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Resumo

Durante o século XX, avanços teóricos e experimentais jogaram uma nova luz sobre o estudo
da história e evolução do universo, a Cosmologia. A partir dos trabalhos de Edwin Hubble, a
cosmologia moderna pôde ser vista como ciência. Mas foi nas últimas décadas, sobretudo,
com o desenvolvimento da cosmologia de precisão e devido a uma melhor compreensão
da natureza em seu nível mais fundamental, que a Cosmologia despertou maior interesse
científico. Uma das fronteiras da área diz respeito ao universo muito jovem: modelos cos-
mológicos são baseados em uma teoria de gravitação; no entanto, o paradigma atual de
teoria de gravitação, a Relatividade Geral de Einstein, quebra para regimes de energia acima
da escala de Planck. Assim, para descrever o universo primitivo, quando a densidade de en-
ergia era muito alta, precisamos de uma nova teoria de gravitação. Uma teoria de gravitação
capaz de lidar com os efeitos quânticos.

Hoje nós temos uma candidata à tal teoria quântica de gravitação: Teoria de Cordas.
Nesta dissertação, analisaremos um cenário cosmológico construído sobre Teoria de Cor-
das, o cenário cosmológico do gás de cordas, proposto originalmente por Robert Branden-
berger e Cumrum Vafa. O cenário faz uso de simetrias e dualidades próprias de Teoria de
Cordas e do fato de que um gás de cordas possui uma temperatura limitante para descrever
o universo primordial e propôr respostas à questões abertas de cosmologia, como a for-
mação da estrutura causal e a dimensionalidade do espaço-tempo. Uma das questões em
aberto no cenário é a ocorrência ou não de inflação, uma era de crescimento exponencial
do universo, que produz a estrutura causal observada experimentalmente e dilui relíquias
produzidas no universo primordial para os níveis observados. Propondo uma interação en-
tre as cordas do gás proporcional a seu acoplamento, estudamos a evolução resultante do
universo e sob quais condições podemos ter um período inflacionário.

Palavras-chave: Cosmologia, Teoria de Cordas, Cosmologia de Cordas, Gás de Cordas, In-
flação.
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Abstract

During the 20th century both theoretical and experimental advances shone a light over the
study of the history and evolution of the universe, the so-called Cosmology. Since the works
of Edwin Hubble, modern Cosmology gained the status of science. Especially in the last
decades, marked by the birth of precision cosmology and by the development of tools that
led to better comprehension of nature in its most fundamental level, have seen a growing
interest in Cosmology. One of the research frontiers in this area is the study of the very early
universe: cosmological models are constructed over a theory of gravitation; however, our
current paradigm of such theory, Einstein’s theory of General Relativity, breaks down at en-
ergy scales beyond Planck Scale. Because of that, a proper description of the early universe,
which had an extremely high energy density, requires a new theory of gravitation, one that
is able to account for the quantum effects. Our best candidate for such quantum theory
of gravitation is String Theory. In this work we are going to study a cosmological model
built over String Theory, the string gas cosmological model that was originally purposed by
Robert Brandenberger and Cumrum Vafa. The scenario makes use of stringy symmetries
and dualities and from the fact that a string gas has a maximum limiting temperature, the
Hagedorn temperature, to describe the very early universe and purpose an answer to some
open questions in Cosmology, like the formation of the universe causal structure, and the
dimensionality of space-time. One of the open questions in this scenario is related to exis-
tence or not of inflation, an era when the universe scales grew exponentially. This era would
generate the causal sptructre we observe and dilute the density of primordial relics to the
measured levels. We purpose the interaction between strings in the gas to be proportional
to their coupling and study the resulting evolution of the universe, focusing on the wheter
inflation takes place or not.

Keywords: Cosmology, String Theory, String Cosmology, String Gas, Inflation.
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CHAPTER 1

Overview

A poet once said, "The whole universe is in a glass of wine." We will

probably never know in what sense he meant that, for poets do not write

to be understood. But it is true that if we look at a glass of wine closely

enough we see the entire universe.

—RICHARD FEYNMAN

The comprehension of the universe is a dream whose age matches the age of mankind

itself. From this point of view, Cosmology may be seen as one of the oldest subject of study

of men. From deities to Einstein field equations, a long way has been pursued in this quest.

The last century, notably, has seen the emergence of accurate observational data and finally

has Cosmology gained the status of science.

Side by side with the experimental developments, the last century has also seen a tremen-

dous development of theoretical models. A better comprehension of the evolution of the

universe strongly depends on a fundamental comprehension of the laws of nature. The last

century saw the formulation of the Einstein’s theory of General Relativity and of the Standard

Model of Particle Physics. Our current paradigm of modern cosmology, the Λ-CDM model

was based over these two pillars of Physics, each one on its regime of validity. The challenge

that presents itself to us right now is to extend the regime of validity of cosmological models

by conciliating these two pillars in a quantum theory of gravity. String Theory has proven so

far to be our best candidate for such theory. In this state of affairs, string cosmology holds

importance for both Cosmology and String Theory: on one hand, stringy cosmological mod-

els may help solving some open questions of modern cosmology, as the dimensionality of

space-time and the generation of the causal structure we observe today; on the other hand,

cosmological experiments may be the perfect site for probing String Theory itself. It is with

this motivation that we shall proceed on this work.

The outline will be as given: in this chapter, a brief history of modern cosmology will be

described, as an introduction of its successes and open questions. In the second chapter,

a more detailed view of modern cosmology will be given, focusing on the inflationary sce-

1
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nario. The third chapter will be devoted to the presentation of string cosmology, focusing on

the string gas scenario. The fourth chapter will contain our study of inflation in the string

gas scenario. There is also an appendix on String Theory. We strongly encourage those not

familiar with this subject to devote some time on the concepts developed on this appendix,

since some key points of our work depend such concepts.

1.1 A Brief History of All Things

1.1.1 Early Days: The birth of Modern Cosmology

We can trace the beginning of the so called modern cosmology back to the first years of the

20th century. The first notable fact was the formulation of the theory of General Relativity

by Albert Einstein [1]. The theory describes the universe as a four-dimensional manifold on

which is defined a metric of Lorentzian signature. Einstein’s equation

Gab = 8πTab (1.1)

relates the geometry of space-time (through the Einstein tensor Gab) to the matter dis-

tribution in space-time (related to the stress-energy tensor Tab). In the words of Wheeler,

"Matter tells space how to curve and space tells matter how to move.".

In this scenario, we can restate the fundamental question of cosmology, how does the

universe evolves? as which solution of Einstein’s equations describes our universe, at least as

an idealized model?

To answer this question, one needs other inputs about the universe. The Standard Big

Bang Scenario (SBB), which led ultimately to our current paradigm of cosmological model

theΛ-CDM model, was originally constructed over three pillars:

• General Relativity is the correct theory of gravitation;

• our universe is homogeneous and isotropic on large distance scales;

• the matter content of the universe may be described as a perfect fluid.

As we will see in more detail in the next chapter, these assumptions led to the construc-

tion of the Friedmann-Robertson-Walker model (or FRW Cosmology). The statement that

our universe is homogeneous and isotropic on large distance scales is called cosmological

principle. Since there are no preferred directions in space, it is natural to assume isotropy.
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The assumption of homogeneity corroborates the idea that we occupy no special area of the

universe and is supported by experimental data, as shown in Figure 1.1.

Figure 1.1 APM Survey picture of a large part of the sky, about 30 degrees across, showing almost a
million galaxies out to a distance of about 2 billion light years. Credits: Steve Maddox, Will Suther-
land, George Efstathiou and Jon Loveday.

The picture shows the galaxy distribution as a density map in equal area projection on

the sky. Note how uniform is the distribution of measured galaxies.

The FRW scenario suggested the picture of a universe that was extremely small and hot

in the past, and that expanded and cooled down during its evolution. This is the basis of

the Standard Big Bang (SBB) scenario. The idea of a expanding universe was somewhat

controversial at that time. It took the work of the american astronomer Edwin Hubble to

experimentally support this idea.

Measuring the redshift of galaxies outside the Milky Way, Hubble managed to show that

they were moving away from us with a speed that was proportional to their distance from us

[2]: the farther the galaxy, the faster it is receding from us. This work is considered to mark

the beginning of modern cosmology.

1.1.2 The Cosmic Microwave Background and the Inflationary Paradigm

As we shall see in more detail in the next chapter, another important experimental support

for SBB is the Cosmic Microwave Background (CMB), measured for the first time in 1965 by

Arno Penzias and Robert Wilson at the Bell Labs [3]. Is consists of a radiation that fills the

entire universe and resembles the universe as it was approximately 300,000 years after the
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big bang. It tells us a lot about the universe on very large scales, since the radiation we see

today has traveled over such a large distance.

Even though the CMB is in accordance with an isotropic universe, it presented cosmolo-

gists with an intriguing question: points that are too far apart to be causally connected by the

time of CMB emission are in thermal equilibrium with each other. If the initial conditions

are to be believed to do not be special, some mechanism must be responsible for justifying

such thermal equilibrium. This is known as the horizon problem.

Possible answers for this question were purposed by Starobinsky [4] and Alan Guth [5]

under the name of inflation. The idea is that an era of exponential expansion of the uni-

verse might justify the causal structure we observe nowadays. It was purposed as a solution

to another problem tough: an extremely low density of magnetic monopoles is measured.

However, it is believed that the primordial universe had a huge number of monopoles. In-

flation also manages to dilute the density of monopoles and other cosmological relics.

As a third success, inflationary mechanisms predict an almost invariant spectrum of

fluctuations. Just as it is measured by the CMB. These three phenomenological facts give

Inflation a strong support. There is, however, a drawback: even though there are several

inflationary mechanisms, there is no theory of inflation. Many inflationary models, for ex-

ample, are driven by scalar fields (the inflaton). However it is not clear what exactly is this

scalar field.

In spite of this drawback, by the end of the last century a global view of the cosmological

"standard model" was somewhat clear: the universe started extremely small and hot, passed

through an inflationary phase and then kept expanding in a non-inflationary regime that

would resemble FRW cosmology. The matter content of the universe on late times would be

dominated by radiation. It was not clear what the inflaton was and singularities (specially

the big bang singularity for cosmologists) required more attention, but is was common sense

that the answer for these questions would only be given by a more fundamental theory of

gravitation.

1.1.3 Late Time Evolution and the Dark Sector

This picture dramatically changed in 1999, when a group lead by Saul Perlmutter, from the

Supernova Cosmology Project, conducted measurements for luminosity distance as a func-

tion of the redshift for 42 Type Ia supernovae [6]. The most recent results of the project are

shown in Figure 1.2.

In the description of the energy content of the universe as a perfect fluid, it is usual to di-
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Figure 1.2 Luminosity versus redshift for supernovae Credits: Supernova Cosmology Project

vide this content in three species: ordinary matter, radiation (composed mostly by photons

and neutrinos) and vacuum energy. Since they are described as perfect fluids, one is able

to write down their equations of state. In fact, matter is pressureless (PM = 0), radiation has

an equation of state given by pR = (1/3)ρr and vacuum energy is associated with a negative

pressure (pΛ) = −ρΛ. According to FRW-dynamics, this implies that radiation density goes

as a−4 while matter density goes as −3, that is, the energy in the universe should have been

dominated in early times by radiation, but since it decays faster than matter, we expect it to

be pretty small after sufficient amount of time. The late behavior should, at first glance, be

dominated by matter.

Surprisingly, the data obtained by Perlmutter et al. indicates with 99% of confidence

that in current days the energy density of the universe is dominated by vacuum energy! Ac-

cording to the data, approximately 30% of the energy density is under the form of mass and

around 70% is under the form of vacuum energy. What is even most surprisingly it that ac-
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cording to the dynamics of FRW cosmology, if ρΛ is sufficiently large compared to ρM , the

universe is not only expanding, but doing it with a positive acceleration [7]!

As a last ingredient to the cosmological mess, there is the fact that some part of the mat-

ter in the universe (actually most part) seems to be missing. By ordinary matter in the para-

graph above we mean anything made from atoms and their constituents (stars, planets, gas,

dust). The technical name for this is baryonic matter, since the majority of this mass comes

from baryons.

It turns out that baryonic matter is not even nearly enough to account for the observed

total matter energy density in the universe. Estimates from direct counting of baryons and

consistency with the CMB spectrum indicate that baryonic matter only accounts for around

4% of the total energy density of the universe. The rest of the matter energy comes from

some kind of unknown non-baryonic matter. Even though we are still not able to relate this

matter with the ordinary matter we know from our experience on Earth, its gravitational

effects may be verified. One example of this is the dark matter ring observed by Hubble

telescope.

Figure 1.3 Dark Matter ring observed by Hubble Space Telescope Credits: NASA, ESA, M.J. Jee and
H. Ford (Johns Hopkins University).

Such ring is produced by an effect called gravitational lensing: gravity bends the light of

distant background galaxies, generating this ring-like structure.

These unknown energy and matter in the universe are usually called dark energy and

dark matter. It is important to remark that even tough they both have dark in their ter-
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minology, this is only to reflect the fact that we know very little about them. They are not

related. Actually, it should be noted that the effect of dark energy on the evolution of the

universe is opposite to that of dark matter: while the first one accelerates the expansion, the

last one tends to slow it down.

Some possibilities have been purposed to explain both the existence of dark matter and

of dark energy. However, we will not focus on them in this work. The reader is referred to

the references for more details on this topic. Let us just mention that the most common

way to describe dark energy is to treat vacuum energy as a cosmological constant in Ein-

stein’s equation. Three are the main questions regarding dark energy: the first one is that it

is possible to roughly estimate the value of vacuum energy from the sum of zero-point fluc-

tuations (the energies of quantum fields in their vacuum state). This estimative results in an

energy density of order

ρΛ ≈ 10112erg/cm3.

Cosmological observations, however, indicate a much smaller value:

ρobs
Λ ≈ 10−8erg/cm3.

This is a difference of 120 orders of magnitude between theoretical and experimental

values. Why is the cosmological constant so much smaller than we expected? The second

question is even deeper: what is the origin of all this energy? Finally, there is the coincidence

problem: the ratio between vacuum energy and matter evolution in the universe is given by

ΩΛ

ΩM
∝ a3. (1.2)

However, our observations show that nowadays they have the same order of magnitude.

This means in the past vacuum energy was really small and that in the future matter density

will become negligible. A possible explanation is that our observations have not detected a

cosmological constant, but some kind of dynamical component that mimics the properties

of vacuum energy. It is in this sense that the term dark energy is more used than cosmological

constant.

Some have argued that a solution for this problem would require the anthropic princi-

ple [8]: existence of intelligent life is most likely to occur where the absolute magnitude of

vacuum energy is not too large, since large positiveΛwould tear particles apart even before

galaxies could exist and large negative Λ would drive a fast collapse of the universe before

life could take place. This argument, however, seems to be of little use towards understand-
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ing the mechanism.

As for dark matter, the important question that poses itself is: what is the origin of this

non-baryonic dark matter [9]? What we already know is that essencialy every particle in the

Standard Model of Particle Physics has been ruled out as a candidate for dark matter. This

means we must seek it outside the Standard Model.

One possible way to extend the Standard Model is through Supersymmetry. In super-

symmetric theories, every particle has a supersymmetric partner: a corresponding parti-

cle that has the same quantum numbers of the original particle, except for the spin, that is

changed by a factor of 1/2. One of such particles is the neutralino, a mix of states of the Zino,

the photino and the Higgsino (which are superpartners of the Z boson, the photon and the

Higgs). Even tough the neutralino is the lightest of the predicted supersymmetric partner,

it has enough mass (mneutralino > 100GeV ) and stability to account for the observed dark

matter abundance [10].

What is certain is that dark matter must be cold: it must have been non-relativistic for a

long time, for if it was hot it would have free-streamed out of overdense regions, suppressing

the formation of galaxies. Because of that, is common to call it Cold Dark Matter (CDM).

It must be very weakly interaction with ordinary matter, since is has not been detected yet.

Because of that, candidates for dark matter as the neutralinos are also called WIMPS: weakly

interacting massive particles.

With all that in mind, we may define what cosmologists understand as the Cosmological

Standard Model nowadays: the universe started out extremely dense and hot, as in Stan-

dard Big Bang (SBB) cosmology. It has passed through an inflationary phase while it was

still young, generating the causal structure we observe nowadays and diluting the density

of transplanckian relics. Inflation should have taken place after t = 10−42s and have lasted

at least 60 e-folds to generate the correct spectrum of fluctuations (one e-fold is the time

necessary for the universe to grow by a factor of e). Far in the future from the inflationary

era, the universe obeys the dynamics of FRW cosmology with a cosmological constantΛ and

the presence of cold dark matter as sources of dark energy and dark matter. This is the so

called Λ−C DM model. The evolution of this scenario is depicted in Figure 1.4. Standard

references for modern cosmology include Weinberg [11], Dodelson [12] and Liddle [13].
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Figure 1.4 Evolution of theΛ-CDM Cosmological Model. Credits: NASA/WMAP Science Team

1.2 String Theory

Another serious issue in Modern Cosmology is the fact that General Relativity, as any physi-

cal theory, has a regime of validity. Thus, a description of the universe based in General Rel-

ativity will be limited to this regime. In special, General Relativity breaks down in regimes

of extreme energy density (in a technical fashion, it is said that GR is not an UV complete

theory). In such regimes, we need to replace it by a quantum theory of gravity. Let us see

why.

1.2.1 Why String Theory

General Relativity predicts the existence of singularities. These can be thought as a region of

infinite curvature on the space-time. Remember, for example, FRW flat space-time:

d s2 =−d t 2 +a2(t )[d x2 +d y2 +d z2] (1.3)

where the scale factor a(t ) goes to zero at some finite time t = 0 where space-time is in-

finitely curved. General Relativity is not able to explain what happens when t = 0. The same

happens inside black holes: even tough General Relativity predicts their existence, it breaks

down at their singularities. This means we need a more fundamental theory of gravity if



1.2 STRING THEORY 10

we want to describe what happens when a particle reaches a space-time singularity. This

should be a quantum theory of gravity, that manages to account for the quantum effects

that become relevant when curvature reaches planckian values. It is known that quantizing

gravity is a difficult problem, since some of its divergences are not renormalizable.

Consider, for example, Quantum Electrodynamics (QED). One is able to make some pa-

rameters of the theory, such as the mass and charge of the electron, absorb divergences in

QED loop diagrams. Since these parameters are measurable, the predictions of the theory

for all other physical observables are finite (in this sense, we measure the already renormal-

ized mass and charge of the electron).

The above procedure can not be made in General Relativity (GR): renormalizing all the

divergences would require an infinite number of such parameters. Therefore, we can only

trust the theory in the regime where all these terms become negligible, namely the low en-

ergy regime. In this context, General Relativity can be thought as a low-energy effective the-

ory of a more fundamental theory: String Theory, which contains additional heavy degrees

of freedom. These heavy degrees of freedom may be integrated out to yield the effective

theory:

e i Seff(l ) =
∫

Dh e i S(l ,h) (1.4)

where l denotes the light (super)gravity modes and h the heavy additional modes. The ra-

tio E 2/M 2 between (low) energy scale of interest and the mass of the heavy modes serves

as an expansion parameter for the effective action, through which quantum effects may be

computed. However, this expansion is only valid when the parameter is small. It may hap-

pen that the mass of a heavy mode depends on the light mode and may be small in certain

regimes. In extreme cases, when the mass of a heavy mode goes to zero, the effective theory

can contain divergent couplings and then become singular. This can be solved by taking

this heavy mode that becomes light and including it in the low energy description instead of

integrating it out with the heavy modes. The additional stringy degrees of freedom resolve

the singularity of the original gravity theory.

The above discussion illustrates the breakdown of GR at high energy densities. A more

accurate cosmological model, thus, should be constructed over the more fundamental un-

derlying theory. We have a candidate for such a theory: String Theory.
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1.3 A New Paradigm: String Cosmology

In spite of the recent fame String Theory has acquired even in the non-scientific world for

being a "Great Unification Theory" (GUT), this is not the main reason why physicists are so

interested in strings. The main reasons are: i) that String Theory provides a quantum theory

of gravity that has General Relativity as a low-energy effective theory; ii) the Gauge/Gravity

duality.

Once we are equipped with a quantum theory of gravity, we can use it to construct cos-

mological models not limited by the regime of validity of General Relativity and try to solve

some questions that could not be answered before: one of them is the fact that the initial

singularity of space is an issue that may not be totally believable from a physical point of

view. As is the infinity of the temperature of the primordial universe. And there is also the

issue of the dimensionality of spacetime: General Relativity sets it to be four by hand.

Some attempts have been made using string-inspired ideas, namely the Pre-Big Bang

Scenario [14], Ekyprotic Scenario [15],[16] the Randall-Sundrum Scenario [17], Cyclic Cos-

mologies [18], AdS Cosmologies [19] and last but not least, the String Gas Scenario [20],[21]

in which we shall focus on this work.

1.3.1 Cosmology with string gases

The String Gas Scenario was originally proposed by Robert Brandenberger and Cumrum

Vafa. The idea is to study how highly excited strings behave when they are put in small

spaces (compactified dimensions), focusing on some features that are stringy in nature,

namely the Hagedorn temperature and T-Duality.

The Hagedorn temperature is a limiting temperature for a string gas that emerges from

the fact that the asymptotic density of energy levels of a string grows as

ρ(m) ≈ exp(π
p
α′m). (1.5)

As a consequence, the energy of a string diverges as

E ∼ 1

β−βH
(1.6)

where βH = 1/4πα′ is the Hagedorn temperature. This stringy feature eliminates the diver-

gence on the universe temperature as it approaches t → 0 in SBB.

The other feature comes from considerations about the dimensionality of spacetime.
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(Super)String Theory predicts the existence of (10) 26 spacetime dimensions. These are

higher than the usual 4 dimensions we know from everyday life. A natural hypothesis is

that the remaining dimensions are compactified in scales much smaller than the 4 large

dimensions we observe.

T-Duality is the fact that the energy spectrum of strings on compactified dimensions

m2 = n2

R2
+ w 2R2

α′2 + 2

α′ (NL +NR −2) (1.7)

is invariant under R ↔ R ′ = (α′/R), n ↔ w . On the right-hand side of the equation above,

the first term is contribution from momentum modes of the string to the spectrum, the

second term is the contribution from winding modes and the last term is the contribution

from oscillators modes. The reader not familiar with the equation above is referred to the

appendix and to Chapter 3, where it will be treated in detail.

This fact implies that strings are not sensible to distances smaller than the string scale:

if we start downsizing the distance scale, at some point strings will cross a self-dual radius

from which point they will start to behave as if the distance scale was growing again. Since

the spectrum will be the same if we have a too large radius or a too small dual radius, we can

not distinguish too large from too small!

Winding modes will also play an important role in determining the dimensionality of

spacetime. In the Brandenberger-Vafa scenario the universe starts close to the Hagedorn

temperature, with all spatial dimensions compactified on a string-scale torus. Momentum

and winding modes of the string spectrum have opposite pressure contributions to the gas:

winding modes prevent expansion and momentum modes prevent shrinking.

Fluctuations might lead to an annihilation of winding modes, making it possible for

compactified dimensions to expand. In the picture, we should not ask ourselves why are

there compact dimensions. Instead we must reverse the question and ask why some of them

have expanded. The number of large spatial dimensions would not be input by hand, but a

possible outcome of string interactions. Some works have been made to determine whether

decompactification on 3 spatial dimensions is an statistically favored outcome.

In this work, we will focus on studying the dynamics of the String Gas scenario close

to the Hagedorn temperature. One important question in this scenario is about the exis-

tence of an inflationary era in the evolution of a universe filled with a string gas. As we shall

see, the fact that the universe starts in a thermal state (a Hagedorn phase) creates a causal

structure in this scenario without the need of an inflationary phase. The String Gas scenario

has no horizon problem. However, the fact that and inflationary era is not required to solve
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these problems does not mean it has not existed. More than that, some other problems that

arise in Standard Big Bang cosmology (SBB), as the requirement of an explanation for the

extremely low density of monopoles still arise in this scenario. One can either search for

an inflationary phase that solves these other problems or find a new mechanism to explain

them.

As a last remark, it is important to note that the appendix was thought as an important

part of this work, specially for those not familiar with String Theory. Major concepts that

will be used through this work are developed on the appendix, so we really suggest that

all of those who are not familiar with String Theory devote some time reading it. Previous

knowledge on field quantization is recommended.



CHAPTER 2

Standard Big Bang Cosmology and the Inflationary

Scenario

Parallel lines, move so fast toward the same point, infinity is as near as it is

far.

—KINGS OF CONVENIENCE

2.1 FRW Cosmology

One notable fact about the evolution of the universe is that it appears to be the same in all

directions and in all positions around us, at least when the relevant distances are bigger than

300 million light years. The assumption that the universe is homogeneous and isotropic, the

so called cosmological principle, is one of the ingredients of the FRW cosmological model,

the base model of most research done on modern cosmology, at least as a first approxima-

tion.

The FRW metric was first obtained by Friedmann, as a solution to Einstein field equa-

tions [22]. After that, Robertson [23] and Walker [24] obtained it again in the context of

homogeneity and isotropy.

The FRW model is derived from three pillars. The first one the already mentioned cos-

mological principle. The second one is the assumption that the evolution of a cosmological

system is dominated by gravity, and that the theory of gravitation is Einstein General Rela-

tivity. At last, the universe matter content is described as a perfect fluid.

Now, let’s use these ingredients and construct the model.

2.1.1 Einstein Equations

The evolution of the universe occurs in large distance scales (cosmological scales). On such

scales, the evolution of the system will be determined by gravitational interaction. The first

assumption of FRW cosmology is that these interactions are described by Einstein’s theory

14
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of General Relativity.

In particular, the action that describes these interactions reads

S =− 1

16πG

∫
d 4x

p−g R +SΣ+
∫

d 4x
p−gLm . (2.1)

The first term is just the Einstein-Hilbert term, comprising the determinant of the met-

ric g and the Ricci scalar R, related to the geometry of space-time. The last term is the

action due to matter fields, acting as gravitational sources. The second term is the Gibbons-

Hawking boundary term [25] and is required in order to reproduce the standard Einstein

equations (originally Einstein did not deduced his equations from an action principle; this

term makes the equations of motion of this action reproduce the ones deduced by Einstein).

Varying this actions with respect to the metric gives Einstein’s field equations

Gµν ≡ Rµν− 1

2
gµνR = 8πGTµν. (2.2)

The tensor Gµν is the so-called Einstein tensor and Tµν is the energy-momentum tensor

of matter sources defined by

δg (
p−gLm) = 1

2

p−g Tµνδgµν. (2.3)

Now we must give some observational input and look for solutions of equation (2.2).

This input will be the cosmological principle of homogeneity and isotropy.

2.1.2 The FRW Metric

The objective here is to obtain metrics that are homogeneous and isotropic solutions of

Einstein field equations. Firstly, one can think of the obvious flat space metric:

d s2 = d x2

Note that three dimensional translations and rotations leave this invariant.

One can also think of a three-dimensional spherical surface in a four-dimensional Eu-

clidean space with some radius a, in which case the line element would be:

d s2 = d x2 +d z2, z2 +x2 = a2

Now, the transformations that leave this invariant are four-dimensional rotations.

There is only one other possibility [26] of such line element. It is a hyperspherical surface
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in a four-dimensional pseudo-Euclidean space, with line element

d s2 = d x2 −d z2, z2 −x2 = a2

where a2 is an arbitrary positive constant. Now, four-dimensional pseudo-rotations, like

Lorentz transformations with z instead of time, leave this invariant.

We can rescale coordinates

x ′ ≡ ax, z ′ ≡ az,

so that the spherical and hyperspherical cases can be written as:

d s2 = a2[d x2 ±d z2], z2 ±x2 = 1

Differentiating z2 ±x2 = 1 and inserting the result, we obtain:

d s2 = a2
[

d x2 ± (x ·d x)2

1∓x2

]
.

This can be extended to the Euclidean case by rewriting it as:

d s2 = a2
[

d x2 +K
(x ·d x)2

1−K x2

]
where we have three possible cases for the value of K :

K =


+1 spherical

−1 hyperspherical

0 Euclidean

Now, if we promote a to an arbitrary function of time (the FRW scale factor), we can

insert a term in the spacetime element, so that we may finally arrive at the FRW spacetime

metric:

dτ2 ≡−gµν(x)d xµd xν = d t 2 −a2(t )

[
d x2 +K

(x ·d x)2

1−K x2

]
. (2.4)

It is possible to rewrite this metric in spherical polar coordinates:

d x2 = dr 2 + r 2dΩ, dΩ≡ dθ2 + sin2θdφ2

so that:
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Figure 2.1 Possibilities for the geometry of FRW universes depending on the value of K

dτ2 = d t 2 −a2(t )

[
dr 2

1−K r 2
+ r 2dΩ

]
. (2.5)

Note that in deriving this metric, we have used two of the three basic assumptions of the

FRW modes, namely the conditions of isotropy and homogeneity, and the usage of Einstein

General Relativity as a theory of gravitation. Now, we may go further: describing the universe

matter content as a perfect fluid we are going to obtain the dynamics of the model.

2.1.3 FRW Dynamics

As was previously stated, in the FRW model the matter content is described as a perfect fluid.

In a perfect fluid, the components of the energy momentum tensor must take the form

T i j = pδi j , T i 0 = Ti 0 = 0, T 00 = ρ,

where ρ e p are, respectively, the energy density and pressure. Note that if the statement

above was not true, there would exist preferential directions in space.

Now, suppose a locally inertial Cartesian frame with an arbitrary velocity. Then, if p and

ρ are the same as in the comoving inertial frame, the energy momentum tensor has the form

Tαβ = pηαβ+ (p +ρ)uαuβ
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Here, uα is defined to have the components u0 = 1, ui = 0 in the locally comoving Carte-

sian inertial frame and to transform as a four-vector under Lorentz transformations. It is

known as the velocity vector and it is normalized so that, in any inertial frame, ηαβuαuβ =
−1. In general, therefore, the energy-momentum tensor of a perfect fluid in a gravitational

field is given by:

T µν = pgµν+ (p +ρ)uµuν, gµνuµuν =−1

Note that this formula is generally covariant and is true in locally inertial Cartesian coor-

dinate systems. The assumption of homogeneity and isotropy, ergo, implies that the com-

ponents of the energy momentum tensor take, everywhere, the form

T 00 = ρ(t ), T 0i , T i j = g̃ i j (x)a−2(t )p(t ). (2.6)

Note that the momentum conservation ∇µT iµ = 0 is satisfied for the FRW metric and the

energy momentum tensor above. On the other hand, from the energy conservation law we

get:

∇µT 0µ = ∂µT 0µ+Γ0
µνT νµ+ΓµµνT 0ν =

= ∂T 00

∂t
+Γ0

i j T i j +Γµi 0T 00 = dρ

d t
+ 3ȧ

a
(p +ρ) = 0

So that

dρ

d t
+ 3ȧ

a
(p +ρ) = 0. (2.7)

A perfect fluid has a equation of state of the form

p = wρ.

Inserting this equation of state in the energy conservation equation, we get:

ρ∝ a−3−3w (2.8)

One can also arrive at the above conclusion by noting that, for the FRW metric, the Ricci

tensor is given by

Ri j =−[2K +2ȧ2 +aä]g̃i j

which, in conjunction with 2.6, reduces Einstein equations to:
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−2K

a2
− 2ȧ2

a2
− ä

a
=−4πG(ρ−p),

3ä

a
=−4πG(3p +ρ).

(2.9)

These are known as the FRW cosmological equations, and determine the dynamics of

the FRW cosmological evolution. One can combine them in order to obtain:

ȧ2 +K = 8πGρa2

3
(2.10)

This was the equation originally obtained by Friedmann. Its derivative combined with

the second FRW equation yields:

dρ

d t
=−3ȧ

a
(p +ρ)

which is exactly the conservation of energy equation we have obtained before.

Now we may return to the analysis of equation (2.8). It has, in principle, two particular

cases:

• Radiation: p = ρ/3 ⇒ ρ∝ a−4

• Dust (cold matter): p = 0 ⇒ ρ∝ a−3

With this information, we are ready to advance in the details of dynamics of the universe

evolution. The first thing to be noted is that the value of K, the constant that determines the

geometry of the FRW universe, also determines qualitative features of the future evolution

of the universe. We can eliminate the ä factor in FRW equations 2.9 to obtain:

3ȧ2

a2
= 8πGρ− 3K

a2
(2.11)

From this, it becomes clear that if K =−1 or K = 0, then ȧ can never become zero. Thus,

if ȧ > 0 in present time, then ȧ will be non-negative forever and the universe can never stop

expanding.

On the other hand, if K = +1, one can note that the first term on the right-hand side

decreases more rapidly with a than the second (since ρ ∝ a−4 or ρ ∝ a−3). Since the left-

hand side of the equation must be positive, then a must have some upper bound ac . Also,

the fact that a is bounded, in conjunction with the second FRW equation, imposes a lower

bound on ä. The result, is that the universe can not asymptote ac when time goes to infinity,
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Figure 2.2 Possibilities for the evolution of FRW universes depending on the value of K. Credits: Eu-
ropean Space Agency

but rather will achieve a maximum value ac and then begin to contract, coming to a "big

crunch" sometime in the future.

2.2 Phenomenological Aspects of Standard Big Bang Cosmology

The description of the universe through standard Big Bang cosmology, as we have seen so

far, is based on a classical treatment of both space-time (General Relativity) and matter (per-

fect fluids). We are going to present experimental evidence that give phenomenological sup-

port for SBB, namely the Hubble Law and the isotropy and black body nature of CMB.

2.2.1 Hubble Law

The FRW model was formulated in the first half of the 1920’s decade. It was not, however,

the only purposed cosmological model. It was not clear, at that time, that the expansion

of the universe predicted by the model was true. Other scientists, including Albert Einstein

himself, believed that the universe was a steady system.

It was only by 1929 that an experiment was able to shine a light on this doubt. The amer-

ican astronomer Edwin Hubble measured the spectra of many galaxies. He was able, from

this data, using the Doppler shifts of spectral lines, to obtain the relative velocities of these
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galaxies. Eventually, he was able to correlate the velocities of the galaxies with their distances

to the Earth through a “roughly linear” relation [2]. The result is what is now known as the

Hubble Law:

vr = H0d (2.12)

The slope of the curve is known as Hubble’s constant, and characterizes the rate of ex-

pansion of the universe. It has the form

H0 = ȧ(t0)

a(t0)
(2.13)

where the 0 subscript denotes that the values are measured in the present epoch. Even

though measurement of the Doppler shift in galaxies spectra have been obtained since the

1910’s, only the relation obtained from the work of Hubble was able to show that the universe

is expanding.

Figure 2.3 exhibits the original set of data obtained by Edwin Hubble together with data

from more recent experiments.

(a) Hubble’s original data (b) Recent data

Figure 2.3 Experimental data supporting Hubble Law. The first one contains the original data set
obtained by Edwin Hubble and his linear fit. The second one contains recent data with higher preci-
sion. Credits for the second picture: Wendy Freedman, Observatories of the Carnegie Institution of
Washington and NASA.

The work of Edwin Hubble usually is cited as the beginning of Modern Cosmology.
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2.2.2 The Cosmic Microwave Background

Diffuse photon backgrounds, coming in all wavelengths, are observed in the universe. Most

of these photons are found to be in a nearly isotropic background with a thermal spectrum

at a temperature of 2,73K . This spectrum is the so called Cosmic Microwave Background

(CMB) and was first detected, by accident, by Arno Penzias and Robert Wilson, from the Bell

Labs, in 1965 [3].

The original objective of Penzias and Wilson was to detect radio waves bounced off echo

balloons satellites. After removing the effects of radar and radio broadcasting and suppress-

ing interference from the heat in the receiver itself, they found a low and steady noise that

persisted in the receiver. This was the first experimental measurement of the CMB.

We know that, as the universe evolves and expands, it energy density increases, and so

its temperature. At sufficiently high temperatures, the photons start to interact. At tem-

peratures above approximately 13 eV hydrogen was ionized, and the photons were coupled

to charged particles. The rapid collisions of photons with free electrons established a ther-

mal equilibrium between radiation and hot dense matter. The number density of photons

in equilibrium with matter at temperature T at photon frequency between ν and ν+dν is

given by the black body spectrum:

nT (ν)dν= 8πν2dν

exp(hν/kB T )−1
(2.14)

where h is Planck’s constant and kB is Boltzmann’s constant. We use natural units, where

c = 1.

When the temperature became low enough for hydrogen to be stable, the universe be-

came transparent. This moment, when the decoupling occurred, is called the "last scatter-

ing surface". The CMB is to a good approximation a "photography" of the this surface.

Since the time of decoupling the matter became cooler and less dense and the radiation

began a free expansion. Due to redshift effects, a photon that has frequency ν at some time t ,

had a frequency νa(t )/a(tL) at recombination time tL . So, if we assume that the decoupling

occurred in a definite instant, the number density of photons at time t is given by:

n(ν, t )dν=
(
a(tL)/a(t )

)3
nT(tL )

(
νa(t )/a(tL)

)
d

(
νa(t )/a(tL)

)
(2.15)

where the factor (a(tL)/a(t ))3 arises from the dilution of photons due to the cosmic expan-

sion. Using 2.14 on this last equation, we get the number density at time t :
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n(ν, t )dν= 8πν2dν

exp(hν/kB T (t ))−1
= nT (t )(ν)dν (2.16)

where

T (t ) = T (tL)
a(tL)

a(t )
. (2.17)

This shows that the spectrum keeps the same form after the universe expansion. The

photon density is given by the black-body form even after the photons went out of equi-

librium with matter, but with a redshifted temperature. This conclusion holds if instead of

a definite instant the decoupling occurred in a finite time interval, since the interactions

between photons and matter are dominated by elastic scattering, which is true for the tem-

perature at which the decoupling takes place (T ≈ 3000K ).

One key success of standard big bang cosmology is that this radiation is characterized by

a surprising isotropy. Anisotropies arise only at a fractional level of a bit less than 10−4. This

is illustrated by Figure 2.4.

Figure 2.4 Full sky map of CMB from 7 year WMAP data. Credits: NASA/WMAP Science Team

We may study the CMB anisotropies in terms of their angular power spectrum. The typ-

ical way is to decompose the temperature fluctuations in spherical harmonics:

∆T

T
(θ,φ) =∑

lm
almYlm(θ,φ) (2.18)

so that the amount of anisotropy at multipole moment l is expressed via the power spec-

trum
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Cl =< |al m |2 > . (2.19)

Note that θ = 180o/l , so that higher multipoles correspond to smaller angular separa-

tions on the sky. The coefficients Cl define the angular power spectrum of CMB anisotropies.

Figure 2.5 shows the resulting angular power spectrum from the 5 year data of the WMAP ex-

periment.

Figure 2.5 Power spectrum of CMB anisotropies. Credits: NASA/WMAP Science Team

The spectrum of CMB anisotropies is relevant in several areas of cosmology. We will get

back to it later, when we introduce the mechanism of inflation.

2.3 Inflation

Standard Big Bang (SBB) cosmology has had success in explaining several aspects of the

universe evolution. Notably the two phenomenological aspects reviewed so far: Hubble

Law and the existence and black-body nature of CMB radiation. However, SBB is not able

to account for some conceptual puzzles: the flatness of the universe and the large scale

homogeneity of CMB. These questions impel us to introduce a mechanism called inflation

through which these (and other) issues in SBB may be solved.
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We are going to review flatness and homogeneity issues and then introduce the mecha-

nism of inflation.

2.3.1 The Flatness Problem

The first issue we are going to address is the so called flatness problem. For that, let us first

introduce some useful quantities.

We begin by defining the density parameter in a species of matter i :

Ωi = 8πG

32
ρi = ρi

ρcrit
(2.20)

where

ρcrit = 3H 2

8πG
(2.21)

is the critical density corresponding to the energy density of a flat universe. In terms of

the total density parameter

Ω=∑
i
Ωi

we can rewrite 2.11 as

Ω−1 = K

H 2a2
(2.22)

Now he have a clearer view of the dependence of a FRW universe geometry with its en-

ergy density:

• ρ < ρcrit ↔Ω< 1 ↔ K =−1 ↔ open universe

• ρ = ρcrit ↔Ω= 1 ↔ K = 0 ↔ flat universe

• ρ > ρcrit ↔Ω> 1 ↔ K =+1 ↔ closed universe

Note from equation (2.22) that as the universe expands |Ω− 1| increases. Thus, in an

expanding universe Ω = 1 is a repulsive fixed point and any deviation from this value will

grow with time.

It happens that measurements indicate Ω ≈ 1. In order to explain this present small

value, the initial energy density had to be extremely close to critical density. For example, at

T = 1015 GeV, we have:
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ρ−ρcrit

ρcrit
≈ 10−50 (2.23)

To understand the origin of the fine tuning of these initial conditions it the so called

flatness problem of Standard Big Bang Cosmology.

2.3.2 The Horizon Problem

In FRW cosmology, there is a finite time interval since the Big Bang singularity. Because of

that, photons can only have traveled a finite distance since the beginning of the universe.

This generates a particle horizon in FRW cosmologies.

A radial null path in a flat spacetime obeys:

0 = d s2 =−d t 2 +a2dr 2 (2.24)

The comoving distance traveled by a photon that follows this trajectory between times

t1 and t2 is:

∆r =
∫ t2

t1

d t

a(t )
(2.25)

The horizon problem is the fact that, even though widely separated points on the last

scattering surface were completely outside each other’s horizons, the CMB is isotropic to a

high degree of precision (temperature differences between the coolest and hottest points in

the CMB thermal spectrum are of the order of 10−4K ).

Regions of the universe that were outside causal contact distance are observed to be in

the same temperature. So, it is necessary to modify the causal structure of SBB in order to

explain how did these regions came to thermal equilibrium. Two possible solutions arise: i)

some mechanism occurring during the evolution of the universe connected causally these

regions or ii) the universe has began in some special (already in thermal equilibrium) state.

The most accepted solution is Inflation, a mechanism through which the universe grows

exponentially during a finite time interval in its early evolution. As we are going to see, this

may solve both the flatness and horizon problems.

2.3.3 The Mechanism of Inflation

Since Standard Big Bang Cosmology presents the problems listed above, we must somehow

modify it in order to provide the universe an accurate causal structure and a solution for the
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flatness problem. The main idea in inflation is to consider that early universe was domi-

nated neither by matter nor by radiation, but by vacuum energy.

As we have seen in Section 1.2, the scale factor falls as a−4 for radiation and as a−3 for

matter. Vacuum energy has a equation of state given by:

p =−ρΛ
So that, in virtue of equation (2.8), during vacuum energy dominated era, we haveρΛ/3M 2

P ∝
a0. We may rewrite equation (2.8) for this era:

H 2 = ρΛ

3M 3
P

− K

a2
(2.26)

The first term on the right-hand side grows rapidly with respect to the second one, that

is, the density parameter is driven to unity, so the universe becomes flatter with time. If

the vacuum energy dominated era lasts long enough, the universe will enter radiation dom-

inated era already with the density parameter very close to unity, what would explain the

platitude issue.

A period of exponential growth of the universe, driven by such vacuum energy domi-

nance, on the other hand, would make the physical horizon much larger than the Hubble

radius H−1
0 . This would provide a causal structure for the isotropy of CMB.

The inflationary era is this era of exponential growth of the universe:

a(t ) ∝ eH t (2.27)

where the Hubble parameter H is supposed to remain constant through this era. The fig-

ure below shows represents the evolution of an universe with an inflationary era that lasts

between times ti and tR . Phenomenology restrains inflation to last for 60 or more e-folds so

that it generates the correct CMB spectrum. One e-fold is the time necessary for the universe

to increase by a factor of e its scale factor.

The universe exits inflation, at time tR , very hot and dense. From this point, it follows

SBB evolution. Inflation exponentially dilutes the number of particles initially in thermal

equilibrium, lowering matter temperature also exponentially. The energy responsible for

inflation is released as thermal energy at time tr , in a non-adiabatic process that increases

the entropy of the universe called reheating. Time tR is called reheating time.

The vacuum energy necessary for an early universe inflationary phase may be provided

by the potential of a scalar field (which we call inflaton). The action of such scalar field that



2.3 INFLATION 28

Figure 2.6 Cosmology of an inflationary universe. Inflation goes from ti to tR

dominates the universe in a curved spacetime is given by:

S =
∫

d 4x
p−g

[
−1

2
gµν∂µφ∂νφ−V (φ)

]
(2.28)

If we assume the field to be homogeneous and the metric of the space to be that of FRW,

the equation of motion of the field is given by:

φ̈+3Hφ̇+V ′(φ) = 0 (2.29)

where a dot indicates time derivatives and a prime indicates derivatives with respect to the

field. Ignoring the curvature term on 2.26 since inflation will flatten the universe, it becomes:

H 2 = 1

3M 2
P

(
1

2
φ̇2 +V (φ)

)
(2.30)

Required conditions for inflation are a dominance of the field potential energy over its

kinetic term and a slow time evolution of the scalar field, which are called the slow-roll con-

ditions:

φ̇2 <<V (φ)

|φ̈| << |3Hφ̇|, |V ′|
(2.31)

Another way to say that is to require that the slow-roll parameters
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ε= 1

2
M 2

P

(
V ′

V

)2

η= M 2
P

(
V ′′

V

) (2.32)

to be small. Note, however, that the existence of an inflationary phase still depends on the

initial conditions of the scalar field, like |φ̇|. What can be assured is that if these parameters

are small, most initial conditions will be attracted to an inflationary phase.

A simple example of potential that satisfies these conditions is the toy model V (φ) =
1/2m2φ2. Starting with initial conditions such that φ̇ = 0 (and neglecting the φ̈ term), our

set of equations reduce to:

3Hφ̇=−V ′(φ)

H 2 = 8π

3
GV (φ)

(2.33)

which can be solved to give:

φ̇=− 1p
12π

mMP (2.34)

The slow-roll conditions 2.31 break down when

φ= 1p
12π

MP (2.35)

thus yielding a condition for the end of inflation and the onset of reheating.

In our toy model, reheating will be driven by the the 3Hφ̇ damping term on the equation

of motion (Hubble friction). More generally, reheating has been described in terms of energy

transfer from coherent oscillations of φ into other particles via parametric resonance [27]

[28]. Since many relics may be produced during reheating, a proper understanding of it is

necessary. In the context of particle Physics, for example, it is necessary that inflation lasts

long enough to dilute the density of magnetic monopoles generated by GUT breaking to less

than observational limits. Once inflation has ended, it is important that reheating does not

produce too many monopoles. Also, it is important that reheating does not become so hot

that it reproduces baryogenesis.

The standard inflationary scenario was proposed by Albrecht and Steinhardt [29] and

Linde [30] independently and is made of a scalar field theory in which a double well potential

undergoes a second order phase transition.

The critical temperature is characterized by a vanishing second derivative of the poten-
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Figure 2.7 Inflationary Potential Phase Transition

tial at φ= 0. For fairly general initial conditions, the field is trapped in a metastable state at

φ = 0 by finite temperature effects. As the universe expands, the temperature cools down.

When the temperature is lower than the critical, φ = 0 is a local maximum of the potential.

Its instability is triggered by thermal fluctuations that drive φ(x) towards one of the global

minima at φ=±a. Inflation occurs while the false vacuums decay.

Many realizations of potential-driven inflation have been developed as Hybrid Inflation

[31], Chaotic Inflation [32] and Eternal Inflation [33]. The reader is referred for the references

for more details.

2.3.4 Fluctuations and Inflation

The major success of the inflationary paradigm is that it is able to account for the observed

power spectrum of fluctuations in the CMB.

If the inhomogeneities are small, they can be described by a linear theory, so that the

Fourier modes k evolve independently. Any perturbation will have its wavelength inflated by

the exponential growth of the universe, while the Hubble radius remains constant. For those

perturbations generated early in the inflationary phase, the wavelength will become larger

than (exit) the Hubble radius. After the end of inflation, the Hubble radius will increase as

t , while the wavelengths of fluctuations will grow as a(t ). After some time, the modes will

become, once again, smaller than (enter) the Hubble radius. In this way, inflation is able to

generate cosmological fluctuations with a causal structure.

When the fluctuations generated by physical process cross the Hubble radius, they sat-
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isfy

δM

M
(k, ti (k)) = constant, (2.36)

where δM is the mass fluctuation on a length scale k−1 at time t. The general assumption

that super-Hubble scale fluctuations are no affected by causal Physics implies that the mag-

nitude of the fluctuation can only change by a factor independent of k, so that a time t f we

have:

δM

M
(k, t f (k)) = constant. (2.37)

This is precisely the definition of a scale-invariant spectrum. Both experiments led with

galaxy redshift surveys and the CMB spectrum give a power spectrum of density fluctuations

that is consistent with a scale-invariant primordial spectrum as illustrated by Figure 2.5.

This prediction is the most important experimental support for Inflation.

Until the end of the last century the standard picture the universe was that of universe

with an early inflationary phase, that lasts long enough to generate the correct causal struc-

ture and spectrum of density perturbations, followed by a radiation dominated era. The late

time evolution of the system would be described by a matter dominated FRW universe.



CHAPTER 3

String Cosmology

Sweet are the uses of adversity

—SHAKESPEARE

A proper investigation of the cosmological properties of String Theory requires string

models in models that are compatible with our understanding of the early universe, namely

time-dependent backgrounds at nonzero temperature. The approach we are going to fol-

low is the so called String Gas Cosmology (SGC) a scenario has been originally proposed by

Brandenberger and Vafa [20] in 1989. It has the beautiful properties of generating a causal

structure for the observed universe (thus, the horizon problem does not exist in this sce-

nario) and an explanation for the dimensionality of space-time.

The model makes use of symmetries and dualities that are inherent of String Theory,

namely the T-Duality and the Hagedorn Temperature. The structure of the remainder of this

chapter is as follows: first we will discuss the evolution of strings in curved space-time. This

will be our theory of gravity, instead of General Relativity. Then we will discuss String Ther-

modynamics and the emergence of the Hagedorn phase. Finally, we will discuss toroidal

compactification and T-duality. With all these ingredients, we will be able to, at the end of

this chapter, give a general view of the model, questions that it resolves and open problems.

3.1 Strings in time-dependent backgrounds

A closed string in a background generated by its bosonic, massless modes is described by a

nonlinear sigma model:

Sσ =− 1

4πα′

∫
d 2σ [

p−γγabGµν(X )∂a X µ∂b X ν+εabBµν(X )∂a X µ∂b X ν] (3.1)

where γab is the world-sheet metric, (2πα′) is the inverse string tension, Gµν is the back-

ground space-time metric and Bµν is the background antisymmetric tensor. The X µ with

µ = 0, ...,D −1 are the full D-dimensional space-time coordinates. The σa with σ0 ≡ τ and

32
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σ1 ≡σ are the world-sheet coordinates.

To the above action, one may add a topological term

Sφ =− 1

4π

∫
d 2σ

p
γφ(X )R(2) (3.2)

where φ is the background dilaton and R(2) is the world-sheet Ricci scalar. With this setup,

the string coupling is given in terms of the vacuum expectation value of the dilaton gs =
eφ0 . The background fields Gµν,Bµν and φ are realized as couplings of the nonlinear sigma

model.

Keeping terms at the tree level in α′, the equations of motion of the above metric can be

derived from those of the low-energy effective action of supergravity D space-time dimen-

sions:

S0 = 1

2κ2
D

∫
d D x

p
−Ge−2φ (

R + c +4(∇φ)2) (3.3)

where the constant c is defined as:

2

3
(dc −N −Nc ). (3.4)

In this definition, dc is the critical spatial dimension and N is the number of spatial di-

mensions in which strings propagate. In case N is not the critical spatial dimension of strings

(that is, if N<25 for strings or N<9 for superstrings), either we have Nc compact internal di-

mensions or we are dealing with non-critical strings. Thus, c reflects the criticality of the

theory.

For the sake of simplicity, we assume spatial dimensions to be toroidal with lengths

ai = expλi (this condition can be relaxed, as shown by Easther et al. [34]. We also assume the

background fields to be evolving slowly. This guarantees that we can ignore higher deriva-

tives (α′) corrections.

With all this in mind, let us consider the metric and the dilaton field to have to form:

d s2 =−d t 2 +
N∑

i=1
a2

i (t )d xi
2

ai = eλi (t ),φ=φ(t ).

(3.5)

It is also useful to introduce the shifted and rescaled dilaton ϕ that absorbs the space

volume factor:
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ϕ≡ 2φ−
N∑

i=1
λi ,

p
−Ge−2φ = e−ϕ (3.6)

With these definitions, the action takes the form

S0 =−
∫

d t e−ϕ√
−G00[c −G00

N∑
i=1

λ̇2 +G00ϕ̇2] (3.7)

The term G00 was kept as we will need to vary the action with respect to it in order to

obtain the full set of equations of motion (in these equations, G00 will be set to −1). Note the

invariance of the action under the duality transformation

λi →−λi ,φ→φ−λi ,ϕ→ϕ. (3.8)

At this point a pause is required to make the important remark that we are working in

the adiabatic approximation, that is, the background fields are evolving slowly enough that

corrections from higher derivatives (α′) terms can be neglected. In this regime, the global

aspects of the dynamics of the theory may be described by focusing on massless modes,

which justifies the truncation of the action on tree level terms.

So far, we have worked in the absence of stringy matter. In the same way that we replace

GR by String Theory in our attempt to construct a quantum cosmological model, we must

also replace our classical description of the matter content of the universe as a perfect fluid

by some kind of stringy content. In our case, this content will be a gas of almost free strings

modes in thermal equilibrium at temperature β−1.

Before proceeding to coupling the gravitational model we have constructed this far with

a gas of strings, let us study such gas in detail.

3.2 Thermodynamics of a String Gas

An important aspect of String Theory is that it contains an upper bound on the allowed

value of the temperature of a string gas, the Hagedorn Temperature [35], above which the

canonical ensemble approach to thermodynamics is invalid as it leads to a divergent parti-

tion function. Such a limiting temperature would play a very important role in cosmology,

since it prohibits, at first glance, an "‘infinitely hot"’ big bang. Other consequences are not

so obvious, so this subject deserves a detailed study.

Historically, this limiting temperature was first observed in the dual theory of hadrons.
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Quantum Chromodynamics (QCD) offered a physical interpretation of this phenomena: in-

stead of being an actual limiting temperature, its presence suggests a change in the relevant

degrees of freedom in terms of which the system is relatively simple: is was related to a "‘de-

confinement"’ transition in which the hadrons liberate their quark-gluon constituents [36],

[37]. Once we stop describing the system in terms of the hadrons and start describing it in

terms of the quarks and gluons there is no bound on the temperature.

Indeed, in the case of ten dimensional compactified strings, the divergent partition func-

tion does not necessarily mean that the Hagedorn temperature is physically unsurpassable:

physical quantities such as energy density and specific heat are finite at Hagedorn temper-

ature. However, for strings with some uncompactified space-time dimensions, the Hage-

dorn temperature seems to be in fact the maximally attainable temperature, as in such cases

the energy diverges as we approach the Hagedorn temperature. This happens because by

"‘putting strings in a box"’, no matter how large the box is, excites the winding modes of the

string, which are not present in the infinite volume limit. From a cosmological point of view,

it also makes more sense to work with very large but finite boxes than with infinite space.

As an examples, note that to put an infinite box in a thermal bath with an arbitrarily small

temperature one would need infinite total energy.

In this case, what happens is that close to the Hagedorn temperature, all the energy

added to the system is utilized to create the large number of new particles becoming avail-

able as the energy increases instead of increasing the energy of the particles already present

al lower energies, keeping the temperature constant.

Let us move to a more detailed view of these stringy phenomena.

3.2.1 The Random Walk Picture

Let us begin with an intuitive geometrical approach for the density of states of a highly ex-

cited string from a random walk, following the approach by Abel et al. [38].

Think of a highly excited closed string as a random walk in target space, so that the en-

ergy ε of the string is proportional to the length of the random walk. The number of random

walks that start in the same fixed point grows as exp(βsε). This term is responsible for the

bulk of energy of highly excited strings. Since we are working with closed strings, the ran-

dom walk must close on itself. This overcounts by a factor of roughly the volume of the walk,

which we will denote by Vw alk =W . Since the random walk may be translated in the volume

V of space, we must add a V term. Finally, we must insert a factor of 1/ε since any point in

the string can be the starting point of the random walk. This gives us:
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ωcl ≈V · 1

ε
· eβsε

W (ε)
(3.9)

This expression has two characteristic limiting cases: the volume of the random walk is

of order εd/2 when it is well-contained in d spatial dimensions (that is, L >>p
ε), whereas it

saturates at order V when it is space-filling (that is, L <<p
ε). The first case gives us, for d

non-compact dimensions:

ωcl (ε)/V ≈ eβsε

ε1+d/2
(3.10)

whereas the second case gives us, in a compact space

ωcl (ε) = eβsε

ε
. (3.11)

equation (3.11) gives the exact leading term of the density of states for highly excited strings.

With these results, we may now proceed to the transition from a single long string to a gas of

long strings.

Consider the formal partition function of the gas:

Z (β) =
∫ ∞

0
dE Ω(E)e−βE (3.12)

A consistent canonical ensemble may only be defined for temperatures that lead to β> βS ,

since for temperatures above the Hagedorn temperatureβS the partition functions diverges.

Defining Z (β) by analytic continuation in the complex β plane, the density of states may

be written as the inverse Laplace transform

Ω(E) =
∫

Cβ

dβ

2πi
eβE Z (β). (3.13)

The contour Cβ is taken parallel to the imaginary axis and to the right of all singulari-

ties of Z (β). One possible route, from this point is to explicitly evaluate the integral equa-

tion (3.13) in the one loop approximation [39]. However, near the Hagedorn phase the dom-

inating long strings are macroscopic and behave quasi-classically. With this in mind, we

may assume Maxwell-Boltzmann statistics and then write Z (β) = exp z(β), where z(β) is the

single-string partition function, which can be calculated from the single string density of

states:

z(β) =
∫ ∞

0
dε ω(ε)e−βε (3.14)
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Direct calculation gives the behavior of z(β) near the Hagedorn singularity β=βS :

z(β) ≈ f (β−βS)γ[log(β−βS)]δ (3.15)

where δ = 1 if γ is a non-negative integer and δ = 0 otherwise. This is precisely a critical

behavior of the Hagedorn density as a function of the formal canonical temperature 1/β

with a critical exponent given by γ.

The integral equation (3.13) may be evaluated in different approximations, depending

on the different regimes one is interested. Whenever a saddle-point approximation is ap-

plicable, an equivalence between the canonical and microcanonical ensembles is find, with

positive and large specific heat. A necessary condition for this is that γ≤ 1, ensuring that the

canonical internal energy E(β) ≈ ∂βz(β) diverges at the Hagedorn singularity.

When such approximation is not available, one can either proceed to a direct evaluation

of the integral in special marginal cases or find a complementary approximation.

In particular, systems with close-packing of random walks (high energy in a fixed vol-

ume) have γ = −1 for open strings and γ = 0 for closed strings. In the first case, the saddle

point approximation applies and the gas of open strings has a canonical behavior, positive

specific heat and

Ω(E)open ≈ exp(βSE +C
p

E) (3.16)

where C is a constant. For closed strings, the leading singularity at very high energy and

finite volume V = Ld is always a simple pole of the partition function at the Hagedorn sin-

gularity

Z (β) = (β−βS)−1 ·Z (β)regular (3.17)

This pole alone generates a multi-string density

Ω(E)closed ≈ exp(βSE +ρSV ) (3.18)

where ρS =O(1) in string units. Thus, for closed strings the specific heat is still infinite in this

approximation. The contribution of the sub-leading singularities turns the thermodynam-

ics into a weakly limiting behavior with positive specific heat and exponentially suppressed

corrections to the linear entropy law.

A more technical remark that must be made is about the principle of asymptotic dark-

ness [40]. This principle states that black holes dominate the extreme high-energy regime
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of theories that incorporate gravity. String Theory has its own correspondence principle,

the Horowitz-Polchinski Correspondence Principle [41] [42]. In particular, the entropy of

Schwarzschild black holes in d dimensions scales as

S ≈ E(g 2
s E)

1
d−2

eventually dominating over the Hagedorn degeneracy for g 2
s E > 1. At this point the Hage-

dorn plateau must end and drop to lower temperatures T (E) ≈ E 1/(2−d) which is a phase of

negative specific heat for d < 2. However, the black hole will eventually acquire the size of

the box, so this phase can not continue to arbitrarily high energies. The threshold coincides

with the Jeans length entering inside the box, coinciding to an energy

EL ≈ Ld−2

g 2
s

.

The bound E < EL implies that no thermodynamical limit (large volume with constant

energy density) is these systems, since El /V → 0. An exit out of this is provided by an appro-

priate infrared regularization or by cosmological particularities, such as T-duality.

As a particular and important case of what has been discussed so far through this ses-

sion, we are going to compute the density of levels for strings.

3.2.2 Highly Excited Strings: Explicit Calculation

Let us take, initially, the total number of open string states withα′M 2 = n−1, which we shall

denote dn . For more details on the String Theory spectrum, the reader is referred for the

appendix. If we define our number operator N as

N =
∞∑

n=1
nα−n ·αn

so dn is the coefficient of w n on tr w N . Actually, there are αi
n , i = 1,2, ...,24, correspond-

ing to the 24 transverse oscillators related to physical states. Instead of calculating each dn

individually, our strategy to obtain the density of levels will be to calculate the generating

function

G(w) =
∞∑

n=0
dn w n = tr w N . (3.19)

Note that:
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tr w N =
∞∏

n=1
tr wα−n ·αn =

∞∏
n=1

(1−w n)−24 = [ f (w)]−24 (3.20)

with

f (w) =
∞∏

n=1
(1−w n). (3.21)

The exchange w → e2πiτ, relates the function f (w) with Dedekind’s Eta function

η(τ) = e(iπτ/12)
∞∏

n=1
(1−e2πi nτ). (3.22)

Dedekind’s Eta function is known to obey the modular transformation:

η(−1/τ) = (−iτ)(1/2)η(τ). (3.23)

By applying this transformation to f (w), we are able to obtain the so called Hardy-

Ramanujan formula:

f (w) =
( −2π

log w

)1/2

w−1/24q1/12 f (q2)

q = exp

(
2π2

log w

) (3.24)

Now we may find an asymptotic expression for f (w) when w → 1(q → 0):

f (w) ∼ A(1−w)−1/2 exp

(
− π2

6(1−w)

)
(3.25)

Once we have found the asymptotic expression for f (w), we may return to our initial

problem and find out the behavior of dn for large values of n. From the generating function

G(w) =∑
dn w n , we obtain dn through a contour integral over a small circle centered at the

origin

dn = 1

2πi

∮
G(w)

w n+1
d w . (3.26)

Since G(w) goes to zero very rapidly for w → 1 and w n+1 is very small for large values of

n and w < 1, there is a well defined saddle-point for w close to 1. A saddle point evaluation

of this integral gives for the limit n →∞

dn = (const)n−27/4 exp(4π
p

n) (3.27)
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Using n ∼α′m2, we arrive at the asymptotic density of levels:

ρ(m) ∼ m−25/2 exp

(
4πp
α′ m

)
= m−25/2 exp

(
βH m

)
. (3.28)

This result will be used in the next chapter for an explicit calculation of the partition

function of a gas of strings. Now we shall take a break on strings thermodynamics and in-

vestigate another aspect of String Theory that is important for the String Gas scenario: T-

Duality.

3.3 Toroidal compactification and T-duality

String Theory predicts the existence of more than the 4 observed space-time dimensions.

A possible explanation for why we don’t observe the extra dimensions is that they may be

compactified. The simplest compactification of string theory is the so called "‘toroidal com-

pactification"’, in which one or more dimensions are periodically identified.

3.3.1 Kaluza-Klein Reduction and Winding Modes

For the sake of simplicity, we will begin with the compactification of a single space dimen-

sion, the so called Kaluza-Klein Reduction. The space dimensions will take the form

R1,24 ×S1 (3.29)

with the coordinate from the compactified dimension having the form

X 25 ≡ X 25 (3.30)

The goal is to understand the Physics viewed by on observer who lives in the non-compact

R24 space, so we will be initially interested in the Physics at length scales >> R.

From the point of view of the string world-sheet, the compactification will affect the

dynamics in two ways.

First, the requirement that the string wave function is single valued will result in a quanti-

zation of the spatial momentum of the string. Since the string wavefunction includes factors

of e i p·X , the momentum can no longer take any value, but has to obey

p25 = n

R
n ∈ Z (3.31)
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Second, we will be able to allow more general boundary conditions for the mode expan-

sion of X than the ones imposed without compactified spatial dimensions (refer for the ap-

pendix for string quantization in no compactfied space-times). In particular, we may relax

the boundary condition X (σ+2π) = X (σ) to

X 25(σ+2π) = X 25(σ)+2πmR m ∈ Z (3.32)

This integer m tells us how many times the string winds around S1 and is called wind-

ing number. This winding phenomenon reflects the fact that when there are compactified

dimensions not all closed strings can be reduced continuously to zero size. Imagine, for ex-

ample, a world with only two spatial dimensions, one of which is compactified, just like the

surface of an infinitely long cylinder.

Figure 3.1 Possibilities for winding states. Figure Credits: Barton Zwiebach. A first course in string
theory; 2nd ed. Cambridge Univ. Press, Cambridge, 2009.

In this imaginary world, we call x the coordinate on the compactified dimension and y

the remaining coordinate. The right-hand side of Figure 3.1 shows the (x, y) planification of

the cylinder, known as the covering space of the cylinder.

Consider, for example, the string labeled as A. It is clear from the figure that it may be

continuously contracted down to a point, since it does not wind around the compact di-

mension. So, we say that is has winding number zero.

Now, consider the strings labeled as B and C. They can not be contracted to a point with-

out a cut, since they do wind the the compact dimension once. Because of that, they have
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±1 as winding numbers, depending on the orientation of the winding: b winds the circle in

the direction of positive x so it has winding number +1, while c winds the circle in the oppo-

site direction so it has winding number −1. Note that strings that wind around the cylinder

appear in the covering space as open strings. However, not every open string in the covering

space represents a wound closed string, some represent open strings on the cylinder.

Strings d and e both wind the cylinder twice, with the difference that the y coordinate of

d is not constant. However, they both have winding number +2. It is important to note that

even though the points P and P’ appear to be the same on the cylinder, they are the same

point on the string. This becomes clear on the covering space.

In general, we say that a string has winding number m, with m integer, if it wraps m times

around the compactified dimension in the positive direction of the dimension coordinate.

3.3.2 The Compactified Spectrum and T-Duality

In a similar fashion to what is made through string quantization (again the reader is referred

for the appendix for more details), we make the mode expansion of the periodic field X 25:

X 25(σ,τ) = x25 + α′n
R

τ+mRσ+oscillator modes. (3.33)

Note that this expansion incorporates the possibility of winding modes together with the

oscillator modes and the now quantized momentum. The next step is to split X 25(σ,τ) into

right-moving and left-moving parts. But before that, let us introduce the quantities

pL = n

R
+ mR

α′

pR = n

R
−mRα′.

(3.34)

With these definitions, we may write

X 25(σ,τ) = X 25
L (σ+)+X 25

R (σ−) (3.35)

where

X 25
L (σ+) = 1

2
x25 + 1

2
α′pLσ

++ i

√
α′

2

∑
n 6=0

1

n
α̃25

n e−i nσ+

X 25
R (σ−) = 1

2
x25 + 1

2
α′pRσ

++ i

√
α′

2

∑
n 6=0

1

n
α25

n e−i nσ−
(3.36)
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The mode expansion is not changed for the other X i over R1,24.

What will the spectrum of this theory look like to an observer living in d = 25 non-

compact directions? Each particle state will be described by a momentum pµ,µ = 0, ...,24

and will have mass given by

M 2 =−
24∑
µ=0

pµpµ (3.37)

Again, the mass of the particles will be fixed in terms of the oscillator modes of the string

by the L0 and L̃0 equations. These now give

M 2 = p2
L = 4

α′ (N −1) = p2
R + 4

α′ (Ñ −1) (3.38)

where N and Ñ are the levels defined in light-cone quantization and the −1 factors are the

necessary normal ordering coefficients. Note the presence of the momentum and winding

terms around S1 on the right-hand side of these equations. In this case, level matching no

longer tells us that N = Ñ , but instead

N − Ñ = nm (3.39)

A full expansion of the mass formula, thus, yields

M 2 = n2

R2
+ m2R2

α′2 + 2

α′ (N + Ñ −2) (3.40)

The extra terms in this equation tell us that winding and momentum modes will con-

tribute to the energy spectrum of the theory.

A remarkable property of this spectrum it that it is invariant under the exchange

R ↔ α′

R
m ↔ n (3.41)

As a result, strings with radius R will have the same spectrum of strings with radiusα′/R !

In the limit of R → ∞, the winding modes become highly massive and thus irrelevant for

the low-energy dynamics. The momentum modes, on the other hand, become very light,

forming a continuum in the strict limit. This continuum of energy states is what is meant by

the existence of a non-compact direction in space.

In the opposite limit, R → 0, the momentum modes become heavy and thus can be ig-

nored (it takes too much energy to get anything moving on S1. The winding modes, however,

become light and start to form a continuum.
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This equivalence of the string spectrum on circles of radii R and α′/R extends to the full

conformal field theory and hence to string interactions. Strings can not tell the difference

between very large and very small circles! Instead, it exhibits a minimum length scale: as

you try to probe distance scales smaller and smaller, at R =p
α′ the theory starts to act as if

the circle is growing again, with winding modes playing the role of momentum modes. This

is the so called T-duality of String Theory.

It is important to note that this symmetry is not just a symmetry of the spectrum, but is

a symmetry of the whole String Theory: any physical process computed for the strings in a

box of size R is identical to a dual physical process computed for a box of dual radius. Not

only the spectrum is invariant, but also all the scattering amplitudes for dual processes.

Winding modes and T-Duality will be important in the description of the string gas sce-

nario.

3.4 The String Gas Scenario

No we can go ahead with the construction of the cosmological scenario and couple a gas of

strings (our matter content) to the gravitational action. The contribution of this gas for the

action is given by

Sm =
∫

d t
√

−G00F (λi ,β
√
−G00) (3.42)

where F is the one loop free energy of the gas. With this, we finally arrive at the full action of

the model:

S = S0 +Sm =−
∫

d te−ϕ√
−G00[c −G00

N∑
i=1

λ̇2 +G00ϕ̇2 +
√
−G00F (λi ,β

√
−G00)] (3.43)

The variation of the above action with respect to λi ,φ and G00 yields the following equa-

tions of motion:

c −
N∑

i=1
λ̇2 + ϕ̇2 = eϕE (3.44)

λ̈i − ϕ̇λ̇i = 1

2
eϕPi (3.45)
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ϕ̈−
N∑

i=1
λ̇i

2 = 1

2
eϕE (3.46)

where

E =−2
δSm

δG00
= F +β∂F

∂β
(3.47)

Pi =−δSm

δλi
=− ∂F

∂λi
(3.48)

are the total energy of the matter and the pressure in the ith direction, respectively. Note the

modified conservation law for the energy that arises from these equations:

Ė +
N∑

i=1
λ̇i Pi = 0. (3.49)

Since the free energy F is a function of λ and β(t ), this is equivalent to the conservation

of the entropy S = β2∂F /∂β, so that the temperature will "‘adjust"’ itself to the radius λi (t )

in order to maintain the entropy constant. This means it is possible to express β in terms of

λi if we solve the adiabaticity condition, what makes it possible to express the Energy as a

function of λ alone

E(λ) = E(λ,β(λ)).

Now we may turn back to our original dilaton field φ and rewrite the equations of mo-

tion:

c −
N∑

i=1
λ̇i

2 + (2φ̇−
N∑

i=1
λ̇i )2 = e2φρ (3.50)

λ̈ j − (2φ̇−
N∑

i=1
λ̇i )λ̇ j = 1

2
e2φp j (3.51)

2φ̈−
N∑

i=1
λ̈i −

N∑
i=1

λ̇i
2 = 1

2
e2φρ (3.52)

with the definitions of the pressure density pi = Pi /V , the energy density ρ = E/V and the

space volume V = exp
∑
λi .

We may now try to compare these with the standard FRW scenario. For that, we begin by

setting the dilaton φ to be a constant. Then, equation (3.50) for flat space becomes
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(
ȧ

a

)
= λ̇2 = −c

N 2 −N
+Gρ (3.53)

where G is a constant and the first term plays the role of a cosmological constant! For c =
0, the compatibility of solutions of equation (3.53) with equation (3.51) and equation (3.52)

require

N∑
i=1

pi = ρ. (3.54)

That is: matter with vanishing energy momentum trace, like a gas of massless particles

in thermodynamical equilibrium, which is just like FRW radiation. At high temperatures this

conditions is not satisfied and the stringy model departures from General Relativity.

More generally, we can develop a further study of the critical case by setting c = 0 directly

in the equations (3.44)-(3.46) above. If we assume isotropy (that is, all λi are equal to each

other and denoted by λ) so that a = expλ is the cosmological scale factor, we get

−N λ̇2 + ϕ̇2 = eϕE , (3.55)

λ̈− ϕ̇λ̇= 1

2
eϕP, (3.56)

ϕ̈−N λ̇2 = 1

2
eϕE , (3.57)

where P = −N−1∂E/∂λ. Therefore, if we want to solve this system of equations, we need

to specify the function E(λ) as well as provide initial conditions for λ,ϕ and ϕ̇. In the next

chapter we are going to study a similar system motivated by this set up. Before that, let us

focus on some features of the SGC scenario.

3.4.1 Winding Modes and the Dimensionality of Spacetime

As we have seen, in string theory models there is possibility that some dimensions are com-

pactified. Compactified dimensions make it possible to justify the difference between the

spacetime dimensionality predicted by the theory and the dimensionality with we observe

in common life. However, even tough one could construct a model where some of the di-

mensions are large and some are compact, there was a lack of explanation for this separation

into large and compactified dimensions.
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For a long time, the community has tried to answer why are there compact dimensions.

The string gas scenario subverts this question by purposing that all dimensions started small

(compactified) and through annihilation of winding modes they became large. The original

argument is as follows.

First, note that an increase on the volume of the system (increase of R) will increase

the energy of the winding modes. That means a smaller fraction of the phase space will be

available to them. This means winding modes will prevent expansion (more energy will be

necessary for expansion when winding modes are present). These modes will contribute

with negative pressure for the gas.

If we assume that the gas is in thermal equilibrium, an expansion of the radius will cause

the winding modes in the gas to decay. Expansion will continue as long as there is thermal

equilibrium to favor less and less of winding states with larger and larger radii. If thermal

equilibrium is not maintained, winding modes will not decay and will still be present, what

would slow down the expansion (eventually stop it).

Now let us think of the universe as a box. Actually, since superstring theory predicts the

existence of 9 spatial dimensions, let us thing of the universe as a nine-dimensional box

with equal size in each direction. Consider that the box has already expanded a little but we

still have a large number of winding modes. As we increase the size of the box, the winding

modes will start to behave like classical strings with a width of the order of one in Planck

units, which go from one side of the box to the other (they will have a width at the same

order of the size of the box).

Thermal equilibrium will be maintained through processes like

w +w ↔ unwound states

where w denotes an state with the opposite winding number of state w . Such processes

occur if both the winding states have the same Planck length of one another.

As the winding modes propagate, they will span a two-dimensional worldsheet (which

will have an effective thickness of the order of one in Planck units). A required condition

for two winding modes to interact is that there is an intersection between their worldsheets.

In this scenario, a large number of dimensions will make it harder for winding modes to

interact. If the universe has, as in our example, 9 spatial dimensions, we are left with 2+2 <
9+1 and the worldsheets will generically not intersect. The strings will just miss one another.

If winding modes are not able to find one another, they can not annihilate each other and

maintain the thermal equilibrium. Since equilibrium is not maintained, winding modes will

stop the expansion.
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Figure 3.2 Closed oriented strings of winding numbers w=-1,0,-1 and the transition from a w=0
string to w=-1 and w=+1 strings. In this case, we have one compact dimension X and one non-
compact dimension Y. Figure Credits: Joseph Polchinski. String Theory: An Introduction to the
Bosonic String (Cambridge Monographs on Mathematical Physics), volume 1. 1998.

In this mechanism, the largest extended spacetime dimensionality consistent with main-

taining thermal equilibrium is 4, for which 2+2=3+1 and therefore strings will generically

find each other and equilibrate. In this case, winding modes will annihilate and 3 spatial

dimensions may expand, generating a box in which six dimensions are of the order of the

Planck length and three of the dimensions decompactify, giving rise to the universe as ob-

served today.

This was the original argument by Brandenberger and Vafa in the paper that gave birth

to this scenario [20]. As was noted by Easther et al., this scenario has a problem: there is

a singularity in past finite time and the dilaton rolls monotonically towards weak coupling,

making it unlikely for strings to annihilate if one waits too much, even if they do happen to

intersect. Because of that, there is only a small window of time for the necessary fluctuations

to take place and as a result three large dimensions are no statistically favored [43]. In [44]

Greene et al. study the dynamics of a string gas coupled to a modified gravity action set up to

avoid singularities, what results in bouncing and cyclic cosmologies. However, even in these

scenarios the BV decompactification scenario is not operative. It still an open challenge to

construct a stringy model that does preferentially decompactify in three dimensions.

3.4.2 Causal Structure and Inflation

One notable aspect of String Gas Cosmology is that it is able to account for the causal struc-

ture we observe in the universe. As we have seen, points that seem to be causally discon-

nected nowadays happen to appear in the CMG spectrum in thermal equilibrium. One of
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the successes of the mechanism of inflation was its ability to explain that. String Gas Cos-

mology provides a different but also as effective way to explain such thermal equilibrium.

First, let us recall how the causal structure is generated in inflationary cosmology. During

inflation, the Hubble radius H−1(t ) is constant. The Hubble radius is an important divisory

in the theory of cosmological perturbations [45], [46]: is scales are smaller than the Hubble

radius, they will oscillate; if they are larger than the Hubble radius they will be frozen and

will not be affected by microphysics. Because of that causal microphysical processes can

generate fluctuations only on sub-Hubble scales.

In the inflationary scenario, fixed comoving scales that are probed in nowadays experi-

ments have wave-lengths which start out smaller than the Hubble radius at the beginning

of inflation and expand exponentially. They exit the Hubble radius at some time ti (k) and

propagate with a wavelength larger than the Hubble radius until the reenter H−1(t ) at t f (k)

and become in causal contact again.

Figure 3.3 Causal structure of an inflationary universe and of String Gas Cosmology

On the other hand, in the String Gas scenario (suppose for now no inflationary phase in

SGC), the Hubble radius is infinite deep in the Hagedorn phase. During the expansion of

the universe, the Hubble radius decreases to microscopic value and then turns around and

starts growing linearly. Physical wavelengths corresponding to fixed comoving scales are

constant during the Hagedorn phase. Because of that, all scales on which fluctuations are

measured nowadays were inside Hubble radius on the Hagedorn phase. When in radiation
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era, physical wavelengths will grow as
p

t , entering Hubble radius at a late time t f (k).

Note that in inflationary cosmology any thermal fluctuations that existed before infla-

tion will suffer red-shift, leaving a quantum vacuum state, while in the Hagedorn phase of

SGC matter is in a thermal state. Thus, the SGC and the inflationary scenario have different

generation mechanisms for fluctuations: while in inflationary cosmology fluctuations orig-

inate as quantum vacuum perturbations [47], [48], in SGC we find thermal fluctuations of

the string gas as sources of inhomogeneities.

It has already been shown [49], [50], [51] that the spectrum of scalar and tensor modes

predicted by string thermodynamics in the Hagedorn phase of SGC is almost scale-invariant,

as measured by CMB and also predicted by the inflationary scenario.



CHAPTER 4

Hagedorn Inflation of String Gases

4.1 The Relic Problem

We have seen in the last chapter that the string gas scenario is capable of generating a causal

structure for the universe that is inflation free. However, the inflationary mechanism is also

capable of explaining other issues in Standard Big Bang Cosmology, like why is the current

universe so close to be flat and why do we measure such a low density of cosmological relics.

At high temperatures, such as the Hagedorn temperature (TH ' 1016 GeV, which is close to

GUT scale), an overproduction of unwanted relics take place.

Magnetic monopoles are an example of such relics. As shown in [52], [53], any Grand

Unification Theory (GUT) that includes electromagnetism will produce super-heavy mag-

netic monopoles. In fact, had the universe simply cooled down from a temperature of T '
1015 GeV, an abundance of order ΩM ' 1013 would be observed for magnetic monopoles

[52].

Another example is the gravitino. The gravitino is a spin 3/2 fermion, that is the super-

symmetric partner of the graviton, the particle that mediates supergravity interactions [54].

It is also a good candidate for dark matter, due to its mass (that ranges from TeV to GeV)

and long lifetime. The gravitino has the interesting fact that it is may not be produced in the

early universe, but it may also be produced during radiation-dominated era, as a thermal

relic. The presence of thermally produced gravitinos impose bounds on the allowed maxi-

mal temperature in the radiation dominated era. It occurs that a simple cooldown from the

Hagedorn phase in SGC to the radiation dominated era would violate theses bounds.

In such scenario, one is left with two alternatives: either find some other mechanism

responsible for solving these issues or try to incorporate inflation in the SGC scenario. A

mechanism for inflation in the Hagedorn phase was purposed by Abel et al. [55]. In this

work, we propose a new mechanism, based on the decay of excited strings.

51
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4.2 String Gas Thermodynamics Revisited

We want to evaluate the partition function for a single string placed in a box of volume V. We

know that string states are obtained by the action of the light-cone creation operators on the

momentum eigenstates (see Appendix A).

We are going to label string states by their occupation numbers λn,i and their momenta

p, so that a set of basis states can be written as

|λ, p〉 =
∞∏

n=1

25∏
i=2

(ai
n†)λn,i |p〉, (4.1)

and the energy of such states is given by

E({λn,i },~p) =
√

M 2({λn,i })+~p2. (4.2)

The string partition function is obtained by summing over all states |λ, p〉, that is, over

all spatial momenta ~p and all occupation numbers λn,i :

Zstr =
∑
α

exp(−βEα) = ∑
λn,i

∑
~p

exp

[
−β

√
M 2({λn,i })+~p2

]
. (4.3)

The sum over the momentum results in the partition function Z for a relativistic particle

of mass-squared M 2({λn,i }), leaving us with

Zstr =
∑
λn,i

Z (M 2({λn,i })). (4.4)

We can exchange the sum in the above expression for a integral over all levels dN if we

know the correct level density. Since we know the energy density equation (3.28), we can

use the relation that comes from string quantization α′M 2 ≈ N , so that d N = 2α′M d M to

integrate over the mass M .

The partition function of a relativistic particle is know [56] to be given by

Z (M 2) ≈V e−βM
(

M

2πβ

) d
2

, (4.5)

that in our system of interest becomes

Z (M 2) ≈ 225/2V (kT kTH )25/2(
p
α′M)25/2 exp

(
−4π

p
α′M

TH

T

)
. (4.6)

We are then left with
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Zstr ≈ Z0 +
∫ ∞

M0

(
p
α′M)−25/2 exp(βH M)Z (M 2)d(

p
α′M). (4.7)

Note that we have separated this integral by assuming that there is a mass M0 for which

equation (3.28) is valid (remember this result is valid for highly excited strings). We are in-

terested in a regime where Z0 is negligible compared to the integral term.

The integral equation (4.7) converges only for T < TH , where:

Zstr ≈ Z0 + 211

π
V (kT kTH )25/2

(
T

TH −T

)
exp

(
−4π

√
N0

[
TH

T
−1

])
. (4.8)

For T sufficiently close to TH , thereof, the partition function of a single string will be

approximated by

Zstr ≈ 211

π
V (kTH )25

(
TH

TH −T

)
. (4.9)

From this partition function, we may compute some thermodynamical quantities. For

example, the entropy will be given by

S ≡−
(
∂A

∂T

)
V

(4.10)

where

A =
[

logV + log

(
211

π
V k25T 26

H

)
− log(TH −T )

]
(−kT ) (4.11)

so that

S = k

[
logV + logνV − log(TH −T )+ T

TH −T

]
(4.12)

where ν= 211k25T 26
H /π. Note the divergence when T → TH .

The next natural step is to evolve from a single string to a gas of N strings. Since we

are working near the Hagedorn temperature, where we can use Maxwell-Boltzmann, we can

assume that our strings have very small coupling, so that we may use

Zg as = (Zstr )N

N !

which yields

Zg as =
(

211

π

)N
V N

N !

(
TH

TH −T

)N

= C N

N !

(
TH

TH −T

)N

(4.13)



4.3 A NEW MECHANISM FOR INFLATION 54

With the gas partition function in hands, we are again able to calculate thermodynamical

quantities. Our main interest right now will be in the gas energy.

From equation (4.13) we obtain

log Z = N logC − log N !+N log

(
TH

TH −T

)
= N logC − log N !+N log

(
β

β−βH

)
= N logC − log N !+N [logβ− log(β−βH )]

.

(4.14)

So that

E ≡− ∂

∂β
log[Z (β)] = N

[
1

β−βH
− 1

β

]
= N

[
βH

β(β−βH )

]
(4.15)

Since we are working with β very close to βH , the behavior of the energy will be that of

E ∝ 1

β−βH
(4.16)

4.3 A New Mechanism for Inflation

4.3.1 The Setup

We are going to consider a universe with a matter content described by a gas of strings. The

initial state of this gas is a thermal state in equilibrium at a temperature very close to the

Hagedorn temperature. Strings in the gas will populate different levels of the string spec-

trum. The gas of strings, then, will be a mixture of different species.

The fundamental level of the string spectrum is massless. Because of that, a gas of non-

excited strings can be thought as a gas of radiation. Excited levels are a mixture of modes

that will satisfy specific state functions.

Note that the probability of a certain level being occupied at a temperature β∗ is given

by:

P (Ei ) = e−β∗Ei

Z (β∗)
, (4.17)

that is, is decreases exponentially as we consider highly excited levels. For the sake of

simplicity we will only consider the fundamental level E0 and the first excited level E1.
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Two effects will drive the evolution of this system: the first one is the decay of excited

strings to the fundamental level; the second one is the cosmological redshift of the modes.

By considering these effects together with FRW equation, we will be able to study the evolu-

tion of such universe.

4.3.2 The Equations of Motion

Let us begin by considering the cosmological redshift effect. First consider the mixture of

two matter species. One is the radiation-like species corresponding to strings in their fun-

damental level. These will satisfy the state function p0 = wradρ0 = (1/D)ρ0. The second

one corresponds to string in the first excited level and will have a state function of the form

p1 = wρ1.

Taking the continuity equation for these species in D spatial dimensions yields:

∇µνT µν = 0

⇒ dρ0

d t
+D

ȧ

a
(P0 +ρ0)+ dρ1

d t
+D

ȧ

a
(P1 +ρ1) = 0

⇒ dρ0

d t
+ (D +1)

ȧ

a
ρ0 + dρ1

d t
+D(1+w)

ȧ

a
ρ1 = 0

(4.18)

From the last equation above, we can extract the dynamical equation for ρ̇0:

ρ̇0 =−(D +1)Hρ0 − ρ̇1 −D(1+w)ρ1H . (4.19)

The next effect we must consider is the decay of excited strings to the fundamental level.

In such process, energy associated with the matter species corresponding to excited levels

will flow to radiation-like matter.

dE1

d t
=−K E1. (4.20)

This can be rewritten as

⇒ d

d t
(ρ1aD ) =−Kρ1ad . (4.21)

We finish the description of the system with FRW equation:

(
ȧ

a

)2

= H 2 = 8π

3
(ρ0 +ρ1). (4.22)

We can take the time derivative of this last equation, to obtain:
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2H Ḣ = 8π

3
(ρ̇0 + ρ̇1). (4.23)

4.4 The Dynamics

Let us begin our study of the system with equation (4.21). One can solve it to obtain the

typical decay behavior.

ρ1(t )aD (t ) = E1(t = 0)e−K t = ρ1(t = 0)a(t = 0)d e−K t . (4.24)

However, for now let us just use it to extract an equation for ρ̇1(t ). Expanding the left-

hand side of this equation, we obtain:

d

d t
(ρ1ad ) = ρ̇1ad +Da(D−1)ȧρ1 (4.25)

Plugging this back into equation (4.21), we obtain:

ρ̇1 =−Kρ1 −D
ȧ

a
ρ1 =−Kρ1 −D Hρ1. (4.26)

We can now plug equation (4.19) and equation (4.26) into equation (4.23). This yields

2H Ḣ = 8π

3
(−(D +1)Hρ0 −D(w +1)Hρ1)

⇒ Ḣ =−4π

3
((D +1)ρ0 +D(1+w)ρ1)

(4.27)

We are interested in finding out if it is possible that inflation occurs in such setup, that

is, if it is possible to obtain a growth of the scale factor as ä(t)> 0. This condition can be

rewritten in terms of a slow-roll parameter ξ as

ξ= Ḣ

H 2
>−1. (4.28)

We can find out how to obtain this condition by dividing equation (4.27) by FRW equa-

tion equation (4.22):

Ḣ

H 2
=− (D +1)ρ0 +D(1+w)ρ1

2(ρ0 +ρ1)
(4.29)

so that the condition equation (4.28) becomes
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(D +1)ρ0 +D(1+w)ρ1

2(ρ0 +ρ1)
< 1. (4.30)

Rearranging the terms, we find out that for inflation to occur the following relation be-

tween ρ1 and ρ0 must be respected:

ρ0 < 2−D(1+w)

D −1
ρ1 (4.31)

It is left to us, then to find out in which regime of the cosmological evolution is this

condition satisfied.

4.4.1 A possible realization: Decay of winding modes

Recall from the string spectrum equation (3.40) that the contribution of the winding modes

to the energy is given by

E 2
w = 1

α′
∑

i
m2

i R2
i (4.32)

where mi is the excitation level of the winding mode and Ri is radius of the compact

dimension, both for the ith dimension. Considering an isotropic initial situation in which

the gas of winding modes is uniformly distributed in all spatial dimensions so that Ri =
a∀i and V ∼ aD . We can obtain the equation of state of the gas by assuming an adiabatic

evolution

T dS = d(ρw )+p dV = 0 (4.33)

which gives

p =−
(
∂ρV

∂V

)
S=const

. (4.34)

For the winding modes, we can take the square root of the spectrum to find Ew ∼ a. But

since we also have Ew ∼ ρw ad , we must have ρw ∼ a1−d and

pw =−∂Ew

∂a

d a

dV
=− Ew

DV
=− 1

D
ρw . (4.35)

That is, for winding modes we have w =−1/D . Inserting this equation of state into equa-

tion (4.31), we obtain
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ρ0 <
2−D(1− 1

D )

D −1
ρ1

⇒ ρ0 < 3−D

D −1
ρ1.

(4.36)

We are then left with three possible situations:

• D<3: In this case, the inflation condition will be satisfied provided that there is enough

energy on the excited winding modes. Since our system begins at a very high temper-

ature (close to βH ), a high number of excited strings is expected. Inflation will take

place during the decays of such modes. Once most of the energy has decayed onto

radiation-like matter, the condition is no longer satisfied and inflation ends, leaving

us with the cosmological evolution of a standard FRW universe dominated by radia-

tion.

• D=3: This is a marginal case. We would need ρ0 ≈ 0, that is, a huge amount of energy

would be required to lie in the winding modes for inflation to take place.

• D>3: In this case, inflation is not possible, since a negative energy density would be re-

quired for the radiation-like modes. In this sense, we have obtained D = 3 as a critical

dimensionality for decay-driven inflation to take place on the scenario.

In what follows we will obtain a numerical solution of such realization as an example.

First, consider equation equation (4.24). Plugging this result into equation (4.26), we obtain

ρ̇ =−(D +1)Hρ+K
E10 e−K t

aD
−Dw H

E10 e−K t

aD
. (4.37)

where we have used the notation E10 = E1(t = 0).

We can also plug equation (4.24) into equation (4.22) to obtain:

(
ȧ

a

)2

= 8π

3

(
ρ0 +

E10 e−K t

ad

)
. (4.38)

We can insert back the conditions for inflation we have obtained and numerically solve

the system comprised of equations equation (4.37) and equation (4.38). In this example, let

us take the case D = 2, w =−(1/2). Plots of a numerical solution presented in Figure 4.1.

Note from Figure 4.1 the behavior of the scale factor a(t): in the beginning there will be a

region where the condition ξ<−1 is satisfied. In this region there is inflation. At a posterior

time ξ decreases and becomes smaller than −1.
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Figure 4.1 Plots from the numerical solution for the case D = 2. We have set as initial conditions
a(t = 0) = 10 and ρ0=1. We have also tuned E10 = 1000 and k = 0.001.

Note also the behavior of ρ0: first it will increase as a result of the decay from excited

levels. Then, after it reaches a peak, it will start to decrease, as a result of the cosmological

redshift. If we plug D = 2 into equation (4.31) we obtain ρ0 < ρ1 as the inflation condition for

D = 2. Since ρ1(t) falls off more rapidly than ρ0(t), at some time radiation will dominate. At

this point ξ becomes smaller than −1, the concavity of the scale factor a(t) becomes negative

and inflation ceases. The late time evolution is that of a radiation dominated universe.

A similar behavior is obtained for the limiting case D = 2.99 as shown in Figure 4.2.

On the other side, let us now obtain the evolution of the a(t) and ξ(t) for the case D = 4.

These are presented in Figure 4.3. Note that this time the parameter ξ is always smaller than

−1 and there is no inflationary epoch.



4.5 PARAMETER TUNING AND INITIAL CONDITIONS 60

5000 10 000 15 000 20 000
t

100 000

200 000

300 000

400 000

aHtL

(a) a(t)

0.5 1.0 1.5 2.0 2.5
t

-5000

-4000

-3000

-2000

-1000

0

1000

2000
a''HtL

(b) ä(t)

Figure 4.2 Plots of a(t) and ä(t) for the limiting case D = 2.99
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Figure 4.3 Plots of a(t) and ξ(t) for the case D = 4 and for the same parameters of Figure 4.1

4.5 Parameter Tuning and Initial Conditions

To establish contact between our model and phenomenology, we must tune two parameters

of the system. The first one is the Hagedorn Temperature βH = 1/4πα′, that controls the

initial conditions for both ρ0(t ) and r ho1(t ). The other parameter is the decay rate K . It will

depend on the value of the dilaton field zeroth modeφ0 and the string coupling constant gc .

Tuning the value of α′, φ0 and gc , we tune βH and K and hence adjust the initial condi-

tions for ρ0 and ρ1 and the decay rate of the excited modes.

In what follows we shall obtain the initial conditions for ρ0 and ρ1.

4.5.1 Initial Conditions for the Modes

As we have already seen, string theory has a natural limiting temperature, so the SBB picture

of a infinitely hot early universe must be replaced by a finite temperature early universe.
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Since at this limiting temperature string energy diverges, some kind of cutoff for the tem-

perature is required. A natural cutoff when speaking of strings is to require that the average

energy per string is in the Planck scale. With this ansatz, one is able to calculate the proba-

bilities P1(t → 0) and Pi (t → 0).

For a single string, we have

Z =C

(
β

β−βH

)
⇒ log Z = logC + logβ− log(β−βH )

so that

E =−∂ log Z

∂β
= βH

β(β−βH )
(4.39)

which for β≈βH acquires the same form of the full gas

E str ∼ 1

β−βH
. (4.40)

Our cutoff condition is that E ∼ Epl . This yields a cutoff temperature βc

Epl =
1

βc −βH
⇒βc =βH + 1

Epl
. (4.41)

The next step is to calculate the string partition function at this cutoff temperature. It is

given by

Zstr (β=βc ) =C

(
βc

βc −βH

)
=C

[
βH +1/Epl

1/Epl

]
⇒ Zstr =C [1+βH Epl ]

.

(4.42)

At a fixed temperature (or equivalently in this scenario at fixed time), the probability of

a state En being occupied is given by

P (En) = e−βEn

Z
. (4.43)

Thus at cutoff temperature we will find

P (E0)βc =
e−βc E1

C [1+βH Epl ]

P (E1)βc =
e−βc Ei

C [1+βH Epl ]

(4.44)
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The energy amount in each level i at time t = 0 will be given by

Ei (t = 0) = Pi (t = 0)E = Pi (t = 0)E N . (4.45)

Before proceeding, let us make the definition

γ= 1

C [1+βH Epl ]
.

With this definition, the two components of the content matter at time t = 0 will have

the energies given by

E0(t = 0) = P0(t = 0)E N =
[

e−βc E0γ0

][
1

βc −βH

]
N

E1(t = 0) = P1(t = 0)E N =
[

e−βc E1γ0

][
1

βc −βH

]
N

(4.46)

where the notation γ0 was used to represent γ taken at t = 0 1. These are the initial condi-

tions for the system.

1Note that γ depends on the volume V through the term C



CHAPTER 5

Conclusion and Perspectives

The last century has witnessed the birth and development of Cosmology as a science. Since

the pioneer works by Einstein, Hubble and Friedmann, Robertson and Walker in the begin-

ning of the century to the astonishing discovery that we live in an universe with an accel-

erated expansion, huge advances have been made in an attempt to understand the most

fundamental nature of the cosmos. The past decades have seen the emergence of the pre-

cision cosmology era. Together with theoretical developments in fundamental Physics, new

satellites as the WMAP and the Planck open a window to even larger developments in Cos-

mology in the next decades.

This work was devoted to the study of the very young universe. In such regime, the en-

ergy density was so high that our current paradigm of theory of gravity breaks down. Since

the large scale structure of the universe is driven by gravity, a cosmological model that is

to be trusted on very early times must be constructed over a theory that remains valid on

such times. Right now, we have a candidate for such theory: String Theory. Stringy-based

cosmological models may shine a new light on cosmological questions that have been open

for years, like singularities, the dimensionality of spacetime and a theory of inflation (or an

alternative for it). Also, precision experiments in Cosmology may prove to be the perfect site

for probing String Theory. Motivated by this, we used a stringy description of matter and

String Theory as a theory of gravity to construct a model for the very early universe.

After a brief overview of Modern Cosmology and the Λ-CDM model on the first chapter,

the second chapter was devoted to a proper study of Standard Big Bang Cosmology and the

Inflationary Scenario. Under the assumptions of homogeneity and isotropy the FRW model

was constructed and shown to agree with the experimental results obtained by Edwin Hub-

ble, what marked the birth of Modern Cosmology. The problems of flatness, abundance of

relics and horizon were presented and the inflationary scenario was presented as a possible

solution for these issues.

The inflationary scenario, however, has its own issues, namely the fact that even though

we have a handful of inflationary mechanisms, we haven’t found so far a theory of inflation.

Moreover, inflationary scenarios based on General Relativity have the same limitations of
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the theory itself. This makes a more fundamental theory needed. The third chapter of this

work was devoted to introduce string cosmological models. After a motivation for choosing

String Theory as a quantum theory of gravity, the evolution of strings in curved space-times

was presented. Important attention was payed to the thermodynamics of strings at high

temperatures, since strings have a limiting maximal temperature: the Hagedorn Tempera-

ture, which is relevant for cosmology. Other cosmologically relevant feature of String Theory,

T-Duality, was presented. Then, the String Gas Scenario, that was the basis of our work, was

introduced.

The fourth chapter was devoted to the study of our setup: the matter content of the

universe is modeled as a gas of strings that begins very close to the Hagedorn temperature.

This gas splits into two matter species: a gas of radiation, made of strings at the fundamental

level and a gas of the excited string modes. The dynamics of the system is driven by the decay

of the excited modes and by the cosmological redshift. The setup shows that the decay of

winding modes may drive inflation in the scenario provided that the universe inflates in

less than the critical spatial dimensionality D = 3. This may indicate a new clue to justify

decompactification in 3 dimensions and explain the dimensionality of space-time.

As perspectives of further developments, one may try to conciliate this inflationary mech-

anism with the Brandenberger-Vafa decompactification scenario in the context of String Gas

Cosmology and phenomenologically fine-tune the above results so that they yield the cor-

rect observed spectrum of particles. Then one should be able to construct an effective model

that comprises both a possible explanation for the dimensionality problem of spacetime

and an inflationary mechanism.



APPENDIX A

String Quantization

O binômio de Newton é tão belo quanto a Vênus de Milo. O que há é

pouca gente para dar por isso. (Newton’s binomial is as beautiful as the

Venus de Milo. The truth is few people notice it.)

—FERNANDO PESSOA

In this appendix we shall discuss the quantization of String Theory. This is intended as a fun-

damental part of this work, specially aimed at those who are not familiar with String Theory,

to whom this will work as an introduction to the subject. For a comprehensive review, the

reader is referred to the canonical references, the books by Polchinski [57], Green, Scharwz

and Witten[58] and Becker, Becker and Schwarz [59].

A.1 The Relativistic Point Particle

Let us begin studying the dynamics of a relativistic point particle. It is a pedagogical start

point, since it will introduce some of the features that appear on String Theory.

A.1.1 Lagrangian and Symmetries

Consider a point particle of mass m moving over a D-dimensional Minkowski space R1,D−1

with signature

ηµν = diag(−1,+1,+1, ...,+1)

By fixing an a frame with coordinates X µ = (t ,~x) the action of the particle may be written

as

65
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S =−m
∫

d t
√

1−~̇x ·~̇x (A.1)

One can check that this Lagrangian yields the conjugate momentum and energy known

for a relativistic point particle

~p = m~̇x√
1−~̇x ·~̇x

, E =
√

m2 +~p2 (A.2)

However, although this Lagrangian is correct, is does not put time and space on equal

foot: while the position is a dynamical degree of freedom, the time is merely a parameter

that labels the position. Since Lorentz transformations mix up space and time, it would be

good to find a new Lagrangian where such symmetries become evident.

The way to find such action is to use gauge symmetry to promote time to a degree of

freedom of our action without it really being a true dynamical degree of freedom.

Take the action

S =−m
∫

dτ
√
−Ẋ µẊ νηµν (A.3)

where µ= 0, ...,D−1 and Ẋ µ = d X µ/dτ. The new parameter τwe have introduced labels

the position of the particle along the worldline described by its motion. Note that this action

is simply the proper time
∫

d s along the worldline.

It is important to remark that not all degrees of freedom in this action are physical. Note

that this action is invariant under reparameterization: one can pick a parameter τ̃= τ̃(t ) on

the worldline, so that dτ = d τ̃|dτ)d τ̃, d X µ/dτ = (d X µ/d τ̃)(d τ̃/dτ) and the action may be

rewritten in the τ̃ reparameterization

S =−m
∫

d τ̃

√
−d X µ

d τ̃

d X ν

d τ̃
ηµν (A.4)

This reparameterization invariance is a gauge symmetry of the system and so it is really

a redundancy in our description: although we seem to be dealing with D degrees of freedom

X µ, one of them is fake.

Also, the Poincaré symmetry of the particle becomes evident on this action, as a global

symmetry on the worldline

X µ→Λ
µ
νX ν+ cµ (A.5)

where Λ is a Lorentz transformation that satisfies λµνη
νρΛσρ = ηµσ and cµ is a constant



A.2 ACTION PRINCIPLES 67

translation. Introducing a gauge symmetry into the system was the price to be paied to

make all the symmetries of the action evident.

A.1.2 Ein Einbein

It is possible to describe the free relativistic particle using another action

S′ = 1

2

∫
dτ(η−1Ẋ µẊµ−ηm2) (A.6)

by introducing an additional field on the worldline, an independent worldline metric γττ(τ)

and inserting in the action the einbein η(τ) = (−γττ(τ))1/2 which is defined to be positive.

Note that this system is also invariant under Poincaré transformations and reparameter-

ization, thus having the same symmetries as the action S.

In fact, it is possible to return to the action S by varying the action with respect to the

einbein to obtain the equation of motion

η2 =−Ẋ µẊµ/m2 (A.7)

and using this to eliminate η(τ) in S′.
What’s the difference between S and S′ since they are classically equivalent and exhibit

the same symmetries? The fact is that S has a complicated form with derivatives inside a

square root, what makes it hard to quantize. It is difficult to make sense of an action of this

form on a path integral. On the other hand, S′ is quadratic in the derivatives and its path

integral is not as near as complicated as that of S, even though their quantum theories will

be equivalent. This is a good reason to define the quantum theory from S′, and not from S.

A similar procedure will have to be carried with strings.

A.2 Action Principles

A.2.1 The Nambu-Goto Action

We have seen that a non-dimensional object (a point particle) will span a worldline while

moving on space-time. In a similar fashion, a one-dimensional object will span two-dimension

worldsheet. We will describe this surface in terms of two parameters, X µ(τ,σ) as in Fig-

ure A.1, where τ is a timelike coordinate and σ is a spacelike coordinate.

In this language, we usually refer to space-time as the target space to distinguish it from
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Figure A.1 Worldline and worldsheet generated by a non-dimensional and by a one-dimensional ob-
ject that propagate on space-time. Figure Credits: Joseph Polchinski. String Theory: An Introduction
to the Bosonic String (Cambridge Monographs on Mathematical Physics), volume 1. 1998.

the worldsheet.

If we keep we mind what we have learned from the point particle case, it is natural to

think that the simplest action that preserves the symmetries of equation (A.6) must be pro-

portional to the area of the worldsheet. We define the induced metric hab

hab = ∂a X µ∂B Xµ (A.8)

and write the Nambu-Goto action as

SNG =
∫

M
dτdσLNG

LNG =− 1

2πα′
√

−dethab

(A.9)

where M denotes the world-sheet and the term 1/2πα′ is the tension T of the string in

terms of the Regge slope α′ that has units of spacetime-length-squared.

Note that this action has two symmetries. The first one is the D-dimensional Poincaré

group (the isometry group of flat spacetime)

X ′µ(τ,σ) =ΛµνX ν(τ,σ)+aµ (A.10)

where Λµν is a Lorentz transformation and aµ is a translation. The second one is dif-

feomorphism invariance: if we take new coordinates (τ′(τ,σ),σ′(τ,σ)) the transformation is

given by
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X ′µ(τ′,σ′) = X µ(τ,σ). (A.11)

A.2.2 The Polyakov Action

Just like the point particle action, the Nambu-Goto action has derivatives in the square root.

To simplify it, we may introduce a world-sheet metric γab of Lorentzian signature (−,+), in

order to obtain the metric

SP [X ,γ] =− 1

4πα′

∫
M

dτdσ(−γ)1/2γab∂a X µ∂b Xµ. (A.12)

Here, γ = detγab . This is the Polyakov action. By varying this action to the metric, and

requiring δγSP [X ,γ] = 0 once can show that it is equivalent to the Nambu-Goto action. The

Polyakov action preserves the symmetries of the Nambu-Goto action: the D-dimensional

Poincaré invariance

X ′µ(τ,σ) =ΛµνX ν(τ,σ)+aµ

γ′ab(τ,σ) = γab(τ,σ);
(A.13)

and diffeomorphism invariance:

X ′µ(τ′,σ′) = X µ(τ,σ)

∂σ′c

∂σa

∂σ′d

∂σc
γ′cd (τ′,σ′) = γab(τ,σ).

(A.14)

In addition, the Polyakov action also has two-dimensional Weyl invariance, a local rescal-

ing of the worldsheet metric:

X ′µ(τ,σ) = X µ(τ,σ)

γ′ab(τ,σ) = exp(2ω(τ,σ))γab(τ,σ)
(A.15)

where ω(τ,σ) is arbitrary.

We turn our interest now to the equations of motion of this action. To simplify our calcu-

lations we may take advantage of the redundancies in gauge symmetries to choose proper

coordinates. First, we use reparameterization invariance to fix a gauge for the Polyakov ac-

tion. Since the worldsheet metric has three independent components, we can choose a valor

to any two of them. Our choice will be to make the metric locally conformally flat:

gαβ = e2φηαβ (A.16)
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whereφ(τ,σ) is some function on the worldsheet. This is known as the conformal gauge.

We are left with Weyl invariance, so we can use this to remove the last independent compo-

nent of the metric. We choose gαβ, to obtain a flat metric on the worldsheet in Minkowski

coordinates:

gαβ = ηαβ. (A.17)

Note the importance of this result: one may use Weyl invariance to make any two-dimensional

metric flat! With this choice, the Polyakov action will simplify to a theory of D free scalar

fields:

S =− 1

4πα′

∫
d 2σ∂αX ·∂αX . (A.18)

The equations of motion for X µ reduce to the free wave equation:

∂α∂
αX µ = 0. (A.19)

Since we have made a choice for the metric gαβ, we must make sure that the equation

of motion for gαβ is satisfied. In particular, the variation of the action with respect to the

metric gives rise to its stress-energy tensor Tαβ:

Tαβ =− 2

T

1p−g

∂S

∂gαβ
. (A.20)

Setting gαβ = ηαβ we get

Tαβ = ∂αX ·∂βX − 1

2
ηαβη

ρσ∂ρX ·∂σX (A.21)

and the associated equation of motion is simply Tαβ or, more explicitly:

T01 = Ẋ ·X ′ = 0

T00 = T11 = 1

2
(Ẋ 2 +X ′2) = 0.

(A.22)

These work as constraints on the equations of motion, that is, the equations of motion

of the string are the free wave equation (A.19) subject to the constraints equation (A.22).
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A.2.3 Mode Expansion

Now we turn to solve the equations of motion. We begin by introducing lightcone coordi-

nates on the worldsheet

σ± = τ±σ (A.23)

so that the equations of motion will read

∂+∂−X µ = 0. (A.24)

This equation has a general solution given by

X µ(σ,τ) = X µ

L (σ+)+X µ

R (σ−) (A.25)

where X µ

L and X µ

R are arbitrary functions that describe left-moving and right-moving waves

respectively. Beyond the constraints (A.22) these must obey the periodicity condition

X µ(σ,τ) = X µ(σ+2π,τ). (A.26)

The natural next step, therefore, is to expand the most general periodic solution in Fourier

modes:

X µ

L (σ+) = 1

2
xµ+ 1

2
α′pµσ++ i

√
α′

2

∑
n 6=0

1

n
α̃
µ
ne−i nσ+

,

X µ

R (σ−) = 1

2
xµ+ 1

2
α′pµσ−+ i

√
α′

2

∑
n 6=0

1

n
α
µ
ne−i nσ−

(A.27)

where α′ and 1/n are normalization factors chosen for later convenience and the variables

xµ and pµ are the center of mass position and momentum of the string. Note that due to the

reality of X µ the coefficients of the Fourier modes αµn and α̃µn must obey

α
µ
n = (αµ−n)∗; α̃

µ
n = ( ˜αµ−n)∗. (A.28)

We are still required to satisfy the constraints (A.22). Again making use of lightcone co-

ordinates on the worldsheet,

σ±τ±σ
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they become

(∂+X )2 = (∂−X )2 = 0. (A.29)

An explicit calculation gives

∂− = ∂−X µ

R = α′

2
pµ+

√
α′

2

∑
n 6=0

α
µ
ne−i nσ−

. (A.30)

If we take the sum above to be over all n ∈ Z and define α
µ
0 ≡ p

α′/2pµ, this may be

rewritten as

∂−X µ =
√
α′

2

∑
n
α
µ
ne−i nσ−

(A.31)

so that

(∂−X )2 = α′

2

∑
m,p

αm ·αp e−i (m+p)σ− = α′

2

∑
m,n

αm ·αn−me−i nσ−

≡α′∑
n

Lne−i nσ− = 0
(A.32)

where the sum of the oscillator modes is defined as

Ln = 1

2

∑
m
αn−m ·αm . (A.33)

Analogous definitions can be made for the left moving modes:

L̃n = 1

2

∑
m
α̃n−m · α̃m , α̃

µ
0 ≡

√
α′

2
pµ. (A.34)

Thus, we are left with an infinite number of constraints

Ln = L̃n = 0 n ∈Z. (A.35)

Note that L0 and L̃0 both include the square of the spacetime momentum pµ. Since in

Minkowski space the square of the spacetime momentum is the square of the rest mass of a

particle

pµpµ =−M 2 (A.36)

the L0 and L̃0 constraints tell us the effective mass of a string in terms of the excited oscillator
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modes:

M 2 = 4

α′
∑

n>0
αn ·α−n = 4

α′
∑

n>0
α̃n · α̃−n . (A.37)

Since αµ0 = α̃µ0 =p
α′/2pµ, we have two expressions for the invariant mass (one in terms

of the right-moving oscillators αµn and one in terms of the left-moving oscillators α̃µn) that

must be equal to each other. This is known as level matching and will be important in the

string quantization.

A.3 String Quantization

A.3.1 The Lightcone Gauge

In the following, we will develop the quantization of String Theory. Since String Theory is a

gauge theory, we may do this in some different ways. The approach we are going to follow is

the so called lightcone gauge quantization. The idea here is to first solve all the constraints

of the system to determine the space of physically distinct classical solutions and then quan-

tize these solutions.

The first point to be noted is that even after we fix the gauge to the worldsheet to gαβ =
ηαβ we still have some gauge freedom: any coordinate transformationσ→ σ̃(σ) that changes

the metric by ηαβ → Ω2(σ)ηαβ can be undone by a Weyl transformation. Consider, for ex-

ample, the lightcone coordinates on the worldsheet

σ± = τ±σ.

The flat metric on the worldsheet will take the form

d s2 =−dσ+dσ−. (A.38)

The result of transformations of the form σ+ → σ̃+(σ+) or σ− → σ̃−(σ−) will be an addi-

tional overall multiplicative factor on the flat metric, that may be undone by a proper Weyl

transformation.

Our objective is to fix this reparameterization invariance. We begin by introducing space-

time lightcone coordinates:

X ± =
√

1

2
(X 0 ±X D−1) (A.39)
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so that the spacetime Minkowski metric reads

d s2 =−2d X +d X −+
D−2∑
i=1

d X i d X i . (A.40)

With this notation, the solution to the equation of motion for X + is given by

X + = X +
L (σ+)+X +

R (σ−). (A.41)

We obtain the lightcone gauge by choosing coordinates such that

X +
L = 1

2
x++ 1

2
α′p+σ+,

X +
R = 1

2
x++ 1

2
α′p+σ−,

(A.42)

so that

X + = x++α′p+τ. (A.43)

More than just fix the reparameterization invariance, this choice of gauge will also sim-

plify the constraint equations. The equation of motion of X +, for instance, will read

∂+∂−X − = 0, (A.44)

and can be solved through the usage of our usual ansatz

X − = X −
L (σ+)+X −

R (σ−). (A.45)

A notable fact about the lightcone gauge is that X − will be completely determined by the

constraints. Constraints (A.29), for example, which read

2∂+X −∂+X + =
D−2∑
i=1

∂+X i∂+X i (A.46)

in the lightcone gauge (A.43) become

∂+X −
L = 1

α′p+
D−2∑
i=1

∂+X i∂+X i

∂−X −
R = 1

α′p+
D−2∑
i=1

∂−X i∂−X i .

(A.47)

The function X −(σ+,σ−) will be completely determined in terms of the other fields, ex-
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cept for an integration constant. To see this more clearly, let us write the mode expansion

for X −
L and X −

R :

X −
L (σ+) = 1

2
x−+ 1

2
α′p−σ++ i

√
α′

2

∑
n 6=0

1

n
α̃−

n e−i nσ+
,

X −
R (σ−) = 1

2
x−+ 1

2
α′p−σ−+ i

√
α′

2

∑
n 6=0

1

n
α−

n e−i nσ−
(A.48)

Note that p−,α−
n and α̃−

n are all fixed by the constraints (A.47) and that x− is the undeter-

mined integration constant. Let us use this to obtain the level matching condition.

We can read off p− from α−
0 by two forms. In the first one, we use the fact that

α−
n =

√
1

2α′
1

p+
+∞∑

m=−∞

D−2∑
i=1

αi
n−mα

i
m (A.49)

which applied to our definition α−
0 =√

α′/2p− yields

α′p−

2
= 1

2p+
D−2∑
i=1

(
1

2
α′p i p i + ∑

n 6=0
αi

nα
i
−n

)
. (A.50)

The second way is to consider the α−
0 equation arising from the first of equation (A.47),

which reads

α′p−

2
= 1

2p+
D−2∑
i=1

(
1

2
α′p i p i + ∑

n 6=0
α̃i

nα̃
i
−n

)
. (A.51)

These two equations yield the level matching conditions

M 2 = 2p+p−−
D−2∑
i=1

p i p i = 4

α′
D−2∑
i=1

∑
n>0

αi
−nα

i
n = 4

α′
D−2∑
i=1

∑
n>0

α̃i
−nα̃

i
n . (A.52)

Note that this time the sum is over oscillatorsαi and α̃i only for i = 1, ...,D−2. This means

that if the αi modes, all the other oscillator modes are determined. In this sense, these are

the physical excitations of the string. They are called the transverse oscillators. So the most

general solution is described in terms of 2(D −2) transverse oscillator modes together with

a number of zero modes describing the center of mass and momentum of the string. Note,

however, that p− is not a dynamical variable, but it is fixed by the constraints.

Once these degrees of freedom have been identified, we may now proceed to quantiza-

tion.
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A.3.2 Quantization

String quantization is made by imposing commutation relations:[
xi , p j

]
= iδi j , [x−, p+] =−i , [x+, p−] =−i

[αi
n ,α j

m] = [α̃i
n , α̃ j

m] = nδi jδn+m,0

(A.53)

To construct the Hilbert space of states we define a vacuum state |0; p > such that

p̂µ|0; p >= pµ|0; pµ >, αi
n |0; p >= α̃i

n |0; p >= 0 for n > 0 (A.54)

and build a Fock space by acting with the creation operators αi−n and α̃i−n with n > 0. These

operators will be only the transverse operators defined above.

Remember, however, that p− is not an independent variable as stated above. Because of

that, constraints equation (A.50) and equation (A.51) must be imposed by hand as operator

equations that define the physical states.

In the classical theory, these constraints are equivalent to the mass-shell condition equa-

tion (A.52). However, in the quantum theory there’s an ordering ambiguity in the sum over

oscillator modes. The way out of this is to choose all operators to be normal ordered. Then,

this ambiguity in the sum will appear as an overall constant a that we will determine. With

this considerations, the spectrum of states in the lightcone gauge is given by

M 2 = 4

α′

(
D−2∑
i=1

∑
n>0

αi
−nα

i
n −a

)
= 4

α′

(
D−2∑
i=1

∑
n>0

α̃i
−nα̃

i
n −a

)
. (A.55)

We define the operators

N =
D−2∑
i=1

∑
n>0

αi
−nα

i
n , Ñ =

D−2∑
i=1

∑
n>0

α̃i
−nα̃

i
n (A.56)

which are related to the number operators of the harmonic oscillator, so that

M 2 = 4

α′ (N −a) = 4

α′ (Ñ −a). (A.57)

The value and N and Ñ is usually called the level (and now the expression level matching

makes sense). Now we are left to determine the value of a.

If we forget about normal ordering for a second, we may rewrite

1

2

∑
n 6=0

αi
−nα

i
n = 1

2

∑
n<0

αi
−nα

i
n + 1

2

∑
n>0

αi
−nα

i
n (A.58)
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where the summation over i = 1, ...,D − 2 is implicit. To put this in normal ordered form,

we need to correct the second term in the right-hand side of the equation above. Normal

ordering gives

1

2

∑
n 6=0

αi
−nα

i
n = 1

2

∑
n<0

[αi
nα

i
−n −n(D −2)]+ 1

2

∑
n>0

αi
−nα

i
n

= ∑
n>0

αi
−nα

i
n + D −2

2

∑
n>0

n.
(A.59)

The last term diverges and need to be regularized. This may be done through a method

known as zeta function regularization: consider the more general sum

∞∑
n=1

n−s . (A.60)

For Re(s) > 1, this sum converges to a function known as the Riemann Zeta function

ζ(s). This function has a unique analytic continuation to the point s = −1, where we get

ζ(−1) =−1/12.

Inserting
∞∑

n=1
n =−1/12

in equation (A.59), we we obtain the ordering constant a to be

a = D −2

24
.

With this result, we are finally able to write the string spectrum:

M 2 = 4

α′

(
N − D −2

24

)
= 4

α′

(
Ñ − D −2

24

)
. (A.61)

A.3.3 Analysis of Spectrum

Now we shall proceed to the analysis of the string spectrum. We begin by the ground state

|0; p〉. No oscillators are excited, and then

M 2 =− 1

α′
D −2

6
. (A.62)

This is a negative mass-squared! These are called tachyons.

The first excited states by acting on the ground state with the creation operators, obeying

the level matching condition. This gives us (D −2)2 particle states
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α̃i
−1α

j
−1|0; p〉. (A.63)

For each of these states the mass is given by

M 2 = 4

α′

(
1− D −2

24

)
(A.64)

The requirement of Lorentz invariance will determine the number of dimensions D : for a

massive particle, one can always go to the rest frame pµ = (m,0, ...,0) and the internal states

will form a representation of the spatial rotation group SO(D-1). For a massless particle,

however, there is no rest frame. We can, however, choose a spacetime momentum for the

particle of the form pµ = (p,0, ...,0, p). In this case, the particles fill out a representation of

the little group SO(D-2).

Thus, in D dimensions a massive vector particle has D −1 spin states while a massless

vector needs only D −2. At first level, we have only the D −2 states αi
−1|0;k >, so these must

be massless, what implies

D = 26.

The states (A.63) will then transform in the 24⊗24 representation of SO(24). These can

be decomposed into three irreducible representations:

traceless symmetric⊕anti-symmetric⊕ singlet (=trace).

Each on these modes can be associated to a massless field in spacetime such that the

string oscillation may be identified with a quantum of these fields. Namely, the anti-symmetric

tensor field is usually called anti-symmetric field, 2-form field or Kalb-Ramond field Bµν(X ).

The scalar field is the dilaton φ(X ). The particle in the symmetric traceless representation

of SO(24) is a massless spin 2 particle. There are arguments by Feynman and Weinberg [60]

that any interacting massless spin two particles must be equivalent to General Relativity.

Because of that, this field is identified with the Gµν metric field of spacetime.
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