
meteoroldgicas, é vital que formas eficientes de previsdo da produtividade energética,
inclusive a FV, sejam concebidas, principalmente devido a caracteristica estocastica desse
formato de geracdo e para otimizar a operacdo do sistema elétrico. Para isso, modelos
confiaveis de previsdo, baseados em dados de medicdo das usinas geradoras e bases
meteoroldgicas sao necessarios (Nespoli et al., 2019).

A geracdo de energia FV esta estreitamente relacionada a radiacdo solar e temperatura
ambiente, conforme destacado por Cui et al. (2019). A Tabela 1 mostra os indices de
correlacdo de variaveis meteoroldgicas, demonstrando a grande compatibilidade da radiacédo
com a geracdo (0,82), seguida pela temperatura ambiente (0,60). Por outro lado, a umidade
apresenta um comportamento inverso (-0,49) e, por fim, a velocidade do vento apresenta
pouca representatividade (0,10). Portanto, é essencial utilizar séries histéricas das variaveis

meteoroldgicas para prever com maior precisao.

Tabela 1 - indices de correlacio entre Meteorologia e Geragdo FV

Geragéio FV Radiacéo Temperatura Umidade Velocidade
solar ambiente do vento
Geracdo FV 1,00 0,82 0,60 -0,49 0,10
Radiacdo solar 0,82 1,00 0,64 -0,40 0,08
Temperatura 0,60 0,64 1,00 -0,30 -0,30
ambiente
Umidade -0,49 -0,40 -0,30 1,00 -0,02
Velocidade do 0,10 0,08 0,30 0,02 1,00
vento

Fonte: Adaptado de Francisco et al. (2019).
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1.1 Contextualizac@o e Descri¢do do Problema

A crescente insercdo da energia FV na matriz elétrica brasileira, especialmente nas regifes
Nordeste, Sul e Sudeste, aumenta a necessidade de modelos preditivos capazes de lidar com a
intermiténcia e variabilidade dessa fonte. Essa variabilidade imp&e desafios a operagdo do
Sistema Interligado Nacional (SIN), exigindo que o Operador Nacional do Sistema Elétrico
(ONS) mantenha reserva operativa elevada e recorra frequentemente ao despacho térmico.
Essas acOes elevam 0s custos operacionais, que tendem a ser repassados ao consumidor final.

A Figura 2 sintetiza esse conjunto de efeitos.

Figura 2 - Desafios associados a previsdo de Geragdo FV

Erros de
previsao
Incerteza na geragdo Maior reserva Aumento
(fatores meteoroldgicos) operativa custo

operativo

Necessidade
de despacho
térmico

Fonte: A Autora (2025).

O aprimoramento da acurécia das previsdes de geracdo FV permitem também planejar a
expansdo da matriz elétrica com maior confianca, aproveitando plenamente o potencial da
energia solar. Além disso, um modelo capaz de prever simultaneamente a geracdo de
multiplas usinas FV, desde que agrupadas por similaridade de perfil, pode trazer ganhos
operacionais diretos ao SIN, harmonizando o despacho térmico e reduzindo o esforco
computacional necessario para execucao de multiplos processos de previsao isolados.

Outro desafio é a escassez de bases publicas completas e integradas, tanto de geracéo
quanto de variaveis meteoroldgicas, o que prejudica a reprodutibilidade dos resultados. Nesta
pesquisa, foram utilizados dados publicos de geragdo horaria média (MWmed) fornecidos
pelo ONS. Como alternativa as medicGes meteoroldgicas locais, geralmente indisponiveis,
recorreu-se a base de dados NASA POWER, que disponibiliza dados meteorolégicos em
escala horéria ou didria de acordo com a coordenada geogréfica. Essa base, derivada de
sensoriamento remoto e modelos numéricos globais, supre a auséncia de medicGes locais com

ampla cobertura espacial e temporal.
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As séries de geracdo FV, entretanto, frequentemente apresentam lacunas resultantes de
falhas operacionais, limitagces de sensoriamento ou interrupgdes na coleta de dados. Técnicas
tradicionais de imputacdo, como médias moveis, interpolacdo linear ou k-vizinhos, nem
sempre preservam a sazonalidade e a alta variabilidade da geracdo FV, podendo introduzir
distor¢des. Neste trabalho, propde-se uma heuristica fundamentada na correlacéo entre perfis
de radiacdo solar e geracdo, utilizando dias com padrdes semelhantes de radiagdo para
preencher lacunas de forma mais realista.

Do ponto de vista metodoldgico, a presente pesquisa busca desenvolver modelos mais
precisos, robustos e generalizaveis por meio da integracdo entre Clusterizagdo Hierarquica e
Temporal Fusion Transformer (TFT). A primeira agrupa usinas com padrbes de geragéo
similares, permitindo a construcdo de modelos especializados por grupo e reduzindo a
variancia entre amostras. O TFT, por sua vez, incorpora mecanismos de atencao, codificacdo
temporal e inferéncia probabilistica, sendo especialmente adequado para lidar com séries
temporais multivariadas e heterogéneas.

Assim, o problema central deste trabalho consiste em desenvolver e avaliar modelos
preditivos multissérie, baseados em dados publicos. Os modelos devem ser capazes de
aprender e prever de forma eficiente a geracdo FV em mdltiplas usinas, mesmo diante de
dados incompletos ou ruidosos. Nesse contexto, a arquitetura TFT, que é relativamente nova
(Lim et al., 2021) e vem sendo adotada de forma crescente em previsdo de séries temporais,
com aplicagdes pontuais em geracdo FV. As configuraces multissérie ainda sdo pouco
exploradas (Lopez Santos et al., 2022; Tao et al., 2024) e, até o presente momento, ndo foram
encontrados trabalhos que combinam explicitamente o TFT com a Clusterizacdo Hierarquica
para orientar o aprendizado entre usinas FV. Essa lacuna fundamenta a contribuigdo original
deste trabalho.

Com base em estudos recentes sobre previséo de geracdo FV, a Tabela 2 resume de forma
objetiva os principais problemas identificados na literatura e as solugdes propostas nesta

pesquisa, evidenciando as contribuic¢des originais do estudo.

Tabela 2 - Problemas identificados na literatura e solu¢des propostas

Problema identificado na literatura Solucéo proposta nesta pesquisa

Uso predominante de modelos de previsao de séries | Desenvolvimento de modelo multissérie capaz de
temporais individuais (Wu & Phan, 2022; Islam et | prever simultaneamente multiplas usinas, aproveitando
al., 2023). padrdes comuns entre elas.

Baixa disponibilidade de bases publicas completas
e integradas de geracdo FV e meteorologia,
dificultando a reprodutibilidade (LOpez Santos et
al., 2022).

Uso exclusivo de dados publicos tanto para geracdo FV
(ONS) quanto para variaveis meteoroldgicas (NASA
POWER), garantindo transparéncia e reprodutibilidade.
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Auséncia de abordagem sistematica para lidar com
lacunas nas séries de geracdo FV (Zainuddin et al.,

Heuristica baseada na similaridade entre perfis de
radiacdo solar e geracdo FV para imputacdo mais

2022; Park et al., 2023). realista.

Escassez de estudos para previsdo de geracdao FV
com uso combinado de TFT e Clusterizacdo
Hierarquica em cenarios multissérie (Lopez Santos
et al., 2022; Islam et al., 2023; Tao et al., 2024).

Proposta original de combinar  Clusterizacdo
Hierarquica e TFT para previsdo FV multissérie,
gerando modelos especializados por grupo.

Validacdo restrita a partices fixas (treino/teste),
com particdo aleatéria do conjunto de dados (Lopez
Santos et al., 2022).

Validacdo com janela deslizante fixa para robustez
estatistica da avaliacdo dos modelos.

Poucos estudos exploram o0 enriquecimento
estruturado  de  covaridveis para  capturar
sazonalidade e interagBes ndo lineares (Ldpez
Santos et al., 2022; Islam et al., 2023).

Geracdo de atributos derivados e interacbes para
enriquecer as entradas do TFT.

Fonte: A Autora (2025).

1.2 Objetivo-Geral

Desenvolver e avaliar modelos de previsdéo de geracdo fotovoltaica baseados na
arquitetura Temporal Fusion Transformer, integrados a técnicas de Clusterizagdo Hierarquica

para a otimizacdo do desempenho preditivo em mdltiplas usinas.

1.2.1 Objetivos Especificos

e Selecionar séries histéricas de geracdo horaria de dez usinas fotovoltaicas e as
variaveis meteoroldgicas correlatas, provenientes de bases de dados publicas.

e Implementar método préprio de imputacdo baseado na correlagdo entre radiacdo solar
e geracao FV para o tratamento de lacunas nas séries de geracéo.

e Agrupar as usinas por meio da Clusterizagdo Hierarquica com Dynamic Time Warping
(DTW), identificando padrdes de geracao similares para a modelagem conjunta.

e Implementar o enriquecimento de dados mediante a criacdo de atributos derivados e
interacdes, visando capturar sazonalidades e relagfes ndo lineares.

e Desenvolver e validar os modelos de previsdo baseados em TFT, para uma horizonte
de 11 horas, realizando a andlise estatistica do desempenho e a comparagdo com topologias

preditivas de referéncia.
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1.3 Organizagéo do Trabalho

Esta tese de doutorado estd organizada em seis capitulos. Este primeiro constitui-se da
introducdo que contextualiza a geracdo solar FV no cenario mundial e brasileiro, além de
apresentar a motivagdo para a pesquisa, a descri¢cdo do problema e os objetivos do trabalho.

O Capitulo 2 apresenta o Estado da Arte em previsdo de geracdo fotovoltaica,
contextualizando o tema com as principais pesquisas e as suas contribui¢cbes mais recentes na
literatura.

O Capitulo 3 apresenta a fundamentacéo tedrica necessaria para a compreensao do estudo.
Dividido em cinco subsecdes, o capitulo enfatiza conceitos que sdo essenciais para a
compreensdo do trabalho.

No Capitulo 4, é apresentada a metodologia para desenvolvimento do modelo proposto
nessa pesquisa. Nesse capitulo sdo detalhados os métodos e técnicas utilizadas.

Os resultados e as discussdes da pesquisa sdo apresentados no Capitulo 5, que é dividido
em cinco subse¢des, sendo cada uma delas referente as contribuices anteriormente propostas.

O Capitulo 6 refere-se a conclusdo do trabalho, destacando os principais resultados
alcancados e suas implicacdes no desenvolvimento de modelo para previséo de geracéo FV,

contribui¢des do trabalho e sugestbes para trabalhos futuros.
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2 ESTADO DA ARTE

Na literatura existem diversos trabalhos que abordam de diferentes formas o problema da
previsdo da geracdo FV. A selecdo adequada de técnicas de pré-processamento tem um
grande impacto na precisdo, a eliminagdo das horas noturnas e valores faltantes do conjunto
de dados é muito necessario antes do aprendizado da rede. A escolha das variaveis de entrada
é totalmente dependente do usuario, assim como os fatores climatoldgicos e parametros
geograficos. O uso de dados de treinamento para um modelo é, no entanto, um processo
experimental, uma base de dados de dois a trés anos € considerada adequada para treinamento
de uma modelagem (Singla; Duhan; Saroha, 2021).

A auséncia de dados em séries temporais impacta severamente a categorizacdo e a
previsdo, pois métodos tradicionais de processamento podem introduzir vieses e suposi¢oes
imprecisas. Para abordar essa questdo, a pesquisa de Zainuddin et al. (2022) visa categorizar
os tipos de dados e mecanismos de dados ausentes em séries temporais, além de revisar
diversas abordagens para preencher essas lacunas. O estudo foca nas técnicas atuais de
tratamento de valores ausentes no pré-processamento de dados para séries univariadas e
multivariadas, bem como nos métodos para avaliar a performance da imputacao.

Zainuddin et al. (2022) descrevem os principais métodos para preencher valores ausentes
em séries temporais, incluindo: a) k-Nearest Neighbors (KNN), que estima valores pela média
ponderada de vizinhos proximos (lvo Goltz et al., 2023); b) Local Average of Nearest
Neighbors (LANN), que preenche lacunas com a média dos vizinhos mais proximos (Flores;
Tito; Silva, 2019); o Modelo de indice Unico, que simplifica a estimagdo para uma Unica
dimensdo via abordagem de kernel (Ling et al., 2022); Cadeias de Markov de Ordem
Superior, para grandes lacunas univariadas baseadas em padrdes de transicdo (Velasco-
Gallego; Lazakis, 2022); e Imputacdo de Dados Sazonais, que utiliza redes neurais como
MLP para lacunas longas em dados néo lineares (Park et al., 2023).

Considerando as particularidades de cada método de imputacdo de dados faltantes,
percebeu-se que nenhum era ideal para a série temporal de geracdo FV estudada. Isso porque
0s dados ausentes ocorriam, na maioria das vezes, em horas consecutivas, 0 que inviabilizava
técnicas baseadas em vizinhos proximos. Alem disso, ndo foram identificadas lacunas longas
o suficiente para justificar o uso de Cadeias de Markov ou Imputacdo de Dados Sazonais.

Assim, a abordagem heuristica adotada neste trabalho consistiu em equiparar a série
temporal de geracdo FV com a de radiacdo solar global da mesma localidade. O objetivo foi
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utilizar o padrdo da curva diaria de radiacdo global para inferir os valores de geragdo nas
horas ausentes, aproveitando a forte correlacdo entre essas duas variaveis.

Sobre a previsdo da geracdo FV, na literatura sdo descritos diferentes métodos os quais
podem ser divididos: fisicos, estatisticos, por aprendizagem de maquina (Van Der Meer et al.,
2018) e modelos hibridos (Wang et al., 2019). De acordo com o0 processo de previsdo, este
pode ser segmentado por andlise pontual ou regional, além disso, sendo necessario definir a
escala de tempo de averiguacao (Wang; Qi; Liu, 2019).

Os modelos fisicos simulam a dindmica atmosférica com base em principios fisicos e
condicGes de fronteira, utilizando dados meteoroldgicos e geograficos (Zhao et al., 2018;
Wang et al., 2019), e séo adequados para previsdes de longo prazo, mas exigem alto esforco
computacional (Hao; Tian, 2019). Os métodos estatisticos empregam relacdes matematicas
derivadas de dados histéricos ambientais e de geracdo. Técnicas como ARMA, ARIMA,
SMA e persisténcia sdo comuns, mas a persisténcia ndo é ideal para FV devido a néo-
linearidade da irradiacdo solar. De modo geral, esses modelos lineares tém limitagdes para
previsdes de longo prazo (Abdel-Nasser; Mahmoud, 2019; Wang et al., 2019; Cunha, 2021).
Por fim, os modelos de previsdo por aprendizagem de maquina sdo amplamente utilizados,
oferecendo melhores resultados devido a sua capacidade de tratar dados complexos.
Abordagens como redes neurais artificiais, redes fuzzy adaptativas e DL s&o eficazes para
lidar com relacdes ndo lineares entre entrada e saida, minimizando erros (Wang; Qi; Liu,
2019).

Shi et al. (2012) propuseram um modelo para prever a poténcia FV com 15 minutos de
antecedéncia no dia seguinte. Essa abordagem se baseia na classificacdo meteoroldgica (céu
nublado, claro, chuvoso e com neblina) e utiliza Support Vector Regression (SVR), um
algoritmo de aprendizado de maquina supervisionado. O modelo utilizou como entradas o
histérico de poténcia FV de 15 minutos do dia mais proximo com temperaturas maximas,
minimas e médias semelhantes as do dia seguinte, obtidas de um boletim meteoroldgico.
Como esperado, os melhores resultados de previsdo foram alcangados para dias ensolarados e
nublados.

Zhou et al. (2019) desenvolveram um método hibrido para previsdo de energia FV
utilizando uma rede LSTM combinada com um mecanismo de atencdo (ALSTM). Esse
mecanismo, uma rede neural que calcula uma soma ponderada das entradas, seleciona de
forma adaptativa as informagdes mais relevantes, aprimorando a precisdo. O estudo empregou
duas redes LSTM, uma para prever a poténcia e outra para a temperatura dos médulos, usando

dados de uma usina FV de 20 kWp, registrados a cada 7,5 minutos. A analise comparativa,
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realizada nas quatro estacdes do ano, mostrou que o ALSTM superou o0 Modelo Persistente,
ARIMAX, MLP e LSTM tradicional em todos os horizontes de previséo, de 7,5 a 60 minutos
a frente, ao focar nos recursos de entrada mais significativos.

Abdel-Nasser e Mahmoud (2019) propuseram e testaram cinco arquiteturas de rede LSTM
para prever a poténcia de sistemas fotovoltaicos com uma hora de antecedéncia, utilizando
apenas dados de produtividade. As varia¢@es incluiram: a) LSTM tradicional (modelo 1), que
previa a geracdo da hora seguinte a partir da hora atual, treinada com diferentes épocas; b)
LSTM com técnica da janela (modelo 2), que usava mdaltiplos instantes de tempo como
entrada do modelo; ¢) LSTM com time step (modelo 3), que concentrava etapas de tempo
anteriores como uma unica entrada para prever a poténcia subsequente, considerada um
enguadramento mais preciso do problema; d) LSTM com memdria entre lote (modelo 4), que
permitia manter o estado interno da rede através dos lotes de treinamento; e e) LSTM
empilhada com memodria entre lotes (modelo 5), que agrupava camadas LSTM para extrair
mais conceitos e potencialmente melhorar as previsfes. A analise de desempenho, usando a
métrica RMSE, revelou que o0 modelo 3 (LSTM com time step) obteve os melhores resultados
(Abdel-Nasser; Mahmoud, 2019).

Paiva (2021) explorou a previséo intradiaria da irradiancia solar utilizando dois algoritmos
de aprendizado de méaquina: Programacdo Genética Multi-gene (PGMG), que deriva funcGes
de regressdo analitica, e redes neurais artificiais MLP. Ambos foram aplicados a dados de seis
locais em trés paises, comparando previsdes com horizontes de 15 a 120 minutos. Os
resultados das simulac@es indicaram que a precisdo do modelo dominante € influenciada pela
localizagdo, horizonte de previsdo e erro de avaliagdo. PGMG e MLP demonstraram
desempenho semelhante e consistente. Além disso, as previsdbes melhoraram
significativamente com a inclusdo de variaveis climaticas exdgenas (como irradiancia e
temperatura ambiente) nas entradas dos modelos, reiterando a influéncia da localidade,
horizonte de previsdo e métrica de erro na acuracia.

Phan, Wu e Phan (2022) propuseram um promissor modelo para prever a geracdo de
energia FV com uma hora de antecedéncia, utilizando a arquitetura de rede Transformer. A
selecdo das varidveis de entrada foi realizada com o coeficiente de correlacdo de Pearson, que
identificou nove dados relevantes, incluindo informacbes de Previsdo Numérica do Tempo
(NWP) e medicdes diretas de um parque solar em Taiwan. Conforme esperado, observou-se
uma alta correlacgdo (cerca de 0,99) entre a irradiancia solar e a poténcia gerada.

As simulagdes indicaram que o modelo Transformer superou outras arquiteturas como
ANN, LSTM e GRU em métricas de desempenho (NRMSE e NMAPE). Além disso, sua
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capacidade de processamento paralelo e a consequente reducdo do tempo de computacdo sao
vantagens significativas, especialmente em cenarios onde a rapidez na previsdo é crucial
(Phan; Wu; Phan, 2022). Os resultados gerais demonstram que 0 mecanismo de atencdo do
Transformer pode aprender padrdes complexos em séries temporais. 1sso sugere que a
exploracdo de modelos hibridos para previsdo de geracdo de energia FV, combinando
diferentes arquiteturas de redes neurais ou integrando informagdes de diversas fontes, pode
levar a modelos mais robustos e precisos, dada a complexidade e variabilidade dos dados de
energia FV.

Phan, Wu e Phan (2023) propuseram um modelo para prever a geragdo FVV com um dia de
antecedéncia, combinando pré-processamento, poOs-processamento e a arquitetura
Transformer. No pré-processamento, dados ausentes foram imputados utilizando a rede
XGBoost. A estrutura Transformer foi aprimorada com camadas adicionais de normalizacéo e
Dropout, além de atencdo multi-cabega. Para aumentar a precisdo da previsdo, uma técnica de
pos-processamento foi aplicada, combinando curvas de ajuste numérico diario e uma Unidade
Recorrente Gated (GRU). Simulados com dados histéricos de dez fazendas solares em
Taiwan e dados NWP, o modelo superou ANN, LSTM, XGBoost e GRU, demonstrando a
importancia do pré e pds-processamento para um bom desempenho preditivo.

Al-Ali et al. (2023) propdem um modelo hibrido para previsdo de geracdo FV que
combina CNN, LSTM e Transformer em uma arquitetura codificador-decodificador. Na fase
de pré-processamento, utilizaram mapas auto-organizaveis para agrupar e selecionar
caracteristicas relevantes oriundas de dados historicos de geracédo e variaveis meteoroldgicas,
organizadas em quatro categorias. A CNN extrai padrGes espaciais, a LSTM captura
dependéncias temporais e o Transformer integra as informacdes para realizar a previsdo. Os
resultados demonstraram desempenho superior em relacdo a modelos como ARIMA, GRU-
CNN e Prophet, com menor complexidade computacional, evidenciando a eficacia da
combinacéo entre pré-processamento por agrupamento e modelagem hibrida.

Quanto a aplicacdo do modelo TFT para previsdo de geragdo FV, as principais pesquisas
sdo resumidas nos paragrafos seguintes.

O estudo de Lopez Santos et al. (2022) utilizou o TFT para prever a geracdo horaria de
energia FV com 24 horas de antecedéncia, utilizando dados historicos de producéo, variaveis
meteorologicas e informacgdes de calendario de seis instalacbes na Alemanha e Australia. A
metodologia envolveu um pré-processamento de dados rigoroso, incluindo a deteccdo de
outliers (DBSCAN), a selecdo de atributos por Backward Elimination guiada pelo TFT

(destacando irradiacdo solar horizontal e angulos solares como cruciais) e padronizacdo das
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entradas continuas com aplicagdo de logaritmo natural e escalonamento para a produgédo FV.
Comparado a modelos como ARIMA, MLP, LSTM e XGBoost, o TFT demonstrou
superioridade consistente, apresentando os menores erros e reduzindo-os em até 54% em
relacdo ao LSTM. Sua interpretabilidade confirmou a irradiacéo solar horizontal e o angulo de
zénite como as varidveis mais influentes, com padrdes de atencdo ciclicos. Apesar da sua
complexidade, o desempenho e a interpretabilidade do TFT o tornam uma ferramenta valiosa
para previsoes precisas de energia FV.

Além disso, no trabalho de Lopez Santos et al. (2022), foram empregadas covariaveis
meteoroldgicas de uma estacdo préxima (irradiancia solar, angulo zenital, angulo azimutal,
temperatura e umidade relativa), transformacdo Log na variavel-alvo e codificacdo da
sazonalidade via seno e cosseno do més, sem detalhar a distancia entre usinas e estagéo.
Ademais, a parti¢cdo dos dados de treinamento, validacéo e teste foi realizada por amostragem
aleatoria.

O artigo de Islam et al. (2023) propde um modelo de previsdo de energia FV utilizando o
TFT, para prever a geracdo horaria de energia. A metodologia empregada utilizou um
conjunto de dados real de uma usina solar na India, com granularidade de 15 minutos ao
longo de 34 dias, e que compreende 23 inversores. O estudo incorpora dados geograficos,
como irradiacdo solar e temperatura dos modulos, além de caracteristicas horérias e 1D dos
inversores como entrada do modelo TFT. Um ponto crucial destacado pelos autores é a
capacidade do TFT de interpretar a importancia de diferentes varidveis no processo de
previsdo. Os resultados da comparacdo com modelos como ARIMA, LSTM e Prophet
demonstraram que o TFT superou consistentemente todos os outros modelos em todas as
métricas de desempenho. Além da precisdo, a interpretabilidade do TFT revelou que a
irradiagcdo € a caracteristica mais importante no codificador e o ID do inversor a variavel
estatica mais significativa, fornecendo recursos valiosos sobre os fatores que influenciam a
previsao.

O estudo de Tao et al. (2024) desenvolveu o PTFNet (Rede Paralela de Extracdo de
Informagéo Temporal) para aprimorar a previsdo de energia FV. A metodologia inovou ao
apresentar um metodo de aumento de dados que incorpora informagdes de modelagem fisica
especificas do sistema solar, como éangulos solares e irradidncias (DHI, DNI, GTI),
enriquecendo os Dados de Medicéo Local (LMD) e Previsdo Numérica do Tempo (NWP). O
PTFNet utiliza uma arquitetura baseada em Transformer com uma estrutura paralela para
extrair explicitamente dependéncias temporais e entre caracteristicas. A técnica emprega

segmentacdo de dados para otimizar a extracdo de informacdes e a associacdo entre dados
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passados e previsoes futuras. As previsdes sdo geradas para horizontes de 24, 36 e 40 horas,
com resolucdo de 15 minutos. Os resultados demonstram que o aumento de dados foi eficaz
em 78,57% dos casos, reduzindo o RMSE e o MAE. O PTFNet superou ou foi altamente
competitivo em comparacdo com outros modelos populares de previsdo de séries temporais
longas, apresentando os valores 6timos de MAE e RMSE na maioria dos cenarios e prevendo
picos diurnos com maior precisdo. A segmentacdo de dados também se mostrou eficaz na
melhoria do desempenho. A pesquisa também ressaltou a importancia da qualidade dos dados
NWP para a precisdo das previsoes.

A abordagem heuristica desta pesquisa, quanto a selecdo de atributos, combina a
autocorrelacdo para uma pré-selecdo inicial de variaveis relevantes com uma otimizagéo
iterativa do TFT baseada em métricas de perda. Essa abordagem difere do Backward
Elimination guiado pelo TFT adotado por Lopez Santos et al. (2022) e da Rede Paralela
proposta por Tao et al. (2024) por incluir uma triagem temporal prévia, que direciona a
selecdo para atributos intrinsecamente relacionados a natureza de séries temporais. Essa
metodologia hibrida, que une anéalise estatistica classica e refinamento por TFT, mostra-se
robusta, pratica, com menor esforco computacional e maximiza a precisdo preditiva do TFT.

Nas pesquisas recentes, o TFT tem apresentado resultados competitivos (e por vezes
superiores) frente a modelos classicos, nos conjuntos e configuracBes avaliados. A Tabela 3

sintetiza os trés trabalhos representativos acima e suas principais escolhas metodoldgicas.

Tabela 3 - Estudos Correlatos sobre TFT na Previsdo FV

Fonte (I—I}g cr)idzi)lr?te Escono Entradas Principais Modelos Valida-  Resultados e
Previsio) P (covariaveis) Métodos utilizados ¢do observagdes
Irradiacéo Solar
/ Angulo Solar DBSCAN TFT com ]
- ) menores erros;
Zenital / (outliers); irradiancia e
Lépez Multissérie  Temperatura / Backward TFT, Particéo Z8nite como
Santos TFT 06 Usinas  Angulo Solar Elimination ARIMA, aleatoria variaveis mais
etal. (24 h) (Alemanha Azimute / guiadopelo  MLP, LSTM, (treino/ influentes:
(2022) Australia) Mes_seno / TFT; XGBoost val/teste) risco de '
Mes_cossseno/  Transform.
Umidade o leakage pelo
Relativa g split aleato6rio
TFT supera
modelos
Unissérie; Irradiacdo Solar ~ Temperatura . CIanSA'CO.S;
. . . TFT, irradiancia e
Islam TFT lusina /Temperaturado dos modulos; .
. PN . - ARIMA, ID do inversor
etal. (Hora-a- (India); Modulo / Hora/  engenharia de Temporal N
A . . LSTM, (estética);
(2023)  frente) 23 Més / Energia atributos x
. . Prophet duracéo do
inversores Inversor simples. ;
conjunto de
dados (34

dias).
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Previsdo
L Aumento de
Numérica do Modelagem dados eficaz
Tempo / fiica PTFNet em 78,6%;
Taoet PTFNet Multissérie Modelos especificas do (Transformer redi éo dé
al. (24 h,36 02 Usinas Climaticos sisptema solar: paralelo), 10 Temporal Fi)cos r?welhor'
(2024)  h,40h)  (China) Globais / &% modelos pICOS MeEnor;
. segmentagéo SO sensivel a
Irradiagdo Solar tradicionais .
A de dados qualidade do
/ Angulo Solar / NWP

Temperatura

Fonte: A Autora (2025).

e Concluséo do Capitulo

Em concluséo, pode-se afirmar que o estudo da previsdo da geracdo de energia FV é um
campo em constante evolugdo, impulsionado pelo avangco das tecnologias de inteligéncia
artificial e pela crescente disponibilidade de dados. Ao longo deste capitulo, foi explorada
uma variedade de abordagens e modelos utilizados na literatura para prever a producéo de
energia solar.

Foi observado que as redes neurais tém se destacado como uma ferramenta poderosa para
lidar com a complexidade dos dados de séries temporais e capturar padrées ndo lineares na
geracdo de energia FV. Arquiteturas como LSTM, CNN, MLP, Transformer e TFT tém sido
amplamente empregados com sucesso em diferentes contextos e cenarios de previsdo. Além
disso, é valido destacar a importancia do pré-processamento adequado dos dados, incluindo
técnicas para imputacdo de dados faltantes, selecdo de variaveis relevantes e analise de
correlacdo. Essa etapa é essencial para garantir a qualidade dos dados de entrada e melhorar a
precisdo dos modelos de previsdo. Por fim, o desenvolvimento de modelos de previsdo mais
precisos e eficazes € crucial para promover e ampliar a integracdo da energia solar na matriz

energética global.
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3 FUNDAMENTACAO TEORICA

3.1 Inteligéncia Atrtificial

A expressdo Inteligéncia Artificial (IA) foi definida em 1956 por J. McCarthy, um dos
pioneiros da Ciéncia da Computagéo, que a definiu como a ciéncia e engenharia voltadas ao
desenvolvimento de “maquinas inteligentes” (Gurkaynak; Yilmaz; Haksever, 2016). Apesar
de sua origem na computacdo, a IA representa um campo de estudos multidisciplinar, que
inclui engenharia, matematica, cibernética, psicologia, entre outros (Valdati, 2020). Sua
definicdo, contudo, permanece desafiadora e multifacetada. Segundo Haugeland (1985), a 1A
representa um esforgo interessante em fazer os computadores ou maquinas pensarem como
mentes humanas no sentido total e literal.

Com o avanco das pesquisas, a IA passou a abranger diferentes subareas, destacando-se
entre elas o Machine Learning (ML), que consiste em algoritmos capazes de aprender padrdes
a partir de dados para melhorar o desempenho em tarefas especificas e o Deep Learning (DL),
um ramo do ML baseado em redes neurais profundas, representadas por varias camadas que
conseguem aprender representacbes complexas a partir de grandes volumes de dados. A
Figura 3 ilustra, de forma esquematica, a hierarquia conceitual entre IA, ML e DL.

Figura 3 — Hierarquia Conceitual entre 1A, ML e DL

Inteligéncia Artificial

Ciéncia computacional que busca desenvolver
sistemas capazes de executar tarefas que
tipicamente requerem inteligéncia humana
(raciocinar, perceber, planejar, aprender).

Machine Learning

Subcampo da A que utiliza algoritmos
que ajustam parametros a partir de dados
para otimizar um critério.

Deep Learning

Subcampo do ML que utiliza redes
neurais profundas para aprender
representacdes complexas a partir
de grandes volumes de dados
(CNNs, RNNs, LSTMs,
Transformers, etc.).

Fonte: Adaptado de Chollet (2021).
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O subcampo ML est4 relacionado com a elaboracdo de algoritmos que aprendem e se
aperfeicoam automaticamente através da experiéncia, com o intuito de encontrar padrdes em
um conjunto de dados (Mitchell, 1997). Tais logicas de programacdo envolvem a
autoaprendizagem para, por exemplo, realizar previsdes, substituindo atividades manuais por
modelos construidos para analisar grande volume de elementos em uma base. Dessa forma, é
possivel afirmar que o ML se caracteriza pela utilizacdo de codigos para extrair informacoes
de dados brutos e representa-los através de algum modelo matematico.

Por sua vez, o subconjunto DL representa uma forma de aprendizagem de representacoes
hierarquicas ao longo de mudltiplas camadas (Chollet, 2021). Cada uma dessas camadas
processa as informagdes de entrada, criando uma interpretacdo distinta da base de dados
(Alzubaidi et al., 2021).

No campo da previsdo de séries temporais, quanto ao avango histérico, pode-se destacar:
as redes Multilayer Perceptron (MLP), as redes Long Short-Term Memory (LSTM), as redes
Transformer e, por fim, as redes Temporal Fusion Transformer (TFT).

3.1.1 Redes Neurais MLP

As redes MLP, propostas por Rumelhart, Hinton e Williams em 1986, séo redes neurais
classicas, formadas pela camada de entrada, uma ou mais camadas ocultas, assim chamadas
por ndo serem diretamente observaveis, e, uma camada de saida. Nessas redes, cada neurdnio
em qualquer camada (exceto a de entrada) esta conectado a todos 0s n6s ou neurdnios da
camada anterior. A Figura 4 mostra um exemplo de rede MLP com trés camadas ocultas, onde
o fluxo de sinal sempre progride no sentido da camada de entrada em direcdo & camada neural
de saida.

Figura 4 - Arquitetura de uma Rede MLP

Camada Camadas Camada
de Ocultas de
Entrada Saida

Fonte: Adaptado de Haykin (2001).
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As redes MLP podem ter seu funcionamento explicado da seguinte forma: os dados de
entrada (X) séo processados nas camadas ocultas, nas quais ha neurénios que aplicam uma
mesma funcdo de ativacdo, parametrizada por pesos e viés (bias). Cada neurdnio calcula uma
combinacéo linear de suas entradas e, em seguida, aplica uma funcéo de ativacéo néo linear, o
que permite a rede aproximar relagcbes complexas entre as variaveis de entrada e saida. Entre
as fungdes de ativagdo mais utilizadas nas camadas ocultas destacam-se a ReLU (Unidade
Linear Retificada), a tangente hiperbdlica (tanh) e a funcéo sigmoide, cuja escolha depende do
tipo de problema e das caracteristicas dos dados.

A extragdo de caracteristicas relevantes dos dados de entrada é feita por meio de um
algoritmo que detecta automaticamente recursos significativos da base fornecida, para fins de
treinamento, aprendizado e generalizacéo.

Para uma dada saida prevista (Y’), a fun¢do objetivo tem a missdo de comparar as
previsdes da rede com o valor real esperado para aquela saida (YY) e calcular a distancia entre
ambas (erro). Essa informag&o é utilizada para, se necessario, realizar o ajuste dos valores dos
pesos, de forma a minimizar o erro, por meio do algoritmo de retropropagacdo do erro
(Backpropagation). Inicialmente, os valores dos pesos séo aleatérios, resultando em um erro
(ou perda) elevado, pois a saida prevista €, provavelmente, distinta do valor real (Goodfellow;
Bengio; Courville, 2016).

A Figura 5 mostra o fluxograma de treinamento da rede MLP.

Figura 5 — Fluxograma do treinamento da rede MLP
Entrada X

v

Atualizacdo dos
Saida prevista Saida real
Y’ Y

pesos

Backpropagation

Fonte: Adaptado de Chollet (2021).
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Apesar do avanco de arquiteturas sofisticadas, estudos recentes (Chen et al., 2023)
sugerem que modelos lineares e baseados em MLP apresentam desempenho competitivo e,
em alguns casos, superior. O estudo de Chen et al. (2023) demonstrou empiricamente que
modelos lineares podem superar arquiteturas sequenciais mais complexas em tarefas de
previsdo de séries temporais, especialmente no caso univariado (com uma Unica variavel).
Isso ocorre porque modelos lineares possuem capacidade de representacdo adequada para
capturar dependéncias temporais quando ha suavidade ou periodicidade nos dados.

A rede MLP apresenta formulacdo simples e eficiente. A saida do Unico neurdnio da

camada de saida, que representa uma func&o linear, é definida conforme Eq. (1):

N
y' = 2 Wiyk +b (1)
k=1

em que Wk representa 0s pesos que conectam as saidas dos neurdnios da camada oculta ao
neurdnio de saida, yk sdo as saidas dos neur6nios, b representa o viés (bias) e y’ é a saida da
rede.

Considerando a finalidade de previsdo, sabe-se que as redes MLP ndo apresentam
dependéncia temporal direta, assim, essa dependéncia temporal precisa ser simulada ao
apresentar um conjunto de valores passados como entrada para o modelo, de modo que a
informacdo temporal esteja implicita, e ndo incorporada diretamente na estrutura da rede
(Lazcano; Jaramillo-Moran; Sandubete, 2024).

Dessa forma, ao se utilizar uma MLP para previsdo de séries temporais, 0 vetor de
entrada é formado por um conjunto de observacdes passadas da série, que sdo processadas
para gerar a previsdo. Em termos formais, a rede recebe, no instante t, um vetor de entrada
Xt = [Xt—1,Xt—2, ., Xe—p], 0 qual é processado para fornecer uma saida y';. Para viabilizar
esse processo, a série temporal deve ser reorganizada em uma estrutura matricial, em que cada
linha corresponde a um vetor de entrada de dimensdo M, e essas linhas sdo apresentadas

sequencialmente a rede para a geragéo das previsdes correspondentes.

3.1.2 Redes LSTM

As Redes Neurais Recorrentes (RNR), sdo redes neurais artificiais que funcionam por
meio de sequéncias ou loops, nas quais as informacOes Uteis sdo armazenadas em memodrias,
persistem durante o treinamento e influenciam diretamente na saida resultante. Esse tipo de

arquitetura foi elaborado para reconhecer padrdes em uma série de dados, considerando tempo
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e ordem, o aprendizado ¢ feito a cada passo de treinamento, de modo que a saida no instante ‘t
— 1’ ¢ alimentada de volta a rede o que interfere no resultado do instante ‘t’ e assim
sucessivamente.

Uma RNR utiliza a ideia de que o estado oculto (ou memdria) é atualizado a cada instante
de tempo, de forma que o valor atual dependa do evento anterior, uma vez que tanto a entrada
quanto a memoria impactam na decisdo (Bianchi et al., 2018). Considerando h; como 0
estado oculto da RNR, a equacdo que define essa dindmica pode ser expressa pela Eq. (2),

conforme Goodfellow, Bengio e Courville (2016):

hy = a(Wx(y + Uh(e—yy + b) (2

em que a(-) representa a funcdo de ativagdo ndo linear, h._qy representa o estado oculto no
instante anterior £ - 1, x( representa o vetor de entrada no instante ¢, b representa o viés
(bias), e, W e U representam as matrizes de peso de entrada—estado oculto e de estado oculto—
estado oculto.

Sendo assim, pode-se afirmar que a RNR processa a informacdo da entrada no instante t
X(¢), Mas incorpora o estado oculto anterior h._4y para definir o sinal de saida. Considerando
que X e Y sdo os vetores de entrada e saida da rede, a Figura 6 ilustra esse processo. Na parte
(a), apresenta-se a representacdo genérica da RNR; na parte (b), evidencia-se que a saida em
cada instante ¢ é determinada tanto pela entrada nesse instante quanto pela memdria do

instante anterior.

Figura 6 - Esquema de Funcionamento de uma RNR

=R AR 4

| RNR || RNR |/ RNR —| RNR |—

o 3@933)

(a) RNR (b) RNR
Simplificada Detalhada

Fonte: Adaptado de Goodfellow, Bengio e Courville (2016).
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Apesar de seu 6timo desempenho, a RNR apresenta limitacbes quando a sequéncia de
entrada € muito longa, pois as primeiras informacdes da cadeia sdo perdidas com o passar do
tempo durante o processo de Backpropagation, que se constitui de uma funcéo de otimizacéo
definida por derivadas parciais de um conjunto de parametros de entrada, com a finalidade de
atualizar os valores dos pesos da rede neural. Dessa forma, se o valor do gradiente for muito
pequeno significa que havera pouca contribuicdo daquele dado para o aprendizado da rede
(Lazzeri, 2021).

Nesse contexto, 0 modelo de rede LSTM foi proposto por Hochreiter e Schmidhuber
(1997) para mitigar o problema da dependéncia de longo prazo em RNRs convencionais,
introduzindo portdes (gates) de controle e um estado de célula (cell state) na arquitetura
recorrente. Essa modificacdo torna a LSTM especialmente adequada para classificar,
processar e prever series temporais com intervalos de duracéo desconhecida, evitando a perda
de informac6es Uteis ao longo do tempo.

A arquitetura da rede LSTM possui trés camadas principais: entrada, oculta e saida.
Entretanto, a camada oculta contém blocos de memoria, chamados células, organizados em
uma estrutura em cadeia que engloba quatro portdes internos (Hochreiter; Schmidhuber,
1997). A informacdo é retida nas células, enquanto as manipulacbes de memoria sdo
realizadas pelos gates.

Uma rede LSTM utiliza trés portdes principais para controlar o fluxo de informagéo,
mantendo o que é relevante e descartando o que € irrelevante. Em termos gerais, valores
préximos de O indicam que determinada informacdo deve ser bloqueada, enquanto valores
préximos de 1 indicam que ela deve ser preservada para o proximo passo temporal (Torres et
al., 2020). Esses portbes sé@o conhecidos como Forget Gate, Input Gate e Output Gate. Em
seu estudo, Wang et al. (2018) descrevem de forma simplificada o papel de cada um desses
componentes.

a) Forget Gate: nesse portdo, as informacGes que ndo sdo mais Uteis para o estado da
célula sdo atenuadas. O estado oculto do instante anterior h.._y € a entrada atual x, sdo
concatenados, multiplicados pela matriz de peso Wy e adicionados ao bias bs. Em seguida, 0
resultado passa por uma funcdo de ativacdo sigmoide o, que produz valores na faixa (0,1),
aplicados elemento a elemento ao estado da célula anterior c(;_qy. Valores préximos de 1

indicam que a informacdo deve ser preservada; valores proximos de O indicam que deve ser

esquecida. A Eq. (3) representa a expressao do Forget Gate (f(y)):
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fio = oWilhe-1y 2] + by) ®3)

b) Input Gate: a adi¢do de novas informacGes relevantes ao estado da célula é feita por

esse portdo. Primeiro, calcula-se um vetor de ativacdo sigmoide i), que controla quais
componentes da nova informagao serdo incorporados, e, em paralelo, um vetor candidato g,
obtido pela aplicacdo da funcdo tanh, cujos valores pertencem ao intervalo [—1,1]. As Eq. (4)

e (5) descrevem as expressoes de i) € g ), respectivamente:
iy = o(Wilhee-1), x0)] + bi) (4)

9o = tanh(Wy[hq 1), x| + bg) (5)

em que W; e W, representam as matrizes de peso associados a cada etapa e b; e b, indicam o

vetor bias de cada passo.
Ao final das duas operacfes, o estado da célula é atualizado para o instante atual,

combinando as contribuicdes de fi;), i) € g(r), conforme Eq. (6):

¢ty = fioy © ce—1) T iy © 9oy (6)

em que ce—_q) representa o estado da célula no instante anterior e © denota o produto

elemento a elemento.
c) Output Gate: a extracdo de informacdes relevantes do estado da célula atual é feita

nessa etapa. Primeiramente, o estado oculto do instante anterior h._4y e a entrada atual x,

sdo concatenados, multiplicados pela matriz de peso W,, somados ao vies b, e, em seguida,
passados por uma fungdo de ativacdo sigmoide, gerando o vetor o), que controla a saida da

rede, conforme a Eq. (7):

oy = 0 (Wolhe—1), x| + bo) 7

em que W, e b, representam, respectivamente, a matriz de peso e o bias dessa fase. Por fim,

aplcia-se a funcdo tanh a c( e a saida (estado oculto atual) & determinada conforme a Eq. (8):

Y@y = hey = 0@ O tanh(ce)) (8)
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De forma resumida, a rede LSTM recebe duas entradas: o estado oculto do instante

anterior h,_1y € 0 vetor de entrada atual x. A memoria de longo prazo é simbolizada pelo
estado da célula c(., que € modificado pelo Forget Gate e pelo Input Gate. O par (h), ¢(t))

compde o estado interno da rede no instante atual. Assim, a Figura 7 retrata a arquitetura da
rede LSTM.

Figura 7 - Diagrama Esquematico da rede LSTM
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3.2 Arquitetura Transformer

Fonte: A Autora (2025).

Até o ano de 2017, arquiteturas como MLPs, RNRs e, em especial, suas variantes LSTM
figuravam entre as principais abordagens para o processamento de sequéncias temporais,
ainda que continuem amplamente utilizadas em diversas aplicagbes. No entanto, esses
modelos apresentavam problemas como: dependéncias sequenciais que tornavam o
treinamento e a inferéncia lentos; dificuldade em capturar dependéncias longas de forma
eficiente e limitacdo de paralelismo que dificultava a anélise simultdnea de elementos nas
séries. Para superar essas barreiras, Vaswani et al. (2017) propuseram o modelo Transformer,
que revolucionou o campo do processamento de linguagem natural e aprendizado de maquina
e que depende inteiramente de mecanismos de atencdo e elimina o uso de recorréncia.

O Transformer ¢ um modelo DL cuja arquitetura é composta pela configuracdo de
codificadores (Encoder) e decodificadores (Decoder), empilhados sequencialmente onde todas
as camadas sdo idénticas. Cada um desses componentes desempenha um papel vital no
processamento da sequéncia de entrada e na geracdo da sequéncia de saida, respectivamente.
A Figura 8 mostra o diagrama esquematico do modelo desenvolvido por Vaswani et al.
(2017).
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Figura 8 - Diagrama Esquematico da Arquitetura Transformer
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Fonte: Adaptado de Vaswani et al. (2017).

Analisando o Encoder, tem-se:

a) Sequéncia de Entrada: representa a transformacdo dos dados de entrada em
representacdes vetoriais de dimensdo fixa e continua, adequadas para serem processadas por
modelos de aprendizado profundo. Essa técnica permite que variaveis categoricas ou
temporais sejam representadas de forma densa e semantica no espaco vetorial.

b) Codificacdo posicional: consiste no posicionamento dos elementos de entrada em uma
sequéncia, para preservar a nocao de temporalidade.

c) Mecanismo de MultiAtengéo: constitui-se de multiplas “cabecas” de atencdo que
operam em paralelo para capturar diferentes padrbes de dependéncia na sequéncia.

d) Bloco “Add & Norm™: representa a conexao residual, que soma a entrada original da
subcamada a sua saida. Em seguida, essa soma €& processada por uma operacdo de
normalizagdo por camadas, que estabiliza o aprendizado ao normalizar as ativagdes dentro de
cada amostra. Isso é crucial para mitigar problemas de instabilidade em redes profundas.

e) Rede Feedforward: é uma subcamada aplicada a cada posic¢ao da sequéncia de entrada,

composta por duas camadas densas totalmente conectadas com uma funcdo de ativacao
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ReLU, que produz 0 como saida quando x < 0, e uma saida linear com inclinagdo unitaria
quando x > 0. Sua funcdo é refinar e transformar as representagBes produzidas pela
subcamada de atencdo, permitindo ao modelo aprender transformacdes ndo lineares sobre as
sequéncias de entrada.

Da mesma forma, analisando o Decoder, tem-se:

a) Sequéncia de Saida (t — 1): o modelo recebe os valores de saida anteriores como parte
do seu contexto para prever o proximo valor, esse deslocamento garante que, no treinamento,
0 modelo aprenda a prever o valor no tempo t com base apenas nas informacGes disponiveis
até t — 1, evitando assim vazamento de informagé&o.

b) Codificacdo posicional: consiste no posicionamento dos elementos de saida em uma
sequéncia, para preservar a nocao de temporalidade.

c) Masked MultiAtencdo: é uma variacdo do mecanismo de MultiAtencdo, o termo
Masked refere-se a aplicacdo de uma mascara que impede o modelo de acessar posicdes
futuras na sequéncia durante o treinamento, garantindo que a previsdo de um determinado
passo temporal utilize apenas informacdes passadas, 0 que é essencial em tarefas de previsao
de séries temporais.

d) Bloco “Add & Norm”, Mecanismo de MultiAtengdo ¢ Rede Feedforward: tem as
mesmas funcdes do Encoder, utilizando a Sequéncia de Saida (t-1).

e) Linear + Softmax: apds passar as etapas anteriores, a saida final do Decoder é uma
sequéncia de vetores continuos. Para transformar esses vetores em saidas interpretaveis
probabilisticas de valores discretos ou categoricos aplica-se a funcdo Linear que projeta cada
vetor para uma dimensdo menor e a funcdo Softmax, expressa matematicamente conforme
Eqg. (9), que transforma os vetores de valores reais em vetores de probabilidades (0 a 1), onde
as probabilidades de cada valor s&o proporcionais a escala relativa de cada valor no vetor de
origem (Ren; Wang, 2023).

Zj

5o ©

softmax(z;) =

em que z; é o elemento i no vetor z e j € o nimero total de classes. O denominador assegura
gue a soma das probabilidades é unitaria.

Por fim, o principal objetivo da arquitetura Transformer é assegurar que 0 modelo possua
a habilidade de focar nos elementos mais relevantes durante o processamento de cada

elemento da sequéncia de entrada (Vaswani et al., 2017). O foco seletivo é realizado pelo
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mecanismo de atencdo, que permite ao modelo ponderar dinamicamente diferentes partes da
entrada.

Mais especificamente, o célculo da matriz de saida de atencéo envolve trés componentes
fundamentais: Consulta (Q), Chave (K) e Valor (V). A matriz de atencdo € determinada ao
aplicar a fung@o Softmax sobre o produto escalar entre Q e K, escalado pela raiz quadrada da
dimensionalidade da chave (dy), que permite a ponderagdo dos valores, conforme expresso na
Eq. (10):

Atencao (Q,K,V) = softmax <Q—KT) %4 (10)

Jar

em que QKT representa o produto entre a matriz Q e a transposta da matriz K, possibilitando a
compatibilidade dimensional para o célculo.

Para permitir o aprendizado paralelo em diferentes representacBes contextuais, a
arquitetura Transformer utiliza o mecanismo MultiAtencdo. Nesse mecanismo, 0 modelo
projeta as matrizes Atengdo (Q,K,V) em diferentes subespacos lineares, nos quais cada
“cabega” de Atencdo atua de forma autbnoma, capturando padrées especificos de dependéncia
entre os elementos da sequéncia. Ao final, todas as saidas sdo concatenadas e processadas por
uma camada linear, resultando em uma representacdo final robusta da entrada.

Apesar da inegavel contribuicdo dos Transformers para tarefas de processamento de
linguagem natural e visdo computacional, sua aplicacdo para previsdo de séries temporais ndo
apresentou resultados tdo satisfatérios quanto o esperado. Estudos recentes indicam que, para
diversas tarefas de previsdao temporal, modelos mais simples, como redes recorrentes ou
mesmo modelos lineares, podem superar os Transformers em termos de desempenho e
estabilidade (Zeng et al., 2023).

Isso se deve, em parte, ao fato de que a arquitetura original ndo foi projetada para lidar
com caracteristicas especificas das séries temporais, como variaveis exdgenas, sazonalidade
explicita e dependéncias multivariadas de longo prazo. Diante dessas limitagdes, em 2021 foi
proposta a arquitetura TFT, projetada especificamente para tarefas de previsdo temporal,
combinando mecanismos de atencdo com codificacGes temporais explicitas, modelagem de

incertezas e suporte a variaveis estaticas e dinamicas.

3.3 Temporal Fusion Transformer
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A estrutura TFT foi proposta inicialmente por Lim et al. (2021) como uma solugéo
especifica para os desafios da previsdo de séries temporais em multiplos horizontes, focando
na sua interpretabilidade e flexibilidade em contextos complexos e multivariados. A ideia
desse novo modelo foi integrar os pontos fortes das duas modelagens anteriores: as redes
neurais recorrentes, que possuem excelente capacidade de capturar dependéncias de longo
prazo, e 0s mecanismos de atengdo dos Transformers, que permitem a sele¢do dindmica das
variaveis mais relevantes a cada momento. Assim, a TFT oferece uma abordagem unificada e
robusta para lidar com séries temporais compostas por variaveis estaticas, variaveis
observadas no passado e varidveis conhecidas no futuro.

O modelo TFT foi projetado para lidar com multiplos tipos de entradas, incluindo entradas
passadas, entradas futuras e covariaveis estaticas. Ele emprega um mecanismo de controle de
acesso para selecionar varidveis de entrada relevantes em cada passo de tempo, garantindo
que apenas as informacdes mais pertinentes sejam usadas para previsdes. Tal recurso ajuda a
suprimir componentes desnecessarios, melhorando seu desempenho.

As entradas do modelo TFT sdo divididas em trés categorias principais: variaveis
estaticas, varidveis temporais passadas e variaveis temporais conhecidas no futuro. As
variaveis estaticas representam informacbes invariantes ao longo do tempo, como a
sazonalidade ou localizacdo geografica. Essas variaveis sdo processadas por codificadores
especificos e utilizadas para gerar vetores de contexto que enriquecem as representacoes
temporais ao longo de toda a sequéncia, fornecendo uma base personalizada para cada série.
As variaveis temporais passadas incluem aquelas disponiveis apenas até o tempo presente
{x:_1 ... x;} como dados historicos de geracdo FV, enquanto as variaveis conhecidas no futuro
{Xt 41 - Xt1rmax} €Nglobam informacGes previsiveis ou agendadas, como hora do dia, dia da
semana, feriados e eventos externos previamente definidos. Ao estruturar e processar essas
diferentes categorias de entrada de forma independente e especializada, o TFT consegue
capturar relagdes complexas e aprimorar sua capacidade de generalizagdo em contextos reais

e multivariados.

3.3.1 Arquitetura TFT

A arquitetura TFT é composta por diferentes modulos interligados, cada um responsavel
por processar um tipo especifico de entrada ou realizar uma operagdo fundamental para a
previsdo de séries temporais multivariadas e multi-horizonte. A Figura 9 ilustra a estrutura

TFT e seus principais componentes.



Figura 9 - Arquitetura da Rede TFT
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A seguir, sdo descritos os principais componentes do modelo TFT:

a) Entradas: Variaveis Estaticas

41

As variaveis estaticas sao processadas inicialmente por codificadores especificos, que

geram representacOes vetoriais densas utilizadas ao longo de toda a arquitetura, tanto no

processamento das varidveis temporais passadas quanto das conhecidas no futuro. Esses

vetores de contexto sdo incorporados em diversas camadas do modelo, atuando como

informagdes condicionantes globais.

Essa estrutura permite que o TFT adapte seu

comportamento preditivo as caracteristicas especificas de cada série temporal, promovendo

maior robustez e interpretabilidade.

b) Entradas: Variaveis Temporais Passadas

As variaveis observadas no passado sdo processadas por codificadores baseados em redes

LSTM, responsaveis por capturar dependéncias temporais de longo prazo. O codificador
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concentra-se exclusivamente nos padrfes historicos da série. Apos essa etapa, a camada “Add
& Norm” ¢ aplicada para estabilizar o fluxo de gradiente e acelerar o treinamento, ao
normalizar as ativacOes e mitigar o surgimento de valores extremos, contribuindo para maior
estabilidade numérica.

c) Entradas: Varidveis Temporais Conhecidas no Futuro

As varidveis conhecidas no futuro sdo tratadas separadamente e processadas por
decodificadores LSTM, cuja funcdo € gerar a sequéncia de saida. Essas entradas sdo
fundamentais para capturar padrdes sazonais e estruturais com antecedéncia. Assim como no
caso anterior, a camada de normalizagdo “Add & Norm” ¢ utilizada para estabilizar as
ativacOes. Além disso, conexdes de salto (representadas na Figura 9 como setas tracejadas)
preservam informacdes originais relevantes, reforcando a influéncia direta dos atributos de
entrada e aumentando a precisdo das previsoes.

d) Enriquecimento Estatico

O bloco de enriquecimento estatico tem como funcgdo propagar o vetor de contexto gerado
a partir das variaveis estaticas para os modulos de varidveis temporais. Esse mecanismo
garante gue o contexto fixo de cada instancia influencie o processamento sequencial da série
temporal. A interacdo entre varidveis estaticas e temporais & mediada por Redes Residuais
Gated (GRNSs), que permitem a selecdo dindmica dos atributos mais relevantes em cada
instante de tempo. As GRNs sdao componentes centrais do TFT, responsaveis por transformar
seletivamente os dados, filtrando ruidos e reforcando padrdes significativos com alta
flexibilidade e estabilidade durante o treinamento.

e) Autoatencdo Temporal

A camada de autoatencéo interpretavel multi-cabeca permite que o modelo concentre sua
atencdo em diferentes momentos do passado, capturando dependéncias de longo alcance.
Cada “cabeca” da ateng@o aprende padrdes distintos de relevancia temporal, tornando possivel
interpretar quais momentos exerceram maior influéncia sobre a previsdo final. Esse
componente é essencial para a transparéncia do modelo, contribuindo para a compreensdo dos
fatores que impactaram na analise preditiva.

f) Rede Neural Feed-Forward Baseada em Posi¢édo

Esta camada atua como um dos estagios finais do TFT e é responsavel por refinar as
representacdes enriquecidas ao longo do tempo. Diferente das redes recorrentes, a rede Feed-
Forward baseada em posi¢do aplica a mesma transformacgéo ndo linear de forma paralela a
cada instante de tempo. O termo “baseada em posi¢ao” indica que as informagdes temporais

sdo previamente preservadas por vetorizacdes e mecanismos de atencdo. Essa arquitetura
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permite o paralelismo computacional e reduz o custo de treinamento. Além disso, utiliza
camadas GRN adicionais para garantir estabilidade e assegurar que os padrdes aprendidos
sejam adequadamente transformados em previsdes robustas.

g) Camada Dense

Apos a integracdo de todas as informagdes temporais e contextuais, 0s vetores resultantes
sdo encaminhados para uma camada Dense (totalmente conectada), que tem como fungdo
gerar as previsdes para cada horizonte temporal futuro. Essa camada pode ser adaptada para
produzir estimativas pontuais ou distribuicdes probabilisticas, dependendo da abordagem
adotada para modelagem da incerteza.

h) Saidas

A saida final do modelo corresponde aos valores previstos da variavel-alvo ao longo do
horizonte futuro definido. A modularidade da arquitetura TFT garante que as previsdes sejam
ndo apenas precisas, mas também interpretaveis, pois é possivel rastrear a contribuicdo de

cada variavel e momento para o resultado.

3.3.2 Rede de Selecdo de Variaveis

Esse mecanismo tem a funcdo de identificar dinamicamente, em cada passo temporal,
quais varidveis sao mais informativas para o modelo, sendo aplicado tanto as covaridveis
estaticas quanto as covariaveis dependentes do tempo (passadas e futuras). Além de oferecer
interpretacdo sobre a importancia de cada entrada, esse mecanismo tem um papel crucial em
eliminar entradas irrelevantes ou ruidosas que poderiam comprometer o desempenho do
modelo. Em cendrios reais, conjuntos de dados frequentemente incluem atributos com baixo
poder preditivo, e a capacidade do TFT de direcionar seletivamente a atencédo as variaveis
mais relevantes permite melhor utilizagdo da capacidade de aprendizado e melhoria na
generalizacdo (Lim et al., 2021).

Para representar as variaveis categoricas, o TFT utiliza processos codificagdo vetorial, que
transformam cada categoria em um vetor continuo em um espaco de dimenséo fixa. No caso
das variaveis dependentes do tempo sdo aplicadas transformacdes lineares. Assim, cada
entrada é convertida em um vetor de dimensdo d,,, correspondente ao tamanho das
representacdes internas do modelo. As entradas sdo organizadas em trés grupos distintos
(estaticas, temporais passadas e futuras), cada um utilizando sua propria rede de selecédo de
variaveis (Ferreira; Leite, 2025).

A cada passo de tempo t, as entradas transformadas sdo combinadas linearmente para

formar um vetor de entradas achatado. Esse vetor é entdo submetido a uma GRN e a uma
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camada da funcdo Softmax, juntamente com o vetor de contexto obtido por meio da
codificagdo das covariaveis estaticas. No caso de variaveis estaticas, o vetor de contexto é
omitido, uma vez que essas ja contém a informacao contextual necessaria.

Cada variavel possui sua prépria GRN, com pesos compartilhados entre todos os instantes

de tempo. Assim, cada vetor transformado € processado individualmente por sua propria

GRN, resultando em Et(’), 0 vetor de caracteristicas processadas para a variavel j. Finalmente,

todas os vetores processados sdo ponderados pelos respectivos pesos de selecdo de variaveis

vt(j) e combinados, formando o vetor final &, conforme Eq. (11):

m —_—~
fi= ) v (1)
=

em que m representa o namero total de variaveis do modelo.

Esse processo permite que, a cada instante temporal, o TFT selecione de forma adaptavel
0s atributos mais relevantes, atribuindo um grau de influéncia individual a cada entrada no
momento da previsdo. Tal capacidade ndo s6 melhora o desempenho preditivo como também
confere transparéncia e interpretabilidade, facilitando a analise dos fatores mais impactantes
no processo decisorio do modelo e possibilitando ajustes estratégicos no uso de dados de

entrada.

3.3.3 Redes GRNs

A GRN constitui uma sub-rede FeedForward composta por camadas totalmente
conectadas, ativacGes nao lineares e mecanismos de gating (portas). Estes mecanismos
permitem que o modelo controle dinamicamente a quantidade de informacdo a ser propagada
adiante. O componente de gating determina quanto da saida transformada e quanto da entrada
original serdo preservados, 0 que estabiliza o treinamento e possibilita o aprendizado de
relacfes complexas sem a perda de informagGes Gteis. Adicionalmente, a GRN implementa
uma conexao residual ponderada, capacitando o0 modelo a aprender a combinar efetivamente a
entrada com a saida da transformacdo, ou, se necessario, a ignorar a transformagéo quando
esta ndo for util.

E comum que a relacdo exata entre variaveis de entrada (exdgenas) e as variaveis-alvo
seja desconhecida, dificultando a identificacdo das entradas mais relevantes. Além disso, nem
sempre € claro o qudo complexo deve ser o processamento nao linear de um modelo, e em

certos casos (como com poucos dados ou dados ruidosos), modelos mais simples podem ser
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mais eficazes. Para dar ao modelo a flexibilidade de aplicar processamento ndo linear apenas
quando necessario, os autores propuseram a GRN como um bloco de construcdo fundamental
da topologia TFT (Lim et al., 2021).

As GRNs permitem que o TFT aplique processamento ndo linear de forma seletiva,
garantindo uma adaptacdo ideal a diversos conjuntos de dados e cenarios. Essas camadas
utilizam o bloqueio de componentes para eliminar blocos desnecesséarios na arquitetura,
ajustando-se a complexidade da aplicacdo. A Figura 10 ilustra a estrutura de uma GRN. Ela

recebe duas entradas: uma entrada primaria (a) e um vetor de contexto opcional (c).

Figura 10 — Estrutura da Rede GRN
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Fonte: Adaptado de Lim et al. (2021).

O processo da GRN ocorre conforme descrito nas Eq. (12) — (14):

GRN,, (a,,¢c,) = LayerNorm (ap + GLUw(Th)) (12)
M= Wiwhz+ b1 (13)
Ny = ELU(Wz’wap + W3,a)cx + bzrw) (14)

em que ap € 0 vetor da entrada primaria, cx € o vetor de contexto opcional, ® ¢ um indice que
denota o compartilhamento de peso, LayerNorm é uma camada de normalizacdo Standard, a
Unidade Linear Gated (GLU) é uma camada que controla o fluxo de transformacgdes nédo
lineares com capacidade para suprimir qualquer parte da arquitetura que nao é requerida para

um dado conjunto de dados, n; e n, representam camadas intermediarias, W, sdo 0s pesos,
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ELU € uma funcdo de ativacdo que age como funcéo identidade quando W, ,a, + Ws ., ¢, +
b,,, > 0 e como uma constante quando ocorre o contrario e b, representa o bias.

A conexd@o residual, conforme expresso na Figura 10, funciona como um atalho,
preservando informacfes e facilitando o treinamento das redes profundas ao mitigar o
problema do gradiente. O Dropout atua como regularizacdo, desativando neur6nios
aleatoriamente e aprimorando a generalizacdo do modelo, antes da etapa final da GRN. O
mecanismo de Gate, representado por uma porta sigmoide, controla o fluxo da informacéo
transformada, ponderando de forma adaptativa o quanto da saida ndo linear (que vem de
camadas densas com ativacdo ELU) deve ser retido.

Por fim, a GRN também permite a injecdo de contexto externo opcional (cx) para
condicionar a previsdo. Essa entrada auxiliar pode representar, por exemplo, variaveis
estaticas categoricas, sendo incorporada a transformacdo por meio de uma segunda camada
densa, o que favorece a condicionalidade da previsdo ao contexto especifico da série
temporal. Essa combinacao de transformacdes ndo lineares controladas, preservacao de sinal e
condicionamento contextual torna as GRNs essenciais para a expressividade e
interpretabilidade do TFT.

3.3.4 Funcdo Preditiva
A funcéo preditiva do TFT, conforme proposta por Lim et al. (2021), que integra diversos
tipos de entrada (temporal e estatica) para a estimativa probabilistica multi-horizonte, é

expressa conforme a Eq. (15):

Horizonte Covarlaveis Covariaveis
de Previsdao Passadas Estaticas

]

vi(q, t,7) = F{r,y; (t — k:t), Z;(t — k: 1), X;(t: t + 1), 5;}
R S
Ll ¢
Previsdes  Fungao Historico Covariaveis
TFT Temporal Conhecidas no Futuro

(15)

Variavel Alvo

em que y;(q,t, T) representa o g-ésimo percentil da varidvel-alvo para a série i, previsto para
oinstante t + 7, e F; € a funcdo de previsdo implementada pelo modelo. Essa funcéo leva em

consideracao:
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e O historico temporal da varidvel-alvo y;(t — k: t);

e As covariaveis passadas Z;(t — k: t), observadas até o instante t;

e As covaridveis conhecidas no futuro X;(t:t + ), disponiveis para o periodo de
previséo;

e E as covariaveis estaticas S; que sdo invariantes no tempo.

3.3.5 Interpretabilidade do modelo TFT

A atencdo multi-cabeca, conforme originalmente proposta no modelo Transformer (ver
Eq. (10)), utiliza maltiplos mecanismos de atencdo para processar um mesmo conjunto de
dados de entrada. Essa abordagem permite analisar as informac6es em diferentes subespagos e
posicOes, facilitando a identificacdo de padrdes relevantes e de longo prazo. No entanto, na
modelagem TFT, esse processo é modificado para torna-lo interpretavel.

Em vez de concatenar as saidas das diferentes cabecas de atencdo, os resultados sédo
calculados por média e, em seguida, submetidos a uma transformacao linear. Além disso, 0s
pesos de Valor Wy, sdo compartilhados entre todas as cabegcas, 0 que aumenta a
interpretabilidade e reduz a complexidade computacional.

Matematicamente, a funcdo de atencdo multi-cabeca interpretavel (MCI) é definida pela
Eqg. (16):

McI (Q,K,V) = Hwy (16)

em que W, representa o mapeamento linear final, e H é a média das saidas de atencdo de

cada cabeca, calculada de acordo com a Eq. (17):

H
1

A=—> Alew™ kw ) vw, (17)
mpy
h=1
em que A representa a funcdo de atencao escalar, e Q, K e V representam Consulta, Chave e

Valor, conforme explicado anteriormente. O peso Wy é compartilhado em todas as cabecas,

enquanto ng) e ng), sdo os pesos especificos de Consulta e Chave, respectivamente, para cada

cabeca h’. Por fim, my e h’ representam o numero total de cabecas e o indice de cada cabeca,

respectivamente.
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3.4 Clusterizacéo

A clusterizacdo consiste em uma técnica de aprendizado nao supervisionado que agrupa
dados semelhantes em conjuntos (clusters). Em algoritmos baseados em centréides, como o k-
means, cada cluster é representado por um centrdide, normalmente localizado préximo ao
“centro” do conjunto de pontos, e cada elemento da base de dados ¢ associado ao cluster cujo
centréide € o mais proximo, com base em uma medida de similaridade (por exemplo,
distdncia). A Figura 11 demonstra, de forma simplificada, esse processo, enfatizando trés

clusters, seus centroides e a proximidade dos dados em cada grupo.

Figura 11 - Algoritmo de Clusterizagdo k-means
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Fonte: A Autora (2025).

Uma funcdo objetivo pode ser utilizada para expressar formalmente o problema de
clusterizagdo. Considere um conjunto de dados X = {x;,x,, ...,x,} € R%, que deve ser
particionado em k clusters. No Algoritmo k-means tradicional, cada cluster é representado por
um centroide c¢;, dado pela média dos pontos atribuidos a esse grupo. A fungdo objetivo f
minimiza a soma do quadrado da distancia Euclidiana de cada ponto ao centréide do cluster
ao qual pertence, conforme Eg. (18) (Tan; Steinbach; Karpatne; Kumar, 2019):

f= zk: Z dist(x, ;)2 (18)

i=1x€C;

em que dist(x, c;) representa a distancia Euclidiana entre o ponto x e o seu centroide c;, k é 0
namero total de clusters, C; representa o i-ésimo cluster e ¢; é o centroide associado a esse

cluster.
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Essa técnica € amplamente utilizada em uma variedade de areas, em casos de regressao,
classificacdo, analise de imagens, entre outras, devido principalmente a sua simplicidade e
eficacia. No entanto, tem desvantagens como a sensibilidade a inicializacdo dos centroides, o
que pode resultar na convergéncia para um minimo local, para minimizar isso, é usual
executar o algoritmo varias vezes com diferentes inicializages e escolher o melhor resultado.
O método ndo apresenta bons resultados quando os clusters ndo sdo globulares e possui alta
sensibilidade a outliers ou valores discrepantes (Wu, 2012).

A implementacdo computacional da clusterizacdo basicamente ocorre em quatro etapas: 1)
selecdo de atributos que consiste na definicdo dos atributos da base de dados que serdo
agrupados; 2) implementagéo do algoritmo e realizagdo de diversas iteragdes para garantia do
ponto minimo das distancias; 3) avaliacdo do desempenho do agrupamento e 4) interpretacdo

dos resultados (Xu; Wunsch, 2008). A Figura 12 sintetiza o fluxograma dessa técnica.

Figura 12 - Diagrama Esquematico da Clusterizagao
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Fonte: Adaptado de Xu; Wunsch (2008).

3.4.1 Clusterizacdo de Séries Temporais

A clusterizagdo de séries temporais € realizada avaliando a similaridade entre elas, o que
envolve medir a distancia entre as séries para identificar padres ou agrupamentos baseados
em suas caracteristicas.

O procedimento refere-se ao processo de agrupar seéries temporais que compartilham
padrdes ou caracteristicas semelhantes ao longo do tempo. E uma técnica amplamente usada
em diversas areas, como previsdo, analise financeira, saude, entre outras. Dada sua
caracteristica, em vez de se concentrar em variaveis isoladas, a clusterizacdo de series
temporais considera as sequéncias de dados em seu conjunto, levando em conta a dependéncia
temporal e a correlacdo entre os pontos da série. A clusterizacdo k-means, ndo €
particularmente eficaz para séries temporais devido a sua dependéncia da distancia

Euclidiana, que nédo se aplica a esse caso.
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O objetivo principal da clusterizacdo de séries temporais consiste em agrupar séries que
evoluem de forma semelhante ao longo do tempo, independentemente das diferengas nos
valores absolutos. Assim, caracteristicas como médias ou variancias sdo substituidas por suas
dindmicas temporais.

Os desafios incluem: a variabilidade de tempo, pois as séries temporais podem ter
comprimentos diferentes, apresentando desafios em termos de comparagdo direta. O
deslocamento temporal, considerando que os padrdes temporais podem estar desfasados, ou
seja, 0s maximos e minimos podem ocorrer em momentos diferentes nas séries. O ruido ou
variacdo aleatdria que ocorre muitas vezes e que pode dificultar a identificacdo de padrbes
reais. E, por fim, a ndo linearidade, em que as séries temporais podem apresentar relagdes
complexas e ndo lineares.

Uma parte crucial da clusterizacdo de séries temporais & definir uma métrica de
similaridade ou distancia entre as séries temporais. Embora a Distancia Euclidiana seja
simples e facil de calcular, ndo é adequada para séries com diferentes escalas de tempo ou
variacdes de fase. Assim, surge o conceito da Derivacdo Temporal Dindmica (DTW), que é
uma técnica utilizada para comparar sequéncias de pontos de dados que podem variar em
comprimento ou velocidade. E particularmente Gtil na analise de dados de séries temporais,
onde duas sequéncias podem ter padrdes semelhantes, mas diferem em termos de
temporizacao ou velocidade (Sakoe; Chiba, 1978).

A DTW encontra um alinhamento 6timo entre duas sequéncias, distorcendo o eixo do
tempo para minimizar a diferenca entre elas. 1sso permite a comparacdo de sequéncias que
podem ter comprimentos diferentes ou podem estar ligeiramente fora de sincronia.

Para ilustrar essa diferenca, a Figura 13 retrata duas series temporais aleatorias (Série 1 e

Série 2), as quais possuem formatos, picos, vales e frequéncias distintos entre si.

Figura 13 - Séries Temporais Comparadas
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Fonte: A Autora (2025).
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A Distancia Euclidiana é representada pela linha tracejada na Figura 14 e a Distancia
DTW pela linha continua na Figura 15. E possivel perceber que a primeira calcula a distancia
entre as séries ponto a ponto, enquanto a segunda realiza um alinhamento entre as series de
forma ndo linear para encontrar a correspondéncia Gtima entre seus pontos. Em vez de
comparar apenas 0s pontos correspondentes no tempo (como ocorre no caso da Distancia
Euclidiana), a DTW ajusta o alinhamento das séries para minimizar a diferenca acumulada

entre elas.

Figura 14 - Diferengas com Distancia Euclidiana
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Fonte: A Autora (2025).

A DTW ainda permite que um ponto de uma série seja comparado com multiplos pontos
da outra série, conforme pode ser observado na Figura 15. Isso a torna robusta a mudancas na
escala temporal e a ruidos, que € o caso da Série 2. Assim, € possivel afirmar que a DTW tem
maior flexibilidade para lidar com deformacbes temporais sendo aplicavel para analises de

séries temporais em que o alinhamento temporal contém variacao.

Figura 15 - Diferengas com Distancias DTW
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Para a expressdo de célculo da DTW, considerando duas séries temporais M =
[my, m,, ..., my] com p elementos e N = [ny,n,,...,n,] com g elementos, o alinhamento
6timo entre os elementos de M e N minimiza a distancia acumulada entre elas. O objetivo da
métrica consiste no célculo da menor "distancia de deformacdo” entre as duas séries,
considerando que elementos de uma série podem ser comparados com multiplos elementos da
outra (Muller, 2007).

Primeiramente é construida uma matriz p x q onde cada elemento (v;;) representa o custo
local, ou diferenca absoluta quadratica, do ponto m; da série M com o ponto n; da série N,

conforme Eq. (19):

vij = |ml- - le|2 (19)

em que m; representa um ponto da série M, com i variando de 1 a p e n; representa um ponto
da série N com j variandode 1 ag.

Em seguida, calcula-se a matriz DTW que calcula o custo acumulado 6timo para alinhar
as duas séries até cada ponto (i, j), utilizando uma programacdo dinamica calculada

recursivamente para minimizar o custo total de alinhamento, conforme Eq. (20).

C(i,j) =v(i,)) + min{Ci_1-1,Ci1,C;j-1} (20)

em que C(i,j) representa o elemento da matriz de custo acumulado ou de menor distancia
entre o alinhamento das duas séries M e N, considerando o custo local v(i, ).

Apos a determinagdo da matriz C, o menor caminho entre as duas séries € uma sequéncia
de indices que define como as duas series estdo alinhadas, comecando do ultimo elemento das
séries C(p, q) e terminando em C(1,1), minimizando o custo total. Assim, a distancia DTW
final é o custo acumulado até o ultimo ponto (Mdiller, 2007).

Quanto ao algoritmo, a clusterizagdo hierarquica quando adaptada com a métrica
especifica DTW, torna-se uma ferramenta eficaz para identificar padrdes em séries temporais,
especialmente em contextos em que se deseja explorar relagdes estruturais e padrdes de
similaridade entre dados que variam ao longo do tempo, pois, dada sua caracteristica, uma
estrutura interpretavel que permite identificar agrupamentos em diferentes niveis de
hierarquias (Liao, 2005). A clusterizacdo hierdrquica constréi uma arvore de clusters e

permite que diferentes niveis de agrupamento sejam analisados.
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A aplicacgdo da clusterizacdo hierdrquica requer etapas especificas, a primeira fase consiste
no Pré-Processamento de Dados que se caracteriza na normalizacdo das series temporais,
sendo essencial para evitar que diferencas de escala influenciem na analise dos resultados, e
na suavizacdo ou remocdo de tendéncias para melhorar a qualidade do agrupamento. Em
seguida a métrica DTW é entdo aplicada para o célculo da distancia entre as séries temporais.
O agrupamento iterativo identifica os dois clusters mais proximos com base na DTW e
combina esses clusters em um unico cluster; o processo € repetido recursivamente até que
todos os clusters estejam agrupados.

Por fim, o Dendrograma representa graficamente o processo de agrupamento, mostrando
como os clusters sdo combinados em diferentes niveis de distancia. A Figura 16 exemplifica
um dendrograma para dez amostras agrupadas em niveis hierarquicos com base na distancia
DTW. Observa-se, por exemplo, que os pares (1, 3), (2, 7) e (5, 9) sdo unidos nos niveis de
distancia mais baixos, indicando maior similaridade entre esses elementos dentro de seus
respectivos clusters.

Figura 16 — Exemplo de Dendrograma na Clusterizacdo Hier&rquica
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Fonte: A Autora (2025).

3.5 Conceitos Adicionais

3.5.1 Normalizagédo dos Dados

A presenca de picos e componentes ndo estacionarios nos dados de entrada (como
informacdes meteorologicas e histérico de geracdo) prejudica o treinamento de modelos de
previsdo, elevando os erros. 1sso ocorre porque essas variaveis sao imprevisiveis e flutuantes
devido as condigBes climaticas. Assim, o0 pré-processamento desses dados é crucial para
reduzir problemas de treinamento, otimizar o custo computacional e melhorar

significativamente a precisdo da modelagem (Das et al., 2018).
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Dados de energia FV costumam ter variaveis em escalas muito diferentes, o que reflete
sua grande variabilidade. Essa diferenca de escalas pode levar o modelo a dar prioridade
indevida a certas informacgdes, prejudicando o desempenho do algoritmo durante o
treinamento. Por isso, a normalizacdo dos dados é essencial para equalizar todos os valores e
garantir um treinamento mais eficaz. Entre as principais técnicas de normalizar pode-se citar 0
Escalonamento MinMax, Escalonamento Z-Score ou Standard e Escalonamento Robusto.

a) Escalonamento MinMax

Este método, formalmente expresso na Eq. (21), aplica uma transformacdo linear que
reescala os dados para o intervalo [0,1], preservando a ordem relativa das observagdes, mas
alterando sua escala e amplitude. Como o MinMax depende diretamente dos valores minimo e
méaximo observados no conjunto de treinamento, ele é mais indicado quando as variaveis
possuem limites bem definidos e baixa incidéncia de valores discrepantes (outliers); caso
contrario, esses extremos podem comprimir a maior parte dos dados e distorcer o

reescalonamento.

X — Xmi
Xnorm = — (21)

Xmax — Xmin

em que Xn,in € Xmax representam, respectivamente, os valores maximos e minimos da
variavel x, e x,,m @ variavel normalizada.

b) Escalonamento Standard

Este método de normalizacdo, expresso pela Eq. (22), envolve a transformacdo das
variaveis pela subtracdo de suas respectivas médias, seguida da divisdo pelo desvio padréo.
Ao contrario do escalonamento MinMax, este método ndo impde um limite definido aos
valores resultantes. Sua aplicacdo é particularmente vantajosa em cenarios nos quais as
variaveis exibem uma distribuicdo aproximadamente normal. Contudo, é importante notar que
0 Escalonamento Standard é sensivel a presenca de outliers, que podem distorcer os valores

da média e do desvio padréo, afetando a transformacao.

X —p
G

(22)

Xnorm =

em que u e o representam, respectivamente, a média e o desvio padréo da variavel x, e x,0rm
a variavel normalizada.

c) Escalonamento Robusto

Este método de normalizacdo, expresso pela Eq. (23), distingue-se dos anteriores por sua

menor sensibilidade a influéncia de outliers. Esta técnica utiliza a mediana e o intervalo
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interquartil (IQR), o qual se constitui na diferenca entre o terceiro quartil (Q3) e o primeiro
quartil (Q1), para realizar a transformacdo. Essa caracteristica confere ao Escalonamento
Robusto uma vantagem significativa, tornando-o uma escolha ideal em cenarios onde os

dados contém uma quantidade consideravel de valores discrepantes.

x — med

Xnorm = IQ—R (23)

em que med e IQR representam, respectivamente, a mediana e a diferenca entre o terceiro
quartil (Q3) e o primeiro quartil (Q1) da distribuicdo da variavel x, e x,,,, a Vvaridvel
normalizada.

A Figura 17 sintetiza, em duas representacfes complementares, a dispersao central dos
dados. Considerando que o quartil consiste na divisdo dos dados em quatro partes, no boxplot
(parte superior), o primeiro quartil (Q1) e o terceiro quartil (Q3) delimitam o intervalo que
contém 50% dos valores intermediarios. A amplitude desse intervalo é dada pelo Intervalo
Interquartil (IQR = Q3 — Q1), uma métrica robusta a presen¢a de outliers. A mediana, por sua
vez, situa-se no centro desse bloco, dividindo a amostra em duas metades.

Complementarmente, na curva inferior, a mesma ideia é expressa em termos de &rea sob
uma distribuicdo aproximadamente normal: 25% dos dados estdo abaixo de Q1, 50%
concentram-se entre Q1 e Q3 e 25% acima de Q3. Isso evidencia que o IQR corresponde a
regido de maior densidade observacional e, portanto, constitui um indicador de variabilidade
mais resiliente do que medidas baseadas na média e no desvio padréo.

Figura 17 - Distribuicdo de dados em quartis
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Fonte: A Autora (2025).
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3.5.2 Validacdo com Janela Deslizante

A validagdo com janela deslizante é uma técnica robusta e amplamente utilizada na
literatura para avaliar o desempenho de modelos de séries temporais. Em vez de uma Unica
divisdo estatica entre dados de treino e teste, como na validagdo cruzada tradicional, a janela
deslizante simula um cendrio mais realista de previsdo continua, onde o modelo é avaliado
sequencialmente no tempo em toda a amostra de dados.

Esse é um procedimento de estimacdo de desempenho para séries temporais em que 0
conjunto de treino “desliza” ao longo do tempo, preservando a ordem temporal e evitando
vazamento de dados. O processo comega com uma janela inicial de treinamento [t4, ..., tx]. O
modelo é ajustado com esses dados e, em seguida, testado no bloco de tempo imediatamente
seguinte [ty41, ..., txenl. EM seguida, a janela é deslocada (por expansdo ou tamanho fixo), o
modelo é reajustado e um novo erro de previsdo é calculado. Ao final, os erros de todas as
janelas sdo combinados (por meio de média, mediana etc.), resultando em uma avaliacdo de
desempenho mais estavel e realista para dados fora da amostra. Essa estratégia € recomendada
para problemas de previsdao porque respeita a dependéncia temporal, diferindo da validacédo
cruzada aleatoria tradicional, inadequada para dados autocorrelacionados ja que misturaria
informacdes futuras com passadas, comprometendo a validade da avaliacdo. (Hota; Handa;
Shrivas, 2017).

A Figura 18 detalha o processo de validacdo com janela deslizante em um processo de

analise de desempenho de série temporal.

Figura 18 - Janela deslizante
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Fonte: A Autora (2025).
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e Concluséo do Capitulo

Este capitulo apresentou os fundamentos tedricos que embasam a proposta metodologica
desta tese. Foram abordados inicialmente os conceitos de Inteligéncia Artificial e redes
neurais, com énfase nas arquiteturas MLP e LSTM, amplamente utilizadas em tarefas de
previsdo. Em seguida, foi discutida a arquitetura Transformer, que serve de base para o
modelo central deste trabalho, o TFT. Detalhou-se sua estrutura interna, incluindo os
mecanismos de selecdo de varidveis, as redes GRNSs, a fungdo preditiva e os recursos que
conferem interpretabilidade ao modelo. Complementarmente, foram abordados métodos de
clusterizacdo hierarquica e conceitos auxiliares essenciais a modelagem de séries temporais,
como a normalizacdo dos dados e a validacdo com janela deslizante. A fundamentacéo
apresentada neste capitulo oferece o embasamento tedrico necessério para o delineamento da

metodologia e a realizacdo dos experimentos descritos nos capitulos seguintes.
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4 METODOLOGIA

Neste capitulo, serdo abordados com maior detalhamento os seguintes aspectos: a
estrutura da base de dados, as técnicas utilizadas na etapa de pré-processamento dos dados, a
topologia de rede e a forma escolhida para avaliagdo do desempenho dos modelos
desenvolvidos.

A Figura 19 apresenta a estrutura proposta para o estudo, resumindo as etapas a serem
Cada

individualmente, nas proximas secOes deste capitulo.

consideradas. item dessa estrutura sera abordado com maior detalhamento,

Figura 19 - Metodologia da Pesquisa
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Todos os codigos foram desenvolvidos no Google Colab®, utilizando a linguagem de
programacdo Python. O ambiente de execucdo foi um desktop com sistema operacional
Windows 11, processador Intel Core i7 de 82 geracdo, 16 GB de memdria RAM e uma placa
de video Nvidia GeForce com 2 GB de memoria dedicada e GPU T4. Os modelos foram
criados principalmente utilizando as bibliotecas Pandas, Numpy, Scikit-learn e PyTorch

Forecasting.

4.1 Base de Dados
4.1.1 Dados de Geragao FV

As usinas de geracdo FV utilizadas nesta pesquisa foram coletadas no dominio publico da
base de Histdricos de Operacdo do ONS. Foram selecionadas dez usinas FV estrategicamente
distribuidas em regides de elevado potencial solar, conhecidas como ‘cinturdo solar brasileiro’
(Pereira et al., 2017). Esse cinturdo estende-se principalmente pelo semiarido nordestino e por
trechos das regides Centro-Oeste e Sudeste, apresentando uma irradiacdo solar média diaria
superior a das demais regides brasileiras. A Figura 20 destaca a posicdo geografica das dez

usinas FV no territdrio brasileiro e suas posi¢des no cinturdo solar brasileiro.

Figura 20 — Localizacdo das Usinas FV selecionadas no Mapa do Brasil
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Fonte: Adaptado de Pereira et al. (2017).
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O critério central de selegdo dessas dez usinas FV foi justamente o fato de estarem
localizadas no cinturdo solar brasileiro, o que implica niveis de radiacéo solar proximos entre
si e, portanto, maior comparabilidade nos experimentos. Adicionalmente, considerou-se a
disponibilidade e qualidade dos dados operacionais necessarios a pesquisa.

A Tabela 4 detalha as principais informacdes técnicas de cada conjunto FV. Esta inclui a
sigla de identificagdo da usina, sua respectiva localidade, coordenadas geograficas (latitude e
longitude), e a capacidade instalada, expressa em megawatts (MW). Entre o0s
empreendimentos analisados, destacam-se usinas de grande porte, com capacidade instalada
igual ou superior a 60 MW, bem como usinas de medio porte, que contribuem
significativamente para o Sistema Interligado Nacional (SIN).

Tabela 4 — Informacdes Técnicas das Usinas FV

Latitude Longitude

Usina Sigla Usina Localidade Capacidade Instalada (MW)

0 0
1 CSpP Bom Jesus da Lapa (BA) -12%,)31 -4(3,)35 67
2 CBJ Bom Jesus da Lapa (BA) -13,30 -43,33 80
3 CJs Juazeiro (BA) -9,53 -40,49 120
4 PIR Pirapora (MG) -17,40 -44,92 321
5 CSG Sao Goncalo do Gurgueia (PI) -10,10 -45,27 864
6 ITU Tabocas do Brejo Velho (BA) -12,31 -44,07 254
7 CLA Bom Jesus da Lapa (BA) -13,31 -43,35 60
8 HOR Tabocas do Brejo Velho (BA) -12,60 -44,08 103
9 CNO Ribeira do Piaui (PI) -8,20 -42,55 292
10 SoL Aquiraz (CE) -3,98 -38,39 81

Fonte: A Autora (2025).

4.1.2 Dados Meteoroldgicos

As variaveis meteorologicas consideradas neste estudo consistem em radiacao solar global
(W/m?) e temperatura ambiente (°C).

Considerando que todas as usinas analisadas foram obtidas em dominio publico e que as
estacdes meteorologicas do INMET localizadas nas proximidades dos empreendimentos
apresentavam lacunas significativas nas variaveis de interesse, em alguns casos, com anos
inteiros sem registros de radiacdo e/ou temperatura, optou-se por utilizar os dados

meteoroldgicos da base internacional NASA POWER.
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Essa base fornece séries temporais derivadas de observacGes por satélite e de esquemas de
assimilacdo de dados em modelos atmosféricos, com cobertura espacial global e
parametrizacdo a partir das coordenadas geograficas (latitude e longitude) informadas pelo
usuario. Neste trabalho, os dados foram extraidos para as coordenadas de cada usina
fotovoltaica, em resolugdo horéria no padrdo UTC, sendo posteriormente convertidos para o
horério local.

A decisao pelo uso da NASA POWER ¢ corroborada pelo estudo de Faccin et al. (2024),
que analisou 476 locais no Brasil e demonstrou a boa concordancia entre os dados de radiacédo

solar global e temperatura ambiente do NASA POWER e aqueles medidos pelo INMET.

4.1.3 Dados Temporais e Sazonalidade

A andlise abrangente realizada neste estudo baseou-se em dados de geracdo FV e em
dados meteoroldgicos, ambos com registros em intervalos horarios. O periodo de coleta e
analise estendeu-se de 1° de janeiro de 2020 a 31 de dezembro de 2023, totalizando quatro
anos de informagdes. Essa granularidade horéria é crucial para a compreensdo detalhada das
variacOes diarias e sazonais na producdo de energia e nas condicfes climaticas. A consisténcia
temporal e a alta resolucdo dos dados sdo fundamentais para a acuracia do modelo.

Esse intervalo (2020 — 2023) foi selecionado de forma a reduzir a influéncia de episodios
recentes de curtailment no sistema elétrico brasileiro, buscando contemplar um horizonte
temporal em que a geracdo FV estivesse menos sujeita a restricdes operativas que pudessem
distorcer o comportamento natural das séries de geracao.

Quanto a sazonalidade, o ano foi segmentado em suas quatro estacGes climaticas
tradicionais: verdo, primavera, outono e inverno. Essa divisdo considerou tanto as variagoes

climaticas predominantes em cada periodo quanto os meses especificos que as caracterizam.

4.2 Pré-processamento dos Dados

4.2.1 Eliminacdo de Dados Noturnos

Os dados de geracdo FV coletados incluem valores noturnos, caracterizados por registros
nulos ou muito proximo de zero no periodo das 00:00h as 06:00h e das 18:00h as 23:00h.
Essa esparsidade de dados representa um desafio, pois a grande quantidade de informacdes
zeradas pode resultar em um modelo inadequadamente treinado, comprometendo seu

desempenho global.
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Para mitigar esse problema, os valores noturnos foram removidos de toda a base de dados,
retendo-se apenas as informacbes correspondentes ao intervalo das 07:00h as 17:00h. Essa
filtragem resultou em 11 horas diarias de dados. Consequentemente, o conjunto de dados para

cada usina FV, considerando o periodo de quatro anos, totalizou 16.071 observacoes.

4.2.2

Os dados ausentes frequentemente sdo resultantes de falhas no processo de coleta ou de

Imputagéo de Dados Faltantes

sensores defeituosos e representam um desafio significativo na analise de séries temporais.
Em muitos cenérios praticos, a integridade das séries pode ser comprometida por interrupgdes
no funcionamento dos equipamentos de medi¢cdo ou por erros de registro.

Para o tratamento dos dados ausentes nas séries de geracdo FV, a proposta metodoldgica
deste trabalho consistiu em uma imputacdo baseada na curva de radiacdo solar global,
considerando a alta correlacdo entre as duas variaveis. O processo adotado identifica, para
cada horario ausente, um outro dia com perfil similar de radiacdo (que ndo apresenta lacunas)
e utiliza a geracao correspondente desse dia como valor imputado.

Para verificar o perfil de similaridade da radiacdo solar, foram analisados os cinco dias
imediatamente anteriores ao dia com dado ausente. Para cada um desses dias, calculou-se o
erro médio absoluto entre o perfil horério de radiacdo e a curva correspondente ao dia com
falha de registro, selecionando-se como dia mais semelhante, aquele que apresentou 0 menor
valor desse erro. O fluxograma da Figura 21 mostra o processo de imputacdo proposto neste
trabalho.

Figura 21 - Fluxograma do método proposto para imputacgdo de dados

Imputacdo por
Similaridade de perfis
diarios:
radiagdo e geragao FV

Detecta horas ausentes
na curva de geragao

Extrai perfil de radiacdo
do dia

Identifica outro dia com
mesmo perfil de
radiagdo

Utiliza a geragcdo
correspondente
desse dia para imputar
horas ausentes

Fonte: A Autora (2025).

Para avaliar a qualidade do método de imputacdo proposto, também foram testadas
abordagens classicas, a saber: interpolacdo linear; imputacdo pela média temporal, na qual os
dados horarios ausentes em um determinado dia sdo substituidos por um valor Gnico igual a
média dos dados ndo ausentes daquele dia; e 0 método dos k-vizinhos mais proximos (KNN),

considerando-se a média dos cinco vizinhos mais proximos.
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4.2.3 Selecdo de Atributos

A selecdo de atributos € uma etapa critica em modelos de previsdo de séries temporais,
pois reduz a complexidade, melhora a interpretabilidade e evita sobreajuste. No contexto
desta pesquisa, foram selecionados quatro grupos iniciais de variaveis: (i) estaticas, como
sazonalidade (estacGes e meses do ano); (ii) meteoroldgicas, como radiacdo solar global e
temperatura ambiente; (iii) historico de geracgdo, representado por defasagens de geragdo (h —
1, h—2, ..., h—11) e estatisticas diarias; e (iv) horérios ciclicos, todas passiveis de serem
conhecidas ao longo do horizonte de previséo.

As defasagens de geracdo podem ser definidas como o histérico da geracdo em horérios
especificos, nesta pesquisa foram considerados as defasagens horéarias de geracdo h — 1, h —
2, h—3 e h—11. As estatisticas horarias de geracdo (valor médio, maximo e minimo),

foram definidas, conforme pode ser visto nas Eq. (24) - (26):

G +Gh—1)

Gmed_h - 2 (24)
Gméx_h = max{G(h),G(h — 1)} (25)
Gmin_n = min{G(h),G(h — 1)} (26)

em que h representa a hora e G (h) a geracdo FV na hora h.
Os horérios ciclicos foram transformados em func¢des seno e cosseno para que 0 modelo

capte naturalmente a periodicidade diaria e mensal, conforme Eq. (27) e (28):

<h0ra_sen = sen (%) | hora_cos = cos (%) > (27)
(mes_sen = sen (%) | mes_cos = coS (%) > (28)

em que Mes representa 0 més do ano.

Para enriquecer o conjunto de dados, alem dos atributos ja definidos, foram geradas novas
variaveis por meio da interacdo (produto) entre pares de atributos. A inclusdo dessas
interacOes € validada por Zheng e Casari (2018), que indicam um potencial ganho de preciséo
no modelo em relagdo ao uso de caracteristicas isoladas. Essa abordagem permite que o

modelo compreenda e utilize relagdes complexas que emergem da combinacgéo de condigdes,
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superando a andlise de variaveis separadas. As interacOes especificas que foram consideradas
podem ser consultadas na Tabela 5.

Tabela 5 - Interacdo de Atributos

Atributos
hora_sen X G(h) hora_sen X Rad hora_sen X Temp
hora_cos X G(h) hora_cos X Rad hora_cos X Temp
hora_sen X G(h—1) hora_cos xG(h—1) Rad x Temp
hora_sen X G(h — 2) hora_cos X G(h — 2) hora_sen X G(h — 3)
hora_cos X G(h —3) hora_sen X G(h —11) hora_cos X G(h — 11)

Fonte: A Autora (2025).

Na primeira etapa da selecdo de atributos, foi realizada uma analise de correlacdo de
Pearson entre a geragéo FV (variavel-alvo) e as demais 28 variaveis. Atributos como Geq n,
Gmin_n» Gmax n Rad e variaveis derivadas como G (h — 1) apresentaram correlacdes positivas
fortes (r > 0,7), indicando alta relevancia para o modelo. Interacdes especificas como
Rad X Temp, G(h — 11) e G(h — 2) também se destacaram, com coeficientes de correlacdo
acima de 0,5. Por outro lado, correlacdes negativas expressivas (r < -0,5) ocorreram como foi
0 caso das interacbes hora_cos X G(h), hora_cos XG(h—1), hora_cos X Rad,
hora_cos X G(h—2), hora_cos XG(h—11), hora_cos X Temp, hora_cos ¢

hora_cos X G(h — 3). O resultado completo dessa analise pode ser visto na Figura 22.

Figura 22 - Andlise de Correlagdo das Variaveis com a Geragdo FV
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Fonte: A Autora (2025).

Essa analise inicial permitiu priorizar os atributos mais relevantes e que foram o ponto de
partida para a proxima etapa consistiu em treinar 0 modelo de base TFT de forma iterativa,
analisando a importancia das variaveis tanto no encoder quanto no decoder. Para cada
treinamento, foram extraidas as métricas internas de importancia de variaveis fornecidas pelo

TFT. Essa analise permitiu identificar quais atributos exerciam maior influéncia na etapa de
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codificacdo das entradas passadas (encoder), responsdvel por capturar dependéncias
historicas, e na etapa de decodificagdo das entradas futuras (decoder), que incorpora variaveis
conhecidas ao longo do horizonte de previsao.

Com base nesses resultados, procedeu-se a remoc¢do gradual das varidveis de menor
relevancia, guiada pelas informacdes de importancia do préprio TFT. Esse processo buscou
reduzir a dimensionalidade do conjunto de entrada, eliminando atributos com contribuicdo
minima para o desempenho do modelo, preservando aqueles capazes de capturar padrdes
relevantes para a previsdo da geracdo FV. A eliminacdo sistematica de variaveis redundantes
ou pouco informativas contribuiu para diminuir o risco de sobreajuste, reduzir o custo
computacional e aumentar a interpretabilidade do modelo final. A relacdo final dos 11

atributos considerados na pesquisa pode ser vista na Tabela 6.

Tabela 6 - Atributos Selecionados para a Modelagem TFT

Componentes do Tempo Covariaveis Meteoroldgicas Estatisticas de Geracdo FV
hora_sen hora_sen X Rad Gmed n
hora_cos hora_cos X Rad Gmax n

hora_sen X Temp Gmin n
hora_cos X Temp hora_sen X G(h—1)

hora_cos X G(h—1)

Fonte: A Autora (2025).

4.2.4 Transformacao Log

A alta variabilidade e as falhas nas séries temporais de geracdo diaria, observadas nesta
pesquisa, levaram a aplicacdo da transformacdo logaritmica. O objetivo foi minimizar ruidos e
otimizar o desempenho do modelo preditivo.

Essa abordagem € justificada por Zheng e Casari (2018), que explicam que a
transformacéo logaritmica comprime a cauda longa na extremidade superior da distribuicéo,
aproximando valores mais altos, enquanto expande a parte inferior, dispersando valores mais
baixos. Esse processo resulta em uma distribuicdo mais simétrica e menos concentrada,
normalizando distribui¢des assimétricas. Ao lidar melhor com dados de cauda longa e ruidos,
a transformacéo torna os dados mais manejaveis, revela padrdes ocultos na escala original e
permite que os modelos capturem relagdes subjacentes com maior precisao.

Para estabilizar a variancia da base de dados de geragdo FV e evitar a ocorréncia de

valores negativos apos a transformacéo, aplicou-se a escala logaritmica definida pela Eq. (29):

Grogro = 10g10(G(h) + 1) (29)
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em que G(h) representa a geracdo FV em MW e o termo “+1” desloca toda a distribuigcdo
para valores ndo-negativos, garantindo Gj,419 = 0 mesmo quando log;o(G(h) + 1) for
negativo.

A Figura 23 mostra histogramas que comparam a distribuicdo da geracdo FV em toda a
base de dados de uma usina FV antes e ap6s a transformacéo logaritmica na base 10. No
gréfico a esquerda, observa-se uma forte assimetria, com concentracdo em valores elevados e
uma cauda longa de geracdo. Apos aplicar o logaritmo, a distribui¢do torna-se muito mais
simétrica e proxima de uma curva normal, o que reduz a influéncia de ruidos e facilita o ajuste
e a interpretacdo dos modelos. Esse ‘achatamento’ da cauda direita é fundamental para
melhorar a estabilidade numérica e a capacidade preditiva de algoritmos sensiveis a desvios

extremos.

Figura 23 - Comparativo da Transformacédo Log na Geracéo FV
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Fonte: A Autora (2025).

E importante destacar que a Transformacdo Log foi aplicada exclusivamente para o
treinamento dos modelos TFT. Posteriormente, durante a etapa de avaliacdo de desempenho
dos modelos, as métricas foram calculadas com os dados revertidos a sua escala original em
MW.

4.2.5 Normalizagdo dos Dados

Para assegurar a comparabilidade entre as diversas entradas e promover estabilidade
numérica durante o treinamento do TFT, empregou-se uma estratégia de normalizacéo
adaptada a distribuicdo empirica de cada varidvel. As covariaveis meteoroldgicas

(hora_sen X Rad, hora_cos X Rad, hora_sen X Temp, hora_cos XTemp) e
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componentes do tempo (hora_sen, hora_cos) apresentaram distribuicdes aproximadamente
normal apds tratamento inicial, por isso, foram submetidas a padronizacdo Standard, que
centra as observacfes em média zero e desvio-padrdo unitério, facilitando a extracdo de
padrdes lineares e ndo lineares sem distor¢des significativas causadas por ruidos moderados.

Por outro lado, a variavel-alvo (G(h)) e suas estatisticas, que exibiram caudas longas e
picos acentuados, foram escalonados por Escalonamento Robusto. Essa técnica baseada em
mediana e IQR, é especialmente apropriada por ser insensivel a valores extremos e por
preservar a escala central dos dados.

As variaveis categoéricas sazonais e dependentes do tempo (Estacao e Mes) nao foram
escalonadas, sendo a variavel Estacao representada no intervalo [1, 2, 3,4], correspondente as
quatro estacdes do ano, e a variavel Mes na faixa [1,2,...,11,12] que representa os doze

meses do ano.

4.2.6 Clusterizacdo Hierarquica

A clusterizacdo hierarquica foi empregada com o objetivo de identificar grupos de usinas
FV com padrdes de geracdo similares, de forma a explorar relagdes de dependéncia entre
séries e subsidiar a etapa de modelagem multissérie apresentada no capitulo seguinte. A
analise foi conduzida a partir das séries de geracdo FV das dez usinas selecionadas,
considerando os dados previamente tratados e imputados conforme descrito nas secdes
anteriores.

Para definir a medida de similaridade entre as usinas, foram construidas séries de médias
diarias de geracdo referentes a 50 dias do ano de 2020 para cada usina. Esse conjunto de dias,
pertencente ao primeiro ano do periodo de analise, foi utilizado como amostra representativa
do comportamento de geracdo de cada empreendimento, de modo a viabilizar a comparagéo
entre usinas em uma base temporal comum. Assim, para cada usina obteve-se uma sequéncia
temporal de 50 pontos, cada um correspondente a média diéria da geragdo registrada naquele
dia.

A partir da matriz de distancias DTW entre todas as usinas, aplicou-se o algoritmo de
clusterizacdo hierarquica, no qual as usinas mais similares sdo agrupadas iterativamente em
niveis sucessivos, formando uma estrutura em arvore.

O resultado desse processo é representado por um dendrograma, que ilustra graficamente
as fusdes entre usinas (ou grupos de usinas) em diferentes niveis de distancia. Esse
dendrograma permite visualizar de maneira intuitiva quais usinas apresentam comportamento

mais proximo entre si e em que ponto novos agrupamentos passam a incorporar usinas com
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padrdes mais distintos. A classificacdo final dos agrupamentos, bem como o dendrograma
resultante da aplicacdo da distdncia DTW para cada usina, serd apresentada e discutida no
Capitulo 5.

4.3 Algoritmo TFT

Considerando a expressdo da modelagem TFT vista na Eq. (15), para sua modelagem
foram utilizadas as seguintes entradas por categorias: variavel-alvo (G (h)), correspondente ao
histérico de geracdo FV; covariaveis estaticas, que neste caso, variam com 0 tempo;
covariaveis passadas e covariaveis conhecidas no futuro. A Tabela 7 sintetiza os atributos

utilizados em cada uma dessas categorias.

Tabela 7 - Atributos Selecionados para 0 Modelo TFT

Varidvel-alvo  Covaridveis Estaticas Covariaveis Passadas Covarigveis Conhecidas no Futuro
G(h) Estacao Grned h hora_sen
Mes Gmax.n hora_cos
Gmin n hora_sen X Rad
hora_sen X G(h —1) hora_cos X Rad
hora_cos X G(h — 1) hora_sen X Temp

hora_cos X Temp

Fonte: A Autora (2025).

Para uma avaliacdo abrangente do desempenho preditivo do TFT em distintas condi¢des
operacionais e ambientais, 14 modelos distintos foram treinados. Essa abordagem
multifacetada permitiu investigar a robustez e a adaptabilidade do modelo a diferentes
cenarios de dados, otimizando sua capacidade de generalizag&o.

Além dos atributos listados na Tabela 7, foi incluida uma covariavel categérica estatica
responsavel por identificar a usina em cada série temporal. Nos modelos de previsdo de uma
Unica usina, essa identificacdo é feita pela variavel ID, que corresponde ao nome da usina. Ja
nos modelos multipreditivos, em que sdo previstas simultaneamente duas ou trés usinas,
utiliza-se a variavel Usina, que distingue cada uma das usinas dentro do mesmo conjunto de
entrada.

Foram adicionados indices temporais absolutos e relativos (time_idx e
relative_time_idx) para orientar o TFT sobre a cronologia das séries temporais. Tais
varidveis sdo cruciais para a estrutura do modelo, pois permitem que o modelo reconheca a

posicao absoluta de cada ponto na linha do tempo.
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A Figura 24 ilustra, de forma condensada, o fluxo de informacdo do sistema de previsao
proposto. No nucleo do modelo TFT, camadas de atencdo multi-cabeca e mecanismos de
fusdo temporal identificam padrdes de curto e longo prazo, a0 mesmo tempo em que
quantificam a contribuicdo de cada variavel ao longo do horizonte de previsdo. Por fim, a
saida da modelagem TFT fornece, para cada usina, um vetor de estimativas de geracdo FV
para as 11 horas futuras consideradas, G[hy, h,, ..., h11], permitindo quantificar ndo apenas os

valores previstos, mas também a relevancia relativa das diferentes fontes de informagao

empregadas.
Figura 24 - Diagrama Esquematico da Modelagem TFT
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Os modelos M1 a M8 foram configurados para avaliar o desempenho preditivo do TFT

Fonte: A Autora (2025).

em uma Unica usina FV, com foco no impacto da transformag&o logaritmica da varidvel-alvo.
Nos casos M1, M3, M5 e M7, o modelo foi treinado com geragéo transformada (G g10),
combinando diferentes configuracfes de varidveis. Nos casos M2, M4, M6 e M8, utilizou-se a
varidvel-alvo em sua escala original (MW). A Tabela 8 apresenta em detalhes as

configuracgdes de cada um desses oito modelos.

Tabela 8 - Configuragéo de entrada dos Modelos M1 a M8

Covariaveis

Modelo Varidvel-alvo estaticas Covariaveis passadas Covariaveis conhecidas no Futuro

Estacao - hora_sen
M1 Log10 Mes hora_cos
M2 MW Estacao - hora_sen
Mes hora_cos
hora_sen
Estacao hora_cos

M3 Logl10 Mes - Rad

Temp

M4 MW Estacao - hora_sen
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Mes hora_cos
Rad
Temp
Gmed_h
G
Estacao max_h hora_sen
M5 Log10 Mes Grmin_n hora_cos
hora_sen XG(h—1) -
hora_sen X G(h—1)
Gmed_h
G
Estacao max_h hora_sen
M6 MW Mes Grmin_n hora_cos
hora_sen X G(h—1) -
hora_sen XG(h—1)
G hora_sen
Gmed-h hora_cos
Estacao max_h hora_sen X Rad
M7 Log10 Gmin n -

Mes hora_cos X Rad
hora_sen X G(h—1) hora_sen x Temp
hora_sen X G(h—1) hora cos X Temp

G hora_sen
Gmed-h hora_cos
Estacao max_h hora_sen X Rad
M8 MW Gmin n -

Mes hora_cos X Rad
hora_sen X G(h—1) hora_sen x Temp
hora_sen X G(h—1) hora cos X Temp

Fonte: A Autora (2025).
Nota 1: “-” indica variavel ndo utilizada no modelo correspondente.

Nota 2: Em todas as configurages, é utilizada uma covariavel categérica estatica de identificagdo da usina (ID)

para os modelos de usina Unica (M1-M8).

E importante destacar que a transformagc&o logaritmica foi aplicada apenas no treinamento
do TFT; contudo, durante a avaliacdo, as métricas foram calculadas com os valores
reconvertidos a escala original em MW. Adicionalmente, todos os oito modelos foram
treinados com os dados de geracdo da Usina 1 (CSP).

Os modelos M9 a M14 foram configurados para avaliar o desempenho multipreditivo do
TFT na previsdo simultdnea da geracdo de duas ou trés usinas. Para isso, foram formadas
combinacBes de pares ou trios de usinas com base nos resultados da clusterizagdo hierarquica.
Em todos esses modelos, as variaveis-alvo foram transformadas para a escala logaritmica
(Giog10) durante o processo de treinamento.

Especificamente, os modelos M9, M10, M11 e M12 consideraram usinas FV que
compartilham o mesmo conjunto de varidveis meteoroldgicas, dada a localizacdo geografica
em comum entre elas. Em contraste, os modelos M13 e M14 empregaram dois e trés
conjuntos distintos de bases de dados meteoroldgicos, respectivamente. A Tabela 9 detalha as

configuracdes de entrada adotadas em cada um desses seis modelos.
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Tabela 9 - Configuracéo de entrada dos Modelos M9 a M14

Variaveis- Covariaveis o Covariaveis conhecidas no
Modelos " Covariaveis passadas
alvo estaticas Futuro
Gmedh(l)
Gmax_h(l)
Gin 1" hora_sen
hora_sen x G(h—1)" hora_cos
U] — 1)
M9, M10, Logl0 Estacao hora_sen X G(h—1)
M11 Mes hora_sen X Rad
Log10 (M Gmeay," hora_cos x Rad
Gmax_h(”) hora_sen X Temp
Gmin h(ll) hora_cos X Temp
hora_sen X G(h—1)("
hora_sen x G(h— 1)1
Gmedh(l)
Gmax_h(l)
Gmin_h(l)
hora_sen xG(h—1)"
hora_sen xG(h—1)"
Log10 ® Gmedh(”) hora_sen
G n hora_cos
Estacao max. hora_sen X Rad
M12 Log10 ™ G (D -
Mes min_h hora_cos x Rad
" hora_sen X G(h— 1) hora sen X Temp
Logl — 1) =
0910 hora_sen XG(h—1) hora_cos x Temp
Gomed any
medp,
Gmax_h(”l)
Gmin_h(lll)
hora_sen x G(h — 1)
hora_sen x G(h — 1)
Gmedh(l) hora_sen
G 1 hora_cos
G‘mi‘n_h(l) h R d(l)
0 hora_sen x G(h—1)" ora_sen X .xa 0
Logl10 0 hora_cos x Rad
hora_sen xG(h—1) )
M13 Estacao hora_sen X Temp
Log10 (M Mes G m hora_cos x Temp®
medp
0
Gmaxfh((“)) hora_sen X Rad™
Gmin_n hora_cos x Rad®™
hora_sen X G(h— 1) hora_sen x Temp™
hora_sen X G(h—1)M 0
- hora_cos X Temp!"
Gmea, ™ hora_sen
Gme ’;a) hora_cos
max
Gmin_h(l) 0)
hora_sen xG(h —1)M Zora_sen x gag(l)
Log10 @ hora_sen X G(h —1)® ho(:”:la__sceils xxTe(:np(')
M14 Log10 ™ Estacao G hora_cos x Temp®
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Gmax_h(“l) hora_cos X Rad (™M
Gmin_h(m) hora_sen x Temp("
hora_sen x G(h— 1) hora_cos x Temp("

hora_sen x G(h— 1)

Fonte: A Autora (2025).
Nota 1: Os sobrescritos (1), (I1I) e (lll) indicam, respectivamente, a primeira, segunda e terceira usinas
contempladas em cada modelo multipreditivo (M9 a M14), ndo estando relacionados a numeracéao global das dez
usinas do estudo.
Nota 2: Em todas as configuragdes, é utilizada uma covariavel categdrica estatica de identificagdo das usinas:

Usina para 0s modelos multipreditivos para previsao de duas ou trés usinas (M9-M14).

4.4 Treinamento e Definigcdo de Hiperparametros

Para garantir a robustez e a capacidade de generalizacdo dos modelos, adotou-se uma
divisdo temporal dos dados em trés conjuntos sequenciais.

O conjunto de treinamento abrange o periodo de 1° de janeiro de 2020 a 31 de outubro de
2022 (aproximadamente 70,8% dos registros). Essa extensdo forneceu ao TFT histérico
suficiente para aprender padrfes sazonais e a variabilidade intradiaria. Em seguida, reservou-
se o intervalo de 1° de novembro a 31 de dezembro de 2022 (cerca de 4,2% dos dados) como
conjunto de validacdo. Este conjunto foi utilizado para o ajuste de hiperparametros e para o
monitoramento de sobreajuste por meio de uma abordagem de validacéo por janela deslizante.

Por fim, o conjunto de teste corresponde ao ano completo de 2023 (0s 25% restantes). Sua
avaliacdo foi realizada por meio de janelas deslizantes, nas quais cada janela foi dividida em
uma parte de codificacdo (as 33 horas anteriores) e uma parte de decodificacdo (as 11 horas
previstas). Esse processo gerou 372 janelas ao longo de todos os experimentos, o0 que
contribuiu significativamente para a robustez dos célculos das metricas de avaliacdo dos
modelos.

A Figura 25 apresenta a estrutura de dependéncia temporal de uma das séries de geracdo
FV utilizada na pesquisa, obtida a partir da funcdo de autocorrelacdo (ACF). Observa-se
correlagdes fortemente positivas nas primeiras horas e até a defasagem de aproximadamente
33 horas, seguidas de uma queda brusca em periodos superiores. Essa janela de persisténcia
indica que a informacdo passada até a 332 hora anterior ainda carrega sinal atil para a

previsdo, enquanto a contribuicdo de instantes mais remotos se torna desprezivel.
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Figura 25 - Estrutura de Dependéncia Temporal da Geracdo FV
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Fonte: A Autora (2025).

Com base nesse diagnostico, o Encoder do modelo foi configurado para ingerir as 33
horas antecedentes, garantindo a captura completa dos efeitos de memoria. O Decoder, por
sua vez, foi configurado para prever as proximas 11 horas, 0 que, para esta pesquisa, equivale
a previsdo do proximo dia, considerando que apenas 11 horas diarias de dados foram
utilizadas.

Para a defini¢do dos hiperparametros dos modelos, utilizou-se a ferramenta de otimizacéao
automatica Optuna. Os detalhes dos parametros adotados nas modelagens sdo descritos na
Tabela 10.

Tabela 10 - Hiperpardmetros dos modelos TFT

Hiperparametro Valor Hiperparametro Valor
Hidden_Size 128 Dropout 0.2
Batch_Size 128 Loss Quantile Loss ()
Otimizador AdamwW Attention_Head Size 4

Learning Rate 0.0001 Epocas 100

Fonte: A Autora (2025).

No presente trabalho, os modelos TFT foram treinados utilizando a fungdo de perda
Quantile Loss, com o objetivo de estimar diferentes quantis da distribuicdo condicional da
geragdo FV. Entretanto, dado que o foco da analise comparativa reside na qualidade das
previsdes pontuais, o quantil mediano (0,5) foi adotado como estimativa pontual da geracao.

Dessa forma, todas as métricas de desempenho reportadas nos resultados sdo calculadas a
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partir desse quantil, permitindo uma comparagdo direta com o0s demais modelos
deterministicos avaliados.

O otimizador AdamW é uma variacdo do Adam em que a decaimento de peso € aplicado
apenas apos o ajuste do tamanho do passo individual de cada parametro. Ele foi adotado por
ser apropriado para o treinamento de modelos maiores, com dados complexos e de alta
dimensdo, pois a reducdo de peso desacoplada ajuda a obter melhor generalizacdo e
convergéncia estavel (LLUGSI et al., 2021).

4.5 Avaliacéo

O desempenho dos métodos de previsdo é analisado por meio de métricas que estabelecem
a diferenca entre o valor real (y) e o valor previsto (). Os indices utilizados nesta pesquisa
foram o erro médio absoluto (MAE), a raiz do erro médio quadratico (RMSE), o erro médio
absoluto normalizado (nMAE) e a raiz do erro médio quadratico normalizada (nRMSE).

O MAE e o RMSE quantificam, em unidades da variavel-alvo, o erro médio e sua
disperséo, respectivamente. Ja 0 NMAE expressa 0 erro em termos percentuais, normalizados
pela capacidade instalada de cada usina, o que facilita a comparacdo entre empreendimento
com diferentes poténcias e escalas de geracdo. As expressdes desses indicadores estdo

apresentadas nas Eq. (30) a (32):

N
1 .
MAE = NZ'Yi - 3 (30)
i=1
1 N
RMSE = Nz(y" ~9)° (31)
i=1
100% 1 A
nMAE = ——+ i — 34 (32)

em que y; representa o valor real, ¥; o valor previsto, CAP a capacidade instalada da usina e
N o tamanho do conjunto de teste.

Para aumentar a confiabilidade dos resultados, cada um dos 14 modelos (M1 a M14) foi
treinado e avaliado dez vezes, utilizando dez inicializagfes distintas (run O, run 1, ..., run 9).
Dessa forma, obteve-se, para cada modelo, uma distribuicdo de valores de MAE e RMSE ao
longo das repeticOes, a partir da qual foram calculados o desvio-padrdo do erro médio

absoluto (dp-MAE) e o desvio-padrdo da raiz do erro médio quadratico (dp-RMSE). Esses
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indicadores descritivos permitem avaliar a estabilidade do treinamento e a variabilidade do
desempenho entre diferentes inicializagdes.

Além da analise descritiva, foi conduzida uma analise estatistica inferencial para comparar
0 desempenho dos modelos TFT dois a dois. Para cada par de modelos, foram consideradas as
dez observacOes de MAE obtidas em cada run, formando amostras pareadas. A partir dessas
amostras, foram calculados: a diferenca média entre os modelos; o intervalo de confianca de
95% (1C95%) para essa diferenca média; o valor do teste t pareado, para avaliar se a diferenca
média € estatisticamente distinta de zero sob a suposi¢cdo de normalidade das diferencas; e, o
teste ndo paramétrico de Wilcoxon para amostras pareadas, que ndo exige a hipétese de
normalidade e serve como verificagdo complementar da robustez dos resultados.

A combinacdo das duas abordagens (teste t e Wilcoxon) permite verificar se as diferencas
observadas nas métricas de erro entre dois modelos sdo estatisticamente significativas ou se
podem ser atribuidas apenas a variabilidade decorrente das diferentes inicializacdes. Graficos
de disperséo (MAE de um modelo em funcdo do MAE de outro) e boxplots da distribuicdo de
erros também foram utilizados para auxiliar na interpretacdo visual dessas diferencas.

O procedimento detalhado para a reprodutibilidade desta pesquisa foi apresentado
integralmente neste capitulo. No préximo capitulo, os resultados numéricos e graficos, bem

como as comparacdes estatisticas entre os modelos, serdo discutidos em detalhe.
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5 RESULTADOS E DISCUSSAO

5.1 Imputacdo de Dados Faltantes

No contexto desta pesquisa, as bases de dados de geracdo FV apresentaram uma parcela
de dados faltantes, cujos percentuais estdo detalhados na Tabela 11. Em contrapartida, a base
de dados meteoroldgicos utilizada manteve-se integra, sem qualquer registro de dados
ausentes, o que constitui um ponto favoravel para a confiabilidade das informac6es climaticas
empregadas na modelagem preditiva. A necessidade de tratar adequadamente essas lacunas na
série de geracdo FV é crucial para garantir a robustez e a precisdo dos modelos de previsao
desenvolvidos, evitando vieses e assegurando a representatividade das séries temporais

analisadas.

Tabela 11 - Dados Faltantes em Cada Usina FV

Usina Sigla Dados faltantes (%) | Usina Sigla Dados faltantes (%)
1 CSP 0,01% 6 ITU 0,07%
2 CBJ 0,03% 7 CLA 0,19%
3 CJs 0,08% 8 HOR 0,07%
4 PIR 0,01% 9 CNO 0,10%
5 CSG 0,07% 10 SOL 0,26%

Fonte: A Autora (2025).

A Figura 26 apresenta a validacdo da metodologia de imputacdo de dados ausentes na
geracdo FV por meio de um comparativo com as trés técnicas classicas citadas na secéo 4.2.2:
interpolacdo linear, imputacdo pela media temporal e método dos cinco vizinhos mais
préximos (KNN). Foram analisados, quatro exemplos de dias com trés horas consecutivas
ausentes, em diferentes datas do conjunto de dados: 06/07/2023, 14/06/2023, 12/09/2023 e
11/05/2023. Essas datas foram selecionadas aleatoriamente dentre os dias em que a série de
referéncia (Usina 1 — CSP) apresentava as 11 horas de geracdo FV completas, permitindo
simular artificialmente as lacunas e comparar diretamente os metodos de imputagdo em
relacdo a curva original.

As cores na Figura 26 representam: curva preta — série original (dados completos,
utilizada como referéncia); curva vermelha — imputacdo baseada na curva de radiacdo; curva
verde — imputacdo por interpolacdo linear; curva laranja — imputacdo via KNN; e curva azul —

imputacdo pela média temporal.
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Figura 26 - Validacdo da Imputacdo de Dados na Geracdo FV
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Fonte: A Autora (2025).

Os gréaficos comparativos evidenciam que, em todas as datas analisadas, a imputacdo pela
curva de radiacdo apresentou maior proximidade dos valores originais, com desvios reduzidos
e preservando o comportamento real da curva de geracdo. Em contrapartida, os metodos
tradicionais mostram limitagdes, especialmente em situagcdes com variagdes mais abruptas na
producdo. Por exemplo, no dia 12/09/2023, tanto a interpolacdo linear quanto o KNN
apresentam discrepancias significativas em relacdo ao padrdo observado, suavizando ou
distorcendo a queda de geracdo, enquanto a imputagdo baseada na radiacdo mantém trajetoria
coerente com a série original. A imputacdo pela média apresentou o pior desempenho em
todos os cenérios analisados. A imputacdo pela média temporal é a que apresenta pior
desempenho em todos os cenérios, por ignorar completamente a dindmica de flutuacGes da
geracdo FV ao longo do dia.

Esses resultados ilustram, de forma empirica, a eficAcia da metodologia proposta,
demonstrando que a incorporacdo explicita de informacBes meteoroldgicas auxilia na

reconstrugdo mais fidedigna das séries de geracdo FV e supera técnicas que desconsideram
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tais variaveis contextuais. Assim, a estratégia adotada neste trabalho se mostra mais robusta,

sobretudo em trechos com mudltiplos intervalos de dados ausentes e maior variabilidade da
radiacdo solar.

5.2 Clusterizagdo Hierarquica da Base de Dados de Geragdo FV

A andlise da clusterizacdo hierarquica na base de dados de geracdo FV, com dez usinas,
foi realizada utilizando a distancia DTW e tomando como referéncia a Usina 1 (CSP). O

dendrograma, apresentado na Figura 27, sintetiza a andlise de similaridade entre as séries
temporais.

Figura 27 - Dendrograma resultante da Clusterizacéo Hierarquica
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Fonte: A Autora (2025).

O dendrograma evidencia que a Usina 1 (CSP) apresenta alta similaridade com a Usina 2
(CBJ), seguida pela Usina 7 (CLA). Esse agrupamento inicial ocorre em niveis reduzidos de

distancia DTW, indicando que essas usinas possuem padrdes temporais de geracdo muito
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proximos. Esse resultado é justificavel, pois as trés usinas tém localizacdo geogréafica proxima
e, consequentemente, condigdes climéticas semelhantes.

Um segundo agrupamento é formado pela Usina 8 (HOR), que apresenta similaridade
moderada com a usina de referéncia Usina 1 (CSP). Isso sugere que, embora compartilhem
tendéncias gerais de variagdo da geracdo, exibem diferencas mais significativas na amplitude
e/ou na dindmica intradiéria. O terceiro agrupamento compreende a Usina 5 (CSG) e a Usina
10 (SOL), que apresentam uma distancia DTW consideravel (~100), sendo seguidas pelas
Usinas 6 (ITU), 3 (CJS) e 9 (CNO). Essas diferencas sao justificadas pela maior distancia em
relacdo a usina de referéncia e podem ser decorrentes de diferentes configuragdes de arranjos
FV, variacdo na inclinagdo dos modulos, regimes distintos de manutencdo ou particularidades
operacionais.

A Usina 4 (PIR) aparece em uma posi¢do mais distante na arvore hierarquica e se une as
demais apenas em patamares de distancia muito elevados. Essa distingdo acentuada pode
decorrer da localizacdo geografica no sudeste brasileiro com regime solar e padrdo de
nebulosidade significativamente diferentes da usina de referéncia localizada no nordeste
brasileiro, de particularidades no projeto da usina ou até mesmo de eventos operacionais que
afetaram o desempenho no periodo analisado.

Em sintese, a clusterizacdo hierarquica permite identificar um nucleo de alta similaridade
composto por CSP (1), CBJ (2) e CLA (7), um grupo intermediario com usinas de
comportamento moderadamente similar, como HOR (8), CSG (5) e SOL (10), e um
subconjunto mais afastado, no qual PIR (4) se destaca como um caso atipico no conjunto
avaliado.

A correlacdo de Pearson foi calculada com o objetivo de checar os resultados da
clusterizacdo hieréarquica, oferecendo uma segunda opinido sobre o grau de proximidade entre

as usinas. O resultado pode ser visto na Tabela 12.

Tabela 12 - Matriz de Correlacéo de Pearson das Usinas FV

Usinal Usina2 Usina3 Usina4 Usina5 Usina6 Usina7 Usina8 Usina9 Usina 10

CSP CBJ CJS PIR CSG ITU CLA HOR CNO SOL
CSP 1,00 0,99 0,59 0,67 0,53 0,91 0,98 0,87 0,34 -0,15
CBJ 0,99 1,00 0,59 0,65 0,51 0,89 0,99 0,86 0,32 -0,14
CJs 0,59 0,59 1,00 0,41 0,61 0,65 0,60 0,67 0,38 0,03
PIR 0,67 0,65 0,41 1,00 0,41 0,61 0,66 0,63 0,14 -0,07
CSG 0,53 0,51 0,61 0,41 1,00 0,53 0,50 0,54 0,47 0,02
ITU 0,91 0,89 0,65 0,61 0,53 1,00 0,90 0,97 0,34 -0,19
CLA 0,98 0,99 0,60 0,66 0,50 0,90 1,00 0,87 0,34 -0,17
HOR | 0,87 0,86 0,67 0,63 0,54 0,97 0,87 1,00 0,29 -0,18
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CNO | 0,34 0,32 0,38 0,14 0,47 0,34 0,34 0,29 1,00 -0,17
soL | -015 -0,14 0,03 -0,07 0,02 -0,19 -017 -0,18 -0,17 1,00
Fonte: A Autora (2025).

A andlise da primeira coluna da matriz de correlacdo indica que a Usina 1 (CSP) apresenta
altissima correlacdo com CBJ (0,99) e CLA (0,98), confirmando que essas trés usinas
compdem o nucleo mais préximo em termos de variacao linear da geracdo. Esses resultados
séo coerentes com o dendrograma, no qual CSP se agrupa primeiramente com CBJ e CLA em
niveis reduzidos de distancia DTW.

A Usina HOR apresenta correlacdo elevada com a CSP (0,87) e aparece proxima no
dendrograma, embora um pouco mais distante que CBJ e CLA. Isso corrobora a consisténcia
entre as duas analises. Porém, foram observadas algumas inconsisténcias. As usinas PIR
(0,67) e CSG (0,53) tém correlagdo moderada com a CSP. No dendrograma, a PIR aparece
mais afastada, enquanto a CSG se mostra mais proxima, o que contradiz a ordem de
correlacdo. No caso da SOL, a correlacdo com a CSP é negativa (-0,15), indicando um
comportamento oposto de geracdo, mas ela se agrupa na mesma hierarquia que a CSG no
dendrograma.

Portanto, enquanto as andlises de correlacdo de Pearson (que descrevem a relacdo linear
entre as seéries) e Clusterizacdo Hierarquica (que considera diferencas de forma e
deslocamentos temporais) se mostraram consistentes em alguns casos, elas revelaram
divergéncias em outros, destacando as limitaces de se usar apenas uma meétrica de
similaridade. Por essa razdo, os resultados da Clusterizacdo Hierarquica foram considerados
como a analise principal, pois fornecem uma visdo mais completa da similaridade entre as

usinas.

5.3 Analise de Desempenho dos Modelos M1 a M8

5.3.1 Desempenho médio e variabilidade

A Tabela 13 compara o desempenho dos modelos M1 a M8, cujas configuracbes de
entrada foram descritas na sec¢do 4.3. Em todos os casos, as metricas de avaliacdo (MAE, dp-
MAE, RMSE, dp-RMSE e nMAE) foram calculadas na escala original de geragcdo (MW),
ainda que alguns modelos tenham sido treinados com a variavel-alvo transformada em

logaritmo decimal (G)og10)- Todas as oito configuracdes foram aplicadas aos dados da Usina 1

(CSP) e, para o célculo de nMAE, considerou-se a capacidade instalada de 67 MW. Os
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valores apresentados correspondem a média das dez inicializagBes (runs) realizadas para cada
modelo, enquanto dp-MAE e dp-RMSE quantificam a variabilidade dos erros entre essas

repeticoes.

Tabela 13 — Comparativo de Desempenho - Modelos M1 a M8
MAE dp-MAE RMSE dp-RMSE

Modelo (MW) (MW) (MW) (MW) NMAE (%)
M1 9,24 0,26 12,29 0,39 14%
M2 8,99 0,17 12,27 0,33 13%
M3 7,24 0,20 10,80 0,29 11%
M4 7,11 0,36 10,71 0,40 11%
M5 9,29 0,29 12,43 0,44 14%
M6 9,27 0,53 12,76 0,70 14%
M7 7,13 0,22 10,64 0,31 10%
M8 7,03 0,20 10,64 0,40 10%

Fonte: A Autora (2025).

Os modelos M1 e M2 podem ser vistos como configuracdes de base (baseline). Eles
utilizam apenas informacfes sazonais e de hora do dia como covariaveis adicionais, alem do
histérico de geracao incorporado pela propria variavel-alvo (este ultimo presente em todas as
configuracBes avaliadas). Nessa configuracdo, os erros médios demonstram-se relativamente
elevados (MAE de 9,24 MW e nMAE de 14% para M1, e 8,99 MW e 13% para M2). Os
desvios-padrdao associados (dp-MAE de 0,26 e 0,17; dp-RMSE de 0,39 e 0,33,
respectivamente) indicam uma variabilidade moderada entre as dez inicializagGes. A diferenca
entre M1 (logl0) e M2 (MW) é pequena, 0 que sugere que a transformacdo logaritmica,
isoladamente, ndo produz ganhos expressivos quando o conjunto de covariaveis adicionais é
limitado.

A inclusdo de varidveis meteorologicas (radiacdo solar global e temperatura ambiente) nos
modelos M3 e M4 esta associada a uma reducédo consistente dos erros médios em relacao aos
modelos de referéncia. O MAE diminui para 7,24 MW (M3) e 7,11 MW (M4), com nMAE
em torno de 11% e RMSE préximos de 10,8 MW. Os valores de dp-MAE (0,20 e 0,36) e dp-
RMSE (0,29 e 0,40) permanecem abaixo de 0,5 MW, indicando desempenho relativamente
estavel entre as execugOes. Esses resultados apontam que as covariaveis meteoroldgicas
contribuem de forma relevante para explicar a variabilidade da geragéo FV.

Nos modelos M5 e M6, foram incorporados apenas atributos derivados da propria série de
geracdo (média, maximo, minimo diarios e termos de defasagem), sem o uso das variaveis

meteorologicas. Nessa configuracéo, os erros médios (MAE em torno de 9,3 MW e nMAE de
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14%) s&o muito proximos aos dos modelos baseline M1 e M2, ndo se observando melhora
expressiva de precisdo. Além disso, verifica-se aumento da variabilidade, especialmente em
M6, que apresenta os maiores valores de dp-MAE (0,53) e dp-RMSE (0,70) dentre os oito
modelos, sugerindo maior sensibilidade as diferentes inicializagdes.

A combinacgdo simultanea de varidveis meteoroldgicas e atributos de geragdo historica,
implementada nos modelos M7 e M8, estd associada aos menores valores médios de erro
entre as configuracOes avaliadas. O modelo M7 (treinado na escala logaritmica) apresenta
MAE de 7,13 MW, nMAE de 10% e RMSE de 10,64 MW, com dp-MAE de 0,22 e dp-RMSE
de 0,31. O modelo M8, analogo em escala MW, obtém valores médios muito proximos (MAE
de 7,03 MW, com dp-MAE de 0,20, mesmo RMSE de 10,64 MW e nMAE de 10%), embora
com leve aumento na dispersdo (dp-RMSE de 0,40). Esses resultados indicam, em termos
médios, uma tendéncia de melhor desempenho das configuragdes mais completas, nas quais
se combinam meteorologia, atributos historicos e transformacéao logaritmica.

Por fim, destaca-se que as diferencas observadas na Tabela 13 refletem tendéncias médias
de desempenho e ndo implicam, por si s6, em superioridade estatisticamente comprovada de
um modelo sobre outro. A verificacdo formal dessa significancia € apresentada na subsecao
seguinte 5.3.2, por meio de testes estatisticos dois a dois (teste t pareado e teste de Wilcoxon),
aplicados as distribuicdes de erro obtidas nas dez inicializacdes de cada modelo.

Alem da comparacgdo das métricas de erro, é importante analisar como o TFT utiliza as
diferentes entradas ao construir suas previsdes, de modo a verificar se 0 modelo esta de fato
explorando informacdes coerentes do ponto de vista fisico e operacional. Nesse sentido, a
interpretabilidade é investigada por meio da importancia relativa das varidveis no encoder e
no decoder do modelo. Entre as configuragdes avaliadas (M1-M8), o modelo M7 foi
selecionado como estudo de caso para a analise de interpretabilidade por representar uma das
configuragcBes mais completas de entradas, combinando variaveis meteorologicas, atributos
derivados da propria série de geracdo e transformacdo logaritmica da variavel-alvo. Ressalta-
se que os demais modelos exibem padrdes de importancia qualitativamente semelhantes.

A interpretabilidade do modelo M7 pode ser analisada pela importancia das variaveis no
encoder e no decoder, apresentada na Figura 28. No encoder, observa-se que a variavel mais
relevante é a propria série de geragdo em escala logaritmica (G, 410), Seguida pelas interacdes
hora_sen X Rad e hora_sen, que capturam o padrédo diario modulando a geracéo pelo ciclo
diurno da radiacdo solar. A variavel agregada da propria série, G, p, € @ variavel Mes

também apresentam contribuicdo expressiva, indicando que o modelo utiliza simultaneamente
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informacdo historica de geracdo e sazonalidade anual para construir o contexto de longo

prazo.

Figura 28 - Interpretabilidade das Variaveis do Modelo M7
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Fonte: A Autora (2025).

No decoder, a prioridade se desloca para as variaveis diretamente associadas ao passo de
previsdo corrente. A mais importante passa a ser a interacdo hora_sen X G(h — 1), que
combina a defasagem imediata da geracdo com a posi¢do intradiaria, evidenciando forte
dependéncia de curto prazo entre instantes consecutivos. Em seguida destacam-se a interacdo
com temperatura (hora_sen X Temp) e radiacdo solar (hora_sen X Rad). Ja variaveis mais
agregadas ou sazonais, tém importancia relativamente baixa no decoder, sugerindo que a
sazonalidade é principalmente capturada na etapa de codificacdo, enquanto a etapa de
decodificacédo refina a previsdo com base no estado imediatamente anterior e nas condicoes
meteoroldgicas locais.

A Figura 29 ilustra a comparagéo entre a geracéo real e a previsao pontual (quantil 0,5) do
modelo M8 em dois dias distintos do conjunto de teste (16/02/2023 e 06/11/2023),
considerando as 11 horas diarias utilizadas neste estudo. Esses dias foram selecionados como
exemplos em que o perfil didrio de geracdo FV ndo apresenta um comportamento “ideal”,
observando-se discrepancias pontuais possivelmente associadas a variabilidade intradiaria do
recurso solar.

Além disso, destacam-se pontos de decaimento que podem ser indicativos de eventos
operativos ndo puramente relacionados a radiacdo solar, como episéddios de curtailment. Este
fendmeno consiste no corte ou limitagdo da geracdo por parte do ONS e tem se tornado um
desafio crescente na operacdo do SIN. Motivados por restricdes de escoamento na rede ou

excesso de oferta, esses cortes forcados impdem uma reducéo artificial na producdo que nao



84

depende da disponibilidade solar, representando um desafio adicional para a precisdo de
modelos preditivos como o TFT.

Figura 29 - Comparativo Real x Previsto para o0 Modelo M8
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Fonte: A Autora (2025).

Pode-se observar o comportamento da geracdo FV em 16/02/2023, em que a curva azul
representa os valores medidos e a linha tracejada laranja indica a previsdo pontual do modelo
M8. A curva prevista do modelo segue de forma consistente o formato geral da curva diaria,
reproduzindo adequadamente a rapida subida matinal, o platé proximo ao pico de geragédo e o
declinio ao final do dia. Pequenas discrepancias ocorrem em horérios especificos, com leve
subestimacdo no pico e superestimacdo em parte do periodo vespertino, mas, no conjunto, a
trajetdria prevista permanece proxima da série observada.

Referente ao dia 06/11/2023, nota-se novamente que a curva prevista segue o padrdo da
curva real, capturando a tendéncia de elevacdo e reducdo da geracdo. Entretanto, esse
exemplo evidencia flutuagbes mais acentuadas na curva real, especialmente em torno do
horéario de pico, que possivelmente pode ser devido ao curtailment e que ndo sdo totalmente
captadas pelo modelo, resultando em uma curva prevista mais suavizada. Esse
comportamento é condizente com a natureza do modelo TFT, que tende a suavizar variagoes

muito abruptas para manter a aderéncia global ao perfil diario.

5.3.2 Testes de significancia estatistica

Com o objetivo de complementar a analise descritiva apresentada na Secdo 5.3.1, esta
subsecdo investiga se as diferencas de desempenho entre os modelos M1 a M8 séo
estatisticamente relevantes ou se podem ser atribuidas apenas a variabilidade decorrente das
diferentes inicializagdes. Para isso, foram consideradas, para cada modelo, as dez observagoes
de MAE obtidas nas runs independentes, de forma a compor amostras pareadas de erro para

cada par de modelos comparado.
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A Tabela 14 apresenta os valores de MAE de cada um dos oito modelos em cada uma das
dez inicializagdes. Essa matriz de resultados permite visualizar, de maneira mais detalhada, o
comportamento de cada configuracdo ao longo das diferentes execucfes: observa-se que
alguns modelos apresentam valores de MAE mais concentrados em torno de uma faixa
estreita, indicando maior estabilidade entre runs, enquanto outros exibem maior
espalhamento, coerente com os maiores valores de dp-MAE discutidos anteriormente. Em
particular, nota-se que os modelos com melhores métricas medias (como M3, M4, M7 e M8)
tendem a concentrar seus MAES em niveis mais baixos, ao passo que modelos como M1, M2,
M5 e M6 apresentam, em geral, valores mais elevados e maior variabilidade entre

inicializages, o que reforca as tendéncias ja apontadas na analise descritiva.

Tabela 14 - Resultados de MAE por run para os modelos M1 a M8

n MAE (MW)
M1 M2 M3 M4 M5 M6 M7 M8
0 9,10 8,84 7,37 7,90 9,19 9,63 7,14 7,33
1 8,83 9,02 7,51 6,96 9,07 9,71 7,20 7,26
2 9,30 8,83 7,16 711 9,09 9,31 7,54 7,19
3 9,62 9,38 6,96 6,97 8,96 9,15 7,42 6,99
4 9,25 9,02 7,09 6,65 9,25 8,88 717 6,80
5 9,18 8,91 7,20 7,23 9,08 9,18 6,88 7,09
6 9,27 8,94 7,10 6,83 8,64 8,73 7,09 6,90
7 9,13 8,80 7,47 7,50 9,49 8,86 6,96 6,87
8 9,69 9,09 7,06 7,03 9,18 8,79 7,03 712
9 8,99 9,09 7,51 6,97 8,77 10,41 6,89 6,77
Média 9,24 8,99 7,24 711 9,07 9,27 713 7,03
dp 0,26 0,17 0,20 0,36 0,24 0,53 0,22 0,20

Fonte: A Autora (2025).

A partir dos valores de MAE por inicializacdo, foram construidas as comparagdes dois a
dois entre os modelos de interesse, a saber: M1 vs. M2, M3 vs. M4, M5 vs. M6, M7 vs. M8 e,
por fim, M4 vs. M8, sendo estes os dois modelos com menores MAE médios. Para cada par,
calculou-se: (i) a diferenca média de MAE entre os modelos; (ii) o intervalo de confianga
(1C95%) dessa diferenca; e (iii) os testes t pareado e de Wilcoxon. A Tabela 15 apresenta 0s
resultados do teste de significancia dois a dois dos modelos M1 a M8.
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Tabela 15 — Teste de significancia estatistica pareada dos modelos M1 a M8

Par Diferenca média IC 95% p Teste t p Teste Wilcoxon
M1 vs. M2 0,25 [0,08 —0,42] 0,0096 0,0098
M3 vs. M4 0,13 [-0,11 -0,36] 0,2517 0,2656
M5 vs. M6 -0,19 [-0,65 - 0,27] 0,3666 0,4316
M7 vs. M8 -0,10 [-0,07 - 0,27] 0,2104 0,2871
M4 vs. M8 0,08 [-0.14 -0,30] 0,4138 0,7695

Fonte: A Autora (2025).

Ao analisar os resultados, verifica-se que a Unica diferenca com relevancia estatistica
confirmada (p < 0,05) ocorre na configuracdo mais simples (baseline). Conclui-se que, para
modelos que utilizam apenas informacdes sazonais e historico, o treinamento na escala
original (MW) € superior ao uso da escala logaritmica.

Para os demais pares que envolvem variaveis meteoroldgicas ou atributos derivados (M3 a
M8), a conclusdo é de que ndo ha evidéncia estatistica de superioridade entre as diferentes
escolhas de escala ou incrementos de atributos. Embora existam variacbes numéricas nas
médias (como o M8 apresentando o menor MAE absoluto de 7,03 MW), os p-valores
superiores a 0,05 indicam que essas diferencas podem ser fruto da variabilidade das
inicializagOes e ndo de uma vantagem real do modelo.

Em suma, a analise estatistica revela que, embora existam tendéncias numéricas
favoraveis as configuracdes mais completas, apenas a transi¢do da escala logaritmica para a
original no modelo baseline (M2 vs. M1) resultou em ganho de desempenho robusto. Para 0s
demais modelos, as diferencas observadas ndo possuem significancia estatistica, sugerindo
que a capacidade preditiva do modelo TFT proposto atinge um patamar de estabilidade a

partir da inclusdo das covariaveis meteoroldgicas.

5.4 Analise de Desempenho dos Modelos Multipreditivos M9 a M14

5.4.1 Desempenho médio e variabilidade

Para analisar a aprendizagem multipreditiva do TFT, foram construidos modelos com
duas usinas (M9, M10, M11 e M13) e com trés usinas (M12 e M14). A formag&o desses pares
e trios levou em conta os resultados da clusterizacdo hierarquica apresentada na Secédo 5.2,
gue permitiu agrupar usinas com comportamento semelhante. Os agrupamentos considerados
em cada modelo, bem como a capacidade instalada de cada usina, estdo descritos na Tabela
16.
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Tabela 16 - Descricdo das usinas dos modelos M9 a M14

Modelo Conjunto de usinas (CAP instalada em MW)
M9 1 - CSP (67 MW); 2 — CBJ (80 MW)
M10 1—CSP (67 MW); 7 — CLA (60 MW)
M11 2 — CBJ (80 MW); 7 — CLA (60 MW)
M12 1—CSP (67 MW); 2 — CBJ (80 MW); 7 — CLA (60 MW)
M13 1— CSP (67 MW); 8 — HOR (103 MW)
M14 1—CSP (67 MW); 5 — CSG (864 MW); 8 — HOR (103 MW)

Fonte: A Autora (2025).

A Tabela 17 sintetiza o desempenho dos modelos multipreditivos M9 a M14,
apresentando a média e a variabilidade de dez inicializacdes para cada configuracdo. Todas as
métricas foram calculadas na escala original (MW), embora os modelos tenham sido treinados

com a variavel-alvo em logaritmo decimal (Gjo410)-

Tabela 17 - Comparativo de Desempenho - Modelos M9 a M14
dp-MAE dp-RMSE

Modelo Usinas MAE (MW) (MW) RMSE (MW) (MW) NMAE (%)
M9 1 (CSP) 6,86 0,16 10,40 0,27 10%
2 (CBJ) 7,86 0,21 11,68 0,40 10%
M0 1 (CSP) 7,04 0,33 10,60 0,33 11%
7 (CLA) 7,30 0,40 10,93 0,31 12%
ML1 2 (CBJ) 7,70 0,28 11,72 0,42 10%
7 (CLA) 7,03 0,21 11,02 0,32 12%
1 (CSP) 6,85 0,11 10,41 0,30 10%
M12 2 (CBJ) 7,53 0,24 11,43 0,44 9%
7 (CLA) 6,95 0,07 10,80 0,23 12%
M13 1 (CSP) 6,84 0,09 10,56 0,19 10%
8 (HOR) 11,06 0,30 15,56 0,30 11%
1 (CSP) 6,90 0,08 10,42 0,21 10%
M14 5 (CSG) 52,91 0,75 77,76 1,35 6%
8 (HOR) 10,76 0,25 15,37 0,34 10%

Fonte: A Autora (2025).

Nos modelos compostos por duas usinas que compartilham o mesmo conjunto de
variaveis meteorologicas (M9, M10 e M11), observa-se que os valores medios de MAE se
situam, em geral, na faixa de 6,8 MW a 7,9 MW, com nMAE variando entre 10% e 12%. Os
desvios-padrdo (dp-MAE e dp-RMSE) séo relativamente baixos (tipicamente inferiores a 0,5
MW), o que sugere uma variabilidade moderada dos erros entre as dez inicializacdes. Esses

resultados evidenciam que a arquitetura TFT é capaz de aprender, de forma conjunta, o
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comportamento de usinas no mesmo campo meteorolégico sem perda de precisdo, mantendo
niveis de erro semelhantes aos obtidos na modelagem individual (como visto na Tabela 13).

No caso do modelo M13, que passa a considerar duas usinas associadas a conjuntos
distintos de dados meteorologicos, observa-se um comportamento ligeiramente mais
heterogéneo entre as séries: enquanto uma das usinas mantém MAE em torno de 6,84 MW e
NMAE de 10%, a outra apresenta MAE mais elevado (11,06 MW) e RMSE de 15,56 MW,
embora com nMAE ainda em patamar proximo (11%). Essa diferenca sugere que, quando o
modelo passa a lidar simultaneamente com usinas submetidas a condi¢fes climaticas e bases
meteoroldgicas distintas, a tarefa de previsdo torna-se mais desafiadora, ainda que o
desempenho relativo (em termos percentuais) permaneca adequado.

Nos modelos com trés usinas, a configuracdo M12 representa o cenario em que todas as
usinas compartilham o mesmo conjunto de varidveis meteoroldgicas. Nessa configuracao, 0s
valores de MAE variam aproximadamente entre 6,85 e 7,53 MW, com nMAE entre 9% e
12%. Os desvios-padrdo de MAE e RMSE sdo particularmente baixos (dp-MAE entre 0,07 e
0,24 MW), o que indica um comportamento bastante estavel entre as inicializacbes. Esses
resultados mostram que o TFT é capaz de acomodar a previsdo conjunta de trés usinas sob o
mesmo regime meteoroldgico sem aumento expressivo dos erros médios, mantendo
desempenho semelhante ao observado nos modelos com duas usinas.

Por outro lado, o modelo M14 agrega trés usinas associadas a bases meteoroldgicas
distintas, incluindo uma usina de grande porte. Nessa configuracdo, observa-se maior
heterogeneidade nos erros absolutos: enquanto duas usinas mantém MAE em faixas proximas
as anteriores (cerca de 6,90 e 10,76 MW, com nMAE de 10%), a usina de maior capacidade
apresenta MAE e RMSE bastante elevados em termos absolutos (52,91 MW e 77,76 MW,
respectivamente), embora com nMAE relativamente baixo (6%). Esse comportamento indica
que, para usinas de grande porte, a escala em MW amplifica naturalmente o erro absoluto, de
modo que a métrica normalizada (nMAE) torna-se mais adequada para comparacao entre
empreendimentos de diferentes tamanhos. Ainda assim, 0s desvios-padrdo permanecem
controlados, sugerindo que o treinamento multipreditivo € estavel mesmo nesse cenario mais
complexo.

Quanto a interpretabilidade dos modelos multipreditivos, selecionou-se o modelo M12
como estudo de caso por representar uma das configuragdes mais completas de entradas; nota-
se que os demais apresentam comportamento semelhante. Assim, a Figura 30 ilustra a

importancia das variaveis para a previsdo realizada pelo modelo M12.
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Figura 30 - Interpretabilidade das Variaveis do Modelo M12
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Fonte: A Autora (2025).

Quanto ao Encoder do modelo M12, observa-se que quase um terco da sua atencdo é
conferida a variavel-alvo transformada de geragdo (Gjog10), COM cerca de 30%, o que
confirma a primazia do historico imediato da série no estabelecimento do estado anterior. Em
seguida, a covariavel Estacao assume papel relevante (~ 13%), pois a atencdo visualiza
padrdes repetidos nas trés usinas 1(CSP), 2 (CBJ) e 3 (CLA), tornando fatores de calendario
mais relevantes para distinguir variac@es que ndo sao capturadas por defasagens de tempo. A
interacdo (hora_sen X Rad) aparece logo ap6s (~ 11%), indicando a importancia do vinculo
entre o ciclo diario e o recurso solar.

No Decoder, a maior parte da atencdo (~ 17%) é dedicada a interacdo entre a hora e 0
valor de geracdo do passo imediatamente anterior (hora_cos X G(h — 1)), sinalizando que
este é o principal guia para cada previsao. Em seguida, a varidvel Mes (~ 14%) e a interacao
(hora_sen X Rad) (~ 12%) se destacam. Esse rearranjo demonstra como o TFT combina
informacdes de curto prazo com marcadores de calendario para refinar cada previséo horaria,
adaptando seu foco da construcdo de contexto (Encoder) para a geracdo de previsao
(Decoder).

A Figura 31 ilustra a comparagéo entre a geracéo real e a previsao pontual (quantil 0,5) do
modelo M12 para o dia 16/02/2023, considerando as 11 horas didrias utilizadas neste estudo,
para as trés usinas consideradas (CSP, CLA e CBJ). Esse dia foi selecionado como exemplo
em que o perfil didrio de geracdo FV ndo apresenta um comportamento “ideal”, observando-
se discrepancias pontuais possivelmente associadas a variabilidade intradiaria do recurso

solar.
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Figura 31 — Comparativo 1 Real x Previsto para 0 Modelo M12
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Fonte: A Autora (2025).

Em CSP, o modelo tende a suavizar o pico de geracdo e subestimar parte do periodo da
tarde, embora permaneca proximo dos valores observados. Em CLA, nota-se um ligeiro
deslocamento para baixo da curva prevista em relacdo a real, principalmente a partir do meio
do dia, indicando subestimacdo moderada da producdo. JA& em CBJ, o comportamento é
oposto pois 0 modelo superestima a geracdo ao longo do dia, mas acompanha bem o inicio e 0
final do periodo diurno. Essas discrepancias pontuais ilustram a variabilidade intradiaria do
recurso solar e mostram que, embora o perfil diario ndo seja perfeitamente “ideal”, 0 modelo
M12 consegue manter boa coeréncia global entre as previsdes e as séries observadas nas trés
usinas.

A Figura 32, por sua vez, ilustra a comparacao entre a geracdo real e a previsdo pontual
(quantil 0,5) do modelo M12 para o dia 06/11/2023. Observa-se que 0 modelo M12 continua
reproduzindo o formato geral da curva diaria de geragéo das trés usinas (CSP, CLA e CBJ).

Nesse dia, em especifico, verificam-se quedas abruptas de geracdo em horarios centrais do
dia, seguidas de recuperacdes rapidas, que ndo sdo acompanhadas pelas trés curvas previstas,
a qual mantém um perfil mais estavel. Essas discrepancias locais, especialmente em horarios

nos quais seria esperado um patamar quase constante de geracdo, podem estar associadas a
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eventos operativos ndo estritamente relacionados a radiacdo solar, como episddios de
curtailment ou restricBes impostas pelo sistema elétrico. Nesses casos, 0 modelo tende a
seguir o padrdo médio condicionado as varidveis meteoroldgicas, o que explica o
descolamento pontual entre a previsao e os valores medidos, mesmo mantendo boa aderéncia
ao formato global da curva diéria.

Figura 32 - Comparativo 2 Real x Previsto para o0 Modelo M12
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Fonte: A Autora (2025).
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5.4.2 Testes de significancia estatistica

Com o objetivo de complementar a andlise descritiva, esta subsecdo investiga se as
diferencas de desempenho entre os modelos M9 a M14 sdo estatisticamente relevantes ou se
podem ser atribuidas apenas a variabilidade decorrente das diferentes inicializacGes. Para o
estudo estatistico, foram considerados os modelos M9, M10, M12, M13 e M14, que incluem a
Usina 1 (CSP) em sua configuragdo. Em cada um desses modelos, utilizaram-se as dez
observagdes de MAE obtidas nas runs independentes, formando amostras pareadas de erro
para cada par de modelos comparado.

A Tabela 18 apresenta os valores de MAE de cada um dos cinco modelos em cada uma
das dez inicializagcGes. Essa matriz de resultados permite visualizar, de maneira mais

detalhada, o comportamento de cada configuracdo ao longo das diferentes execucdes.
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Tabela 18 - Resultados de MAE por run para os modelos M9 a M14

MAE (MW)

run M9 M10 M12 M13 M14
0 6,87 6,89 6,77 6,86 6,99
1 7,08 7,05 6,69 6,92 6,93
2 6,98 7,78 7,07 7,00 6,85
3 6,98 6,92 6,93 6,91 6,87
4 6.8 6,69 6,91 6,72 6,92
5 7.1 7,43 6,86 6,79 6,76
6 6,67 7,03 6,9 6,81 6,89
7 6,7 6,75 6,91 6.8 6,95
8 6,71 7,00 6,67 6,73 7,01
9 6,74 6,91 6,87 6,86 6,82
Média 6,86 7,05 6,86 6,84 6,90
dp 017 0,34 0,12 0,09 0,08

Fonte: A Autora (2025).

A partir dos valores de MAE por inicializacdo, foram construidas as compara¢des dois a
dois entre os modelos de interesse, a saber: M9 vs. M10, M9 vs. M13, M10 vs. M13, M12 vs.
M14 e, por fim, M12 vs. M13, sendo estes os dois modelos com menores MAE médios e dp-
MAE. Para cada par, calculou-se: (i) a diferenca média de MAE entre os modelos; (ii) o
intervalo de confianga (IC95%) dessa diferenca; e (iii) os testes t pareado e de Wilcoxon. A
Tabela 19 apresenta os resultados do teste de significancia dois a dois dos modelos M9 a
M14.

Tabela 19 — Teste de significancia estatistica pareada dos modelos M9 a M14

Par Diferenca média IC 95% p Teste t p Teste Wilcoxon
M9 vs. M10 -0,18 [-0,38 —0,02] 0,0657 0,1055
M9 vs. M13 0,04 [-0,06 —0,14] 0,4082 0,4922
M10 vs. M13 0,22 [-0,01 - 0,45] 0,0599 0,0371
M12 vs. M13 0,02 [-0,07 —0,10] 0,6445 0,4453
M12 vs. M14 -0,04 [-0,17 — 0,08] 0,4741 0,7891

Fonte: A Autora (2025).

De modo geral, observa-se que as diferencas medias de erro entre os pares avaliados séo
pequenas em magnitude (entre —0,18 e 0,22 MW) e que, na maior parte dos casos, 0S

intervalos de confianca de 95% incluem o zero, com p-valores acima de 0,05 tanto para o
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teste t pareado quanto para o teste de Wilcoxon. Isso indica que, para os pares M9 vs. M10,
M9 vs. M13, M12 vs. M13 e M12 vs. M14, ndo ha evidéncia estatistica de que um modelo
supere consistentemente o0 outro em termos de MAE, sendo as diferencas observadas
compativeis com a variabilidade associada as diferentes inicializagdes.

O unico caso em que se observa algum indicio de diferenca é o par M10 vs. M13, cuja
diferenga média de 0,22 MW (M10 — M13) sugere um MAE ligeiramente maior para M10,
com o teste de Wilcoxon indicando significancia ao nivel de 5% (p = 0,0371), enquanto o
teste t apresenta um p-valor ligeiramente acima desse limiar (p = 0,0599). Esse resultado
aponta para uma possivel vantagem do modelo M13 em relacdo a M10, porém com evidéncia
estatistica mais fraca e dependente do teste considerado, o que recomenda uma interpretacao
cautelosa.

Em sintese, a analise estatistica dos modelos multipreditivos revela que, na maior parte
das comparacgdes, o TFT apresenta desempenho semelhante entre as diferentes configuragoes
(pares e trios de usinas, com bases meteorolégicas compartilhadas ou distintas). As diferencas
numéricas em MAE observadas na Tabela 19 ndo se traduzem, em geral, em superioridade
estatisticamente robusta de um modelo sobre outro, sugerindo que o esquema multipreditivo
proposto é capaz de manter um patamar de desempenho relativamente estavel frente as

variacdes na composi¢do dos conjuntos de usinas e de covariaveis meteorolégicas.

5.5 Comparativo com outras Topologias

Para avaliar o desempenho da arquitetura TFT proposta, realizou-se uma analise
comparativa com as topologias Persisténcia, MLP e LSTM. A Tabela 20 descreve o0s
hiperparametros que foram considerados nos treinamentos das duas redes MLP e LSTM, o0s
quais foram definidos por meio da técnica de busca em grade (grid search). Ja a configuragdo

da Persisténcia adota como valor previsto a observacdo imediatamente anterior a janela de

previsao.
Tabela 20 - Hiperparametros dos modelos MLP e LSTM
Hiperparametro Valor Hiperparametro Valor
MLP
Activation SiLU (SiLU =x (ﬁ)) Dropout 0,0
Batch_Size 128 Patience 15

Otimizador AdamwW Min_delta le-4
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Learning Rate 5e-4 Epocas 200
LSTM
Layers 1 Dropout 0,1
Batch_Size 128 Patience 15
Otimizador Adamw Min_delta le-4
Learning Rate 5e-4 Epocas 200
WeightDecay 0,0001

Fonte: A Autora (2025).

Foram treinados os modelos M7, M9 e M12 utilizando as topologias Persisténcia, MLP e

LSTM e os resultados médios das métricas de desempenho obtidos sdo apresentados na

Tabela 21.
Tabela 21 — Comparativo do Desempenho das Topologias TFT, MLP e LSTM
MLP LSTM
Modelo  Usinas MAE 9 rvse 9 ovae | mae % Rvse 9 maE
MW) MAE MW) RMSE o) | (MW) MAE MW) RMSE )
(MW) (MW) 0 (MW) (MW) 0
M7 CSP 929 011 11,99 008 14% | 10,08 0,16 1282 0,13 15%
M9 CSP/CBJ | 10,15 0,13 1295 009 15% | 10,17 0,16 13,04 012 15%
M12 CSP/CBJ/CLA| 10,20 0,10 13,00 0,10 15% | 10,39 0,19 13,07 0,10 15%
TFT Persisténcia
Modelo  Usinas MAE J&'E RMSE Rl?/?éE NMAE | MAE RMSE nMAE
0, 0,
(MW) (MW) (MW) (MW) (%) | (MW) (MW) (%)
M7 CSP 713 022 1064 031 10%
M9 CSP/CBJ 6,86 0,16 10,40 027 10% | 26,77 30,58 40%
M12 CSP/CBJCLA| 685 011 1041 030 10%

Fonte: A Autora (2025).

A Tabela 21 compara o desempenho das trés topologias de redes neurais (MLP, LSTM e

TFT) e do método de Persisténcia, para trés configuracdes representativas, modelo univariado

com uma usina (M7 — CSP), modelo multipreditivo com duas usinas (M9 — CSP/CBJ) e

modelo multipreditivo com trés usinas (M12 - CSP/CBJ/CLA).

Em todas essas

configuracbes, o TFT apresenta os menores valores médios de MAE e RMSE, além dos

menores nMAE (=10%), indicando clara vantagem em termos de precisdo em relacdo as

demais redes e ao modelo de Persisténcia.
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No modelo M7 (CSP), por exemplo, o TFT atinge MAE de 7,13 MW e RMSE de 10,64
MW (nMAE = 10%), enquanto o MLP e o LSTM apresentam erros mais elevados, com MAE
de 9,29 MW e 10,08 MW, e nMAE de 14% e 15%, respectivamente. Tendéncia semelhante é
observada nos modelos multipreditivos, em M9 (CSP/CBJ) e M12 (CSP/CBJ/CLA), o TFT
mantém MAE em torno de 6,85-6,86 MW e RMSE proximos de 10,4 MW, com nMAE de
10%, ao passo que MLP e LSTM apresentam MAE em torno de 10 MW e nMAE em torno de
15%. Os desvios-padrdo (dp-MAE e dp-RMSE) sé@o baixos em todas as topologias, sugerindo
que as diferencas observadas refletem, de fato, maior capacidade preditiva do TFT e ndo
apenas flutuagdes entre inicializagoes.

Ao comparar com 0 método de Persisténcia, a superioridade do TFT torna-se ainda mais
evidente, pois, enquanto o TFT apresenta MAE de 6,86 MW e nMAE de 10%, a Persisténcia
atinge MAE de 26,77 MW, RMSE de 30,58 MW e nMAE de 40%, demonstrando que, para
horizontes de 11 horas a frente, a utilizacdo de modelos de aprendizado profundo é essencial
para reduzir os erros de previsdo a patamares aceitaveis.

Entre MLP e LSTM, os resultados indicam desempenhos muito préximos, com leve
vantagem numérica para a MLP na maioria das configuracbes (MAE e RMSE ligeiramente
menores). 1sso sugere que, no contexto especifico desta base de dados e horizonte de previsao,
a complexidade adicional da LSTM né&o se traduz em ganhos substanciais sobre a MLP, ao
passo que o TFT, ao explorar mecanismos de atencdo e 0 uso estruturado de covariaveis

temporais e estaticas, obtém melhorias consistentes em todas as configura¢6es analisadas.
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6 CONCLUSAO

Esta tese investigou a previsdo horaria da geracdo FV em multiplas usinas brasileiras a
partir da combinacdo entre clusterizacdo hierarquica (DTW) e a arquitetura TFT. De forma
geral, os resultados mostraram que é possivel construir um sistema de previsdo multipreditivo
com bom desempenho, interpretavel e estatisticamente robusto, mesmo em um contexto de
alta variabilidade solar e heterogeneidade entre usinas.

Do ponto de vista do pré-processamento de dados, um primeiro achado relevante foi a
eficacia do método de imputacdo, nas séries de geracdo, guiado pela curva de radiacdo solar
global. Ao incorporar diretamente a informacdo meteoroldgica na reconstrucdo de lacunas,
essa abordagem superou, de forma consistente, técnicas classicas como interpolacéo linear,
média temporal e KNN.

A aplicacdo da clusterizacdo hierarquica com a métrica DTW as séries de geracéo
permitiu identificar grupos de usinas com padrdes de producdo semelhantes, e esses
agrupamentos foram explorados na construcdo dos modelos multipreditivos. Os resultados
indicaram que, quando usinas de um mesmo cluster e sujeitas a0 mesmo conjunto de variaveis
meteoroldgicas sdo previstas em conjunto, o0 TFT mantém erros absolutos e normalizados
semelhantes aos de modelos univariados, com baixa variabilidade entre inicializagbes. Em
contrapartida, agrupamentos que combinam usinas de clusters distintos e bases
meteoroldgicas diferentes tendem a produzir maior heterogeneidade de desempenho entre as
usinas, ainda que os erros normalizados permanecam em niveis adequados. Esses achados
sugerem que a similaridade estrutural entre as séries e a coeréncia das covariaveis sao fatores
importantes para o desenho de modelos multipreditivos mais equilibrados.

No que se refere a modelagem com TFT, a andlise sistemética das 14 configuragdes
avaliadas mostrou que a inclusdo de varidveis meteoroldgicas e atributos derivados da prépria
série de geracdo € decisiva para reduzir os erros de previsao, enquanto o efeito isolado da
escolha de escala (MW ou logl0) tende a perder importancia a medida que o conjunto de
covariaveis se torna mais rico. A analise estatistica pareada (testes t e Wilcoxon) confirmou
que apenas em configuragOes mais simples houve diferenca significativa entre escalas, ao
passo que, nos modelos mais completos, as diferengas numeéricas entre variantes em MW e
logl0 ndo se traduziram em superioridade estatisticamente robusta. Isso indica que a
qualidade e a diversidade das covariaveis tém impacto mais consistente sobre o desempenho

do que transformac@es pontuais da variavel-alvo.



97

Adicionalmente, um resultado particularmente relevante diz respeito a comparagdo entre
0s modelos univariados e multipreditivos, visto que os erros das configuragdes multipreditivas
mantiveram-se em patamares muito préximos aos das abordagens univariadas, mesmo com a
previsdo simultanea de duas ou trés usinas. Isso indica que o desempenho preditivo individual
ndo sofre decréscimo significativo ao adotar-se a modelagem conjunta. Na pratica, essa
caracteristica permite que uma Unica arquitetura TFT gerencie multiplas usinas, o que reduz o
numero de modelos a serem treinados e mantidos, simplificando a implantagdo em centros de
controle e favorecendo uma visdo integrada da geracao FV no sistema elétrico brasileiro.

A comparagdo entre TFT, MLP, LSTM e Persisténcia constitui outra contribuigdo
importante. Em todas as configuracOes representativas analisadas, o TFT apresentou, de
forma consistente, os menores valores de MAE, RMSE e nMAE, superando as redes MLP e
LSTM e distanciando-se fortemente do modelo de Persisténcia. Além disso, MLP e LSTM
mostraram desempenhos muito proximos entre si, 0 que sugere que, neste contexto especifico,
a simples adocdo de uma arquitetura recorrente ndo garante ganhos significativos frente a
redes densas, enquanto o TFT, ao combinar atencdo multi-cabeca, tratamento estruturado de
covariaveis e mecanismo encoder—decoder temporal, oferece ganhos tangiveis em precisdo.
Assim, o trabalho reforca o TFT como uma alternativa para previsdao FV, com desempenho
superior a arquiteturas amplamente utilizadas na literatura.

Por fim, a analise de interpretabilidade do TFT mostrou que o modelo faz uso coerente
das informacdes disponiveis: no encoder, a importancia recai majoritariamente sobre o
histérico de geracdo, sobre a interacdo com a radiacdo solar, sobre variaveis sazonais e de
padrdo diario; no decoder, ganham destaque defasagens imediatas e interacBes com radiacéo
solar e temperatura ambiente. Esse comportamento é compativel com a natureza do problema
fisico, no qual tanto a memoria recente quanto a sazonalidade e as condigdes meteoroldgicas
locais desempenham papel central na determinagdo da geracdo FV. Dessa forma, além de
preciso, 0 modelo proposto é interpretavel em termos energeéticos, aspecto fundamental para
sua adocao em ambientes operacionais do setor elétrico.

Em sintese, as principais contribui¢des deste trabalho podem ser assim destacadas: (i) a
proposicdo de um método de imputacdo de dados faltantes baseado em radiacdo, adequado a
séries de geracdo FV; (ii) a utilizacdo da clusterizacdo hierarquica DTW como ferramenta
para estruturar modelos multipreditivos em grupos de usinas; (iii) a construcdo e avaliacao
sistematica de um conjunto de modelos TFT univariados e multipreditivos, abrangendo
analises de desempenho médio, variabilidade e significAncia estatistica das diferencas

observadas; (iv) a demonstracdo quantitativa da superioridade do TFT em relacdo a MLP,
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LSTM e Persisténcia em cenarios realistas de previsdo; e (v) a exploracdo da
interpretabilidade do TFT, evidenciando como o modelo combina informacéo histdrica,
sazonal e meteorologica para produzir previsdes consistentes. Juntos, esses resultados
reforcam o potencial da abordagem proposta para apoiar o planejamento e a operacdo de
sistemas elétricos com elevada penetracdo de geracdo FV, ao mesmo tempo em que apontam
caminhos promissores para o0 aperfeicoamento de modelos preditivos baseados em
aprendizado profundo.

Apesar dos resultados promissores, este estudo apresenta limitacdes que delimitam seu
escopo e apontam caminhos para pesquisas futuras. Primeiramente, as varidveis
meteorologicas foram obtidas exclusivamente da base NASA POWER; embora global e
acessivel, trata-se de uma estimativa via satélite que pode ndo capturar fendmenos de
microclima com a mesma precisdo de uma estacdo meteoroldgica no local. Além disso, a
modelagem concentrou-se em um horizonte fixo de 11 horas. Extensdes naturais deste
trabalho incluem a avaliacdo de horizontes maltiplos, que sdo criticas para a estabilidade da
rede em curtissimo prazo. Por fim, o modelo ndo incorporou varidveis operativas, como
estados de manutencdo ou restricbes de despacho (curtailment), que poderiam explicar
discrepancias residuais entre a geracdo real e a prevista. A integracdo dessas dimensdes
constitui uma linha promissora para o aperfeicoamento da previsao de geracdo FV e para a
sua aplicacdo direta em decisdes operacionais no sistema elétrico brasileiro.

6.1 Sugestdes para trabalhos futuros

Com relacdo a continuidade da pesquisa, sugere-se, para pesquisas futuras:

a) Integrar dados meteoroldgicos de sensoriamento local para aumentar o desempenho da
modelagem TFT,;

b) Avaliar os modelos em horizontes de previsdo multiplos, mais curtos e mais longos
que o horizonte de 11 horas adotado neste trabalho, a fim de investigar a preciséo da
arquitetura TFT em diferentes escalas temporais;

c) Incorporar variaveis operativas do setor elétrico (por exemplo, estados de manutencédo
e curtailment) nos modelos preditivos, de forma a capturar discrepancias nas series de
geracéo FV;

d) Explorar arquiteturas hibridas que combinem o TFT com outras topologias ou
modelos fisicos, avaliando possiveis ganhos adicionais de desempenho.
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