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RESUMO

Buracos de minhoca surgem no contexto da relatividade geral como uma tentativa de
dar aos raios de luz e partículas materiais uma história completa, ou seja, eliminar as sin-
gularidades do espaço-tempo. Nesse contexto, Homer G. Ellis propõe que o acoplamento de
um campo escalar à geometria do espaço-tempo eliminaria a dificuldade, o que culminou na
métrica do “sumidouro” (do inglês drainhole), do qual o buraco de minhoca da presente dis-
sertação aparece como caso especial. O estudo de sistemas gravitacionais passa pela teoria da
perturbação, que para a métrica de interesse é desenvolvida para o caso escalar e gravitacional,
mostrando que para ambos a equação radial tem o formato de uma equação de Heun con-
fluente. A obtenção de modos quase-normais (MQNs) é de relevância astrofísica imensurável,
motivados pela detecção de ondas gravitacionais pelas colaborações LIGO e Virgo. Para a
métrica de Schwarzschild é exposta a obtenção por meio do método WKB. Para o buraco de
minhoca de Ellis é proposto seguir pelo método das deformações isomonodrômicas. As equa-
ções que garantem a isomonodromia formam um sistema integrável e garantem a existência
da quinta transcendente de Painlevé, a 𝜏𝑉 . Partindo da expansão dada por Jimbo o problema
de Riemann-Hilbert é tratado e resolvido, culminando na expressão para os MQN.

Finalizando, mostra-se que as equações para ambas as perturbações podem ser interpola-
das. Obtém-se o potencial após uma transformação do tipo Schrödinger e percebe-se que ele
é estritamente positivo e não admite estados ligados com frequência real positiva, o que não
descarta a possibilidade de obtenção de estados de decaimento com frequência imaginária que
decrescem exponencialmente com o tempo, respeitadas as condições de contorno impostas.
Em seguida são expostos resultados obtidos numericamente, utilizando o método isomono-
drômico. O desenvolvimento encerra argumentando que os resultados numéricos obtidos serão
fundamentais para a futura busca pelos MQNs para o buraco de minhoca de Ellis, tomando
por base o sucesso do método já exposto na literatura na obtenção de tais modos para os
buracos negros de Kerr e Reissner-Nordström, sob perturbações escalares, eletromagnéticas e
gravitacionais no primeiro caso e sob perturbações escalares e espinoriais no segundo caso.

Palavras-chaves: Buraco de minhoca. Perturbação. Isomonodromia.



ABSTRACT

Wormholes arise in the context of general relativity as an attempt to provide light rays and
material particles with a complete history, that is, to eliminate spacetime singularities. In this
context, Homer G. Ellis proposes that the coupling of a scalar field to the spacetime geometry
would eliminate this difficulty, which culminated in the so-called “drainhole” metric, of which
the wormhole studied in the present work appears as a special case. The study of gravitational
systems proceeds through perturbation theory, which for the metric of interest is developed for
both scalar and gravitational cases, showing that in both situations the radial equation takes
the form of a confluent Heun equation. The determination of quasi-normal modes (QNMs)
is of immeasurable astrophysical relevance, motivated by the detection of gravitational waves
by the LIGO and Virgo collaborations. For the Schwarzschild metric, their determination via
the WKB method is presented. For the Ellis wormhole, it is proposed to proceed through the
method of isomonodromic deformations. The equations that ensure isomonodromy form an
integrable system and guarantee the existence of the fifth Painlevé transcendent, 𝜏𝑉 . Starting
from the expansion given by Jimbo, the Riemann–Hilbert problem is addressed and solved,
culminating in an expression for the QNMs.

Finally, it is shown that the equations for both perturbations can be interpolated. The
potential is obtained after a Schrödinger-type transformation, and it is observed that it is
strictly positive and does not admit bound states with positive real frequency, which does not
rule out the possibility of obtaining decaying states with imaginary frequency that decrease
exponentially in time, provided the imposed boundary conditions are respected. Subsequently,
results obtained numerically using the isomonodromic method are presented. The development
concludes by arguing that the numerical results obtained will be fundamental for the future
search for QNMs for the Ellis wormhole, based on the success of the method already presented
in the literature in obtaining such modes for Kerr and Reissner–Nordström black holes, under
scalar, electromagnetic, and gravitational perturbations in the former case, and under scalar
and spinorial perturbations in the latter case.

Keywords: Wormhole. Perturbation. Isomonodromy.
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1 INTRODUÇÃO

O fascínio da humanidade pela estrutura celestial perdura por milênios. Na tentativa de
estabelecer uma ordem ao que se via e percebia surgiram as mais diversas explicações. O
primeiro protagonista nesse contexto a descrever de maneira satisfatória e aparentemente geral
os fenômenos gravitacionais foi Isaac Newton em seus Princípios Matemáticos de Filosofia

Natural, ali propõe que a gravidade é uma força de interação universal que depende apenas
da massa dos corpos e do quadrado de sua distância, explicando de maneira satisfatória o
movimento dos planetas, dos satélites, dos cometas e das marés. Porém, seu trabalho encontra
dificuldades na descrição do periélio de Mercúrio. Tais dificuldades foram sanadas com a
publicação em 1915 das equações para o campo gravitacional por Albert Einstein (1), nesse
contexto a gravidade deixa de ser vista como uma força de interação universal e passa a ser
tratada como uma consequência geométrica à presença de massa e energia no espaço-tempo.
A proximidade do planeta Mercúrio ao Sol faz com que sua trajetória seja alterada, devido à
grande curvatura no espaço-tempo causada pela estrela, dando uma explicação resolutiva à
aparente anomalia.

As equações de campo de Einstein encontrariam a primeira solução em 1916 e tão logo
iriam se deparar com uma dificuldade que perdura e é palco de discussões até hoje, a presença
de singularidades no espaço-tempo, que no caso da solução de Schwarzschild (2), uma delas é
intrínseca ao próprio espaço, não podendo ser removida mesmo na extensão analítica máxima.

Os buracos de minhoca surgem como uma tentativa de resolver o problema da singula-
ridade. Começando pelo reconhecimento geométrico por Ludwig Flamm (3) da estrutura de
“ponte” para a solução de Schwarzschild, passando pela união de duas folhas da região exterior
do espaço-tempo de Schwarzschild por um buraco topológico, proposto por Einstein e Rosen
(4), seguindo pelo trabalho de Wheeler demonstrando a instabilidade de tal abordagem, che-
gando por fim ao acoplamento de um campo escalar à geometria do espaço tempo por Ellis (5)
e Bronnikov (6), que tem por função manter a “ponte” ou “gargalo” sempre aberto. Os bu-
racos de minhoca, dada sua propriedade resolutiva do problema da singularidade, tornaram-se
objetos de grande interesse, principalmente para a física teórica e sua existência como objeto
astrofísico ainda é assunto de discussão na comunidade científica e de intensa pesquisa, princi-
palmente devido aos problemas relacionados à estabilidade, tópico que será tratado brevemente
na seção seguinte.
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1.1 A QUESTÃO DA ESTABILIDADE

Não é raro encontrar discussões a respeito da relevância física de certas soluções matemá-
ticas que aparecem no desenvolvimento de uma teoria. A relevância física de um problema não
depende apenas de sua boa consistência, soluções matemáticas bem comportadas podem dar
origens a situações consideradas não físicas. No contexto dos objetos gravitacionais em geral,
a estabilidade frente à perturbações garante a relevância astrofísica do objeto em questão.

A questão da estabilidade de um sistema gravitacional mostra-se ainda mais fundamental
com a detecção das ondas gravitacionais pela colaboração LIGO e Virgo (7). Afim de que ondas
gravitacionais provenientes de um buraco de minhoca sejam detectadas por tais mecanismos
é necessário que ele não colapse diante de perturbações que o acometam.

Os buracos de minhoca aparecem como soluções da equações de campo de Einstein. No
caso do buraco de minhoca de interesse da presente dissertação, o de Ellis, ele é geodesicamente
completo e isento de singularidades, mas para que ele possua tais atributos é necessário o
acoplamento de um campo escalar à geometria do espaço-tempo, um campo denominado
de “fantasma”1 por possuir energia negativa, o que viola as condições padrões de matéria e
energia esperadas na relatividade geral.

A instabilidade de um buraco de minhoca suportado por um campo escalar fantasma, sob
perturbações lineares, foi demonstrada em (8). No artigo mostra-se que o operador associado
às perturbações possui um modo instável com energia negativa, que dá origem a uma solução
das equações de campo linearizadas que cresce exponencialmente com o tempo. O modo, da
forma como é apresentado no artigo, não decorre da escolha particular de gauge, sendo um
resultado válido para toda a família dos buracos de minhoca suportados por um campo escalar
fantasma. Uma outra questão é levantada a respeito da escala do tempo da instabilidade,
mostra-se que ele é da ordem do tamanho da “garganta” dividido pela velocidade da luz, ou
seja, muito pequeno. Sendo assim, a instabilidade levaria ou a um crescimento muito rápido
ou ao colapso do buraco de minhoca.

Em (9) mostra-se que buracos de minhoca estáticos e esfericamente simétricos suportados
por um campo escalar fantasma também são instáveis com respeito a flutuações não-lineares,
sendo que a escala de tempo da instabilidade concorda com o cenário linear exposto em (8).
Mostra-se também que a depender do formato da perturbação inicial o resultado final pode
variar, ou ocorre o colapso do buraco de minhoca formando um buraco negro ou ele expande
1 Veja (5).
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rapidamente.
A instabilidade para perturbações lineares e não-lineares da família de buracos de minhoca

de Ellis-Bronnikov mostra que, embora tais geometrias sejam regulares e transponíveis 2, a
sua não subsistência por tempos relevantes limita a sua viabilidade astrofísica. A concordância
das duas análises não só mostra a instabilidade mediante perturbações, mas que a própria
geometria possui uma instabilidade que destrói a estrutura do buraco de minhoca, diminuindo
sua relevânica no cenário observacional.

Espera-se que após as discussões “motivadoras” feitas acima o leitor não encontre-se
desmotivado. Por mais que a instabilidade sobre perturbações lineares e não-lineares já tenha
sido demonstrada para o buraco de minhoca de Ellis na teoria da gravidade de Einstein, a sua
relevância permanece imensa, não só por ele ter sido o primeiro buraco de minhoca transponível
da literatura, mas também pela riqueza analítica que ele traz às discussões a respeito do papel
dos buracos de minhoca na Relatividade Geral e em teorias modificadas da gravidade.

1.2 O MÉTODO ISOMONODRÔMICO

No contexto da análise de sistemas gravitacionais, como já foi visto anteriormente, é
importante saber como o objeto em questão evolui ao ser perturbado linearmente por campos
das mais diversas naturezas (escalar, eletromagnético, espinorial, gravitacional).

Quando um sistema gravitacional é acometido por uma perturbação sua evolução pode
ser dividida em algumas etapas. Percebeu-se após uma análise mais detalhada que, para certo
intervalo de tempo, denominado regime ringdown a frequência e o tempo de decaimento da
evolução da perturbação não depende de seu tipo, apenas das características físicas do ob-
jeto gravitacional em questão como a massa, momento angular e carga elétrica. Tais modos
característicos ficaram conhecidos pelo nome de modos quase-normais, que se assemelham
aos modos normais observados em sistemas acústicos, mas não mantém o perfil estacionário,
decaindo ao longo do tempo. Como os modos quase-normais dependem apenas das caracte-
rísticas físicas eles funcionam como uma espécie de assinatura astrofísica, permitindo através
da obtenção de informações de ondas gravitacionais por interferômetros descrever um evento
no espaço-tempo.

A obtenção dos modos quase-normais aconteceu primeiro para o buraco negro de Schwarzs-
child por Vishveshwara (10) no estudo do espalhamento de ondas gravitacionais por um bu-
2 Veja 2.5.



14

raco negro de Schwarzschild. Neste trabalho, Vishveshwara, utilizando a teoria perturbativa
desenvolvida por Regge e Wheeler (11), percebeu numericamente que, para certo intervalo de
tempo, a dinâmica da perturbação é dominada por modos amortecidos que dependem apenas
da massa do buraco negro.

Dada a importância que os modos quase-normais tem, por serem uma assinatura astrofísica
do objeto gravitacional, e pelos resultados obtidos para o buraco negro de Schwarzschild, o
estudo e a busca por modos quase-normais dos mais diversos sistemas virou palco central
na área de gravitação. Com o passar do tempo outros métodos foram desenvolvidos, como a
integração das equações perturbativas (12), o método aproximativo WKB (13) e o método
da fração continuada por Leaver (14), que de todos é o mais bem sucedido.

O método isomonodrômico, que é o de interesse no presente trabalho, permite escrever ex-
pressões analíticas para os modos quase-normais e também para o problema do espalhamento,
o que é de relevância inestimável. A possibilidade de obtenção de tais expressões analíticas
ocorre pela conexão que há entre deformações isomonodrômicas em sistemas lineares e sis-
temas completamente integráveis. Tal conexão é feita através de mapas de Riemann-Hilbert

que permitem a escrita das propriedades de monodromia dos sistemas lineares associados à
equação diferencial de interesse em termos dos transcedentes de Painlevé, cuja expansões são
conhecidas na literatura3.

O método será desenvolvido no capítulo 4.

3 Veja o apêndice B.
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2 AS EQUAÇÕES DE CAMPO DA RELATIVIDADE GERAL E SUA ESTRU-

TURA

O objetivo deste capítulo é introduzir ao leitor as principais ideias que levaram o físico
alemão Albert Einstein a postular em 1915 suas equações de campo, seguido das mais diversas
consequências advindas desta nova teoria da gravitação. Na seção 2.1 é feito um breve resumo
histórico das principais ideias e conceitos que foram utilizados na obtenção das equações de
campo. Na seção 2.2 obtêm-se as equações de campo seguindo um caminho eurístico baseado
em (15). Na seção 2.3 é obtida a primeira solução para as equações de campo através do
método das tetradas que é descrito no apêndice A junto com o método das coordenadas
como formas equivalentes de obter-se os objetos matemáticos importantes, encerra-se com a
extensão analítica máxima para a métrica obtida seguido do primeiro encontro com um buraco
de minhoca. Na seção 2.4 é exposta a métrica de Ellis que corresponde ao buraco de minhoca
“transponível” de interesse da dissertação. Na seção 2.5 concluímos fazendo a caracterização
de um buraco de minhoca transponível.

2.1 INTRODUÇÃO

Em 1915, o físico alemão Albert Einstein em seu revolucionário artigo Die Feldgleichungen

der Gravitation (1), apresenta ao mundo as equações de campo para o campo gravitacional.
Diferentemente do caminho que seguiu ao publicar os princípios da relatividade especial em
1905 (16), Einstein não tentou modificar a gravitação newtoniana afim de torná-la compa-
tível com essa última, ao invés disso, heuristicamente, buscou um caminho novo motivado
fortemente por duas ideias principais.

A primeira delas foi o princípio da equivalência, que estabelece que todos os corpos são
influenciados pela gravidade, sendo assim, todos os corpos “caem” de maneira equivalente
em um campo gravitacional. O movimento dos corpos em um campo gravitacional independe
de sua natureza constitutiva, sendo assim, sua trajetória dá origem a um conjunto de curvas
preferenciais, de tal maneira que podemos associar as características do campo gravitacional
à própria estrutura geométrica do espaço-tempo, seguindo as ideias já desenvolvidas anterior-
mente por Riemann sobre o comportamento de curvas em espaços não-euclidianos.

O segundo conjunto de ideias que motivou Einstein, no desenvolvimento de suas equações
de campo baseia-se no princípio de Mach. Ele estabelece que toda a matéria presente no
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universo deve contribuir para a nossa noção local do que seria um movimento não-acelerado e
não-rotacional1. Sendo assim, o princípio de Mach rompe com as noções de espaço absoluto
adotados na mecânica newtoniana, espaço esse que seria imutável e indiferente à presença da
matéria que o ocupa.

Inspirado por essas ideias, Einstein buscou formular uma teoria para a gravitação em
que a estrutura do espaço-tempo, pelo menos de maneira local, fosse afetada e modificada
pela presença de matéria, alterando o comportamento de curvas preferenciais que possam ser
estabelecidas nesse espaço.

Assim, partindo do pressuposto de que o espaço-tempo é uma variedade diferenciável, suas
propriedades intrínsecas são estabelecidas por sua métrica. No contexto da relatividade geral,
diferentemente do que ocorre na relatividade especial, a métrica não precisa ser necessaria-
mente plana, tendo sua curvatura associada à distribuição local de matéria e energia, conforme
descrito pelo tensor de estresse-energia-momento no espaço-tempo.

Tendo esse conjunto de ideiais em mente, surge uma dificuldade ao tentar estabelecer a
ideia do que seria um observador inercial, pois no espaço-tempo curvo as geodésicas para a
métrica coincidem com a linhas de mundo de observadores em queda livre em um campo
gravitacional. A priori, não temos como isolar um observador ou corpo do campo gravitacional
devido ao princípio da equivalência, sendo assim, não temos uma maneira direta de medir o
aspecto de “força” do campo gravitacional. O caminho tomado é o de supor que não é possível
construir uma família de observadores inerciais, mesmo que por procedimentos complicados.
Sendo assim, não há sentido em tratar o campo gravitacional como um campo de força, mas
encará-lo como um aspecto do próprio espaço-tempo (15).

2.2 O PRINCÍPIO DA COVARIÂNCIA GERAL E AS EQUAÇÕES DE CAMPO

A estrutura do espaço-tempo, dado pela relatividade geral, pode ser resumida da seguinte
maneira: O espaço-tempo é uma variedade 𝑀2 com uma métrica Lorentziana 𝑔3 definida
nela, sendo a curvatura da métrica relacionada à distribuição de matéria no espaço-tempo
pelas equações de Einstein (18).
1 Veja o capítulo 9 de (17).
2 Faz-se a requisição de ser uma variedade de Hausdorrf, 𝐶∞, conectada e quadrimensional. A discussão

sobre o que é uma variedade é feita no Apêndice A.
3 Uma métrica Lorentziana é caraterizada por possuir assinatura +2 (ou (-2) dependendo da convenção

adotada) e ser não-degenerada.
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Há dois princípios que norteiam as leis da física na teoria da relatividade, que são:
1) Princípio da covariância geral que estabelece que nas equações da física, a métrica e

quantidades que podem ser derivadas dela devem ser as únicas grandezas do espaço-tempo
que podem estar presentes.

2) As equações das leis da física na relatividade geral devem reduzir-se às equações das
leis da física na relatividade especial quando a métrica for plana.

A partir disso, o último passo seria obter, com a ajuda de todas as considerações feitas,
as equações do campo gravitacional. O procedimento exposto abaixo segue a argumentação
do livro do Wald (15).

Há um paralelo que pode servir de guia nesse processo de desenvolvimento, que seria
estabelecer uma relação entre a aceleração de maré da teoria da gravitação Newtoniana4 e a
aceleração de maré na relatividade geral. Na teoria Newtoniana, o campo gravitacional pode
ser descrito por um potencial 𝜑, que satisfaz a equação de Poisson ∇2𝜑 = 4𝜋𝜌. Utilizando
o potencial 𝜑, temos a seguinte expressão para a aceleração de maré para duas partículas
próximas na teoria Newtoniana: −(x⃗ · ∇⃗)∇⃗𝜑, já na relatividade geral a aceleração é dada pela
equação do desvio geodésico (ideia de que geodésicas inicialmente paralelas não permanecerão
assim em um espaço curvo) −𝑅 𝑎

𝑐𝑏𝑑 𝑣
𝑐𝑥𝑏𝑣𝑑, em que 𝑅 𝑑

𝑎𝑏𝑐 é o tensor de Riemann, responsável
por descrever como a curvatura do espaço se comporta em todas as direções em torno de
um ponto. A notação tensorial aqui adotada é a mesma que em (15), em que letras latinas
indicam índices “abstratos” (independentes de um sistema de coordenadas específico) e letras
gregas para índices indicam as componentes da quantidade geométrica em questão em um
determinado sistema de coordenadas. O tensor de Riemann pode ser definido através da não
comutatividade do operador derivada natural associado à métrica da seguinte forma:

(∇𝑎∇𝑏 −∇𝑏∇𝑎)𝜅𝑐 = 𝑅 𝑑
𝑎𝑏𝑐 𝜅𝑑 (2.1)

Sendo assim, podemos fazer uma correspondência do seguinte tipo:

𝑅 𝑎
𝑐𝑏𝑑 𝑣

𝑐𝑣𝑑 ←→ 𝜕𝑏𝜕
𝑎𝜑 (2.2)

4 A aceleração de maré diz respeito à variação na força gravitacional experimentada pelas diversas partes
de um corpo extenso. Como a força varia com o inverso do quadrado da distância, partes do corpo mais
próximas estariam sob uma maior intensidade que partes mais distantes.
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Podemos também, motivados pela ideia de relacionar a distribuição de massa e energia ao
campo gravitacional, buscar uma correspondência entre a equação de Poisson (∇2𝜑 = 4𝜋𝜌)
na teoria Newtoniana (que associa 𝜌 a 𝜑), com as propriedades de energia e matéria na
relatividade geral que são descritos pelo tensor energia-momento 𝑇𝑎𝑏 . A partir disso podemos
fazer a associação descrita logo abaixo, sabendo que 𝑇𝑎𝑏 𝑣𝑎𝑣𝑏 no contexto relativístico é a
densidade de energia medida por um observador com uma 4-velocidade 𝑣𝑎:

𝑇𝑎𝑏 𝑣
𝑎𝑣𝑏 ←→ 𝜌 (2.3)

O que sugere a correspondência: 𝑅 𝑎
𝑐𝑎𝑑 𝑣

𝑐𝑣𝑑 = 4𝜋𝑇𝑐𝑑 𝑣𝑐𝑣𝑑, levando à seguinte equação para
o campo gravitacional: 𝑅𝑎𝑏 = 4𝜋𝑇𝑎𝑏 . Porém, formulada dessa maneira, as equações de campo
apresentam sérios problemas e afim de evitar um conflito entre a conservação local da energia
(∇𝑐𝑇𝑐𝑑 = 0) e a identidade de Bianchi contraída (∇𝑐(𝑅𝑐𝑑 − 1

2𝑔𝑐𝑑𝑅 = 0)5 devemos ter:

𝐺𝑎𝑏 ≡ 𝑅𝑎𝑏 −
1
2𝑔𝑎𝑏𝑅 = 8𝜋𝑇𝑎𝑏 (2.4)

Que é a equação de Einstein para o campo gravitacional exposta em seu seminal artigo
(1). Aqui considera-se o sistema natural de unidades em que temos a velocidade da luz 𝑐 = 1.

2.3 A SOLUÇÃO DE SCHWARZSCHILD

Essencialmente, o ponto de partida para uma possível solução da equação de campo de
Einstein seria a situação mais simples possível. A lei da gravitação universal newtoniana tem
dois importantes aspectos a cerca de sua estrutura, ela é esfericamente simétrica e estática.
Sendo assim, podemos imaginar que a situação mais simples em que podemos buscar uma
solução para as equações de campo de Einstein (motivados pelo sucesso obtido em formular
as equações de campo a partir de analogias com a gravitação Newtoniana) também seria o
caso do campo gravitacional externo de um corpo esfericamente simétrico e estático.

A solução das equações de campo de Einstein para esse caso foi obtida por Karl Schwarzs-
child em 1916 (2), apenas alguns meses após a publicação por Einstein de suas equações de
5 Veja a propriedade 4 do tensor de Riemann no Apêndice A e a equação A.11.
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campo no vácuo. Tendo a solução de Schwarzschild (como ficou conhecida) em mãos foi pos-
sível fazer um grande número de predições que viriam a ser confirmadas experimentalmente.

Através da solução de Schwarzschild também foi possível prever que determinados corpos
suficientemente massivos não são capazes de evitar um eventual colapso gravitacional total,
criando em sua vizinhança um campo gravitacional tão intenso que nem mesmo a luz consegue
“escapar” dele (a velocidade de escape necessária para sair de tal região é superior à velocidade
da luz). Esses corpos foram popularizados com o nome de buraco negro pelo físico norte
americano John Wheeler através de uma série de palestras, artigos e textos acadêmicos da
década de 60. Embora o estado final do colapso gravitacional completo de um corpo celeste
só tenha sido entendido de maneira mais expressiva com a Relatividade Geral, Laplace em seu
célebre livro Exposition du Système du Monde, conjecturou (sem prova) que a força atrativa
de um corpo poderia ser tão grande que a luz (utilizando o modelo corpuscular proposto
por Newton) não conseguiria escapar dele, sendo assim, os corpos celestes mais massivos do
universo seriam invisíveis a nós e apenas percebidos devido a sua atração gravitacional a outros
corpos próximos. Para uma tradução ao inglês da exposição de Laplace veja o apêndice A de
(18).

A obtenção da solução de Schwarzschild foi de importância ímpar na história e futuros
desenvolvimentos da relatividade geral. As equações de Einstein formam um sistema acoplado
de equações diferencias parciais não-lineares de segunda ordem para os componentes da mé-
trica, sua estrutura é tão robusta que o próprio Einstein duvidava que alguém fosse capaz de
encontrar uma solução algum dia (19). A obtenção da primeira solução alguns meses após o
conhecimento das equações de campo abriu as portas para o que viria a ser um dos ramos
mais frutíferos da física moderna e contemporânea.

2.3.1 Derivação da solução

A derivação da solução de Schwarzschild exposta nesta subseção tem por base o procedi-
mento seguido no livro do Wald (15).

Como dito no início da subseção, estamos interessados em determinar a solução das equa-
ções de campo de Einstein para o caso que aparenta ser o mais simples possível, quando a
métrica é estática e esfericamente simétrica. Assim, antes de prosseguirmos com a derivação,
faz-se necessário definir brevemente de uma maneira mais precisa o que significam os termos
“estático” e “esfericamente simétrico”.
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Um espaço tempo é dito estático se ele é estacionário (Um espaço tempo estacionário é
um que possui um campo vetorial de Killing tipo tempo. Um campo vetorial de Killing é um
campo que satisfaz a equação de Killing6 e permite a identificação das isometrias da métrica)
e se possui uma hipersuperfície tipo espaço que seja ortogonal às órbitas da isometria7.

Dizemos que um espaço é esfericamente simétrico se seu grupo de isometrias contém um
subgrupo que é isomórfico ao grupo 𝑆𝑂(3), e as órbitas desse subgrupo são topologicamente
esferas bidimensionais 𝑆2.

A métrica para um espaço tempo estático e esfericamente simétrico arbitrário tem a se-
guinte forma8:

d𝑠2 = −𝑓(𝑟) d𝑡2 + ℎ(𝑟) d𝑟2 + 𝑟2(d𝜃2 + sin 2𝜃 d𝜑2) (2.5)

O trabalho em encontrar a solução para as equações de campo agora, pode ser resumido
da seguinte maneira: calcular o tensor de Ricci e determinar as duas funções 𝑓 e ℎ. Para
isso podemos usar qualquer uma das duas abordagens descritas no apêndice A do presente
trabalho. Faremos a escolha pelo método das tetradas, o leitor interessado pode encontrar a
solução de Schwarzschild através do método das coordenadas no livro do D’Inverno(17) ou no
artigo original do Schwarzschild(2).

Sendo assim, o primeiro passo é escolher uma base ortonormal conveniente, em seguida
encontrar as relações da equação A.23, utilizá-las para encontrar as 1-forma de conexão,
encontrar o tensor de Riemann através das 1-forma de conexão seguindo a equação A.21,
encontrar o tensor de Ricci através da contração do tensor de Riemann e por fim determinar
as funções 𝑓 e ℎ através das equações de campo.

Uma base coveniente para a métrica apresentada é:

(𝑒0)𝑎 = 𝑓
1
2 (d𝑡)𝑎 (2.6a)

(𝑒1)𝑎 = ℎ
1
2 (d𝑟)𝑎 (2.6b)

(𝑒2)𝑎 = 𝑟(d𝜃)𝑎 (2.6c)

(𝑒3)𝑎 = 𝑟 sin 𝜃(d𝜑)𝑎 (2.6d)

6 ∇(𝜇𝜉𝜈) = 0.
7 Veja por favor os apêndices B e C do livro do Wald (15).
8 A métrica toma a forma indicada em um sistema de coordenadas cuja escolha pode ser consultada pelo

leitor nas páginas 120 e 121 do capítulo 6 do livro do Wald (15).
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Escolhida a base, basta seguir o caminho citado acima, os detalhes serão omitidos e o leitor
interessado neles é convidado a consultar o livro do Wald (15). Procedendo dessa maneira,
obtemos os valores abaixo para o tensor de Riemann:

𝑅𝑎𝑏01 = d
d𝑟 [(𝑓ℎ)−1/2𝑓 ′](d𝑟)[𝑎(d𝑡)𝑏] (2.7a)

𝑅𝑎𝑏02 = 𝑓−1/2ℎ−1𝑓 ′(d𝜃)[𝑎(d𝑡)𝑏] (2.7b)

𝑅𝑎𝑏03 = 𝑓−1/2ℎ−1𝑓 ′ sin 𝜃(d𝜑)[𝑎(d𝑡)𝑏] (2.7c)

𝑅𝑎𝑏12 = ℎ−3/2ℎ′(d𝑟)[𝑎(d𝜃)𝑏] (2.7d)

𝑅𝑎𝑏13 = sin 𝜃ℎ−3/2ℎ′(d𝑟)[𝑎(d𝜑)𝑏] (2.7e)

𝑅𝑎𝑏23 = 2(1− ℎ−1) sin 𝜃(d𝜃)[𝑎(d𝜑)𝑏] (2.7f)

Com o tensor de Riemann em mãos podemos computar o tensor de Ricci através da
equação A.22, e finalmente, após igualar o resultado a zero, obtemos as equações de Einstein:

0 = 𝑅00 = 1
2(𝑓ℎ)−1/2 d

d𝑟 [(𝑓ℎ)−1/2𝑓 ′] + (𝑟𝑓ℎ)−1𝑓 ′ (2.8a)

0 = 𝑅11 = −1
2(𝑓ℎ)−1/2 d

d𝑟 [(𝑓ℎ)−1/2𝑓 ′] + (𝑟ℎ2)−1ℎ′ (2.8b)

0 = 𝑅22 = −1
2(𝑟𝑓ℎ)−1𝑓 ′ + 1

2(𝑟ℎ2)−1ℎ′ + 𝑟−2(1− ℎ−1) (2.8c)

Agora que já foram obtidas as equações de Einstein, podemos utilizá-las para descobrir o
valor das funções 𝑓 e ℎ. Os resultados são:

𝑓 = 1 + 𝐶

𝑟
(2.9a)

ℎ =
(︃

1 + 𝐶

𝑟

)︃−1

(2.9b)

Em que 𝐶 é uma constante que pode ser determinada ao comparar o movimento de um
corpo de teste na solução de Schwarzschild no regime de campo fraco ao movimento de
um corpo de teste na gravitação Newtoniana, ou seja, fazendo uma análise do caso limite.
Fazendo isso, chega-se a conclusão de que −𝐶/2 pode ser interpretada como a massa total
𝑀 do campo de Schwarzschild. Assim, a forma final da solução é:

d𝑠2 = −
(︃

1− 2𝑀
𝑟

)︃
d𝑡2 +

(︃
1− 2𝑀

𝑟

)︃−1

d𝑟2 + 𝑟2(d𝜃2 + sin 2𝜃 d𝜑2) (2.10)
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A equação 2.10 é conhecida como solução de Schwarzschild.
Podemos notar de imediato que no limite 𝑟 → ∞ a métrica se reduz a de Minkowski em

coordenadas esféricas, ou seja, a métrica de Schwarzschild é assintoticamente plana, significado
que longe da fonte do campo gravitacional o espaço não se curva. O que é esperado já que
a curvatura do espaço-tempo na teoria da gravidade de Einstein é gerada pela presença de
matéria e energia.

Olhando com um pouco mais de cuidado para o resultado obtido, percebemos que existe
um problema para 𝑟 = 0 e 𝑟 = 2𝑀 , indicando a presença de singularidades para a métrica
obtida. A existência destas singularidades trouxe dúvidas quanto aos limites físicos da teoria,
e a resolução de tais dúvidas veio a surgir duas décadas depois. Essa questão será tratado a
seguir.

2.3.2 A extensão de Kruskal e o buraco de minhoca de Shwarzschild

Dadas as singularidades em 𝑟 = 0 e 𝑟 = 2𝑀 para a métrica de Schwarzschild, a pergunta
mais importante a ser feita é se elas aparecem devido à escolha do sistema de coordenadas
ou se são singularidades intrínsecas de um espaço-tempo estático e esfericamente simétrico.
Se for o caso da primeira alternativa basta encontrar uma transformação para outro sistema
de coordenadas que elimine as singularidades, tornando o espaço geodesicamente completo9.
Caso elas sejam singularidades intrínsecas, independente das transformações de coordenadas
que forem feitas, elas continuarão presentes e podem apresentar um limite físico para a teoria.

O estudo das regiões demarcadas por 𝑟 = 0 e 𝑟 = 2𝑀 para a solução de Schwarzschild
no vácuo só faz sentido caso estejamos analisando o estágio final do colapso gravitacional
de um corpo suficiente massivo, isso porque, caso estivermos nos referindo, por exemplo, a
uma estrela, ambas as regiões estarão em seu interior, não caracterizando assim uma solução
de vácuo. Dito isto, considerando o caso do estágio final de um colapso gravitacional, uma
maneira de saber o comportamento da solução para as regiões descritas é através do cálculo
do invariante de Kretschmann dado por ℛ = 𝑅𝑎𝑏𝑐𝑑𝑅

𝑎𝑏𝑐𝑑, como se trata de um escalar ele não
é afetado pela escolha do sistema de coordenadas. Calculando o invariante de Kretschmann
para a métrica de Schwarzschild 2.10 temos o seguinte:
9 Diz-se que uma variedade é geodesicamente completa quando todas as geodésicas que emanam de um

ponto podem ser extendidas a valores infinitos de seus parâmetros afins, em ambas as direções.
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ℛ = 48𝑀2

𝑟6 (2.11)

Analisando o resultado obtido, percebemos que se 𝑟 = 2𝑀 temos ℛ = 3/4𝑀4, ou
seja, um valor finito, já se 𝑟 → 0 o resultado para o invariante de Kretschmann diverge
ℛ →∞. Isso indica que as singularidades descritas são de naturezas distitas, a singularidade
em 𝑟 = 2𝑀 é advinda da escolha do sistema de coordenadas (podendo ser removida através
de uma transformação adequada deste), já a singularidade em 𝑟 = 0 é própria de um espaço
estático e esfericamente simétrico para a teoria da relatividade geral de Einstein. De maneira
mais rigorosa, a análise da natureza de uma singularidade não é tão simples assim, existem
singularidades do espaço-tempo em que o invariante de Kretschmann não diverge. A tarefa
de formular de maneira precisa uma definição para “singularidade” não é trivial e foge ao
escopo deste trabalho, o leitor interessado é convidado a consultar as dicussões no capítulo
9 do Wald(15) ou do capítulo 8 do Hawking-Ellis(18). A figura abaixo esboça um gráfico do
comportamento de ℛ para a métrica de Schwarzschild:

Figura 1 – Comportamento do invariante de Kretschmann.

Fonte: Elaborada pelo autor.

Feitas essas considerações, o próximo passo é buscar um sistema de coordenadas adequado
em que a singularidade em 𝑟 = 2𝑀 não esteja presente. O desenvolvimento que se segue tem
por base o realizado no livro do Wald (15).

Em duas dimensões há uma forma de evitar singularidades advindas da escolha do sistema
de coordenadas, aproveitando características da geometria do próprio espaço ao escolher o
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sistema. Localmente, geodésicas nulas, em duas dimensões, podem ser divididas em duas clas-
ses, geodésicas de “saída” e geodésicas de “entrada”. Sendo assim, podemos usar coordenadas
“nulas”, a primeira sendo constante ao longo das geodésicas de “entrada”, a segunda sendo
constante ao longo das geodésicas de “saída”. A métrica de Schwarzschild é quadrimensional,
mas dada sua simetria esférica apenas as partes temporal e radial são relevantes na análise da
singularidade em 𝑟 = 2𝑀 . Dessa forma, temos o seguinte:

d𝑠2 = −
(︃

1− 2𝑀
𝑟

)︃
d𝑡2 +

(︃
1− 2𝑀

𝑟

)︃−1

d𝑟2 (2.12)

E a partir disso podemos aplicar o procedimento geral. O passo-a-passo é exemplificado
em (15) para a métrica de Rindler10 que é utilizada no contexto da relatividade geral para
a descrição de um movimento uniformemente acelerado, dada a sua forma em duas dimen-
sões: d𝑠2 = −𝑥2 d𝑡2 + d𝑥2, ela apresenta também uma singularidade aparente para 𝑥 = 0,
permitindo uma analogia com a singularidade em 𝑟 = 2𝑀 da métrica de Schwarzschild. Para
encontrar as geodésicas nulas o ponto de partida advém de aplicar a condição nula para a
métrica reduzida (2.12):

0 = 𝑔𝑎𝑏𝜉
𝑎𝜉𝑏 = −(1− 2𝑀/𝑟)𝑡2 + (1− 2𝑀/𝑟)𝑟̇2 (2.13)

Assim, as geodésicas nulas satisfazem:

𝑡 = ±𝑟* + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 (2.14)

Sendo 𝑟* a famosa coordenada tartaruga de Regge-Wheeler, definida por:

𝑟* = 𝑟 + 2𝑀 ln
(︃

𝑟

2𝑀 − 1
)︃

(2.15)

Feito os procedimentos necessários a métrica toma a seguinte forma11:

d𝑠2 = −32𝑀3𝑒−𝑟/2𝑀

𝑟
d𝑈 d𝑉 (2.16)

Perceba que a métrica obtida não mais apresenta singularidade para 𝑟 = 2𝑀 (a singu-
laridade em 𝑟 = 0 não desaparece porque ela é de natureza física, o que pode ser atestado
através da divergência do invariante de Kretschmann 𝑅𝑎𝑏𝑐𝑑𝑅

𝑎𝑏𝑐𝑑). Uma última transformação
10 Uma resolução alternativa pode ser encontrada no capítulo 3 de (20).
11 𝑈 = −𝑒

−𝑢
4𝑀 , 𝑉 = 𝑒

𝑣
4𝑀 , 𝑢 = 𝑡− 𝑟⋆, 𝑣 = 𝑡 + 𝑟⋆.
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de coordenadas é necessária para deixar a métrica no formato apresentado por Kruskal em seu
artigo de 1960(21). Fazendo 𝑇 = (𝑈 + 𝑉 )/2 e 𝑋 = (𝑉 − 𝑈)/2 temos:

d𝑠2 = 32𝑀3𝑒−𝑟/2𝑀

𝑟
(− d𝑇 2 + d𝑋2) + 𝑟2(d𝜃2 + sin 𝜃2 d𝜑2) (2.17)

Sendo as relações entre as coordenadas antigas (𝑡, 𝑟) e as novas (𝑇,𝑋) dadas por:

𝑟𝑒𝑟/2𝑀

2𝑀 − 𝑒𝑟/2𝑀 = 𝑋2 − 𝑇 2 (2.18a)
𝑡

2𝑀 = ln(𝑇 +𝑋)− ln(𝑇 −𝑋) = 2 tanh−1 (𝑇/𝑋) (2.18b)

Através das relações expostas acima é possível desenhar um diagrama de espaço-tempo
para a extensão de Kruskal afim de realizar uma análise visual de sua estrutura causal. O
diagrama pode ser dividido em quatro grandes regiões, de naturezas semelhantes, porém
distintas, veja:

t = constant

r = constant

singularidade r =
0

r
=
2M

r
=
2M

t = constante

r = constante

I

II

III

IV

Figura 2 – Diagrama de Kruskal para a extensão analítica máxima da métrica de Schwarzschild.

Fonte:(22).

Na figura estão indicadas hipérboles representando valores constantes de 𝑟 e linhas radiais
passando pela origem, representando valores constantes de 𝑡. A região I corresponde à região
𝑟 > 2𝑀 para o espaço-tempo de Schwarzschild, estão representados cones de luz em azul
e a trajetória de um observador em verde, perceba, ao analisar a intersecção do cone de luz
com a reta 𝑟 = 2𝑀 , que após adentrar a região II o observador não pode mais escapar,
caindo inevitavelmente na singularidade em 𝑋 = (𝑇 2 − 1)1/2. A região II é um buraco negro.
A região III é semelhante a região II, com a diferença que a singularidade, posicionada em
𝑋 = −(𝑇 2 − 1)1/2, encontra-se em seu “passado”, sendo assim, qualquer observador na
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região III tem origem na singularidade, esta região é conhecida por buraco branco. A região
IV apresenta as mesmas propriedades da região I. Se voltarmos à metrica de Kruskal(2.17),
fazendo 𝑇 = constante, suprimindo um grau de liberdade rotacional (𝜃 = 𝜋/2) e procedendo
com uma imersão (embedding) em um espaço euclidiano com métrica cilíndrica, obteríamos
algo semelhante à figura abaixo:

Figura 3 – O buraco de minhoca de Schwarzschild

Fonte: Gravitation (23), p.837.

Que ficou conhecido como buraco de minhoca de Schwarzschild. Ele é responsável por
conectar duas regiões assintoticamente planas do mesmo universo (ou de universos diferentes
a depender do contexto), como as regiões I e IV representadas no diagrama de Kruskal.
Embora, matematicamente previsto a conexão entre as duas regiões, a realidade física de tal
objeto ainda é palco de discussão, como foi exposto no capítulo 1. A comunicação entre as
regiões I e IV é impossível, uma hipersuperfície tipo tempo que ligue as duas regiões passando
por 𝑇 = 𝑋 = 0 não é estática, dada a mudança de característica das translações temporais
(deixam de ser “tipo tempo” e passam a ser “tipo espaço” nas regiões II e III), a consequência
disto é que a “garganta” se forma, expande e colapsa tão rapidamente que nem mesmo um
sinal de luz conseguiria atravesá-la. Isso possibilita que a causalidade não seja violada. O leitor
interessado nas discussões a respeito da causalidade pode consultar (24).

2.4 O BURACO DE MINHOCA DE ELLIS

Embora a solução de Schwarzschild, exibida na equação 2.10, tenha uma relevância imensa
dada que foi a primeira solução encontrada para as equações de campo ela possui uma limita-
ção que, mesmo em sua extensão analítica máxima feita por Kruskal (21) (exposta na subseção
anterior), torna-a insatisfatória na representação de um modelo de partícula para a relativi-
dade geral, que é o fato dela não ser geodesicamente completa12 devido a sua singularidade
12 Veja a nota de rodapé 9.
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de espaço-tempo na origem. O fato da métrica de Schwarzschild ser geodesicamente incom-
pleta impossibilita que se dê uma história completa às partículas materiais e raios de luz que
eventualmente encontrem a singularidade.

Em seu seminal artigo “The particle problem in the General Theory of Relativity”(4),
Einstein e Rosen propõem uma forma de circunvizinhar o problema encontrado na métrica
de Schwarzschild. Eles estabelecem um modelo do espaço-tempo formado por duas “folhas”
idênticas e com a partícula sendo representada por uma “ponte” (buracos topológicos) que
conecta as duas folhas. A proposta de Einstein e Rosen não encontra singularidades em seu
caminho, mas carrega outros problemas consigo, o fato da métrica utilizada ser degenerada (o
determinante da métrica se anula na “garganta”) e geodesicamente incompleta (há geodésicas
completas na métrica de Kruskal que não estão presentes na construção de Einstein-Rosen).

Homer Ellis, em seu artigo de 1973 (5), na tentativa de encontrar um espaço satisfatório
para descrição de um modelo de partícula, propôs que o acoplamento de um campo escalar
fantasma13 à geometria do espaço-tempo retornaria um espaço-tempo estático, esfericamente
simétrico, geodesicamente completo 14 e sem horizonte de eventos, com um buraco topológico
em seu centro que ele nomeou de “sumidouro” (do inglês drainhole) afim de não ser confundido
com a ponte de Einstein-Rosen ou o buraco de minhoca de Kruskal-Fronsdal. A presença do
buraco topológico permite com que as geodésicas de tipo tempo, que poderiam representar
as linhas de fluxo de um fluido, não terminem de maneira abrupta. Sendo assim, o modelo
proposto por Ellis supera as dificuldades encontradas por Schwarzschild, Kruskal e Einstein-
Rosen.

O elemento de linha geral para o sumidouro tem a seguinte forma:

𝑑𝑠2 = − d𝑡2 + [d𝜌− 𝑓(𝜌) d𝑡]2 + 𝑟2(𝜌)[d𝜃2 + sin 2𝜃 d𝜑2] (2.19)

Com os intervalos de coordenadas dados por:

−∞ < 𝑡 <∞,−∞ < 𝜌 <∞, 0 < 𝜃 < 𝜋,−𝜋 < 𝜑 < 𝜋

É uma geometria dinâmica, suportada por um campo escalar sem massa com energia
cinética negativa e a função 𝑓 e a função não-negativa 𝑟 são determinadas através das equações
13 O campo escalar é a estrutura adicional que permite manter a singularidade de Schwarzschild “aberta”.
14 Veja por favor a seção VIII do artigo (5).
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de campo15.
Na seção VII de (5), são descritas todas as variedades que têm por solução o elemento de

linha geral para o sumidouro. No presente trabalho estamos interessados em analisar os coefi-
cientes de monodromia da equação radial obtida depois da perturbação escalar e gravitacional
do que ficou conhecido por “buraco de minhoca de Ellis”16, que leva esse nome por ser um
caso especial do elemento de linha geral para o sumidouro, especificamente, o caso III descrito
na seção VII do artigo, em que um parâmetro m que pode ser interpretador como a massa do
buraco de minhoca é tomado como zero (as soluções com m diferente de zero tem a forma
assintótica de um buraco negro de Schwarzschild com massa m). O elemento de linha para o
buraco e minhoca de Ellis tem o seguinte formato:

d𝑠2 = − d𝑡2 + d𝑟2 + (𝑟2 + 𝑏2)(d𝜃2 + sin 2𝜃 d𝜑2) (2.20)

Possuindo regiões assintoticamente planas em 𝑟 → ±∞ , separadas, mas transponíveis
(veja a discussão sobre os critérios para a transponibilidade por um buraco de minhoca na
subseção 2.5), representando os dois lados do buraco de minhoca. Os intervalos de coordenadas
são dados por:

−∞ < 𝑡 <∞,−∞ < 𝑟 <∞, 0 < 𝜃 < 𝜋,−𝜋 < 𝜑 < 𝜋

Os ângulos são os usuais das coordenadas esféricas e as superfícies com 𝑟 e 𝑡 constantes são
esferas de raio 𝜌 =

√
𝑟2 + 𝑏2. Diferentemente do que temos para o espaço plano, a coordenada

radial 𝑟 pode assumir valores negativos, já que a parte esférica não se anula quando 𝑟 tende
a zero. Pelo contrário, o sistema possui um tamanho natural mínimo dado por 𝜌 = 𝑏, que
representa a “garganta” do buraco de minhoca. A “garganta” é responsável por conectar duas
regiões cuja métrica em seu limite assintótico (𝑟 → ±∞) toma a forma do espaço plano de
Minkowski.

Na subseção a seguir serão feitas breves discussões sobre as principais características dos
buracos de minhoca e será apresentada, baseado em (25), uma métrica geral que representa
uma classe de buracos de minhoca transponíveis segundo os critérios a serem descritos.
15 Na seção VI do artigo, (5), é justificado a escolha do acoplamento do campo escalar e a respectiva equação

de campo.
16 Veja também (6).
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2.5 CARACTERÍSTICAS GERAIS DE UM BURACO DE MINHOCA E A CLASSE ESPECIAL
DOS BURACOS DE MINHOCA TRANSPONÍVEIS

O termo “buraco de minhoca”, assim como o termo “buraco negro” foi originalmente
proposto por John Wheeler em um artigo com coautoria de Charles Misner, nomeado Classical

Physics as Geometry (26), mas sua aparição no contexto da Relatividade Geral pré-data até
mesmo os buracos negros. Um ano após a publicação de Einstein de suas equações de campo,
o físico Austríaco Ludwig Flamm reconheceu que a solução de Schwarzschild obtida alguns
meses antes representava uma ponte entre duas regiões do espaço-tempo (3), através de
um diagrama que ele fez em seu artigo ligando o horizonte de eventos do buraco negro de
Schwarzschild ao anti-horizonte do buraco branco.

No contexto da Relatividade Geral, um buraco de minhoca se refere a soluções das equações
de campo de Einstein que possuem a característica de ligar duas regiões distintas do espaço-
tempo, distantes ou não, ou até mesmo regiões entre universos diferentes. Podemos classificar
os buracos de minhocas em dois grandes grupos, transponíveis ou não-transponíveis. O buraco
de minhoca de Schwarzchild, por exemplo, se encontraria no grupo dos não-transponíveis por
algumas razões específicas, entre elas está o fato do buraco de minhoca de Schwarzschild
ser dinâmico e possuir um movimento de expansão da “garganta” de um tamanho nulo até
um tamanho máximo, conectando duas regiões, seguido de uma contração do tamanho da
garganta até que as duas regiões fiquem novamente desconexas17. Esse processo acontece de
maneira tão rápida que mesmo que fosse possível a um observador mover-se na velocidade da
luz ele seria pego no meio do caminho pela contração (23).

Em um artigo de 1988 (25), Kip Thorne e Michael Morris propõe a utilização dos buracos
de minhoca transponíveis como objeto para o ensino de Relatividade Geral básica. São citadas
as propriedades desejáveis principais que os buracos de minhoca transponíveis devem possuir,
listadas abaixo:

1. A métrica deve ser esfericamente simétrica e estática;

2. A solução deve possuir uma “garganta” que conecte duas regiões que em seu limite
assintótico sejam planas;

3. Não deve haver horizontes, para que a viajem de dupla via (“ida” e “volta”) seja possível.
17 Diagramas representativos e uma discussão sobre esse processo podem ser encontrados no capítulo 31 da

seção 6 de (23).
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Esses são os critérios básicos que um buraco de minhoca transponível deve possuir (o pri-
meiro foi posto apenas para simplificar os cálculos no artigo). Outras características nomeadas
de “critérios de usabilidade” são citadas no artigo com o intuito de discutir quais outros fato-
res seriam importantes e relevantes para permitir a passagem “confortável” de seres humanos,
mas como os critérios não são relevantes na presente dissertação eles foram omitidos.

O elemento de linha geral de um buraco de minhoca que satisfaça as propriedades citadas
acima tem o seguinte formato (25):

d𝑠2 = −𝑒2Φ d𝑡2 + d𝑙2
(︃

1− 𝑏

𝑙

)︃−1

+ 𝑙2(d𝜃2 + sin 2𝜃 d𝜑2) (2.21)

Em que Φ = Φ(𝑙) e 𝑏 = 𝑏(𝑙) são funções arbitrárias de 𝑙. 𝑏(𝑙) recebe o nome de “função
de forma” pois é responsável por determinar o formato do buraco de minhoca e a função Φ(𝑙)

recebe o nome de “função de desvio para o vermelho” por determinar o desvio para o vermelho
gravitacional. O leitor atento deve ter visto o que parece ser uma singularidade para 𝑙 = 𝑏,
mas não passa de uma singularidade aparente, removível com uma adequada transformação
de coordenadas.

Sendo assim, o buraco de minhoca que estamos interessados em analisar no presente
trabalho, representado pelo elemento de linha dado na equação 2.20 é transponível segundo
os critérios expostos acima. De tal forma que, feitas as transformações corretas podemos
colocar 2.20 no formato do elemento de linha 2.21. Tomando 𝑟2 = 𝑙2 − 𝑏2 ficamos com:

d𝑠2 = − d𝑡2 + d𝑟2
(︃

1− 𝑏2

𝑙2

)︃−1

+ (𝑟2 + 𝑏2)(d𝜃2 + 𝑠𝑖𝑛2𝜃 d𝜑2) (2.22)

Comparando a equação acima com 2.21 percebemos que para o buraco de minhoca de
Ellis são feitas as transformações: 𝑏(𝑙) = 𝑏2/𝑙 e Φ(𝑙) = 0 que reforça o caráter ultra-estático
da métrica.

No próximo capítulo, utilizando os métodos explorados no apêndice A, serão obtidas as
quantidades geométricas de interesse para a métrica do buraco de minhoca de Ellis, incluindo
o tensor de Einstein, tanto para o caso em que não há perturbação na métrica, quanto para o
caso em que há perturbação que leva-a a um desvio da métrica não perturbada. Em ambos os
casos mostraremos que a equação diferecial obtida através do operador de Laplace-Beltrami
é separável em uma parte radial e uma polar, resultando na equação de Heun cuja descrição
e estudo de suas particularidades será exposta no capítulo 4.
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2.6 CONCLUSÃO

O presente capítulo buscou estabelecer um caminho heurístico dos pontos de partida e
das principais ideias que levaram Einstein a obter em 1915 suas equações de campo, até
chegar na discussão de uma das consequências mais notáveis que podem ser obtidas de suas
equações: os buracos de minhoca. A exposição foi feita buscando garantir o encadeamento
e a sequência lógica das ideias que levaram à métrica de Ellis em 1973(5), motivada pelos
problemas apresentados pela métrica de Schwarzschild, Einstein-Rosen e Kruskal, finalizando
com a exposição de que o buraco de minhoca de Ellis faz parte da classe dos buracos de
minhoca transponíveis segundo os critérios apresentados. Como discutido, a existência física
de buracos de minhoca como objetos astrofísicos ainda carece de evidência observacional,
e os resultados teóricos obtidos apontam no sentido de que uma grande classe deles são
instáveis, enquanto uma outra grande classe só existe em condições extremas, no entanto,
o estudo da Relatividade Geral a partir dos buracos de minhoca é ainda um campo fértil de
pesquisa. Além de seu interesse intrínseco como soluções exatas ou aproximadas das equações
de Einstein, os buracos de minhoca têm servido como arenas conceituais fundamentais para
o teste de hipóteses. Sua relevância extrapolou o domínio da Relatividade Geral, alcançando
um papel central nas tentativas de se compreender a gravidade quântica e os fundamentos da
informação quântica. Em especial, a conjectura ER = EPR, proposta por Maldacena e Susskind
(27), sugere que conexões tipo buraco de minhoca podem ser manifestações geométricas do
entrelaçamento quântico.

Sendo assim, os buracos de minhoca podem servir de ponte de diálogo entre áreas de
grande interesse na física moderna.
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3 TEORIA DA PERTURBAÇÃO NO CONTEXTO DA RELATIVIDADE GERAL

A teoria da perturbação na física se faz presente no mais diversos contextos e fornece
ferramentas para “atacar” problemas que de outra forma encontrariam dificuldades em serem
abordados. A proposta do presente capítulo é tratar justamente disso e apresentar os resultados
pertinentes da teoria aplicada à métrica de Ellis e Schwarzschild. Na seção 3.1 é feito uma
introdução da importância da teoria da perturbação na relatividade geral, trazendo resultados
observacionais recentes que se alinham com predições feitas pela teoria. Na seção 3.2 são
apresentadas as duas principais abordagens no contexto da relatividade geral, a de Regge-
Wheeler e a de Newman-Penrose. Na seção 3.3 são apresentados os principais resultados
da teoria para a métrica de Schwarzschild, mostrando que tanto para perturbações axiais,
quanto para perturbações polares as equações diferenciais resultantes são separáveis e que
os resultados de ambas as situações podem ser unificados em um só, além disso também
são obtidos os MQN pelo método WKB. Na seção 3.4 a teoria é explorada para a métrica de
interesse da dissertação, mostra-se que tanto no caso sem perturbação métrica quanto no caso
com perturbação que a equação diferencial resultante é uma equação de Heun confluente.

3.1 INTRODUÇÃO

A teoria das perturbações ocupa um papel central na formulação contemporânea da física
teórica, constituindo uma metodologia indispensável para abordar sistemas que não admitem
soluções exatas ou cuja dinâmica se torna mais compreensível por meio de aproximações
em torno de soluções conhecidas. No contexto da Relatividade Geral, a aplicação da teoria
das perturbações à métrica do espaço-tempo permite investigar a estabilidade de soluções, a
emissão de ondas gravitacionais e a estrutura dinâmica de objetos compactos como buracos
negros e estrelas de nêutrons.

A abordagem perturbativa em Relatividade Geral tem ganhado renovado interesse nos
últimos anos, especialmente em virtude da recente confirmação experimental da existência
de ondas gravitacionais, cujo primeiro registro direto foi realizado pelas colaborações LIGO e
Virgo em 2015 (7). Tais observações revelaram oscilações características provenientes da fusão
de buracos negros e estrelas de nêutrons, as quais se manifestam como modos quase-normais
(MQNs) – soluções complexas das equações de perturbação linearizadas sobre métricas de
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fundo, cuja parte imaginária representa o amortecimento das oscilações devido à emissão de
radiação gravitacional.

Além de fornecer uma via concreta para a comparação com observações astrofísicas, a
teoria das perturbações desempenha um papel conceitual essencial ao investigar a robustez
de soluções da Relatividade Geral frente a pequenas flutuações. É nesse sentido que surgem
duas abordagens paradigmáticas: a formulação de Regge-Wheeler, que trata das perturbações
axissimétricas da métrica de Schwarzschild (11), e o formalismo tetrádico de Newman-Penrose
(28), que generaliza o tratamento das perturbações para contextos onde o formalismo escalar
de Weyl se mostra mais vantajoso.

A importância da análise perturbativa se estende inclusive ao domínio especulativo da
gravitação teórica, como no caso dos buracos de minhoca. Embora tais soluções ainda careçam
de suporte observacional, o estudo da estabilidade de métricas como a de Ellis (5) permite
investigar sob que condições topologias não triviais podem sobreviver a pequenas flutuações
gravitacionais. Como será explorado neste capítulo, a análise dos MQNs associados à métrica
de Ellis representa não apenas um exercício teórico relevante, mas também uma ponte entre
gravitação clássica e abordagens mais modernas da física fundamental, incluindo propostas
envolvendo gravidade quântica.

3.2 AS PRINCIPAIS ABORDAGENS PERTURBATIVAS NA RELATIVIDADE GERAL

3.2.1 A abordagem de Regge-Wheeler

A abordagem de Regge-Wheeler (como ficou conhecida) exposta em (11), consiste em
perturbar diretamente os coeficientes da métrica através da equação de Einstein. A ideia é
utilizar a métrica de Schwarzschild como métrica de “fundo” e adicionar a ela a perturbação,
da seguinte maneira:

𝑔𝜇𝜈 = 𝑔𝜇𝜈
(0) + ℎ𝜇𝜈 (3.1)

Em que 𝑔𝜇𝜈 é a métrica perturbada, 𝑔𝜇𝜈 (0) é a métrica de Schwarzschild não perturbada e
ℎ𝜇𝜈 representa a perturbação. O interesse é em pequenas perturbações, de tal maneira que a
análise pode ser restrita à primeira ordem em ℎ𝜇𝜈 .

O próximo passo após estabelecida a forma da perturbação é aplicá-la às equações de
campo, no caso da métrica exterior de Schwarzschild temos:
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𝑅𝜇𝜈(𝑔) = 0 (3.2)

Para o espaço perturbado as equações tomam a forma:

𝑅𝜇𝜈(𝑔 + ℎ) = 0 (3.3)

Negligenciando termos de ordem 2 e superiores, a equação perturbada pode ser expandida
da seguinte maneira:

𝑅𝜇𝜈(𝑔) + 𝛿𝑅𝜇𝜈(ℎ) = 0 (3.4)

Em que 𝛿𝑅𝜇𝜈 contém apenas termos de primeira ordem em ℎ𝜇𝜈 . A partir da equação 3.2
percebe-se através de 3.4 que as equações diferenciais que dizem respeito à perturbação são
dadas por 𝛿𝑅𝜇𝜈 . Dito isso, os termos 𝛿𝑅𝜇𝜈 são dados pela fórmula (29):

𝛿𝑅𝜇𝜈 = −𝛿Γ𝛽𝜇𝜈;𝛽 + 𝛿Γ𝛽𝜇𝛽;𝜈 (3.5)

Em que “;” indica a derivada covariante e Γ𝑐𝑎𝑏 são os símbolos de Christoffel1. A partir da
obtenção dos símbolos de Christoffel pode-se obter o tensor de Riemann A.13, proceder com
a contração e obter o tensor de Ricci A.14, disto surgem as equações diferenciais provenientes
da perturbação gerada na métrica. Os resultados das perturbações obtidas foram divididas em
duas classes, perturbações de paridade ímpar-(−1)𝑙+1 e perturbações de paridade par-(−1)𝑙,
sendo 𝑙 o momento angular associado ao modo em questão.

A partir do estudo de ambas as paridades é possível chegar a uma equação de onda
para tratar do problema do espalhamento e absorção de ondas gravitacionais pelo buraco
negro (ou buraco de minhoca). Em seu artigo, Regge e Wheeler conseguiram desacoplar as
perturbações para o caso de paridade ímpar e obter a equação de onda respectiva. Para o caso
das perturbações de paridade par o desacoplamento foi feito por Zerilli (30), obtendo também
a equação de onda que se espera.

Embora as perturbações possuam paridades diferentes, os resultados obtidos, surpreenden-
temente, podem ser unificados em um só. Tal feito será exposto na seção seguinte.
1 Veja o apêndice A.
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3.2.2 A abordagem de Newman-Penrose

O formalismo de Newman-Penrose foi introduzido em 1962 no artigo An Approach to

Gravitational Radiation by a Method of Spin Coefficients (28). A ideia principal partiu do
interesse de implementar na teoria da relatividade geral uma análise espinorial de maneira
natural. O formalismo é um caso especial do formalismo das tetradas, nele são introduzidos
quatro vetores nulos 𝑙, 𝑛, 𝑚 e 𝑚* como base para o espaço tempo, os vetores nulos 𝑙 e 𝑛 são
reais, equantos os vetores nulos 𝑚 e 𝑚* são complexos conjugados mútuos. Até então, como
se pode perceber na solução de Shwarzschild desenvolvida na seção 2.3, o padrão na procura
por soluções das equações de campo era a introdução de uma base ortonormal, a escolha de
uma base nula por Newman e Penrose representou uma ruptura com o que se fazia até então.

A escolha de uma base nula não foi aleatória, um elemento fundamental do espaço-tempo
é a estrutura de cone de luz, o que possibilita a introdução de uma base espinorial. A estrutura
do cone de luz permite, através do formalismo, que se extraia as simetrias intrínsecas do
espaço-tempo revelando sua riqueza analítica.

O formalismo com o passar do tempo mostrou-se uma ferramente extremamente poderosa
na construção de soluções e no estudo da propagação de campos em espaços curvos (31).
Sendo o formalismo de Newman-Penrose um caso especial do formalismo das tetradas, seu
objetivo é que todas as quantidades geométricas e relevantes sejam escritas em termos da base
nula. Os vetores nulos que formam a base satisfazem as seguintes condições de ortogonalidade:

𝑙 ·𝑚 = 𝑙 ·𝑚* = 𝑛 ·𝑚 = 𝑛 ·𝑚* = 0 (3.6)

Sendo eles vetores nulos satisfazem também as seguintes condições:

𝑙 · 𝑙 = 𝑛 · 𝑛 = 𝑚 ·𝑚 = 𝑚* ·𝑚* = 0 (3.7)

Satisfazem também as condições de normalização dadas por:

𝑙 · 𝑛 = 1 e 𝑚 ·𝑚* = −1 (3.8)

Através destes vetores é possível obter 12 coeficientes complexos de Spin, 5 escalares de
Weyl, 10 funções que guardam informação do tensor de Ricci e 4 derivadas covariantes.

Como o formalismo não é utilizado na dissertação a exposição termina aqui. O leitor
interessado na implementação e estudo das principais consequências e desdobramentos do
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formalismo para espaços-tempo bem conhecidos como Schwarzschild, Reissner-Nordström e
Kerr encontrará um excelente compêndio na monografia (20).

3.3 PERTUBAÇÃO DA MÉTRICA DE SCHWARZSCHILD

Grande parte dos resultados aqui descritos são inspirados nos desenvolvimentos realizados
na monografia monumental de Chandrasekhar (20) e o leitor interessado nos mais diversos
desdobramentos e nuances da teoria é convidado a consultar a obra.

O ponto de partida é o seguinte elemento de linha:

d𝑠2 = 𝑒2𝜈 d(𝑡2)− 𝑒2𝜓(d𝜑− 𝜔 d𝑡− 𝑞2 d𝑥2 − 𝑞3 d𝑥3)2−

−𝑒𝜇2(d𝑥2)2 − 𝑒𝜇3(d𝑥3)2
(3.9)

Que representa o elemento de linha de um espaço-tempo com suficiente generalidade que
permite tratar perturbações de uma forma geral2. Embora tal generalidade seja imposta logo de
começo a abordagem que será apresentada segue de maneira semelhante a de Regge-Wheeler,
a ideia é trabalhar com o elemento de linha geral que abarca as perturbações pertinentes e
proceder com o processo de linearização em relação à métrica de Schwarzschild.

Dado o elemento de linha do espaço-tempo de interesse os próximos passos seguem de
maneira genérica ao que já é conhecido, encontrar o tensor de Ricci e o tensor de Einstein.
Os resultados são longos, para manter a fluidez eles foram omitidos, o leitor interessado pode
encontrá-los no capítulo 4 de (20).

Para o caso da métrica de Schwarzschild podemos fazer as seguintes identificações em 3.9:

𝑒2𝜈 = 𝑒−2𝜇2 = 1− 2𝑀/𝑟 = Δ/𝑟2, 𝑒𝜇3 = 𝑟, 𝑒𝜓 = 𝑟 sin 𝜃 (3.10)

𝜔 = 𝑞2 = 𝑞3 = 0 (Δ = 𝑟2 − 2𝑀𝑟;𝑥2 = 𝑟;𝑥3 = 𝜃) (3.11)

Uma perturbação geral resultará em 𝜔, 𝑞2 e 𝑞3 como pequenas quantidades e as funções 𝜈,
𝜇2, 𝜇3 e 𝜓 sofrendo pequenos incrementos (𝛿𝜈, 𝛿𝜇2, 𝛿𝜇3, 𝛿𝜓). As perturbações dos dois tipos
são de naturezas diferentes, o que garantirá que as equações de perturbação obtidas poderão
2 Os resultados aqui expostos irão se restringir a modos axisimétricos e dependentes do tempo.
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ser desacopladas, dada a independêcia entre os dois tipos. As perturbações que resultam em 𝜔,
𝑞2 e 𝑞3 como pequenas quantidades serão denominadas perturbações axiais e as que resultam
em pequenos incrementos (𝛿𝜈, 𝛿𝜇2, 𝛿𝜇3, 𝛿𝜓) serão denominadas perturbações polares. Fazendo
um paralelo com a abordagem de Regge-Wheeler, as axiais são as de paridade ímpar e polares
as de paridade par.

3.3.1 Perturbações axiais

As equações de campo que governam as perturbações axiais são dadas por:

𝑅12 = 𝑅13 = 0 (3.12)

Trabalhando com as equações de campo, assumindo dependência temporal para as per-
turbações no formato 𝑒𝑖𝜎𝑡 e eliminando 𝜔 obtemos a seguinte equação:

𝑟4 𝜕

𝜕𝑟

(︃
Δ
𝑟4
𝜕𝑄

𝜕𝑟

)︃
+ sin3 𝜃

𝜕

𝜕𝜃

(︃
1

sin3 𝜃

𝜕𝑄

𝜕𝜃

)︃
+𝜎

2𝑟4

Δ 𝑄 = 0 (3.13)

Em que:

𝑄(𝑡, 𝑟, 𝜃) = Δ𝑄23 sin3 𝜃 = Δ(𝑞2,3 − 𝑞3,2 sin3 𝜃) (3.14)

A equação 3.13 pode ser separada utilizando a seguinte substituição:

𝑄(𝑟, 𝜃) = 𝑄(𝑟)𝐶−3/2
𝑙+2 (𝜃) (3.15)

Em que 𝐶𝜈
𝑛 é a função de Gegenbauer3. Com a substituição acima a parte radial toma o

seguinte formato:

Δ d
d𝑟

(︃
Δ
𝑟4

d𝑄
d𝑟

)︃
−𝜇

2Δ
𝑟4 𝑄+ 𝜎2𝑄 = 0 (3.16)

Em que 𝜇 representa a dependência angular 𝜇2 = 2𝑛 = (𝑙 − 1)(𝑙 + 2). Procedendo com
a mudança de variáveis para a “coordenada tartaruga” 2.15, fazendo também 𝑄(𝑟) = 𝑟𝑍(−).
Percebemos que 𝑍(−) satisfaz a equação de onda de Schrödinger unidimensional:

(︃
d2

d𝑟2
*

+ 𝜎2
)︃
𝑍(−) = 𝑉 (−)𝑍(−) (3.17)

3 Informações, propriedades e representações da função de Gegenbauer (também conhecida como ultra-
esférica) podem ser encontrados em (32).
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Com o potencial efetivo dado por:

𝑉 (−) = Δ
𝑟5 [(𝜇2 + 2)𝑟 − 6𝑀 ] (3.18)

Que é justamente a equação de onda obtida por Regge e Wheeler (11). Abaixo plotamos
um gráfico para o comportamento do pontencial para os valores de 𝑙 = 2, 3, 4:

Figura 4 – Barreira de potencial da métrica de Schwarzschild para perturbações axiais

Fonte: Elaborada pelo autor com base em Chandrasekhar (20).

Na subseção seguinte vamos obter a equação de onda para as perturbações polares e será
possivel perceber a semelhança entre as barreiras de potencial para os dois casos.

3.3.2 Perturbações polares

Retomando o que foi dito anteriormente, as perturbações polares surgem de incrementos
nas funções 𝜈, 𝜇2, 𝜇3 e 𝜓. Linearizando 𝑅02, 𝑅03, 𝑅23, 𝑅11 e 𝐺22 com respeito à métrica de
Schwazschild, podemos proceder com a separação de variáveis em 𝑟 e 𝜃 a partir das seguintes
substituições (20, 33):

𝛿𝜈 = 𝑁(𝑟)𝑃𝑙(cos 𝜃) (3.19)

𝛿𝜇2 = 𝐿(𝑟)𝑃𝑙(cos 𝜃) (3.20)

𝛿𝜇3 =
[︃
𝑇 (𝑟)𝑃𝑙 + 𝑉 (𝑟)𝑃𝑙,𝜃,𝜃

]︃
(3.21)
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𝛿𝜓 =
[︃
𝑇 (𝑟)𝑃𝑙 + 𝑉 (𝑟)𝑃𝑙,𝜃 cot 𝜃

]︃
(3.22)

O processo que se segue a partir daqui é longo e será omitido, o leitor interessado em
todos os detalhes é convidado a consultá-los em (20), de onde os principais desenvolvimentos
desta seção foram retirados. Após os devidos procedimentos serem realizados, nota-se que
também é possível obter para as perturbações polares uma equação de onda de Schrödinger
unidimensional:

(︃
d2

d𝑟2
*

+ 𝜎2
)︃
𝑍(+) = 𝑉 (+)𝑍(+) (3.23)

Com 𝑍(+) dado por:

𝑟2

𝑛𝑟 + 3𝑀

(︃
3𝑀
𝑛𝑟

𝑋 − 𝐿
)︃

4 (3.24)

E a barreira de potencial dada por:

𝑉 (+) = 2Δ
𝑟5(𝑛𝑟 + 3𝑀)2

[︃
𝑛2(𝑛+ 1)𝑟3 + 3𝑀𝑛2𝑟2 + 9𝑀2𝑛𝑟 + 9𝑀3

]︃
(3.25)

A equação de onda 3.23 foi obtida pela primeira vez por Zerilli (30) e recebe o nome de
equação de Zerilli (veja também (34)). Abaixo plotamos também um gráfico para o compor-
tamento do pontencial para os valores de 𝑙 = 2, 3, 4:

Figura 5 – Barreira de potencial da métrica de Schwarzschild para perturbações polares

Fonte: Elaborada pelo autor com base em Chandrasekhar (20).

Comparando com o gráfico 3.3.1 para a barreira de potencial no caso de perturbações
axiais é possível perceber uma forte semelhança. Essa semelhança não é coincidência, percebe-
4 𝑋 = 𝑛𝑣 = 1

2 (𝑙 − 1)(𝑙 + 2)𝑉.
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se que os resultados obtidos para o potencial de ambas as perturbações podem ser resumidos
da seguinte maneira (20):

𝑉 (±) = ±𝛽 d𝑓
d𝑟*

+ 𝛽2𝑓 2 + 𝜅𝑓 (3.26)

Em que:

𝛽 = constante = 6𝑀, 𝜅 = constante = 4𝑛(𝑛+ 1)

= 𝜇2(𝜇2 + 2)
(3.27)

também:

𝑓 = Δ
𝑟3(𝜇2𝑟 + 6𝑀) = Δ

2𝑟3(𝑛𝑟 + 3𝑀) (3.28)

Não há uma razão imediata do porquê os resultados obtidos poderem ser relacionados de
maneira tão simples, a origem dessa conexão é explorada a partir do tratamento de Newman-
Penrose, o leitor interessado pode consultar as seções §§28 e 29 de (20).

O objetivo de tudo feito até aqui e da prória teoria da perturbação em si, para a Relati-
vidade Geral, é entender como o objeto em estudo reaje com a incidência dos mais diversos
campos. Em particular, é interessante entender como o problema do espalhamento de ondas
gravitacionais pelo objeto pode nos dar informações sobre as mais diversas características do
estudo do espaço-tempo. Dada o fato da equação de onda obtida para ambas as perturbações
terem o formato da equação de onda de Schrödinger unidimensional, o problema do espalha-
mento pode ser tratado de forma semelhante ao feito nos cursos básicos de mecânica quântica,
mudando, obviamente, as condições de contorno.

O comportamento dos potenciais obtidos, tanto no infinito, quanto na fronteira do hori-
zonte de enventos é dado por:

𝑉 (±) → 2(𝑛+ 1)𝑟−2 com 𝑟 → 𝑟* → +∞ (3.29)

𝑉 (±) → (constante)± 𝑒𝑟*/2𝑀 com 𝑟* → −∞ (𝑟 → 2𝑀) (3.30)

Ou seja, para o caso de 𝑟* → +∞ o decaimento é com o inverso ao quadrado da distância,
já para 𝑟* → −∞ o decaimento é exponencial, de toda forma, em ambos os casos temos o
seguinte:
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𝑉 (±) =

⎧⎪⎪⎨⎪⎪⎩
0 𝑟* → +∞,

0 𝑟* → −∞.
(3.31)

E as equações de onda obtidas anteriormente para ambas as perturbações tomam a seguinte
forma no limite assintótico:

d2𝑍(±)

d𝑟2
*

+ 𝜎2𝑍(±) = 0 (3.32)

Que representa uma equação diferencial linear de segunda ordem com coeficientes cons-
tantes, sendo sua solução combinação de exponenciais do tipo 𝑒𝑖𝜎*𝑟* e 𝑒−𝑖𝜎*𝑟* .

Para o problema de espalhamento em questão as seguintes condições de contorno são
convenientes:

𝑍(±) → 𝑒+𝑖𝜎𝑟*+𝑅(±)(𝜎)𝑒−𝑖𝜎𝑟* (𝑟* → +∞) (3.33)

𝑇 (±) → 𝑒+𝑖𝜎𝑟* (𝑟* → −∞) (3.34)

Essas condições correspondem a uma onda incidente de amplitude 1 vindo do +∞ dando
origem a uma onda refletida de amplitude 𝑅(±) no +∞ e uma onda transmitida de amplitude
𝑇 (±) em −∞. Perceba que não é possível nenhuma onda emergir de −∞ (𝑟 = 2𝑀), pois
corresponde ao horizonte de eventos, região do espaço-tempo da qual nada escapa, já que seria
necessária uma velocidade maior que a da luz, o que no contexto da teoria da relatividade é
impossível.

De maneira similar também é possível determinar o coeficiente de reflexão e transmissão
utilizando o formalismo de Newman-Penrose, como o formalismo não é utilizado na presente
dissertação os resultados não foram expostos aqui, o leitor interessado é convidado a consultar
as seções 29,30,31 e 32 de (20) para elucidação.

Uma outra questão de interesse da teoria da perturbação é sobre a estabilidade do objeto
de estudo em questão, ou seja, se uma dada perturbação irá crescer de maneira indefinida.
Não à toa o artigo de Regge e Wheeler tem por título Stability of a Schwarzschild Singula-

rity, a questão da estabilidade tem tremenda importância na física, ela garante que o objeto
em questão é de relevância astrofísica. No artigo, para pequenas perturbações de paridade
ímpar (descritas aqui como “perturbações axiais”) eles mostraram que as equações diferen-
ciais obtidas são auto-adjuntas, garantindo que os autovalores associados às frequências 𝑘2
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são reais, sendo assim, são descartadas soluções com frequências imaginárias que representa-
riam a instabilidade da singularidade5, concluíndo-se que o sistema é estável por perturbações
lineares fracas. Eles conjecturaram ainda que haveria estabilidade também para o caso das
perturbações pares (descritas aqui como perturbações “polares”), porém não foram mais adi-
ante pois não conseguiram proceder com o desacoplamento das equações diferenciais obtidas,
mas a conjectura foi confirmada em 1970 por Zerilli (30). Posteriormente, Vishveshwara (35)
extende os esforços dos trabalhos anteriores e analisa a questão da estabilidade à luz das co-
ordenadas de Kruskal, concluindo novamente que a métrica de Shwarzschild é estável contra
perturbações lineares e que perturbações com frequências puramente imaginárias, que leva-
riam a métrica a ser instável, divergem no horizonte, garantindo assim a sua impossibilidade
física. Discussões recentes sobre estabilidade do espaço-tempo de Schwarzschild podem ser
encontradas em (36).

Um último ponto a ser tratado é a respeito dos modos quase-normais para a métrica
de Schwarzschild. Esses modos representam frequências características dos intervalos finais
após um processo de perturbação e guardam consigo informações importantes que ajudam
na descrição do objeto em estudo. Os modos não dependem do tipo de perturbação que foi
realizada, apenas das características do objeto perturbado.

Os modos quase-normais no contexto da relatividade geral já foram amplamente estudados
para os mais diversos tipos de métrica, a abordagem que será apresentada a seguir foi retirada
de (37). Em geral, existem diversos métodos para sua obtenção, abaixo estão alguns deles
seguidos de uma breve descrição de sua implementação:

1. Método de aproximação WKB: Talvez, de todos que serão listados este é o mais co-
nhecido devido a sua ampla aplicabilidade em cursos básicos da formação acadêmica. O
método WKB (ou JWKB) foi proposto inicialmente por Jeffreys (38) afim de conseguir
soluções aproximadas para equações diferenciais de segunda ordem, incluindo a equação
de Schrödinger, posteriormente o método viria a ser desenvolvido por Wentzel (39),
Kramers (40) e Brillouin (41).

A equação que governa os modos quase-normais é:

𝜖2 𝑑
2

𝑑𝑟2
*
𝑍(𝑟*) +

(︁
𝜎2 − 𝑉

)︁
𝑍(𝑟*) = 0 (3.35)

5 No artigo há o uso trocado de “singularity” e “wormhole”, a relação entre as duas coisas é estabelecida
no artigo Morris-Wheeler.
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Sendo 𝜖 um pequeno parâmetro para se ajustar à ordem da aproximação. É importante
ressaltar que o método WKB mantém alta precisão para a região 𝜎2−𝑉 (𝑟*) > 0. Sendo
𝑉 (𝑟*) unimodal criam-se dois pontos de retorno que dividem a região de integração em
três partes (na região II está o ponto máximo do potencial). Assumindo uma forma
assintótica para 𝑍 nas regiões I e III(notadamente, à esquerda e à direita do ponto
máximo do potencial) temos:

𝑍(𝑟*) ∼ exp
[︃

1
𝜖

∞∑︁
𝑛=0

𝑆𝑛(𝑟*)𝜖𝑛
]︃

(3.36)

A forma para 𝑆𝑛 pode ser obtida substituindo a expansão na equação e comparando
os termos de igual ordem em 𝜖. Nas regiões I e III há duas soluções, como descritas a
seguir:

𝑍𝐼
− ∼ 𝑒−𝑖𝜎𝑟* , 𝑍𝐼

+ ∼ 𝑒+𝑖𝜎𝑟* , em 𝑟* → +∞, (3.37)

𝑍𝐼𝐼𝐼
− ∼ 𝑒−𝑖𝜎𝑟* , 𝑍𝐼𝐼𝐼

+ ∼ 𝑒+𝑖𝜎𝑟* , em 𝑟* → −∞. (3.38)

Ressaltamos como dito anteriormente que 𝑟* → +∞ é o infinito espacial e 𝑟* → −∞

o horizonte de eventos. A solução geral nas regiões 𝐼 e 𝐼𝐼𝐼, a partir do que foi dito até
agora, são dadas por:

𝑍(𝑟*) ∼

⎧⎪⎪⎨⎪⎪⎩
Ψ𝐼

in𝑍
𝐼
− + Ψ𝐼

out𝑍
𝐼
+, na região 𝐼,

Ψ𝐼𝐼𝐼
in 𝑍𝐼𝐼𝐼

+ + Ψ𝐼𝐼𝐼
out𝑍

𝐼𝐼𝐼
− , na região 𝐼𝐼𝐼.

(3.39)

Em que Ψin e Ψout são ondas incidentes da região 𝐼 ou 𝐼𝐼𝐼 para a região 𝐼𝐼 e ondas
emitidas da região 𝐼𝐼 para a região 𝐼 ou 𝐼𝐼𝐼 respectivamente. Podemos associar as
amplitudes na região 𝐼 com as da região 𝐼𝐼𝐼 através do seguinte (42):

⎛⎜⎜⎝Ψ𝐼𝐼𝐼
out

Ψ𝐼𝐼𝐼
in

⎞⎟⎟⎠ =

⎛⎜⎜⎝𝑀11 𝑀12

𝑀21 𝑀22

⎞⎟⎟⎠
⎛⎜⎜⎝Ψ𝐼

out

Ψ𝐼
in

⎞⎟⎟⎠ . (3.40)

Na expressão acima 𝑀11, 𝑀12, 𝑀21 e 𝑀22 pode ser determinadas através de uma
comparação entre a solução obtida em 3.40 e a solução na região 𝐼𝐼. Sendo assim, o
próximo passo é obter a solução na região 𝐼𝐼, para isso vamos considerar que ela pode
ser escrita como uma série de Taylor em torno do ponto máximo para o potencial, veja:
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𝜎2 − 𝑉 (𝑟*) ≈ (𝜎2 − 𝑉 (𝑟0))−
1
2
𝑑2𝑉

𝑑𝑟2
*

⃒⃒⃒⃒
⃒
𝑟*=𝑟0

(𝑟* − 𝑟0)2 (3.41)

Sendo a primeira derivada nula por se tratar de um ponto de máximo. A expansão acima
é válida para:

|𝑟* − 𝑟0| <

⎯⎸⎸⎸⎷−2(𝜎2 − 𝑉 (𝑟0))
𝑑2𝑉
𝑑𝑟2

*

⃒⃒⃒
𝑟*=𝑟0

≈
√
𝜖 (3.42)

É possível colocar a equação para os modos quase-normais na forma de uma equação
parabólica cilíndrica:

d2𝑍

d𝑡2 +
(︂
𝜈 + 1

2 −
1
4𝑡

2
)︂
𝑍 = 0 (3.43)

De tal forma que:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑡 = (4𝑘)1/4𝑒−𝑖𝜋/4 (𝑟* − 𝑟0)√

𝜖
, 𝑘 = 1

2
𝑑2𝑉

𝑑𝑟2
*

𝑧2
0 = −2(𝜎2 − 𝑉 (𝑟0))

𝑑2𝑉
𝑑𝑟2

*

⃒⃒⃒
𝑟*=𝑟0

, 𝜈 + 1
2 = −𝑖

√
𝑘𝑧2

0
2

1
𝜖
.

(3.44)

A partir disso, a solução da equação 3.43 pode ser dada por:

𝑍(𝑡) = 𝐴𝐷𝜈(𝑡) +𝐵𝐷−𝜈−1(𝑖𝑡) (3.45)

Sendo 𝐷𝜈(𝑡) e 𝐷−𝜈−1(𝑖𝑡) funções parabólicas cilíndricas 6. A fórmula assintótica destas
funções tem o seguinte formato:

𝑍 ∼ 𝐵𝑒− 3𝑖𝜋(𝜈+1)
4 (4𝑘)− 𝜈+1

4 (𝑟* − 𝑟0)−(𝜈+1)𝑒𝑖
√
𝑘(𝑟*−𝑟0)2/2+

+
(︃
𝐴+𝐵

(2𝜋)1/2𝑒−𝑖𝜈𝜋/2

Γ(𝜈 + 1)

)︃
𝑒

𝑖𝜋𝜈
4 (4𝑘)𝜈/4(𝑟* − 𝑟0)𝜈𝑒−𝑖

√
𝑘(𝑟*−𝑟0)2/2

(3.46)

para 𝑟 >> 𝑟2. Já para 𝑟 >> 𝑟1 temos:
6 Propriedades a respeito das funções parabólicas cilíndricas podem ser encontradas em (32).
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𝑍 ∼ 𝐴𝑒− 3𝑖𝜋𝜈
4 (4𝑘)𝜈/4(𝑟* − 𝑟0)𝜈𝑒−𝑖

√
𝑘(𝑟*−𝑟0)2/2+

(︃
𝐵−

−𝑖𝐴(2𝜋)1/2𝑒−𝑖𝜈𝜋/2

Γ(−𝜈)

)︃
𝑒

𝑖𝜋(𝜈+1)
4 (4𝑘)− 𝜈+1

4 (𝑟* − 𝑟0)−(𝜈+1)𝑒𝑖
√
𝑘(𝑟*−𝑟0)2/2

(3.47)

𝑟1 é o menor ponto de retorno e 𝑟2 o maior. Agora com os resultados em mãos podemos
na região 𝐼 comparar os coeficientes de 3.46 e 3.39, da mesma forma, para a região 𝐼𝐼𝐼
podemos comparar os coeficientes de 3.47 com os de 3.39. Eliminando as constantes A
e B ficamos com:

⎛⎜⎜⎝Ψ𝐼𝐼𝐼
out

Ψ𝐼𝐼𝐼
in

⎞⎟⎟⎠ =

⎛⎜⎜⎝ 𝑒𝑖𝜋𝜈 𝑖𝑅2𝑒𝑖𝜋𝜈(2𝜋)1/2

Γ(𝜈+1)

𝑅−2(2𝜋)1/2

Γ(−𝜈) −𝑒−𝑖𝜋𝜈

⎞⎟⎟⎠
⎛⎜⎜⎝Ψ𝐼

out

Ψ𝐼
in

⎞⎟⎟⎠ (3.48)

Com 𝑅 sendo dado por:

𝑅 =
(︂1

2 + 𝜈
)︂(2𝜈+1)/4

𝑒−(2𝜈+1)/4 (3.49)

É importante lembrar que a natureza do horizonte de eventos não permite que emissão
de sua região, ao mesmo tempo que ele também não permite o escape de ondas que
chegam até ele, sendo o coeficiente de reflexão igual a zero. Essas observações resultam
em Ψ𝐼

𝑖𝑛 = 0 e Ψ𝐼𝐼𝐼
𝑖𝑛 = 0, segue que:

Γ(𝜈)→∞ (3.50)

Sobre primeira ordem da aproximação WKB os MQN são dados por (37):

𝜎2 = 𝑉 (𝑟0)−

⎯⎸⎸⎷2d2𝑉

d𝑟2
*

⃒⃒⃒⃒
⃒
𝑟*=𝑟0

(︃
𝑛+ 1

2

)︃
𝑖 (3.51)

Sendo 𝑉 (𝑟0) o valor máximo para o potencial. O sinal e 𝑛 denota a parte real de 𝜔 tal
que:

𝑛 =

⎧⎪⎪⎨⎪⎪⎩
0, 1, 2, 3, . . . R(𝜎) > 0

−1,−2,−3, . . . R(𝜎) < 0
(3.52)
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representando um conjunto discreto de frequências complexas. É possível também obter
uma expressão para WKB de ordens maiores, ela tem o seguinte formato:

𝜎2 = 𝑉 (𝑟0)−

⎯⎸⎸⎷2d2𝑉

d𝑟2
*

⃒⃒⃒⃒
⃒
𝑟*=𝑟0

(︃
𝑛+ 1

2 +
𝑁∑︁
𝑘=2

Θ𝑘

)︃
𝑖

𝑛 = 0,±1,±2, ...

(3.53)

Θ𝑘 são funções do potencial de de suas derivadas em seu valor máximo 𝑟* = 𝑟0.

2. O método da fração continuada: O método das frações continuadas (também denomi-
nado método de Leaver) é amplamente utilizado para o cálculo dos MQN no contexto da
relatividade geral. Sua origem remonta 1986 quando Leaver, percebendo que as equações
obtidas por Teukolsky são uma subclasse de equações de onda esferoidais, introduziu o
método das frações continuadas a problemas de perturbação e encontrou os MQN para
as métricas de Schwarzschild e Kerr. O método foi amplamente desenvolvido e é uma
das formas mais efetivas e precisas de calcular os MQN, embora o método tenha sua
convergência prejudicada à medida que o valor do harmônico aumenta (37).

3. O método pseudo-espectral : Na implementação deste método, as variáveis contínuas,
como a coordenada radial presente nas equações dos MQN são substituídas por um
conjunto discreto de pontos que recebe o nome de malha. As auto-funções podem ser
aproximadas por funções cardinais e os coeficientes expandidos em função da frequência
dos MQN, resultando em uma matriz que governa o problema de auto-valor.

4. Soluções exatas da equação de Heun: A equação radial pode ser posta no formato de
uma equação de Heun (veja 3.66). Solucionada a equação é possível obter os MQN. No
capítulo 4 será desenvolvida a teoria das deformações isomonodrômicas afim de resolver
numericamente a equação de Heun.

Para concluir, algumas últimas considerações sobre a métrica de Schwarzschild, especial-
mente, a métrica descrevendo um buraco negro:

1. Os MQN, sobre a convenção adotada, possuem parte imaginária positiva, represen-
tando assim modos amortecidos, ou seja, podemos afirmar a estabilidade da métrica de
Schwarzschild sobre perturbações lineares pequenas.
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2. O tempo de amortecimento dos MQN depende linearmente da massa do buraco negro,
sendo menor quão maior os modos forem.

3. Uma perturbação do buraco negro dá origem ao seu “toque” e o final da dinâmica
dessas perturbações podem ser descritas através de uma lei de potência representando
o conjunto dos MQN em decaimento.

4. Os MQN são isoespectrais, significando que independentemente das pertubações serem
axiais ou polares, o conjunto de frequências características será o mesmo.

3.4 PERTUBAÇÕES DO BURACO DE MINHOCA DE ELLIS

O caminho a ser seguido afim de trabalhar com a equação de campo de Einstein dada
em 2.4 é, primeiramente, encontrar o tensor de Einstein para a métrica de interesse, dada em
2.20. Sendo assim, podemos fazer uso de qualquer um dos métodos desenvolvidos no Apêndice
A para esse fim. Nesse capítulo especificamente, faremos opção por utilizar o método das
coordenadas. O primeiro passo é encontrar os símbolos de Christoffel para a métrica:

d𝑠2 = − d𝑡2 + d𝑟2 + (𝑟2 + 𝑏2)(d𝜃2 + sin 2𝜃 d𝜑2) (3.54)

Eles são dados por:

Γ𝜌𝜃𝜃 = −𝑟, Γ𝜌𝜑𝜑 = −𝑟 sin2(𝜃), (3.55a)

Γ𝜃𝜌𝜃 = Γ𝜃𝜃𝜌 = 𝑟

𝑟2 + 𝑏2 Γ𝜃𝜑𝜑 = − cos(𝜃) sin(𝜃) (3.55b)

Γ𝜑𝜌𝜑 = Γ𝜑𝜑𝜌 = 𝑟

𝑟2 + 𝑏2 Γ𝜑𝜃𝜑 = Γ𝜑𝜑𝜃 = cos (𝜃)
sin (𝜃) (3.55c)

O passo seguinte é, através dos símbolos de Christoffel encontrar o tensor de Riemann,
seguem os resultados obtidos:

𝑅𝑟𝜃𝑟
𝜃 = 1

𝑟2 + 𝑏2 −
𝑟2

(𝑟2 + 𝑏2)2 , 𝑅𝑟𝜑𝑟
𝜑 = 1

𝑟2 + 𝑏2 −
𝑟2

(𝑟2 + 𝑏2)2 (3.56a)

𝑅𝜃𝜃𝑟
𝑟 = − 𝑏2

(𝑟2 + 𝑏2) , 𝑅𝜃𝜑𝜃
𝜑 = 𝑟

𝑟2 + 𝑏2 − 1 (3.56b)

𝑅𝜑𝜑𝑟
𝑟 = −𝑏

2 sin2(𝜃)
(𝑟2 + 𝑏2) , 𝑅𝜑𝜑𝜃

𝜃 = 𝑏2 sin2(𝜃)
(𝑟2 + 𝑏2) (3.56c)
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Seguindo, o tensor de Ricci e o escalar de curvatura são dados por:

𝑅𝑟𝑟 = −2𝑏2

(𝑟2 + 𝑏2)2 𝑅 = −2𝑏2

(𝑟2 + 𝑏2)2 (3.57)

Com esses resultados podemos obter o tensor de Einstein para a métrica de Ellis:

𝐺𝑡𝑡 = −𝑏2

(𝑏2 + 𝑟2)2 (3.58a)

𝐺𝑟𝑟 = 𝑏2

(𝑏2 + 𝑟2)2 (3.58b)

𝐺𝜃𝜃 = 𝑏2

𝑏2 + 𝑟2 (3.58c)

𝐺𝜑𝜑 = 𝑏2 sin 2𝜃

𝑏2 + 𝑟2 (3.58d)

E o resultado obtido pode ser resumido da seguinte maneira:

𝐺𝑎𝑏[0𝑔𝑎𝑏] = −𝑏2

(𝑟2 + 𝑏2)2𝑛𝑎𝑛𝑏 + 𝑏2

(𝑟2 + 𝑏2)2 (0𝑔𝑎𝑏 − 𝑛𝑎𝑛𝑏) (3.59)

em que 𝑛𝑎 = (𝑑𝑟)𝑎 é o vetor unitário na direção radial, e 0𝑔𝑎𝑏 é a métrica associada a 3.54
(a notação escolhida é justificada pelo que vem a seguir e pelo que foi desenvolvido na seção
anterior).

Estamos interessados em realizar a perturbação escalar da métrica de interesse, para isso
devemos resolver a equação de Klein-Gordon. Sendo assim, considere a equação de Klein-
Gordon para um campo escalar massivo:

∇2Φ = 𝜇2Φ (3.60)

Em que ∇2 é o operador de Laplace-Beltrami definido pela seguinte relação:

∇2 = 1√
−𝑔

𝜕

𝜕𝑥𝜇

(︃
𝑔𝜇𝜈
√
−𝑔 𝜕

𝜕𝑥𝜈

)︃
(3.61)

Onde 𝑔 é o determinante da métrica, que para o caso de interesse vale −(𝑟2 + 𝑏2)2 sin 2𝜃.
Sendo a representação da métrica covariante uma matriz diagonal, o inverso da métrica tam-
bém o será e sua relação é simples, dada por:

𝑔𝜇𝜈 = diag
(︃
− 1, 1, 1

(𝑟2 + 𝑏2) ,
1

(𝑟2 + 𝑏2) sin2 (𝜃)

)︃
(3.62)
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Assim, utilizando as expressões acima, encontramos que o operador de Laplace-Beltrami
tem o seguinte formato:

∇2 = − 𝜕2

𝜕𝑡2
+ 1
𝑓(𝑟)

𝜕

𝜕𝑟

(︃
𝑓(𝑟) 𝜕

𝜕𝑟

)︃
+ 1
𝑓(𝑟)

[︃
1

sin 𝜃
𝜕

𝜕𝜃

(︃
sin 𝜃 𝜕

𝜕𝜃

)︃
+

+ 1
sin 2𝜃

𝜕2

𝜕𝜑2

]︃ (3.63)

Sendo 𝑓(𝑟) = 𝑟2 + 𝑏2. Logo, podemos escrever para o campo escalar massivo:

∇2Φ =
[︃
− 𝜕2

𝜕𝑡2
+ 1
𝑓(𝑟)

𝜕

𝜕𝑟

(︃
𝑓(𝑟) 𝜕

𝜕𝑟

)︃
+ 1
𝑓(𝑟)

(︃
1

sin 𝜃
𝜕

𝜕𝜃

(︃
sin 𝜃 𝜕

𝜕𝜃

)︃
+

+ 1
sin 2𝜃

𝜕2

𝜕𝜑2

)︃]︃
Φ = 𝜇2Φ

(3.64)

Ao fazer a seguinte identificação padrão: Φ = 𝑒−𝑖𝜔𝑡𝑅(𝑟)𝑌𝑚𝑙(𝜃, 𝜑), podemos prosseguir
com a separação da equação. Substituindo em 3.64 ficamos com:

[︃
1

𝑟2 + 𝑏2
d
d𝑟
(︁
𝑟2 + 𝑏2

)︁ d
d𝑟 + 𝜔2 − 𝑙(𝑙 + 1)

𝑟2 + 𝑏2

]︃
𝑅(𝑟) = 0 (3.65)

Para a equação radial, em que fizemos 𝜇 = 0. Se quisermos recuperar a dependência de
massa basta fazer 𝜔2 → 𝜔2 − 𝜇2.

A equação (3.65), mediante uma transformação apropriada, pode ser posta na forma
canônica da equação confluente de Heun, dada por:

[︃
𝜕2

𝜕𝑧2 +
(︃

1− 𝜃0

𝑧
+ 1− 𝜃1

𝑧 − 𝑧0

)︃
𝜕

𝜕𝑧
−
(︃

1
4 + 𝜃⋆

2𝑧 + 𝑧0𝑐𝑡
𝑧(𝑧 − 𝑧0)

)︃]︃
𝑦(𝑧) = 0 (3.66)

Basta substituir 𝑧 = −2𝜔(𝑟−𝑖𝑏) em (3.65). Feito isso notamos também que os parâmetros
para a equação radial são dados por:

𝜃0 = 𝜃1 = 𝜃⋆ = 0, 𝑧0 = 4𝑏𝜔, 𝑧0𝑐𝑡 = 𝑙(𝑙 + 1). (3.67)

Como dito na seção anterior, um dos métodos que pode ser utilizado para encontrar os
MQN é a partir da equação de Heun. A equação de Heun é uma generalização da equação hi-
pergeométrica, caracterizada por dois pontos singulares regulares e um ponto singular irregular
no infinito7.
7 A discussão sobre as características dos pontos singulares e suas classificações será feita no capítulo 4.
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As condições de contornos apropriadas para tratar do problema de espalhamento devem
levar em consideração a ideia de que estamos particularmente interessados em “mergulhar”
por dentro do buraco de minhoca, já que o buraco de minhoca tratado no presente trabalho
faz parte da categoria especial dos “transponíveis”, caracterizado especialmente pela ausência
de singularidade e de um tamanho mínimo para o sistema dado por 𝑟 = 𝑏, de acordo com as
ideias expostas em (25) e as discussões feitas na subseção 2.5.

Levando isso em consideração, as condições de contorno a serem impostas serão:

𝑅(𝑟) ≈

⎧⎪⎪⎨⎪⎪⎩
𝑇𝑒−𝑖𝜔𝑟, 𝑟 → −∞

𝑒−𝑖𝜔𝑟 +𝑅𝑒𝑖𝜔𝑟, 𝑟 → +∞
(3.68)

Essas condições de contorno representam uma onda de amplitude unitária vindo de +∞

dando origem a uma onda refletida de amplitude 𝑅 que retorna ao +∞ e uma onda transmitida
de amplitude 𝑇 que passa pelo buraco de minhoca em direção a −∞. Devido ao formato da
métrica a coordenada radial admite valores no intervalo (−∞,+∞).

Dada sua relevância astrofísica, é importante também considerar as condições de contorno
para os modos quase-normais, que correspondem a perfis localizados de energia ao redor de
buraco de minhoca caso a parte imaginária de 𝜔 seja menor que zero (Im𝜔 < 0), lembrando
que essa condição imposta a parte imaginária garante que os perfis localizados de energia não
irão crescer exponencialmente tornando a métrica instável e consequentemente anulando sua
relevância no contexto astrofísico observacional. As condições para os MQN são dadas por:

𝑅(𝑟) ≈

⎧⎪⎪⎨⎪⎪⎩
𝑒𝑖𝜔𝑟, 𝑟 → −∞,

𝑒−𝑖𝜔𝑟, 𝑟 → +∞,
(3.69)

Tendo as condições de contorno em mãos e bem definidas o próximo passo é prosseguir
com a perturbação da métrica 3.54, seguindo uma abordagem semelhante à desenvolvida para
a métrica de Schwarzschild nas seções anteriores do presente capítulo.

3.4.1 Perturbação axial da métrica de Ellis

Como citado no início do presente capítuo e na subseção 3.2, as duas abordagens principais
na teoria da perturbação métrica da relatividade geral são a de Regge-Wheeler e Newman-
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Penrose. A abordagem que será aplicada na perturbação da métrica de Ellis será a de Regge-
Wheeler, caracterizada por ser uma perturbação na própria métrica.

O desenvolvimento a seguir toma por base a exposição do capítulo 4, seção 24 de (20),
em que é feita a perturbação axial da métrica de Schwarzschild, que também foi exposta no
presente capítulo na subseção 3.3, com a diferença de que aqui estamos interessados em, ao
ter a equação radial em mãos, transformá-la através de uma mudança de coordenadas em
uma equação de Heun.

Seguindo o que é exposto e adaptando para nossos propósitos, começamos definindo a
seguinte 1-forma:

𝜎𝑎 = 𝑒−𝑖𝜔𝑡+𝑖𝑚𝜑(𝑞𝑡(𝑟, 𝜃)(d𝑡)𝑎 + 𝑞𝑟(𝑟, 𝜃)(d𝑟)𝑎 + 𝑞𝜃(𝑟, 𝜃)(d𝜃)𝑎) (3.70)

que será a fonte da perturbação. Inserindo-a na métrica original ficamos com o seguinte:

d𝑠2 = − d𝑡2 + d𝑟2 + (𝑟2 + 𝑏2)(d𝜃2 + sin 2𝜃(d𝜑+ 𝜎)2) (3.71)

O desacoplamento das equações linearizadas não segue o mesmo caminho que em (20), em
última análise as equações de campo dependem da matéria que compôe o buraco de minhoca.
É importante ressaltar que o buraco de minhoca de Ellis não representa a solução das equações
de campo de Einstein para o caso estático e esfericamente simétrico no vácuo. Pelo teorema de
Birkhoff (uma discussão e prova do teorema podem ser encontrados no apêndice B de (18)) a
única solução admitida com essas características é a de Schwarzschild, sendo assim, a métrica
de Ellis como solução das equações requer a presença de matéria, e consequentemente, a
forma que a solução toma depende das propriedades e características desta última. Baseado
na forma do tensor de estresse-energia (25), vamos assumir que os coeficientes em 3.59, tendo
a interpretação de pressão e densidade de energia, são mantidos fixos, equanto os componentes
de 𝑔𝑎𝑏 no sistema particular de coordenadas pode flutuar.8

Em (43) uma abordagem diferente é sugerida, é posicionado um campo dinâmico particular,
composto por uma superposição de um campo eletromagnético e “poeira” com densidade de
energia negativa permitindo uma generalização do modelo.

Resumindo, vamos assumir que o tensor de Einstein associado à métrica perturbada 3.71
satisfaz a mesma forma tensorial que 3.59:
8 Sendo assim, o procedimento apresentado aqui toma um caminho diferente daquele apresentado em (25).

Lá, os buracos de minhoca transponíveis tem a forma de sua métrica definida a priori, enquanto a forma
do tensor de estresse-energia deve ser ajustado afim de satisfazer as condições requeridas para a “transpo-
nibilidade”.
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𝐺𝑎𝑏[𝑔𝑎𝑏] = − 𝑏2

(𝑟2 + 𝑏2)2𝑛𝑎𝑛𝑏 + 𝑏2

(𝑟2 + 𝑏2)2 (𝑔𝑎𝑏 − 𝑛𝑎𝑛𝑏) (3.72)

Onde, novamente, 𝑛𝑎 = (d𝑟)𝑎 e agora 𝑔𝑎𝑏 representa a métrica perturbada.
Seguindo o que foi exposto na subsubseção 3.2.1, o objetivo é realizar a perturbação da

métrica e expandir em primeira ordem para as funções 𝑞𝑡, 𝑞𝑟 e 𝑞𝜃. Focando em duas equações
relevantes:

1
𝑟2 + 𝑏2

𝜕

𝜕𝜃

(︃
𝜕𝑞𝑟
𝜕𝜃
− 𝜕𝑞𝜃

𝜕𝑟

)︃
− 𝑖𝜔𝜕𝑞𝑡

𝜕𝑟
+ 3
𝑟2 + 𝑏2

cos 𝜃
sin 𝜃

(︃
𝜕𝑞𝑟
𝜕𝜃
− 𝜕𝑞𝜃

𝜕𝑟

)︃
+

+𝜔2𝑞𝑟 = 0.
(3.73)

Para a componente 𝐺𝑟𝜑 e:

𝜕

𝜕𝑟

(︃
𝜕𝑞𝑟
𝜕𝜃
− 𝜕𝑞𝜃

𝜕𝑟

)︃
+ 𝑖𝜔

𝜕𝑞𝑡
𝜕𝜃

+ 2𝑟
𝑟2 + 𝑏2

(︃
𝜕𝑞𝑟
𝜕𝜃
− 𝜕𝑞𝜃

𝜕𝑟

)︃
− 𝜔2𝑞𝜃 = 0. (3.74)

Para a componente 𝐺𝜃𝜑. As outras equações colocam 𝑞𝑡 em termos de 𝑞𝑟, 𝑞𝜃, 𝜕𝑟𝑞𝑟 e 𝜕𝜃𝑞𝜃,
de maneira que não faremos uso delas.

A partir de agora a abordagem será semelhante à exposta para a perturbação axial da
métrica de Schwarzschild. Definindo 𝑄(𝑟, 𝜃) tal que:

𝑄(𝑟, 𝜃) = 1
(𝑟2 + 𝑏2) sin 𝜃

(︃
𝜕𝑞𝑟
𝜕𝜃
− 𝜕𝑞𝜃

𝜕𝑟

)︃
. (3.75)

Derivando a equação 3.73 em relação a 𝜃 e a equação 3.74 em relação a 𝑟, somando-as e
utilizando a equação anterior 3.75, ficamos com:

[︃
1

(𝑟2 + 𝑏2)3
𝜕

𝜕𝑟

(︃
(𝑟2 + 𝑏2)3 𝜕

𝜕𝑟

)︃
(3.76)

+ 1
(𝑟2 + 𝑏2) sin5 𝜃

𝜕

𝜕𝜃

(︃
sin5 𝜃

𝜕

𝜕𝜃

)︃
+𝜔2

]︃
𝑄(𝑟, 𝜃) = 0.

Que pode ser separada em uma parte radial e uma parte angular mediante a seguinte
substituição:

𝑄(𝑟, 𝜃) = 1
sin2 𝜃

𝑌 2
𝑙 (cos 𝜃)𝑅(𝑟) (3.77)

Utilizando a substutição descrita encontramos a seguinte equação para a parte radial:
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[︃
1

(𝑟2 + 𝑏2)3
𝑑

𝑑𝑟

(︃
(𝑟2 + 𝑏2)3 𝑑

𝑑𝑟

)︃
+ 𝜔2 − (ℓ− 2)(ℓ+ 3)

𝑟2 + 𝑏2

]︃
𝑅(𝑟) = 0. (3.78)

Que novamente representa uma equação de Heun confluente que pode ser posta em sua
forma padrão através das seguintes trocas de variáveis:

𝑧 = −2𝑖𝜔(𝑟 + 𝑖𝑏), 𝑦(𝑧) = (𝑟2 + 𝑏2)−2𝑅(𝑟), (3.79)

Com os parâmetros da equação sendo dados por:

𝜃0 = 𝜃1 = 2, 𝜃⋆ = 0, 𝑧0 = 4𝑏𝜔, 𝑧0𝑐𝑡 = (𝑙 − 1)(𝑙 + 2). (3.80)

O valor de 𝑙 foi ajustado de forma que o parâmetro acessório recupere o valor no espaço
plano para o autovalor (𝑙 − 𝑠)(𝑙 + 𝑠+ 1) para 𝑠 = 2 em 3.78.

As equações radiais 3.65 e 3.78 serão, seguindo as abordagens expostas na literatura, as
utilizadas no estudo numérico dos coeficientes de monodromia para a equação de Heun a elas
associada, tendo por base a teoria das deformações isomonodrômicas desenvolvida no capítulo
4.

3.5 CONCLUSÃO

Nesta seção foram expostos os principais tópicos que rondam a teoria da perturbação no
contexto da relatividade geral, desde seu surgimento com o seminal artigo de Regge e Wheeler,
até seus aperfeiçoamentos com trabalhos recentes no estudo das questões de estabilidade sobre
perturbações lineares e não-lineares, tópico central a ser discutido garantindo a relevência física
das soluções obtidas para as equações de campo. Foram descritos também a importância que
os modos quase-normais tem na descrição dos mais diversos sistemas gravitacionais, dado que
são frequências características do objeto, independem da perturbação que o acometem. Foram
apresentados diversos métodos para sua obtenção, dando uma atenção especial para o método
WKB que neste capítulo foi aplicado à métrica de Schwarzschild, sendo brevemente discutido
também o método isomonodrômico que será desenvolvido no capítulo 4 e aplicado à métrica
de Ellis para estudo dos coeficientes de monodromia no capítulo 5. Percebeu-se também que
diante de perturbações escalares e gravitacionais, a métrica de Ellis dá origem a equações de
Heun palco principal dos dois capítulos seguintes.
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4 TEORIA DAS DEFORMAÇÕES ISOMONODRÔMICAS

4.1 EQUAÇÕES DIFERENCIAIS E A FÍSICA

A física enquanto ciência busca modelar os mais diversos fenômenos da natureza a partir
de relações matemáticas. As mais famosas dessas relações são as equações diferenciais, que se
fazem presentes em todas as áreas da física, desde mecânica, termodinâmica e eletromagne-
tismo até relatividade geral, teoria quântica de campos em espaços curvos e teoria de campos
conformes.

Um grande número de problemas, quando formulados matematicamente, conduzem a equa-
ções diferenciais parciais de segunda ordem que podem ser divididas em grupos nomeados de:
equações parabólicas, hiperbólicas e elípticas. Como exemplo de equação parabólica temos
a equação do calor 𝐾∇2𝜓 = (𝜕𝜓/𝜕𝑡), como exemplo de equação elíptica temos a equação
de Laplace-Poisson 𝐷(2)𝜓 = 𝑔(𝑥, 𝑦)1, como equação hiperbólica temos a equação de onda
∇2𝜓 = (𝜕2𝜓/𝜕𝑡2)/𝑐2. Na busca por soluções destas equações, na grande maioria das vezes
recorre-se ao método de separação de variáveis, o mesmo método que nos permitiu nos capítu-
los anteriores separar a parte angular da parte radial nas perturbações métricas. O método de
separação de variáveis permite que o problema de resolver uma equação diferencial parcial seja
transformado em um problema de resolver equações diferenciais ordinárias, cuja obtenção da
solução costuma ser mais simples. Em casos específicos, quando a equação admite separação,
se a equação diferencial parcial é 𝑛-dimensional o método permite escrever 𝑛 equações dife-
renciais ordinárias com a introdução de 𝑛− 1 constantes de separação, que são determinadas
a partir das condições de contorno do problema.

O problema da construção de soluções para equações diferenciais ordinárias de segunda
ordem foi parcialmente resolvido por Frobenius, através do método que leva o seu nome. O
método consiste em admitir a existência2, na vizinhança de um ponto ordinário ou singular,
de uma solução em formato de série:

𝑦(𝑥) =
∞∑︁
𝑛=0

𝑎𝑛(𝑥− 𝑥0)𝑛+𝑠 (4.1)

Sendo 𝑥0 o ponto ordinário ou singular regular e 𝑎𝑛 e 𝑠 icógnitas a serem descobertas.
Ao substituir a equação 4.1 na equação diferencial que se quer resolver, será obtida o que é
1 𝐷(2) = 𝜕2𝜓

𝜕𝑥2 + 𝜕2𝜓
𝜕𝑦2

2 A questão referente à existência da solução foi parcialmente resolvida pelo teorema de Fuchs.
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conhecida por equação indicial, a partir da qual é possível traçar relações de recorrência para
os coeficientes 𝑎𝑛.

Dada a busca por soluções no entorno de pontos ordinários ou singulares regulares, é
necessário que falemos brevemente sobre a classificação dos pontos de uma equação diferencial.
Seja uma equação diferencial de segunda ordem de formato genérico:

𝐴(𝑥)𝑦′′ +𝐵(𝑥)𝑦′ + 𝐶(𝑥)𝑦 = 0 (4.2)

Temos o seguinte:

1. Ponto ordinário: Um ponto 𝑥0 é dito ordinário se na equação 4.2 𝐴(𝑥0) ̸= 0. Assim
𝑝(𝑥) = 𝐵(𝑥)/𝐴(𝑥) e 𝑞(𝑥) = 𝐶(𝑥)/𝐴(𝑥) também podem ser desenvolvidos em série de
potência.

2. Ponto singular regular: Quando 𝑥 → 𝑥0, 𝑝(𝑥) e 𝑞(𝑥) divergem, mas (𝑥 − 𝑥0)𝑝(𝑥) e
(𝑥− 𝑥0)2𝑞(𝑥) permanecem finitos.

3. Ponto singular irregular: Quando 𝑥 → 𝑥0, 𝑝(𝑥) e 𝑞(𝑥) divergem e (𝑥 − 𝑥0)𝑝(𝑥) ou
(𝑥− 𝑥0)2𝑞(𝑥) não permanecem finitos à medida que 𝑥→ 𝑥0.

Embora as equações de interesse da dissertação (3.65 e 3.78) possam ser resolvidas a
partir do método de Frobenius o problema principal que será tratado não é o da busca por
uma solução, mas o estudo da equação de Heun a partir de seus parâmetros de monodromia,
essencialmente, a resolução de um dos problemas de Riemann-Hilbert. A partir disso será
implementada a análise numérica para o estudo dos MQN.

Para finalizar, a título de completude, algumas outras definições a respeito da teoria das
variáveis complexas são importantes afim da garantir a fluidez do que vem a partir de agora:

Uma função 𝑓(𝑧) é dita analítica em uma região 𝑈 ⊆ C se ela pode ser representada por
uma série de Taylor convergente em torno de qualquer ponto de 𝑈 . Isso implica:

𝑓(𝑧) =
∞∑︁
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛,

onde a série converge para 𝑓(𝑧) em um raio de convergência positivo.
Uma função 𝑓(𝑧) é dita holomorfa em 𝑈 ⊆ C se ela é diferenciável em todos os pontos

de 𝑈 . Isso significa que a derivada 𝑓 ′(𝑧) existe no sentido da teoria das variáveis complexas:
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𝑓 ′(𝑧) = lim
Δ𝑧→0

𝑓(𝑧 + Δ𝑧)− 𝑓(𝑧)
Δ𝑧 ,

com Δ𝑧 ∈ C.
Uma função 𝑓(𝑧) é dita meromorfa em uma região 𝑈 se ela é holomorfa em 𝑈 , exceto

em um conjunto discreto de 𝑛 pontos (os polos) onde 𝑓(𝑧) diverge para ∞ como (𝑧− 𝑧0)−𝑛

com 𝑛 inteiro. Isso significa que 𝑓(𝑧) pode ser escrita como:

𝑓(𝑧) = 𝑔(𝑧)
ℎ(𝑧) ,

onde 𝑔(𝑧) e ℎ(𝑧) são funções holomorfas em 𝑈 , e os zeros de ℎ(𝑧) correspondem aos polos
de 𝑓(𝑧).

Neste sentido, funções analíticas e holomorfas são termos sinônimos, principalmente de-
vido ao teorema que relaciona a analiticidade (diferenciabilidade com adição de satisfazer as
condições de Cauchy-Riemann) de uma função com a existência da sua representação em série
de potência (veja o teorema 23 na seção 11 do capítulo 8 de (44)). Assim, os termos podem
aparecer de maneira alternada no presente trabalho.

4.2 EQUAÇÕES DIFERENCIAIS ORDINÁRIAS NO PLANO COMPLEXO

A forma geral de uma equação diferencial linear e homogênea é a seguinte:

𝑑𝑁

𝑑𝑧𝑁
𝑦(𝑧) + 𝑝1(𝑧)

𝑑𝑁−1

𝑑𝑧𝑁−1𝑦(𝑧) + 𝑝2(𝑧)
𝑑𝑁−2

𝑑𝑧𝑁−2𝑦(𝑧) + · · ·+ 𝑝𝑛(𝑧)𝑦(𝑧) = 0. (4.3)

em que os coeficientes racionais representados por 𝑝1, 𝑝2,. . ., 𝑝𝑛 são funções holomórfas
𝑧 ∈ C. A equação apresentada acima é genérica, e seu comportamento nos pontos singulares
permite classificá-la como fuchsiana ou não-fuchsiana. Essa classificação é semelhante à discu-
tida na seção anterior, mas agora generalizada para equações diferenciais de ordem 𝑁 . Sendo
os coeficientes da equação funções racionais, poderão apresentar polos. Um ponto singular é
chamado de regular (ou singularidade regular) se a ordem do polo associado ao coeficiente for
menor ou igual à ordem do coeficiente na equação diferencial. Caso contrário, será classificado
como uma singularidade irregular. Equações diferenciais fuchsianas são aquelas que possuem
apenas singularidades regulares. Por outro lado, equações com pelo menos uma singularidade
irregular são chamadas de não-fuchsianas.

A equação 4.3 pode ser escrita na forma de um sistema linear:
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d
d𝑧Y(𝑧) = A(𝑧)Y(𝑧) (4.4)

Sendo Y(𝑧) um vetor coluna (𝑁 × 1) e A(𝑧) é uma matriz 𝑁 ×𝑁 . O vetor coluna Y(𝑧)

tem o seguinte formato:

Y(𝑧) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1(𝑧)

𝑦2(𝑧)
...

𝑦𝑁(𝑧)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A(𝑧) = 𝐴𝑖𝑗(𝑧), 1 ≤ 𝑖, 𝑗 ≤ 𝑁. (4.5)

Em que 𝑦𝑛(𝑧) = 𝑦′
𝑛−1(𝑧) e as entradas 𝐴𝑖𝑗(𝑧) da matriz A(𝑧) são funções holomorfas. É

importante também falar da solução matricial fundamental:

d
d𝑧Y(𝑧) = A(𝑧)Y(𝑧) (4.6)

Cuja Y(𝑧) é uma matriz 𝑁 ×𝑁 e é composta por 𝑁 soluções linearmente independentes,
de tal maneira que W(Y(𝑧)) ̸= 0, sendo W(Y(𝑧)) o Wronskiano. Note que para obter A(𝑧)

basta multiplicar ambos os lados da equação anterior por Y−1(𝑧). Supondo A(𝑧) uma função
holomórfa e olhando para seu conjunto de polos podemos estabelecer a classificação de Poicaré
e determinar se o sistema matricial fundamental é ou não Fuchsiano. Se a função A(𝑧) possuir
apenas polos simples (singularidades regulares) o sistema é dito Fuchsiano, se A(𝑧) depender
de polos de ordem maior (singularidades irregulares) o sistema é dito não-Fuchsiano. Os polos
podem ser classificados segundo o critério de Poicaré, polos simples são ditos de ranking 𝑟 = 0,
polos duplos de ranking 𝑟 = 1 e assim sucessivamente.

É possível generalizar de forma coveniente a expressão para a matriz A(𝑧) escrevendo-a
em termos de seus pontos singulares, fazendo a distinção entre pontos “finitos” e pontos no
“infinito”, todos eles referentes a polos que podem ser classificados segundo o critério de
Poicaré citado acima. A expressão geral toma a seguinte forma (45):

A(𝑧) =
𝑛∑︁
𝑖=1

𝑟𝑖∑︁
𝑗=0

A𝑖,𝑗

(𝑧 − 𝑧𝑖)𝑗+1 +
𝑟∞∑︁
𝑗=1

A∞,𝑗𝑧
𝑗−1. (4.7)

Em que A𝑖,𝑗 e A∞,𝑗 são matrizes constantes 𝑁 × 𝑁 e 𝑟𝑖 e 𝑟∞ representam o rank das
singularidades.
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A equação de Heun que é a de maior interesse no presente trabalho possui três singulari-
dades, duas regulares e uma irregular em ∞ de rank 1. Sendo assim, trabalharemos com 4.3
para o caso de 𝑁 = 2:

𝑑2𝑦

𝑑𝑧2 + 𝑝1(𝑧)
𝑑𝑦

𝑑𝑧
+ 𝑝2(𝑧)𝑦(𝑧) = 0.

Utilizando-se da forma 4.7 temos o seguinte:

dΦ(𝑧)
d𝑧 = A(𝑧)Φ(𝑧), A(𝑧) =

2∑︁
𝑖=1

Ai

(𝑧 − 𝑧𝑖)
+ A∞ (4.8)

Com A𝑖 e A∞ ∈ 𝐺𝐿(2,C). O domínio do sistema acima representado é dado por 𝑆 :

CP1/{𝑧1, 𝑧2,∞}, em que CP é a esfera de Riemann “perfurada”. Para o caso em questão é
importante notar que Φ(𝑧) é composta por duas soluções linearmente independentes.

4.3 MONODROMIA

A continuação analítica é um conceito amplamente utilizando na teoria das variáveis com-
plexas quando se pretende estender o domínio de uma função além de seu domínio inicial.
Quando este processo é feito é possível que no “meio do caminho” encontre-se singularida-
des da função cuja continuação analítica está sendo feita. O comportamento de uma função
quando é analiticamente continuada e encontra uma singularidade é descrito por sua mono-

dromia. Dito isto, faz-se necesário iniciar a presente seção com a exposição do teorema da

monodromia (46):
Teorema 4.1: Seja D um domínio simplesmente conectado de uma função 𝑓(𝑧) analítica

em um disco D0 ⊂ D. Se a função pode ser continuada analiticamente ao longo de dois
contornos suaves quaisquer 𝛾1 e 𝛾2 para um ponto em D, caso não haja pontos singulares
contidos dentro de 𝛾1 e 𝛾2, então o resultado da continuação analítica é único e a função 𝑓(𝑧)

é univalente3.
Sendo assim, caso no processo de continuação analítica encontre-se pontos singulares, o

comportamento da função será descrito por sua monodromia, de tal forma que para resolver
o sistema de interesse é fundamental saber o comportamento das soluções no entorno das
3 O teorema pode ser extendido para o caso em que na região contida pelos contornos 𝛾1 e 𝛾2 há singulari-

dades isoladas, com 𝑓(𝑧) possuindo uma série de Laurent na vizinhança de quaisquer dos pontos singulares
(46)
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singularidades e qual a continuação analítica para cada uma das soluções em termos das
matrizes de monodromia.

Em geral, na matemática, os conceitos podem ser divididos como globais e locais, não é
diferente no caso da monodromia. Uma monodromia é dita local quando descreve a mudança
no sistema fundamental de soluções da equação diferencial por meio da continuação analítica
feita ao entorno de um ponto singular regular. Já a monodromia global é responsável por des-
crever a mudança causada por uma continuação analítica global, que inclui o comportamento
da função no entorno de todas as suas singularidades. A exposição feita a seguir toma por
base os argumentos e desenvolvimentos feitos em (47).

Dito isto, seja a solução matricial fundamental Φ(𝑧) definida no domínio 𝑆 : CP1 que
representa a esfera de Riemann, fixando um ponto 𝑝∈𝑆 (𝑝 pode ser um ponto qualquer), seja
também um laço 𝛾 também definido no domínio acima que começa no ponto 𝑝. A continuação
analítica de Φ(𝑧) por 𝛾, que também é uma solução matricial fundamental, resultará em (47):

Φ(𝑧𝛾) = Φ(𝑧)M𝛾 (4.9)

Em que M𝛾 é a matriz de monodromia ∈ 𝐺𝐿(2,C). A matriz M𝛾 é determinada de
maneira única pela classe de homotopia de 𝛾 no domínio de definição. Disto, temos o seguinte
mapa:

𝜌 : 𝜋1(CP1, 𝑏)→ 𝐺𝐿(2,C) (4.10)

𝛾 →M𝛾

É interessante notar que um produto em 𝜋1(CP1, 𝑏) é mapeado em um produto em
𝐺𝐿(2,C), pois:

Φ(𝑧𝛾1𝛾2) = (Φ(𝑧𝛾1))(𝑧𝛾2) (4.11)

= Φ(𝑧𝛾2)M𝛾1

= Φ(𝑧)M𝛾1M𝛾2 (4.12)

Que resulta em M𝛾1𝛾2 = M𝛾1M𝛾2 e 𝜌(𝛾1𝛾2) = 𝜌(𝛾1)𝜌(𝛾2). O mapa 𝜌 é um antimorfismo
de grupos, chamado de representação de monodromia da equação diferencial em questão
em relação ao seu sistema de soluções fundamentais. A imagem de 𝜌 é um subgrupo de
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𝐺𝐿(2,C) é recebe o nome de grupo de monodromia da equação diferencial. A representação
de monodromia é única e dada por (para o caso geral de 𝑝 singularidades):

𝜌 = (M0,M1, . . . ,M𝑝) (4.13)

Sendo 𝑝 o número de pontos singulares da equação diferencial considerada.
A representação de monodromia depende da escolha da solução matricial fundamental.

Seja outra solução denominada por Φ̃(𝑧), existe uma relação entre as duas soluções dada por
Φ̃(𝑧) = Φ(𝑧)𝐶, sendo 𝐶 ∈ 𝐺𝐿(2,C) uma matriz 𝑁 ×𝑁 . Assim, temos o seguinte:

Φ̃(𝑧𝛾) = Φ(𝑧𝛾)𝐶 (4.14)

= Φ(𝑧)M𝛾𝐶

= Φ̃(𝑧)𝐶−1M𝛾𝐶 (4.15)

Sendo 𝐶−1M𝛾𝐶 a matriz de monodromia de Φ̃(𝑧) associada à continuação analítica Φ̃(𝑧𝛾).
Para o caso da monodromia local, a classe de conjugação da matriz de monodromia M𝛾 ∈

𝐺𝐿(2,C) definida como a monodromia local em 𝑧 = 𝑎, sendo um 𝑎 um ponto singular, não
depende da escolha solução matricial fundamental.

Voltando a considerar as equações diferencias cujo coeficientes são funções racionais (com
um número 𝑝 de singularidades), o grupo fundamental 𝜋1(CP1, 𝑏), sendo b um ponto fixo,
tem a seguinte apresentação (47):

𝜋1(CP1, 𝑏) = ⟨𝛾0, 𝛾1, . . . , 𝛾𝑝|𝛾0𝛾1 . . . 𝛾𝑝 = 1⟩ (4.16)

para cada 𝑖(0 ≤ 𝑖 ≤ 𝑝, 𝛾𝑖 é um (+1)-laço para 𝑎𝑗, sendo 𝑎𝑗 um dos pontos singulares da
equação diferencial. Veja a figura 4.3.

A solução matricial fundamental continua com a mesma forma:

Φ(𝑧𝛾) = Φ(𝑧)M𝛾 (4.17)

Mas, pelo que foi exposto acima a respeito do produto de mapeamentos, a nova matriz
de monodromia depois de percorridas todas as singularidades da equação diferencial toma a
seguinte forma:

M𝛾 =
𝑝∏︁
𝑖=0

M𝛾𝑖
(4.18)
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Figura 6 – Laços circuvizinhando individualmente as singularidades

Fonte: Haraoka(47).

com a representação de monodromia dada por:

𝜌(𝛾) =
𝑝∏︁
𝑖=0

𝜌(𝛾𝑖) (4.19)

Para a tupla 4.13 é válida a seguinte relação:

𝑀𝑝 . . .𝑀1𝑀0 = I (4.20)

Em que I é a matriz identidade. Percebe-se assim que as matrizes de monodromia formam
a representação de um grupo (47).

Feitas todas estas considerações, é importante voltar ao ponto de partida. A equação
de interesse para obtenção dos modos quase normais é a equação de Heun, que como dito
anteriormente possui três singularidades, duas delas regulares e uma irregular. A forma geral
para uma equação diferencial linear e homogênea do segundo grau é obtida fazendo 𝑁 = 2

em 4.3:

𝑑2𝑦(𝑧)
𝑑𝑧2 + 𝑝1(𝑧)

𝑑𝑦(𝑧)
𝑑𝑧

+ 𝑝2(𝑧) = 0 (4.21)

Que pode também ser posta na forma de um sistema linear:

𝑑

𝑑𝑧
Φ(𝑧) = A(𝑧)Φ(𝑧) (4.22)

As singularidades da equação de Heun são, uma singularidade regular em 𝑧 = 0, uma
singularidade regular em 𝑧 = 𝑧0 e uma singularidade irregular em 𝑧 → ∞. Levando isso em
consideração e utilizando a expressão geral 4.7 que determina A(𝑧) em termos de matrizes
constantes A𝑖,𝑗 e A∞,𝑗 e suas singularidades, para a equação de Heun temos o seguinte:
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A(𝑧) = A0

𝑧
+ A𝑧0

𝑧 − 𝑧0
+ A∞ (4.23)

Que é a forma que será utilizada nos desenvolvimentos posteriores.

4.4 ISOMONODROMIA

O problema central tratado no contexto da teoria das deformações isomonodrômicas é
encontrar sobre quais condições a monodromia associada a cada solução das equações dife-
renciais permanece invariante, equanto as posições das singularidades podem variar. Sendo
assim, a abordagem que se seguirá a partir daqui é considerar a singularidade em 𝑧 = 𝑧0 da
equação de Heun confluente como móvel, substituindo-a pelo parâmetro 𝑡. Ficamos com o
seguinte:

A(𝑧, 𝑡) = A0(𝑡)
𝑧

+ A𝑡(𝑡)
𝑧 − 𝑡

+ A∞ (4.24)

Com o sistema matricial fundamental possuindo a seguinte forma:

𝜕

𝜕𝑧
Φ(𝑧, 𝑡) = A(𝑧, 𝑡)Φ(𝑧, 𝑡) (4.25)

Essas expressões formam um sistema de Garnier.
A isomonodromia tem por base a simetria nas propriedades de monodromia do sistema

matricial. A simetria, do ponto de vista físico, surge da equivalência entre as matrizes de
monodromia e os laços de Wilson:

M𝛾 = 𝑃𝑒
∮︀

A(𝑧)d𝑧 (4.26)

equivalente a Φ(𝑧𝑒2𝜋𝑖)Φ−1 para uma curva não contrátil 𝛾.
No presente trabalho estamos interessandos em um sistema matricial 2x2 com duas sin-

gularidades regulares (𝑧 = 0 e 𝑧 = 𝑧0, que no contexto do presente desenvolvimento fizemos
𝑧0 → 𝑡, segundo as motivações expostas acima) e uma singularidade irregular (𝑧 = ∞). Há
uma variedade de sistemas 2x2 que essencialmente dão a mesma solução, sendo assim, pode-
mos escolher uma que nos seja conveniente. A escolha que faremos é pela que diagonalize 𝐴∞

o que equivale à substituição de Φ(𝑧, 𝑡) por G∞Φ(𝑧, 𝑡) de tal forma que G∞Φ(𝑧, 𝑡)G−1
∞ toma

a forma diagonal. Pelo mesmo procedimento, seja a seguinte transformação s-homotópica:
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Φ(𝑧, 𝑡)→ 𝑧𝜑0(𝑧 − 𝑡)𝜑𝑡𝑒𝜑∞𝑧Φ(𝑧, 𝑡) (4.27)

tal transformação tem por efeito provocar uma modificação na matriz 𝐴𝑘 proporcional à
matriz identidade:

𝐴𝑘 → 𝐴𝑘 + 𝜑𝑘I (4.28)

Sendo I a matriz identidade. Essas transformações resultarão em uma forma mais “pala-
tável” de trabalhar com 4.24 que será fundamental quando avançarmos para o cerne da teoria
isomonodrômica. As transformações acima permitem-nos impor uma série de restrições nas
matrizes 𝐴𝑘. Primeiro, consideremos, sem prejuízo do que vem sendo desenvolvido, que 𝐴∞

é diagonal, em seguida, podemos fazer a transformação s-homotópica descrita acima para
deixar 𝐴∞ sem traço e 𝐴0 e 𝐴𝑡, ambas, com determinante nulo. Por fim, podemos promover
o reescalonamento na variável 𝑧 de tal forma que 𝐴∞ tenha por autovalores ±1/2. Feito isso,
é possível mostrar que os coeficientes 𝑝(𝑧) de d/d𝑧𝑦± e 𝑞(𝑧) de 𝑦± da equação:

𝑑2

𝑑𝑧2 𝑦±(𝑧)−
(︁
Tr A + 𝜕𝑧(log𝐴12)

)︁ 𝑑

𝑑𝑧
𝑦±(𝑧)+

+
(︁
det A− 𝜕𝑧𝐴11 + 𝐴11 𝜕𝑧(log𝐴12)

)︁
𝑦±(𝑧) = 0.

(4.29)

retirada da primeira linha da solução fundamental Φ(𝑧, 𝑡), tomam a seguinte forma:

𝑝(𝑧) = 1−Θ0

𝑧
+ 1−Θ𝑡

𝑧 − 𝑡
− 1
𝑧 − 𝜆

, (4.30)

e

𝑞(𝑧) = −1
4 −

1 + Θ⋆

2𝑧 − 𝑡𝐻𝑡

𝑧(𝑧 − 𝑡) + 𝜆𝜇

𝑧(𝑧 − 𝜆) , (4.31)

em que 𝜆 é uma singularidade aparente, ou seja, não corresponde a polos no sistema
em questão. Além disso são feitas as seguintes considerações: Θ0 = Tr𝐴0, Θ𝑡 = Tr𝐴𝑡, e
Θ⋆ = 2 Tr

(︁
𝐴∞(𝐴0 + 𝐴𝑡)

)︁
= Tr

(︁
𝜎3(𝐴0 + 𝐴𝑡)

)︁
. Por fim, temos o seguinte termo:

𝐻𝑡 = 𝜆(𝜆− 𝑡)
𝑡

(︃
𝜇2 −

(︃
Θ0

𝜆
+ Θ𝑡 − 1

𝜆− 𝑡

)︃
𝜇− 1

4 −
Θ⋆ + 1

2𝜆

)︃
. (4.32)

Cujo formato não é genérico, há uma conexão profunda entre deformações isomonodrômi-
cas e sistemas Hamiltonianos (48). Feitas as considerações acima, podemos escrever 𝐴(𝑧, 𝑡)

da seguinte maneira:



64

𝐴(𝑧, 𝑡) =
(︃
𝜕Φ(𝑧, 𝑡)
𝜕𝑧

)︃
Φ−1(𝑧, 𝑡) = 1

2𝜎3 + 𝐴0

𝑧
+ 𝐴𝑡
𝑧 − 𝑡

(4.33)

com

det{𝐴0} = det{𝐴𝑡} = 0 𝑒 𝜎3 =

⎛⎜⎜⎝1 0

0 −1

⎞⎟⎟⎠ (4.34)

Em que 𝜎3 é uma das matrizes de Pauli e se encaixa perfeitamente nas restrições citadas
mais acima para a 𝐴∞.

A partir de agora focaremos nossa atenção no formato dado por 4.33. O objetivo da
teoria isomonodrômica é que a a representação de monodromia para a 4.33 seja invariante
para qualquer mudança no parâmetro 𝑡. Isso é possível desde que Φ(𝑧, 𝑡) satisfaça o seguinte
sistema de equações:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜕Φ(𝑧, 𝑡)
𝜕𝑧

= 𝐴(𝑧, 𝑡) Φ(𝑧, 𝑡),

𝜕Φ(𝑧, 𝑡)
𝜕𝑡

= 𝐵(𝑧, 𝑡) Φ(𝑧, 𝑡),
(4.35)

e pela condição de curvatura nula:

𝜕𝐴(𝑧, 𝑡)
𝜕𝑡

− 𝜕𝐵(𝑧, 𝑡)
𝜕𝑧

+
[︁
𝐴(𝑧, 𝑡), 𝐵(𝑧, 𝑡)

]︁
= 0.

temos que a matriz 2x2 𝐵(𝑧, 𝑡) toma a seguinte forma:

𝐵(𝑧, 𝑡) = −𝐴𝑡(𝑡)
𝑧 − 𝑡

que satisfaz a condição de manutenção do valor das matrizes de monodromia para qualquer
variação do parâmetro 𝑡. Pela condição de curvatura nula exposta acima, são obtidas as
seguintes equações diferenciais:

𝜕𝐴0

𝜕𝑡
= − 1

𝑡
[𝐴0, 𝐴𝑡],

𝜕𝐴𝑡
𝜕𝑡

= 1
2 [𝜎3, 𝐴𝑡] + 1

𝑡
[𝐴0, 𝐴𝑡] (4.36)

Que recebem o nome de equações de Schlesinger. Tais equações podem ser vistas como
um sistema completamente integrável no sentido clássico: o fluxo gerado por 𝑡 preserva todos
os dados monodrômicos e, portanto, a evolução é inteiramente determinada pelas condições
iniciais impostas a 𝐴0, 𝐴𝑡 e 𝜎3. Sendo um sistema integrável, as equações 4.36 podem ser
vistas como a condição de integrabilidade que garante a existência da função 𝜏𝑉 de Painlevé :
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𝜕

𝜕𝑡
log 𝜏𝑉 = 1

2 Tr(𝜎3𝐴𝑡) + 1
𝑡

Tr(𝐴0𝐴𝑡). (4.37)

O sistema 4.36 possui ainda as seguintes constantes de movimento:

Tr𝐴0 = Θ0, Tr𝐴𝑡 = Θ𝑡, Tr(𝜎3(𝐴0 + 𝐴𝑡)) = Θ⋆.

além de que temos também det{𝐴0} = det{𝐴𝑡} = 0. Dada a importância que a função
𝜏𝑉 tem no presente trabalho, é pertinente expor sua expansão em termos dos coeficientes de
monodromia 𝜎 e 𝜂. Tal expansão, para 𝑡 pequeno, foi obtida por M.Jimbo em (49) e tem o
seguinte formato:

𝜏𝑉 (Θ0,Θ𝑡,Θ⋆;𝜎, 𝜂; 𝑡) = 𝐶𝑉 (Θ⃗;𝜎) 𝑡
1
4 (𝜎2−Θ2

0−Θ2
𝑡 )𝑒

1
2 Θ𝑡𝑡

⎛⎝1−
(︃

Θ𝑡

2 −
Θ⋆

4 + Θ⋆(Θ2
0 −Θ2

𝑡 )
4𝜎2

)︃
𝑡

− (Θ⋆ + 𝜎) ((𝜎 + Θ𝑡)2 −Θ2
0)

8𝜎2(𝜎 − 1)2 𝜅−1
𝑉 𝑡1−𝜎 − (Θ⋆ − 𝜎) ((𝜎 −Θ𝑡)2 −Θ2

0)
8𝜎2(𝜎 + 1)2 𝜅𝑉 𝑡

1+𝜎

+ 𝒪
(︁
𝑡2, |𝑡|2±2 Re𝜎

)︁⎞⎠.
(4.38)

em que {Θ⃗} = {Θ0,Θ𝑡,Θ⋆}. O coeficiente 𝜎 é tomado em seu ramo principal que corr-
responde a −1 < R(𝜎) < 1 e é definido a menos de um número par. 𝐶𝑉 nada mais é que
uma constante complexa e 𝜅𝑉 é dado por:

𝜅𝑉 = 𝑒𝑖𝜋𝜂
Γ(1− 𝜎)2 Γ

(︁
1 + 1

2(Θ⋆ + 𝜎)
)︁

Γ
(︁
1 + 1

2(Θ𝑡 + Θ0 + 𝜎)
)︁

Γ
(︁
1 + 1

2(Θ𝑡 −Θ0 + 𝜎)
)︁

Γ(1 + 𝜎)2 Γ
(︁
1 + 1

2(Θ⋆ − 𝜎)
)︁

Γ
(︁
1 + 1

2(Θ𝑡 + Θ0 − 𝜎)
)︁

Γ
(︁
1 + 1

2(Θ𝑡 −Θ0 − 𝜎)
)︁ .

(4.39)
Feitas as considerações acima, o próximo passo é tratar do problema de Riemann-Hilbert

que orbita a isomonodromia, que consiste em, dadas as soluções para:

[︃
𝜕2

𝜕𝑧2 +
(︃

1− 𝜃0

𝑧
+ 1− 𝜃𝑡

𝑧 − 𝑡

)︃
𝜕

𝜕𝑧
−
(︃

1
4 + 𝜃⋆

2𝑧 + 𝑡𝑐𝑡
𝑧(𝑧 − 𝑡)

)︃]︃
𝑦(𝑧) = 0. (4.40)

encontrar os coeficientes de monodromia {𝜎, 𝜂} como função dos parâmetros da equação
diferencial {𝑡, 𝑐𝑡, 𝜃0, 𝜃𝑡, 𝜃⋆}. A relação entre {Θ⃗, 𝜃} é a seguinte:

Θ0 = 𝜃0, Θ𝑡 = 𝜃𝑡 − 1, Θ⋆ = 𝜃⋆ − 1; (4.41)



66

Na resolução do problema de Riemann-Hilbert impõem-se à 𝜏𝑉 as seguintes condições:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜏𝑉 ({𝜃};𝜎, 𝜂; 𝑡) = 0,

𝜕

𝜕𝑡
log 𝜏𝑉 ({𝜃−};𝜎 − 1, 𝜂; 𝑡) = 𝑐𝑡 + 𝜃0(𝜃𝑡 − 1)

2𝑡 .

(4.42)

em que {𝜃−1} = {𝜃0, 𝜃𝑡 − 1, 𝜃⋆ + 1}. A primeira condição é a equação de Toda em sua
versão da Painlevé V (50), a segunda define o parâmetro acessório 𝑐𝑡 em termos da derivada
logarítmica da transcedente 𝜏𝑉 . A expansão para a 𝜏𝑉 para 𝑡 pequeno já foi exposta acima, há
também a possibilidade de expressá-la por meio do determinante de Fredholm, os resultados
principais foram deixados para o apêndice B.

O presente trabalho tem como foco o buraco de minhoca de Ellis descrito pela métrica
3.54 e com condições de contorno para o problema do espalhamento dadas por 3.68 e para os
modos quase-normais dadas por 3.69. No entanto, para fins de desenvolvimento, consideremos
o problema do espalhamento para um buraco negro e suas condições físicas pertinentes. A
solução assintótica de Frobenius para 𝑧 =∞ e 𝑧 = 𝑡 possuem o seguinte formato:

𝑦𝑡,+(𝑧) = (𝑧 − 𝑡)𝜃𝑡

(︁
1 +𝒪(𝑧 − 𝑡)

)︁
,

𝑦𝑡,−(𝑧) = (𝑧 − 𝑡)0
(︁
1 +𝒪(𝑧 − 𝑡)

)︁
.

(4.43)

para 𝑧 = 𝑡, já para 𝑧 =∞:

𝑦∞,+(𝑧) = 𝑒
1
2 𝑧 𝑧− 1

2 Θ⋆

(︁
1 +𝒪(1/𝑧)

)︁
,

𝑦∞,−(𝑧) = 𝑒− 1
2 𝑧 𝑧

1
2 Θ⋆

(︁
1 +𝒪(1/𝑧)

)︁
.

(4.44)

É importante lembrar que as condições de contorno para um buraco negro excluem on-
das saindo do horizonte de eventos e ondas vindo do infinito. As soluções expostas acima
estabelecem um mapa entre o horizonte externo 𝑧 = 𝑡 e o infinito 𝑧 =∞.

As soluções de Frobenius expostas acima são soluções para o sistema matricial 2x2 4.25
e podem ser relacionadas entre si a partir da matriz de conexão C⋆, que possui o seguinte
formato:

C⋆ =

⎛⎜⎜⎜⎜⎝
𝑒− 𝜋𝑖

2 𝜂 𝜁 ′
𝑧0 − 𝑒

𝜋𝑖
2 𝜂 𝜁𝑧0 − 𝑒− 𝜋𝑖

2 𝜂 𝜁∞ 𝜁 ′
𝑧0 + 𝑒

𝜋𝑖
2 𝜂 𝜁 ′

∞ 𝜁𝑧0

𝑒− 𝜋𝑖
2 𝜂 − 𝑒𝜋𝑖

2 𝜂 − 𝑒− 𝜋𝑖
2 𝜂 𝜁 ′

∞ + 𝑒
𝜋𝑖
2 𝜂 𝜁∞

⎞⎟⎟⎟⎟⎠ . (4.45)

Sendo 𝜂 uma quantidade invariante definida por 𝑒𝜋𝑖𝜂 = 𝑟𝑖/𝑟𝑜 em que 𝑟𝑜 é um número
complexo arbitrário que surge nas considerações das soluções aproximadas para o sistema
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matricial da equação confluente de Heun e 𝑟𝑖 é um parâmetro complexo genérico que surge
no desenvolvimento do problema de estabelecer as matrizes de conexão. É importante ter
em mente que 𝜎 e 𝜂, juntos, descrevem as propriedades de monodromia da solução. Dado a
expressão acima para a matriz de conexão temos o seguinte:

⎛⎜⎜⎝𝜌∞,+ 𝑦∞,+(𝑧)

𝜌∞,− 𝑦∞,−(𝑧)

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
𝑒− 𝜋𝑖

2 𝜂 𝜁 ′
𝑧𝑡
− 𝑒𝜋𝑖

2 𝜂 𝜁𝑧𝑡 − 𝑒− 𝜋𝑖
2 𝜂 𝜁∞ 𝜁 ′

𝑧𝑡
+ 𝑒

𝜋𝑖
2 𝜂 𝜁 ′

∞ 𝜁𝑧𝑡

𝑒− 𝜋𝑖
2 𝜂 − 𝑒𝜋𝑖

2 𝜂 − 𝑒− 𝜋𝑖
2 𝜂 𝜁 ′

∞ + 𝑒
𝜋𝑖
2 𝜂 𝜁∞

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝𝜌𝑧𝑡,+ 𝑦𝑧𝑡,+(𝑧)

𝜌𝑧𝑡,− 𝑦𝑧𝑡,−(𝑧)

⎞⎟⎟⎠
(4.46)

Com:

𝜁𝑧𝑡 = sin
(︂
𝜋

2 (𝜃𝑡 + 𝜃0 − 𝜎)
)︂

sin
(︂
𝜋

2 (𝜃𝑡 − 𝜃0 − 𝜎)
)︂
,

𝜁 ′
𝑧𝑡

= sin
(︂
𝜋

2 (𝜃𝑡 + 𝜃0 + 𝜎)
)︂

sin
(︂
𝜋

2 (𝜃𝑡 − 𝜃0 + 𝜎)
)︂
.

(4.47)

e

𝜁∞ = 𝑒
𝜋𝑖
2 𝜎 sin

(︂
𝜋

2 (𝜃∞ + 𝜎)
)︂
,

𝜁 ′
∞ = 𝑒− 𝜋𝑖

2 𝜎 sin
(︂
𝜋

2 (𝜃∞ − 𝜎)
)︂
.

(4.48)

𝜌∞,± e 𝜌𝑡,± são constantes de normalização que podem ser calculadas via formulas de
conexão (51), mas no nosso caso a derivação da equação confluente de Heun veio a partir do
operador de Laplace-Beltrami para perturbações escalares e gravitacionais, e por isso é mais
fácil usar a conservação da corrente afim de normalizar as soluções. Para o caso do problema
dos modos quase-normais (ainda para um buraco negro) não seria necessário a normalização,
visto que a busca seria por soluções sem fluxo de energia saindo do horizonte de eventos e
sem fluxo de energia vindo do infinito. Isso impõe à matriz de conexão entre os dois pontos
singulares 𝑧 = 𝑡 e 𝑧 =∞ que ela seja triangular inferior. Sendo assim, a quantidade invariante
definida mais acima (𝑒𝜋𝑖𝜂 = 𝑟𝑖/𝑟𝑜), toma a seguinte forma:

𝑒𝜋𝑖𝜂 = 𝜁∞ 𝜁 ′
𝑧𝑡

𝜁 ′
∞ 𝜁𝑧𝑡

= 𝑒−𝜋𝑖𝜎 sin
(︁
𝜋
2 (𝜃⋆ + 𝜎)

)︁
sin
(︁
𝜋
2 (𝜃𝑡 + 𝜃0 + 𝜎)

)︁
sin
(︁
𝜋
2 (𝜃𝑡 − 𝜃0 + 𝜎)

)︁
sin
(︁
𝜋
2 (𝜃⋆ − 𝜎)

)︁
sin
(︁
𝜋
2 (𝜃𝑡 + 𝜃0 − 𝜎)

)︁
sin
(︁
𝜋
2 (𝜃𝑡 − 𝜃0 − 𝜎)

)︁ (4.49)

O que nos permite escrever 𝜂 em termos de 𝜎 e dos parâmetros de monodromia {𝜃} =
{𝜃0, 𝜃𝑡, 𝜃⋆}, reduzindo o número de parâmetros na expansão da 𝜏𝑉 4.38.

Na proposta da resolução do problema de encontrar os modos quase-normais, faz-se ne-
cessário também encontrar uma expressão conveniente que nos dê o outro coeficiente de
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monodromia 𝜎. Tal expressão pode ser obtida através com a ajuda do parâmetro acessório
associado à equação de Heun confluente. Uma expansão para 𝑡𝑐𝑡 pode ser obtida através da
solução em série (semelhante ao método de Frobenius descrito em 4.1 para a equação diferen-
cial), a partir dela obtêm-se uma relação de recorrência e é possível encontrar a expansão para
𝑐𝑡 por meio do método da fração continuada. Os detalhes serão omitidos, o leitor interessado
pode encontrá-los em (52). O resultado é:

𝑡𝑐𝑡 = (𝜎 − 1)2 − (𝜃0 + 𝜃𝑡 − 1)2

4 + 𝜃⋆[𝜎(𝜎 − 2) + 𝜃2
𝑡 − 𝜃2

0]
4𝜎(𝜎 − 2) 𝑡+

+
⎡⎣ 1

32 + 𝜃2
⋆(𝜃2

𝑡 − 𝜃2
0)2

64

(︃
1
𝜎3 −

1
(𝜎 − 2)3

)︃
+ (1− 𝜃2

⋆)(𝜃2
0 − 𝜃2

𝑡 )2 + 2𝜃2
⋆(𝜃2

0 + 𝜃2
𝑡 )

32𝜎(𝜎 − 2)

− (1− 𝜃2
⋆) [(𝜃0 − 1)2 − 𝜃2

𝑡 ] [(𝜃0 + 1)2 − 𝜃2
𝑡 ]

32(𝜎 + 1)(𝜎 − 3)

⎤⎦𝑡2 +
⎡⎣𝜃3

⋆(𝜃2
0 − 𝜃2

𝑡 )3

256

(︃
1
𝜎5 −

1
(𝜎 − 2)5

)︃

− 4(𝜃2
0 − 𝜃2

𝑡 )3𝜃⋆ − (5(𝜃6
0 − 𝜃6

𝑡 ) + 8𝜃4
𝑡 + 15𝜃2

0𝜃
4
𝑡 − 𝜃4

0(8 + 15𝜃2
𝑡 )) 𝜃3

⋆

1024

(︃
1
𝜎3 −

1
(𝜎 − 2)3

)︃

− (𝜃2
𝑡 − 𝜃2

0)𝜃⋆
24576

[︂
64 + 80𝜃2

⋆ + 8𝜃2
𝑡 (20− 29𝜃2

⋆)

+ (𝜃4
0 + 𝜃4

𝑡 )(125𝜃2
⋆ − 116) + 𝜃2

0(160− 232𝜃2
⋆ + 𝜃2

𝑡 (232− 250𝜃2
⋆))
]︂ (︂ 1

𝜎
− 1
𝜎 − 2

)︂
+ [(𝜃0 − 1)2 − 𝜃2

𝑡 ] (𝜃2
0 − 𝜃2

𝑡 ) [(𝜃0 + 1)2 − 𝜃2
𝑡 ] 𝜃⋆(1− 𝜃2

⋆)
96(3− 𝜎)(1 + 𝜎)

− [(𝜃0 − 2)2 − 𝜃2
𝑡 ] (𝜃2

0 − 𝜃2
𝑡 ) [(𝜃0 + 2)2 − 𝜃2

𝑡 ] 𝜃⋆(4− 𝜃2
⋆)

4096(4− 𝜎)(2 + 𝜎)

⎤⎦𝑡3 +𝒪(𝑡4).

(4.50)
Tal expressão concorda com uma das condições impostas à transcedente 𝜏𝑉 à ordem 𝑡𝑛,

e computacionalmente falando, encontrar o parâmetro acessório via representação em série é
menos exigente que pela derivada logarítmica da 𝜏𝑉 .

Voltando ao propósito original de encontrar uma forma de obter os modos quase-normais,
em princípio, a expansão da 𝜏𝑉 dada por 4.38 nos fornece 𝜎 e 𝜂 em função dos parâmetros da
equação de Heun {𝜃}, ou seja, ela pode ser utilizada para obter 𝜂 em termos de {𝜎, 𝑡, {𝜃}} e
podemos usar a expressão para expansão do parâmetro acessório 𝑐𝑡 para obter 𝜎 em termos
de {𝜃}. Olhando para a 4.38 é possível perceber que ela é meromórfa 4 em termos de 𝜅𝑉 𝑡𝜎,
ou seja, fazendo uso da primeira condição imposta à 𝜏𝑉 em 4.42 é possível uma série para 𝑒𝑖𝜋𝜂

em termos do parâmetro 𝑡. Assumindo novamente o ramo principal para 𝜎, temos o seguinte:
4 Para uma discussão sobre o que é uma função meromórfa veja a exposição feita na seção 4.1.
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Θ𝑉 (Θ;𝜎) 𝑒𝑖𝜋𝜂 𝑡𝜎−1
0 = 𝜒𝑉 (Θ;𝜎; 𝑡0). (4.51)

Que podemos expressar da seguinte maneira:

Θ𝑉 (Θ⃗;𝜎) = Γ2(2− 𝜎)
Γ2(𝜎)

Γ
(︁

1
2(Θ⋆ + 𝜎)

)︁
Γ
(︁
1 + 1

2(Θ⋆ − 𝜎)
)︁ Γ

(︁
1
2(Θ𝑡 + Θ0 + 𝜎)

)︁
Γ
(︁
1 + 1

2(Θ𝑡 + Θ0 − 𝜎)
)︁ Γ

(︁
1
2(Θ𝑡 −Θ0 + 𝜎)

)︁
Γ
(︁
1 + 1

2(Θ𝑡 −Θ0 − 𝜎)
)︁ .

(4.52)
Olhando para o outro lado da igualdade, 𝜒𝑉 é analítica5 desde que 𝑡 seja pequeno, levando

isso em consideração temos a seguinte expansão:

𝜒𝑉 ({𝜃};𝜎; 𝑡0) = 1 + (𝜎 − 1) 𝜃⋆(𝜃
2
𝑡 − 𝜃2

0)
𝜎2(𝜎 − 2)2 𝑡+

[︃
𝜃2
⋆(𝜃2

𝑡 − 𝜃2
0)2

64

(︃
5
𝜎4 −

1
(𝜎 − 2)4

− 2
(𝜎 − 2)2 + 2

𝜎(𝜎 − 2)

)︃
− (𝜃2

𝑡 − 𝜃2
0)2 + 2𝜃2

⋆(𝜃2
𝑡 + 𝜃2

0)
64

(︃
1
𝜎2 −

1
(𝜎 − 2)2

)︃

+ (1− 𝜃2
⋆)(𝜃2

𝑡 − (𝜃0 − 1)2)(𝜃2
𝑡 − (𝜃0 + 1)2)

128

(︃
1

(𝜎 + 1)2 −
1

(𝜎 − 3)2

)︃]︃
𝑡2 +𝒪(𝑡3)

(4.53)

Através do desenvolvimento feito podemos juntar a expressão 4.49 na expressão 4.51.
Utilizando a propriedade da função gamma: Γ(𝑧)Γ(1− 𝑧) = 𝜋/ sin(𝜋𝑧) ficamos com:

Θ𝑉 ({𝜃}, 𝜎) 𝑒𝑖𝜋𝜂 = − 𝑒−𝑖𝜋𝜎 Θ𝑉 (−{𝜃}, 𝜎). (4.54)

Voltando novamente à 4.51, ficamos com:

−𝑒−𝑖𝜋𝜎 Θ𝑉 (−{𝜃}, 𝜎) 𝑡𝜎−1
0 = 𝜒𝑉 ({𝜃};𝜎; 𝑡0) (4.55)

A equação 4.55 é a dos modos quase-normais. Como dito acima podemos utilizar a equa-
ção 4.50 para escrever 𝜎 em termos dos parâmetros de monodromia, assim, o problema de
encontrar os modos quase-normais através do método isomonodrômico e da resolução do mapa
de Riemann-Hilbert encontra-se resolvido. Os resultados obtidos a partir da implementação
numérica do que foi desenvolvido serão expostos no capítulo 5.

5 Veja 4.1.
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5 RESULTADOS E ANÁLISE NUMÉRICA

O presente capítulo é destinado à exposição dos resultados obtidos durante o curso de
elaboração da dissertação. Na seção 5.1 faz-se a exposição do caminho até a obtenção da
equação de tipo Schrödinger para o potencial efetivo do buraco de minhoca de Ellis, a partir
da equação radial obtida no capítulo 3 para a perturbação escalar e gravitacional da métrica,
seguindo com a análise qualitativa para a forma do potencial. Na seção 5.2 são expostas tabelas
e gráficos referentes à implementação numérica do método isomonodrômico desenvolvido no
capítulo 4, essencialmente, gráficos dos parâmetros de monodromia 𝜎 e 𝜂 em função da
quantidade admensional 𝑏𝜔, sendo 𝑏 a “garganta” do buraco de minhoca. Na seção 5.3 são
expostas perspectivas futuras sobre a utilização da implementação numérica na obtenção dos
modos quase-normais e dos coeficientes de espalhamento para a métrica de interesse e são
discutidos brevemente resultados já publicados na literatura utilizando a mesma implementação
numérica (53) que tem por base a teoria isomonodrômica desenvolvida em 4 e a expansão
para a 𝜏𝑉 a partir do determinante de Fredholm exposta no apêndice B.

5.1 O POTENCIAL EFETIVO PARA A MÉTRICA DE ELLIS

No capítulo 3 foram expostos os principais resultados referente à perturbação da métrica
de Schwarzschild. Houve a exposição dos principais resultados tanto para perturbações axiais,
quanto para perturbações polares. Naquela oportunidade mostrou-se que após o efetivo desa-
coplamento das equações linearizadas, a parte radial, em ambos os casos, poderia ser colocada
no formato da equação diferencial de Schrödinger:

𝑑2Ψ(𝑥)
𝑑𝑥2 +

[︁
𝜔2 − 𝑉 (𝑥)

]︁
Ψ(𝑥) = 0. (5.1)

E por consequência, podia-se obter um potencial efetivo que é fundamental na elucidação
do comportamento físico das soluções.

Aqui faremos o mesmo procedimento, mas dessa vez utilizando a métrica de Ellis. Durante
o desenvolvimento realizado no capítulo 3 a equação radial obtida para o caso da perturbação
escalar (𝑠 = 0) mostrou-se da seguinte maneira:

[︃
1

𝑟2 + 𝑏2
d
d𝑟
(︁
𝑟2 + 𝑏2

)︁ d
d𝑟 + 𝜔2 − 𝑙(𝑙 + 1)

𝑟2 + 𝑏2

]︃
𝑅(𝑟) = 0 (5.2)
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Já a equação radial para o caso da perturbação gravitacional (𝑠 = 2) apareceu com o
seguinte formato:

[︃
1

(𝑟2 + 𝑏2)3
𝑑

𝑑𝑟

(︃
(𝑟2 + 𝑏2)3 𝑑

𝑑𝑟

)︃
+ 𝜔2 − (ℓ− 2)(ℓ+ 3)

𝑟2 + 𝑏2

]︃
𝑅(𝑟) = 0. (5.3)

E foi possível perceber que mediante uma transformação apropriada de coordenadas ambas
poderiam ser postas na forma padrão da equação confluente de Heun:

[︃
𝜕2

𝜕𝑧2 +
(︃

1− 𝜃0

𝑧
+ 1− 𝜃1

𝑧 − 𝑧0

)︃
𝜕

𝜕𝑧
−
(︃

1
4 + 𝜃⋆

2𝑧 + 𝑧0𝑐𝑡
𝑧(𝑧 − 𝑧0)

)︃]︃
𝑦(𝑧) = 0 (5.4)

Olhando para o formato de 5.2 e 5.3 é possível perceber uma forte semelhança entre
as duas. Tal semelhança não é acidental, visto que ambas derivam do operador de Laplace-
Beltrami (não sei se isso é uma justificativa razoável). Podemos unificar ambos os resultados
interpolando-os em uma única equação radial:

[︃
1

(𝑟2 + 𝑏2) 𝑠+1
𝑑

𝑑𝑟

(︃
(𝑟2 + 𝑏2) 𝑠+1 𝑑

𝑑𝑟

)︃
+ 𝜔2 − (ℓ− 𝑠)(ℓ+ 𝑠+ 1)

𝑟2 + 𝑏2

]︃
𝑅𝑠(𝑟) = 0. (5.5)

Sendo 𝑠 o spin referente ao tipo de perturbação executada, tendo 𝑠 = 0 para perturbações
escalares e 𝑠 = 2 para perturbações gravitacionais.

De forma semelhante ao procedimento exposto no capítulo 3, é possível colocar a equa-
ção 5.5 na forma de uma equação de Heun confluente 5.4. Para isso, façamos a seguinte
substituição:

𝑦𝑠(𝑧) = (𝑟2 + 𝑏2)−𝑠𝑅𝑠(𝑟) 𝑧 = −2𝜔(𝑟 − 𝑖𝑏)

ficamos com:

[︃
𝜕2

𝜕𝑧2 +
(︃

1− 𝑠
𝑧

+ 1− 𝑠
𝑧 − 4𝑏𝜔

)︃
𝜕

𝜕𝑧
−
(︃

1
4 + (𝑙 + 𝑠)(𝑙 − 𝑠+ 1)

𝑧(𝑧 − 4𝑏𝜔)

)︃]︃
𝑦𝑠(𝑧) = 0 (5.6)

Em que podemos fazer as seguintes identificações para os parâmetros:

𝜃0 = 𝜃1 = 𝑠, 𝜃⋆ = 0, 𝑧0 = 4𝑏𝜔, 𝑧0𝑐𝑡 = (ℓ+ 𝑠)(ℓ− 𝑠+ 1).

Voltando para a equação radial 5.5 que une ambas as perturbações, podemos escrevê-la
no formato de uma equação de Schrödinger 5.1. Fazendo a substituição:

𝑢𝑠(𝑟) = (𝑟2 + 𝑏2)(1+𝑠)/2 𝑅𝑠(𝑟)
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Ficamos com:

[︃
− d2

d𝑟2 + 𝑉eff(𝑟)
]︃
𝑢𝑠(𝑟) = 𝑘2𝑢𝑠(𝑟)

Onde o potencial efetivo é dado por:

𝑉eff(𝑟) = ℓ(ℓ+ 1)
𝑟2 + 𝑏2 −

(𝑠2 − 1) 𝑏2

(𝑟2 + 𝑏2)2 (5.7)

.
Sendo 𝑠 o spin da perturbação em questão. Abaixo, plotamos dois gráficos do potencial,

um para o caso da perturbação escalar e outro para o caso da perturbação gravitacional.
Nesse processo, foi de interesse fazer 𝑥 = 𝑟/𝑏 e 𝑉 = 𝑏2𝑉𝑒𝑓𝑓 , já que a coordenada tartaruga
𝑟* = 𝑟 + 2𝑀 ln(𝑟/2𝑀 − 1), para o caso da métrica de Ellis, toma a forma trivial 𝑟* = 𝑟.
Sendo assim, para a perturbação escalar temos o comportamento do potencial ilustrado na
figura abaixo:

Figura 7 – Barreira de potencial da métrica de Ellis para perturbações escalares

Fonte: Elaborado pelo autor.
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E para a perturbação gravitacional temos:

Figura 8 – Barreira de potencial da métrica de Ellis para perturbações gravitacionais

Fonte: Elaborado pelo autor.

É possível notar a semelhança ilustrada nas imagens para ambos os casos, tal semelhança é
esperada devido à forma do potencial 5.7. Em ambas as plotagens respeitou-se a condição de
que 𝑙 ≥ 𝑠. Percebe-se também que há uma interpolação para 𝑟 = 0 e 𝑟 → ±∞ (é importante
lembrar que a coordenada radial estende-se para ±∞) dado que o potencial nesses casos toma
a seguinte forma:

𝑉𝑒𝑓𝑓 (0) = 𝑙(𝑙 + 1)− 𝑠2 + 1
𝑏2 𝑒 𝑉𝑒𝑓𝑓 (∞) = 0 (5.8)

Da forma como o desenvolvimento foi feito até aqui percebe-se a possibilidade de tratar
diferentes regimes físicos a partir de uma única equação, uma equação mestra, escolhendo o
parâmetro desejado. Tal qual a equação mestra de Teukolsky(54) que resume em uma única
equação os principais casos perturbativos para a métrica Kerr, a equação 5.5 também o faz.
Ou seja, variando o parâmetro 𝑠 recuperamos como caso especial os dois setores físicos de
interesse, de tal forma que ambos estão unificados em uma única estrutura diferencial. Já
a interpolação no contexto da descrição do potencial significa que a coordenada radial 𝑟
conecta de maneira suave e contínua o potencial no “gargalo” (𝑟 = 0) com seu valor no limite
assintótico (𝑟 → ±∞).

Tratando ainda do potencial 5.7, percebe-se que ele possui um máximo para 𝑟 = 𝑟𝑐, em
que:
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𝑟2
𝑐 =

(︃
2(𝑠2 − 1)
ℓ(ℓ+ 1) − 1

)︃
𝑏2, (5.9)

E o potencial, em seu valor máximo, toma a seguinte forma:

𝑉eff(𝑟𝑐) = ℓ2(ℓ+ 1)2

4(𝑠2 − 1) 𝑏2 (5.10)

Abaixo, um gráfico do comportamento do potencial para seu valor máximo em ambos os
casos perturbativos de interesse:

Figura 9 – Valor máximo para a barreira de potencial da métrica de Ellis para ambas as perturbações

Fonte: Elaborado pelo autor.

Nota-se novamente uma semelhança entre ambos os casos, como é esperado dada a in-
terpolação descrita mais acima no texto.

Alguns comentários adicionais fazem-se necessários quanto ao perfil do potencial 5.7. Na
janela física que é relevante 𝑙 ≥ 𝑠, tanto para 𝑠 = 0, quanto para 𝑠 = 2 o potencial é não-
negativo em todo o domínio e vai a zero nos limites assintóticos. Derivando o potencial e
fatorando em 𝑟 têm-se o seguinte:

d𝑉eff

d𝑟 = 2𝑟
(𝑟2 + 𝑏2)3

[︁
−ℓ(ℓ+ 1)(𝑟2 + 𝑏2) + 2(𝑠2 − 1) 𝑏2

]︁
. (5.11)

Sendo assim, os dois pontos críticos são 𝑟 = 0 e as soluções para a equação −ℓ(ℓ+1)(𝑟2 +

𝑏2) + 2(𝑠2 − 1)𝑏2 = 0, que retornam o 𝑟𝑐 exposto anteriormente. Um máximo fora de 𝑟 = 0

exige que 𝑟2
𝑐 > 0 (na direção de ambos os limites assintóticos), ou seja:
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2(𝑠2 − 1)
ℓ(ℓ+ 1) − 1 > 0⇔ 2(𝑠2 − 1) > 𝑙(𝑙 + 1) (5.12)

Para 𝑠 = 0 temos que 2(𝑠2 − 1) < 0, de modo que 𝑟2
𝑐 < 0 para todo ℓ, sendo assim, não

existe máximo real fora do gargalo 𝑟 = 0. No caso de 𝑠 = 2 ficamos com 6 > 𝑙(𝑙 + 1), e a
condição física é que 𝑙 ≥ 2, novamente, o ponto crítico real é apenas o gargalo. Portanto, em
ambos os setores (𝑠 = 0 e 𝑠 = 2 com ℓ ≥ 𝑠), o potencial decresce de maneira monótona em
|𝑟| a partir de seu valor máximo que é atingido no gargalo.

A consequência disso é a ausência de estados ligados reais. O potencial nesse caso funciona
como uma espécie de “barreira” positiva que é máxima no gargalo e vai a zero no limite
assintótico, sendo incapaz de confinar os campos. Porém, a possibilidade da existência de
estados de decaimento com a parte imaginária de 𝜔 negativa não devem ser descartados.
Esses perfis possuiriam decaimento exponencial com o tempo, respeitadas as condições de
contorno expostas no capítulo 3. Tais perfis são os modos quase-normais.

Estabelecidos os principais detalhes a respeito do potencial para as perturbações escalares e
gravitacionais, ponto fundamental em uma análise do problema do espalhamento, no próximo
capítulo serão expostos os valores obtidos para os coeficientes de monodromia das equações
confluentes de Heun de ambos os casos (perturbação escalar e perturbação gravitacional)
fazendo uso de uma implementação numérica que tem por base o método isomonodrômico
descrito na seção 4.4.

5.2 ANÁLISE NUMÉRICA DOS PARÂMETROS DE MONODROMIA

Os resultados apresentados nesta subseção tem por base a implementação numérica do
método isomonodrômico desenvolvido no capítulo 4. A implementação numérica de tal método
rendeu diversos resultados no cálculo dos modos quase-normais (55, 56), com um controle
numérico mais suave bastante significativo próximo aos limites extremais dos buracos negros
de Kerr e Reissner-Nordström. Os scripts relevantes podem ser encontrados no repositório
(53).

Nesta seção faremos a exposição dos resultados obtidos para a parte real e imaginária dos
parâmetros de monodromia 𝜎 e 𝜂 em função de 𝑏𝜔, sendo 𝑏 o tamanho natural do sistema (a
“garganta” do buraco de minhoca de Ellis) e 𝜔 a frequência, que foi considerada extritamente
positiva. O intervalo considerado para os parâmetros de monodromia correspondem ao ramo
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principal, ou seja, a parte real de 𝜎 e a parte real de 𝜂 estão entre [−1, 1].

• Para 𝑠 = 0 e 𝑙 = 0 temos o seguinte:

Figura 10 – Valores das partes real e imaginária de 𝜎 e 𝜂 em função de 𝑏𝜔 para s = 0 e l = 0.

Fonte: Elaborado pelo autor.

Figura 11 – Valores das partes real e imaginária de 𝜎 e 𝜂 em função de 𝑏𝜔 para s = 0 e l = 0.

Fonte: Elaborado pelo autor.

Percebe-se que o comportamento é linear para 𝑏𝜔 pequeno quando 𝑏 é pegueno e linear
para 𝑏𝜔 grande quando 𝑏 é grande.
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• Para 𝑠 = 0 e 𝑙 = 1 temos o seguinte:

Figura 12 – Valores das partes real e imaginária de 𝜎 e 𝜂 em função de 𝑏𝜔 para s = 0 e l = 1.

Fonte: Elaborado pelo autor.

Demonstrando um perfil linear para 𝜎 no intervalo considerado e para 𝜂 para valores
pequenos de 𝑏𝜔.

• Para 𝑠 = 2 e 𝑙 = 2 temos o seguinte:

Figura 13 – Valores das partes real e imaginária de 𝜎 e 𝜂 em função de 𝑏𝜔 para s = 2 e l = 2.

Fonte: Elaborado pelo autor.
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Figura 14 – Valores das partes real e imaginária de 𝜎 e 𝜂 em função de 𝑏𝜔 para s = 2 e l = 2.

Fonte: Elaborado pelo autor.

Que demonstra um perfil semelhante para as partes real e imaginária de 𝜎 e 𝜂, sendo
linear para a parte real e imaginária de 𝜂 para pequenos valores de 𝑏𝜔.

A obtenção de tais resultados numericamente abre caminho para o estudo do problema
do espalhamento e busca pelos modos quase-normais do buraco de minhoca de Ellis,
tópico discutido na seção seguinte.

5.3 PERSPECTIVAS FUTURAS

A aplicação do método isomonodrômico no estudo do problema do espalhamento e na
obtenção dos modos quase-normais para diversos sistemas gravitacionais é extensa e extre-
mamente frutífera. Abaixo são citados alguns trabalhos da literatura que utilizam do método
isomonodrômico e que também fazer uso da mesma implementação numérica (53) do presente
trabalho, que podem servir de guia para as perspectivas futuras do estudo da métrica de Ellis.

Em (55) os autores fazem o estudo de perturbações de spin 𝑠 = 0 e 𝑠 = 1/2 para a
métrica de Reissner-Nordström, tanto no caso não-extremal quanto para o limite extremal
(𝑄 → 𝑀 , sendo Q a carga do buraco negro e M sua massa). Em seu estudo, é utilizada
a mesma implementação numérica que proporcionou os resultados da seção 5.2. O trabalho
começa mostrando que ambas as perturbações podem ser englobadas em uma única equação
mestra tal qual a 5.5, seguindo é exposto que tal equação mestra pode ser posta na forma
de uma equação de Heun confluente, após seguem-se as devidas discussões a respeito da te-
oria isomonodrômica. Os autores conseguiram mostrar que na análise da perturbação escalar
e espinorial, os resultados numéricos implementados tendo por base o método isomonodrô-
mico concordam com os que já existiam na literatura usando o método da fração continuada
para o buraco negro de Schwarzschild, o que os permitiu seguir com confiança na análise do
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buraco negro de Reissner-Nordström e obter que, no regime quase-extremal, o espectro de
modos quase-normais se decompõe em duas famílias distintas: modos amortecidos, com parte
imaginária finita, e modos “não amortecidos”, cujas frequências tendem a Re𝜔 → 𝑞𝑄/𝑀 e
Im𝜔 → 0 quando 𝑄→𝑀 . Ainda, dada a natureza do mapa de Riemann-Hilbert, os autores
tem confiança que o mesmo método também serviria na análise de perturbações com spins
maiores.

Em (56) os autores fazem o estudo de perturbações escalares massivas (𝜇 ̸= 0) na mé-
trica de Kerr, para valores arbitrários do fator adimensional 𝑀𝜇 e do fator de rotação 𝑎/𝑀 ,
utilizando o método isomonodrômico. Assim como no presente trabalho, a equação radial
e a equação angular são trazidas à forma da equação de Heun confluente e o problema é
reformulado em termos dos parâmetros de monodromia {𝜃𝑘} associados à 𝜏𝑉 , com implemen-
tação numérica baseada em (53). Feita uma validação semelhante ao do artigo do parágrafo
anterior, comparando resultados da literatura com o obtido pelo método das frações conti-
nuadas no caso sem massa e para rotações moderadas, o artigo passa a explorar o regime
quase-extremal 𝑎/𝑀 → 1, mostrando como o espectro de modos quase-normais se bifurca em
modos amortecidos e modos de amortecimento nulo na presença de massa. Para ℓ = 𝑚 = 1,
os autores demonstram que o modo fundamental, que para massas pequenas se comporta
como um modo de amortecimento nulo com Re𝜔 → 𝑚/(2𝑀) e Im𝜔 → 0 no limite extre-
mal, transforma-se em um modo amortecido quando a massa do campo ultrapassa um valor
crítico (𝑀𝜇)𝑐, associado a um parâmetro de extremalidade 𝛿𝑐 ou, equivalentemente, a um
spin crítico (𝑎/𝑀)𝑐. Nesse ponto crítico, identificado como um ponto excepcional no espaço
de parâmetros, o modo fundamental e o primeiro harmônico tornam-se degenerados, compar-
tilhando a mesma frequência real e o mesmo tempo de decaimento, o que leva a um cenário de
“level crossing” e histerese espectral. Faz-se também uma expansão para as frequências dos
modos de amortecimento nulo no regime quase-extremal. Tal abordagem mostra a força que
método possui para descrever, de forma unificada, tanto o comportamento numérico quanto
o limite analítico desses modos.

A versatilidade e o êxito da implementação numérica (53) aos mais diversos casos de
sistemas gravitacionais e perturbações, somado às exposições feitas acima de resultados da
literatura, encoraja a continuação do estudo da métrica de Ellis seguindo na mesma linha
de pesquisa. Sendo assim, a primeira perspectiva futura do presente trabalho é encontrar os
estados de decaimento com parte imaginária de 𝜔 negativa, ou seja, os modos quase-normais,
em seguida prentende-se prosseguir, utilizando as mesmas ferramentas, na análise de problemas
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mais robustos que sejam de interesse.
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6 CONCLUSÃO

O presente trabalho teve como objetivo explorar as principais características do buraco de
minhoca de Ellis. Os buracos de minhoca, como ressaltado durante a exposição, surgem de
uma necessidade de evitar a singularidade essencial que aparece na solução de Schwarzschild.
No presente desenvolvimento foi dada uma motivação histórica e técnica no capítulo 1 da
importância de tais objetos gravitacionais, seguindo-se de uma breve introdução de como o
método isomonodrômico torna-se relevante na obtenção de modos quase-normais e dos coefi-
cientes do problema do espalhamento. No capítulo 2 foi exposto o desenvolvimento histórico
das principais ideias que levaram Einstein a publicar suas equações de campo, também foi
exposto a primeira resolução a tais equações, a de Schwarzschild, seguindo com a discussão
dos seus problemas relacionados à singularidade essencial que é presente mesmo em sua exten-
são analítica máxima, finalizando com a introdução dos buracos de minhoca na relatividade
geral e uma breve discussão a respeito dos critérios de transponibilidade. No capítulo 3 foi
desenvolvida a teoria da perturbação utilizando a abordagem de Regge-Wheeler tanto para
a métrica de Schwarzschild quanto para a métrica de Ellis, para o caso da métrica de Ellis,
tanto a perturbação escalar quanto a perturbação gravitacional após a devida separação de
variáveis resultaram para a parte radial uma equação de Heun confluente, o que permitiu
no capítulo seguinte o desenvolvimento da teoria das deformações isomonodrômicas no pre-
sente contexto, relacionado as deformações isomonodrômicas da equação de Heun confluente
à função 𝜏𝑉 . O capítulo 4 inicia recapitulando as definições mais importantes a respeito das
equações diferenciais em contextos físicos, segue-se com a exposição das principais discussões
a respeito de monodromias e matrizes de conexão para em seguida adentrar na isomonodro-
mia, garantida pelas condições impostas à quinta transcedente de Painlevé, e resolve-se o
problema de encontrar os modos quase-normais pelo método isomonodrômico. No capítulo 5
mostra-se que ambos os resultados a respeito da equação radial para o buraco de minhoca
de Ellis em perturbações escalares e gravitacionais podem ser unificados em uma equação
mestra. Obtêm-se a forma do potencial e mostra-se que ele não admite estados ligados com
frequências positivas, pois o potencial é sempre positivo e decresce de maneira monótona a
partir do gargalo, discute-se também que mesmo na ausência de estados ligados desse tipo há
a possibilidade da obtenção de estados de amortecimento com parte imaginária negativa, os
modos quase-normais. Expõem-se brevemente resultados numéricos obtidos a partir da imple-
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mentação do método isomonodrômico. Finaliza-se expondo resultados da literatura em que o
método isomonodrômico foi utilizado na obtenção dos modos-quase normais para os buracos
negros de Kerr e Reissner-Nordström. Nos apêndices são expostos resultados importantes de
geometria diferencial que possibilitaram o desenvolvimento dos capítulos 2 e 3, e também é
exposta a função 𝜏𝑉 por meio do determinante de Fredholm.

Como perspectiva futura, dado o desenvolvimento aqui exposto e a discussão realizada na
seção 5.3, fica a possibilidade de obtenção, em trabalhos futuros, dos modos quase-normais
e dos coeficientes de espalhamento para o buraco de minhoca de Ellis através do método
isomonodrômico.
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APÊNDICE A – GEOMETRIA DIFERENCIAL E O CÁLCULO DA

CURVATURA

A proposta desse apêndice é tratar dos principais conceitos de geometria diferencial neces-
sários para trabalhar com as equações de Einstein. Essencialmente, após uma breve apresen-
tação dos principais conceitos, estaremos interessados em mostrar duas formas que podemos
utilizar para calcular o tensor de Riemann (definido na equação (2.1)) para determinada mé-
trica, afim de que possamos, através de sucessivas contrações, obter o tensor de Ricci e o
Escalar de Curvatura que são utilizados na definição do tensor de Einstein. Após a exposição,
seguirão os cálculos omitidos no capítulo 2.

Todo o cenário em que as ideias serão desenvolvidas nomeia-se variedade diferenciável.
Uma variedade diferenciável é um objeto matemático que localmente se assemelha ao R𝑛,
possuindo sua estrutura diferencial, permitindo a generalização dos principais conceitos sobre
diferenciabilidade e através disso possibilitando que possamos criar uma noção intrínseca de
curvatura, sem a necessidade de fazer menção a um espaço de dimensão maior em que nosso
objeto estaria inserido, que é como geralmente obtemos uma noção intuitiva de curvatura.

Faz-se necessário a definição do que seria um operador derivada. Um operador derivada é
um mapa que leva todo campo tensorial suave de tipo (k,l) em um campo tensorial de tipo
(k, l+1) e satisfaz cinco propriedades 1. Quando definidos em uma variedade os operadores
derivada não são únicos, podemos relacionar dois deles através da seguinte expressão:

∇𝑎𝑇
𝑏1...𝑏𝑘

𝑐1...𝑐𝑙
= ̃︁∇𝑎𝑇

𝑏1...𝑏𝑘
𝑐1...𝑐𝑙

+
∑︁
𝑖

𝐶𝑏𝑖
𝑎𝑑𝑇

𝑏1...𝑑...𝑏𝑘
𝑐1...𝑐𝑙

−
∑︁
𝑗

𝐶𝑑
𝑎𝑐𝑗
𝑇 𝑏1...𝑏𝑘

𝑐1...𝑐𝑙

(A.1)

Em que ∇ e ̃︁∇ são dois operadores derivadas quaisquer que concordam em sua ação sobre
campos escalares. Caso o operador ̃︁∇ seja o operador derivada ordinário que já conhecemos,
o campo tensorial 𝐶𝑐

𝑎𝑏 é denotado por Γ𝑐𝑎𝑏 e recebe o nome de símbolo de Christoffel. Sendo
assim, para um vetor por exemplo, teríamos:

∇𝑎𝑡
𝑏 = 𝜕𝑎𝑡

𝑏 + Γ𝑏𝑎𝑐𝑡𝑐 (A.2)
1 O leitor interessado pode consulta-las no capítulo 3 de (15) ou seguir a exposição da seção 4 do capítulo

1 de (20).
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Existe um último requerimento que gostaríamos de impor ao nosso operador derivada,
queremos que ele seja único ao equiparmos nossa variedade com uma estrutura adicional. Essa
estrutura é a métrica e temos o seguinte teorema:

Teorema A.1: Seja 𝑔𝑎𝑏 uma métrica definida em uma variedade diferenciável. Existe um
único operador derivada que satisfaz ∇𝑎𝑔𝑎𝑏 = 0 2

Desse teorema segue a seguinte relação importante que nos permitirá calcular a curvatura:

Γ𝑐𝑎𝑏 = 1
2𝑔

𝑐𝑑

(︃
𝜕𝑎𝑔𝑏𝑑 + 𝜕𝑏𝑔𝑎𝑑 − 𝜕𝑑𝑔𝑎𝑏

)︃
(A.3)

A noção intrínseca de curvatura segue através de duas ideias. A primeira é de que um
vetor que é paralelamente transportado (um vetor 𝑉 𝜇 é paralelamente transportado se satisfaz:
𝑢𝜈∇𝜈𝑉

𝜇 = 0, sendo 𝑢𝜇 o vetor tangente à curva) ao longo de uma curva infinitesimal fechada
não volta ao seu valor original. A segunda é de que geodésicas que são inicialmente paralelas
falham em permanecer paralelas. Ambas as ideias estão relacionadas a um campo tensorial já
apresentado no capítulo 1, o tensor de Riemann, que foi definido como:

(∇𝑎∇𝑏 −∇𝑏∇𝑎)𝜔𝑐 = 𝑅 𝑑
𝑎𝑏𝑐 𝜔𝑑 (A.4)

Semelhantemente, a partir das propriedades do operador derivada e da regra de Leibniz
podemos obter o seguinte:

(∇𝑎∇𝑏 −∇𝑏∇𝑎)𝑡𝑐 = −𝑅 𝑑
𝑎𝑏𝑐 𝑡

𝑑 (A.5)

E generalizar para um campo tensorial arbitrário:

(∇𝑎∇𝑏 −∇𝑏∇𝑎)𝑇 𝑐1...𝑐𝑘
𝑑1...𝑑𝑙

= −
𝑘∑︁
𝑖=1

𝑅 𝑐𝑖
𝑎𝑏𝑒 𝑇 𝑐1...𝑐𝑘

𝑑1...𝑑𝑙

+
𝑙∑︁

𝑗=1
𝑅 𝑒
𝑎𝑏𝑑𝑗

𝑇 𝑐1...𝑐𝑘
𝑑1...𝑒...𝑑𝑙

(A.6)

O tensor de Riemann tem quatro propriedades principais:

1. É antisimétrico nos dois primeiros índices 𝑅 𝑑
𝑎𝑏𝑐 = −𝑅 𝑑

𝑏𝑎𝑐

2. A parte antissimétrica de seus primeiros três índices é nula 𝑅 𝑑
[𝑎𝑏𝑐] = 0

3. Para o operador derivada natural associado à métrica temos 𝑅𝑎𝑏𝑐𝑑 = −𝑅𝑎𝑏𝑑𝑐

2 A prova do teorema pode ser vista na página 35 do capítulo 3 de (15).
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4. Vale a identidade de Bianchi ∇[𝑎𝑅
𝑒

𝑏𝑐]𝑑

Das propriedades 1, 2 e 3 também segue que:

𝑅𝑎𝑏𝑐𝑑 = 𝑅𝑐𝑑𝑎𝑏 (A.7)

Através da contração do primeiro e terceiro índices no tensor de Riemann segue o tensor
de Ricci:

𝑅𝑎𝑐 = 𝑅 𝑏
𝑎𝑏𝑐 (A.8)

Que é simétrico em seus índices. Uma última contração, agora no tensor de Ricci, leva ao
escalar de curvatura 𝑅:

𝑅 = 𝑅 𝑎
𝑎 (A.9)

O tensor de Einstein que aparece na equação de campo de Einstein é definido em termos
desses dois últimos da seguinte maneira:

𝐺𝑎𝑏 = 𝑅𝑎𝑏 −
1
2𝑔𝑎𝑏𝑅 (A.10)

E da contração da identidade de Bianchi (veja a propriedade 4 do tensor de Riemann)
segue o seguinte:

∇𝑎𝐺𝑎𝑏 = 0 (A.11)

É importante ressaltar que saber como calcular a curvatura é essencial para resolver as
equações de Einstein, abaixo seguem duas formas de fazer isso. A primeira é a mais conhecida,
baseia-se em escolher um sistema de coordenadas e calcular os símbolos de Christoffel a partir
da métrica. A segunda parte da implementação de uma base ortonormal em cada ponto da
variedade, e da escrita das quantidades relevantes em termos dessa base.

A.1 MÉTODO DAS COORDENADAS

O método consiste em escolher um sistema de coordenadas e encontrar o tensor de Riemann
através da relação abaixo:
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𝑅 𝑑
𝑎𝑏𝑐 = [−2𝜕[𝑎Γ𝑑𝑏]𝑐 + 2Γ𝑒𝑐[𝑎Γ𝑑𝑏]𝑒] (A.12)

Tomando as componentes temos o seguinte:

𝑅 𝜎
𝜇𝜈𝜌 = 𝜕

𝜕𝑥𝜈
Γ𝜎𝜇𝜌 −

𝜕

𝜕𝑥𝜇
Γ𝜎𝜈𝜌 +

∑︁
𝛼

(Γ𝛼𝜇𝜌Γ𝜎𝛼𝜈 − Γ𝛼𝜈𝜌Γ𝜎𝛼𝜇) (A.13)

Podemos utilizar a equação A.3 escrita em uma base de coordenadas para encontrar os
símbolos de Christofell e por fim calcular o tensor de Riemann. Obtido o tensor de Riemann,
podemos encontrar o tensor de Ricci através de uma contração:

𝑅𝜇𝜌 =
∑︁
𝜈

𝑅 𝜈
𝜇𝜈𝜌

=
∑︁
𝜈

𝜕

𝜕𝑥𝜈
Γ𝜈𝜇𝜌 −

𝜕

𝜕𝑥𝜇

(︃∑︁
𝜈

Γ𝜈𝜈𝜌
)︃

+
∑︁
𝛼,𝜈

(︃
Γ𝛼𝜇𝜌Γ𝜈𝛼𝜈 − Γ𝛼𝜈𝜌Γ𝜈𝛼𝜇

)︃
(A.14)

E uma última contração nos daria o escalar de curvatura.
Uma última relação pode ser útil para o cálculo do símbolo de Christoffel contraído que

aparece na relação para o tensor de Ricci:

Γ𝑎𝑎𝜇 = 𝜕

𝜕𝑥𝜇
ln
√︁
|𝑔| (A.15)

Em que 𝑔 é o determinante da métrica 3.

A.2 MÉTODO DA BASE ORTONORMAL OU MÉTODO DAS TETRADAS

O método consiste em introduzir uma base ortonormal não-holonômica de campos vetorias
suaves (𝑒𝜇)𝑎 que satisfazem:

(𝑒𝜇)𝑎(𝑒𝜈)𝑎 = 𝜂𝜇𝜈 (A.16)

Em que 𝜂𝜇𝜈 = 𝑑𝑖𝑎𝑔(−1, . . . ,−1, 1, . . . , 1), sendo 𝜇 e 𝜈 identificadores dos vetores da base
com intervalo 1, . . ., 𝑛, já a letra “𝑎” representa um índice tensorial. Em quatro dimensões{︁
(𝑒𝜇)𝑎

}︁
recebe o nome de tetrada. Ainda temos a seguinte relação útil:

3 A métrica pode ser representada por uma matriz quando tem seus componentes escritos em uma base de
coordenadas.
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∑︁
𝜇,𝜈

𝜂𝜇𝜈(𝑒𝜇)𝑎(𝑒𝜈)𝑏 = 𝛿𝑎𝑏 (A.17)

Em que 𝛿𝑎𝑏 é o mapa identidade.
Nosso objetivo é, assim como no método das coordendas, encontrar o tensor de Riemann

para determinada métrica. Para fazer isso vamos definir a seguinte 1-forma de conexão em
termo das tetradas:

𝜔𝑎𝜇𝜈 = (𝑒𝜇)𝑏∇𝑎(𝑒𝜈)𝑏 (A.18)

Suas componentes recebem o nome de coeficientes de rotação de Ricci

𝜔𝜆𝜇𝜈 = (𝑒𝜆)𝑎(𝑒𝜇)𝑏∇𝑎(𝑒𝜈)𝑏 (A.19)

A 1-forma de conexão é antissimétrica em seus dois últimos índices:

𝜔𝑎𝜇𝜈 = −𝜔𝑎𝜈𝜇 (A.20)

Podemos encontrar o tensor de Riemann através da seguinte relação:

𝑅𝜌𝜎𝜇𝜈 = (𝑒𝜌)𝑎(𝑒𝜎)𝑏
{︁
∇𝑎𝜔𝑏𝜇𝜈 −∇𝑏𝜔𝑎𝜇𝜈 −

∑︁
𝛼,𝛽

𝜂𝛼𝛽[𝜔𝑎𝛽𝜇𝜔𝑏𝛼𝜈 − 𝜔𝑏𝛽𝜇𝜔𝑎𝛼𝜈 ]
}︁

(A.21)

E em seguida, podemos obter o tensor de Ricci através de uma contração:

𝑅𝜌𝜇 =
∑︁
𝜎,𝜈

𝜂𝜎𝜈𝑅𝜌𝜎𝜇𝜈 (A.22)

A grande sacada que permite um caminho bem menos trabalhoso até o tensor Riemann
através do método das tetradas baseia-se na seguinte expressão:

𝜕[𝑎(𝑒𝜎)𝑏] =
∑︁
𝜇,𝜈

𝜂𝜇𝜈(𝑒𝜇)[𝑎𝜔𝑏]𝜎𝜈 (A.23)

Essa última relação permite que encontremos as 1-forma de conexão apenas realizando a
derivada parcial das tetradas! Após encontrar as 1-forma de conexão basta utilizar a equação
A.21 para encontrar o tensor de Riemann, que é nosso objetivo. A equação A.23 baseia-se no
fato do espaço ser livre de torção (algo que tínhamos deixado implícito até então, inclusive
no método das coordenadas), quando o espaço é livre de torção a derivada antisimetrizada de
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uma 1-forma independe do operador derivada, assim, podemos utilizar o mais trivial que seria
justamente o operador derivada ordinário.

A vantagem apresentada pelo método das coordenadas consiste em seu processo mais
direto e mecânico, mas tem como desvantagem o fato de ser mais laborioso. Já a vantagem
do método das tetradas consiste na facilidade de utilizar as simetrias do espaço-tempo em
questão para diminuir o trabalho de obter o tensor de Riemann, dando uma interpretação
geométrica mais significativa.

Para mais detalhes sobre as derivações e motivações dos resultados apresentados o leitor
é convidado a consultar o capítulo 3 do livro do Wald (15) de onde a inspiração para esse
apêndice, em grande parte, foi retirada. O leitor é convidado também a consultar a exposição
feita para o formalismo das tetradas na monografia do Chandrasekhar (20) que é seguida de
uma exposição do tratamento de Newman-Penrose citada no capítulo 3.
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APÊNDICE B – O DETERMINANTE DE FREDHOLM E A REPRESENTAÇÃO

DA 𝜏𝑉

Como citado no capítulo 4 há como fazer a expansão da função transcedente 𝜏𝑉 por meio
do determinante de Fredholm. Os principais resultados que serão expostos logo a seguir tem
por base o artigo de Lisovyy, Nagoya e Roussillon (57), onde a representação para a 𝜏𝑉 por
meio do determinante de Fredholm foi apresentada pela primeira vez. É possível expressar a
transcedente 𝜏𝑉 em termos dos parâmetros de monodromia {𝜎, 𝜂}, dos parâmetros da equação
de Heun confluente {𝜃0, 𝜃𝑡, 𝜎3} e do determinante de Fredholm da seguinte maneira:

𝜏𝑉 ({𝜃};𝜎, 𝜂; 𝑡) = 𝑡 (𝜎2−𝜃2
0−𝜃2

𝑡 )/4 𝑒 (𝜃𝑡 𝑡)/2 det
(︁
I− 𝐴𝜅 (𝜎3)/2

𝑉 𝑡 (𝜎𝜎3)/2 𝐷𝑐(𝑡)𝜅−(𝜎3)/2
𝑉 𝑡−(𝜎𝜎3)/2

)︁
(B.1)

Em que 𝐴 e 𝐷𝑐 são operadores tais que sua ação em Ψ é dada por:

(𝐴Ψ)(𝑧) = 1
2𝜋𝑖

∮︁
𝒞
𝑑𝑧′ 𝐴(𝑧, 𝑧′) Ψ(𝑧′), (𝐷𝑐Ψ)(𝑧) = 1

2𝜋𝑖

∮︁
𝒞
𝑑𝑧′ 𝐷𝑐(𝑧, 𝑧′) Ψ(𝑧′). (B.2)

Em que 𝒞 é um círculo de tal maneira que 𝒞 < 1, com Ψ = Ψ(𝑧) sendo dado por:

Ψ(𝑧′) =

⎛⎜⎜⎝𝜑+(𝑧′)

𝜑−(𝑧′)

⎞⎟⎟⎠ (B.3)

E os núcleos para os operadores são, desde que 𝑡 < 𝒞, tais que:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
A(𝑧, 𝑧′) = 𝜒−1(𝜎, 𝜃0, 𝜃𝑡; 𝑧′)𝜒(𝜎, 𝜃0, 𝜃𝑡; 𝑧)− I

𝑧 − 𝑧′

D𝑐(𝑧, 𝑧′) = I− 𝜒−1
𝑐 (−𝜎, 𝜃⋆; 𝑡/𝑧′)𝜒𝑐(−𝜎, 𝜃⋆; 𝑡/𝑧)

𝑧 − 𝑧′

(B.4)

Em que a matriz 𝜒 é dada tal que:

𝜒(𝜎, 𝜃0, 𝜃𝑡; 𝑧) =

⎛⎜⎜⎜⎝
𝜓(𝜎, 𝜃0, 𝜃𝑡; 𝑧) 𝜉(−𝜎, 𝜃0, 𝜃𝑡; 𝑧)

𝜉(𝜎, 𝜃0, 𝜃𝑡; 𝑧) 𝜓(−𝜎, 𝜃0, 𝜃𝑡; 𝑧)

⎞⎟⎟⎟⎠ (B.5)
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Os termos 𝜓(𝜎, 𝜃0, 𝜃𝑡; 𝑧) e 𝜉(𝜎, 𝜃0, 𝜃𝑡; 𝑧) são dados por meio da função hipergeométrica de
Gauss 2F1

1 :

𝜓(𝜎, 𝜃𝑡, 𝜃0; 𝑧) = 2F1
(︁

1
2(𝜎 − 𝜃𝑡 + 𝜃0), 1

2(𝜎 − 𝜃𝑡 − 𝜃0); 𝜎; 𝑧
)︁
, (B.6)

𝜉(𝜎, 𝜃𝑡, 𝜃0; 𝑧) = 𝜃2
0 − (𝜎 − 𝜃𝑡)2

4𝜎(1 + 𝜎) 𝑧 2F1
(︁
1 + 1

2(𝜎 − 𝜃𝑡 + 𝜃0), 1 + 1
2(𝜎 − 𝜃𝑡 − 𝜃0); 2 + 𝜎; 𝑧

)︁
.

(B.7)

Já a matriz 𝜒𝑐 tem o seguinte formato:

𝜒𝑐(−𝜎, 𝜃⋆; 𝑡/𝑧) =

⎛⎜⎜⎜⎝
𝜓𝑐(−𝜎, 𝜃⋆; 𝑡/𝑧) 𝜉𝑐(−𝜎, 𝜃⋆; 𝑡/𝑧)

𝜉𝑐(𝜎, 𝜃⋆; 𝑡/𝑧) 𝜓𝑐(𝜎, 𝜃⋆; 𝑡/𝑧)

⎞⎟⎟⎟⎠ (B.8)

Com 𝜓𝑐 e 𝜉𝑐 por sua vez, dados em termos da função hipergeométrica confluente 1F1:2

𝜓𝑐(±𝜎, 𝜃⋆; 𝑡/𝑧) = 1𝐹1
(︁

−𝜃⋆±𝜎
2 ; ±𝜎 ; −𝑡/𝑧

)︁
, (B.9)

𝜉𝑐(±𝜎, 𝜃⋆; 𝑡/𝑧) = ± −𝜃⋆ ± 𝜎2𝜎(1± 𝜎)
𝑡

𝑧
1𝐹1

(︁
1 + −𝜃⋆±𝜎

2 ; 2± 𝜎 ; −𝑡/𝑧
)︁
. (B.10)

E 𝜅𝑉 em B.1 é expressa da seguinte maneira:

𝜅𝑉 = 𝑒𝑖𝜋𝜂 Π⋆(Θ⋆, 𝜎) Π(Θ𝑡,Θ0, 𝜎) (B.11)

Com:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Π⋆(𝜃⋆, 𝜎) =
Γ(1− 𝜎) Γ

(︁
1 + 1

2(𝜃⋆ + 𝜎)
)︁

Γ(1 + 𝜎) Γ
(︁
1 + 1

2(𝜃⋆ − 𝜎)
)︁ ,

Π(𝜃𝑡, 𝜃0, 𝜎) =
Γ(1− 𝜎) Γ

(︁
1 + 1

2(𝜃𝑡 + 𝜃0 + 𝜎)
)︁

Γ
(︁
1 + 1

2(𝜃𝑡 − 𝜃0 + 𝜎)
)︁

Γ(1 + 𝜎) Γ
(︁
1 + 1

2(𝜃𝑡 + 𝜃0 − 𝜎)
)︁

Γ
(︁
1 + 1

2(𝜃𝑡 − 𝜃0 − 𝜎)
)︁ .

(B.12)

Resultado para 𝜅𝑉 já obtido anteriormente no desenvolvimento da seção 4.4.

1 Para definições formais, propriedades analíticas, representações integrais e expansões assintóticas da função
hipergeométrica de Gauss 2F1, ver NIST Digital Library of Mathematical Functions, Cap. 15, disponível
em: <https://dlmf.nist.gov/15>.

2 Consultar NIST Digital Library of Mathematical Functions, Cap. 13, disponível em: <https://dlmf.nist.
gov/13>.

https://dlmf.nist.gov/15
https://dlmf.nist.gov/13
https://dlmf.nist.gov/13
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