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RESUMO 

A exploração, a produção e o transporte de petróleo e seus derivados podem levar à geração 

de efluentes que são tratados em geral por processos biológicos (lagoas aeradas, lodos 

ativados ou reatores biológicos). Nesses processos, alguns contaminantes são removidos, e o 

efluente final apresenta uma nova característica físico-química que algumas vezes atinge os 

limites permitidos pela legislação para descarte em corpos receptores. No entanto, estes 

processos geram um lodo com uma alta carga de contaminação e deve ser levado para aterro 

sanitário ou co-processamento, processos que são onerosos para a refinaria. Neste trabalho foi 

aplicado o método de Processos Oxidativos Avançados (POA) para degradação dos 

Hidrocarbonetos Policíclico Aromático (HPA) em efluentes reais de uma refinaria de petróleo 

e os dados obtidos foram tratados por redes neurais, modelos estatísticos baseados em 

comportamento de um sistema físico complexo, onde mapea um conjunto de dados de 

entrada-saída sem possuir nenhum outro conhecimento prévio do processo, apenas se 

baseando no histórico dos dados. Os resultados obtidos foram corroborados pelas medidas de 

degradação dos HPA, Carbono Orgânico Total (COT) e foram completados com estudos de 

toxicidade utilizando material natural como microcrustáceo. Foram empregados três 

processos oxidativos: fotólise, Processo Fenton e Processo FotoFenton. Observou-se uma 

degradação abaixo de 30% para o tratamento com fotólise, até 60% para o tratamento Fenton 

e acima de 90% para o tratamento FotoFenton quando se empregou uma concentração de 

H2O2 de 60; 95 e 130 mmol nestes dois últimos processos. No teste de toxicidade, utilizou-se 

o microcrustáceo  artemia salina, que foi submetido à exposição durante 24h , obtendo uma 

porcentagem de sobreviventes de 80% do microcrustáceo o que  comprova a eficiência do 

tratamento POA. Para empregar a Rede Neural, foram utilizados os dados experimentais e os 

simulados no teste e na validação, levando à evidência que os valores ficaram muito próximos 

e que a rede neural utilizada foi capaz de acompanhar com precisão a tendência dos dados, 

consequentemente os valores do COT, pois, o coeficiente de correlação para a primeira 

modelagem foi R
2
= 0,994 e para a segunda modelagem foi R

2
=0,996. 

Palavras-Chave: Processos oxidativos avançados, hidrocarbonetos policíclicos aromáticos, 

fotólise, processos homogêneos, redes neurais. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

ABSTRACT 

The exploration, production and transportation of oil and its derivatives can lead to generation 

of effluents that are usually treated by biological processes (aerated lagoons, activated sludge 

or biological reactors). In these processes, some of the contaminants are removed, and the 

final effluent presents a new physical-chemical characteristic that sometimes reach the limits 

allowed by law for disposal into receiving bodies. However, these processes produce a sludge 

with a high load of contamination and should be taken to landfill or co-processes, processes 

that are costly to the company. In this work we applied the method to advanced oxidation 

processes (AOP) for degradation of polycyclic aromatic hydrocarbons (PAH) in wastewater 

refinarua an actual oil and data were processed by neural networks, statistical models based 

on behavior of a complex physical system capable of mapping a set of input-output without 

having any prior knowledge of the other process, relying only on historical data. The results 

were corroborated by measurements of degradation of PAHs, and TOC were completed with 

toxicity studies using natural material microcrustacean. We used three oxidation processes: 

photolysis, Fenton Process and Process FotoFenton. There was a decline below 30% for 

treatment with photolysis, up to 60% for the Fenton treatment and over 90% for the treatment 

processes employed FotoFenton when a concentration of H2O2 for 60, 95 and 130 mmol. In 

the toxicity test, we used the microcrustacean Artemia salina, which were subjected to 

exposure for 24 hours, obtaining a percentage of 80% of survivors microcrustacean which 

proves the effectiveness of treatment. To employ the neural network, we used the 

experimental data and simulated in the test and validation, leading to evidence that the values 

were very close and that the neural network used was able to accurately track the trend of the 

data, hence the values of TOC, because the correlation coefficient for the first model was R
2
 = 

0.994 and the second model was R
2 

= 0.996. 

 

Keywords: advanced oxidation processes, polycyclic aromatic hydrocarbons, photolysis, 

homogeneous processes, neural networks. 
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1 INTRODUÇÃO 

 

 O petróleo bruto é uma complexa mistura líquida oleosa de compostos orgânicos e 

inorgânicos em que predominam os hidrocarbonetos, desde os alcanos mais simples até os 

aromáticos mais complexos, podendo conter também quantidades menores de compostos de 

nitrogênio, compostos de oxigênio, compostos de enxofre e íons metálicos, principalmente de 

níquel e vanádio. De acordo com a  ASTM (1989) – American Society for Testing and 

Materials:  “O petróleo é uma mistura de ocorrência natural, consistindo predominantemente 

de hidrocarbonetos e derivados orgânicos sulfurados, nitrogenados e/ou oxigenados, o qual é, 

ou pode ser, removido da terra no estado líquido”. Apresenta-se em várias cores desde o 

incolor até o preto. Os  depósitos  de  hidrocarbonetos  (óleo  e  gás)  originam-se  a partir  de  

matéria  orgânica,  normalmente  organismos  unicelulares fitoplanctônicos, depositados junto 

a sedimentos de baixa permeabilidade, de forma a inibir a ação oxidante da água (UCHOA, 

2008).  

 O primeiro processo na refinaria é a dessalinização que compreende a mistura do 

petróleo cru aquecido com cerca de 3 – 10 % de seu volume em água, e esta, então, dissolve  

os sais indesejáveis. Esta água é separada do petróleo em um vaso de separação através da 

adição de desemulsificadores que ajudam na quebra da estabilidade da emulsão e/ou, mais 

habitualmente,  pela aplicação de um alto potencial elétrico através do vaso  para coalescer as 

gotículas de água salgada, que são polares. O processo de dessalinização do óleo cru gera uma 

lama oleosa, bem como uma corrente de água salgada residual, de alta temperatura, que 

normalmente é adicionada a outras correntes  aquosas residuais, indo então para as estações 

de tratamento de efluentes das refinarias. A água que é usada na dessalinização é 

frequentemente a água não tratada ou apenas parcialmente tratada proveniente de outras 

etapas do refino (UCHOA, 2008). 

 Diante do processo de produção de petróleo, o processo de refino que segue a 

dessalinização é a destilação fracionada, onde começam a surgir os primeiros derivados, para 

em seguida passar a  destilação a vácuo, no qual é reduzida a pressão sobre o líquido, 

baixando-se a temperatura de ebulição, evitando assim a decomposição de parte de seus 

componentes (SANTA MARIA et al., 2002). 

 No caso do processo de destilação a vácuo, o efluente gerado é constituído de 

substâncias orgânicas de alta massa molar, como os hidrocarbonetos policíclicos aromáticos 
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(HPA), além de impurezas vindas com a exploração do petróleo, tais como os asfaltenos e 

correntes com elevada concentração de óleos e graxas (MACHADO, 2010). 

 Durante o processo de refino do petróleo são utilizados em média 246 litros a 340 

litros de água por barril de óleo cru, gerando uma quantidade de água residuária em torno de 

0,4 a 1,6 vezes o volume de óleo processado. Durante a transformação do material bruto em 

produtos tais como gasolina, querosene, lubrificantes, nafta, diesel, entre outros, emprega-se 

para o refino, grande variedade de solventes com diferentes graus de solubilidade para extrair 

substâncias de interesse.  Essas atividades geram efluentes que apresentam grande diversidade 

de poluentes orgânicos e inorgânicos, incluindo compostos fenólicos, sulfetos, amônia, 

cianetos, hidrocarbonetos poliaromáticos e alifáticos que são tóxicos para diversos 

organismos e potencialmente cancerígenos. Muitos dos compostos tóxicos presentes nos 

despejos das refinarias de petróleo, mesmo quando presentes em concentrações inferiores às 

letais podem provocar danos à biota, seja de ambientes terrestres ou aquáticos (SANTAELLA 

et al., 2009).  

 A geração desses efluentes líquidos também pode ser categorizada por: vazamentos, 

derrames e acidentes durante a exploração, refinamento, transporte, armazenamento do 

petróleo e seus derivados, processos esses susceptíveis a falhas, que podem contaminar a 

água, tanto  no caso de plataformas off shore, como em exploração on shore e neste último 

caso pode chegar até a contaminação de solos (FREIRE et al., 2000; TAM et al., 2005). 

A importância do refino dentro de toda a cadeia produtiva do petróleo deve ser 

avaliada não só do ponto de vista comercial mas também do ponto de vista ambiental, uma 

vez que  consomem grandes quantidades de água e de energia, produzindo também grandes 

quantidades de despejos líquidos. Também liberam diversos gases nocivos para a atmosfera e 

produzem  resíduos  sólidos  de  difícil  tratamento e disposição. Um dos conceitos principais 

acerca da identificação de resíduos industriais é a sua capacidade intrínseca de liberação de 

poluentes. Esta capacidade esta diretamente relacionada às características físicas dos resíduos, 

que determinarão a sua forma de migração pelo meio ambiente (MARIANO, 2001).  

Para a USEPA (2008), o tratamento de um resíduo tóxico compreende: “[...] qualquer 

método, técnica ou processo que provoque mudanças de caráter físico ou biológico da 

composição desse resíduo, transformando-o em resíduo não perigoso, seguro para o 

transporte, adequado para reutilização, armazenamento, ou que lhe reduza o volume” 

(www.usepa.gov).  

http://www.usepa.gov/
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A gestão das águas residuais produzidas numa refinaria de petróleo passa pela 

definição de quais os fluxos que são melhor tratar de uma forma combinada e os que devem 

ser objeto de processos de tratamento independentes. O tratamento na origem dos fluxos 

contaminantes pode prevenir a poluição de grandes volumes de águas residuais pouco 

contaminadas. Este tipo de tratamento é muitas vezes mais econômico que a descarga de 

todos os fluxos para a rede de efluentes da refinaria. O tratamento na fonte permite ainda a 

recuperação de subprodutos que de outra forma não seriam economicamente recuperados, 

sendo, ainda, útil como pré-tratamento para as operações de tratamento subsequentes 

(BARROS et al., 2004). 

As técnicas de controle no processo incluem a recuperação de produtos químicos não 

tratados, recuperação de subprodutos, reutilização múltipla da água, técnicas adequadas de 

limpeza e manutenção com a finalidade de reduzir as fugas e os derrames, cobertura e 

confinamento das áreas de drenagem. Estes controles podem reduzir simultaneamente o 

volume e a concentração de poluentes que necessitam de tratamento. Em alguns casos os 

resíduos produzidos numa dada operação unitária podem ser utilizados para tratar os resíduos 

provenientes de outra (BARROS et al., 2004). 

Dentre os poluentes orgânicos e inorgânicos presentes no petróleo e em seus 

derivados, merecem destaque os hidrocarbonetos policíclicos aromáticos (HPA), que são 

biorrefratários,  hidrofóbicos e recalcitrantes, são tóxicos,  mutagênicos e carcinogênicos, 

devido a sua hidrofobicidade e tendem a ser adsorvidos na matéria orgânica do solo por 

muitos anos, tornando-se reservatórios desses compostos (ENNEL et al., 2004; GAO et al., 

2006). Esta toxicidade em efluentes de indústrias de petróleo tem sido comprovada com a 

descoberta de peixes hermafroditas em águas contaminadas com estes derivados  (WANG et 

al., 2009). 

A contaminação por compostos de fase líquida não aquosa, como os hidrocarbonetos 

policíclicos aromáticos (HPA) de alta massa molar que são formados por átomos de carbono e 

hidrogênio e organizados sob a forma de anéis aromáticos condensados, tem sua origem na 

combustão incompleta da matéria orgânica, regida principalmente por diferentes fatores 

físicos, como temperatura e pressão (MEIRE et al., 2007). 

O transporte de HPA se dá principalmente através de material particulado fino 

atmosférico ou por meio aquoso, podendo atingir desta forma regiões distantes de suas 

origens. Os HPA são altamente lipossolúveis e rapidamente absorvidos pelos pulmões, 
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intestinos e pele de homens e animais. Uma vez absorvidos pelas células, estes compostos são 

metabolicamente ativados e desta maneira tornam-se reativos a grupos nucleofílicos presentes 

em macromoléculas celulares. A formação de adutos de DNA é considerada essencial na 

carcinogenicidade química desses xenobiontes. Consumidores de alimentos defumados, 

fumantes, indivíduos em contato com ambiente contaminado (água e ar), e trabalhadores 

ocupacionais expostos de forma direta a HPA podem apresentar elevadas propensões ao 

desenvolvimento de tumores e câncer (MEIRE et al., 2007). 

Atualmente, novas técnicas de controle de poluição vêm sendo usadas em vários 

ramos de indústrias de extração e de transformação, entretanto este quadro está muito distante 

do ideal. Diante deste contexto, é de grande interesse que novas tecnologias sejam aplicáveis 

ao tratamento de efluentes e que sejam mais inovadoras, menos onerosas e que priorizem a 

componente ambiental (COSTA et al., 2007). Geralmente, o tratamento das águas residuárias 

de refinarias de petróleo é feito em níveis primário e secundário através de processos físicos 

ou físico-químicos convencionais, como separadores de água-óleo, processos de coagulação-

floculação seguidos de tratamento biológico que podem ser: lagoas de oxidação, filtros 

biológicos e lodos ativados. A recalcitrância  dos compostos de petróleo dificulta o tratamento 

do efluente pelos processos biológicos convencionais utilizados, havendo assim a necessidade 

de um tratamento terciário para polimento desse efluente (STEPNOWSKII et al., 2002; 

MACHADO, 2010).  

Os processos químicos têm como premissas as diversas reações químicas possíveis, 

como a oxidação e a redução de compostos, neutralização de ácidos e bases e a precipitação. 

Outra forma bastante eficaz de tratar resíduos perigosos é através da utilização de processos 

térmicos, que tendem a inertizar totalmente os compostos perigosos, além de reduzir 

drasticamente o volume a ser disposto (CASTRO, FARIA 2001). 

Os processos físico-químicos de tratamento desses HPA consistem basicamente em 

separar os resíduos perigosos das soluções aquosas que os contêm, podendo estes serem 

recuperados ou concentrados para tratamentos futuros (CASTRO, FARIA 2001). São 

exemplos: floculação, adsorção, stripping, coagulação eletroquímica e filtração. Porém estes 

processos apenas concentram os poluentes (não são destrutivos), reduzindo seu volume, mas 

criando um problema de disposição.  
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A oxidação química é uma técnica que pode ser utilizada como um pré-tratamento, 

diminuindo a toxicidade a montante de um processo biológico convencional, podendo 

também ser utilizada como pós-tratamento, para oxidar resíduos não biodegradados no 

processo biológico (CASTRO, FARIA 2001). Neste contexto, a oxidação química como o  

processo oxidativo avançado (POA) se apresenta com alta eficiência no tratamento de águas 

residuais, bem como em águas superficiais e subterrâneas, além de solos contaminados. 

Nos últimos anos o POA vêm se destacando devido à grande eficiência na degradação 

de compostos orgânicos, tendo sido utilizado como alternativa promissora no tratamento de 

efluentes e/ou na remediação de solos contaminados com substâncias altamente tóxicas e 

recalcitrantes (GHALY et al., 2001; KANEL et al., 2003; KIM et al., 2006).  

Algumas vantagens dos Processos Oxidativos Avançados (POA) são (TEIXEIRA, 

JARDIM 2004): 

-  mineralização da substância contaminante e não somente transferência de fase; 

- destruição de compostos refratários em outros tratamentos; 

- transformação de resíduos recalcitrantes em biodegradáveis; 

- possibilidade de tratamento in situ ou atuação conjunta com outros métodos, como pré ou 

pós-tratamento; 

- forte poder oxidante, com constante cinética de reação elevada, não ocorrendo à formação 

de subprodutos ou resíduos; 

- uso de oxidante suficiente mineraliza o contaminante e não forma subprodutos; 

No entanto, este oxidante, o peróxido de hidrogênio, não apresenta seletividade, o que 

se configura como um aspecto negativo, podendo oxidar espécies importantes como a matéria 

orgânica do solo e ainda mudar estados de oxidação dos metais (TEIXEIRA, JARDIM 2004): 

A grande vantagem desse processo é o fato de ser um tipo de tratamento destrutivo, 

onde o contaminante é degradado através de reações químicas (TIBURTIUS et al., 2004).   

Um destes processos é o foto-Fenton (que faz uso do radical hidroxila, sendo a reação 

acelerada pela luz UV e visível e tendo como catalisador o ferro). Tem sido aplicado a 

sistemas aquosos e tem se mostrado capaz de mineralizar toda a matéria orgânica presente no 

meio, resultando em gás carbônico e água  (SILVA, 2002) 
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A eficiência do POA depende basicamente dos parâmetros: produção e reatividade do 

radical gerado, capacidade de reação entre o substrato radicalar formado e o oxigênio 

molecular presente no meio (CHIRON et al., 2000). 

Os avanços na indústria de transformação e crescimento do mercado associados a 

processos de tratamento avançados resultou em melhorias substanciais quanto à versatilidade 

e custos desses processos em escala industrial (KHATAEE, KASIRI 2010). 

Para resolver estes novos desafios e melhorar a utilização dos recursos econômicos, 

vários processos POA têm sido propostos, testados e aplicados para atender às necessidades 

de tratamento atuais. Devido à complexidade das reações nos processos fotocatalíticos, os 

parâmetros de cinética das várias etapas envolvidas são muito difíceis de determinar, levando 

a incertezas no projeto e scale-up de reatores químicos de interesse industrial. Considerando 

estas razões, a modelagem fotocatalítica processada via redes neurais artificiais é bastante 

apropriada a esses sistemas. Ao contrário de um tratamento clássico dos dados, com base em 

constantes de velocidade aparente modelada por uma função polinomial quadrática, a análise 

de rede neural dos mesmos dados experimentais não requer o uso de qualquer equação 

cinética ou fenomenológica e permite a simulação e a previsão da degradação do poluente em 

função do tempo de irradiação, bem como a previsão das taxas de reação, sob condições 

variáveis dentro da região experimental (KHATAEE, KASIRI 2010).  

Redes Neurais Artificiais (RNA) são técnicas computacionais que apresentam um 

modelo matemático inspirado na estrutura neural de organismos inteligentes para simular o 

processo de aprendizagem dos neurônios no cérebro humano. As RNA têm atraído grande 

interesse durante a última década como modelos preditivos e reconhecimento de padrões. As 

Redes Neurais Artificiais possuem a capacidade de "aprender" a partir de um conjunto de 

dados experimentais (por exemplo, condições de processamento e as respostas 

correspondentes) sem o conhecimento real das leis físicas e químicas que governam o 

sistema. Portanto, a aplicação de RNA no tratamento de dados é especialmente importante 

quando os sistemas são não-lineares e com comportamentos complexos. Redes neurais foram 

preparadas  para executar funções complexas em vários campos de aplicação, incluindo 

reconhecimento de padrões, identificação, classificação, fala, visão, e sistemas de controle 

(REZENDE, 2003).  

Resultados de tratamentos avaliados por RNA foram concebidos a partir da 

abordagem conexionista sobre a fisiologia do cérebro humano e do seu componente primário, 
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o neurônio. As Redes Neurais Artificiais são consideradas aproximadoras universais de 

funções, ou seja, conseguem reproduzir o comportamento multivariável e não-linear entre 

variáveis a partir de um aprendizado anterior. Esta capacidade as popularizou, rapidamente, 

como uma ferramenta “Caixa Preta” para modelar relações entre variáveis, de modo 

semelhante aos métodos estatísticos de regressão (CARVALHO  et al., 2007). 

Nas últimas décadas, grandes avanços têm sido feitos em tecnologia de rede neural. 

Esta descoberta levou a pesquisa crescente sobre uma ampla variedade de aplicações 

científicas. O interesse em RNA é refletido no número de cientistas, os montantes de 

financiamento, o número de grandes conferências, e o número de periódicos associados às 

redes neurais (KHATAEE, KASIRI 2010). 

O emprego de modelagem matemática e a simulação dos diferentes processos 

envolvidos em tratamentos de efluentes têm permitido um maior conhecimento dos processos 

envolvidos, identificando as necessidades de instrumentação, implantação de avançadas 

técnicas de controle de processo, permitindo estimar os resultados econômicos e ambientais 

que serão obtidos com as novas tecnologias em análise, de modo a avaliar o seu estágio de 

desenvolvimento e de sustentabilidade, bem como o interesse na sua implantação. 

A complexidade do mecanismo reacional dos processos fotoquímicos gera 

dificuldades para a determinação de modelos fenomenológicos e isto ocorre porque o radical 

hidroxila não é seletivo, dificultando a descrição por modelos que descrevam os fenômenos 

cinéticos. Desta forma, o Modelo Neural é conhecido como modelo empírico porque é 

baseado inteiramente em dados numéricos, uma vez que o sucesso na utilização destes 

modelos empíricos depende da quantidade e qualidade desses dados, pois num tratamento 

clássico, os dados são embasados em constantes de velocidade aparente, modelada por uma 

função polinomial quadrática. Análise de rede neural dos mesmos dados experimentais não 

requer o uso de qualquer equação cinética ou fenomenológica e permite a simulação e a 

previsão da degradação do poluente em função do tempo de irradiação, bem como a previsão 

das taxas de reação sob condições variáveis dentro da região experimental, determinando o 

modelo do processo utilizando redes neurais artificiais (RNA).  
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2 OBJETIVOS 

 

2.1 OBJETIVO GERAL 

Avaliação do Tratamento de Efluentes de uma Unidade de Refino de Petróleo por 

Processos Oxidativos Avançados utilizando Redes Neurais Artificiais.  

 

2.2 OBJETIVOS ESPECÍFICOS 

 Caracterizar química e fisicamente os efluentes de uma unidade de refino de petróleo; 

 Estudar os diferentes tipos de processos oxidativos avançados, tais como: Fotólise, 

Fotocatálise Homogênea empregando H2O2/UV e H2O2/Fe²
+
/UV para a degradação do 

contaminante HPA; 

 Desenvolver uma estratégia para utilização de modelos empíricos, baseados em redes 

neurais artificiais; 

 Quantificar os níveis de Carbono Orgânico Total (COT) presente no efluente; 

 Fazer Teste de Toxicidade como avaliação do tratamento POA. 
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3 FUNDAMENTAÇÃO TEÓRICA 

 3.1  Hidrocarbonetos Policíclicos Aromáticos (HPA) 

A avaliação da concentração  dos compostos hidrocarbonetos policíclicos aromáticos é 

de grande interesse para a saúde pública e para os organismos regulatórios de vários países. 

(GUIMARÃES et al., 2010). 

Os hidrocarbonetos policíclicos aromáticos (HPA) existem no estado líquido ou sólido 

e apresentam ponto de ebulição maior do que 80ºC, sob pressão atmosférica normal. Sua ação 

carcinogênica tem principalmente sido observada em compostos tri, tetra, penta e 

hexacíclicos. Os HPA representam um importante grupo de poluentes orgânicos 

(xenobióticos) devido à alta capacidade de distribuição no ambiente (atmosfera, água e solo), 

sendo encontrado em matrizes ambientais como uma mistura extremamente complexa 

contendo numerosos isômeros em uma faixa extensa de concentração (COTTA  et al., 2008). 

A interação desses poluentes com o solo ocorre por forças atrativas tais como dipolo- 

dipolo, dipolo-dipolo induzido e pontes de hidrogênio (PIGNATELLO, XING 1996). 

Embora existam centenas de HPA no ambiente, a United States Environmental 

Protection Agency (USEPA) classificou 16 HPA e o National Institute for Occupational 

Safety and Health (NIOSH) indicou 17 HPA  que devem ser monitorados rotineiramente para 

fins reguladores. São eles: naftaleno, acenaftileno, acenafteno, fluoreno, fenantreno, 

antraceno, fluoranteno, pireno, benzo[a]antraceno, criseno, benzo[e]pireno, 

benzo[b]fluoranteno, benzo[k]fluoranteno, benzo[a]pireno, dibenzo[a,b]antraceno, 

benzo[g,h,i]perileno e indenol[1,2,3-cd]pireno. Devido a sua alta toxicidade carcinogênica e 

mutagênica e sua persistência no ambiente, a USEPA incluíu os 16 HPA em sua lista de 

poluentes prioritários e tem desenvolvido métodos para seu monitoramento no ambiente 

(COTTA et al., 2008). 

Em termos mundiais, a legislação ambiental existente sobre os HPA encontra-se, 

principalmente, nos Estados Unidos, sob a competência da USEPA. Na União Européia está 

vinculada à Comissão das Comunidades Européias (CCE) e na Holanda com a sua  Lista 

Holandesa de Valores de Qualidade do Solo e da Água Subterrânea, a qual é utilizada por 

alguns órgãos ambientais brasileiros. No Brasil somente o Estado de São Paulo possui 

legislação que trata da contaminação do solo e das águas subterrâneas pelos HPA (JACQUES 

et al., 2007). 
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Em relação a Legislação e descartes destes contaminantes (HPA), no meio ambiente, a 

Resolução CONAMA 357 de 17 de março de 2005, Dispõe sobre a classificação dos corpos 

de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições 

e padrões de lançamento de efluentes, e dá outras providências (BRASIL 357, 2005). Quanto 

aos parâmetros físico-químico a Resolução CONAMA 430 de 13 de maio de 2011, serve 

como base para descarte deste efluente de refinaria de petróleo (BRASIL 430, 2011). 

Os HPA são produzidos por combustão incompleta ou pirólise da matéria orgânica. A 

formação pirolítica de HPA é bastante complexa e variável, dependendo das condições 

reacionais. O esquema mecanístico aceito para esta reação envolve a polimerização via 

radicais livres, em várias etapas, até a formação de núcleos aromáticos condensados. A 

formação destes compostos depende de fatores como tipo da biomassa presente, quantidade 

de oxigênio disponível, pressão e, principalmente, de calor (CARUSO, 2008). 

As propriedades físicas e químicas dos HPA são amplamente determinadas pelo 

sistema de ligações duplas conjugadas presentes nas estruturas desta classe de compostos. À 

temperatura ambiente alguns HPA são sólidos e apresentam, comumente, altas temperaturas 

de fusão e ebulição, baixa pressão de vapor e baixa solubilidade em água (Tabela 1). Os 

valores referentes a estas duas últimas propriedades tendem a diminuir com o aumento da 

massa molecular. Alguns HPA são semi-voláteis, porém, muitos deles podem ser 

transportados até longas distâncias e serem adsorvidos em material particulado. HPA com 2 a 

4 anéis aromáticos encontram-se na fase líquida. Os HPA com 5 ou mais anéis aromáticos são 

encontrados predominantemente em particulados (cinzas ou fuligens cujas partículas são 

menores que 2,5 µm). Suas características físico-químicas, como solubilidade e pressão de 

vapor, são fatores importantes que direcionam a distribuição desses contaminantes entre as 

fases solúvel e particulada em meio atmosférico, aquoso e na biota (CARUSO, 2008). 

TABELA 1 – Solubilidade de HPA em água e número de anéis aromáticos correspondentes. 

HPA Número de Anéis Solubilidade em Água 

(μg/L) 

Naftaleno 2 31700,00 

Acenaftileno 3 16100,00 

Acenafteno 3 3930,00 

Fluoreno 3 1980,00 

Fenantreno 3 1290,00 

Antraceno 3 73,00 
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Pireno 4 260,00 

Fluoranteno 4 135,00 

Benzo[a]antraceno 4 14,00 

Criseno 4 2,00 

Benzo[b]fluoranteno 5 1,50 

Benzo[k]fluoranteno 5 0,80 

Benzo[a]pireno 5 3,80 

Dibenzo[a,b]antraceno 5 0,25 

Benzo[g,h,i]perileno 6 0,19 

Indeno[1,2,3-cd]pireno 6 0,26 

             Fonte: LEMOS et al. (2009) 

O mecanismo de degradação dos HPA é mais complexo e dificultado que o resto dos 

hidrocarbonetos, por apresentarem alta reatividade em suas estruturas, apresentando maior 

estabilidade no ambiente, atrelada às características físicas e químicas destes. Esses 

compostos podem ser degradados por foto-oxidação e por oxidação química (LEMOS, 2009). 

Os HPA são constituídos por compostos formados por molécula de 2 (dois) a 6 (seis) 

anéis aromáticos condensados, sendo conectados por meios de compartilhamento de um par 

de carbonos adjacentes. Estas substâncias, bem como seus derivados nitrados e oxigenados, 

tem ampla distribuição e são encontrados como constituintes de misturas complexas em todos 

os compartimentos ambientais. Formados a partir da combustão incompleta a diferentes 

temperaturas, com fontes naturais e antropogênicas, os HPA podem ser classificados de 

acordo com sua origem como petrogênicos, pirolíticos e biogênicos. A distinção destes grupos 

de HPA são dependentes da temperatura de formação. Os de origem petrogênica, possuem 

baixa massa molar (128,7 – 178,3 g.mol
-1

), compostos por 2 ou 3 anéis aromáticos, são 

formados a partir da maturação lenta de matéria orgânica a baixas temperaturas sob 

determinadas condições geoquímicas. Os pirolíticos, origina-se em processos de combustão 

incompletos de matéria orgânica a altas temperaturas, produzindo HPA de alta massa molar 

(202,2 – 278,3 g.mol
-1

), com 4 a 6 anéis benzênicos. Os de origem biogênica são formados a 

partir da combustão da biomassa vegetal, especialmente em incêndios florestais (PAVEI, 

2007). 

Com base na massa molar os HPA podem ser divididos em dois grupos: com baixa 

massa molar e alta massa molar, tendo suas principais características definidas pela (USEPA) 

e União Européia conforme Tabela 2, (PAVEI, 2007). 
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TABELA 2 – Principais Características dos HPA 

HPA Nº de anéis Fórmula Molecular           Massa Molar (g/mol
-1

) 

Petrogênico 

Naftaleno 2 C8H10 128,17 

Acenaftileno 3 C12H8 152,20 

Acenafteno 3 C12H10 154,21 

Fluoreno 3 C13H10 166,20 

Fenantreno 3 C14H10 178,20 

Antraceno 3 C14H10 178,20 

 Pirolítico  

Fluoranteno 4 C16H10 202,26 

Pireno 4 C16H10 202,30 

Benzo (a) antraceno 4 C18H12 228,30 

Criseno 4 C18H12 228,29 

Benzo (b) fluoranteno 5 C20H12 252,30 

Benzo (k) fluoranteno 5 C20H12 252,30 

Benzo (a) pireno 5 C20H12 252,30 

Indeno (1,2,3-cd) pireno 6 C22H14 276,30 

Dibenzo (a,h) antraceno 5 C22H14 278,35 

Benzo (g,h,i) perileno 6 C22H16 276,34 

Fonte: PAVEI, 2007 
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Na Tabela 3 observam-se as concentrações limites de hidrocarbonetos em sedimentos 

definidos pela NOAA (National Oceanic and Atmospheric Administration), onde os valores 

ERL (effects range-low) representam as concentrações mínimas, nos quais os valores 

observados abaixo destes ocasionam raros efeitos biológicos adversos. Nas concentrações 

superiores aos valores ERM (effects range-median) observam-se freqüentemente efeitos 

adversos nos sistemas biológicos (PAVEI, 2007).  

A agência ambiental canadense (Enviromnment Canada, 1998) estabelece padrões de 

qualidade temporários (PQT) e níveis de efeitos prováveis (NEP) para sedimentos. Efeitos 

biológicos adversos normalmente não são observados para valores de concentração inferiores 

ao PQT enquanto são freqüentes para concentrações maiores que o NEP (PAVEI, 2007). 

TABELA 3 – Toxicidade do HPA para humanos estabelecidos por órgãos regulamentadores 

HPA Risco a saúde NOAA, 1993 * Environment 

Canadá, 1998 ** 

ERL 

(ng.g
-1

) 

ERM 

(ng.g
-1

) 

PQT 

(ng.g
-1

) 

NEP 

(ng.g
-1

) 

1. Naftaleno Não carcinogênico 160 2100 34,6 391 

2. Acenaftileno - 44 640 5,87 128 

3. Acenafteno - 16 500 6,71 88,9 

4. Fluoreno Não carcinogênico 19 540 21,2 144 

5. Fenantreno Não carcinogênico 240 1500 86,7 544 

6. Antraceno Não carcinogênico 853 1100 46,9 245 

7. Fluoranteno - 600 5100 113 1494 

8. Pireno Não carcinogênico 665 2600 153 1398 

9. Benzo(a)antraceno Carcinogênico 261 1600 74,8 693 

10. Criseno Fracamente carcinogênico 384 2800 108 846 

11. Benzo(a)fluoranteno Fortemente carcinogênico - - - - 
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12. Benzo(k)fluoranteno - - - - - 

13. Benzo(a)pireno Fortemente carcinogênico 430 1600 88,8 763 

14. Indeno(1,2,3-cd)pireno Carcinogênico - - - - 

15.Dibenzo(a,h)antraceno Fortemente carcinogênico 63,4 260 6,2 135 

16.Benzo(g,h,i)perileno Não carcinogênico - - - - 

Total HPA (ng.g
-1

)  4022 44.792 - - 

Fonte: PAVEI, 2007 

*NOAA (1993) - ERL: limite inferior (effective range low); ERM: limite médio (effective 

range medium). 

**Environment Canadá (1998) – PQT: padrões de qualidade temporários; NEP: níveis de 

efeitos prováveis. 

 

Para o tratamento de efluentes de refinaria de petróleo, o ozônio e o peróxido de 

hidrogênio se mostram muito atrativos por envolverem reações com alto poder oxidante e por 

não gerarem resíduos. Geralmente, os compostos encontrados em efluente destas refinarias 

são compostos orgânicos com grande conjugação de ligacões duplas, como os HPA e estas 

ligacões podem ser rompidas com os POA, formando moléculas menores, o que torna o 

efluente mais biodegradável.  

Em funcão da baixa eficiência, elevado custo e complexidade operacional dos 

tratamentos tradicionais existentes para remoção de substâncias recalcitrantes em efluentes, as 

tecnologias alternativas têm recebido bastante atenção nos últimos anos. Os Processos 

Oxidativos Avançados (POA) têm sido considerados como um método promissor para a 

remoção de poluentes orgânicos tóxicos e/ou recalcitrantes em soluções aquosas. 

 

3.2 Processos Oxidativos Avançados (POA) 

Os processos oxidativos convencionais utilizam como agentes oxidantes o cloro, 

hipoclorito de sódio, dióxido de cloro e permanganato de potássio. Existem numerosos 

compostos que são resistentes à ação direta dos agentes oxidantes convencionais. Nestes casos 

torna-se necessário recorrer a processos alternativos como os de oxidação avançados 

(CASTRO, FARIA 2001). 
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Os Processos Oxidativos Avançados (POA) têm se destacado nos últimos anos como 

uma tecnologia alternativa ao tratamento de várias matrizes ambientais. A grande vantagem 

desses processos reside no fato deles serem um tipo de tratamento destrutivo, ou seja, o 

contaminante não é simplesmente transferido de fase, como na separação com carvão ativado, 

filtração, injeção de vapor e dessorção térmica, mas sim, degradados através de uma série de 

reações químicas.  

Esses processos de tratamento são considerados como métodos promissores para a 

remediação de efluentes contaminados com poluentes orgânicos não-biodegradáveis 

(RODRIGUEZ, 2003). 

Os POA são definidos como processos de oxidação em que radicais hidroxilas, são 

gerados para atuar como agentes oxidantes químicos. Estes processos podem ser classificados 

em dois grandes grupos: sistemas homogêneos e heterogêneos, que envolvem reações com 

ozônio (O3), peróxido de hidrogênio (H2O2) com ou sem luz UV; e sistemas heterogêneos, 

que empregam catalisadores. Nas últimas duas décadas, estes processos têm emergido como 

uma nova e promissora tecnologia para a degradação de poluentes orgânicos, técnica esta que 

se baseia na formação de radicais hidroxilas (•OH.), altamente oxidantes e capazes de reagir 

com praticamente todas as classes de compostos orgânicos devido à sua alta reatividade 

(SILVA, 2007). 

A oxidação química é um processo que apresenta grande potencial no tratamento de 

efluentes contendo compostos tóxicos não biodegradáveis. Através de reações químicas de 

oxidação podem degradar-se componentes orgânicos tóxicos, diminuir a demanda química de 

oxigênio (DQO) e a intensidade de cor dos efluentes (SILVA, 2007). 

Dependendo da estrutura do contaminante orgânico, podem ocorrer diferentes reações 

envolvendo o radical hidroxila, tais como abstração de átomo de hidrogênio, adição 

eletrofilica a substâncias contendo insaturações e anéis aromáticos, transferência eletrônica e 

reações radical-radical. O resultado é a formacão de radicais orgânicos que reagem com 

oxigênio, dando início a uma série de reacões de degradação que podem culminar em espécies 

menos tóxicas que os HPA como CO2 e inócuas como H2O e íons de hidrogênio provenientes 

dos heteroátomos (JÚNIOR, 2009). 
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Tipos de reações que podem ocorrer em POA: 

Cl3CH + •OH → Cl3C• +H2O (abstração de hidrogênio)                                             (1) 

CO3
2-

 + •OH → CO3•
-
 + 

-
OH (transferência de elétrons)                                             (2) 

                                                                                   H                                                                                                                                                                   

+ •OH →           OH      (adição radicalar)             (3) 

O emprego dos processos oxidativos avançados também se destaca devido às fontes de 

radiação UV porque o processo fotogerado aumenta a velocidade da reação de formação de 

radicais hidroxilas (JÚNIOR, 2009). 

 

3.3 Processos Oxidativos com Irradiação 

Peróxido de hidrogênio (H2O2) é um oxidante forte e sua aplicação no tratamento de 

diversos poluentes inorgânicos e orgânicos está bem estabelecida. Inúmeras aplicações de 

H2O2 na remoção de poluentes de águas residuais, como sulfitos, hipocloritos, nitritos, 

cianetos têm sido relatados (JÚNIOR, 2009). 

Oxidação por H2O2 por si só não é efetiva para altas concentrações de determinados 

contaminantes refratários, tais como compostos clorados, compostos aromáticos e compostos 

inorgânicos, por causa de baixas taxas de reação. Sais de metal de transição (sais de ferro, por 

exemplo), ozônio e luz UV pode ativar H2O2 para formar radicais hidroxila (Equações 4 a 6), 

que são oxidantes fortes (KHATAEE, KASIRI 2010): 

• Ozônio e peróxido de hidrogênio 

O3 + H2O2 → •OH + O2 + HO2
•
                                                                                    (4) 

• Sais de ferro e peróxido de hidrogênio  

Fe
2+

 + H2O2 → Fe
3+

 + •OH + OH
−
                                                                               (5) 

• Luz-UV e peróxido de hidrogênio 

H2O2 + UV →2 •OH                                                                                                     (6) 

Efeitos benéficos observados com o emprego de luz ultravioleta em combinação com 

peróxido de hidrogênio ou ozônio,  residem no fato de que a taxa de geração de radicais livres 

é significativamente reforçada (KHATAEE, KASIRI 2010). 
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É amplamente aceito que o primeiro passo no processo de UV/H2O2 é o ataque do 

fóton contra a molécula de peróxido de hidrogênio e consequente formação de radical 

hidroxila (•OH) (Equação (6)). 

Altas concentrações de H2O2 não favorecem necessariamente a cinética da reação, 

pois, após a reação começar, a etapa de propagação pode ser retraída pelo excesso de peróxido 

de hidrogênio. Este excesso pode atuar como um radical hidroxila auto consumo (Equação 

(7)) (KHATAEE, KASIRI 2010). 

•OH + H2O2 → H2O + HO2
•
                                                                                         (7) 

Este efeito de eliminação de radicais hidroxila produz o radical hidroperóxido que é 

menos reativo. Assim, o peróxido de hidrogênio em excesso pode reagir com o radical 

hidroxila e competir com o ataque do radical à matéria orgânica na solução durante a fotólise 

(KHATAEE, KASIRI 2010). 

A cinética UV/H2O2 do processo é favorecido até H2O2 atingir o ponto crítico, que 

está relacionado a vários fatores como a quantidade de peróxido de hidrogênio adicionado, pH 

da reação, comprimento de onda da radiação UV, concentração de matéria orgânica e 

características estruturais, além de outros fatores específicos, como a presença de sais 

inorgânicos, que afetam o desempenho da reação do radical hidroxila (KHATAEE, KASIRI 

2010). 

A radiação UV pertence ao espectro eletromagnético e está situada na faixa de 40 a 

400 nm de comprimento de onda, entre os raios-X e a luz visível (JÚNIOR, 2009).  

UV- A: 315nm a 400nm (luz negra, pouco nocivo); 

UV- B: 280nm a 315nm (nocivo, absorvido por ozônio); 

UV- C: 200nm a 280nm (muito nocivo, absorvido pelo ar) ; 

Vacuum: 40nm a 200nm. 

Outros empregos da radiação podem ser citados, tais como: 

- O uso de oxidantes como o O3, H2O2, Fenton, etc. combinados com a radiação UV 

tem uma série de vantagens na produção de radicais •OH, aumentando a eficiência destes 

processos.  

- Usada na degradação de compostos orgânicos em processos fotoquímicos e 

fotocatalíticos.  
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- Utilizado na degradação de compostos como o éter metil terc-butílico, em corantes, 

no pré-tratamento de surfactantes; 

- H2O2 pode oxidar diretamente sulfeto, sulfito, nitrito e outros compostos orgânicos e 

inorgânicos; 

- H2O2 fornece oxigênio para os microorganismos, auxiliando na biodegradação de 

muitos poluentes (JÚNIOR, 2009). 

3.4 Radicais Hidroxila 

Os radicais hidroxila (•OH), que são oriundos de reações que envolvem oxidantes 

fortes como ozônio (O3), peróxido de hidrogênio (H2O2), etc., são oxidantes fortes, perdendo 

apenas para o flúor como demonstrado na Tabela 4 (DOMÉNECH  et al., 2001). Os radicais 

hidroxila são oxidantes limpos por produzirem H2O e O2, são não seletivos e, uma vez 

gerados, os mesmos atacam agressivamente todos os compostos orgânicos, como descrito na 

Tabela 5 (MUNTER, 2001). Eles podem degradar inúmeros compostos, independentemente 

da presença de outros e são empregados na remoção de compostos orgânicos, inorgânicos e 

contaminantes biológicos (BIGDA, 1995; LITTER, 1999) tanto em fase aquosa, como em 

fase gasosa ou até adsorvidos numa matriz sólida. Os mesmos promovem a mineralização da 

matéria orgânica em CO2, água, íons inorgânicos e ácidos minerais. O ataque inicia-se pela 

extração de um átomo de hidrogênio da molécula ou pela adição do •OH a um átomo 

pertencente à insaturações nas moléculas (TEIXEIRA, JARDIM 2004). 

TABELA 4 -  Potencial redox de algumas espécies oxidantes 

Espécie oxidante Potencial redox /Volts 

Flúor 3,03 

Radical hidroxila 2,80 

Oxigênio atômico 2,42 

Ozônio 2,07 

Peróxido de hidrogênio 1,78 

Permanganato 1,68 

Dióxido de cloro 1,57 

Cloro 1,36 

Iodo 0,54 

Fonte : Domenech  et al., 2001 
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TABELA 5 - Comparação da constante de velocidade de reação (k, L mol
-1

 s
-1

) do ozônio e do radical 

hidroxila 

                  Composto O3 •OH  

Alcenos clorados 10
3
-10

4
 10

9
-10

11
 

Fenóis 10
3
 10

9
-10

10
 

Aromáticos 1-10
2
 10

8
-10

10
 

Cetonas 1 10
9
-10

10
 

Álcoois 1-10
2
 10

8
-10

9
 

Fonte : Munter, 2001 

  

Outra característica dos radicais hidroxilas, que os tornam muito eficientes para 

degradar compostos poluentes, é a sua rápida cinética de reação, para compostos orgânicos 

observando-se constantes entre 10
6
 e 10

10
 L mol

-1
 s

-1
, ou seja, atingem valores da mesma 

ordem de grandeza da constante de difusão do •OH em meio aquoso, no qual kdif = 7 x10
9
 L 

mol
-1

 s
-1

 ( LEGRINI et al., 1993). 

Os processos oxidativos avançados baseiam-se na formação de radicais hidroxilas 

(•OH). Estes radicais têm um potencial de oxidação bastante elevado (E0=2,3V) e são capazes 

de reagir com praticamente todas as classes de compostos orgânicos (CASTRO, FARIA 

2001). 

O radical hidroxila é conhecido por gerar produtos mais limpos como oxigênio e água, 

e um ácido fraco, dissociando-se conforme a reação: H2O2 + H2O ↔ H3O+ + HO2•. A forma 

oxidante HO2• ocorre em meio alcalino (pKa = 11,6). Na maioria das vezes, o peróxido é 

adicionado ao sistema reacional em concentrações que podem variar de 35 a 70% (m/m). As 

vantagens e desvantagens dos radicais hidroxila estão descritos na Tabela 6 e os mesmos 

podem ser gerados por oxidação eletroquímica, radiólise, feixe de elétrons e plasma 

(JÚNIOR, 2009). 
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TABELA 6 - Vantagens e desvantagens dos Radicais Hidroxila 

Vantagens Desvantagens 

Grande capacidade de oxidar compostos 

diretamente 

A taxa de oxidação é limitada pela formação dos 

radicais •OH 

Solubilidade em água  

Oxidante limpo 

H2O2 pode tornar-se receptor de •OH (reação 

inversa) 

Boa estabilidade térmica  

Geração de 2 radicais •OH por molécula de H2O2  

Fonte: Júnior, 2009  

 

3.5 Sistemas Homogêneos e Heterogêneos 

Nos sistemas homogêneos, não existe catalisador na fase sólida, a degradação do 

contaminante orgânico pode ser efetuada por dois mecanismos: fotólise direta com 

ultravioleta e geração de radical hidroxila. O primeiro tem a radiação como única fonte capaz 

de destruir o poluente, envolvendo a interação de luz com as moléculas, causando a sua 

dissociação em fragmentos. A fotólise apresenta menor eficiência comparada à geração de 

radicais •OH e, desta maneira, é utilizado de forma conjunta a compostos oxidantes, como O3 

e H2O2. Sua aplicabilidade, além da remoção de contaminantes orgânicos, também pode ser 

encontrada em métodos de desinfecção (HUANG et al., 1993). 

Os sistemas heterogêneos se diferenciam dos homogêneos devido à presença de 

semicondutores. Estes materiais aumentam a velocidade da reação para se atingir um 

equilíbrio químico sem sofrerem alteração química. As reações realizadas na presença de tais 

substâncias são denominadas reações catalíticas (CIOLA, 1981). 

Os semicondutores (Figura 1) que atuam como fotocatalisadores possuem duas regiões 

energéticas: a banda de valência (BV), região de energia mais baixa, onde os elétrons não 

possuem movimento livre; e a banda de condução (BC), região de energia mais alta, onde os 

elétrons são livres para se moverem através do cristal, produzindo condutividade elétrica 

similar aos metais. Entre estas duas regiões existe a zona de band gap. A energia de band gap 

(Eg) refere-se à energia mínima necessária para excitar o elétron e promovê-lo de uma banda 

menor para outra de maior energia (DAVIS, 1989). 
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FIGURA 1 – Fotocatálise heterogênea (www.quimica.ufpr.br/tecnotrat/fotocatalise.htm) 

 

3.6 Fotocatálise Homogênea 

Dentre os processos fotocatalíticos homogêneos existentes, tem-se utilizado  o Fenton 

e o foto-Fenton que apresentam eficiência na formação dos radicais hidroxilas  e o custo 

operacional em relação a outros POA é menor. 

Reagente Fenton 

Em 1876, um trabalho pioneiro de Fenton apontou a possível utilização de uma 

mistura de H2O2 e Fe
2+

 para destruir ácido tartárico. Observou que muitas moléculas 

orgânicas podiam ser facilmente oxidadas sem recorrer a altas pressões, altas temperaturas ou 

equipamento complexo. 

Durante o período de 1901-1928, a estequiometria da reação entre H2O2 e Fe
2+

 foi 

estudada. A extraordinária utilidade prática do reagente de Fenton para a oxidação de 

compostos orgânicos foi assumido em 1930 como um mecanismo de radical para a 

decomposição catalítica de H2O2 por sais de ferro (KHATAEE, KASIRI 2010).  

A Reação de Fenton, definida hoje como a geração catalítica de radicais hidroxila a 

partir da reação em cadeia entre o íon ferroso (Fe
2+

) e o peróxido de hidrogênio (H2O2), tem 

demonstrado ser bastante eficiente na oxidação de compostos orgânicos tóxicos e não 

biodegradáveis (CASTRO, FARIA 2001). 

http://www.quimica.ufpr.br/tecnotrat/fotocatalise.htm
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O mecanismo de geração catalítica de radicais hidroxilas está descrito em Flaherty e 

Huang (2003), (Equações 8 a 13): 

Fe
2+

  +  H2O2  Fe
3+

  +  OH
-
  +  HO

.
                                            (8) 

Fe
2+

  +  HO
.
  Fe

3+
  +  OH

-
                                             (9) 

H2O2  +  HO
.  

HO2
.
 +  H2O                                           (10) 

Fe
2+

  +  HO2
.
  Fe

3+
  +  HO2

-
  H2O2                                         (11) 

Fe
3+

  +  HO2
.
  Fe

2+
  +  H

+
  +  O2                                                    (12)  

Fe
3+

  +  H2O2  Fe
2+

  +  HO2
.
  +  H

+
                                          (13) 

Com excesso de íons Fe
2+

 ocorrem preferencialmente as reações (8) e (9); com o 

excesso de H2O2 ocorrem preferencialmente as reações (8), (10) e (11) e as reações (12) e (13) 

são desprezíveis. Para concentrações semelhantes de Fe
2+

 e H2O2 ocorrem apenas as reações 

(8), (9), (10) e (11) (CASTRO, FARIA 2001). 

Mertz e Waters (1949) demonstraram que a oxidação da matéria orgânica com 

reagente de Fenton pode ocorrer através de um mecanismo de reação em cadeia na qual a 

etapa limitante é a formação de radicais hidroxilas  (Equações 14 a 19) (CASTRO, FARIA 

2001): 

Fe
2+

  +  H2O2  Fe
3+

  +  OH
-
  +  HO

.
                                          (14) 

R-H  +  HO
.
  R

.
  +  H2O                                           (15) 

R
.
  +  H2O2  ROH  +  HO

.
                                           (16) 

Fe
2+

  +  HO
.
  Fe

3+
  +  OH

-
                                           (17) 

R
.
  +  HO

.
  ROH                                            (18) 

2 R
.
   Produtos                                           (19) 

O estudo da cinética da reação depende do tipo de substrato orgânico presente no 

efluente.  É consensual que a temperatura, a quantidade de matéria orgânica, as concentrações 

de peróxido e de ferro influenciam na velocidade de reação. Vários estudos indicam que a 

reação global com reagente de Fenton é de primeira ordem em relação à concentração do 

substrato orgânico no efluente (CASTRO, FARIA 2001). 

Rossetti et al., (2002), numa  aplicação de um sistema POA (Foto-Fenton) usando luz 

solar, juntamente com um tratamento bioquímico, puderam tornar viável, técnica e 

economicamente, o processo de tratamento em águas poluídas. Verificaram que em altas 

concentrações de sulfetos, após o tratamento convencional, estas águas apresentaram altos 

teores de enxofre, porém  devido ao alto poder oxidante do radical hidroxila gerado neste 
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processo, esses íons sulfetos foram  oxidados a íons sulfatos, eliminando o problema 

ambiental causado pelos íons sulfetos.  

O tempo de vida dos estados excitados, variando entre nano e picosegundos, permite o 

estudo de reações químicas rápidas, modos de transferência de energia e determinação de 

estruturas moleculares complexas (SILVA, 2002).  

Faust e Hoigné (1990) identificaram a influência da luz sobre o íon férrico em meio 

aquoso. Descobriram que a irradiação no processo Fenton com UV próximo e luz visível 

melhora o rendimento, regenerando o ferro II e fechando o ciclo catalítico que idealmente 

produz dois radicais hidroxila para cada molécula de peróxido inicialmente decomposto. 

Além disso, não se faz necessária a adição de quantidades estequiométricas de ferro ao 

processo. A desvantagem da reação de Fenton reside no fato de que este não possui uma ação 

prolongada, cessando tão logo todo o peróxido tenha sido decomposto, necessitando de 

quantidades estequiométricas de H2O2, em relação ao pH da amostra. A adição de ácido ao 

meio é muitas vezes dificultada e sua manipulação torna-se difícil quando em matrizes 

ambientais reais por causar perturbações ainda mais graves que a própria contaminação em si.  

Pignatello (1992) foi o primeiro a sugerir a utilização da reação Fenton como um método 

potencial de tratamento de efluentes. 

O processo homogêneo, foto-Fenton, tem algumas desvantagens, tais como (i) a faixa 

de pH em que a reação prossegue, (ii) a necessidade de recuperar o catalisador precipitado 

após o tratamento e (iii) desativação por alguns agentes complexantes de íons como fosfatos.  

Reagente de Fenton (Fe
2+

 / H2O2) é conhecido por ter funções diferentes nos tratamentos, 

quando a quantidade de Fe
2+

 empregada excede a de H2O2, o tratamento tende a ter o efeito de 

coagulação química, quando os dois valores estão invertidos, o tratamento tende a ter o efeito 

de oxidação química (KHATAEE, KASIRI 2010).  

Em relação ao pH, Sedlak e Andren (1991) relataram valores de pH entre 3 e 5 como o 

mais eficaz para a oxidação de clorobenzeno. Por outro lado, outros autores como Lypezynska  

(1994) e Moffett (1987) encontraram para outras condições de pH, como o neutro, ótimo para 

degradar nitrobenzeno, fenol ou aminas, devido à contribuição de Fe(OH)
+
 que reage mais 

rapidamente com peróxido de hidrogênio para produzir radicais hidroxila. Em pH elevado, 

existe a formação de complexos de Fe
3+

 ou hidróxidos, que são favorecidos e geram os 

radicais hidroxila assim descritos pelos autores Jeong e Yoon (2005) e Bossmann (2001), 

(apud DURAN et al., 2006). 
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A geração de •OH a partir da fotólise de espécies de Fe(III) foi também observada em 

processos de oxidação em ambientes aquáticos, considerada a responsável pela oxidação de 

hidrocarbonetos em águas superficiais. Em solução aquosa, íons férricos existem como aquo-

complexos, como por exemplo [Fe(H2O)6]
3+

. Com o aumento do pH, ocorre hidrólise 

formando espécies hidroxiladas, cuja proporção depende do pH. O primeiro equilíbrio de 

hidrólise está representado na Equação 20, em que para maior simplicidade foram omitidas as 

águas de hidratação (NOGUEIRA et al., 2005): 

Fe
3+

 + H2O → Fe(OH)
2+ 

+ H
+
                                                                                    (20) 

Quando complexos de Fe(III) são irradiados, ocorre a promoção de um elétron de um 

orbital centrado no ligante para um orbital centrado no metal, chamada de transferência de 

carga ligante-metal, que implica na redução de Fe(III) a Fe(II) e oxidação do ligante (Equação 

21), formando radical hidroxila (NOGUEIRA et al. 2005): 

Fe(OH)
2+

 + hν → Fe
2+

 + ·OH                                                                                    (21) 

O Fe
2+

 gerado durante irradiação, quando na presença de peróxido de hidrogênio, 

reage com este dando sequência à reação de Fenton. Neste contexto, a reação é catalítica e é 

estabelecido um ciclo em que Fe
2+

 é regenerado (NOGUEIRA et al., 2005). 

O íon férrico (Fe
3+

) apresentado na Equação 22, também pode levar à produção de 

radical hidroperoxila e gerar íons ferrosos. Este processo é conhecido como Fenton-like ou 

tipo-Fenton. A velocidade de remoção de poluentes por este tratamento é bem menor que a 

catalisada por Fe
2+

; entretanto, apresenta como vantagem a existência abundante do ferro 

neste estado de oxidação e o menor custo (SCAL, 2010). 

 Fe
3+

 + H2O2 → Fe
2+

 + HO2● + H
+                                             

                                              (22)  

As seguintes suposições são ditas verdadeiras no processo de fotodegradação: (i) a 

aproximação para estado estacionário pode ser aplicada para radicais altamente reativos, tais 

como ·OH e HO2· ; (ii) as reações de terminação radical-radical têm velocidades semelhantes 

às velocidades das reações de propagação, (iii) a concentração do íon ferroso é mantida 

constante durante o tempo de reação e (iv) a concentração de oxigênio está sempre em 

excesso (SILVA, 2002). 

Toda a complexidade descrita anteriormente gera inúmeras dificuldades para o estudo 

da cinética destas reações, pois o mecanismo de oxidação de poluentes orgânicos tem sido 

tratado como um mecanismo de radicais, porque o processo não segue uma ordem de reação 
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definida e isto reforça as teorias de que reações fotoquímicas não podem ter sua cinética 

estudada por modelos de reações térmicas. Wang e Lemley (2001) observaram que as reações 

fotoquímicas, em geral, são reações muito rápidas, o que torna muito difícil medir a influência 

da temperatura neste processo, porém, a mesma parece ser diretamente proporcional, ou seja, 

quando se aumenta a temperatura aumenta a velocidade de reação, embora com pouca 

influência (SILVA, 2002). 

Silva (2002) comenta que do ponto de vista fotoquímico, são dois os principais 

mecanismos de fotólise dos constituintes do petróleo: via oxigênio singlete e via radical livre, 

ambos sendo extremamente prejudiciais aos seres vivos microscópicos. Em ambos os casos, 

são geradas espécies altamente reativas, capazes de agir sobre moléculas orgânicas, inclusive 

de organismos vivos. Os Plânctons dificilmente sobrevivem em presença de radicais e 

principalmente de oxigênio singlete. Estudos mostram que um ano após o derramamento de 

petróleo ocorrido durante a Guerra do Golfo Pérsico em 1991, ainda foram encontrados 

produtos de oxidação. 

Dominguez et al., (1998) observaram que a fotodegradação de substâncias orgânicas 

pode atingir a mineralização total , sendo o tempo de degradação o único diferencial entre as 

várias substâncias. O tempo será tanto maior quanto mais estável for a substância a ser 

degradada. Por exemplo, hidrocarbonetos aromáticos, como o fenol, degradam mais depressa 

que hidrocarbonetos lineares como o heptano, ou o octano e isto ocorre porque os aromáticos 

têm em sua estrutura um número maior de regiões de maior densidade eletrônica e sua 

oxidação requer uma menor energia de ativação. Serrano e Lasa (1997) observaram que 

compostos clorados e oxigenados sofrem degradação bastante rápida, enquanto moléculas que 

não possuem pontos sujeitos a ataques eletrofílicos são mais estáveis ao ataque pelo radical 

hidroxila. 

No tratamento de águas residuais, com a aplicação dos processos Fenton e foto-

Fenton, a modelagem cinética fenomenológica, em geral é bastante complexa. Isto é causado 

pela complexidade de resolver as equações que envolvem o balanço de energia radiante, a 

distribuição espacial da radiação absorvida, transferência de massa, e os mecanismos de 

degradação fotoquímica ou fotocatalítico envolvendo as espécies radicalares. Desde que o 

processo depende de vários fatores, a modelagem desses processos envolve muitos problemas. 

É evidente que esses problemas não podem ser resolvidos através de correlação linear simples 

multivariada. Redes neurais artificiais são agora comumente usadas em muitas áreas da 
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química e representam um conjunto de métodos que podem ser úteis na solução de tais 

problemas. Uma das características de modelagem baseada em RNA é que ele não exige a 

descrição matemática dos fenômenos envolvidos no processo (KHATAEE, KASIRI 2010).  

Os processos Fenton e foto-Fenton aqui descritos apresentam eficiência na oxidação 

de uma ampla variedade de compostos orgânicos. Vários fatores influenciam a velocidade de 

degradação, como a estrutura química do contaminante, pH, concentração de ferro e de 

peróxido de hidrogênio e a carga orgânica presente. A simplicidade de aplicação dos 

processos e sua alta eficiência de degradação, principalmente quando sob irradiação, são seus 

principais atrativos. 

 

3.7 Cromatografia Gasosa com Detector por Espectrometria de Massa (CG-EM)  

A Cromatografia Gasosa com Espectrometria de Massa (CG-EM) é uma das 

ferramentas mais importantes da química analítica moderna, porque ela associa a 

característica única da cromatografia, que é a separação dos diversos componentes da amostra 

à capacidade da espectrometria de massa de identificação dos mesmos.  

A Tabela 7 apresenta uma relação de 15 HPA com os seus parâmetros de identificação 

(tempo de retenção/ordem de eluição e íons característicos).  

Para análise quantitativa por CG-EM é necessário o uso de uma técnica de resposta 

como a do íon seletivo, ou SIM ( do inglês, Selective Ion Monitoring), através da monitoração 

dos fragmentos de cada composto estudado e com isso obter limites de detecção na faixa de 

concentração de μg kg
-1

. Quando os compostos alvos são os HPA é necessário escolher com 

muito cuidado quais fragmentos serão monitorados, caso contrário a ausência de apenas um 

fragmento contido na programação é suficiente para que todo o pico não seja integrado. A 

USEPA disponibiliza no seu método 8270D uma tabela com os principais fragmentos de 

vários compostos orgânicos semivoláteis, dentre eles os HPA (MOZETO et al., 2006). 
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TABELA 7 - Tempos de retenção obtidos para cada HPA e seus respectivos padrões interno (PI) e 

secundário (PS), bem como a ordem de eluição  

Composto Íon Principal 

 (relação massa 

e carga) 

Íons 

Secundários 

Tempo de 

retenção 

Ordem de 

eluição 

Acenafteno 154 153,152 7.737 3 

Acenaftileno 152 151,153 7.394 2 

Antraceno 178 176,179 11.285 6 

Benzo(a)antraceno 228 229,226 19.909 9 

Benzo(a)pireno 252 253,125 23.664 12 

Benzo(b)+(k)fluoranteno 252 253,125 22.914 11 

Benzo(g,h,i)perileno 276 138,277 26.665 15 

Criseno 228 226,229 20.025 10 

Dibenzo(a,h)antraceno 278 139,279 26.149 14 

Fenantreno 178 179,176 11.156 5 

Fluoranteno 202 101,203 14.894 7 

Fluoreno 166 165,167 8.763 4 

Indeno(1,2,3-cd)pireno 276 138,227 26.084 13 

Naftaleno 128 129,127 5.046 1 

Pireno 202 200,203 15.630 8 

              Fonte:GUIMARÃES et al., 2010 

 

3.8 Carbono Orgânico Total  

Na prática, o carbono orgânico total (COT) pode ser proveniente de fontes naturais e 

antrópicas e mesmo que não seja diretamente responsável por perigos para a saúde humana, a 

sua determinação é importante para todo o tipo de água. Pesquisadores devem considerar que 

COT depende do tipo da água medida, mas também é afetado por vários parâmetros, como 

temperatura, salinidade, pH, atividade microbiana e da vegetação circundante. 

Consequentemente, o valor COT é altamente variável: de menos de 1  mg / L no subsolo ou 

águas do mar, a 2-10 mg / L em águas do lago ou rio, até 10 g / L em pântanos e mangues. 

Outros pontos de preocupação são a interpretação útil da variação do valor COT durante o 

tempo e a investigação do conhecimento dos compostos responsáveis por seu valor (VISCO et 

al., 2005). 

Visco (2005) comenta que várias normas européias fornecem orientações para a 

correta determinação do carbono orgânico em águas, cujo conteúdos de COT para águas 

residuárias variam de 0,1 a 10.000 mg/L, enquanto valores mais baixos são previstos apenas 
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em casos especiais, tais como, por exemplo, água potável ou água ultrapura para a indústria 

eletrônica (microprocessadores) e de fármacos. Nestes casos, um instrumento muito sensível é 

necessário. 

Em todos os países, a análise do COT é reconhecida como o índice mais adequado 

para o controle de resíduos civil e industrial. Seguindo as regras de instrumentação, o carbono 

orgânico total é uma medida indireta da presença de átomos de carbono orgânico em águas 

sem qualquer informação sobre a natureza e a estrutura da matéria orgânica. Em águas 

poluídas, o COT é principalmente devido às contribuições antrópicas, tais como fertilizantes, 

pesticidas, surfactantes, solventes provenientes de seu uso direto ou de estações de tratamento 

de esgoto ineficiente (VISCO et al., 2005). 

A determinação do COT é baseada na oxidação quantitativa da matéria orgânica 

contida na solução e a medição instrumental do CO2 produzido é estequiometricamente 

correlacionada com o valor de COT. Diferentes moléculas orgânicas são completamente 

oxidadas em diferentes condições experimentais. A maioria das substâncias recalcitrantes, 

geralmente mais tóxicas, exige condições muito drásticas; sendo assim, as reações COT 

testam a tecnologia analítica destes instrumentos capazes de garantir uma oxidação completa 

(mineralização) de todos os compostos orgânicos possíveis (VISCO et al., 2005). 

Matrizes de água podem conter carbono inorgânico: CO2 dissolvido, carbonato e 

bicarbonato. Para discriminar entre o carbono inorgânico e CO2 produzido a partir da 

oxidação de moléculas orgânicas na amostra, duas abordagens gerais são usadas para medir 

COT. Uma abordagem determina COT, subtraindo o valor medido de carbono inorgânico 

total (CIT) do valor medido de carbono total (CT), que é a soma do carbono orgânico e 

carbono inorgânico: COT = CT – CIT  

A outra abordagem, primeiro limpa o CIT, a partir da amostra antes de qualquer 

medida de carbono orgânico ser realizada. No entanto, este passo, CIT, purga também 

algumas moléculas orgânicas como benzeno, tolueno, ciclohexano e clorofórmio em parte 

pode escapar em stripping que podem ser oxidadas a CO2 e quantificadas como carbono 

orgânico purgável (COP). O restante da matéria orgânica na amostra também é oxidado a CO2 

e quantificados como carbono orgânico não purgável (CONP). Nesta abordagem, COT é a 

soma de COP e CONP. Figura 2 resume as relações a partir da definição anterior mencionado.  
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FIGURA 2 -  Carbono na água (VISCO et al., 2005). 

3.9 Toxicidade  

Análises físico-químicas podem quantificar e qualificar substâncias presentes nos 

efluentes, mas nada dizem sobre seus efeitos biológicos, que podem ser diferentes quando 

presentes em misturas. Ensaios de toxicidade determinam o potencial tóxico de um agente 

químico, biológico ou de uma mistura complexa, cujo efeito pode ser mensurado  através da 

resposta de organismos vivos testes, que pode ser observada através de parâmetros como: 

morte, falta de locomoção, diminuição da emissão de luz, diminuição da capacidade 

reprodutiva, etc. 

 Segundo Cammarota (2011), existem dois tipos de toxicidade que devem ser 

abordadas em relação à toxicidade das águas: 

a) Toxicidade aguda: é a quantidade de composto tóxico ou mistura de substâncias 

tóxicas que provoca inibição em 50% dos organismos testados. Pode ser representada por 

várias siglas, como dose letal (DL50), concentração do efeito não observado (CENO), 

concentração letal (CL50) e concentração efetiva (CE50). Os efeitos agudos são observados em 

até 96 horas. 

b) Toxicidade crônica: são informações a respeito da toxicidade cumulativa de um 

agente tóxico. Os efeitos são subletais e permitem a sobrevida do organismo, afetando suas 

funções biológicas. Os organismos são expostos durante pelo menos a metade de um estágio 

da vida, e estas análises resultam na determinação da máxima concentração admissível do 

tóxico (MCAT) e na determinação da CENO crônica.  
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Efluentes, mesmo tratados, lançados continuamente num corpo receptor, podem 

provocar efeitos crônicos, quando os organismos aquáticos são expostos mesmo que em 

baixas concentrações de determinados poluentes por longos períodos de tempo. Neste caso, 

por consequência destes lançamentos, alguns  bioindicadores são usados de acordo com 

normas estabelecidas.  

Os bioindicadores mais usados para este teste são: bactérias, algas, crustáceos, 

bivalves, peixes e plantas aquáticas. No Brasil a ABNT tem várias normas relativas a esses 

testes (NBR 12173 a 12176, NBR 12648, NBR 13373). A Companhia de Tecnologia de 

Saneamento Ambiental (CETESB-SP) também estabeleceu normas sobre toxicidade (L 5.018 

a 5.022, L 5.277, L 5.228), o mesmo ocorrendo com a Fundação Estadual de Engenharia do 

Meio Ambiente do Rio de Janeiro  (FEEMA-RJ) (MF 451 a 459). A Tabela 8 indica quais os 

organismos testes mais utilizados em ensaios de toxicidade.  

 

TABELA 8 -  Organismos testes mais utilizados em ensaios de toxicidade 

Organismo Ensaio Resposta 

Peixe Danio Rerio Toxicidade aguda – água doce 

(CL50) 

Morte de indivíduos jovens após 

48 a 96 h 

Microcrustáceos Daphinia 

Magna, D. Similis 

Toxicidade aguda – água doce 

(CE50) 

Imobilização de indivíduos jovens 

(de 6 a 24 h de idade) após 24 a 48 

h 

 Microcrustáceo Artemia 

Salina 

Toxicidade aguda – água 

salgada (CL50) 

Morte após exposição dos 

organismos (com 24h de vida após 

eclosão dos ovos) por um período 

de 24h 

Bactérias Photobacterium 

phosphoreum, vibrio fisheri 

(microtox) 

Toxicidade aguda – água 

salgada (CE50) 

Redução da bioluminescência após 

15 min 

    Fonte: CAMMAROTA, 2011. 

Um organismo amplamente utilizado para avaliar a toxicidade de efluentes é a Artemia 

salina (Crustácea, Anostraca) que é um microcrustáceo de água salgada, o qual é utilizado 

como alimento vivo para peixes, sendo seus cistos encontrados facilmente em lojas de 

aquaristas. O ciclo de vida da Artemia se inicia pela eclosão de cistos dormentes, os quais são 

embriões encapsulados metabolicamente inativos. Esses cistos podem permanecer no estado 

dormente por muitos anos, desde que mantidos em lugar sem umidade. Quando esses cistos 

http://www.google.com.br/url?sa=t&rct=j&q=feema%20rj&source=web&cd=1&sqi=2&ved=0CDoQoAIwAA&url=http%3A%2F%2Fwww.inea.rj.gov.br%2F&ei=EBi8Tv67JoqbtwfZ_tWvBw&usg=AFQjCNE5lhEXVozYqnY3puKTcIv_rheJzg
http://www.google.com.br/url?sa=t&rct=j&q=feema%20rj&source=web&cd=1&sqi=2&ved=0CDoQoAIwAA&url=http%3A%2F%2Fwww.inea.rj.gov.br%2F&ei=EBi8Tv67JoqbtwfZ_tWvBw&usg=AFQjCNE5lhEXVozYqnY3puKTcIv_rheJzg
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entram em contato com água salgada, eles se tornam hidratados e reassumem o seu 

desenvolvimento (MATTHEUS, 1995). 

Mattheus (1995), também menciona que além dos organismos testes mencionados, 

também podem ser utilizadas enzimas, pois, os compostos tóxicos afetam a atividade 

enzimática e o grau de inibição dessa atividade pode ser quantificado em ensaios in vitro, 

permitindo estimar a toxicidade causada pelos compostos presentes no efluente. As enzimas 

mais utilizadas são: desidrogenases, ATPases, esterases, fosfatases, ureases e luciferases, 

entre outras. Os testes com enzimas são rápidos e de custo relativamente baixo, mas sua 

aceitação e padronização por instituições e agências ainda estão em andamento. 

 

3.10 Redes Neurais Artificiais 

São técnicas computacionais que apresentam um modelo matemático inspirado na 

estrutura neural de organismos inteligentes para simular o processo de aprendizagem dos 

neurônios no cérebro humano, as Redes Neurais Artificiais (RNA) permaneceu pouco 

estudada por muito tempo, sendo utilizada basicamente no reconhecimento de imagens. Um 

breve histórico de redes neurais é apresentado por Nelson e Illingworth (1991), outra 

referência geral pode ser vista no livro de Dayhoff (1990), (apud SILVA, 2002). 

No aprofundamento das pesquisas foi desenvolvido o “Perceptron” (Figura 3) na 

década de 1950, várias tentativas foram feitas de se imitar o desempenho do cérebro humano 

através de dispositivos capazes de aprender por treinamento, entretanto, somente a partir da 

década de 1980, resultados realmente positivos foram obtidos, estes dispositivos foram 

denominados redes neurais artificiais (MAITELLI et al., 2008). 

 

 

FIGURA 3 – Perceptron (ARAUJO et al., 2011). 
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Os termos “Redes Neurais”, ”Conexionismo”  e “Computação Distribuída Paralela” 

são sinônimos, e referem-se às máquinas (dispositivos) que, ao contrário dos computadores 

convencionais, têm uma estrutura que busca em algum nível refletir o que se conhece sobre a 

estrutura de funcionamento do cérebro humano. De forma bastante simples, pode-se dizer que 

uma rede neural é um programa de computador que tenta imitar a intricada estrutura de 

funcionamento do cérebro humano, refletindo no comportamento de uma máquina que 

aprende situações de causa-efeito. Os estudos de redes neurais podem muito bem ser 

enquadrados na área de Inteligência Artificial, que é uma área da computação cujo interesse 

consiste em elaborar programas de computador baseados no funcionamento do cérebro 

humano (MAITELLI et al., 2008). 

Caudill (1991) faz um estudo das principais características das redes neurais 

comparando-as com outras técnicas de inteligência artificial, principalmente os sistemas 

especialistas, que são baseados em regras muito bem determinadas (previsíveis e explicáveis) 

desenvolvidas a partir de conhecimento obtido diretamente de especialistas, tendo sua base 

construída, portanto, em Regras Heurísticas; sendo assim, normalmente não possui nenhuma 

capacidade de extrapolar fatos ou generalizar conclusões. Na Tabela 9 se resumem estas 

comparações. 

 

TABELA  9– Comparação rede neural versus sistemas especialistas 

Características Rede Neural 

 

Sistemas Especialistas 

 

 

Capacidade de explicação pouca ou nenhuma excelente 

Aquisição de conhecimento números de exemplos 

 

especialistas 

Softwares disponíveis Poucos grande números 

Tempo de desenvolvimento poucas semanas ou meses 12 a 18 meses 

Manutenção do sistema Simples muito complexa 

Velocidade de processamento mais rápida demorada 

Fonte : CAUDILL, 1991 

Há um grande número de tipos de redes que são estudados atualmente, que vão desde 

um simples perceptron (para o qual foi desenvolvido o primeiro algoritmo de treinamento) até 

redes reticuladas com fluxo de processamento de informações bastante complexo. No entanto, 

o maior número de aplicações práticas conhecidas (cerca de 95%) concentra-se no tipo de 

redes multicamadas diretas.  
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A primeira conferência sobre redes neurais foi realizada em 1987 pelo Instituto 

Americano de Engenharia Elétrica e Eletrônica, tendo sido descrita nesta ocasião como “o 

despontar de uma nova era”. Nela, os cientistas expuseram procedimentos computacionais 

inspirados em redes celulares dos cérebros humanos. Depois desta data ocorreu um aumento 

significativo no número de pesquisas e de trabalhos publicados nesta área. Foram formadas 

sociedades mundiais de pesquisa e o tema tem sido abordado pelos principais centros de 

computação, principalmente na área de Engenharia Elétrica (MAITELLI et al., 2008). 

A origem das RNA (redes neurais artificiais) é baseada nos modelos utilizados para 

descrever os neurônios biológicos de animais vertebrados (KOVÁCS 1996; HAYKIN 1994). 

Elas se compõem de unidades de processamento simples, os neurônios, que calculam 

determinadas funções matemáticas, em geral não lineares e são baseados em como se pensa 

que o cérebro funciona (BRAGA et al., 2000). 

Os neurônios biológicos são compostos basicamente de três partes: o corpo celular ou 

soma, os dendritos e o axônio (Figura 4). Os dendritos recebem as informações oriundas de 

outros neurônios e os conduzem até o corpo celular. No corpo celular a informação é 

processada e novos impulsos são gerados e transmitidos através do axônio aos dendritos de 

outros neurônios (BRAGA et al., 2000). 

 

FIGURA 4- Estrutura básica de um neurônio. a) neurônio da medula espinhal , b) neurônio do 

cerebelo (GIROTO, 2002). 

O ponto de contato entre o axônio de um neurônio e o dendrito de outro é chamado de 

sinapse. As sinapses são válvulas capazes de controlar o fluxo de informação entre os 

neurônios da rede. Os sinais vindos dos neurônios pré-sinápticos são passados para o corpo 

dos neurônios pós-sinápticos, onde são comparados com outros sinais recebidos pelo mesmo. 

Quando a soma dos impulsos ultrapassa o limiar de excitação do neurônio biológico, este 

produz um impulso elétrico (GIROTO, 2002). 
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Quanto ao corpo do neurônio artificial, este é emulado por uma função simples que 

soma os valores de cada entrada multiplicada pelo seu peso (soma ponderada) e, o resultado é 

submetido a uma função de ativação que „dispara‟ o neurônio artificial se o valor for superior 

a um limite adotado (BRAGA et al., 2000). 

Teoricamente, a aplicação de redes neurais para aproximação funcional pode ser 

analisada usando-se o teorema de Wierrstrass Haaser (1971). Este teorema afirma, 

basicamente, que qualquer função contínua de valores reais definida em intervalo limitado 

pode ser aproximada por um polinômio. Se a função de ativação de cada elemento da rede 

neural for uma função contínua de valor real, ela também poderá ser aproximada por um 

polinômio e consequentemente a relação funcional de entrada e saída da rede poderá também 

ser aproximada por um polinômio. Assim sendo, será sempre possível definir uma rede neural 

de múltiplas camadas para atuar como aproximação de um mapeamento não linear específico. 

Modelos com redes neurais artificiais exibem o comportamento baseado em regras de 

sistemas inteligentes sem, no entanto, conter qualquer representação explícita das regras. Ao 

contrário da utilização de regras explícitas, os modelos de redes neurais baseiam-se em um 

número de elementos de processamento bastante simples (neurônios), os quais interagem 

através de um conjunto de conexões unidirecionais ponderadas. O conhecimento é 

internamente representado pelos valores dos pesos e pela topologia (forma) das conexões. A 

aprendizagem envolve a modificação dos valores dos pesos das conexões. As redes podem 

aprender e adaptar-se às entradas de processos, permitindo a representação de sistemas 

complexos de engenharia, os quais seriam difíceis de serem modelados pela abordagem 

tradicional (modelagem empírico-determinística). 

O interesse na aplicação das redes neurais para a engenharia química tem aumentado 

nestas últimas décadas; ela tem sido utilizada para o desenvolvimento de modelos de 

equipamentos como reatores, na modelagem dinâmica para controle de processos, inferência 

de sistemas dentre outros (MAITELLI et al., 2008). 

Desta forma, as redes neurais artificiais parecem ser particularmente adequadas para 

tarefas de engenharia de processos químicos que requerem o conhecimento de sinal ou 

controle de entrada e saída contínuos em processos com modelos ou dados incertos. Várias 

áreas de engenharia de processos químicos, tais como, detecção e diagnóstico de falhas, 

controle de processos, projeto de processos e simulação de processos, Soft Sensors, podem 

tirar vantagem destas propriedades descritas acima (CAUDILL, 1991). 
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Uma característica dos processos químicos é que a maioria deles apresenta fortes não 

linearidades, as quais dificultam a obtenção de modelos fenomenológicos, a ponto de, em 

alguns casos, conseguir-se apenas um modelo extremamente simplificado, válido em 

condições muito específicas. Assim, as redes neurais surgem como uma técnica interessante 

devido a sua característica de „aprender‟ o que ocorre no processo, podendo-se contornar as 

dificuldades de obtenção de modelos fenomenológicos. Entretanto, o sucesso da modelagem 

de processos via redes neurais depende do conhecimento das principais variáveis do processo 

(selecionar as variáveis que têm influência real sobre o processo em estudo), além de ser 

necessária uma base de dados que contenha todas as informações do processo e abranja o 

domínio desejado (ter em mãos o máximo de informação sobre o processo e as variáveis em 

estudo) (SILVA, 2002).  

Por mais diversas que sejam as aplicações existentes de redes neurais, o aspecto 

comum a todas elas é que a rede é capaz de estabelecer associações entre entradas e saídas 

conhecidas (pares de entrada-saída de um dado sistema), através da experimentação de um 

grande número de situações; as informações de entrada são colocadas em uma rede de 

nódulos (neurônios artificiais) que interagem matematicamente entre si; baseado nestas 

informações surge um mapeamento do modelo entrada/saída macroscópico esperado, ou seja, 

as interações entre os nódulos são bem definidas e ajustadas até que as relações entrada/saída 

desejadas sejam apropriadamente obtidas. Assim sendo, verifica-se que as redes neurais 

artificiais se preocupam intimamente com o modo com que as relações se desenvolvem, ao 

contrário da maior parte das aplicações de inteligência artificial, por exemplo, os Sistemas 

Especialistas (CAUDILL, 1991). 

Uma característica marcante das redes neurais é a sua total independência do 

conhecimento da natureza fenomenológica do processo que se vai abordar, de modo que tal 

abordagem torna-se interessante quando as regras de um determinado processo não são 

determinísticas ou são muito complexas, como por exemplo, problemas onde ocorrem 

variáveis não-lineares. Tais problemas podem ser resolvidos com o uso de redes neurais 

artificiais, pois os neurônios artificiais apresentam resposta não-linear e são altamente 

conectados, podendo mapear uma relação de entrada-saída (MAITELLI et al., 2008). 

Tratamento de águas residuais através da aplicação de processos foto-oxidativo é, em 

geral, bastante complexa. As equações matemáticas que descrevem o desempenho dos 

processos envolvem o balanço de energia radiante, a distribuição espacial da radiação 
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absorvida, transferência de massa, e os mecanismos que envolvem as espécies radicalares. 

Um problema tão complexo não pode ser resolvido por correlação linear simples ou 

multivariada nem por modelos deterministicos. As RNA são muito úteis para resolver este 

problema, pois não exigem a descrição matemática dos fenômenos envolvidos no processo, 

somente se utilizam dos dados de entrada e saída do processo (modelo caixa preta) 

(KHATAEE, KASIRI 2010). 

As etapas para o desenvolvimento de um modelo de rede neural são: análise de 

processo e construção da base de dados, configuração de uma estrutura de rede neural e, por 

último, treinamento ou aprendizado da rede (SILVA, 2002). 

3.10.1 Aproximação por Redes Neurais 

Redes neurais artificiais são compostas de vários elementos (Figura 5) computacionais 

simples (nódulos- neurônios artificiais) que interagem localmente. A arquitetura destes 

modelos é especificada pelas características dos neurônios, topologia da rede e algoritmo de 

treinamento (QUANTRILLE et al.,1991). 

 

FIGURA 5 – Características das Redes Neurais (QUANTRILLE et al.,1991). 

Os nódulos em redes neurais artificiais são processadores bastante simples inspirados 

por seus similares biológicos (neurônios cerebrais). A Figura 6 mostra a anatomia deste 

elemento de processamento onde a maioria dos cálculos são efetuados, Equação 23.   
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                                                         f(∑i
n
 = 1 (wij . ai) –Thj                                                 (23)                                                 

 

 

FIGURA 6 -Anatomia do J-ésimo nódulo (neurônio artificial) (QUANTRILLE et al.,1991). 

Os valores dos componentes do vetor-entrada “a” têm um efeito sobre a saída “b” do 

neurônio, mas alguns componentes adicionais do nódulo também afetam “b”, o Wij que é 

correspondente ao componente do “ai” de entrada do j-ésimo nódulo. Cada ent rada é 

multiplicada pelo seu fator ponderal respectivo e esta entrada ponderada é utilizada para os 

próximos cálculos. Estes fatores ponderais, ou pesos, podem assumir efeitos inibitórios ou 

excitatórios. Se Wij é ajustado tal que o produto Wijai seja positivo (e de preferência grande), 

a tendência é de excitação do neurônio “j”. Se Wijai for negativo, esta entrada ponderada 

inibirá o nódulo. Se Wijai assumir um valor muito pequeno em relação aos outros sinais (ou 

entradas ponderadas Wijai), o efeito será muito pequeno ou nulo sobre o nódulo 

(QUANTRILLE et al.,1991). 

A atividade residual interna do J-ésimo nódulo, Thj, controla a ativação total do 

nódulo. O nódulo primeiro calcula o somatório de todas as entradas ponderadas e depois 

calcula a ativação total pela subtração do valor residual interno Equação 24: 

                          Ativação Total = ∑i
n
 = 1(wij . ai) - Thj                                                         (24) 

Se Thj tem valor grande e positivo, o nódulo tem uma ativação residual interna alta, o 

que inibe a excitação do mesmo. Ao contrário, se Thj for nulo ou assumir valores negativos 

(em alguns casos), o neurônio artificial tem uma baixa ativação residual interna, sofrendo 

excitação mais facilmente; se nenhuma ativação interna for especificada, deve-se assumir Thj 

nulo (QUANTRILLE et al. 1991).  

Verifica-se então que o neurônio artificial (Figura 7) realiza seus cálculos (Equação 

25) baseados em suas informações de entrada. Ele faz o somatório do produto entre os vetores 

“a” e “wJ”, subtrai a ativação residual interna e então passa este resultado para uma forma 

funcional, f( ), ou seja: 

           f(wjA – Thj) = f(∑i
n
 = 1 (wij . ai) –Thj)                                                  (25) 

a1 

a2 

a3 

Wij Thj 

Bj 

Wij 
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FIGURA 7 -  Neurônio ampliado (QUANTRILLE et al.,1991). 

Esta forma funcional poderia ser qualquer função como logarítmica, exponencial, raiz 

quadrada etc., mas os matemáticos e cientistas da computação reportam que as funções 

sigmoidais são vantajosas para esta aplicação. A função típica utilizada pode ser representada 

pela Equação 4 e Figura 8. 

                                                                  (4) 

                                  

FIGURA 8 - Função sigmoidal (QUANTRILLE et al.,1991). 

Esta é uma função monotonamente crescente, com valores limitantes de 0 em X  - e 

1 em X +. Por causa destes limites, as funções sigmoidais são chamadas de funções de 

valores residuais. Sendo contínuas e monótonas, resultam normalmente em RNA bem 

comportadas, além de propiciarem um treinamento mais rápido e eficiente. 
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3.10.2 Topologia de uma Rede Neural Artificial 

A topologia da rede neural artificial se refere à maneira como os neurônios artificiais 

estão interconectados e organizados em camadas. Existem três opções de conexões de 

neurônios, conforme Figura 9. 

FIGURA 9 - Opções de conexões entre neurônios em RNA (QUANTRILLE et al.,1991). 

Em conexões intracamadas, as saídas de um neurônio alimentam outros neurônios de 

uma mesma camada. Em conexões intercamadas, as saídas de um neurônio em uma camada 

alimentam nódulos de outras camadas. Finalmente, em conexões recursivas, a saída de um 

nódulo alimenta ele próprio. 

Segundo Quantrille e Liu (1991), a conexão intercamadas é particularmente 

importante para as aplicações de engenharia. Dentro destes esquemas de interconexão, 

existem duas opções: as conexões por retroalimentação e por alimentação direta, conforme 

Figura 10. 

 

 
FIGURA 10- Opções de conexões intercamadas (QUANTRILLE et al., 1991). 

 

 

A topologia ideal deve ser escolhida de acordo com a natureza do problema a ser 

resolvido. Segundo os autores acima, para modelagens dinâmicas de equipamentos, o que se 

quer é mapear uma resposta baseada em informações de entrada e saída, para tanto deve ser 

1  2   3  1    2      3  1    2      3 

INTRACAMADA INTERCAMADA RECURSIVA 
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utilizada a conexão intercamada com alimentação direta. Uma rede neural artificial com esta 

topologia também pode ser chamada de “multilayer perceptron” (MLP), por ser menos 

complexa, tem um número maior de teorias matemáticas relacionadas a ela.  

3.10.3 Treinamento da Rede 

O treinamento ou aprendizado supervisionado de uma rede neural visa a obtenção de 

um erro mínimo, medido como sendo a diferença entre saída calculada pela rede e o valor 

desejado (dados conhecidos para a saída desejada), com o objetivo de que esta consiga 

predizer as saídas corretamente mediante a entrada de dados desconhecidos para ela. Este 

processo de aprendizado consiste em ajustes sucessivos dos pesos e, em alguns algoritmos, 

dos resíduos de ativação, de forma a se obter, como já foi dito, os dados de saída da rede os 

mais próximos possíveis dos desejados. Esta é a etapa que exige maior demanda 

computacional na utilização de qualquer rede neural. 

 Para realização deste processo que, na realidade, matematicamente se trata de uma 

otimização, existem alguns algoritmos já estabelecidos que apresentam características 

peculiares nas suas utilizações.  

A maior parte dos algoritmos de treinamento existentes na literatura são baseados nos 

métodos de gradientes descendentes e nos métodos de Newton. As abordagens baseadas nos 

métodos de Newton apresentam, em geral, melhores resultados pelo fato de serem métodos de 

segunda ordem, apresentando uma convergência quadrática próxima ao mínimo. No entanto, 

estes métodos apresentam como limitação o grande espaço de memória requerido e o volume 

de cálculos matriciais envolvido, o que os torna praticamente inviáveis para redes de grandes 

dimensões. Diversos métodos, denominados quase-Newton, têm sido propostos com o intuito 

de reduzir a memória requerida e o volume de cálculos. Estes se baseiam principalmente em 

simplificações na Matriz de Hessian, reduzindo o tamanho desta e simplificando a sua forma 

de cálculo (ROOBITAILLE, 1996; MAITELLI et al., 2008). 

Dentre os algoritmos citados na literatura, pode-se destacar, pela freqüência de 

utilização, dois algoritmos baseados em métodos de otimização diferentes: o de 

Retropropagação (Backpropagation), com a regra do delta generalizado, que é um método de 

gradiente descendente bastante utilizado e citado freqüentemente na literatura; e o método de 

Levenberg-Marquardt, baseado no método quase-newton de mesmo nome e que, a depender 

do tamanho da rede que se esteja utilizando, é muito mais eficiente que o primeiro. 
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O algoritmo de Retropropagação (“Backpropagation”) tem sido utilizado com 

bastante sucesso para o treinamento de redes neurais artificiais em diversas aplicações, sendo 

este o primeiro método que surgiu para o treinamento de uma RNA direta, tendo sido 

desenvolvido por Rumelhart et al. (1986). Este algoritmo ajusta os pesos em uma rede neural 

direta (Figura 11), consistindo de várias camadas internas e uma camada de saída. A meta é 

fazer com que a rede consiga associar estados de saída específicos (dito estados-alvo) a cada 

um dos vários estados de entrada. Tendo “aprendido” as relações fundamentais entre as 

entradas e as saídas, então, a rede neural pode produzir a saída correta a partir de uma entrada 

não vista previamente (MAITELLI et al., 2008). 

 

FIGURA 11 – Mecanismo de Treinamento  (QUANTRILLE et al.,1991) 

O algoritmo Levenberg-Marquardt, é uma aproximação do método de Newton, ele 

melhora o método de Gauss-Newton por meio da utilização de uma taxa de aprendizado 

variável. Proposto para ajuste de pesos da rede por ciclo, este algortimo de treinamento é uma 

técnica de otimização numérica que demanda uma grande quantidade de memória e elevada 

complexidade computacional, o que pode tornar sua utilização ineficiente para redes muito 

grandes; entretanto, a cada dia computadores com maior capacidade de memória e 

processamento são lançados no mercado, minimizando essa restrição (MAITELLI et al., 

2008). 
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O algoritmo utilizado para este trabalho será Levenberg-Marquardt, através do pacote 

computacional comercial MATLAB 8.0. O algoritmo de Levenberg-Marquardt é baseado no 

método quase-Newton de mesmo nome proposto primeiramente por Hagan et al. (1994), e 

que, a depender do tamanho da rede utilizada, é muito mais eficiente que o do primeiro tipo 

(Retroalimentação). 

3.10.4 Trabalhos utilizando POA com modelagem RNA  

Na literatura consultada pode-se observar que as redes neurais vem sendo cada vez 

mais utilizadas na modelagem de POA. As Tabelas 10 e 11 apresentam trabalhos utilizando 

redes neurais artificiais. 

TABELA 10 - Trabalhos de Engenharia Química desenvolvidos no início dos estudos de RNA 

Área Referência 

Modelagem  com detecção e diagnósticos de falhas. Hoskins e Himmelblau – 1988 

Modelagem e controle de processos químicos Bhat, Mcavoy 1990;  Su et al., 1992 

Processos Industriais de polimerização Chan, Nascimento 1994; Nascimento, Giudici 1998; 

Nascimento et al.,1999 

Medição de distribuição granulométrica Guardani e Nascimento et al., 1999  

Previsão de teores de ozônio na atmosfera em áreas 

urbanas 

Guardani  et al.,  1997 

Otimização de unidades industriais Nascimento et al., 2000  

Cinéticas de reações fotoquímicas complexas para 

projetos de reatores fotoquímicos 

Braun et al., 1993 

 

TABELA 11 - Trabalhos desenvolvidos nos estudos de POA e Redes Neurais Artificiais 

Processo de 

tratamento 

Alvo de 

tratamento 

RNAs 

arquitetura 

função de 

treinamento 

Referências 

Foto-Fenton Soluções  

salinas contendo  

gasolina crua 

Feed–forward back 

Propagation 

- Moraes et al., 2004 

(apud Khataee e 

Kasiri 2010) 

Foto-Fenton Reactive Blue 4 Feed–forward back 

Propagation 

Marquardt 

algoritmo de ajuste 

não-linear 

Duran et al., 2008 

(apud Khataee e 

Kasiri 2010) 

Foto-Fenton Imipramina Feed–forward back 

Propagation 

Conjugado 

gradiente 

descendente 

Calza et al., 2008 

Foto-Fenton 2,4-dimetil anilina Feed–forward back 

Propagation 

- Gob et al., 1999 
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Fenton Antibióticos  Feed–forward back 

Propagation 

Levenberg–

Marquard 

Emolla et al., 2010 

Fenton Reactive Blue 

Brilliant e Blue 49 

- - Yu et al 2010., 

(apud Khataee e 

Kasiri 2010) 

Foto-Fenton Ciclo combinado 

com gaseificação 

integrada  (IGCC)  

Feed–forward back 

Propagation 

- Duran et al., 2009 

Foto-Fenton orange II Feed–forward back 

Propagation 

Marquardt 

algoritmo de ajuste 

não-linear 

Monteagudo et al., 

2010 

Foto-Fenton Álcool polivinílico 

(PVA) 

Feed–forward back 

Propagation 

- Giroto et al., 2006 

Foto-Fenton  

(luz solar) 

Fenol Feed–forward back 

Propagation 

- Nogueira et al 2008 

UV/H2O2 Acid Orange 7 Feed–forward back 

Propagation 

Algoritmo de 

gradiente conjugado 

escalado 

Aleboyeh et al., 

2008 

UV/H2O2 Reactive Red 120 Counter–

propagation 

learning strategy 

algoritmo de 

Kohonen 

Slokar et al., 1999 

UV/H2O2 Éter metil-terc-

butílico (MTBE) 

Feed–forward back 

Propagation 

Algoritmo de 

gradiente conjugado  

Salari et al., 2005 

UV/H2O2 Acid Brown 75, 

Acid Orange 52 e 

10, Direct Red 28 

Feed–forward back 

Propagation 

Levenberg–

Marquardt 

Guimarães, Silva 

2008 

Por exemplo, Aleboyeh et al. (2008) desenvolveram uma rede neural artificial para 

prever o desempenho de uma remoção com UV/H2O2 do Acid Orange 7 da solução aquosa. A 

rede foi treinada utilizando totalmente 228 conjuntos de dados divididos em subconjuntos: 

treinamento, validação e teste, cada um deles contendo 114, 57 e 57 conjuntos de dados, 

respectivamente. A rede utilizada foi a feedforward e o algoritmo backpropagation, com três 

camadas (4:8:1) foi otimizado para prever a eficiência de descoloração com UV/H2O2 do 

processo. A comparação entre os valores experimentais previu variáveis de saída usando o 

modelo adotado, mostrando que a rede neural prevê a variável de saída com um alto 

coeficiente de correlação (R
2
 = 0,996). Os resultados da modelagem confirmam que a 

modelagem da rede neural poderia efetivamente reproduzir dados experimentais e prever o 

comportamento do processo.    
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Salari et al. (2005) têm usado a técnica de RNA para a modelagem da remoção do 

MTBE (éter metil terc-butílico) pelo processo UV/H2O2. Neste trabalho foram utilizados um 

total de 64 conjuntos de dados para treinamento, validação e teste do modelo. A configuração 

da rede neural de retropropagação resultou o menor EMQ (erro médio quadrático) em três 

camadas, RNA com função de transferência tangente sigmóide (tansig) na camada escondida 

com oito neurônios, função de transferência linear (purelin) na camada de saída treinado com 

o algoritmo de gradiente conjugado escalado. RNA previu que os resultados são muito 

próximos dos experimentais, com o coeficiente de correlação de 0,998. O modelo de RNA 

pode então descrever o comportamento do sistema de reação complexa com a gama de 

condições experimentais adotadas.  

Modelagem de UV/H2O2 para a remoção de Reactive Red 120 também tem sido 

estudado por Slokar et al. (1999). As quatro camadas (7:8:8:4) da rede neural foram 

desenvolvidos durante 200 epochs (número de iterações para o treinamento da rede) , com 

base na retropropagação da estratégia de aprendizagem e um algoritmo de Kohonen. Esta rede 

otimizada pode efetivamente prever as variáveis de saída incluindo absorbância, demanda 

química de oxigênio, carbono orgânico total e carbono inorgânico total da solução corante.  

Guimarães e Silva (2007) estabeleceram um modelo híbrido neural para descoloração 

de corantes por UV/H2O2 que envolvem o estudo das variáveis de processo e parâmetros 

estruturais. Grau de descoloração dos corantes estudados, incluindo Red direct 28, Brown 

Ácid 75, Orange Ácid 10 e 52 foram escolhidos como a variável de saída. A rede feedforward 

foi treinada pelo algoritmo de Levenberg-Marquardt durante 34 epochs e com uso de três 

camadas (7:18:1), a rede neural foi otimizado para a modelagem do processo UV/H2O2. O 

modelo neural forneceu estimativas ótimas para a descoloração com base na medição de 

absorção como uma variável de saída, com coeficientes de correlação acima de 0,96 para o 

treinamento, validação e conjuntos de teste, indicando a capacidade de generalização ótima do 

modelo. 

Elmolla et al. (2010) usaram a modelagem de redes neurais para prever o desempenho 

do processo Fenton para remoção de antibióticos (amoxicilina, ampicilina e cloxacilina). A 

configuração da rede neural de retropropagação, o menor EMQ foi de três camadas RNA com 

função de transferência tangente sigmóide (tansig) na camada oculta com 14 neurônios, 

função de transferência linear (purelin) na camada de saída e Levenberg-Marquardt como 

algoritmo de treinamento de propagação (ALM). RNA previu que os resultados foram muito 
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próximos aos resultados experimentais, com coeficiente de correlação (R
2
) de 0,997 e 

0,000376 EMQ.  

Yu et al. (2010) também desenvolveram com o processo Fenton uma estratégia de 

controle de processo usando modelos RNA e potencial de redução oxigênio (PRO) de 

monitoramento para o tratamento de águas residuárias de efluentes têxteis sintéticos contendo 

dois corantes comuns nomeadamente Reactive Blue 49 (RB49) e Reactive Blue Brilliant 

(RBB). Resultados experimentais indicam que os modelos de RNA podem prever com 

precisão a cor e a demanda química de oxigênio (DQO), e a eficiência da remoção de 

efluentes têxteis sintéticas foi indicado com o coeficientes de correlação de 0,91-0,99 

(KHATAEE, KASIRI 2010). 

Durán et al. (2009) desenvolveram uma RNA em três camadas (4:4:2), feedforward foi 

a rede trabalhada para prever a taxa de degradação constante de cianetos sob UV/Fe (II) /H2O2 

no processo em um ciclo combinado da central de gaseificação integrada de efluentes (CGIE).  

Em um trabalho semelhante, eles têm usado uma rede de duas camadas para avaliar a 

eficiência do processo foto-Fenton. A rede foi treinada pelo algoritmo não-linear Marquardt, 

para simular os parâmetros de saída: constantes de velocidade de descoloração e de 

mineralização. Simulação das equações de RNA provou que a concentração inicial de 

peróxido de hidrogênio em soluções aquosas de corante é o principal parâmetro que afetam a 

cinética de descoloração.  

Gob et al. (1999) estudaram foto-Fenton na remoção de 2,4-dimetil anilina (2,4-

xilidina) de água contaminada. A três camadas (3:8:1) feedforward da rede de 

retropropagação que foi desenvolvida e treinada usando 50 mil conjuntos de dados. 

Comparação feita entre previsto e valores de saída experimental (R
2 

= 0,995) mostram que 

RNA é uma técnica bem sucedida para prever a concentração de 2,4-xilidina na solução 

tratada. 

Tratamento de águas residuais salinas contaminadas com hidrocarbonetos pelo 

processo foto-Fenton tem sido objeto de um outro modelo RNA. Neste trabalho, Moraes et 

al.(2004) têm estudado o conteúdo COT das águas residuais tratadas usando uma RNA de três 

camada (5:2:1) rede feedforward retropropagação. Totalmente mil conjuntos de dados têm 

sido usados para o treinamento da rede. Houve uma boa concordância entre experimental e 

valores previstos de saída com altos coeficientes de correlação de 0,950 e 0,965 para a 

aprendizagem e conjuntos de teste, respectivamente.  
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Monteagudo et al. (2010) também desenvolveram uma rede neural para modelagem de 

ferrioxalato assistida pela degradação foto-Fenton, de soluções aquosas Orange II. As três 

camadas (7:2:2) feedforward da rede de retropropagação foi treinado usando o algoritmo 

Marquardt não-linear na montagem que pode prever a taxa de descoloração da constante 

cinética escolhido como a variável de saída. Eles relataram que os resultados experimentais e 

acessórios RNA do processo estão de acordo com um erro médio inferior a 16% para 

descoloração do corante.  

Calza et al. (2008) desenvolveram uma rede neural para prever o desempenho de um 

processo foto-Fenton para remoção de imipramina da água contaminada. As três camadas da 

rede (3:3:1) foi treinada com algoritmo descendente do gradiente conjugado durante 95 

epochs. A regressão linear entre a previsão da rede e os dados correspondentes experimental 

provam que a modelagem da foto-Fenton de remoção de imipramina usando a rede neural 

artificial é um método satisfatório.  

A modelagem foto-Fenton para remoção de Reactive 4 Blue é um outro exemplo da 

aplicação da técnica de rede neural. Duran et al. (2008) desenvolveram uma RNA em três 

camadas (4:2:1) feedforward de redes neurais usando o algoritmo de retropropagação. Total 

de 19 conjuntos de dados e algoritmo não-linear Marquardt para a montagem foram utilizado 

para treinamento da rede que está habilitado com sucesso para prever a variável de saída, ou 

seja, descoloração cinética constante.  

Giroto et al. (2006) também desenvolveram uma rede neural para prever redução de 

álcool polivinílico em solução aquosa por processo foto-Fenton. As três camadas (4:8:1) 

feedforward da rede de retropropagação foi treinado usando 432 conjuntos de dados e com 

10.000 epochs para prever a concentração de álcool de polivinil no final do processo de foto-

Fenton. Alto coeficiente de correlação (R
2
 = 0,996) entre os valores experimentais e preditos 

da variável de saída mostra o sucesso da modelagem (KHATAEE, KASIRI 2010). 

Nogueira et al. (2008) também desenvolveram uma rede neural para modelar o 

desempenho de um processo de energia solar dirigido por foto-Fenton utilizado para remoção 

de fenol de efluentes. Neste trabalho, o teor de carbono orgânico dissolvido (COD) da solução 

tratada foi escolhido como a variável de saída e a RNA utilizada foi a de três camadas (5:6:1) 

rede de feedforward retropropagação foi treinado durante a 10.000 epochs.  
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4 METODOLOGIA 

As etapas do trabalho foram iniciadas pela coleta e caracterização das amostras, pois, a 

partir da caracterização foram verificados os cálculos, o planejamento experimental, qual 

reator deveria ser utilizado e, quais metodologias poderiam ser trabalhadas para que os 

resultados ocorressem satisfatoriamente. Pode-se melhor visualizar estas etapas através do 

fluxograma abaixo (Figura 12). 

 

FIGURA 12- Etapas das atividades desenvolvidas 

 

4.1 Coleta e Caracterização Física e Química do Efluente de Refinaria de 

Petróleo  

Neste trabalho foram utilizados efluentes de uma unidade de refino de petróleo, em 

todas as suas etapas (Figura 13), considerando que o objetivo é avaliar a eficiência do 

tratamento. 

 

 

 

 

 

 

 

             Figura 13- Fluxograma da ETE com os pontos de amostragem 
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Os efluentes desta refinaria de petróleo foram coletados em cinco pontos  de uma 

estação de tratamento (Figura 14): AMG (entrada da estação), AJQ (amostra da lagoa 

aeróbia), APM (água da saída do separador API, no flotador por ar dissolvido e antes do 

reator biológico), APN (água da saída do efluente final para descarte no rio), APL (lodo 

líquido do reator biológico). Estes efluentes foram caracterizadas de acordo com a 

metodologia da American Public Health Association (APHA) , avaliando-se as características 

físicas e químicas tais como: pH,  DQO, DBO, NTK, OG, Cloretos, ST, SV, SF e os Metais 

(Cd, Cr, Fe, Cu, Ni, Zn, Pb, Mn), os HPA a metodologia utilizada foi a USEPA 8270D.  

As  análise de metais foram realizadas por Espectrometria de Absorção Atômica, 

Modelo AA240FS, Marca Varian; seguindo o Standard Methods for the Examination of 

Water and Wastewater (Tabela 12).   

 

FIGURA 14 – Amostras coletadas da Estação de Tratamento 

 

TABELA 12 – Metodologias aplicadas na Caracterização do Efluente 

Parâmetros Referência 

Potencial hidrogenionico (pH) APHA 4500 B: Potenciometria 

DBO 5 dias  (mg de O2/L) APHA 5210 B: Incubação 5d- Det. OD 

DQO(mg de O2/L) APHA 5220 C: Refluxo fechado/ Titulometria  (K2Cr2O7) 

Fósforo Total   

(mg/L) 

APHA 4500 – A, B e C: Digestão / Colorimetria 

 (vanandato e molibdato de amônio) 

N Total Kjeldahl (mg/L) APHA 4500-Norg B: Titulometria 

Sólidos totais  (mg/L) APHA 2540B; Gravimetria 

Sólidos totais fixos (mg/L) APHA  2540E: Gravimetria 

Sólidos totais voláteis (mg/L) APHA  2540E: Gravimetria 

Cloretos (mg/L) APHA  4500-Cl- B 

Óleos e graxas  (mg/L) APHA  5520 B: Gravimetria 
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Ferro (mg de Fe/L) APHA 3500-Fe B 

Cobre (mg/L) APHA 3500-Cu B 

Cromo (mg/L) APHA 3500-Cr B 

Manganês (mg/L) APHA 3500-Mn B 

Níquel (mg/L) APHA 3500-Ni B 

Zinco (mg/L) APHA 3500-Zn B 

Cádmio (mg/L) APHA 3500-Cd B 

Chumbo (mg/L) APHA 3500-Pb B 

HPA USEPA 8270D 

 

 

4.2 Análise de HPA por Cromatografia Gasosa com detector por espectrometria 

de massa (CG-EM) 

Neste método a primeira fase foi a extração dos compostos com um solvente orgânico, 

o diclorometano, e depois analisado por cromatografia. A maioria dos métodos baseados em 

cromatografia gasosa consiste em separar o petróleo em frações alifáticas e aromáticas. A 

fração de aromáticos e a fração alifática são analisadas por meio de um cromatógrafo a gás 

acoplado a um espectrômetro de massa (GC-EM). A fração aromática contém, geralmente, os 

compostos mais tóxicos e mais persistentes do que a fração alifática. 

As amostras dos efluentes foram homogeneizadas por leve agitação e  foram tomados 

100 mL em triplicata, os quais foram filtrados em papel quantitativo faixa branca 

considerando que eram bastante heterogêneos, ou seja, tratava-se de uma amostra líquida com 

sólidos suspensos. O efluente foi então submetido a dois tipos de extração, ELL (extração 

líquido-líquido) e ELS (extração líquido-sólido). O resíduo contido no papel de filtro foi 

submetido a ELS, em Soxhlet utilizando um balão de fundo chato de 250 mL, numa 

temperatura de 60ºC e empregando hexano-acetona (Merck) na proporção de 1:1, para em 

seguida ser filtrado na coluna clean up. 

Preparação da coluna de clean up: A coluna foi acondicionada na parte inferior com 

lã de vidro, em seguida, preenchida com sulfato de sódio anidro calcinado aproximadamente 

2cm de espessura, 5g de sílica gel lavada anteriormente com diclorometano (Merck), 3g de 

sílica básica e mais 2cm de sulfato de sódio anidro calcinado, adicionado na parte superior da 

coluna. Esta coluna foi lavada com 50 mL da mistura diclorometano e hexano, 4mL e 46mL 

respectivamente.  
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Adição do Extrato: Os extratos obtidos na extração de Soxhlet foram passados 

através da coluna de clean up (Figura 15) para remover as substâncias co-extrativistas que 

possam causar interferência instrumental durante a análise no CG-EM. Depois a coluna foi 

lavada com 60 ml da mistura diclorometano e hexano, 6mL e 54mL respectivamente. Nesta 

etapa são eliminados  contaminantes como o enxofre, lipídios e substâncias de alta massa 

molecular que podem interferir na determinação dos HPA (HELALEH, 2005).  

 

 
FIGURA 15 – Coluna clean up 

 

O líquido resultante da filtração foi submetido a  ELL utilizando como solvente o 

diclorometano, seguindo-se em ambos os casos a metodologia para HPA, da USEPA 3540. 

Os extratos coletados em ambos os casos  foram concentrados a 2 ml no 

rotaevaporador (Figura 16) e lavado com diclorometano para depois ser injetado no CG-EM. 

 

FIGURA 16 - Rotaevaporador 

Para quantificação de HPA, a metodologia USEPA 8270-D foi usada empregando um 

cromatógrafo a gás acoplado ao espectrômetro de massa (Figura 17), modelo SHIMADZU 

GC-EM e QP2010 Plus, cujos parâmetros utilizados são descritos na Tabela13.  
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TABELA 13 -  Parâmetros cromatográficos para analisar os HPA 
  

Parâmetros 

 

Valores 

Temperatura do Injetor (°C) 250 

Temperatura da Interface (°C) 300 

Vazão do Gás Hélio (mL.min
-1

) 1,20 

Modo de Injeção Splitless 

Volume de Injeção (µL) 1 

 

Programação da Temperatura (°C) 

45 °C (1 min.), 45 °C. min.
-1

 até 130°C; 
10°C min.

-1
 até 180°C; 6 °C. min.

-1 
até 

240°C; 10° C min.
-1  

até 310°C (5min.) 

 

 

FIGURA 17 – Cromatógrafo a gás acoplado a espectrometria de massa 

 

4.3 Análise do Carbono Orgânico Total 

Para análise de correlação de Redes Neurais Artificiais com os resultados dos HPA foi 

empregada a análise de COT, utilizando um equipamento de alta sensibilidade TOC/VCPN, 

da SHIMADZU. Trabalhou-se com ar sintético, em que a pressão deve estar entre 300 e 500 

kPa e o fluxo deve ser  de 150 mL/min. Para realizar as análises as amostras são colocadas em 

vials que devem conter entre 20 e 24 ml de cada amostra (Figura 18). 

 

T  
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FIGURA 18 – Analisador de Carbono Orgânico Total 

 

 

4.4 Utilização de Sistema POA para degradação de HPA:  Fotólise, Fenton 

(H2O2/Fe
2+

)  e  FotoFenton (UV/H2O2/Fe
2+

)  em Reator de Bancada  

Foram realizados experimentos envolvendo POA em sistema homogêneo empregando: 

Fotólise e  os Sistemas Fenton e FotoFenton, H2O2/Fe
2+

 e H2O2/Fe
2+

/UV respectivamente. Os 

experimentos fotoquímicos forão realizados em reatores fotocatalíticos de bancada  em bequer 

de 250 mL serrado com altura de 6,5cm,  área de 42,5 cm
2
, adicionando-se 50 mL de efluente 

e empregando luz com radiação UV-A 315nm – 400nm, luz negra, apresentados na Figura 19. 

O reator utiliza três lâmpadas colocadas em paralelo, com potência de 20W cada uma, e a 

escolha da lâmpada depende do comprimento de onda de absorção da amostra real trabalhada, 

a qual encontra-se dentro da faixa da radiação UV-A. 

 

 

 

 

FIGURA 19 - Reator fotocatalítico aberto com as amostras sendo irradiadas 
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Para as determinações analíticas de HPA e COT foi utilizada uma solução inibidora 

0,1 molar da mistura de hidróxido de sódio, iodeto de potássio e nitrito de sódio, a qual faz 

com a reação de oxidação seja estacionada. Todos os reagentes foram utilizados na 

concentração 0,1 molar (MOTA, 2010). O ferro utilizado neste tratamento foi endógeno, ou 

seja ferro contido na própria amostra. A primeira variável analisada foi a concentração de 

peróxido de hidrogênio (30% m/m, Merck, Brasil) , a qual foi calculada com base nos valores 

da DQO. O cálculo da adição de H2O2 utilizado neste trabalho encontra-se descrito por 

SOUZA (2005) e SCAL (2010). Tendo em vista a necessidade de um grande número de 

dados para obtenção da rede neural, foram realizados experimentos com três diferentes 

concentrações desta substância: 60, 95 e 130 mmol. A segunda variável analisada durante a 

degradação foi o tempo, o qual também foi avaliado em três diferentes valores (30, 75 e 120 

min), a escolha dos mesmos foi baseada no trabalho de NETO et al. (2001). A eficiência do 

processo foi avaliada em função da degradação dos HPA, da avaliação de COT através da 

Modelagem Neural e toxicidade utilizando microcrustáceo Artemia salina.  

 

4.5. Método de Avaliação da Toxicidade dos efluentes 

Os testes de toxicidade possibilitaram avaliar o impacto ambiental de poluentes 

lançados nos efluentes, os quais atuam sobre os organismos aquáticos dos corpos receptores. 

Neste trabalho foi utilizada a Artemia salina, seguindo a metodologia indicada por Matthews, 

1995, descrita a seguir: 

a) Limpeza do material: 

Lavar o material com uma solução de hipoclorito de sódio ou água sanitária; 

Lavar com água e detergente; 

Enxaguar 2 vez com uma solução de HCl 5 %; 

Enxaguar 2 vezes com solução de álcool ou acetona; 

Enxaguar 2 vezes com água deionizada. 

O material deve ser colocado para secar de cabeça para baixo e então coberto com 

papel alumínio; 

Os recipientes de teste devem ser enxaguados com meio salino imediatamente antes do 

teste. 

b) Preparação do meio de eclosão de Artemia salina 

NaCl 23g 

MgCl26H2O 11g 
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Na2SO4  4g 

CaCl22H2O  1,3g 

KCl 7g 

Após a pesagem dos reagentes, estes foram  misturados diluindo-os em água destilada 

para completar o volume para 1L de solução ajustando-se o pH entre 8 e 9 com solução de 

Na2CO3. 

c) Solução tóxica 

A solução foi utilizada com concentração de 100% simulando o meio ambiente. 

Esta solução deve ser armazenada sob refrigeração, ao abrigo da luz e de preferência 

em sua maior concentração. 

d) Eclosão dos ovos 

Colocar em 1 L do meio salino 5 g de Artemia salina (deve resultar em cerca de 30 

cm
3
 de náuplios – fase adulta) 

Deixar o material em repouso, sob temperatura ambiente, coberto com filme de PVC, 

sendo oxigenado com uma bomba de aquário; 

Dentro de cerca de 36 horas os ovos eclodirão e os náuplios (fase adulta) estarão 

maduros para serem usados. 

e) Separação dos náuplios 

Com a bomba de aquário, aerar o recipiente onde foram eclodidos os ovos por 10-15 

minutos; 

Depois de 15 minutos o material sedimentará, com a lâmpada acesa, “guiar” os 

náuplios (fase adulta) para uma região do recipiente onde possam ser retirados com o auxílio 

de puçá de aquário, ou sifonados com a mangueira; 

Colocar os náuplios (fase adulta) num recipiente contendo meio salino. 

f) Teste de Toxicidade (Figura 20) 

Distribuir o meio salino nos recipientes da seguinte forma: 

Nos recipientes de controle negativo deve ser utilizado apenas meio salino; 

Nos outros, deve ser colocada a solução tóxica fracionada; 

Obs.: Todos os recipientes devem ser preparados em triplicata. 

Transferir 10 náuplios (fase adulta) para cada recipiente de teste com auxílio de uma 

pipeta de Pasteur; 

Fechar os recipientes de teste com o filme de PVC; 

Obs.1: Todos os copos devem ser preparados em triplicata. 
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Obs.2: Para compensar efeitos de posição, arrumar os recipientes de teste ao acaso, 

área de teste. Distribuir os organismos randomicamente nos recipientes. 

Deixar o material incubado por 24 horas, no escuro e à temperatura ambiente. 

Passadas as 24 horas, fazer a observação do microorganismo com o auxílio da lupa; 

Fazer a contagem dos organismos mortos, ou seja, aqueles que não apresentarem 

movimento em 20 segundos. 

g) Descarte dos náuplios 

Remover os náuplios com uma rede e enxaguá-los com água da rede; 

Transferir os náuplios para um recipiente contendo apenas água deionizada; 

 
FIGURA 20 – Teste de Toxicidade 
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5 RESULTADOS E DISCUSSÃO 

O estudo e processamento das informações da caracterização das amostras possibilitou 

uma melhor interpretação das ações tomadas quando da realização do procedimento 

experimental, pois, os resultados da DQO e dos metais, mais particularmente o ferro, foram 

essenciais para a direção do melhor tratamento POA a ser trabalhado. A Tabela 14 apresenta 

os valores dos parâmetros físicos e químicos das amostras de entrada, lodo e saída da 

refinaria, e os padrões estabelecidos pela Resolução CONAMA 430/2011.  

 

TABELA 14- Caracterização físico-química das amostras 

Parâmetros Amostras CONAMA  

nº 430/2011 
 AGM AJQ APM APN APL 

 pH 7,17 6,93 6,68 8,35 7,19 5 a 9 

DBO 5 dias   

(mg de O2/L) 

149,6  92,9  6,5  2,5  335,8 

 

120 mg/L 

DQO (mg de O2/L) 373,6 298,5 193,5 50,3 10848,4 - 

Fósforo Total   

(mg/L) 

20,2  6,8  1,44  <0,01 5,94  - 

N Total Kjeldahl 

(mg/L) 

42,1  22,6  7,0  ND 88,1 20,0 mg/L N 

Sólidos totais  (mg/L) 1107,2  996,0  575,5  1168,3  4543,0 - 

Sólidos totais fixos 

(mg/L) 

819,8  782,0  499,7  1133,5  2017,0 

 

- 

Sólidos totais voláteis 

(mg/L) 

287,5  214,0  75,8  34,8  

 

2526,0 

 

- 

Cloretos (mg/L) 3,9  3,4  2,8  2,3 5,5 - 

Óleos e graxas 

 (mg/L) 

47,0  27,9  59,6  <10 191,7 50 mg/L 

Ferro (mg de Fe/L) 12 8,2 3,94 2,61 25 15,0 mg/L Fe 

Cobre (mg/L) 0,05  0,01  0,01  0,01 0,51  1,0 mg/L Cu 

Cromo (mg/L) ND ND ND ND 0,42  1,0 mg/L Cr 

Manganês (mg/L) 0,50  0,20  0,14  0,07  2,76  1,0 mg/L Mn 

Níquel (mg/L) 0,09  0,08  0,01  0,02 0,5 2,0 mg/L Ni 

Zinco (mg/L) 0,38  0,23  0,37  0,12  16,5 5,0 mg/L Zn 

Cádmio (mg/L) 0,06  0,05  ND ND 0,03 0,2 mg/L Cd 

Chumbo (mg/L) 0,59  0,33  0,01  0,06 1,56 0,5 mg/L Pb 

                 ND= não detectável 
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Pode-se observar que mesmo na entrada da estação de tratamento de efluentes, a DBO, 

parâmetro controlado pelo CONAMA 430/2011, encontra-se acima do valor permitido, mas 

ainda assim este valor encontrado não ultrapassa mais que 25%.  A maior preocupação dos 

pesquisadores tem sido a determinação de DQO, que envolve tanto contaminantes 

biodegradáveis como os não biodegradáves. Assim sendo Yavuz e Koparal (2006) encontram 

valores de DQO em torno de 590 mgO2.L
-1

.
 
Aruldos e Viraraghavan (1998) encontraram 

valores que vão até 1.591 mgO2.L
-1

. Neste trabalho o maior teor de DQO encontrado foi 373,6 

mgO2.L
-1

 chegando a 50,3 mgO2.L
-1 

no descarte dos efluentes, com tratamento biológico. 

Neste trabalho, o reator aeróbio, que trata o efluente consegue baixar o teor de DQO mas gera 

uma grande quantidade de lodo contaminado. Esta matéria deverá ser descartada em aterros 

sanitários ou coprocessadas em fornos de fabricação de cimento o que torna o tratamento caro 

e com algumas restrições ambientais, como emissão atmosférica (coprocessamento) e 

preocupação com o tratamento de chorume gerado nos aterros sanitários. 

  Foram observados e acompanhados a degradação dos HPA e a toxicidade, 

verificando que só o tratamento biológico não trata completamente tal poluente, uma vez que 

segundo CONAMA 430/2011, as amostras  AGM, e APL encontram-se  com a DBO acima 

da legislação, considerando ainda que a amostra APL está quase três vezes maior, enquanto 

que a AGM está aproximadamente 20% maior do que o limite da legislação. Quanto ao teor 

de nitrogênio as amostras AGM e APL encontram-se superiores ao limite permitido pela 

legislação, estando 2  e 4 vezes maiores respectivamente. Quanto ao teor de óleos e graxas 

apenas duas amostras estão superiores ao limite permitido para descarte, a APM está 

aproximadamente 10% maior enquanto a amostra APL está quase quatro vezes maior que o 

limite permitido. 

 As amostras tratadas dos efluentes de entrada e saída não apresentaram teor de metal 

que seja superior ao limite do CONAMA 430/2011.  Apenas  a amostra do lodo APL 

apresentou teores elevado de chumbo, zinco, ferro e manganês devendo ser enviado para 

aterrro ou coprocessamento. 

  

5.1  Tratamento com POA  

Utilizou-se os Processos Oxidativos para tratamento das amostras,  as quias foram 

tratadas de início por fotólise (12 horas de análise), observando-se que a degradação não 

chegou a 30%. Foram realizados estudos experimentais empregando sistema Fenton e o foto-

Fenton,  e foi observado uma degradação de 60% e acima de 90% respectivamente, 

verificando que os melhores resultados foram apresentados no processo foto-Fenton.  
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Comparando estes resultados obtidos em relação aos processos biológicos pode-se 

considerar que estes últimos além de dependerem da natureza do contaminante, que muitas 

vezes é tóxico ao próprio microorganismo responsável pela degradação, dependem de 

condições específicas do meio, tais como pH, temperatura, umidade, nutrientes entre outras 

que nem sempre são fáceis de serem alcançadas.  Já os mecanismos de degradação de HPA 

em ambientes aquáticos são mais eficientes em processos químicos como POA, pois, estes 

podem ocasionar alterações estruturais que modificam a reatividade, distribuição e tempo de 

residência destes tóxicos nos compartimentos ambientais. Abaixo as amostras após tratamento 

POA (Figura 21) .  

 

 
FIGURA 21 – Os cinco pontos após tratamento foto-Fenton 

 

As cinco amostras analisadas foram submetidas aos tratamentos Fenton e foto-Fenton 

e, das análises no CG-EM antes do tratamento foram detectados 10 HPA, o naftaleno, 

acenaftileno, acenafteno, fluoreno, fenantreno, fluoranteno, pireno, benzo(b)fluoranteno, 

benzo (k)fluoranteno, benzo(a)pireno. Após tratamento foram detectados 7 HPA nas 

amostras: o naftaleno, acenaftileno, acenafteno, fluoreno, fenantreno, fluoranteno, pireno, 

todos, com uma concentração inferior, os outros três, benzo(b)fluoranteno, 

benzo(k)fluoranteno, benzo(a) pireno, ficaram abaixo do limite de detecção do CG-EM, pelo 

processo foto-Fenton. As Tabelas 15 e 16 apresentam a média das concentrações dos HPA em 

μg.L
-1 das cinco amostras analisadas no CG-EM antes e após o tratamento Fenton e foto-

Fenton, respectivamente.  
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TABELA 15 - Média das concentrações dos HPA em μg.L
-1  das cinco amostras analisadas no 

CG-EM, antes e após o tratamento Fenton   

Parâmetros 

HPA (μg.L
-1

) 

Amostras Brutas (médias das  

concentrações) 

Amostras Tratadas (médias das 

 concentrações) 

AGM AJQ APM APN APL AGMF AJQF APMF APNF APLF 

Naftaleno 371,47 835,27 1,092 2,041 161,20 222,6 409,46 1,000 1,081 78,95 

Acenaftileno 1,830 2,576 6,230 1,519 116,96 0,940 1,917 2,064 0,786 58,96 

Acenafteno 8,151 7,973 11,633 22,047 1,925 3,949 3,141 5,330 11,80 0,89 

Fluoreno 29,498 6,127 39,113 67,325 6,387 9,595 2,955 18,43 33,09 2,38 

Fenantreno 24,86 13,64 38,36 57,70 13,34 9,325 5,655 16,50 31,91 5,74 

Fluoranteno 1,118 1,524 4,166 2,215 13,96 0,517 0,632 1,680 0,969 5,89 

Pireno 4,321 5,707 39,619 18,552 3,798 1,476 1,876 14,53 9,02 1,52 

Benzo(b)fluoranteno 0,164 0,102 9,411 0,289 4,816 0,090 0,083 3,90 0,08 2,18 

Benzo(k)fluoranteno 0,115 0,192 3,026 0,738 2,384 0,048 0,024 1,32 0,03 1,14 

Benzo(a)pireno 1,763 6,520 24,541 0,547 66,10 0,700 2,478 11,6 0,04 20,0 

 

 

TABELA 16 - Média das concentrações dos HPA em μg.L
-1 das cinco amostras analisadas no 

CG-EM, antes e após o tratamento foto-Fenton   

Parâmetros 

HPA (μg.L
-1

) 

Amostras Brutas (médias das  

concentrações) 

Amostras Tratadas (médias das 

 concentrações) 

AGM AJQ APM APN APL AGMF AJQF APMF APNF APLF 

Naftaleno 371,47 835,27 1,092 2,041 161,20 5,059 1,211 0,569 0,321 0,474 

Acenaftileno 1,830 2,576 6,230 1,519 116,96 0,0 0,189 0,184 0,173 0,177 

Acenafteno 8,151 7,973 11,633 22,047 1,925 0,190 1,057 0,175 1,000 0,0 

Fluoreno 29,498 6,127 39,113 67,325 6,387 0,0 0,471 0,124 0,140 0,0 

Fenantreno 24,86 13,64 38,36 57,70 13,34 0,694 0,249 0,303 0,778 0,190 

Fluoranteno 1,118 1,524 4,166 2,215 13,96 0,297 0,337 0,376 0,675 0,232 

Pireno 4,321 5,707 39,619 18,552 3,798 0,723 0,426 0,385 0,369 0,310 

Benzo(b)fluoranteno 0,164 0,102 9,411 0,289 4,816 0,0 0,0 0,0 0,0 0,0 

Benzo(k)fluoranteno 0,115 0,192 3,026 0,738 2,384 0,0 0,0 0,0 0,0 0,0 

Benzo(a)pireno 1,763 6,520 24,541 0,547 66,10 0,0 0,0 0,0 0,0 0,0 
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Os cinco primeiros  HPA das Tabelas 15 e 16 comprovam ser petrogênicos, ou seja, 

são de origem de uma refinaria de petróleo, pois, as amostras não foram coletadas pelo autor 

do trabalho. Os cincos últimos HPA das Tabelas 15 e 16 são considerados pirolíticos, ou seja, 

originados de combustão completa da matéria orgânica em altas temperaturas (PAVEI, 2007). 

Os cinco primeiros HPA das Tabelas 15 e 16 possuem  baixa massa molar, os cinco 

últimos HPA das Tabelas 15 e 16, alta massa molar; o benzo(b)fluoranteno, 

benzo(k)fluoranteno e o benzo(a)pireno possuem a mesma massa molar, a diferença entre eles 

está na estrutura molecular. A volatilidade destes compostos diminui com o aumento da 

massa molar, que também está relacionado com o número de anéis aromáticos, pois, o que 

apresentam quantidade de anéis superiores a 5 tendem a ser adsorvidos em materiais 

particulados, como o benzo(a)pireno, que é altamente carcinogênico e indicador dessas 

substâncias no meio ambiente (PAVEI, 2007). 

A solubilidade e a concentração dos HPA em águas são baixas e diminui com o 

aumento da massa molar; por exemplo, o naftaleno é o HPA de menor massa molar, porém, é 

o que apresenta maior solubilidade. A recalcitrância destes compostos está relacionada 

também com a massa molar, pois, HPA de baixa massa molar são tóxicos e não 

carcinogênicos, os de alta massa molar são considerados tóxicos e carcinogênicos (PAVEI, 

2007). 

A RESOLUÇÃO CONAMA nº 357, de 17 de março de 2005, Dispõe sobre a 

classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como 

estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Seção 

I Das Águas Doces Art. 4º. (Tabela 17) 

 

TABELA 17 – Conama 357  

 

Parâmetros 

                         Conama 357  

                        Valor Máximo  

Benzo(b)fluoranteno(μg.L
-1

)                          0,05  

Benzo (k) fluoranteno (μg.L
-1

)                         0,05  

Benzo (a) pireno (μg.L
-1

)                         0,05  

 

A amostra de descarte da estação de tratamento para o rio, identificada como APN, foi 

analisada e avaliada segundo o  Conama 357/2005,  encontrando-se os teores dos parâmetros: 

benzo(b)fluoranteno, benzo(k)fluoranteno, benzo(a)pireno dentro do estabelecido pelo órgão 

ambiental, de acordo com a Tabela 17. Estes três HPA são considerados causadores da 

carcinogenicidade, porém, o benzo(a)pireno, é considerado o mais tóxico (MIRANDA, 2008). 
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AMG 

 

TABELA 18 - Média das concentrações do COT em mg.L
-1  das cinco amostras analisadas 

após o tratamento foto-Fenton  

Parâmetros AMG AJQ APM  APN APL 

COT 1 (mg/L)   138,9 111,5 95,2 17,8 189,4 

COT 2 (mg/L) 141,3 124,3 96,0 18,4 191,9 

 

Amostras das diversas fases da estação foram submetidas a análise do COT em 

duplicata. Os resultados apresentados encontram-se na Tabela 18 e mostraram-se  

concordantes de acordo com os pontos coletados da estação de tratamento. Todas as amostras 

nas condições estudadas foram degradadas, mas não foram mineralizadas completamente. 

Desta forma fica claro a necessidade de um tratamento mais enérgico quer seja com aumento 

do peróxido ou com uso de sistemas oxidativos heterogêneos. 

 

De acordo com as informações passadas pela Refinaria da estação de tratamento de 

efluente, analisamos cada ponto de coleta em relação à degradação dos HPA da seguinte 

forma, Figura 22: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AJQ 

Efluente 

Industrial 

(EI) 

Efluente 

doméstico 

(ED) 

Entrada da estação ainda sem nenhum tratamento, a 

amostra bruta encontra-se com alta carga orgânica devido 

provavelmente à quantidade de óleos e gorduras (EI)+ 

(ED), pois a DQO e DBO estão elevadas e como os HPA 

tem grande afinidade lipofílica, os mesmos estão em alta 

concentração, além da alta concentração de sólidos totais , 

pois os HPA ficam adsorvidos no material particulado 

(MEIRE et al., 2007), mas a degradação com o POA foi 

superior a 90% para os três tempos do planejamento. 

Amostra da lagoa aeróbia que tem como função remover a 

carga orgânica, segundo Sperling (1996), em torno de 

80%,. Provavelmente esta amostra já tenha passado por 

um tratamento primário que remova resíduos de grande 

porte, porém, a DQO e DBO ainda encontram-se altas, 

como explicadas anteriormente, e a degradação dos HPA 

ainda se faz necessário. A remoção também apresentou 

porcentagem maior que 90 com o POA. 
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FIGURA 22 - Fluxograma da Estação de Tratamento de Efluentes 

 

 

5.2 Toxicidade 

Os HPA de baixa massa molecular, como o naftaleno e fenantreno, são considerados 

os componentes mais tóxicos para as comunidades aquáticas, ocasionando toxicidade aguda, 

devido à solubilidade dos mesmos. Os de alta massa molecular são considerados como 

grandes causadores de efeitos carcinogênicos e mutagênicos, sendo o benzo(a)pireno o mais 

poluente deles, devido a sua degradação natural ser demorada, num total de 8 anos 

(MIRANDA, 2008). A Figura 23  abaixo, apresentam os resultados de toxicidade após 24hs 

de análise. Os pontos trabalhados receberam as seguintes numerações: APN (1), APL (2), 

AMG (3), APM (4), AJQ(5). 

 

 

 

 

 

 

 

APM 

APN 

APL 

Separador API + Flotador que tem como função remoção 

de óleo livre e sólidos, respectivamente (SANTIAGO, 

2010), observa-se pela caracterização físico-química que a 

DQO ainda se encontra alta e houve um aumento dos óleos 

e graxas em relação ao ponto anterior, justificando que 

HPA são altamente lipossolúveis, a necessidade da 

degradação dos mesmos também neste ponto, sendo o 

tratamento POA também eficiente tendo uma porcentagem 

maior que 90. 

Lodos ativados, tratamento biológico, segundo Sperling 

(1996) remove em média 95% da carga orgânica. Devido 

ao material mineralizado (lodo), os HPA geralmente ficam 

adsorvidos e retidos nas camadas superiores, as meias 

vidas dos compostos de maior massa molecular são 

relativamente elevadas e indicam que sua degradação é 

lenta (MEIRE et al., 2007). Devido a esse aspecto a 

necessidade do POA para diminuir essa toxicidade, em 

que a degradação também superou os 90%. 

Saída da estação, lagoa de polimento para remoção de 

sólidos biológicos e homogeneização de pH, temperatura, 

oxigênio dissolvido e nutrientes para que o meio ambiente 

receba este efluente sem causar danos ambientais. O 

Tratamento POA também superou os 90%. 
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% Sobreviventes X amostras 

 

FIGURA 23 -Toxicidade após 24 horas 

 

 

 

Os efluentes antes do tratamento apresentaram um alto grau de toxicidade, mostrando-

se um ambiente inóspito para a sobrevivência dos organismos. Os resultados apresentaram 

uma DL maior que 50%, que é devido aos poluentes presentes nos efluentes, como também a 

presença de materiais em suspensão que impede a entrada de luz no meio desencadeando um 

desequilíbrio, pois sem luz os organismos fotossintetizantes como as algas não se reproduzem 

e nem produzem oxigênio necessário para a fauna marinha. 

Mas, após o tratamento os microcrustáceos tiveram uma porcentagem muito boa de 

sobrevivência, mesmo passando 24 horas expostos ao meio, uma vez que  não chegava a 40% 

antes do tratamento, quando o efluente foi tratado, a concentração de sobreviventes chegou 

aos 80%, comprovando a eficiência do tratamento. Os pontos que mais se destacaram foram o 

2 e o 5, que apresentaram a maior porcentagem de sobreviventes.  

Desta forma, demonstra-se que o tratamento POA conseguiu tratar os efluentes para 

que a biota conseguisse sobreviver, e tornando o ambiente menos tóxico. 

 

5.3 Modelagem Redes Neurais Artificiais 

 

Na modelagem do POA, especificamente o foto-Fenton, pois, foi este que a 

degradação superou os 90%, através das redes neurais foi realizada duas estratégias de 

modelagem, a primeira correlacionando as variáveis de entrada: naftaleno, acenaftileno, 

acenafteno, fluoreno, fenantreno, fluoranteno, pireno, benzo(b)fluoranteno, benzo(a)pireno e 
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peróxido; com a variável de saída, o carbono orgânico total. Na segunda modelagem foram 

utilizadas as mesmas variáveis de entrada e saída, acrescentando apenas à entrada o tempo, no 

qual a amostra foi retirada para análise de carbono orgânico total. Essa segunda estratégia de 

modelagem é interessante pois pode indicar uma possível otimização do processo em que o 

tempo no tratamento poderia ser interrompido fornecendo o valor de carbono orgânico total 

requerido para a legislação brasileira. 

A rede utilizada foi a  MLP constituída de três camadas: uma camada de entrada 

contendo 10 neurônios, uma camada intermediária contendo 3 neurônios e uma camada de 

saída com 1 neurônio. Para a primeira Rede Neural treinada utilizou-se 3 neurônios na 

camada intermediária com função de ativação logsig e na camada de saída também foi 

utilizada a função logsig. Os dados foram normalizados entre 0,1 e 0,9 e foram divididos em 

60% para treinamento (utilizados na avaliação da eficiência do aprendizado), 20% para teste 

(não participantes da etapa de avaliação)  e 20% para validação (participantes da avaliação de 

como anda o treinamento servindo para uma parada automática em caso de treinamento 

ineficiente), o algortimo de treinamento utilizado foi o Levenberg-Marquardt. Para a segunda 

Rede Neural treinada utilizou as funções de ativação tansig na camada intermediária e de 

saída. A rede utilizada foi a  MLP constituída de três camadas: uma camada de entrada 

contendo 11 neurônios, uma camada intermediária contendo 3 neurônios e uma camada de 

saída com 1 neurônio. Nas Figuras 24 e 25 pode-se observar um esquema das duas estruturas 

de modelagem para o POA (foto-Fenton). 

 

 

 

 

 

 

 

 

 

 

FIGURA 24 –  Primeira Estratégia de Modelagem da Rede Neural 
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FIGURA 25 –  Segunda Estratégia de Modelagem da Rede Neural 

 

As Figuras 26 e 27 demonstram a comparação dos dados experimentais e simulados 

no treinamento e no teste, respectivamente.  

 

FIGURA 26 - Comparação entre os dados experimentais e dados simulados utilizados no treinamento. 
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FIGURA 27 - Comparação entre os dados experimentais e dados simulados utilizados para teste. 

 

Para a primeira modelagem, sem a participação do tempo, assim apresentaram-

se os resultados: 

Observa-se pelas Figuras 28, 29 e 30 que apesar do pequeno número de dados, a rede 

neural treinada conseguiu obter um alto grau de correlação no treinamento (R
2 

= 0,997) e 

generalizar bem os dados de teste, de modo que o coeficiente de correlação para os dados de 

teste foi R
2
 = 0,995. Entre os dados experimentais e simulados utilizados no treinamento, no 

teste e na validação, ficou evidente que os valores ficaram muito próximos e que a rede neural 

utilizada foi capaz de acompanhar com precisão a tendência dos dados, consequentemente os 

valores do COT, verificado no coeficiente de correlação R
2
 = 0,994 na Figura 30. 

Os coeficientes de correlações obtidos foram comparáveis aos obtidos na literatura 

Aleboyeh et al. (2008) (R
2
 = 0,996), Salari et al. (2005) (R

2
 =0,998), Guimarães e Silva 

(2007) (R
2
 =0,96), Elmolla et al. (2010) (R

2
= 0,997), Gob et al. (1999) (R

2
 = 0,995), Yu et al. 

(2010) (R
2
 = 0,91-0,99),  Moraes et al. (2004) (R

2
 = 0,95-0,965), Giroto et al. (2006) (R

2
 = 

0,996). 
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FIGURA 28 - Gráfico de regressão entre os dados experimentais e simulados utilizados no 

treinamento. 

 

 
FIGURA 29 - Gráfico de regressão entre os dados experimentais e simulados utilizados para teste 
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FIGURA 30 - Gráfico de regressão entre os dados experimentais e simulados utilizados no 

treinamento, no teste e na validação para a primeira modelagem neural. 

 

Para a segunda modelagem, com a participação do tempo, assim apresentaram os 

resultados, segundo a Figura 31: 

Entre os dados experimentais e simulados utilizados no treinamento, no teste e na 

validação foi possível verificar que a rede conseguiu simular com razoável precisão os valores 

do COT, pois, o coefiiente de correlação foi R
2 

= 0,996. 

 

FIGURA 31 - Gráfico de regressão entre os dados experimentais e simulados utilizados no 

treinamento, no teste e na validação para a segunda modelagem neural. 
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6 CONCLUSÕES 

Os tratamentos convencionais biológico e físico-químico, executados na estação de 

tratamento ficou comprovado que estes não conseguem degradar os HPA presentes no 

efluentes. 

A degradação do HPA para as cinco amostras mostrou que os processos oxidativos 

avançados podem complementar os biológicos ou por si só são eficientes na degradação de 

compostos recalcitrantes de indústria de petróleo quando tratadas por Fenton e foto-Fenton, 

num teor de 60 e acima de 90% de degradação, respectivamente, durante um período de 

tempo de tratamento relativamente curto de até 30 minutos.  O sistema tratado ficou dentro 

dos parâmetros estabelecidos pelo Conama 357/2005 para os compostos  

Benzo(b)fluoranteno, Benzo(k)fluoranteno, Benzo(a)pireno. 

 Os resultados do COT deixou claro a necessidade de um tratamento mais drástico 

para deixar o efluente dentro dos parâmetros da legislação quanto a degradação completa. 

 Quanto ao aspecto toxicológico a eficiência do tratamento ficou comprovada pelo 

resultado do teste de toxicidade quando as amostras brutas e tratadas foram comparadas em 

relação a porcentagem de sobreviventes do microcrustáceo trabalhado. 

Para as duas estratégias de modelagens neurais estudadas, o tempo de tratamento, se 

mostrou mais eficiente quando verificamos os coeficientes de correlação, mesmo tendo a 

quantidade disponível de dados relativamente baixo quando comparados aos da literatura. Os 

coeficientes de correlação obtidos foram  comparados aos da literatura, ficando evidente a 

eficiência das redes neurais em modelar o processo oxidativo avançado. Provando, desta 

forma, que as RNA podem conseguir descrever o desempenho do processo foto-oxidativo, 

apesar da sua complexidade, pois, a comparação entre os dados experimentais e simulados 

previu a variável de saída o COT. 
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7 PERSPECTIVAS FUTURAS 

 

1. Comparar a eficiência e custo do tratamento biológico com o tratamento químico utilizando 

Processos Oxidativos Avançados. 

2.   Tratar cada efluente segregado com sistema POA e avaliar a eficiência dos processos. 

3.  Estabelecer um sistema de reator para recircular as águas do processo com tratamento 

POA. 
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