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RESUMO

A andlise de dados ndo paramétricos, desbalanceados e de alta dimensionalidade é um desafio
recorrente em diversas aplicacdes de Aprendizado de Maquina (AM), onde métodos tradicio-
nais de Selecdo de Caracteristicas (FS) frequentemente falham devido a suposicdes restritivas
(como normalidade dos dados) ou alto custo computacional. Este trabalho propde uma es-
tratégia abrangente de FS para sistemas baseados em AM por meio de uma abordagem nao
paramétrica, robusta e escalavel. O modelo é estruturado em trés estagios: filtragem, clusteri-
zacdo e ranqueamento, utilizando métricas adaptadas como entropia de Shannon, correlacido
de Spearman, distancia de Bhattacharyya modificada e Informacdo Miitua Ajustada (AMI),
que dispensam premissas rigidas sobre a distribuicdo dos dados. Implementado em Python,
o algoritmo foi validado experimentalmente em multiplos cenarios, incluindo estudos de caso
em ciberseguranca com bases de dados reais de trafego de rede e ataques cibernéticos, em-
pregando classificadores como Floresta Aleatéria (RF), validacdo cruzada e testes estatisticos
ndo paramétricos (Friedman e Nemenyi). Os resultados demonstraram reducdo de 81,5% no
numero total de caracteristicas, considerando a média da reducdo nos trés datasets utiliza-
dos, sem comprometer a exatiddo, com superioridade estatistica (p-valor < 0,05) em métricas
como exatiddo(ou acuracia), Pontua¢do F1 (média harmdnica de precisdo e revocagdo) (F1)
e Area sob a Curva ROC (Caracteristica de Operacdo do Receptor) (AUC-ROC) em compa-
racao a métodos tradicionais, além de reduzir o tempo de processamento em até 3,8 vezes
em comparacdo com a classificacdo sobre os conjuntos de dados completos. A estratégia pro-
posta nao apenas melhora a eficiéncia computacional e a performance preditiva em problemas
complexos, mas também amplia a explicabilidade e adaptabilidade a dominios com dados he-
terogéneos, oferecendo uma alternativa para a selecdo de atributos em cenarios onde dados

ndo paramétricos sao predominantes.

Palavras-chave: Selecdo de Atributos. Técnicas Ndo Paramétricas. Desempenho de Sistemas.

Reducdo de Dimensionalidade.



ABSTRACT

The analysis of non-parametric, imbalanced, and high-dimensional data remains a recurring
challenge in numerous Machine Learning (ML) applications, where traditional feature selection
(FS) methods often fail due to restrictive assumptions (e.g., data normality) or high computa-
tional costs. This work proposes a comprehensive FS strategy for ML-based systems through a
non-parametric, robust, and scalable approach. The model is structured in three stages: filter-
ing, clustering, and ranking, employing adapted metrics such as Shannon entropy, Spearman
correlation, modified Bhattacharyya distance, and adjusted mutual information (AMI), which
eliminate rigid assumptions about data distribution. Implemented in Python, the algorithm
was experimentally validated across multiple scenarios, including cybersecurity case studies
with real-world network traffic and cyberattack datasets, using classifiers such as Random
Forest, 10-fold cross-validation, and non-parametric statistical tests (Friedman and Nemenyi).
Results showed an average dimensionality reduction of 81.5% without compromising accuracy,
achieving statistical superiority (p-value < 0.05) in metrics such as accuracy, Fl-score, and
AUC-ROC compared to traditional methods, while reducing processing time by up to 3.8x.
The stability of the selections exceeded 90% agreement, demonstrating the reliability of the
model. The proposed strategy not only enhances computational efficiency and predictive per-
formance in complex problems but also improves explainability and adaptability to domains
with heterogeneous data, providing an effective alternative for feature selection in scenarios

dominated by non-parametric data.

Keywords: Feature Selection. Non-parametric Techniques. System Performance. Dimension-

ality Reduction.
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1 INTRODUCAO

A crescente sofisticacdo e frequéncia dos Ataques de Negacao de Servico Distribuida
(DDoS) representam uma ameaca significativa a estabilidade e a disponibilidade de sistemas
computacionais conectados em rede (Abd-Allah et al., 2025), (Berrios et al., 2025), (Kamalov
et al., 2020), (Patel, 2025).

Em um cenério de trafego intensivo, dindmico e heterogéneo, técnicas baseadas em
aprendizado de maquina vém sendo amplamente empregadas para detectar padroes maliciosos
e responder a tais ataques de forma automatizada e eficiente. No entanto, a eficacia desses
sistemas esta diretamente relacionada a qualidade das representacées utilizadas nos dados de
entrada, tornando a etapa de selecdo de caracteristicas um componente critico do processo de
modelagem.

A selecdo de caracteristicas tem como principal finalidade identificar, entre todas as
variaveis observadas, aquelas que sao mais informativas para a tarefa de predicdo, reduzindo
a dimensionalidade dos dados e mitigando problemas como sobreajuste, redundancia e multi-
colinearidade. Além disso, ao eliminar atributos irrelevantes ou ruidosos, essa etapa pode pro-
porcionar ganhos substanciais em desempenho computacional, interpretabilidade e robustez
dos classificadores (Pascoal et al., 2012). Na literatura (Heigl et al., 2021), (Emirmahmutoglu
e Atay, 2025), observa-se uma predominancia de métodos paramétricos ou sensiveis a pre-
senca de outliers e a distribuicGes assimétricas, o que limita sua aplicacdo em cenarios reais
de trafego de rede, onde essas condices sao frequentemente observadas.

Neste contexto, esta dissertacdo propGe uma abordagem nao-paramétrica de selecdo
de caracteristicas, baseada na integracdo de métricas estatisticas robustas, como: entropia
de Shannon (Pascoal et al., 2012), correlacdo de Spearman (Palamidessi e Romanelli, 2020),
distancia de Bhattacharyya modificada (Vergara e Estévez, 2015), distancia de Mahalanobis
robusta e informacdo mutua ajustada (Berbiche e Alami, 2024), organizadas em um fluxo
de trés estagios que combina filtragem, clusterizacdo e ranqueamento. Ao ponderar simul-
taneamente aspectos de relevancia, redundancia e separabilidade, o modelo proposto busca
selecionar subconjuntos de atributos capazes de maximizar o desempenho de classificadores,
sem impor pressupostos de normalidade ou linearidade sobre os dados.

A proposta foi implementada em Python, utilizando bibliotecas consolidadas de apren-
dizado de maquina, e validada experimentalmente por meio de estudos de caso com trés bases
publicas representativas: Conjunto de dados criado e usado em (Sharafaldin, Lashkari e Ghor-
bani, 2019) (CICDD0S-2019), Conjunto de dados criado e usado em (Moustafa e Slay, 2015)
(UNSW-NB15) e Conjunto de dados criado e usado em (Nascimento et al., 2021b) (HPC-Lab)
. Utilizou-se o classificador Random Forest como referéncia, com validacdo cruzada estratifi-
cada e anadlise estatistica dos resultados baseada em testes ndo-paramétricos de Friedman e
pos-teste de Nemenyi. Os experimentos demonstraram reducGes significativas na quantidade

de atributos selecionados, acompanhadas por melhorias estatisticamente relevantes (com p-
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value < 0,05) em métricas como acuracia, F1 e AUC-ROC, além de ganhos em tempo de
processamento.

Com esta contribuicdo, espera-se avancar na construcdo de sistemas de deteccdo mais
eficientes, interpretaveis e resilientes, reforcando o papel da estatistica robusta e da analise

ndo-paramétrica como fundamentos para a seguranca computacional baseada em dados.

1.1 MOTIVACAO

A crescente sofisticacdo dos ataques cibernéticos, em particular os DDoS, tem desafi-
ado de forma contundente os mecanismos tradicionais de seguranca em redes modernas (Ali
et al., 2021). Neste contexto, os IDS baseados em AM tém se destacado como solucdes pro-
missoras (Javaid et al., 2020). Contudo, o desempenho desses sistemas depende fortemente da
etapa de selecdo de caracteristicas, a qual visa reduzir a dimensionalidade dos dados, eliminar
atributos redundantes ou irrelevantes e, consequentemente, melhorar a eficiéncia e a acuracia
dos modelos preditivos (Nguyen et al., 2023).

Um dos principais desafios enfrentados na construcdo de IDS eficazes para Redes Defi-
nidas por Software (SDN) reside na natureza dos dados coletados. Esses dados frequentemente
apresentam caracteristicas ndo-paramétricas e distribuicoes desbalanceadas, o que compromete
a aplicabilidade de técnicas tradicionais de selecdo de caracteristicas, muitas das quais assu-
mem distribuicdes gaussianas (Singh, Singh e Roy; Zainudin et al.; Alhakami et al.; Liu et al.,
2021, 2023, 2019, 2021). Tais pressupostos, embora convenientes para fins analiticos, rara-
mente refletem a complexidade e a variabilidade intrinsecas ao trafego de rede em ambientes
reais, altamente dindmicos e heterogéneos.

Nesse cenario, métodos nao-paramétricos de selecao de caracteristicas emergem como
uma abordagem robusta e adaptavel. Ao nao dependerem de suposicoes estritas sobre a distri-
buicdo dos dados, essas técnicas sdo mais resilientes a presenca de outliers, a assimetria entre
classes e a variabilidade estrutural observada em cendrios de big data (Sayed et al., 2022).
Além disso, tais métodos se mostram particularmente adequados para lidar com conjuntos de
dados de alta dimensionalidade, como os utilizados em tarefas de deteccdo de intrusdes.

Estudos recentes (Das et al.; Upadhyay et al., 2021, 2021) tém demonstrado o potencial
das abordagens n3o-paramétricas na identificacdo de atributos relevantes para a deteccdo de
ataques em redes SDN. Esses métodos tém contribuido significativamente para o aumento
da acuracia e para a reducdo das taxas de falsos positivos, aspectos fundamentais para a
viabilidade pratica de Sistema de Deteccdo de Intrusdes (IDS) em ambientes criticos (Sayed
et al.; Upadhyay et al., 2022, 2021). Tais avancos motivam a investigacdo de modelos que
explorem o poder discriminativo das técnicas ndo-paramétricas, com vistas ao desenvolvimento

de solucGes mais eficazes, escalaveis e sensiveis ao contexto de dados reais.
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1.2 OBJETIVOS

Este trabalho apresenta uma abordagem n3o paramétrica de selecdo de caracteristicas
para sistemas de deteccdo de DDoS. O método baseia-se em métricas estatisticas robustas
a outliers e a distribuicdes assimétricas — entropia de Shannon, correlacdo de Spearman,
distancia de Bhattacharyya modificada, distancia de Mahalanobis robusta e informacao mdtua
ajustada — organizadas em um fluxo de trés estagios capaz de reduzir a dimensionalidade
de conjuntos de dados de trafego de rede sem comprometer (e, em muitos casos, elevando)
o desempenho dos classificadores. Ao ponderar simultaneamente relevancia, redundancia e
separabilidade, o modelo contribui para ganhos de eficiéncia computacional e para a melhoria
da taxa de deteccdo em cenarios de seguranca de redes.

A proposta foi validada nas bases CICDD0S-2019, UNSW-NB15 e HPC-Lab, utilizando
o classificador RF como referéncia, com validacdo cruzada estratificada e testes estatisticos
nao paramétricos de Friedman, seguidos pelo poés-teste de Nemenyi. Os resultados experi-
mentais demonstram reducdes substanciais no nimero de atributos e melhorias significativas
nas métricas de acuracia, F1 e AUC-ROC (p-value < 0,05), além de reducdo no tempo de
processamento.

Especificamente, os objetivos desta dissertacio sdo:

= Propor uma estratégia para selecdo de caracteristicas totalmente nao-paramétrica, mais

aderente aos reais problemas da engenharia de features;

= Demonstrar que a elaboracdo dessa estratégia foi feita utilizando critérios explicaveis

para a escolha e adaptacdo de métricas e métodos existentes;

= Avaliar quantitativamente o impacto da reducio de dimensionalidade sobre desempenho,

tempo de processamento e estabilidade das selecoes;

= Apresentar os resultados experimentais ao comparar o método proposto a técnicas con-
sagradas de selecdo de caracteristicas em multiplas bases publicas e cenarios de deteccdo
de DDoS, empregando métricas como acuracia, precisdo, F1, AUC-ROC e custo com-

putacional;

1.3 ESTRUTURA DO DOCUMENTO

Os préximos capitulos do documento estdo descritos brevemente a seguir.

= Capitulo 2 — Referencial Tedrico: Introduz os conceitos necessarios, baseados em
uma revisdo bibliografica para compreensao das ideias apresentadas. Explora conceitos
relacionados a selecdo estatistica de features, deteccdo de ameacas com modelos de
Machine Learning, técnicas de reducdo de dimensionalidade e métodos de selecao de

caracteristicas;
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Capitulo 3 — Trabalhos Relacionados: Analisa pesquisas anteriores pertinentes ao

tema, ressaltando suas contribuicGes e distincdes em relacdo a proposta deste trabalho;

Capitulo 4 — Método Proposto: Descreve detalhadamente a abordagem metodolégica
adotada, incluindo as etapas de andlise, desenvolvimento do modelo e configuracao das

ferramentas utilizadas;

Capitulo 5 — Modelo proposto: Apresenta a arquitetura do modelo desenvolvido, suas

componentes e critérios de funcionamento;
Capitulo 6 — Resultados Experimentais: Apresenta e discute os resultados obtidos
nos experimentos, com base nos estudos de caso realizados;

Capitulo 7 — Conclusdao: Resume as principais contribuicdes da pesquisa e propde

direcGes para trabalhos futuros.
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2 REFERENCIAL TEORICO

Este capitulo estabelece o arcabouco tedrico fundamental que sustenta o desenvolvi-
mento e a andlise da presente dissertacdo. Discutem-se os sistemas de deteccdo de ameacas
baseados em aprendizagem de maquina, os desafios impostos pela natureza ndo paramétrica

dos dados em ciberseguranca, e as principais abordagens e métricas utilizadas na FS.

2.1 APRENDIZADO DE MAQUINA NA DETECCAO DE MALWARE

Malware refere-se a qualquer software projetado para causar danos ou explorar sistemas
computacionais, incluindo virus, worms, trojans, ransomware, entre outros. Dada sua preva-
|éncia em ambientes interconectados, representa ameaca critica a seguranca de individuos,
organizagdes e nacdes (Bensaoud, Kalita e Bensaoud, 2024). A deteccéo eficaz de malware é,
portanto, uma necessidade fundamental.

O AM tem se destacado como abordagem promissora na deteccdo de malware, permi-
tindo analises automatizadas de grandes volumes de dados para identificar padrdoes maliciosos
(Nawshin et al., 2024). Com sua capacidade de adaptacdo a novas ameacas, os algoritmos de
ML tém sido amplamente empregados para aumentar a acuracia e reduzir falsos positivos em
sistemas de deteccdo (Kim et al., 2023).

Dentre as principais aplicacdes de ML na deteccao de malware, destacam-se:

Deteccao baseada em assinaturas: automatiza a geracdo e o reconhecimento de padroes

de malware conhecidos (Stevens et al., 2024).

» Deteccdo baseada em comportamento: identifica atividades maliciosas com base em

anomalias comportamentais, (teis na deteccdo de ameacas desconhecidas ou zero-day
(Galli et al., 2024).

» (lassificacdo de malware: algoritmos supervisionados (e.g., arvores de deciso, redes neu-
rais) distinguem entre amostras benignas e maliciosas com base em atributos extraidos
(Bensaoud e Kalita, 2024).

» (lassificacdo por familia: categoriza malware com base em estrutura de cédigo, compor-
tamento ou trechos recorrentes, auxiliando em analises forenses e estratégias de resposta
(Zhang, Liu e Liu, 2024).

» Deteccdo de variantes: permite identificar versées modificadas de ameacas conhecidas,

promovendo resposta mais agil a novas cepas (Madamidola, Ngobigha e Ez-zizi, 2024).

= Selecdo e extracdo de caracteristicas: algoritmos de ML auxiliam na identificacdo auto-
matica dos atributos mais relevantes, reduzindo a dimensionalidade e custo computaci-
onal (Maribana, Chindipha e Brown, 2023).
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» Abordagens de comité (ensemble): combinam miltiplos modelos para aumentar a ro-
bustez, minimizar erros e tratar desbalanceamento de dados (Muthusamy e Charles,
2025).

= Robustez a ataques adversariais: técnicas como adversarial training visam aumentar a

resiliéncia dos modelos a manipulagdes intencionais de entrada (Li et al., 2024).

2.2 OTIMIZACAO NA DETECCAO DE MALWARE

A otimizacdo na deteccao de malware envolve a aplicacao de métodos computacionais
que visam maximizar a eficacia e eficiéncia dos sistemas de identificacdo de ameacas. Tais
métodos buscam solucdes étimas para problemas como selecdo de atributos, configuracdo de
modelos e alocacdo de recursos computacionais (Shar et al., 2024).

No contexto de sistemas inteligentes de seguranca, a otimizacao contribui de forma
significativa para o equilibrio entre acuracia, robustez e custo computacional. As principais

estratégias incluem:

= Selecdo de caracteristicas: algoritmos de otimizacdo identificam subconjuntos de
atributos que maximizam o desempenho preditivo ou minimizam erros de classificacao,

como falsos positivos e negativos (Hasan et al., 2025).

= Alocacao de recursos: a distribuicao eficiente de recursos — Unidade Central de Pro-
cessamento (CPU), memoéria, largura de banda — é essencial para garantir desempenho
em tempo real, especialmente em cenarios de grande volume de dados ou arquiteturas

restritas, como dispositivos Internet das Coisas (loT) (Li e Zhao, 2024).

2.3 DESAFIOS E FUNDAMENTOS DA MODELAGEM ESTATISTICA NAO PARAME-
TRICA EM CIBERSEGURANCA

Aplicacdes em ciberseguranca, como analise de trafego de rede e biometria, frequen-
temente lidam com dados assimétricos, com outliers e relacbes ndo lineares, inviabilizando
pressupostos de testes paramétricos classicos, como o teste ¢ deStudent ou Analise de Varian-
cia (ANOVA) (Alasmar et al., 2021). Tais testes pressupdem normalidade e homocedasticidade;
quando essas condicdes sdo violadas — cenario comum em trafego de rede de cauda pesada
— a validade inferencial e a capacidade de generalizacdo dos modelos ficam comprometidas
(Arp et al., 2022).

Nesse contexto, a modelagem estatistica nao paramétrica apresenta-se como alterna-
tiva robusta. Métodos baseados em ranques (e.g., Wilcoxon-Mann—-Whitney, Kruskal-Wallis,

Friedman), técnicas de bootstrapping e estimadores de densidade via kernel dispensam supo-
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sicOes rigidas sobre a distribuicao dos dados e, por isso, mostram-se adequados a variabilidade
e heterogeneidade de dados reais(Chu, Ling e Yuan, 2024).

Essas abordagens também desempenham papel central na FS em contextos de alta
dimensionalidade: métricas como correlacdo de Spearman, distancia de Bhattacharyya e Infor-
macdo Mutua Ajustada (AMI), em versdes ndo paramétricas, permitem avaliar relevancia e
redundancia de atributos com maior acuréacia (Li e Fard, 2022). Com isso, é possivel identificar
subconjuntos informativos que aprimoram n3o apenas o desempenho preditivo de modelos de
aprendizado de maquina, mas também sua interpretabilidade e eficiéncia computacional — fa-
tores decisivos na construcdo de sistemas de Inteligéncia Artificial(IA) robustos e transparentes

para deteccdo proativa de ameacas (Arreche, Guntur e Abdallah, 2024).

2.3.1 A Necessidade de Abordagens Nao Paramétricas na Deteccao de Ameacas

Sistemas de detecgdo baseados em Aprendizado de Maquina (AM) tém se consolidado
como ferramentas essenciais no combate a ataques de negac3o de servico distribuidos (DDoS).
Ao aprender padrdes de trafego legitimo, tais sistemas conseguem identificar desvios em tempo
real, mesmo em redes de alta velocidade (Nguyen e Armitage, 2022).

Entretanto, a alta dimensionalidade dos dados — composta por métricas derivadas
de HPC, estatisticas de pacotes, fluxos e Qualidade de Servico — introduz desafios subs-
tanciais: maior custo computacional, dificuldade de interpretacdo dos modelos e limitacdo de
escalabilidade(Taherkordi, Mohammadi e Franke, 2020).

Embora estudos reportem exatiddo superior a 90% com diversas técnicas de selecdo ou
extracdo de atributos (Kuruvila; Li, 2021, 2022), no que cabe aos eventos de microarquitetura,
a coleta de mdltiplos eventos microarquiteturais exige sondas adicionais e, em dispositivos em-
barcados, a leitura simultdnea de HPC é bastante restrita (geralmente entre 2 €6 eventos)(Das
et al., 2019). Estratégias como o multiplexing de contadores tém sido utilizadas para contor-
nar essa limitacdo, mas adicionam complexidade e laténcia. (Zhang, Liu e Liu, 2024). Ja em
dados de trafego de redes, as vantagens em tempo de deteccdo, por exemplo, ganham enorme
vantagem com uma estratégia bem definida para selecao de atributos.

Neste cenario, abordagens ndao paramétricas para FS tornam-se particularmente pro-
missoras. Por ndo dependerem de pressupostos sobre a distribuicao dos dados, essas técnicas
oferecem maior robustez frente a assimetrias, outliers e variabilidade estrutural — aspectos
comuns em dados de seguranca de rede.

Esta dissertacao propde um fluxo completo de andlise que combina:

1. reduzir drasticamente o nimero de atributos mantendo (ou aumentando) a capacidade

de deteccao;
2. minimizar tempo e memdria de execucao para viabilizar implantacdo em tempo real;

3. garantir interpretabilidade por meio de métricas estatisticas transparentes.
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2.3.2 Meétricas Estatisticas Nao Paramétricas Utilizadas

Conjuntos de trafego de rede raramente obedecem a distribuicGes normais; logo, ado-
tamos métricas estatisticas ndo parametrizadas que dispensam suposicoes de normalidade e

s30 menos sensiveis a outliers.

2.3.2.1 Distancia de Medida de Similaridade

A Medida de similaridade baseada em distancia (DMS) é uma métrica estatistica ndo
paramétrica empregada para quantificar a dissimilaridade de uma instancia em relacdo ao
conjunto de dados, apds a exclusdo de uma determinada caracteristica. Seu objetivo é ava-
liar a relevancia de um atributo com base no impacto estrutural de sua remocdo sobre os
dados(Mitra, Murthy e Pal, 2002).

A DMS é definida por:

DMS(z) = (z_; — med_ ;)" R} (z_; — med_;),
em que:
= x_; representa a instancia sem o atributo f;,
= med_; é o vetor de medianas das demais variaveis,
= R~} éainversa da matriz de correlacdo de Spearman dos atributos restantes.

Ao empregar medianas e correlacdo de Spearman em vez de média e covariancia, a DMS
torna-se robusta a outliers, assimetrias e relacGes nao lineares—caracteristicas frequentes em
dados de trafego de rede(Feng, Lu e Zhang, 2024).

Valores elevados de DMS indicam que a remocao do atributo f; causa uma distorcao
significativa na coeréncia da instancia com relacdo ao conjunto, sugerindo sua importancia
estrutural.

Entre suas aplicacbes destacam-se:
= Selecdo n3o supervisionada de caracteristicas;
» Deteccdo de anomalias;
= Andlise de redundancia e relevancia de variaveis;

= Pré-processamento em pipelines de aprendizado de maquina em contextos de seguranca

e saude digital.
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2.3.2.2 Entropia.

A entropia, conforme definida por Shannon, quantifica a incerteza associada a uma
variavel aleatéria (Shannon, 1948). Em aprendizado de maquina, é amplamente utilizada para
avaliar a variabilidade de atributos e sua capacidade discriminativa em tarefas supervisionadas.

Seja X uma variavel discreta com distribuicdo P(z). Sua entropia é dada por:

H(X)=- Z P(z)log P(z), (2.1)
zeX
onde X é o conjunto de valores possiveis de X. O logaritmo geralmente é na base 2 (bits).
A entropia atinge valor maximo quando X é uniformemente distribuida, e é minima
(zero) quando X é deterministica. No contexto de FS, a entropia permite avaliar o qudo
informativo é um atributo sobre a variavel-alvo.

O IG formaliza essa contribuicdo:
IG(T,X)=H(T)—- H(T|X), (2.2)

sendo T' a variavel-alvo e H(T'|X) a entropia condicional apés observar X.

Entre suas propriedades, destacam-se:
= n3o negatividade;
= valor maximo sob distribuicao uniforme;
= invariancia a permutacdes;

= aplicabilidade a variaveis categéricas ou discretizadas.

2.3.2.3 Correlacdo de Spearman.

A correlacdao de Spearman é uma medida ndo paramétrica que avalia o grau de
associacdo monoténica entre duas variaveis, baseada na ordenacio de seus valores (Spearman,
1904). Diferentemente da correlacdo de Pearson, n3o exige normalidade nem linearidade, sendo
robusta a outliers e assimetrias - caracteristicas comuns em dados de trafego de rede(Feng,
Lu e Zhang, 2024).

Dada duas variaveis X e Y, a correlacdo de Spearman ¢é definida por:

cov(X,,Y,
pX,y = —( ), (23)
0x,0v,

onde X, e Y, representam os postos de X e Y, respectivamente. O coeficiente varia de —1
(correlacdo negativa perfeita) a +1 (positiva perfeita), sendo zero na auséncia de associacdo
monotonica.

Em FS, essa métrica é util para:
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» Detectar redundancia entre atributos, auxiliando na eliminacao de variaveis altamente
correlacionadas;
= Capturar dependéncias nao lineares de natureza monotonica;

= Servir de base para métricas robustas, como a DMS.

2.3.2.4 Ganho de Informac3o.

O Ganho de Informacdo (IG) é uma métrica derivada da teoria da informacdo que
quantifica a reduc3o de incerteza de uma varidvel-alvo T ao conhecer o valor de uma variavel
X (Quinlan, 1986). E amplamente utilizado em FS e construcdo de DT.

Formalmente, é definido como:
IG(T,X)=H(T)—- H(T|X), (2.4)

em que H(T) é a entropia de T' e H(T'|X) representa a entropia condicional apés observar
X. Valores mais altos de IG indicam que X fornece maior informacao sobre 7.

Na selecdo de atributos, o IG é utilizado para:
» Classificar variaveis por relevancia preditiva;
= Eliminar atributos irrelevantes;

= Guiar algoritmos como ID3, C4.5 e RF.

Entre suas vantagens:
= Capta relacdes n3o lineares;
= N3o exige normalidade nem escalas padronizadas;

= Funciona bem com variaveis categoéricas ou discretizadas.

Por outro lado, o IG tende a favorecer atributos com alta cardinalidade. Para corrigir
esse viés, métricas como o |G normalizado e a AMI tém sido empregadas (Estévez et al.,
2009).

O IG permanece uma ferramenta central em pipelines de aprendizado supervisionado,
especialmente em dominios como ciberseguranca, onde a identificacdo de atributos altamente

informativos é critica para a deteccao de ameacas.
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2.3.2.5 Distancia de Bhattacharyya.

A Distancia de Bhattacharyya quantifica a similaridade entre duas distribuicoes de
probabilidade e é amplamente utilizada para medir a separabilidade entre classes em problemas
de classificacdo e FS (Fukunaga, 1990).

Dadas duas distribuicdes f(x) e g(x), a distancia é definida como:

Dy(f.9) =~ [ I @) de), 25)

sendo o termo dentro do logaritmo conhecido como coeficiente de Bhattacharyya, que mede a

sobreposicdo entre distribuicdes. Quanto maior o D, maior a dissimilaridade entre as classes.

No caso de distribuicdes normais multivariadas, a métrica pode ser aproximada por:

1 _ 1 3]
Dy~ (1 — p2)"S (1 — o) + = In (—) , (2.6)
8 AVISATN

com X = %(21 + 3J,) representando a covariancia média.

Na selecdo de atributos, D € usado para:
= Avaliar a capacidade discriminativa de um atributo;
= Priorizar variaveis que maximizam a separacao entre classes;

= Complementar métricas como entropia e correlac3o.

As principais vantagens da métrica incluem:
= Alta sensibilidade a sobreposicdo entre distribuicdes;
= Aplicabilidade a espacos multivariados e dados empiricos;

» Adequacdo a contextos ndo paramétricos com outliers e assimetrias.

2.3.2.6 Teste de Friedman.

O Teste de Friedman é um teste estatistico ndo paramétrico para comparacao de
multiplos algoritmos avaliados sobre os mesmos blocos (e.g.,datasets ou folds de validacdo
cruzada), sendo uma alternativa robusta a ANOVA de medidas repetidas (Friedman, 1937).
E indicado quando as suposices de normalidade ou homocedasticidade s3o violadas, especi-
almente em amostras pequenas ou com outliers(Demsar, 2006a).

Dado k algoritmos e n blocos, cada algoritmo é ranqueado dentro de cada bloco. A

estatistica do teste é:

12 LA
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onde R; é a soma dos postos do j-ésimo algoritmo. Sob a hipétese nula Hy (sem diferencas

entre os algoritmos), () segue uma distribuicdo qui-quadrado com k — 1 graus de liberdade:
Q ~ XIchl' (2.8)

Na prética, o teste é amplamente utilizado para:
= Comparar o desempenho de modelos preditivos em miltiplos conjuntos;
= Validar diferencas entre métodos de FS;

= Suportar analises estatisticas em experimentos repetidos ou pareados.

Entre suas vantagens est3o:
= Auséncia de pressupostos paramétricos;
= Aplicabilidade a dados assimétricos ou com ruido;
= Existéncia de variantes, como o teste de Iman-Davenport, que melhora sua aproximacao.

Nesta dissertacdo, o Teste de Friedman é adotado para validar estatisticamente as
diferencas entre subconjuntos de atributos selecionados, assegurando que os ganhos observados

sejam significativos e ndo resultem de flutuacdes aleatorias.

2.4 SELECAO DE CARACTERISTICAS

A FS é uma etapa essencial no desenvolvimento de modelos de aprendizado de maquina,
com o objetivo de identificar o subconjunto mais relevante de atributos para representar os da-
dos sem perda informacional significativa. Ao remover caracteristicas irrelevantes, redundantes
ou ruidosas, a FS contribui para a reducao da dimensionalidade, maior eficiéncia com-
putacional, aumento da exatiddao ou acuracia preditiva e melhora na interpretabilidade
dos modelos (Li et al.; Nguyen et al., 2022, 2023).

Em dominios de alta dimensionalidade — como trafego de rede, bioinformatica e segu-
ranca cibernética — atributos desnecessarios podem comprometer a generalizacao dos mode-
los, aumentar o custo computacional e intensificar o risco de overfitting. A FS atua mitigando
esses efeitos ao selecionar apenas as variaveis que contribuem efetivamente para a discrimina-

cdo entre classes (Ayad, Fahmy e Abdelrahman, 2024).

Objetivos Principais da Selecdo de Caracteristicas

A FS busca:
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» Reduzir a dimensionalidade, mantendo ou melhorando o desempenho preditivo;

= Eliminar atributos irrelevantes e redundantes, focando nas variaveis mais informa-

tivas;
= Aumentar a robustez e generalizacao, reduzindo o risco de overfitting;
= Diminuir o tempo de treinamento e inferéncia, otimizando recursos;

= Melhorar a interpretabilidade, facilitando a compreensdo dos modelos.

As principais abordagens para FS incluem os métodos Filter, Wrapper e Embedded.
Além disso, métodos Hibridos combinam vantagens dessas estratégias para alcancar melhor

equilibrio entre desempenho e custo computacional.

2.4.1 Classificacdo dos Métodos de Selecdo de Caracteristicas
2.4.2 Métodos Filter (Filter Methods)

Métodos de filtro avaliam atributos independentemente do modelo preditivo, utilizando
métricas estatisticas como entropia, correlacdo, varidncia e informacdo mutua (Guyon e Elis-
seeff, 2003). S&o rapidos, escalaveis e adequados para grandes volumes de dados, mas ndo

consideram interacoes entre variaveis.

2.4.3 Métodos Wrapper (Wrapper Methods)

Métodos wrapper utilizam o modelo de aprendizado como caixa-preta para avaliar di-
ferentes subconjuntos de atributos com base em seu desempenho preditivo (Kohavi e John,
1997). Apesar de geralmente mais precisos que os filtros, apresentam maior custo computaci-

onal, especialmente em cenéarios de alta dimensionalidade.

2.4.4 Métodos Embutidos (Embedded Methods)

Métodos embutidos realizam a selecdo de atributos durante o treinamento do modelo,
aproveitando mecanismos internos para induzir esparsidade ou calcular importancias (Tibshi-
rani, 1996). S3o geralmente mais eficientes que os wrappers e capturam interacdes entre

atributos, embora possam estar restritos as hipoteses do algoritmo subjacente.
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2.4.5 Métodos Hibridos (Hybrid Methods)

Métodos hibridos combinam abordagens filter e wrapper em muiiltiplas etapas, buscando
equilibrar desempenho preditivo e custo computacional (Bolén-Canedo, Sanchez-Marofio e
Alonso-Betanzos, 2015). Tipicamente, realizam uma pré-filtragem inicial para reduzir o es-
paco de busca e, em seguida, aplicam métodos mais custosos apenas sobre subconjuntos

promissores.

2.4.6 Critérios de Avaliacdo em FS

A eficacia de métodos de FS pode ser avaliada com base em muiltiplos critérios:

= Desempenho preditivo, medido por métricas como exatidio, F1-Score e AUC;
= Estabilidade da selecdo, frente a variacdes nos dados ou amostragens;

= Reducao da dimensionalidade, refletida na queda no nimero de atributos e no tempo

de processamento;

= Significancia estatistica, obtida por testes ndo paramétricos como o de Friedman
(Demsar, 2006a).

2.4.7 Importancia na Ciberseguranca

No contexto de seguranca cibernética, FS é crucial para identificar atributos discri-
minativos em trafego de rede, eventos do sistema ou contadores de hardware. Técnicas ndo
paramétricas e robustas s3o preferidas por dispensarem hipoteses sobre a distribuicdo dos

dados e tolerarem melhor ruidos e valores extremos(Ayad, Fahmy e Abdelrahman; Suhaimi et
al., 2024, 2022).

Assim, FS vai além do pré-processamento: constitui um componente estratégico para
garantir eficiéncia, interpretabilidade e desempenho em solucdes inteligentes, especial-

mente em sistemas de deteccdo de intrusGes e ambientes de missao critica.
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3 TRABALHOS RELACIONADOS

A literatura recente sobre FS em deteccdo de ameacas evoluiu de filtros simples, volta-
dos a um Unico dataset, para pipelines hibridos capazes de operar em tempo real, em miltiplas
bases e até mesmo fundindo sinais heterogéneos (trafego + HPC). Esta secdo apresenta estu-
dos que se dedicaram a etapa de selecao de caracteristicas para de modelos de aprendizagem

de maquina no contexto da deteccdo de ameacas.

3.1 FS PARA DETECCAO DE INTRUSAO EM REDES

Em (Yin et al., 2023) os autores combinam Ganho de Informac¢&o (IG) com Eliminagdo
Recursiva de Atributos (RFE) sobre o UNSW-NB15. O método selecionou 18 de 49 variaveis,
elevando a Fl-score de um Perceptron Multicamadas (MLP) de 94,3% para 97,6% e redu-
zindo 47% do tempo de inferéncia. A validacdo 10-fold demonstrou estabilidade mesmo sob
forte desbalanceamento de classes, mas o custo do wrapper Eliminacdo Recursiva de Atribu-
tos (RFE) ainda inviabiliza atualizacdo em fluxo continuo. Em (Tripathi e Sharma, 2024) os
autores utilizaram a importancia do RF como pré ranqueamento e, depois, o filtro Minima
Redundéncia e Maxima Relevancia (mRMR), o conjunto de atributos no caiu 55%. A exati-
ddo alcancou 96,2% com queda de 55ms na laténcia média de decisdo. Testes de Friedman
confirmam que o subconjunto mMRMR + RF supera IG e x? com significAncia < 0,01, mas o

artigo ndo verifica robustez adversarial.

3.2 FS PARA DETECCAO DE ATAQUES DDoS

Em (Yu, Chen e Li, 2024), por meio de Otimizacdo por Enxame de Particulas Binaria
(BPSO) em 84 features do , selecionaram 24 atributos que, em Impulsionamento de Gradiente
Extremo (XGBoost), renderam precisdo 99,1% e duplicaram othroughput de classificacdo. Os
autores mostram convergéncia em 36 iteracoes, porém admitem sensibilidade a parametros de
inércia do enxame.

Em (Chanu e Sarma, 2023), os autores propuseram um voting hybrid (correlacio, x?
e ReliefF) que reteve 27features do mesmo dataset, atingindo F1 98,4% e reduzindo 42% da
laténcia em controladores SDN. Apesar do ganho, ndo ha analise estatistica formal nem teste
cruzado em bases adicionais.

O estudo (Han, Zhang e Liu, 2024), através do algoritmo Marginal-Gain FS with
RF (MFS-RF) priorizaram variaveis cujo acréscimo marginal de AUC ultrapassa um limiar
adaptativo. Em trafego OpenFlow sintético, bastaram 15 das 76 métricas para manter AUC
98,7% e cortar 60% do consumo de meméria do controlador, mas o estudo se restringe a

cenarios laboratoriais.
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Em (Ogaili et al., 2022), os autores exploraram trés meta-heuristicas (Salp Swarm,
Gray Wolf e PSO) sobre o , o trabalho identifica subconjuntos com até 90% de reducio
de dimensionalidade e obtém exatiddo de 99,9% em SVM e KNN. Embora o resultado seja
expressivo, falta comparacao direta com heuristicas de menor custo e medidas de robustez a
concept-drift.

O estudo (Zhang, Han e Liu, 2024), focado em SDN 5G, o estudo aplica um FS
proprietario a cinco conjuntos e demonstra que a filtragem proposta acelera a deteccdo sem
perda de F1 (> 98%). O artigo detalha impacto em laténcia de 20 us por fluxo, mas n3o libera

o codebase, dificultando a reprodutibilidade.

3.3 FS PARABOTNETS EIOT

Em (Al-Sarem et al., 2022), os autores propuseram um pipeline duplo EO + BRO reduz
46—11 atributos. Com LightGBM, AUC chega a 0,993 e FPR a 0,8%. Os autores analisam
concept-drift em 12 meses de trafego real, mas ndo discutem consumo de energia em gateways
Internet das Coisas (loT).

No estudo (Pereira e Silva, 2025), com x? seguido de Sequential Forward Selection, foi
treinado um SVM nos conjuntos 10T-23/BoT-loT mantidos em ARM Cortex-A53. O Recall
permaneceu > 97% para trafego de 100 kpps, consumindo apenas 31 MB de RAM; ni3o
ha, porém, comparacdes com outros algoritmos de selecdo para justificar a escolha por esse
método.

Em (Chen et al., 2024), os autores introduziram o algoritmo GQBWSSA (versdo apri-
morada do Salp Swarm) que, no CICloT2023, manteve exatiddo de 99,7% em binaria e 99,4%
em multi-classe, reduzindo 80% dos atributos. O artigo discute tempo de treino 6x menor
que GA tradicional, embora n3o considere métricas de consumo energético em dispositivos de
borda.

Em (Ma et al., 2025), os autores propuseram um modelo para selecionar 20% das
features em cinco bases loT, usando as features para fine-tunar Modelo de linguagem de
grande porte (LLM), gerando amostras sintéticas que corrigem desbalanceamento. A aborda-
gem eleva macro-F1 em 4,2p.p. sobre LightGBM puro e reduz redundancia >80%; entretanto,

a dependéncia de LLM amplia custo computacional em gateways.

3.4 FS BASEADA EM HPC E ABORDAGENS MULTIMODAIS

Em (Nascimento, Lima e Pereira, 2023), os autores utilizaram correlacdo para selecionar
8 HPC entre 49, o modelo RF detectou HTTP Flood no HPC-Lab com precisdo 97,8% e
overhead 3x menor de coleta, mostrando viabilidade de monitoramento micro-arquitetural.

No estudo (Alduailij et al., 2022) foi aplicada MI para decidir componentes de uma
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Anilise de Componentes Principais (PCA) guiado, fusionando HPCs com trafego do conjunto
CICDDoS-2019. O

3.5 SINTESE CRITICA

A abordagem n3o-paramétrica proposta nesta dissertacdo endereca lacunas ao (i) fundir
sinais multimodais, (ii) validar via teste de Friedman em bases distintas e (iii), provendo uma
visao sistémica ainda pouco explorada na literatura.

A Tabela 1 sintetiza uma analise comparativa entre os principais trabalhos recentes
sobre FS aplicados a deteccdo de ataques DDoS e a proposta desta dissertacdo. Os critérios
de comparacdo abrangem sete dimensoes consideradas fundamentais para avaliar a abrangén-
cia, robustez e reprodutibilidade dos métodos: suporte a dados multimodais, uso de métricas
ndo paramétricas, avaliacio em mdltiplos conjuntos de dados (multi- dataset), valida-
cao estatistica dos resultados e consideracdo de laténcia ou overhead computacional
(Lat./OH).

Observa-se que a maioria dos trabalhos analisados apresenta limitaces como auséncia
de validacao estatistica formal, uso restrito a um Unico dataset e falta de medidas robustas
contra perturbacdes adversariais. Poucos estudos exploram métricas nao paramétricas ou dis-
ponibilizam seus repositérios de forma completa. Em contraste, este trabalho se destaca por
cumprir integralmente todos os critérios avaliados. Tais aspectos reforcam a originalidade e a
contribuicao técnica desta dissertacao no contexto de sistemas inteligentes para seguranca de

redes.

Tabela 1 — Comparacdo entre este trabalho e estudos de FS para deteccdo de DDoS

"
> & &q’,“ f
s & & g S
§ & & £ >

Trabalho S < S N N
(Yu, Chen e Li, 2024) N3o N3o N3o N3o Sim
(Chanu e Sarma, 2023) N3o Parcial N3o N3o Sim
(Han, Zhang e Liu, Nio Parcial Nio Nio Sim
2024)
(Ogaili et al., 2022) Nao Parcial Nao N&o Nao
(Zhang, Han e Liu, N3o N3o Sim N3o Sim
2024)
(Nascimento, Lima e Pe- N3o Sim N3o Nio Sim
reira, 2023)
(Alduailij et al., 2022) Sim Parcial N3o N3o N3o
Este trabalho(2025) Sim Sim Sim Sim Sim

Legenda: Sim = presente; Parcial = implementado de forma limitada (ex.: apenas parte da métrica ou
repositério incompleto); Ndo = ausente.
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4 METODO PROPOSTO

Este capitulo apresenta o método proposto para o desenvolvimento de um modelo de
selecdo de caracteristicas com base em métricas estatisticas ndo paramétricas, aplicado a IDS.
A abordagem visa reduzir a dimensionalidade de conjuntos de dados heterogéneos, tipicos de
ambientes de ciberseguranca, preservando ou ampliando a capacidade de discriminacdo de
padrdes maliciosos.

Inicialmente, é apresentada uma visao geral das etapas que compdem o processo me-
todolégico, destacando-se as principais atividades desenvolvidas para atingir os objetivos da
pesquisa. Na sequéncia, cada etapa é descrita em detalhes.

A metodologia foi fundamentada em uma andlise da literatura especializada, consi-
derando os principais métodos de selecao de atributos utilizados em sistemas inteligentes de
deteccdo de ameacas. Os critérios de comparacdo adotados — incluindo robustez estatistica,
eficiencia computacional e viabilidade de implantacao em tempo real — nortearam as deci-
soes de projeto e culminaram na elaboracao de uma arquitetura de selecao de caracteristicas
adequada a dados de trafego com natureza ndo paramétrica.

A Figura 1 apresenta uma visao geral da metodologia proposta.
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Figura 1 — Visdo do método proposto
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4.1 VISAO GERAL

O método proposto adota uma abordagem n3o paramétrica para selecdo de caracte-
risticas. Essa abordagem fundamenta-se em técnicas estatisticas que dispensam pressupostos
sobre a distribuicdo dos dados, tornando-se particularmente adequada para contextos reais
em que as hipéteses classicas de normalidade ndo sdo verificadas. As principais etapas sao
descritas a seguir:(Hollander, Wolfe e Chicken, 2015).
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42 ENTENDIMENTO DO PROBLEMA

Esta secio descreve a investigacao conduzida para compreender o problema, delimitar
o escopo da solucdo e identificar os requisitos estatisticos, métricas e parametros relevantes
para o desenvolvimento do modelo proposto. Sdo detalhadas a revisdo da literatura especia-
lizada, a implementacao de experimentos preliminares com diferentes abordagens de selecao
de caracteristicas e a definicdo dos conjuntos de dados e critérios de avaliacdo utilizados.

Esta etapa buscou identificar as principais abordagens utilizadas na literatura para se-
lecdo de atributos em IDS, bem como os modelos de aprendizado de maquina mais recorrentes
nesse contexto. A analise permitiu alinhar a solucao proposta com as praticas consolidadas na
area, considerando a presenca ou auséncia de selecdo de atributos no pré-processamento e os
critérios que orientam essa decisao.

Com base no estudo da literatura recente em selecdo de caracteristicas, elaborou-se
um ranqueamento dos modelos de aprendizado mais empregados, o que subsidiou a escolha

do algoritmo Random Forest para a fase de validacao do modelo.

Tabela 2 — Frequéncia de uso de modelos de ML na literatura revisada

Modelo de ML Frequéncia em Estudos Revisados
RF 26
XGBoost 21
SVM 18
LSTM 17
DT 14
CNN 13
MLP 12
Ensemble (Voting/Bagging) 11
Autoencoder 10
LightGBM 10
CatBoost 8
Naive Bayes 9
Isolation Forest 9
KNN 7
One-Class SVM 6
K-means 5
DBSCAN 4

A literatura especializada apresenta uma variedade de abordagens que combinam esta-
tistica, aprendizado de maquina e teoria da informac3o para selecionar subconjuntos relevantes
de atributos. Esta subsecdo realiza uma revisdo dos principais métodos utilizados na dltima
década em deteccdo de ameacas. Foram selecionados artigos publicados entre 2018 e 2025. A

pesquisa demonstrou que modelos supervisionados permanecem como a principal escolha em
IDS.
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A revisdo bibliografica também demonstrou que, embora n3o haja um modelo uni-
versalmente superior, os algoritmos Floresta Aleatéria (RF), Impulsionamento de Gradiente
Extremo (XGBoost), SVM e LSTM apresentam desempenho robusto quando associados a
boas praticas de selecdo de atributos. Dentre eles, o Random Forest foi escolhido pela sua

elevada frequéncia de uso, bom desempenho médio e facilidade de interpretacao.

4.3 ANALISE E COMPARACAO DOS METODOS DE SELECAO EXISTENTES

Nesta etapa, foram implementados e avaliados, em ambiente Python, mais de 40 mé-
todos distintos de selecao de caracteristicas, distribuidos entre as quatro principais abordagens
da literatura: Filter, Wrapper, Embedded e Hybrid. Todos os métodos foram aplicados sobre
o mesmo conjunto de dados, permitindo uma analise sistematica e equanime.

A Tabela 3 apresenta os métodos considerados no estudo. A avaliacdo baseou-se em cri-
térios como desempenho do classificador ap6s a selecao, interpretabilidade, tempo de processa-
mento e estabilidade das selecGes geradas. Para aferir estabilidade, considerou-se a consisténcia
dos subconjuntos selecionados por diferentes métodos pertencentes a mesma abordagem.

O objetivo do estudo foi identificar quais métodos geram os melhores subconjuntos de
atributos, mas também compreender como cada abordagem se comporta diante de dados de

alta dimensionalidade e com distribuicdo nao-paramétrica.



Tabela 3 — Métodos de Selecdo de Features

Método Abordagem Classe

ANOVA Filter Statistical

F-test Filter Statistical
Chi-square Filter Statistical

Gini index Filter Statistical
Likelihood Ratio Filter Statistical
Canonical Correlation Filter Statistical

IG Filter Information

Mutual Information Filter Information
Variance Information Filter Information
Variable Importance Filter Information

K-best Filter Statistical
Max-relevance and min-redundancy Filter Statistical

Fischer Score Filter Statistical

Pearson Correlation Filter Statistical
Univariate ROC-AUC Filter Statistical
Laplacian Score Filter Similarity

Least Angle Regression Filter Similarity
Conditional Covariance Minimization Filter Similarity
Spearman Correlation Filter Statistical
Kruskal-Wallis Filter Statistical
K-Neighbors Classifier Wrapper Sequential Forward Selection
Decision Tree Classifier Wrapper Sequential Forward Selection
Random Forest Classifier Wrapper Sequential Forward Selection
Bagging Classifier Wrapper Sequential Forward Selection
Decision Tree Classifier Wrapper Sequential Backward Selection
Random Forest Classifier Wrapper Sequential Backward Selection
Relief Hybrid Multivariate

Elastic Net Hybrid Regularization-based
Lasso Regression (L1) Hybrid Regularization-based
Ridge Regression (L2) Hybrid Regularization-based
SVM Hybrid Regularization-based
Logistic Regression Hybrid Regularization-based
Support Vector Classifier Hybrid Select from Model
Random Forest Classifier Hybrid Select from Model
Boosting Classifier Hybrid Select from Model
Logistic Regression Hybrid Select from Model
Multiple Linear Regression Hybrid Select from Model
Extreme Gradient Boosting Embedded Tree-based
AdaBoost Embedded Tree-based

Light Gradient Boost Embedded Tree-based

Extra Trees Classifier Embedded Tree-based

Cat Boost Embedded Tree-based
Gradient Boosting Tree Embedded Tree-based

Random Forest Classifier Embedded Tree-based
Decision Tree Classifier Embedded Tree-based

37
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Figura 2 — Estabilidade do conjunto resposta por método e abordagem
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quentemente selecionados, tanto por método quanto por abordagem. A Figura 2 ilustra a
estabilidade observada em cada abordagem. Os resultados evidenciaram a superioridade dos
métodos da abordagem Filter, que apresentaram maior consisténcia entre selecGes, menor
tempo de execucdo e maior potencial de interpretacao.

Abordagens Wrapper e Embedded apresentaram alta variabilidade nos subconjuntos
gerados e custos computacionais mais elevados, limitando sua aplicabilidade em cenéarios com
dados volumosos e de alta dimensionalidade.

Com base nesses resultados, optou-se por adotar a abordagem Filter como base para a
solucdo proposta. Foram selecionadas métricas estatisticas ndo paramétricas como entropia de
Shannon, correlacdo de Spearman e distancia de Bhattacharyya com normalizacdo adaptativa,
que demonstraram desempenho superior e estabilidade na selecao de atributos em cenarios

com distribuicdo ndo gaussiana.

4.4 DEFINICAO DOS CONJUNTOS DE DADOS PARA ESTUDOS DE CASO

Foram selecionados trés conjuntos de dados representativos de cenarios reais de detec-
cdo de ameacas. Esses conjuntos apresentam alta dimensionalidade, diversidade de ataques
e diferentes graus de desbalanceamento, caracteristicas essenciais para avaliar a robustez do
modelo proposto em condicdes realistas.

Os conjuntos de dados utilizados foram:

Tabela 4 — Conjuntos de dados selecionados

Dataset Features | Amostras | Tipos de Ataque | Razdo Ataque/Normal
CICDDoS-2019 83 12.7M 12 1:850
UNSW-NB15 49 2.5M 9 1:1500
HPC-Lab 67 3.2M 7 1:2300
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4.5 DESENVOLVIMENTO DO ALGORITMO DE SELECAO

A construcdo do modelo proposto foi estruturada em trés etapas principais: (i) definicdo
do pré-processamento dos dados, com foco em normalizacdo robusta e tratamento de outliers;
(i) selecdo ou adaptacdo de métricas estatisticas de distancia e similaridade ndo paramétricas;
e (iii) desenvolvimento do algoritmo de selecdo em si, incluindo os critérios de ranqueamento

e selecao final.

4.5.1 Definir pré-processamento

O pré-processamento dos dados foi cuidadosamente definido para garantir a compa-
tibilidade com as métricas nao paramétricas adotadas, evitando suposicdes de normalidade e
atenuando o impacto de outliers. Substituiu-se a média pela mediana como medida de ten-
déncia central, e a varidncia foi substituida pelo intervalo interquartil (IQR), conferindo maior
robustez ao modelo. Além disso, foram incluidas técnicas de deteccdo de outliers, engenharia
temporal e balanceamento de classes.

O pré-processamento adotado contemplou os seguintes procedimentos:

= Deteccao de outliers com Isolation Forest: identifica instancias anomalas em relacao
a distribuicao esperada, sem pressupor normalidade;
= Normalizacao robusta:
, xr—1x
IQR + €
onde I representa a mediana, e € € uma constante positiva pequena para evitar divisao

T

por zZero;

= Engenharia temporal: calculo de médias méveis e desvios padrao moéveis em janelas

de 5 e 30 segundos, para capturar dinamismo local no tempo;

= Balanceamento das classes: aplicacdo do algoritmo SMOTE-ENN, que combina over-
sampling de minoria (SMOTE) com remoc&o de ruidos da maioria (ENN), promovendo

um conjunto mais equilibrado e informativo.

4.5.2 Desenvolvimento das Métricas de Selecio

Nesta etapa, foram definidas e, quando necessario, adaptadas as principais métricas uti-
lizadas nos algoritmos de selecdo de caracteristicas, agrupadas por suas respectivas funcdes:
relevancia, redundancia, separabilidade e dependéncia supervisionada. A selecio dessas métri-
cas priorizou abordagens nao paramétricas, robustas a outliers e adequadas para distribuicdes

n3o conhecidas ou multimodais.
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= Métricas de Relevancia: comparadas diferentes medidas informacionais para quanti-

ficar a capacidade discriminativa das features em relacdo a classe. A Tabela 5 resume

suas caracteristicas.

Tabela 5 — Comparacdo entre medidas de informacdo

Métrica Baseada em Normalidade | Resistente a outliers
Entropia de Shannon | Distribuicao empirica | N&do assume Sim

Ganho de Informacao | Entropia condicional N3o assume Sim

F-score / ANOVA Diferenca de médias Assume Nao
Chi-quadrado Frequéncia categérica Assume Parcial

A entropia de Shannon foi escolhida pois ndo assume normalidade, simetria, homoce-

dasticidade nem linearidade, o que a torna ideal para dados de trafego de rede, logs de

sistema, loT, ciberseguranca, onde a distribuicdo € irregular e multimodal.

H(f)=-Y

P(fi;)log P(fi;)

Onde P(f; ;) representa a probabilidade da ocorréncia do valor j na feature f;.

A entropia de Shannon foi selecionada por sua capacidade de lidar com distribuicdes

irregulares e assimétricas:

H(f) ==

J

P(fi;)log P(fi;)

= Filtragem de Redundancia: realizada com base na correlacao de Spearman. A Tabela 6

apresenta a comparacdo entre correlacdes usuais.

Tabela 6 — Comparacgdo entre correlacdes

Métrica | Relacao Detectada | Normalidade | Ranks | outliers
Pearson Linear Sim N3o | Sensivel
Spearman Monotonica Nao Sim Robusta

cov(rank(X), rank(Y"))

PXy =

Orank(X) * Orank(Y)

= Separabilidade entre classes: foi utilizada uma versdo modificada da distancia de

Bhattacharyya, conforme a Tabela 7.

Tabela 7 — Comparacdo entre métricas de separacdo de classes

Métrica Tipo Robusta a outliers | Normalidade
Bhattacharyya (modificada) | Nao-paramétrica Sim Nao assume
Fisher Discriminant Linear Nao Assume
Euclidean Distance Métrica pura N3ao Assume
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13 (@ -3 1 IQR; + IQR}]
DB=—Z—(:EO %) +§log< QO+Q1)

4~ I1QR? + IQR} 2,/IQR2 - IQR?

= Dependéncia supervisionada: foi adotada a informacdo mdtua ajustada (AMI), prece-

dida por pré-processamento robusto. A Tabela 8 apresenta a comparacao entre métricas.

Tabela 8 — Comparac3o entre medidas de dependéncia supervisionada

Meétrica Corrige Viés | Desbalanceamento | Baseada em Informacao
AMI Sim Sim Sim
Mutual Information Nao Suporta parcialmente Sim
Chi-quadrado Nao Suporta parcialmente Nao
Gain Ratio Sim Suporta parcialmente Sim

MI(X,Y)—E[MI(X,Y)]

AMI(X,Y) = max(H(X), HY)) — E[MI(X,Y)]

A Tabela 9 detalha as etapas de robustez aplicadas antes do calculo da AMI.

Tabela 9 — Etapas anteriores ao célculo da AMI e respectivas técnicas de robustez

Etapa Anterior Técnica de Robustez Aplicada
Remocao de outliers Isolation Forest

Normalizacdo Mediana + IQR (quantis)
Filtragem de redundancia | Correlacdo de Spearman
Similaridade de grupos Mahalanobis com quantis

4.6 ANALISE DOS RESULTADOS

A validacdo do modelo proposto foi conduzida por meio de protocolos estatisticos,
com o objetivo de assegurar robustez, generalizacdo e significancia dos resultados obtidos.
Foram empregadas técnicas de validacdo cruzada, aplicacdo em conjuntos externos e testes
estatisticos ndo paramétricos. Para analisar o desempenho do modelo, foram considerados dois
eixos de avaliacdo: (i) desempenho preditivo de classificacdo com Random Forest, utilizando
métricas como Exatid3o, Precisdo, F1-Score e AUC-ROC; e (ii) comparacdo estatistica com
outros métodos de selecdo por meio do teste de Friedman seguido do pés-teste de Nemenyi.

As expressdes matematicas do teste de Friedman e do Calculo da Diferenca Critica
(CD) s&o apresentadas a seguir, conforme detalhado na literatura (Demsar, 2006b).

A estatistica do teste de Friedman é dada por:

12N
k:+1

Xk: k+1)

=1

onde:
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= N: nGmero de datasets ou folds utilizados;
= k: nimero de métodos de selecao comparados;
= R;: soma das posicdes (ranks) atribuidas ao método j em cada repeticéo.

Se o valor de x% for significativo, rejeita-se a hipétese nula de que todos os métodos
tém desempenho equivalente.

Como pos-teste, utilizou-se o teste de Nemenyi, que identifica quais pares de métodos
apresentam diferencas estatisticamente significativas. A comparacao entre dois métodos 7 e j
é considerada significativa se a diferenca média de ranks |R; — R;| for maior do que o valor

critico conhecido como CD, dado por:

k(k+1)
6N
onde ¢, € o valor critico da distribuicdo de Studentized range para o nivel de signifi-

CD =q,-

cancia o, £ o nimero de métodos, e N o niimero de datasets.

» Validacdo cruzada estratificada 10-fold: garante que a proporcdo entre classes seja
mantida em cada particao, sendo especialmente importante em contextos com desba-

lanceamento severo;

» Holdout externo: utilizacdo de conjuntos de dados nao empregados no treinamento,

com o objetivo de verificar a capacidade de generalizacdo do modelo;

= Teste de Friedman: teste estatistico ndo paramétrico utilizado para avaliar se existem
diferencas significativas entre os métodos de selecdo comparados. A estatistica do teste

é dada por:

2 g (4.1)

j=1

@= nk(k+1)
onde n é o nimero de conjuntos de dados (ou execucdes), k é o nimero de métodos

avaliados e ; € a soma dos ranks atribuidos ao j-ésimo método;

= Pés-teste de Nemenyi: utilizado para identificar quais pares de métodos diferem sig-

nificativamente entre si, com base em um limiar de significancia p < 0,05.

Apoés a validacdo do modelo por meio de validacdo cruzada estratificada e testes es-
tatisticos ndo paramétricos, os resultados sdo analisados sob multiplas perspectivas. O foco
central é examinar a eficacia do algoritmo de selecdo de caracteristicas proposto na melhoria
do desempenho de classificadores, especialmente em contextos com dados de alta dimensio-

nalidade, desbalanceamento severo entre classes e auséncia de pressupostos paramétricos.
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A analise comparativa considera o desempenho dos modelos de aprendizado de maquina
com e sem a aplicacdo do método de selecdo. Foram utilizadas métricas tradicionais como
exatid3o, precisdo, F1 e AUC-ROC, avaliando tanto a capacidade preditiva quanto a robustez
frente a falsos positivos e negativos. Essas métricas foram computadas em diferentes conjuntos
de dados de seguranca cibernética amplamente utilizados na literatura, garantindo diversidade
nos cenarios avaliados.

Além das métricas preditivas, o impacto da reducdo de dimensionalidade foi mensurado

em termos de:

= Taxa de Reducdo de Atributos: proporcdo de features eliminadas pelo método em

relacdo ao conjunto original;

= Tempo de Treinamento e Inferéncia: avaliacdo do tempo computacional necessario

antes e apds a selecdo, medindo ganhos em escalabilidade;

= Estabilidade das Selecdes: verificacdo da consisténcia dos subconjuntos selecionados

entre execucdes, considerando diferentes particGes dos dados e diferentes bases;

= Impacto na Interpretabilidade: analise qualitativa da compreensibilidade dos sub-
conjuntos gerados, com base em critérios de transparéncia estatistica e semantica dos

atributos selecionados.

A comparacao entre os resultados obtidos com o modelo proposto e os gerados por
métodos consagrados de selecdo de caracteristicas foi realizada com o teste de Friedman,
apropriado para multiplas comparacdes em dados ndo normalmente distribuidos, seguido do
pos-teste de Nemenyi, o qual determina a significancia estatistica entre pares de métodos
com base na diferenca média de ranks. Foi adotado o nivel de significancia de p < 0,05.

Os resultados obtidos evidenciaram que o modelo proposto proporcionou, em todos os
conjuntos de dados avaliados, reducdo expressiva na quantidade de atributos, sem prejuizo —
e, em muitos casos, com ganho — nas métricas de desempenho. Tais ganhos foram ainda
acompanhados por menores tempos de processamento e maior estabilidade entre execucdes,

fatores fundamentais para aplicacbes em ambientes criticos e em tempo real, como IDS.

47 CONSIDERACOES

O método proposto consolidou uma estratégia ndo paramétrica eficaz para selecdo de
atributos em ambientes caracterizados por trafego de rede de alta dimensionalidade, distri-
buicdo assimétrica e elevado desbalanceamento entre classes. Ao adotar métricas estatisticas
robustas, livres de pressupostos de normalidade, e técnicas de filtragem, clusterizacdo e ran-

queamento integradas de forma sistematica, a abordagem se mostrou capaz de preservar (e,
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frequentemente, melhorar) o desempenho preditivo dos classificadores, ao mesmo tempo em
que promove significativa economia computacional.

Além disso, o modelo demonstrou elevada estabilidade entre execucdes, com subcon-
juntos de atributos consistentes e interpretaveis, o que favorece sua aplicacdo em contextos
criticos como ciberseguranca, loT e andlise de logs. O uso da validacao estatistica assegura

confiabilidade as conclusGes obtidas e fortalece o potencial de generalizacdo da abordagem.
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5 ALGORITMO PROPOSTO DE SELECAO NAO PARAMETRICA

A fase de Algorithm Design compreendeu o delineamento da arquitetura do algoritmo
proposto, com a definicdo de um conjunto de métricas estatisticas ndo paramétricas e sua inte-
gracao em um fluxo coerente, robusto e escalavel. O objetivo central foi garantir confiabilidade
na selecdo de caracteristicas, mesmo em cenarios com alto grau de assimetria, desbalancea-
mento entre classes e presenca de outliers, como ocorre frequentemente em dados de trafego
de rede utilizados na deteccao de ataques cibernéticos.

A partir do estudo sistematico de algoritmos de filtragem classicos, foram identificadas
etapas recorrentes entre os métodos: calculo de medidas de distancia, analise de dissimilaridade,
agrupamento, avaliacdo de importancia no grupo e ranqueamento final. Métricas amplamente
utilizadas como média, covariancia, distancia Euclidiana e correlacio de Pearson, embora
efetivas em contextos com dados gaussianos, ndo sdo ideais para os dominios de interesse
deste trabalho.

Dessa forma, para tornar o algoritmo mais robusto, optou-se por substituir essas mé-

tricas por alternativas estatisticamente mais adequadas a dados ndo paramétricos:

= Mediana no lugar da média: por ser menos sensivel a valores extremos, a mediana
oferece maior robustez, preservando a representatividade de padrdes relevantes de ata-
que, mesmo em distribuicOes assimétricas, como as de tipo Pareto, comuns em logs de

rede e métricas de sistema;

» Variancia acumulada em vez de covariancia: utilizada como métrica interna de
contribuicao relativa da caracteristica para a estrutura do grupo, permitindo avaliar sua

importancia sem pressupor distribuicao normal;

= Correlacao de Spearman em vez de Pearson: a correlacao de Spearman, por operar
sobre postos ordenados, é capaz de capturar associacdes monotdnicas entre atributos,
independentemente da escala, e é naturalmente resistente a outliers e transformacdes
nao lineares. Essa substituicdo é fundamental para evitar sobreajuste e redundancia

indesejada;

= Distancia de Mahalanobis modificada em vez da Euclidiana: a métrica tradicional
de Mahalanobis foi adaptada para utilizar estimativas robustas (medianas e Intervalo
interquartilico (IQR)), sendo capaz de considerar a interdependéncia entre variaveis sem
exigir normalidade multivariada, o que se mostrou crucial para a clusterizacdo confiavel

de atributos;

= Distancia de Bhattacharyya adaptada: aplicada como critério de separabilidade en-
tre classes, utilizando quantis ao invés de médias e desvios padrdo, garantindo maior

fidelidade a estrutura empirica dos dados;
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= Teste de Friedman: empregado como etapa final de validacao da significancia estatis-
tica dos conjuntos de atributos selecionados, garantindo que a melhoria no desempenho

nao ocorra por acaso.

A complexidade dos conjuntos de dados avaliados — marcados por alta dimensiona-
lidade, grande volume de amostras, desbalanceamento entre instancias normais e maliciosas
e auséncia de distribuicdo conhecida, impde limitacSes as técnicas classicas de selecdo de
atributos, motivando a formulacdo de um modelo abrangente e resiliente. Em resposta a esse
desafio, este capitulo apresenta um modelo formal de Feature Selection, projetado para operar
com dados de natureza n3o paramétrica, suportar ambientes em tempo real e minimizar custo
computacional.

O algoritmo foi implementado em Python e validado sobre os conjuntos de dados
discutidos no Capitulo 4.2. Sua estrutura modular permite integracdo em IDS e aplica¢des
de ciberseguranca em larga escala. A préxima secdo apresenta os algoritmos desenvolvidos,

detalhando suas etapas e procedimentos computacionais.

5.1 ALGORITMO PROPOSTO DE SELECAO NAO-PARAMETRICA

A partir das etapas previamente definidas e das métricas selecionadas por sua robus-
tez estatistica, foi concebido um algoritmo de selecdo de caracteristicas com foco em dados
ndo paramétricos, desbalanceados e de alta dimensionalidade. O algoritmo foi projetado para
combinar multiplos critérios estatisticos em um pipeline organizado, com énfase em interpre-
tabilidade e viabilidade computacional para aplicaces em tempo real, como IDS.

A Figura 1 apresenta o pseudocddigo do algoritmo proposto. O processo inicia-se
com o pré-processamento dos dados, utilizando técnicas robustas a presenca de outliers e
distribuicdes assimétricas. Em seguida, uma filtragem inicial por entropia é realizada para
eliminar atributos com baixa variabilidade informacional. A etapa de clusterizacdo emprega uma
versdo modificada da distancia de Mahalanobis, que utiliza mediana e intervalo interquartil,
promovendo agrupamento de atributos similares. Por fim, dentro de cada grupo, ¢ selecionado
o atributo mais informativo, com base na maior AMI com a varidvel-alvo.

A estratégia empregada pode ser interpretada como uma hibridizacdo entre métodos
Filter e técnicas de analise de redundancia, similar ao modelo mRMR, porém com énfase em
medidas robustas e nao paramétricas. A estrutura do algoritmo permite integracdo modular
com qualquer classificador supervisionado posterior, mantendo separac3do clara entre selecdo

de atributos e modelagem preditiva.
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Algorithm 1 Algoritmo Proposto de Selecdo de Caracteristicas Nao-Paramétrico

Conjunto de dados X com n amostras e d atributos; vetor de rétulos y Subconjunto S de
atributos selecionados Pré-processamento:

1. Aplicar Isolation Forest para remocao de outliers;

2. Normalizar atributos usando mediana e IQR:

o r—T
IQR+ ¢

Filtragem Inicial:

3. Calcular entropia de cada atributo H(f;);

4. Eliminar atributos com H(f;) < 0,4;

Agrupamento:

5. Calcular distancia de Mahalanobis robusta entre atributos;
6. Aplicar agrupamento hierarquico;

Selecao Final:

7. Escolher a melhor feature de cada grupo com maior AMI;
8. Retornar conjunto S final de atributos.

Essa formulacdo combina etapas de analise exploratéria, medidas estatisticas robustas
e dependéncia supervisionada, promovendo uma selecao de atributos sensivel a estrutura dos
dados reais. A estratégia se mostrou eficaz na reducdo de dimensionalidade com manutencdo —
ou mesmo melhora — do desempenho preditivo, conforme discutido na Secdo 4.6. Além disso,
por ndo depender de modelos preditivos internos, o algoritmo possui baixo custo computacional

em comparacao a métodos do tipo Wrapper ou Embedded.

Referéncia de base: A ideia de combinar relevancia e redundancia para selecdo de
caracteristicas € inspirada em trabalhos como mRMR, enquanto a robustez estatistica se baseia
em técnicas consolidadas na literatura de estatistica robusta e ciberseguranca (Peng, Long e
Ding; Deng et al., 2005, 2019).

A Figura 3 ilustra, de forma conceitual e sequencial, as principais etapas do algoritmo

de selecdo de caracteristicas ndo paramétrico.
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Figura 3 — Algoritmo de Selecdo de Caracteristicas Ndo Paramétrico Proposto

Algoritmo de Selecao
de Caracteristicas

N

,
Y Filtragem Inicial
L J/ J
( N\
A Clusterizacdo
Hierarquica
p J
4 l N\
0 Selecdo em
Cada Cluster
N J/ J
( N
%_ Ranqueamento
lll Final
S i

J

DISTANCIA DE MEDIDA DE SIMILARIDADE

A DMS, no contexto desta dissertacdo, ndo corresponde a uma distancia euclidiana
convencional, mas sim a uma métrica de dissimilaridade concebida para quantificar a per-
turbacdo na representacdo de uma instancia de dados quando uma caracteristica especifica é
removida. Em esséncia, a DMS busca responder: Qual a magnitude da alteracdo no perfil de
uma observacdo ao desconsiderarmos um de seus atributos?

Conceitualmente, a DMS opera sob a premissa de que uma caracteristica é intrinseca-
mente relevante e n3o redundante se sua remocdo acarreta uma modificacdo significativa na
posicdo da instancia no espaco de caracteristicas. Por outro lado, se a auséncia de um atributo
resulta em alteracdo minima na identidade da instancia, esse atributo pode ser considerado de

menor informatividade ou altamente redundante.

Componentes e Sua Racionalidade

A formulacdo da DMS empregada neste trabalho é uma adaptacdo estratégica de

conceitos estatisticos, visando sua aplicabilidade no ambiente desafiador dos dados de ciber-
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seguranca:

DMS(z) = (z_; —med_ ;)" R} (z_; — med_;)

A seguir, descrevem-se os componentes da métrica e a logica por trds de cada um

deles.

(x_; —med_;): Vetor de Desvio Robusto

= 7_;: Vetor da instancia x com a remocdo da i-ésima feature.

= med_;: Vetor das medianas das demais features no conjunto. O uso da mediana, em
vez da média, fundamenta-se na robustez contra outliers, comum em dados de trafego
de rede e ciberseguranca. Isso torna a representacdo do centro dos dados mais estavel,

especialmente em distribuicGes assimétricas.

R_}: Matriz de Correlacdo Inversa

= R_;: Matriz de correlacio de Spearman entre as features remanescentes. A correla-
cdo de Spearman, por capturar relaces monotdnicas e ndo depender de suposicdes de

normalidade, é apropriada para o contexto ndao paramétrico deste trabalho.

» R_}: Ainversa da matriz de correlacio atua como um fator de ponderacio, atenuando o
impacto de atributos redundantes. Assim, a DMS valoriza a informacdo ndo redundante,

considerando a estrutura de dependéncia entre os atributos.

R™/: A Matriz de Correlacdo Inversa e o Tratamento da Redundancia

= R_;: E a matriz de correlacdo entre as caracteristicas remanescentes (ap6s a remocio
de f;). No presente trabalho, a Correlacdao de Spearman é utilizada para construir esta
matriz, reforcando, novamente, a natureza ndo-paramétrica da abordagem. A correlacdo
de Spearman avalia relacoes monotodnicas e se mostra robusta a nao-linearidades e a

outliers, sendo ideal para dados onde as relacGes nao sdo estritamente lineares.

» R7}: Ainclusio da inversa da matriz de correlacio é o fator que distingue a DMS de
uma simples distancia euclidiana. Ela atua como uma matriz de ponderacao que leva
em consideracao a interdependéncia e a redundancia entre as caracteristicas
restantes. Caso duas caracteristicas sejam altamente correlacionadas (redundantes),
esta matriz “desconta” a contribuicao dessa redundancia para a distancia. Isso permite

que a DMS valorize a informacado nao-redundante, medindo o desvio da instancia em
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um espaco onde as correlacoes entre as caracteristicas foram “removidas” ou “normali-

zadas", similar ao conceito da Distancia de Mahalanobis.

Forma Quadratica

A estrutura da férmula segue o modelo de uma forma quadratica:

(x_; —med )" R™}(x_; — med_;)

Esse formato é tipico de métricas como a distancia de Mahalanobis, permitindo medir
o desvio ponderado de uma instancia em relacdo a um centro, ajustado pela dependéncia entre

atributos.

DMS como Critério de Selecdo de Caracteristicas

Valores elevados de DMS associados a remocdo de uma feature f; indicam que:

= f; contém informacdo unica que n3o pode ser compensada pelas demais;

= f; é altamente relevante para a descricdo da instancia x.

Na metodologia proposta, a DMS é um dos pilares do processo de selecao de atribu-
tos, sendo combinada a métricas como entropia e AMI. Essa combinacdo permite selecionar
atributos informativos e n3o redundantes mesmo em dados altamente desbalanceados, n3o

gaussianos e com presenca de ruidos.

Sintese

A DMS é uma métrica nao paramétrica e multidimensional que quantifica o im-
pacto da remocdo de um atributo sobre a identidade estatistica de uma instancia. Sua forca
reside na capacidade de incorporar robustez estatistica, sensibilidade a relevancia e penaliza-
cdo de redundancia — propriedades essenciais em contextos de ciberseguranca com dados

ruidosos, assimétricos e de alta dimensionalidade.

5.2 ESTRUTURA DO ALGORITMO

O modelo proposto consiste em um algoritmo trifasico, projetado para atuar de forma

eficaz em contextos com dados ndo paramétricos, alta dimensionalidade e presenca de ruido
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estatistico. Sua arquitetura foi desenhada para combinar robustez, escalabilidade e interpre-
tabilidade, caracteristicas essenciais em ambientes de ciberseguranca e analise de trafego de

rede. As trés fases principais sdo descritas a seguir:

1. Filtragem Inicial: Nesta fase, cada caracteristica é avaliada de forma univariada quanto
a sua variabilidade e informatividade, utilizando métricas ndo paramétricas. A filtragem
serve como etapa de reducao inicial do espaco de busca, eliminando atributos com
baixa entropia ou relevancia estatistica. Essa abordagem permite descartar atributos que
nao contribuem significativamente para a variabilidade dos dados, tornando o processo

subsequente mais eficiente.

2. Clusterizacdo Hierarquica: As caracteristicas remanescentes sdo agrupadas com base
em métricas de similaridade robustas, como a distdncia de Mahalanobis adaptada para
distribuicdo ndo-normal. O objetivo dessa etapa é identificar grupos de atributos re-
dundantes ou altamente correlacionados, evitando a selecdo simultdnea de mudltiplas

variaveis com comportamento semelhante, o que poderia induzir sobreajuste.

3. Selecao Final por Informacao Matua: Apds a formacdo dos clusters, o algoritmo
seleciona, em cada grupo, a caracteristica com maior relevancia em relacdo a variavel-
alvo, medida por AMI. Essa escolha é posteriormente refinada com base na correlacdo
de Spearman, assegurando que o conjunto final de atributos seja ao mesmo tempo

informativo, n3o redundante e robusto frente a dados desbalanceados.

Esse encadeamento sistematico ndo apenas reduz a dimensionalidade do conjunto de
dados, mas também favorece a interpretabilidade do modelo final. O processo é particularmente
vantajoso em contextos de monitoramento de seguranca, onde decisGes precisas e auditaveis

s3o fundamentais.

53 COMPONENTES E ADAPTACOES ESTATISTICAS PARA DADOS NAO PARAME-
TRICOS

Considerando as caracteristicas dos dados utilizados, como assimetria, alta variancia e
a presenca de outliers, optou-se por um conjunto de métricas estatisticas ndo paramétricas,
que dispensam suposicoes de normalidade e garantem maior robustez nas etapas de selecdo

de atributos.

Métricas estatisticas utilizadas

Como alicerce do modelo, adotaram-se medidas robustas de tendéncia central e dis-

persao:
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» Mediana (7): substitui a média aritmética como medida de tendéncia central. Por ser
baseada na posicdo dos dados e nao nos seus valores absolutos, a mediana é menos sen-

sivel a valores extremos e garante maior estabilidade estatistica na presenca de outliers.

= Intervalo Interquartilico: definido como )3 — )1, o IQR representa a amplitude do
intervalo central dos dados e é utilizado como substituto da variancia. Essa escolha
garante uma estimativa de dispersao mais robusta, ideal para cenarios onde a distribuicdo

dos dados é multimodal ou assimétrica.

Essas métricas formam a base das transformacoes estatisticas utilizadas em todas as fases do

algoritmo, desde a normalizacao até os calculos de similaridade e separabilidade.

Relevancia da Caracteristica (Filtragem Inicial)

Na primeira fase, a relevancia de cada caracteristica é quantificada por meio da Entro-
pia de Shannon, uma medida derivada da teoria da informac3do que avalia a imprevisibilidade

de uma variavel:

H(f;) = —ZP(f,;yj)log P(fij)

em que P(f; ;) representa a frequéncia relativa do valor j na varidvel f;. A entropia é calculada
com base na distribuicdo empirica dos dados, e ndo exige pressupostos sobre sua forma.
Caracteristicas com H(f;) < 0,4 s3o descartadas, por apresentarem baixa diversidade
informacional. Adicionalmente, utiliza-se o IG como métrica complementar de relevancia su-
pervisionada, mensurando o quanto uma caracteristica contribui para a reducdo da incerteza

da variavel-alvo:

IG(T, f;) = H(T) = H(T|f:),

onde H(T') é a entropia da variavel de saida e H(T|f;) é a entropia condicional dada
a caracteristica f;.
A aplicacdo conjunta dessas métricas garante que apenas caracteristicas informativas

e relevantes sejam mantidas no conjunto de dados para as etapas posteriores do algoritmo.

Filtragem de Redundancia e Agrupamento

A etapa de mitigacdo de redundancia entre caracteristicas é essencial para evitar que
variaveis altamente correlacionadas causem sobreajuste, degradem a interpretabilidade ou in-
troduzam viés no modelo de aprendizado. Para tal, emprega-se a correlacao de Spearman
(px.y), uma métrica ndo paramétrica que avalia a associacdo monotdnica entre duas variaveis

a partir de seus ranques ordenados. Sua férmula é dada por:
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cov(rank(X), rank(Y"))

Orank(X) * Orank(Y)

PxXy =

Diferentemente da correlacdo de Pearson, a medida de Spearman ndo pressupde linearidade
nem distribuicdo normal dos dados, sendo, portanto, mais adequada para contextos onde
predominam relacdes n3o lineares, assimetria e outliers — caracteristicas comuns em dados
de trafego de rede e registros de atividades anémalas.

Apbds a filtragem por correlacdo, as caracteristicas remanescentes sao submetidas a
uma clusterizacao hierarquica, com base em uma distancia de Mahalanobis modificada,
adaptada para lidar com distribuicGes ndo paramétricas. Essa versdo robusta substitui a matriz
de covariancia classica por uma matriz de correlacdo de Spearman, e a média vetorial por
medianas, de modo a preservar a resisténcia do modelo a distorcoes.

A férmula da distancia adaptada entre duas caracteristicas ¢ e j é expressa por:

Dy = /(& — ;)T R (& — &),
em que:
= I; e T; representam os vetores de medianas das varidveis 7 e j, respectivamente;

= R!é ainversa da matriz de correlacio de Spearman entre todas as variaveis selecio-

nadas ap6s a filtragem inicial.

Esse procedimento permite agrupar caracteristicas com comportamento semelhante
em termos de distribuicao e associacdo com os dados, mesmo na auséncia de linearidade
ou normalidade. Ao final da clusterizacao, cada grupo resultante representa um conjunto de
caracteristicas potencialmente redundantes. Na fase posterior do algoritmo, sera selecionado
apenas um representante por cluster, conforme critérios supervisionados de informacdo mutua.
Tal abordagem garante que o conjunto final de atributos seja mais enxuto, ndo redundante e

estatisticamente robusto.

Separacdo de Classes e Dependéncia Supervisionada

A capacidade discriminatéria das caracteristicas é avaliada por meio da distancia de
Bhattacharyya adaptada, métrica essencial para quantificar a separacao estatistica entre
classes. Embora a fase final do algoritmo utilize a AMI como critério de ranqueamento su-
pervisionado, a distancia de Bhattacharyya atua como etapa complementar na avaliacdo da
separabilidade dos atributos, permitindo identificar, de forma robusta, as caracteristicas com

maior poder de distincdo entre as distribuices de trafego normal e trafego malicioso.
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Motivacao para adaptacao da métrica

A formulacdo classica da distancia de Bhattacharyya assume distribuices Gaussianas e
depende diretamente de estatisticas paramétricas como a média (u) e a matriz de covariancia
(X). No entanto, em contextos de ciberseguranca — como trafego de rede e dados de ataques
— os dados tendem a ser assimétricos, multimodais, altamente desbalanceados e sujeitos a
presenca de outliers, violando os pressupostos dessas estatisticas. A aplicacdo direta da versao
paramétrica da Dy pode, portanto, levar a inferéncias distorcidas sobre a separabilidade real
entre as classes.

Diante disso, propde-se uma adaptacao nao paramétrica da distancia de Bhatta-
charyya, que substitui os elementos sensiveis a ruido por estatisticas robustas, garantindo

consisténcia e validade mesmo em cenarios com distribuicdes irregulares.

Formulacdo da distancia adaptada

A nova forma da distancia de Bhattacharyya, considerando as substituicGes menciona-

das, é expressa como:

i — 18)? 1 1 IQR; + IQR3

= —|— —lo ) 51
T4 ; QR2 IQR? & 2,/IQR2 - IQR? (5.1)

em que:
» 7! representa a mediana da caracteristica i na classe k& (k € {0,1});

= |IQR; é o intervalo interquartil da mesma caracteristica dentro da classe k.

Importancia na arquitetura proposta

Essa métrica atua como elemento adicional de robustez na etapa de avaliacdo interna
das caracteristicas, fornecendo evidéncias de separacao estatistica antes do ranqueamento su-
pervisionado final via AMI. Em conjunto, ambas as medidas (separacdo ndo supervisionada e
dependéncia supervisionada) fortalecem a selecdo de caracteristicas relevantes e n3o redundan-
tes, garantindo que o conjunto final selecionado maximize tanto a capacidade discriminativa

quanto a generalizacdo do modelo.

A Formulacdo Adaptada

Neste estudo, a adaptacdo da distancia de Bhattacharyya para lidar com dados ndo

paramétricos é explicitada pela formula:
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1 (F0—70)> 1. |IQRI+IQR]
Dp =3 ATy Lo, [ 1900 H IO

i=1

Nesta formulacdo adaptada, o primeiro termo quantifica a "distancia"entre os centros
robustos (medianas ) de cada caracteristica ¢ nas duas classes (0 e 1, e.g., normal e ataque),
normalizada pela soma de seus respectivos quadrados do IQR. O segundo termo atua como
uma medida de similaridade ou divergéncia entre as dispersoes robustas das duas distribuicdes,
baseadas nos IQR gerais. Essa construcdo permite que a distancia de Bhattacharyya avalie a
separabilidade das classes de maneira muito mais fidedigna em ambientes onde a normalidade
dos dados ndo pode ser presumida.

O beneficio principal dessa adaptacdo é a capacidade de identificar caracteristicas que
demonstram uma clara distin¢do entre diferentes classes (e.g., normal e ataque) com base em
suas distribuicGes reais, mesmo que essas distribuicdes sejam complexas e ndo sigam padrdes
conhecidos. Uma maior distancia de Bhattacharyya adaptada indica que uma caracteristica
é mais discriminativa, tornando-a valiosa para a selecdo de atributos em problemas criticos
como a deteccao de ameacas cibernéticas, onde a precisdo e a robustez sao primordiais.

Esta adaptacdo substitui médias e variancias por medianas e IQR, tornando a métrica

robusta para comparar distribuicGes nao-Gaussianas:

1 Tio — Ti1)? 1 IQR2+ IQR?
DB —_ _ Z ( g 1) - + = 10g Q 02 Q ;

=1

O termo ;) representa a mediana da caracteristica 7 na classe k, e I(Q R;; seu intervalo inter-
quartil. Esta métrica informa o grau de separabilidade entre as classes para cada caracteristica.

Para a selecdo final e ranqueamento, utiliza-se a AMI. Embora a AMI seja uma métrica
baseada em informacao que quantifica a dependéncia entre variaveis, sua aplicacao no modelo
é precedida por rigorosas etapas de pré-processamento. A deteccdo de outliers com Isolation
Forest, a normalizacdo robusta baseada em mediana e IQR, e a discretizacdo por binning ga-
rantem que a AMI seja calculada sobre dados devidamente tratados, minimizando a influéncia
de valores extremos. A AMI é calculada como:

MI(X,Y) — E[MI(X,Y)]

max(H(X), H(Y)) — E[MI(X,Y)]

AMI(X,Y) =

onde MI é a Informacdo Mdtua e E[MI] é sua expectativa sob independéncia.

5.4 ALGORITMO PROPOSTO

A combinacdo estratégica de métodos estatisticos ndao paramétricos oferece um arca-
bouco sélido e confidvel para a selecao de caracteristicas em cenarios de deteccdo de anomalias.
Essa abordagem contorna limitacoes de técnicas paramétricas tradicionais, que dependem de

suposicdes como normalidade e homogeneidade de variancias, condicGes raramente atendidas
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em dados reais de trafego de rede. Ao dispensar tais pressupostos, as técnicas ndo paramé-
tricas mantém alta robustez frente a distribuicdes irregulares, assimétricas e com presenca de
outliers, garantindo desempenho consistente mesmo em contextos de elevada variabilidade e
desbalanceamento.

O algoritmo proposto é explicavel e adaptativo, fundamentado na DMS e incorpo-
rando elementos-chave como a correlacao de Spearman, a mediana e a entropia para identificar
atributos essenciais na predicdo da variavel-alvo. O resultado é um subconjunto otimizado de
caracteristicas que preserva a capacidade discriminativa dos dados, ao mesmo tempo em que
reduz a dimensionalidade, aprimorando a eficiéncia computacional e a exatidao ou acuracia de
modelos de aprendizado de maquina.

Em comparacdo a medidas robustas de dissimilaridade, como a distancia de Mahala-
nobis, a presente abordagem substitui a matriz de covariancia pela matriz de correlacao
de Spearman, mitigando erros de agrupamento decorrentes de diferencas de escala entre
variaveis. Além disso, substitui-se a média pela mediana, aumentando a resisténcia a valores
extremos. Complementarmente, sdo conduzidas analises individuais de entropia condicional em
relacdo a variavel de resposta, permitindo eliminar caracteristicas pouco informativas sem ne-
cessidade de construir matrizes de afinidade, como exigido em métodos do tipo Agrupamento
Baseado em Densidade com Ruido (DBSCAN).

A etapa de validacao do algoritmo combina mdltiplos critérios: o teste estatistico de
Friedman para verificar diferencas significativas entre métodos, a distancia de Bhattacharyya
adaptada para avaliar separabilidade de classes e a andlise da distribuiciao de Pareto para
ponderar a contribuicao relativa das caracteristicas selecionadas. Essa integracao resulta em um
processo de selecdo transparente, robusto e estatisticamente fundamentado, projetado
para lidar com as propriedades intrinsecas de dados ndo paramétricos, multivariados e instaveis
tipicos de ambientes de ciberseguranca.

A escolha da mediana como medida de tendéncia central, em substituicio a média
aritmética, é um elemento chave da estratégia proposta, pois confere robustez a presenca de
outliers tipicos de dados de trafego de rede — como picos abruptos decorrentes de ataques
DDoS ou comportamentos anémalos ocasionais. Essa decisdo assegura que o calculo de distan-
cias e agrupamentos n3o seja distorcido por valores extremos, mantendo a representatividade
estatistica das distribuicdes reais observadas.

A entropia das varidveis é integrada ao processo de selecdo para captar a sensibili-
dade das métricas tanto em relacdo ao trafego normal quanto a variavel de resposta, permi-
tindo identificar atributos com maior poder de discriminacao entre classes. No estagio final,
o |G quantifica a reducdo de incerteza na variavel-alvo quando uma caracteristica especifica
é conhecida, garantindo que o subconjunto final preserve apenas atributos de alta relevancia
preditiva. Essa combinacdo — mediana, entropia e IG — assegura que o conjunto resultante
seja simultaneamente enxuto, informativo e estavel.

A avaliacdo é complementada por métricas e testes estatisticos de alto rigor. O teste



57

de Friedman permite verificar a significancia das diferencas de desempenho entre os métodos
de selecdo, enquanto a distancia de Bhattacharyya avalia a separabilidade entre classes
sem assumir gaussianidade, utilizando Estimativa de Densidade por Kernel (KDE) para maior
fidelidade a dados n3o paramétricos.

Quando comparado a algoritmos de agrupamento como DBSCAN e Ordenacdo de
Pontos para Identificar a Estrutura de Agrupamento (OPTICS), o método proposto apre-
senta vantagens substanciais: elimina a necessidade de construir matrizes de afinidade e de
ajustar parametros sensiveis (€, minPts), além de evitar procedimentos recursivos onerosos.
Essa simplicidade operacional, aliada a robustez estatistica, reduz significativamente o custo
computacional e aumenta a escalabilidade da solucdo para ambientes com dados de alta di-
mensionalidade, distribuicoes complexas e forte desbalanceamento.

Essa combinacdo de métodos é particularmente valiosa na selecao de caracteristicas de
dados ndo paramétricos, pois fornece uma abordagem abrangente, explicavel e rigorosa. Ao
considerar diferencas entre grupos, obtemos compreensdo mais profunda das caracteristicas que
realmente distinguem as condicoes analisadas, sem ignorar variacdes significativas e mantendo
base estatistica robusta.

Além disso, a natureza n3o paramétrica desses métodos os torna resilientes a violacoes
de hipoteses, permitindo lidar com ampla variedade de tipos e distribuices de dados sem
comprometer a precisao dos resultados.

O Algoritmo 2 detalha o processo de selecdo de features realizado. O processo comeca
com o calculo da matriz de correlacdo de Spearman, que mede relacdes n3o lineares entre as
features. Essa matriz é essencial para avaliar redundancias e sera utilizada posteriormente no
calculo de dissimilaridades. Em seguida, o algoritmo realiza um agrupamento de features ba-
seado na distancia de Mahalanobis modificada, uma medida robusta que considera a estrutura
de correlacdo dos dados. Para cada feature, um subconjunto temporario é criado removendo-a,
e entdo calcula-se a mediana desse subconjunto. Para cada instancia, a diferenca em relacdo
a mediana é computada, e a distdncia de Mahalanobis modificada é derivada usando a inversa

da matriz de correlacdo. Esse valor é armazenado e associado a feature removida.
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Algorithm 2

Require: X: conjunto de dados original com todas as features
Ensure: Xj,.: conjunto otimizado sem features redundantes
. Calcular matriz de correlacdo de Spearman: R

0: Agrupar features com base na distancia de Mahalanobis

0: for cada feature f; em X do

0:  Criar subconjunto X_; removendo f;

0 Calcular vetor mediana 7_; de X_;

0:  Calcular entropia H(f;)

0 for cada instancia x em X_; do

0 Calcular vetor diferenca: d =z _; — T_;

0 Calcular distancia: DMS(z) = d"R™}d

0: end for

0:  Armazenar DMS; associada a remocao de f;

0: end for

0: Identificar features com alta mediana de DM S e alta entropia H
0

0

0

0

0

0

0

0

0

0

0

o

. for cada feature f; removida do
Calcular distancia mediana median(DM S;)
Marcar f; como relevante se median(DMS;) e H(f;) forem altos

. end for

: Remover features redundantes de X

. Xfinal < subconjunto final

. for cada feature em Xj,, do
Calcular ganho de informacdo: IG(f,classe)
Selecionar as features com maior IG

. end for

- return X5, =0

A préxima etapa do algoritmo 2 consiste em identificar features relevantes com base em
dois critérios: alta mediana da distancia de Mahalanobis modificada e alta entropia. Features
que, quando removidas, resultam em alta dissimilaridade (indicada pela mediana de DMS) e
que possuem alta entropia (ou seja, carregam informacdo ndo redundante) sdo consideradas
relevantes e mantidas no conjunto de dados. As demais sao marcadas como redundantes e
removidas. Apds essa filtragem, o algoritmo realiza uma selecao final baseada no IG, que
prioriza features que maximizam a informacdo relevante para a variavel alvo. O |G é calculado
para cada feature restante, e aquelas com os maiores valores s3o selecionadas, garantindo que

o conjunto final contenha apenas features discriminativas e n3o redundantes.
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Algorithm 3 Calculo do teste de Friedman para comparacdo de métodos de selecdo

Require: data: matriz (n x k) contendo as métricas de desempenho, onde n é o nimero de
conjuntos de dados (ou folds) e k é o nimero de métodos comparados

Ensure: p_value: valor-p do teste de Friedman

0: n <— numero de linhas de data (datasets ou folds)
0: k < nimero de colunas de data (métodos comparados)
0: Inicializar matriz ranks € R™** com zeros
0. for g =1 até n do
0:  Ordenar os valores da linha ¢ de data
0:  Atribuir ranks correspondentes aos métodos
0: end for
00T+ 0
0: for j =1 até k do
0:  sum_ranks < soma dos ranks da coluna j
00 T« T+ (sum_ranks)?
0: end for
0: Calcular estatistica de Friedman:

T 12 T—-3n-(k+1
BT RTES R

0: Calcular p_value a partir da distribuicao qui-quadrado com k — 1 graus de liberdade
0: return p_value =0

O Algoritmo 3 descreve a implementacio do teste de Friedman, utilizado para iden-
tificar diferencas estatisticamente significativas entre os desempenhos de miltiplos métodos
de selecao de caracteristicas ao longo de diferentes conjuntos de dados. Primeiramente, cada
conjunto de resultados é ordenado e convertido em ranks, preservando comparabilidade mesmo
quando as métricas apresentam escalas distintas. Em seguida, os ranks sao agregados por mé-
todo, e a estatistica do teste é calculada segundo a formulacdo apresentada em 4. O valor-p
resultante é derivado da distribuicdo qui-quadrado com k& — 1 graus de liberdade, permitindo
avaliar a hipdtese nula de equivaléncia de desempenho entre todos os métodos analisados.

A Figura 4 ilustra, de forma sequencial e simplificada, o fluxo de execucdo do algoritmo
baseado no teste de Friedman utilizado neste trabalho. O diagrama representa as principais
etapas do processo: desde a preparacao e ordenacao dos dados por grupos, passando pela
atribuicao dos ranks a cada observacdo, até o célculo do estatistico de teste e obtencdo do
valor-$p$ (p-value) a partir da distribuicdo qui-quadrado. Essa visualizagdo facilita a compreen-
sdo da légica e da ordem das operacdes realizadas, evidenciando a natureza n3o-paramétrica
e comparativa do método para avaliacao estatistica de multiplos algoritmos em diferentes

conjuntos de dados.
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Figura 4 — Fluxo de execucdo do algoritmo baseado no teste de Friedman. O diagrama apresenta as etapas de
preparacdo dos dados, atribuicdo de ranks, calculo do estatistico de teste e obtencdo do valor-p.
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6 RESULTADOS EXPERIMENTAIS E ESTUDO DE CASO

Este capitulo apresenta e analisa criticamente os resultados experimentais obtidos com
a aplicacdo da metodologia nao-paramétrica proposta para selecao de caracteristicas na de-
teccdo de ameacas. O foco esta em validar a eficacia do algoritmo em cenarios de alta dimen-
sionalidade, dados n3o gaussianos e desbalanceados, caracteristicas tipicas do trafego de rede
em contextos de ciberseguranca.

A anélise foi conduzida com base em mudltiplos conjuntos de dados, abrangendo dife-
rentes dominios e niveis de complexidade, a fim de garantir a generalizacdo dos resultados.
As métricas utilizadas para avaliacdo incluiram accuracy, precision, recall, F1, AUC-ROC,
tempo de execucdo e grau de reducdo da dimensionalidade, permitindo medir ndo apenas o

desempenho preditivo, mas também o ganho em eficiéncia computacional.

6.1 VALIDACAO DO MODELO

A validacao foi conduzida pela aplicacdo do algoritmo a trés datasets distintos, cui-
dadosamente selecionados por sua relevancia e diversidade de cenarios. Essa escolha visou
garantir que a eficacia observada nao fosse resultado de um caso especifico, mas sim uma

caracteristica inerente da abordagem proposta.

= Dataset 1: HPC-Lab Coletado a partir de metodologia especifica e disponibilizados pelos

autores (Nascimento et al., 2021a), contendo amostras de trafego legitimo e malicioso.

= Dataset 2 (CICD): CICDDoS-2019 Amplamente utilizado em estudos sobre ataques

DDoS, incluindo trafego benigno e ataques reflexivos, além de ameacas recentes.

= Dataset 3 (KDD): UNSW-NB15 Simula intrusées em ambiente de rede militar, abran-

gendo multiplos tipos de ataque e cenarios operacionais.

A diversidade desses conjuntos permitiu avaliar a adaptabilidade e robustez do algoritmo
em diferentes condicdes de trafego, confirmando sua aplicabilidade pratica em ambientes reais.

A seguir, sdo descritos os experimentos realizados e os resultados obtidos.

6.2 EXPERIMENTOS

Os experimentos foram realizados com os trés datasets apresentados na Secao 6.1,
aplicando o algoritmo proposto e comparando seu desempenho com abordagens tradicionais
de selecao de caracteristicas. O objetivo foi avaliar a capacidade da metodologia em otimizar
a deteccdo de ataques DDoS sob premissas ndo-paramétricas e de alta dimensionalidade,

mantendo ou melhorando o desempenho preditivo enquanto reduz o custo computacional.
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Cada experimento contemplou duas etapas principais:
Aplicacdo do método proposto para reducdo do conjunto de caracteristicas.

Avaliacao do classificador Random Forest antes e depois da selecdao, medindo accuracy,

precisao, recall, Fl-score e tempo de execucao.

Os resultados obtidos demonstram ganhos expressivos em desempenho e eficiéncia,

Reducdo de Dimensionalidade

A aplicacdo do método resultou em uma reducdo média de 81,5% entre os datasets,
no nimero de caracteristicas originais, mantendo niveis elevados de exatidao e precisao,
com p-valor de 0,32 segundo o teste de Friedman (Wang et al., 2015). Essa economia
de atributos implica menor custo de armazenamento, menor tempo de treinamento e

maior capacidade de operacao em tempo real, sem prejuizo da taxa de deteccao.

Eficiéncia Computacional

A adocdo de métricas robustas como a mediana e a correlacdo de Spearman garantiu
baixa sensibilidade a outliers e maior confiabilidade no agrupamento de atributos, ca-
racteristicas essenciais para dados de rede. A reducdo de dimensionalidade contribuiu
diretamente para menor uso de memoria e processamento, viabilizando a integracao do
modelo em sistemas distribuidos e de recursos limitados, em consonancia com trabalhos
como (Roopak, Tian e Chambers, 2020).

Desempenho

A consisténcia nas selecdes entre execucdes, acima de 90%, reforca a robustez da abor-
dagem, mesmo sob variacdo dos dados de entrada. Os ganhos observados s3o atribuidos
a adocdo de um nicleo baseado em métodos Filter, que nao dependem de iteracdes de
treinamento como métodos Wrapper, resultando em processamento mais agil e maior

escalabilidade.

6.3 ESTUDO DE CASO

O método proposto apresentou desempenho consistentemente superior e estatistica-
mente significativo em relacdo a abordagens tradicionais, notadamente quanto a exati-
dao, tempo computacional e estabilidade das selecdes. Esta melhoria ndo é meramente

incremental, mas representa um avanco qualitativo na eficacia de sistemas de deteccdo
de DDoS.

A Tabela 10 apresenta a exatidao do classificador Random Forest antes e depois da

aplicacdo da metodologia proposta, para cada dataset e cenario (comum e ataque).
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Observa-se que a selecdo de caracteristicas resultou em aumento expressivo da exatiddo

em praticamente todos os casos, mantendo desempenho elevado mesmo em cenarios de
ataque.

Tabela 10 — Exatid3o antes e depois da aplicacdo do modelo

Dataset | Situacao | Antes | Depois
Dataset 1 | Comum | 0.4032 | 0.9905
Dataset 1 | Ataque | 0.3603 | 0.9761
Dataset 2 | Comum | 0.6094 | 0.9667
Dataset 2 | Ataque | 0.9998 | 0.9838
Dataset 3 | Comum | 0.5302 | 0.9970
Dataset 3 | Ataque | 0.9998 | 0.9965

Figura 5 — Comparac3o da exatid3o antes e depois da aplicacdo do modelo proposto.
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Além da exatiddo (Figura 5), a precisdo é uma métrica relevante para avaliar a capaci-
dade do sistema em evitar falsos positivos. A Tabela 11 e a Figura 6 mostram ganhos

expressivos apos a aplicacdo do algoritmo.

Tabela 11 — Precisdo antes e depois da aplicacdo do modelo

Dataset | Situacdo | Antes | Depois
Dataset 1 | Comum | 0.0000 | 0.9842
Dataset 1 | Ataque | 0.4032 | 0.9842
Dataset 2 | Comum | 0.6268 | 0.8104
Dataset 2 | Ataque | 0.5905 | 0.8604
Dataset 3 | Comum | 0.5304 | 0.9952
Dataset 3 | Ataque | 0.0000 | 0.9991
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Figura 6 — Comparacdo da exatiddo entre diferentes classificadores.
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Para minimizar falsos negativos, o recall também foi avaliado. Os resultados estdo apre-

sentados na Tabela 12 e Figura 7, evidenciando ganhos notaveis.

Tabela 12 — Tempo de execucdo entre diferentes classificadores

Dataset | Situacdo | Antes | Depois
Dataset 1 | Comum | 0.0000 | 0.9709
Dataset 1 | Ataque | 1.0000 | 0.9986
Dataset 2 | Comum | 0.7203 | 0.9047
Dataset 2 | Ataque | 0.4802 | 0.9766
Dataset 3 | Comum | 1.0000 | 0.9993
Dataset 3 | Ataque | 0.0000 | 0.9944
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Figura 7 — Tempo de execucdo entre diferentes classificadores
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O F1-Score, apresentado na Tabela 13 e na Figura 8, consolida as métricas de precisdo

e recall em uma unica medida, refletindo o equilibrio entre ambas.

Tabela 13 — F1-Score antes e depois da aplicacdo do modelo.

Dataset | Situacdo | Antes | Depois
Dataset 1 | Comum | 0.0000 | 0.9920
Dataset 1 | Ataque | 0.5747 | 0.9951
Dataset 2 | Comum | 0.6701 | 0.8180
Dataset 2 | Ataque | 0.5325 | 0.9881
Dataset 3 | Comum | 0.6912 | 0.9972
Dataset 3 | Ataque | 0.0000 | 0.9968

Figura 8 — Comparacdo da precisdo antes e depois da aplicacdo do modelo proposto.
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6.3.1 Comparacao com Abordagens Consolidadas

A Tabela 14 consolida a comparacdo entre o método proposto e técnicas amplamente
utilizadas como Random Forest e Mutual Information. Nota-se que, além de apresentar
exatiddo e F1-Score superiores, o algoritmo proposto reduziu consideravelmente o tempo

de execucdo, reforcando seu potencial para uso em deteccdo em tempo real.

Tabela 14 — Comparacdo de desempenho entre algoritmos

Dataset | Métrica Proposto | RF | MI
Exatidao 0.89 0.72 | 0.81
1 F1-Score 0.87 0.68 | 0.78
Tempo (ms) 110 420 | 250
Exatidao 0.98 0.97 | 0.89
2 F1-Score 0.99 0.98 | 0.78
Tempo (ms) 310 1230 | 800
Exatidao 0.94 0.91 | 0.87
3 F1-Score 0.97 0.89 | 0.76
Tempo (ms) 82 370 | 190

A partir desses resultados, é possivel afirmar que o método proposto alia precisdo elevada,
rapidez e consisténcia na selecdo de atributos, apresentando ganhos expressivos tanto

em cenarios de ataque quanto de trafego normal.

6.3.2 Destaques

A analise dos resultados obtidos permitiu identificar aspectos-chave que reforcam a

relevancia e a inovacao da metodologia proposta:

— Reducdo de até 81,5% das caracteristicas com manutenc3o da exatid3o (p =
0,05), demonstrando que um subconjunto conciso, criteriosamente selecionado por
métodos ndo-paramétricos, é suficiente para capturar a esséncia discriminatéria dos

dados para deteccdo de ataques.

— Tempo de execucao até 3,8 vezes menor que o observado em métodos wrap-
per, resultado da adoc3o de técnicas filter, inerentemente mais rapidas por ndo

dependerem de ciclos iterativos de treinamento e validacdo de modelos.

— Concordancia entre execucdes superior a 90%, evidenciando a estabilidade e a
consisténcia da selecdo de caracteristicas, mesmo diante de variacoes nas condicdes

de execucdo.
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Esses fatores reforcam o potencial do método para uso em sistemas de deteccao em
tempo real, destacando-se n3o apenas pela precisdo, mas também pela eficiéncia ope-

racional e robustez estatistica.

6.4 CONSIDERACOES

Os resultados experimentais confirmam que a abordagem n3o-paramétrica proposta é
eficaz, robusta e escaldvel para selecdo de caracteristicas em dados de trafego de rede,

particularmente no contexto da deteccdo de DDoS.

A combinac3o estratégica de métricas robustas — mediana, correlacdo de Spearman,
entropia, distdncia de Bhattacharyya e teste de Friedman — permitiu lidar com da-
dos distorcidos, presenca de outliers e distribuicoes nao padronizadas, preservando a

integridade das informacdes e garantindo alta capacidade discriminativa.

A metodologia extrai um conjunto reduzido e altamente representativo de atributos, oti-
mizando modelos de aprendizado de maquina sem sacrificar a exatiddao. Em vez de focar
na escolha do classificador, este trabalho concentrou-se na etapa de selecao de atribu-
tos, demonstrando que a escolha adequada do subconjunto de features impacta mais o

desempenho final que a simples substituicao ou ajuste de algoritmos de classificacao.

Como perspectiva futura, sugere-se aplicar a metodologia a outros contextos de dados
nao-paramétricos e desbalanceados, com alta incidéncia de outliers e risco de sobreajuste,
de modo a validar sua generalizacdo em diferentes dominios. Esse avanco contribui para
o desenvolvimento de sistemas de ciberseguranca mais adaptativos e eficientes, capazes

de responder de forma dinamica a ameacas emergentes.
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7
CONCLUSAO

Este capitulo sintetiza os resultados e discussdes apresentados ao longo da disserta-
cdo, consolidando as principais contribuicdes do trabalho, reconhecendo suas inerentes
limitacGes e delineando avenidas promissoras para futuras investigacoes. A proposta de
um modelo n3ao-paramétrico de selecao de caracteristicas para sistemas de deteccao de
ameacas em ambientes de rede complexos e volateis demonstrou sua capacidade de oti-
mizar o desempenho de classificadores, mitigar desafios computacionais e aprimorar a

interpretabilidade em um dominio de importancia critica para a seguranca cibernética.

7.1 CONTRIBUICOES

As principais contribuicdes desta dissertacdo sao:

1. Proposicao de um Modelo Robusto de Selecao de Caracteristicas Nao-
Paramétrico: Foi desenvolvido um modelo formal e abrangente de FS estruturado
em trés estagios — filtragem, clusterizacao e ranqueamento. Este modelo é ine-
rentemente nao-paramétrico, robusto a outliers e escalavel, tornando-o particular-
mente adequado para conjuntos de dados de trafego de rede que frequentemente

exibem distribuicGes complexas, desbalanceamento e alta dimensionalidade.

2. Adaptacdo e Integracdao de Métricas Estatisticas Robustas: A pesquisa de-
finiu e adaptou um conjunto de métricas estatisticas — incluindo entropia de
Shannon, correlacdo de Spearman, distancia de Bhattacharyya modificada e AMI
— para quantificar relevancia, redundancia e separabilidade das caracteristicas sem
a necessidade de pressuposicoes rigidas sobre a normalidade dos dados. Essa adap-
tacdo metodoldgica assegura a validade e a robustez das seleces em cenérios do

mundo real.

3. Aumento Significativo da Eficiéncia e Exatidao na Deteccdo de Ameacas:
Os experimentos demonstraram que a aplicacdo do modelo proposto resultou em
uma reducdo média de 81,5% na dimensionalidade dos dados, sem comprometer a
exatiddo dos classificadores. Pelo contrario, o método superou abordagens tradici-
onais em métricas cruciais como exatiddo, F1 e AUC-ROC (com p-valor < 0,05), e
reduziu o tempo de processamento em até 3,8 vezes, um fator critico para sistemas

de deteccdo em tempo real.

4. Melhoria da Estabilidade e Explicabilidade das Selecdes: A estabilidade do

conjunto de caracteristicas selecionado alcancou mais de 90% de concordancia
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entre as execucoes, atestando a confiabilidade e a consisténcia do modelo. Além
disso, a base em métricas estatisticas transparentes e a abordagem estruturada
contribuem para uma maior explicabilidade dos resultados, um aspecto cada vez

mais valorizado em sistemas de Inteligéncia Artificial para dominios criticos.

5. Enderecamento de Lacunas na Literatura: O trabalho abordou explicitamente
lacunas identificadas na literatura, como a integracdo de sinais multimodais (e.g.,
HPCs e métricas de rede) com validac3o estatistica formal, e a investigacdo de
métodos de filtro que demonstram maior estabilidade na indicacdo do subconjunto
ideal de caracteristicas, desafiando a predominancia de abordagens wrapper e em-

bedded em alguns contextos.

7.2 LIMITACOES

Apesar das significativas contribuicdes, o presente trabalho possui algumas limitacdes

intrinsecas que merecem ser explicitadas:

1. Foco em Trafego de Rede e DDoS: Embora validado em conjuntos de dados
diversos e representativos, o modelo foi concebido e testado primariamente no
contexto de deteccdo de ameacas baseadas em trifego de rede (especialmente
DDoS). Sua generalizac3o para outros tipos de dados (e.g., malware estatico, logs
de sistema sem caracteristicas de trafego) ou outros dominios de anomalias pode

requerer adaptacdes ou validacdo adicional.

2. Validacdao em Ambientes Controlados: Os experimentos foram conduzidos em
conjuntos de dados publicos e ambientes de simulacdo. A aplicacdo em cenarios
operacionais de producdo, com variabilidades nao previstas, pode introduzir novos
desafios relacionados a adaptabilidade do modelo ou a necessidade de reajuste de

parametros.

3. Consideracao Implicita da Robustez Adversarial: Embora o modelo seja ro-
busto a outliers e distribuicoes ndo-paramétricas, a resiliéncia especifica contra ata-
ques adversariais direcionados a manipular o processo de selecdo de caracteristicas
ndo foi explicitamente investigada ou testada. A defesa contra tais manipulacdes

permanece um desafio complexo na area de Aprendizado de Maquina.

4. Analise de Custo Energético e Dispositivos de Borda: Apesar da comprovada
reducao no tempo de processamento e na dimensionalidade, a analise detalhada
do impacto energético ou do custo de implantacdo em dispositivos de borda com
recursos extremamente limitados (como em alguns cenarios de loT) n3o foi o foco

principal dos experimentos e, portanto, ndo foi quantificada em profundidade.
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7.3 TRABALHOS FUTUROS

As limitacoes identificadas, juntamente com o potencial inexplorado do modelo proposto,

abrem diversas e promissoras avenidas para trabalhos futuros:

1. Aplicacao a Outros Cenarios e Dominios: Explorar a aplicabilidade do modelo
em outros conjuntos de dados com caracteristicas ndo-paramétricas e desbalance-
adas, como deteccao de malware em endpoints, identificacdo de botnets em redes
corporativas ou monitoramento de salide em sistemas ciber-fisicos, especialmente

aqueles com alta incidéncia de outliers e risco elevado de overfitting.

2. Selecao Dinamica de Atributos em Tempo Real: Aprofundar a pesquisa em
mecanismos para selecao dindmica de atributos que se adaptem em tempo real a
mudancas no ambiente operacional ou no perfil dos ataques. Isso poderia envolver
a incorporacdo de feedback, loops ou técnicas de aprendizado por reforco para

otimizacao continua do subconjunto de caracteristicas.

3. Avaliacdao e Aprimoramento da Robustez Adversarial: Conduzir estudos es-
pecificos para testar a resiliéncia do modelo a ataques adversariais direcionados a
selecdo de caracteristicas e desenvolver contramedidas para mitigar tais ameacas,

garantindo a integridade do processo de FS.

4. Otimizacdao para Ambientes de Borda e Analise de Custo-Beneficio: Rea-
lizar uma andlise aprofundada do consumo de energia e recursos computacionais
em dispositivos de borda ou em cenarios de loT de larga escala. Isso pode levar a
adaptacoes do algoritmo para otimizar ainda mais seu desempenho em ambientes

com restricoes severas de hardware.

5. Integracao com Modelos de Aprendizado Profundo: Investigar a sinergia
entre o modelo proposto de FFS n3o-paramétrico e arquiteturas de Deep Learning,
especialmente aquelas que podem se beneficiar de uma representacao de dados
mais concisa e relevante, ou que podem aprender caracteristicas adicionais de forma

semi-supervisionada.

6. Extensdao da Explicabilidade e Interpretabilidade: Desenvolver ferramentas
e métricas adicionais para quantificar e visualizar a explicabilidade do modelo,
auxiliando analistas de seguranca a compreenderem melhor as decisdes tomadas

pelos sistemas de deteccdo baseados em |A.

Tais extensGes prometem n3o apenas aprimorar a capacidade do modelo em enfrentar
desafios emergentes em seguranca cibernética, mas também contribuir para o avanco do
campo da selecdo de caracteristicas em dados ndo-paramétricos, com implicacdes que

transcendem a deteccdo de ameacas.
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