

Universidade Federal de Pernambuco Centro de Ciências Exatas e da Natureza Programa de Pós-Graduação em Matemática

André Ventura Henriques dos Santos

O problema elíptico com não linearidade côncava-convexa.

Recife 2009

André Ventura Henriques dos Santos

O problema elíptico com não linearidade côncava-convexa.

Dissertação apresentada ao Departamento de Matemática da UFPE, como requisito para a obtenção do grau de MESTRE em Matemática.

Orientador: Prof. Dr. Miguel Loayza

Recife

2009

Santos, André Ventura Henriques dos

O problema elíptico com não linearidade côncavaconvexa / André Ventura Henriques dos Santos. -Recife: O Autor, 2009.

51 folhas

Dissertação (mestrado) – Universidade Federal de Pernambuco. CCEN. Matemática, 2009.

Inclui bibliografia.

1. Equações diferenciais parciais. I. Título.

515.353 CDD (22. ed.) MEI2009-108

Dissertação submetida ao Corpo Docente do Programa de Pós-graduação do Departamento de Matemática da Universidade Federal de Pernambuco como parte dos requisitos necessários para a obtenção do Grau de Mestrado em Matemática.

Aprovado:

Miguel Fidencio Loayza Lozano, UFPE

Orientador

Pablo Gustavo Albuquerque Braz e Silva, UFPE

Uberlandio Batista Severo, UFPB

O PROBLEMA ELÍPTICO COM NÃO LINEARIDADE CÔNCAVA-CONVEXA

Por André Ventura Henriques dos Santos

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE MATEMÁTICA Cidade Universitária – Tels. (081) 2126 - 8414 – Fax: (081) 2126 - 8410 RECIFE – BRASIL

Fevereiro - 2009

Resumo

Nesta dissertação, estudamos a existência de soluções de um problema elíptico com não linearidade côncava-convexa num domínio regular e limitado. Uma solução é obtida usando o método das sub e super soluções. Usamos também o método variacional, especificamente o teorema do passo da montanha, para obter uma segunda solução.

Palavras-chave: problema elíptico, Teorema do Passo da Montanha, sub e super soluções.

Abstract

In this work, we study the existence of solutions for an elliptic problem with concaveconvex nonlinearity in a regular and bounded domain. The first solution is obtained using the sub-super solutions method. We use the variational method, specifically the mountain pass theorem to obtain a second solution.

Keywords: elliptic problem, Mountain Pass Theorem, sub-super solutions.

Agradecimentos

- A Deus, pela concretização do sonho.
- A minha família, em especial a minha mãe, pelo incentivo, apoio e compreensão dispensados.
- A Gláucya.
- Ao professor Miguel Fidencio Loayza Lozano, pela orientação, dedicação e incentivo.
- Aos professores de graduação e pós-graduação, em especial a: Sérgio d'Amorim Santa-Cruz, Sóstenes Luiz Soares Lins, Antônio Carlos Monteiro, Marcus Vinícius de Medeiros Wanderley e Hildeberto Eulalio Cabral.
- Aos amigos da pós-graduação, em especial a: Ricardo Nunes Machado, Paulo Roberto Ferreira dos Santos Silva, Allyson dos Santos Oliveira, Zaqueu Alves Ramos e José Anderson Valença.
- A CAPES Coordenação de Aperfeiçoamento de Pessoal de Nível Superior pelo apoio financeiro.
- À Universidade Federal de Pernambuco, à Coordenação do Programa de Pós-Graduação em Matemática e à funcionária Tânia Maria M. Maranhão.

Dedicatória

A minha mãe Graça Ventura

Sumário

	Intro	odução	11
1	Tóp	icos Introdutórios	12
	1.1	Espaços $C^{k,\alpha}(\Omega)$ e $C^{k,\alpha}(\overline{\Omega})$	12
	1.2	Espaços $L^p(\Omega)$	13
	1.3	Espaços $\mathcal{D}(\Omega)$ e distribuições	15
	1.4	Espaços de Sobolev	17
	1.5	Espaços $H^{-1}(\Omega)$	21
	1.6	Funcionais diferenciáveis e o teorema do passo da montanha	23
	1.7	Resultados clássicos	24
	1.8	Existência e regularidade de soluções de algumas EDP's	27
2	Sub	e Super Soluções	29
	2.1	Subsoluções e supersoluções	29
	2.2	Aplicação	33
3	Exis	stência de Solução	34
	3.1	O problema côncavo-convexo	34

Referé	èncias Bibliográficas	51
3.5	Demonstração do Teorema 3.1.3	48
3.4	Demonstração do Teorema 3.1.2	45
3.3	Demonstração do Teorema 3.1.1	42
3.2	Lemas preliminares	35

Introdução

Neste trabalho, nosso objetivo é estudar o problema elíptico não linear

$$\begin{cases}
-\Delta u = \lambda u^q + u^p, & x \in \Omega, \\
u > 0, & x \in \Omega, \\
u = 0, & x \in \partial\Omega,
\end{cases} \tag{1}$$

onde $\Omega \subset \mathbb{R}^N$ é um domínio regular e limitado, 0 < q < 1 < p e $\lambda > 0$. Este problema é importante, pois envolve uma não linearidade que combina os efeitos côncavo e convexo. Brezis, Ambrosetti e Cerami [3] provaram, usando o método das sub e super soluções, que existe uma constante positiva Λ tal que o problema (1) possui solução se, e somente se, $0 < \lambda \le \Lambda$. Provaram também, usando o método variacional, que com a hipótese adicional $p \le \frac{N+2}{N-2}$, o problema (1) possui uma segunda solução para $\lambda \in (0,\Lambda)$. Seguiremos, em parte, os argumentos apresentados em [3].

No primeiro capítulo, apresentamos uma breve revisão dos seguintes conceitos: Hölder continuidade, espaços $L^p(\Omega)$, $\mathcal{D}(\Omega)$, $W^{m,p}(\Omega)$ e funcionais Fréchet diferenciáveis. Também são apresentados alguns resultados clássicos (principalmente sobre os espaços de Sobolev e regularidade de soluções de algumas EDP´s).

No segundo capítulo, apresentamos o método das sub e super soluções para a obtenção de uma solução de um problema elíptico não linear.

No terceiro capítulo, aplicamos o método das sub e super soluções para encontrar uma solução de (1). Usando o método variacional, mais especificamente, o teorema do passo da montanha, encontramos uma segunda solução de (1) para $\lambda \in (0, \lambda_0)$ com $\lambda_0 \leq \Lambda$. O resultado ótimo ($\lambda_0 = \Lambda$) obtido em [3] não é atingido, já que seria necessário um estudo extenso de técnicas mais sofisticadas.

Capítulo 1

Tópicos Introdutórios

1.1 Espaços $C^{k,\alpha}(\Omega)$ e $C^{k,\alpha}(\overline{\Omega})$

Nesta seção, relembramos algumas definições envolvendo a continuidade no sentido de Hölder.

Sejam $x_0 \in \mathbb{R}^N$ e f uma função definida no conjunto limitado D contendo x_0 . Se $0 < \alpha < 1$, dizemos que f é $H\"{o}lder\ contínua\ com\ expoente\ \alpha\ em\ x_0$ se

$$[f]_{\alpha;x_0} := \sup_{D} \frac{|f(x) - f(x_0)|}{|x - x_0|^{\alpha}} < \infty.$$

Dizemos que f é $H\"{o}lder$ cont'inua em x_0 se f é $H\"{o}lder$ cont'inua com expoente α em x_0 para algum $0 < \alpha < 1$. Chamamos $[f]_{\alpha;x_0}$ de coeficiente α - $H\"{o}lder$ de f em x_0 . Note que se f é $H\"{o}lder$ cont´ınua em x_0 , então é cont´ınua em x_0 .

Dizemos que f é uniformemente Hölder contínua com expoente α em D se

$$[f]_{\alpha;D} := \sup_{x,y \in D} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < \infty, \quad 0 < \alpha \le 1.$$

Dizemos que f é localmente Hölder contínua com expoente α em D se f é uniformemente Hölder contínua com expoente α nos subconjuntos compactos de D. Note que esses dois últimos conceitos coincidem quando D é compacto.

Sejam Ω um subconjunto aberto de \mathbb{R}^N e k um inteiro não-negativo. Define-se os espaços de Hölder $C^{k,\alpha}(\overline{\Omega})$ como o conjunto das funções $f\in C^k(\overline{\Omega})$ cujas derivadas de ordem k são uniformemente Hölder contínuas com expoente α em Ω . Os espaços de Hölder $C^{k,\alpha}(\Omega)$ são definidos como o conjunto das $f\in C^k(\Omega)$ cujas derivadas de ordem k são localmente Hölder contínuas com expoente α em Ω . Por simplicidade, escreve-se:

$$C^{0,\alpha}(\Omega) = C^{\alpha}(\Omega)$$
 e $C^{0,\alpha}(\overline{\Omega}) = C^{\alpha}(\overline{\Omega})$,

com o entendimento de que $0 < \alpha < 1$. Escreve-se, também,

$$C^{k,0}(\Omega) = C^k(\Omega)$$
 e $C^{k,0}(\overline{\Omega}) = C^k(\overline{\Omega})$.

1.2 Espaços $L^p(\Omega)$

Nesta seção, citaremos alguns resultados básicos dos espaços L^p . Admitiremos que o leitor esteja familiarizado com funções mensuráveis, medida de Lebesgue e funções integráveis a Lebesgue. Para as demonstrações, consulte [4].

Sejam $\Omega \subset \mathbb{R}^N$ aberto e $1 \leq p < \infty$. Define-se

$$L^p(\Omega) = \left\{ f : \Omega \longrightarrow \mathbb{R}; \ f \text{ \'e mensur\'avel e } \int_{\Omega} |f|^p < \infty \right\},$$

o qual é um espaço de Banach com norma dada por

$$||f||_{L^p} = \left(\int_{\Omega} |f|^p\right)^{1/p}.$$

Para $p=2,\,L^p(\Omega)$ é um espaço de Hilbert com produto interno dado por

$$(u, v) = \int_{\Omega} u.v.$$

Define-se também

 $L^{\infty}(\Omega) = \{ f : \Omega \longrightarrow \mathbb{R}; \ f \text{ \'e mensur\'avel e existe } c > 0 \text{ tal que } |f(x)| \le c \text{ q.s. em } \Omega \} \,,$

onde usamos a notação q.s. em Ω para indicar que a propriedade $|f(x)| \leq c$ é válida, exceto, possivelmente, para x pertencente a algum subconjunto de Ω com medida nula.

Chamamos o ínfimo do conjunto $\{c \in \mathbb{R}; |f(x)| \leq c \text{ q.s. em } \Omega\}$ de supremo essencial de f e o denotamos por supess f. Prova-se que $L^{\infty}(\Omega)$ é um espaço de Banach com norma $||f||_{L^{\infty}} = supess f$.

Temos também os seguintes teoremas:

Teorema 1.2.1. (Designaldade de Hölder) Se $1 \le p \le \infty$, $u \in L^p(\Omega)$ e $v \in L^q(\Omega)$ com $\frac{1}{p} + \frac{1}{q} = 1$, então $u.v \in L^1(\Omega)$ e

$$\int_{\Omega} |u(x).v(x)| \ dx \le ||u||_{L^p} ||v||_{L^q}.$$

Teorema 1.2.2 (Desigualdade de Young). Sejam a,b>0 e $1< p,q<\infty$ tais que 1/p+1/q=1. Então

$$ab \le \frac{a^q}{q} + \frac{b^p}{p}.$$

Teorema 1.2.3 (Teorema da Convergência Dominada). Seja (f_n) uma sequência em $L^1(\Omega)$ tal que:

- (i) $f_n(x) \xrightarrow{n \to \infty} f(x)$ quase sempre em Ω ,
- (ii) Existe $g \in L^1(\Omega)$ tal que $|f_n(x)| \leq g(x)$ quase sempre em $\Omega, \forall n \in \mathbb{N}$..

Então,
$$f \in L^1(\Omega)$$
 e $\lim_{n\to\infty} \int_{\Omega} |f_n(x) - f(x)| dx = 0$.

O próximo teorema afirma que toda forma linear e contínua φ sobre $L^p(\Omega)$ com 1 se representa por meio de uma função <math>u de $L^{p'}(\Omega)$, onde $\frac{1}{p} + \frac{1}{p'} = 1$. Diz também que a aplicação $\varphi \longmapsto u$ é um operador linear isométrico e sobrejetivo; permitindo, assim, identificar o dual de $L^p(\Omega)$ com $L^{p'}(\Omega)$. Sua demonstração pode ser encontrada em [2].

Teorema 1.2.4. (Representação de Riesz) Suponhamos que $1 e <math>\varphi \in (L^p(\Omega))'$. Então existe uma única $u \in L^{p'}(\Omega)$ tal que

$$\langle \varphi, f \rangle = \int uf, \ \forall f \in L^p(\Omega).$$

Mais ainda,

$$||u||_{L^{p'}} = ||\varphi||_{(L^p)'}.$$

1.3 Espaços $\mathcal{D}(\Omega)$ e distribuições

Nesta seção, apresentamos um breve resumo da teoria das distribuições. As afirmações mencionadas encontram-se demonstradas em [4] ou em [5].

Seja $\Omega \subset \mathbb{R}^N$ aberto. O espaço $C_0^{\infty}(\Omega)$ define-se por

$$C_0^{\infty}(\Omega) = \{ f \in C^{\infty}(\Omega); \ f \text{ possui suporte compacto em } \Omega \},$$

onde o suporte de f (denotado por supp f) é o complemento do maior aberto no qual f se anula, ou seja

supp
$$f = \Omega \setminus \bigcup \{w \subset \Omega; \ w \text{ \'e aberto e } f|_w = 0\}.$$

Prova-se que $C_0^{\infty}(\Omega)$ é denso em $L^p(\Omega)$ se $1 \leq p < \infty$.

Os elementos da forma $\alpha=(\alpha_1,\,\alpha_2,\,\dots,\,\alpha_N)$, com $\alpha_1,\,\alpha_2,\,\dots,\,\alpha_N$ inteiros não-negativos, são chamados de *multi-índice*. A ordem de um multi-índice α é denotada e definida por $|\alpha|=\alpha_1+\alpha_2+\dots+\alpha_N$. Usando a notação $D_i=\partial/\partial x_i,\,i=1,\,\dots,\,N$, define-se $D^\alpha u=D_1^{\alpha_1}\dots D_N^{\alpha_N}u$ e $D^0 u=u$.

Diz-se que uma sequência $(\varphi_n) \subset C_0^{\infty}(\Omega)$ converge para zero em $C_0^{\infty}(\Omega)$ quando as seguintes condições forem satisfeitas:

- (i) Existe um compacto $K \subset \Omega$ que contém os suportes de todas as φ_n .
- (ii) Se α é um multi-índice, então a sequência $(D^{\alpha}\varphi_n)$ converge para zero uniformemente em K,

Se $\varphi \in C_0^{\infty}(\Omega)$, diz-se que a sequência $(\varphi_n) \subset C_0^{\infty}(\Omega)$ converge para φ em $C_0^{\infty}(\Omega)$, quando a sequência $(\varphi_n - \varphi)$ converge para zero no sentido dado acima. O espaço $C_0^{\infty}(\Omega)$ com a noção de convergência acima é chamado de espaço das funções testes em Ω e é representado por $\mathcal{D}(\Omega)$.

Define-se como distribuição sobre Ω a todo funcional linear T definido em $\mathcal{D}(\Omega)$ que é contínuo no sentido da convergência em $\mathcal{D}(\Omega)$, ou seja, para toda sequência $(\varphi_n) \subset \mathcal{D}(\Omega)$ que converge para zero em $\mathcal{D}(\Omega)$, a sequência $(\langle T, \varphi_n \rangle)$ converge para zero em \mathbb{R} . O

conjunto de todas as distribuições sobre Ω é um espaço vetorial, o qual representa-se por $\mathcal{D}'(\Omega)$. Neste espaço, diz-se que $(T_n) \subset \mathcal{D}'(\Omega)$ converge para zero em $\mathcal{D}'(\Omega)$, quando para toda função teste $\varphi \in \mathcal{D}(\Omega)$, a sequência $(\langle T_n, \varphi \rangle)$ converge para zero em \mathbb{R} .

Exemplo. Dizemos que uma função u definida quase sempre em Ω pertence a $L^1_{loc}(\Omega)$ se $u \in L^1(A)$ para todo conjunto mensurável $A \subset \Omega$ tal que $\overline{A} \subset \Omega$ e \overline{A} é compacto . Considere $u \in L^1_{loc}(\Omega)$ e defina $T_u : \mathcal{D}(\Omega) \longmapsto \mathbb{R}$ por

$$\langle T_u, \varphi \rangle = \int_{\Omega} u(x)\varphi(x) \ dx.$$

Mostra-se que T_u é uma distribuição sobre Ω . Como resultado importante, temos o lema de Du Bois Raymond, o qual afirma que $T_u=0$ se, e somente se, u=0 q.s. em Ω . Segue-se que para cada $u\in L^1_{loc}(\Omega)$, tem-se T_u univocamente determinada por u sobre Ω , quase sempre, no seguinte sentido: se $u, v\in L^1_{loc}(\Omega)$ então $T_u=T_v$ se, e somente se, u=v quase sempre em Ω . Por esta razão, identifica-se u com a distribuição T_u por ela definida e diz-se a distribuição u ao invés de dizer a distribuição T_u . Da desigualdade de Hölder, é fácil ver que $L^p(\Omega) \subset L^1_{loc}(\Omega)$ se $1 \leq p \leq \infty$. Diremos que uma distribuição T pertence a $L^p(\Omega)$ se existir $f \in L^p(\Omega)$ tal que $T=T_f$.

Considere $T \in \mathcal{D}'(\Omega)$ e α um multi-índice. A derivada de ordem α de T é, por definição, o funcional linear $D^{\alpha}T$ definido por

$$\langle D^{\alpha}T, \varphi \rangle = (-1)^{|\alpha|} \langle T, D^{\alpha}\varphi \rangle$$
 para toda $\varphi \in \mathcal{D}(\Omega)$.

Mostra-se que $D^{\alpha}T$ é uma distribuição sobre Ω . Note que as distribuições possuem derivadas de todas as ordens. Para $u \in L^1_{loc}(\Omega)$, diremos que $D^{\alpha}T_u$ é uma derivada fraca de u. Caso exista $v_{\alpha} \in L^1_{loc}(\Omega)$ tal que $T_{v_{\alpha}} = D^{\alpha}(T_u)$ em $\mathcal{D}'(\Omega)$, ou seja

$$\int_{\Omega} u(x) D^{\alpha} \varphi(x) dx = (-1)^{|\alpha|} \int_{\Omega} v_{\alpha}(x) \varphi(x) dx , \forall \varphi \in \mathcal{D}(\Omega) ,$$

diremos que $D^{\alpha}u = v_{\alpha}$ e que v_{α} é uma derivada fraca de u. Prova-se que a aplicação

$$D^{\alpha}: \mathcal{D}'(\Omega) \to \mathcal{D}'(\Omega), T \mapsto D^{\alpha}T$$

é linear e contínua no sentido da convergência definida em $\mathcal{D}'(\Omega)$. Isto significa que se

$$\lim_{n\to\infty} T_n = T \text{ em } \mathcal{D}'(\Omega) \text{ então } \lim_{n\to\infty} D^{\alpha} T_n = D^{\alpha} T \text{ em } \mathcal{D}'(\Omega).$$

1.4 Espaços de Sobolev

Nesta seção, apresentaremos algumas propriedades importantes dos espaços de Sobolev. Usaremos esses espaços para encontrar soluções de algumas equações diferenciais parciais. As afirmações citadas, a seguir, encontram-se demonstradas em [1], [2], [4], [5], [6] ou [7].

Dizemos que uma função $v \in L^2(\Omega)$ pertence ao espaço de Sobolev $W^{1,2}(\Omega)$ se existirem funções $g_i \in L^2(\Omega)$, i = 1, 2, ..., N, tais que

$$\int_{\Omega} v \, \partial_i \varphi = -\int_{\Omega} g_i \, \varphi \,, \forall \varphi \in C_0^{\infty}(\Omega) \,.$$

Com a noção de derivada fraca vista na seção anterior, define-se

$$W^{1,2}(\Omega) = \{ f \in L^2(\Omega); D^{\alpha} f \in L^2(\Omega), \text{ para todo multi-índice } \alpha \text{ satisfazendo } |\alpha| \leq 1 \}.$$

Este espaço é também denotado por $H^1(\Omega)$. Mais geralmente, define-se o espaço de Sobolev $W^{m,p}(\Omega)$ por

$$W^{m,p}(\Omega)=\{f\in L^p(\Omega); D^\alpha f\in L^p(\Omega), \text{ para todo multi-\'indice }\alpha \text{ satisfazendo } |\alpha|\leq m\}\,.$$

Os espaços $W^{m,2}(\Omega)$ são também denotados por $H^m(\Omega)$. Em $H^1(\Omega)$ temos um produto interno e uma norma definidos, respectivamente, por:

$$(u, v) = \int_{\Omega} u.v + \int_{\Omega} \nabla u.\nabla v$$

$$||u||_{H^1} = \left(\int_{\Omega} u^2 + \int_{\Omega} |\nabla u|^2\right)^{1/2}.$$

 $H^1(\Omega)$, munido deste produto interno, é um espaço de Hilbert. Mais geralmente, $W^{m,p}(\Omega)$ é um espaço de Banach munido com a norma

$$||u||_{W^{m,p}} = \left(\sum_{0 \le |\alpha| \le m} \int_{\Omega} |D^{\alpha}u|^p\right)^{1/p}$$
, se $1 \le p < \infty$,

$$||u||_{W^{m,p}} = \max_{0 \le |\alpha| \le m} ||D^{\alpha}u||_{\infty}, \text{ se } p = \infty.$$

Prova-se também que $H^m(\Omega)$ é um espaço de Hilbert com o produto interno

$$(u, v)_{H^m} = \sum_{0 \le |\alpha| \le m} \int_{\Omega} D^{\alpha} u D^{\alpha} v.$$

Trabalharemos, também, com os espaços $W_0^{m,p}(\Omega)$ definidos por

$$W^{m,p}_0(\Omega)=\mbox{ fecho de } C^\infty_0(\Omega)$$
no espaço $W^{m,p}(\Omega)\,.$

Assim, por definição, $C_0^\infty(\Omega)$ é denso em $W_0^{m,p}(\Omega)$. Costuma-se escrever $H_0^k(\Omega) = W_0^{k,2}(\Omega)$. A desigualdade de Poincaré afirma que se $\Omega \subset \mathbb{R}^N$ é um domínio limitado, então existe uma constante C tal que

$$\int_{\Omega} |u|^2 \le C \int_{\Omega} |\nabla u|^2, \ \forall u \in H_0^1(\Omega).$$

Observe que $(u, v) := \int_{\Omega} \nabla u \cdot \nabla v$ não define um produto interno em $H^1(\Omega)$ pois podemos ter (u, u) = 0 sem que u seja nula (por exemplo, u = constante). Mas, usando a desigualdade de Poincaré, vemos que $(u, v) := \int_{\Omega} \nabla u \cdot \nabla v$ define um produto interno em $H^1_0(\Omega)$. Note que

$$||u||_{H_0^1} := \left[\int_{\Omega} |\nabla u|^2\right]^{1/2}$$

define uma norma em $H_0^1(\Omega)$ que é equivalente à de $H^1(\Omega)$ restrita à $H_0^1(\Omega)$, quando Ω é limitado.

Se $\Omega \subset \mathbb{R}^N$ é um domínio limitado, então temos:

- (i) $W^{m,p}(\Omega)$ é separável para $1 \leq p < \infty$.
- (ii) $W^{m,p}(\Omega)$ é reflexivo para 1 .
- (iii) Se $1 \leq p < \infty$, então $C^{\infty}(\Omega) \cap W^{m,p}(\Omega)$ é denso em $W^{m,p}(\Omega)$; e se $\partial \Omega$ é de classe C^1 então $C^{\infty}(\overline{\Omega})$ é denso em $W^{m,p}(\Omega)$.

Em particular, $W_0^{m,p}(\Omega)$ é separável e também reflexivo se 1 .

Usaremos os espaços de Sobolev para encontrar soluções de algumas equações diferenciais parciais. Frequentemente, as equações possuirão condições de fronteira. O teorema do traço permite-nos pensar em $u|_{\partial\Omega}$ para funções de $W^{1,p}(\Omega)$.

Teorema 1.4.1. (Traço) Suponhamos $\Omega \subset \mathbb{R}^N$ limitado e com fronteira C^1 . Então existe um funcional linear limitado

$$T: W^{1,p}(\Omega) \longrightarrow L^p(\partial\Omega)$$

tal que

(i)
$$Tu = u|_{\partial\Omega}$$
 se $u \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$ e

(ii)
$$||Tu||_{L^p(\partial\Omega)} \le C||u||_{W^{1,p}(\Omega)},$$

para cada $u \in W^{1,p}(\Omega)$, com a constante C dependendo apenas de $p \in \Omega$.

Chamamos Tu de traço de u sobre $\partial\Omega$. Prova-se que se Ω é limitado, com fronteira C^1 e $u \in W^{1,p}(\Omega)$, então

$$u \in W_0^{1,p}(\Omega) \iff Tu = 0 \text{ sobre } \partial\Omega.$$

Veremos agora algumas propriedades das imersões de Sobolev. Lembremos que se X e Y são espaços de Banach com $X \subset Y$, então dizemos que a imersão de X em Y é compacta se

- (i) Existe uma constante C tal que $||x||_Y \le C||x||_X$, $\forall x \in X$.
- (ii) Se (u_n) é uma sequência limitada em X, então existe uma subsequência (u_{n_k}) que converge em Y.

Teorema 1.4.2 (Imersões de Sobolev). Suponhamos que Ω seja regular. Então,

(i) Se mp < n e $n - mp < k \le n$, temos

$$W^{j+m,p}(\Omega) \to W^{j,q}(\Omega^k), \ p \le q \le kp/(n-mp);$$

e, em particular,

$$W^{j+m,p}(\Omega) \to W^{j,q}(\Omega), \ p \le q \le np/(n-mp),$$

ou

$$W^{m,p}(\Omega) \to L^q(\Omega), \ p \le q \le np/(n-mp).$$

(ii) Se mp = n, então, para cada k, $1 \le k \le n$,

$$W^{j+m,p}(\Omega) \to W^{j,q}(\Omega^k), \ p \le q < \infty;$$

em particular,

$$W^{m,p}(\Omega) \to L^q(\Omega), \ p \le q < \infty.$$

(iii) Se mp > n > (m-1)p, então

$$W^{j+m,p}(\Omega) \to C^{j,\lambda}(\overline{\Omega}), \ 0 < \lambda \le m - (n/p).$$

(iv) Se n = (m-1)p, então

$$W^{j+m,p}(\Omega) \to C^{j,\lambda}(\overline{\Omega}), \ \ 0 < \lambda < 1;$$

tamb'em, se n=m-1 e p=1 então

$$W^{j+m,p}(\Omega) \to C^{j,1}(\overline{\Omega}).$$

Teorema 1.4.3. (Imersões Contínuas) Sejam Ω um subconjunto limitado do \mathbb{R}^N $(N \geq 2)$, Ω de classe C^m e $1 \leq p < \infty$. Então

(a)
$$W^{m,p}(\Omega) \hookrightarrow L^q(\Omega)$$
, $1 \le q \le \frac{Np}{N-mp} = p^*$ se $mp < N$,

(b)
$$W^{m,p}(\Omega) \hookrightarrow L^q(\Omega), \ 1 \leq q < \infty \ e \ mp = N,$$

(c)
$$W^{m,p}(\Omega) \hookrightarrow C^{k,\lambda}(\overline{\Omega})$$
 se $mp > N$.

No caso (c), k é um inteiro verificando $k < m - \frac{N}{p} \le k+1$ e λ um real satisfazendo $0 < \lambda \le m-k-\frac{N}{p} = \lambda_0$ se $\lambda_0 < 1$ e $0 < \lambda < 1$ se $\lambda_0 = 1$.

Teorema 1.4.4. (Rellich-Kondrachov) Seja Ω um aberto limitado do \mathbb{R}^N , Ω de classe C^m e $1 \leq p \leq \infty$. Então as seguintes imersões são compactas:

- (i) $W^{m,p}(\Omega) \hookrightarrow L^q(\Omega)$, $1 \le q < \frac{np}{n-mp}$ so mp < n.
- (ii) $W^{m,p}(\Omega) \hookrightarrow L^q(\Omega), \ 1 \le q < \infty \text{ se } mp = n.$
- $(iii) \ W^{m,p}(\Omega) \hookrightarrow C^k(\overline{\Omega}), \ k < m \tfrac{n}{p} \leq k + 1 \ se \ mp > n \ onde \ k \ \'e \ um \ inteiro \ n\~ao-negativo.$

Em particular, $W^{1,p}(\Omega) \subset L^p(\Omega)$ com imersão compacta para todo p.

Teorema 1.4.5. Suponhamos $1 \leq p \leq \infty$, $u \in W^{1,p}(\Omega)$ e $\Omega' \subset \Omega$ um aberto conexo tal que $\nabla u = 0$ q.s. em Ω' . Então existe uma constante c tal que u = c q.s. em Ω' .

Para a demonstração, veja [6] pág. 132.

Teorema 1.4.6. Considere $u^+ := \max\{u, 0\}$ e suponha $1 \le p \le \infty$. Então

(i) Se $u \in W^{1,p}(\Omega)$, então $u^+ \in W^{1,p}(\Omega)$. Mais ainda,

$$\nabla u^+ = \left\{ \begin{array}{ccc} \nabla u & se & u > 0, \\ 0 & se & u \leq 0. \end{array} \right. \quad q.s. \ em \ \Omega.$$

- (ii) Se $p < \infty$ então a aplicação $u \longmapsto u^+$ é contínua em $W^{1,p}(\Omega)$.
- (iii) Se $u \in W_0^{1,p}(\Omega)$ então $u^+ \in W_0^{1,p}(\Omega)$.

Para a demonstração, veja [6] pág. 142.

1.5 Espaços $H^{-1}(\Omega)$

Representa-se por $H^{-1}(\Omega)$ o dual topológico de $H^1_0(\Omega)$. Sejam $f \in H^{-1}(\Omega)$ e (φ_{ν}) uma sucessão de funções testes em Ω tal que $\varphi_{\nu} \to 0$ em $\mathcal{D}(\Omega)$. Resulta que $\varphi_{\nu} \to 0$ em $H^1_0(\Omega)$, portanto, $\langle f, \varphi_{\nu} \rangle \to 0$, o que permite concluir que a restrição de f a $\mathcal{D}(\Omega)$

é uma distribuição. Considere a aplicação linear $\sigma: H^{-1}(\Omega) \longrightarrow \mathcal{D}'(\Omega)$ definida por $\sigma(f) = f|_{\mathcal{D}(\Omega)}$. Por ser $\mathcal{D}(\Omega)$ denso em $H^1_0(\Omega)$ resulta que σ é injetora. Também se (f_{ν}) é uma sucessão de vetores de $H^{-1}(\Omega)$ tal que $f_{\nu} \to 0$ em $H^{-1}(\Omega)$ então $\sigma(f_{\nu}) \to 0$ em $\mathcal{D}'(\Omega)$, isto é, σ é contínua. A aplicação σ permite identificar $H^{-1}(\Omega)$ a um subespaço vetorial de $\mathcal{D}'(\Omega)$ e com esta identificação tem-se $H^{-1}(\Omega) \hookrightarrow \mathcal{D}'(\Omega)$.

Quando se diz que uma distribuição T pertence a $H^{-1}(\Omega)$, significa dizer que T, definida em $\mathcal{D}(\Omega)$, pode ser estendida como um funcional linear contínuo ao espaço $H_0^1(\Omega)$. Esta extensão contínua é representada por T. Tem-se o seguinte teorema de caracterização

Teorema 1.5.1. Seja T uma distribuição sobre Ω , então $T \in H^{-1}(\Omega)$ se, e somente se, existem funções $g_{\alpha} \in L^{2}(\Omega)$, $|\alpha| \leq m$, tais que

$$T = \sum_{|\alpha| \le m} D^{\alpha} g_{\alpha} .$$

Para a demonstração, veja [5].

Temos também as seguintes

Proposição 1.5.1. $H_0^1(\Omega) \hookrightarrow L^2(\Omega) \hookrightarrow H^{-1}(\Omega)$, com imersões densas.

Para a demonstração, veja [6].

Proposição 1.5.2. Se $u \in H^1(\Omega)$ $e - \Delta$ é definido por

$$(-\Delta u, \varphi)_{H^{-1}, H_0^1} = \int_{\Omega} \nabla u \cdot \nabla \varphi,$$

para toda $\varphi \in H^1_0(\Omega)$, então $-\Delta \in \mathcal{L}(H^1(\Omega), H^{-1}(\Omega))$.

Para a demonstração, veja [6].

1.6 Funcionais diferenciáveis e o teorema do passo da montanha

Sejam X um espaço de Banach e $F \in C(X, \mathbb{R})$ um funcional. Dizemos que F é Fréchetdiferenciável em $x \in X$ se existe $L \in X'$ (o dual topológico de X) tal que

$$\frac{|F(x+y) - F(x) - (L, y)_{X',X}|}{\|y\|} \xrightarrow{\|y\| \downarrow 0} 0.$$

Tal L é único e é chamado de derivada de F em x e denotado por F'(x). Dizemos que $F \in C^1(X, \mathbb{R})$ se F é diferenciável em todo $x \in X$ e a aplicação $x \mapsto F'(x)$ é contínua.

Um funcional $F \in C(X, \mathbb{R})$ é Gâteaux-diferenciável em $x \in X$ se existe $L \in X'$ tal que

$$\frac{F(x+ty)-F(x)}{t} \xrightarrow{t\downarrow 0} (L, y)_{X',X}, \ \forall y \in X.$$

Tal L é único e é chamado de a derivada de Gâteaux de F em X e é denotado por F'(x).

Se um funcional é Fréchet-diferenciável em $x \in X$, então é também Gâteaux-diferenciável e ambas as derivadas coincidem. Existem funcionais que são Gâteaux-diferenciáveis em pontos nos quais não são Fréchet-diferenciáveis. Prova-se que se um funcional $F \in C(X,\mathbb{R})$ é Gâteaux-diferenciável em todo ponto $x \in X$ e sua derivada de Gâteaux F'(x) é contínua $(X \mapsto X')$, então $F \in C^1(X,\mathbb{R})$. Assim, para mostrar que F é C^1 , basta mostrar que F é Gâteaux-diferenciável em todo ponto $x \in X$ e que F'(x) é contínua $(X \mapsto X')$. Vejamos um exemplo.

Proposição 1.6.1. Suponhamos que $|\Omega| < \infty$, $f \in C(\overline{\Omega}, \mathbb{R})$ e

$$|f(x,u)| \le c(1+|u|^{p-1})$$
 para todo $x \in \mathbb{R}^N$ e $u \in \mathbb{R}$,

 $com \ 1$

$$\psi(u) = \int_{\Omega} F(x, u) \, dx,$$

onde $F(x,u) = \int_0^u f(x,s) ds$, é de classe $C^1(H_0^1(\Omega),\mathbb{R})$ e

$$\langle \psi'(u), h \rangle = \int_{\Omega} f(x, u) h \, dx.$$

Para a demonstração, veja [9].

Seja X um espaço de Banach e $J \in C^1(X, \mathbb{R})$. Dado $c \in \mathbb{R}$, dizemos que J satisfaz a condição de Palais-Smale no nível c (J satisfaz (PS) $_c$) se para qualquer sequência (u_n) $\subset X$ satisfazendo

- (i) $J(u_n) \to c$,
- (ii) $J'(u_n) \to 0 \text{ em } X'$,

então (u_n) admite uma subsequência convergente.

Dizemos que J satisfaz a condição de Palais-Smale (J satisfaz (PS)) se satisfaz (PS) $_c$ para todo $c \in \mathbb{R}$.

O próximo teorema é devido a Ambrosetti e a Rabinowitz [6].

Teorema 1.6.1. (Passo da Montanha) Seja X um espaço de Banach e $J \in C^1(X, \mathbb{R})$. Suponhamos que:

- (i) J(0) = 0;
- (ii) Existem $\varepsilon, \gamma > 0$ tais que $J(u) \ge \gamma$ para $||u|| = \varepsilon$;
- (iii) Existe $u_0 \in X$ tal que $||u_0|| > \varepsilon$ e $J(u_0) \le 0$.

Considere $A = \{ p \in C([0, 1], X); \ p(0) = 0 \ e \ p(1) = u_0 \}$ e defina

$$c = \inf_{p \in \mathcal{A}} \, \max_{t \in [0, \, 1]} J(p(t)) \geq \gamma \,.$$

Se J satisfaz $(PS)_c$ então c é um valor crítico de J.

1.7 Resultados clássicos

Teorema 1.7.1 (Integração por Partes). Suponha que $\Omega \in \mathbb{R}^N$ seja aberto, limitado e com fronteira $\partial\Omega$ de classe C^1 . Se $f,g \in C^1(\overline{\Omega})$ então

$$\int_{\Omega} \frac{\partial f}{\partial x_i} g \, dx = -\int_{\Omega} f \, \frac{\partial g}{\partial x_i} \, dx + \int_{\partial \Omega} f \, g \, \nu^{(i)} \, dS$$

onde $\nu = (\nu^{(1)}, ..., \nu^{(N)})$ é a normal unitária externa a Ω .

Teorema 1.7.2 (Fórmulas de Green). Suponhamos que Ω seja um subconjunto aberto limitado de \mathbb{R}^N com fronteira suave. Se $u, v \in C^2(\overline{\Omega})$ então

(i)
$$\int_{\Omega} \nabla v \nabla u \, dx = -\int_{\Omega} u \Delta v \, dx + \int_{\partial \Omega} \frac{\partial v}{\partial \nu} u \, dS,$$

(ii)
$$\int_{\Omega} u \Delta v - v \Delta u \, dx = \int_{\partial \Omega} u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu} \, dS$$

onde $\frac{\partial}{\partial \nu}$ é a derivada direcional na direção de ν .

Observação. A identidade (i) também é válida se $u \in H^1(\Omega)$ e $v \in H^2(\Omega)$; e (ii) é também válida se $u, v \in H^2(\Omega)$.

O próximo teorema afirma que todo funcional linear e contínuo φ sobre um espaço de Hilbert H pode ser representado de modo único por meio do produto interno com uma certa f e que a aplicação $\varphi \longmapsto f$ é um isomorfismo isométrico. Desta forma, podemos identificar H com H' (dual topológico de H). Em [2], existem duas demonstrações para o seguinte resultado:

Teorema 1.7.3. (Representação de Riesz-Fréchet) Suponhamos H um espaço de Hilbert. Dada $\varphi \in H'$, existe uma única $f \in H$ tal que

$$\langle \varphi, v \rangle = (f, v), \ \forall v \in H.$$

Mais ainda,

$$|f| = ||\varphi||_{H'}.$$

Apresentamos também o Teorema de Lax-Milgram que generaliza o teorema anterior.

Teorema 1.7.4 (Lax-Milgram). Sejam H um espaço de Hilbert e $a: H \times H \longrightarrow \mathbb{R}$ um funcional bilinear satisfazendo

(i) (Continuidade) Existe uma constante c tal que

$$|a(u,v)| \le c||u||_H||v||_H, \quad \forall (u,v) \in H \times H,$$

(ii) (Coercividade) Existe $\alpha > 0$ tal que $|a(u, u)| \ge \alpha ||u||_H^2$, $\forall u \in H$.

Então para todo $f \in H'$, a equação $a(u,v) = f(v), \forall v \in H$ tem uma única solução $u \in H$.

Teorema 1.7.5. (Decomposição Espectral do Laplaciano) Seja $\Omega \subset \mathbb{R}^N$ um domínio limitado. Então o problema: encontrar $\lambda \in \mathbb{R}$ e $u \in H^1_0(\Omega) \setminus \{0\}$ tal que

$$\begin{cases}
-\Delta u &= \lambda u & em \Omega, \\
u &= 0 & em \partial\Omega,
\end{cases}$$

possui uma sequência de soluções $(\lambda_n, \varphi_n)_{n\geq 1}$ tal que

(i)
$$0 < \lambda_1 \le \lambda_2 \le \dots \le \lambda_n \le \dots \ e \lim_{n \to \infty} \lambda_n = \infty$$
;

- (ii) $\varphi_n \in C^{\infty}(\Omega)$;
- (iii) λ_1 é simples e a autofunção correspondente φ_1 pode ser escolhida tal que $\varphi_1(x) > 0$ para todo $x \in \Omega$;

(iv)
$$\lambda_1 = \min \left\{ \int_{\Omega} |\nabla u|^2 dx \; ; \; u \in H_0^1(\Omega), \int_{\Omega} u^2 dx = 1 \right\} ;$$

- (v) Se $u \in H_0^1(\Omega)$ é tal que $\int_{\Omega} |\nabla u|^2 dx = \lambda_1 \int_{\Omega} u^2 dx$, então existe $C \in \mathbb{R}$ tal que $u = C\varphi_1$;
- (vi) Se $\partial\Omega$ é regular, então $\varphi_n \in C^{\infty}(\overline{\Omega})$.

Teorema 1.7.6 (Eberlein-Smulian). Seja X um espaço de Banach reflexivo. Então, toda sequência limitada $(u_n) \subset X$ possui uma subsequência fracamente convergente.

Lema 1.7.1 (Brézis-Lieb). Sejam $1 \le p < \infty$ e (f_n) uma sequência limidada de funções de $L^p(\Omega)$ que converge q.s. para f. Então $f \in L^p(\Omega)$ e

$$||f||_p^p = \lim_{n \to \infty} (||f_n||_p^p - ||f - f_n||_p^p).$$

1.8 Existência e regularidade de soluções de algumas EDP's

Teorema 1.8.1. Suponhamos $\Omega \subset \mathbb{R}^N$ um domínio limitado e $g \in L^2(\Omega)$. Então o problema

$$\begin{cases}
-\Delta u &= g, & x \in \Omega, \\
u &= 0, & x \in \partial\Omega.
\end{cases}$$

possui uma única solução fraca $v \in H_0^1(\Omega)$.

Para a demonstração, veja o lema 1.8.1.

Teorema 1.8.2. Suponha $f \in C^{\infty}(\bar{U})$ e $u \in H_0^1(U)$ a única solução fraca do problema

$$\begin{cases}
-\Delta u &= f, & x \in U, \\
u &= 0, & x \in \partial U.
\end{cases}$$

Suponha também que ∂U é C^{∞} . Então $u \in C^{\infty}(\bar{U})$.

Para uma demosntração, veja [1] Teor. 6, pág. 326.

Teorema 1.8.3. Seja $u \in C(\overline{\Omega}) \cap C^2(\Omega)$ satisfazendo

$$-\Delta u = f \ em \ \Omega, \ com \ f > 0 \ em \ \Omega.$$

Suponhamos que $u \ge 0$ em $\partial \Omega$. Então u > 0 em Ω ou $u \equiv 0$ em Ω .

Para a demonstração, veja [2] pág. 201.

Lema 1.8.1. A equação

$$\begin{cases} -\Delta u = 1, & x \in \Omega, \\ u = 0, & x \in \partial \Omega. \end{cases}$$

possui uma única solução e ela é positiva em Ω .

Demonstração. Seja $a(u,v)=\int_{\Omega}\nabla u\nabla v.$ Note que

$$|a(u,v)| \leq \|\nabla u\|_{L^{2}} \|\nabla v\|_{L^{2}}$$

$$\leq \|u\|_{H_{0}^{1}} \|v\|_{H_{0}^{1}}$$

Observe que, pela Desigualdade de Poincaré, $a(v,v)=\int_{\Omega}|\nabla v|^2\geq C\|v\|_{H_0^1}^2$. Logo, a forma bilinear $a\colon H_0^1(\Omega)\times H_0^1(\Omega)\longmapsto \mathbb{R}$ definida por $a(u,v)=\int_{\Omega}\nabla u\,\nabla v\,dx$ é contínua e coerciva. Considerando $1:\Omega\longrightarrow\mathbb{R}$ definida por 1(x)=1, temos

$$\left| \int_{\Omega} v \right| = \left| \int_{\Omega} v.1 \right| = |\langle v, 1 \rangle_{L^{2}}| \le ||v||_{L^{2}}.||1||_{L^{2}} \le C||v||_{H_{0}^{1}},$$

onde usamos a desigualdade de Cauchy-Schwarz. Pelo Teorema 1.7.4, existe uma única $e \in H_0^1(\Omega)$ solução fraca do problema. Usando o Teorema 1.8.2, deduzimos que e é uma solução clássica. Usando o Teorema 1.8.3, temos que e é positiva em Ω .

Teorema 1.8.4. Suponhamos $w \in H_0^1(\Omega)$ com $-\Delta w \leq 0$ em Ω . Então $w \leq 0$ q.s. em Ω .

Demonstração. Considere $w^+ = \max\{w, 0\}$. Por ser $-\Delta w.w^+ \leq 0$, temos que $\int_{\Omega} -\Delta w.w^+ \leq 0$. Usando a Fórmula de Green,

$$\int_{\{x; w(x)>0\}} \nabla w \cdot \nabla w^{+} + \int_{\partial \Omega} \frac{\partial w}{\partial \nu} \cdot w^{+} \leq 0.$$

Logo, $\int_{\Omega} \|\nabla w^+\|^2 \le 0$. Usando a Desigualdade de Poincaré, temos que $w^+(x) = 0$ q.s. em Ω . Portanto $w \le 0$ q.s. em Ω .

Teorema 1.8.5. Sejam $\Omega \subset \mathbb{R}^N$ um domínio regular limitado, $f \in C^{\alpha}(\overline{\Omega})$ e $\varphi \in C^{2,\alpha}(\overline{\Omega})$. Então o problema

$$\begin{cases}
-\Delta u &= f & em \Omega, \\
u &= \varphi & em \partial\Omega
\end{cases}$$

possui uma única solução $u \in C^{2,\alpha}(\overline{\Omega})$.

Teorema 1.8.6 (Princípio do Máximo). Suponhamos que $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfaz $-\Delta u \leq 0$ em Ω . Então u atinge um máximo não-negativo na fronteira de Ω .

Teorema 1.8.7 (Agmon-Douglis-Nirenberg). Suponhamos que Ω é de classe C^2 com fronteira limitada. Seja $1 . Então para toda <math>f \in L^p(\Omega)$, existe uma solução $u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ do problema $-\Delta u = f$ em Ω .

Capítulo 2

Sub e Super Soluções

Nesta seção, usaremos o método das sub e super soluções para resolver o problema

$$\begin{cases}
-\Delta u &= f(u) \text{ em } \Omega, \\
u &= 0 \text{ em } \partial \Omega,
\end{cases}$$
(2.1)

com $\Omega\subset\mathbb{R}^N$ um domínio limitado e $f:\mathbb{R}\longrightarrow\mathbb{R}$ contínua e não-decrescente.

2.1 Subsoluções e supersoluções

Dizemos que $\overline{u}\in H^1_0(\Omega)\cap L^\infty(\Omega)$ é uma supersolução do problema (2.1) se

$$\begin{cases}
-\Delta \overline{u} \geq f(\overline{u}) \text{ em } \Omega, \\
\overline{u} \geq 0 \text{ em } \partial \Omega,
\end{cases}$$
(2.2)

De maneira análoga, dizemos que $\underline{u} \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ é uma subsolução do problema (2.1) se (2.2) vale com as desigualdades invertidas.

Dizemos que $u \in H_0^1(\Omega)$ é uma solução fraca do problema (2.1) se

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f(u) v \, dx, \quad \forall \, v \in H_0^1(\Omega). \tag{2.3}$$

Teorema 2.1.1. Sejam \underline{u} e \overline{u} , respectivamente, subsolução e supersolução de (2.1) satisfazendo

$$\underline{u} \le \overline{u} \ q.s. \ em \ \Omega.$$
 (2.4)

Então existe uma solução fraca u de (2.1), $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$, tal que

$$u < u < \overline{u}$$
 q.s. em Ω .

Demonstração. Definamos indutivamente $u_0 = \overline{u}$ e $u_{k+1} \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ a única solução fraca do problema

$$\begin{cases}
-\Delta u_{k+1} &= f(u_k) \text{ em } \Omega, \\
u_{k+1} &= 0 \text{ em } \partial \Omega.
\end{cases}$$
(2.5)

Como $\overline{u} \in L^{\infty}(\Omega)$, temos $-\|\overline{u}\|_{L^{\infty}} \leq \overline{u} \leq \|\overline{u}\|_{L^{\infty}}$ q.s. em Ω . Sendo f contínua, temos $f(\overline{u}) \in L^{\infty}(\Omega)$. Logo, $f(\overline{u}) \in L^{2}(\Omega)$. Pelo Teorema 1.8.1, o problema

$$\begin{cases}
-\Delta u_1 = f(u_0) \text{ em } \Omega \\
u_1 = 0 \text{ em } \partial \Omega
\end{cases}$$
(2.6)

possui uma única solução fraca $u_1 \in H_0^1(\Omega)$. Note que

$$\begin{cases}
-\Delta(u_1 - u_0) = -\Delta u_1 + \Delta u_0 = f(u_0) + \Delta u_0 & \leq 0 \text{ em } \Omega \\
u_1 - u_0 & \leq 0 \text{ em } \partial\Omega.
\end{cases}$$
(2.7)

Pelo Teorema 1.8.4, $u_1 - u_0 \le 0$ q.s. em Ω . Donde $u_1 \le u_0$ q.s. em Ω . De $f(\underline{u}) \le f(u_0)$ q.s. em Ω , temos

$$\begin{cases}
-\Delta \underline{u} \leq f(u_0) \text{ em } \Omega \\
\underline{u} \leq 0 \text{ em } \partial \Omega.
\end{cases}$$
(2.8)

Portanto,

$$\begin{cases}
-\Delta(\underline{u} - u_1) & \leq 0 \text{ em } \Omega \\
\underline{u} - u_1 & \leq 0 \text{ em } \partial\Omega.
\end{cases}$$
(2.9)

Daí $\underline{u} \leq u_1$. Temos então que $\underline{u} \leq u_1 \leq \overline{u}$ q.s. em Ω . Note que

$$|u_1(x)| \le \max \{ \|\underline{u}\|_{L^{\infty}}, \|\overline{u}\|_{L^{\infty}} \}$$
 q.s. em Ω .

Portanto $u_1 \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$. Suponhamos que para $u_k \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$, satisfazendo $\underline{u} \leq u_k$ q.s. em Ω , o problema

$$\begin{cases}
-\Delta u_{k+1} &= f(u_k) \text{ em } \Omega \\
u_{k+1} &= 0 \text{ em } \partial\Omega
\end{cases}$$
(2.10)

possua uma solução fraca $u_{k+1} \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ com $\underline{u} \leq u_{k+1} \leq u_k$ q.s. em Ω . Então, usando um raciocínio semelhante ao usado anteriormente, para u_{k+1} o problema

$$\begin{cases}
-\Delta u_{k+2} &= f(u_{k+1}) \text{ em } \Omega \\
u_{k+2} &= 0 \text{ em } \partial \Omega
\end{cases}$$
(2.11)

possui uma solução fraca $u_{k+2} \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ com $\underline{u} \leq u_{k+2} \leq u_{k+1}$ q.s. em Ω . Fica então provado que as funções u_k estão bem definidas e que

$$\underline{u} \le \dots \le u_{k+1} \le u_k \le \dots \le u_2 \le u_1 \le u_0 = \overline{u}$$
 q.s. em Ω . (2.12)

Seja $u(x) := \lim_{k \to +\infty} u_k(x)$ existe q.s. em Ω . É claro que $u \in L^{\infty}(\Omega)$. Mostremos agora que as u_k são limitadas em $H_0^1(\Omega)$. Como u_k é solução fraca temos que

$$\int_{\Omega} \nabla u_{k+1} \cdot \nabla u_{k+1} = \int_{\Omega} f(u_k) \cdot u_{k+1} \,,$$

ou seja,

$$\int_{\Omega} |\nabla u_{k+1}|^2 = \int_{\Omega} f(u_k).u_{k+1}.$$

Como existem constantes C_1 e C_2 tais que $|f(u_k)| \leq C_1$ e $|u_k| \leq C_2$, $\forall k$ q.s. em Ω , existe uma constante C tal que

$$\int_{\Omega} |\nabla u_{k+1}|^2 \le C \,, \ \forall \, k \,.$$

Isso nos mostra que (u_k) é limitada em $H_0^1(\Omega)$. Usando o Teorema 1.7.6, existe uma subsequência (que também será denotada por (u_k)) tal que $u_k \to w \in H_0^1(\Omega)$. Pelo teorema 1.4.4, existe uma subsequência de u_k (que também será denotada por (u_k)) tal que $u_k \to w$ em $L^2(\Omega)$. Daí, existe uma subsequência, denotada ainda por (u_k) , tal que $u_k(x) \to w(x)$ q.s. em Ω . Como já tínhamos $u_k(x) \to u(x)$ q.s. em Ω , concluímos que u = w q.s. em Ω e portanto $u \in H_0^1(\Omega)$.

Por outro lado, para cada $v \in H_0^1(\Omega)$, o funcional $T_v : H_0^1(\Omega) \longrightarrow \mathbb{R}$ definido por $T_v(u) = \int_{\Omega} \nabla u . \nabla v$ é contínuo. Como $u_k \rightharpoonup \text{em } H_0^1(\Omega)$ temos que

$$\int_{\Omega} \nabla u_k . \nabla v \to \int_{\Omega} \nabla u . \nabla v .$$

Logo,

$$\int_{\Omega} f(u_k).v \to \int_{\Omega} \nabla u.\nabla v . \tag{2.13}$$

Desde que $u_k(x) \to u(x)$ q.s. em Ω e f contínua, temos que

$$f(u_k(x)) \to f(u(x))$$
 q.s. em Ω .

Portanto,

$$f(u_k(x)).v(x) \to u(x).v(x)$$
 q.s. em Ω , $\forall v \in H_0^1(\Omega)$.

Note que

$$|f(u_k(x)).v(x)| \le C.|v(x)|$$
 q.s. em $\Omega, \forall v \in H_0^1(\Omega) \subset L^1(\Omega)$.

Assim, pelo Teorema da Convergência Dominada, temos

$$\int_{\Omega} f(u_k)v \to \int_{\Omega} f(u)v .$$

De (2.13), temos

$$\int_{\Omega} \nabla u. \nabla v = \int_{\Omega} f(u)v .$$

Portanto u é uma solução fraca do problema (2.1).

Observação. Da demonstração do Teorema 2.1.1, vemos que $f(u) \in L^{\infty}(\Omega)$. Usando o Teorema 1.8.7, deduzimos que a solução u pertence a $W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$. Pelo Teorema 1.4.2, temos que $u \in C^{0,\lambda}(\overline{\Omega})$. Portanto, se f for Hölder contínua, então f(u(x)) é Hölder contínua; e, pelo Teorema 1.8.5, $u \in C^{2,\alpha}(\overline{\Omega})$. Logo, se f(u(x)) é Hölder contínua, então a solução u é clássica.

2.2 Aplicação

Proposição 2.2.1. Suponha 0 < q < 1 e $\lambda > 0$. Então o problema

$$\begin{cases}
-\Delta u = \lambda u^q, & x \in \Omega, \\
u = 0, & x \in \partial\Omega
\end{cases}$$
(2.14)

possui uma solução positiva.

Demonstração. Considere $\varphi_1 \in H^1_0(\Omega)$ um autovetor positivo associado ao primeiro autovalor λ_1 do operador $-\Delta$ em $H^1_0(\Omega)$. Considere $w=c\varphi_1$ sendo c uma constante positiva. Note que $-\Delta w=c\lambda_1\varphi_1$. Para que w seja uma subsolução do problema, devemos ter $-\Delta w=c\lambda_1\varphi_1 \leq \lambda(c\varphi_1)^q$ em Ω . Para isso, basta escolher c tal que $c^{1-q}\frac{\lambda_1}{\lambda}\|\varphi_1\|_{L^\infty}^{1-q}\leq 1$.

Seja ξ satisfazendo

$$\begin{cases} -\Delta \xi = 1, & x \in \Omega, \\ \xi = 0, & x \in \partial \Omega. \end{cases}$$

Considere $v = k\xi$ com k uma constante positiva. Note que $-\Delta v = k$. Para que v seja uma supersolução do problema, devemos ter $-\Delta v = k \ge \lambda (k\xi)^q$ em Ω . Para isso, basta escolher k tal que $k^{\frac{1-q}{q}} \ge \|\xi\|_{L^{\infty}}$.

Para usarmos o Teorema 2.1.1, devemos ter $c\varphi_1 \leq k\xi$. Mas, pelo Teorema 1.8.4, é suficiente termos $-\Delta(c\varphi_1 - k\xi) = c\lambda_1\varphi_1 - k \leq 0$ em Ω . Para isso, basta escolher k tal que $k \geq c\lambda_1 \|\varphi_1\|_{L^{\infty}}$. Em resumo, devemos escolher k satisfazendo $k^{\frac{1-q}{q}} \geq \|\xi\|_{L^{\infty}}$ e $k \geq c\lambda_1 \|\varphi_1\|_{L^{\infty}}$.

Observação. Veremos no próximo capítulo, especificamente no Lema 3.2.3, que a solução de (2.14) é única.

Capítulo 3

Existência de Solução

3.1 O problema côncavo-convexo

Sejam $\Omega \subset \mathbb{R}^N$ domínio limitado com fronteira $\partial \Omega$ regular e 0 < q < 1 < p. Consideremos a seguinte equação elíptica não linear

$$\begin{cases}
-\Delta u = \lambda u^q + u^p \text{ em } \Omega, \\
u = 0 \text{ em } \partial \Omega, \\
u > 0 \text{ em } \Omega,
\end{cases}$$
(3.1)

onde $\lambda > 0$.

Uma solução clássica do problema (3.1) é uma função $u \in C^2(\Omega) \cap C(\overline{\Omega})$ que satisfaz (3.1) pontualmente; e uma solução fraca de (3.1) é uma função $u \in H^1_0(\Omega)$ satisfazendo

$$\int_{\Omega} \nabla u \nabla v = \lambda \int_{\Omega} u^q v + \int_{\Omega} u^p v, \quad \forall v \in H_0^1(\Omega),$$

ou seja, u é o ponto crítico do funcional $I_{\lambda}(u):H^1_0\to\mathbb{R}$ definido por

$$I_{\lambda}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \frac{\lambda}{q+1} \int_{\Omega} |u|^{q+1} - \frac{1}{p+1} \int_{\Omega} |u|^{p+1}.$$
 (3.2)

Dizemos que u é uma solução mínima de (3.1) quando $u \leq v$ para toda solução v de (3.1).

Temos os seguintes resultados:

Teorema 3.1.1. Seja 0 < q < 1 < p. Existe $\Lambda \in \mathbb{R}$, $\Lambda > 0$ tal que

- (i) Para todo $\lambda \in (0, \Lambda)$ o problema (3.1) possui uma solução mínima u_{λ} tal que $I_{\lambda}(u_{\lambda}) < 0$. Mais ainda, u_{λ} é crescente com respeito a λ ;
- (ii) Para $\lambda = \Lambda$ o problema (3.1) possui uma solução fraca $u \in H_0^1 \cap L^{p+1}$;
- (iii) Para todo $\lambda > \Lambda$ o problema (3.1) não possui solução.

Teorema 3.1.2. Seja 0 < q < 1 < p e Λ dado pelo Teorema 3.1.1. Existe A > 0 tal que para todo $\lambda \in (0, \Lambda)$ o problema (3.1) possui, no máximo, uma solução u satisfazendo $||u||_{\infty} \leq A$.

Em algumas situações, a solução de (3.1) não é única como pode ser visto no seguinte resultado.

Teorema 3.1.3. Seja $0 < q < 1 < p < 2^* - 1$ e Λ dado pelo Teorema 3.1.1. Então, existe $\lambda_0 \le \Lambda$ tal que para todo $\lambda \in (0, \lambda_0)$ o problema (3.1) possui uma segunda solução.

Observação. O teorema anterior não é ótimo, pois em [3] mostra-se com técnicas mais delicadas que $\lambda_0 = \Lambda$.

3.2 Lemas preliminares

Lema 3.2.1. Suponha 0 < q < 1 < p, $e \alpha > 0$. Então existe $\lambda_0 > 0$ tal que para todo $0 < \lambda \le \lambda_0$ existe $M = M(\lambda) > 0$ satisfazendo

$$M > \lambda M^q \alpha^q + M^p \alpha^p$$
.

Demonstração. Escolha $\lambda_0 > 0$ satisfazendo $(2\lambda_0\alpha^q)^{1/(1-q)} < (2\alpha^p)^{-1/(p-1)}$. Considere a função $h:(0,\lambda_0] \longrightarrow \mathbb{R}$ definida por $h(\lambda) = (2\lambda\alpha^q)^{1/(1-q)} - (2\alpha^p)^{-1/(p-1)}$. Temos que: $\lim_{\lambda \to 0^+} h(\lambda) = -(2\alpha^p)^{-1/(p-1)} < 0$; $h'(\lambda) > 0$ para $0 < \lambda \le \lambda_0$ e $h(\lambda_0) < 0$. Isso nos garante que $(2\lambda\alpha^q)^{1/(1-q)} < (2\alpha^p)^{-1/(p-1)}$ para $0 < \lambda \le \lambda_0$. Portanto, podemos escolher $M = M(\lambda)$ de forma que $(2\lambda\alpha^q)^{1/(1-q)} < M(\lambda) < (2\alpha^p)^{-1/(p-1)}$ para $0 < \lambda \le \lambda_0$. O

que nos dá $2\lambda\alpha^q \leq M^{1-q}$ e $M^{p-1} \leq \frac{1}{2\alpha^p}$ para $0 < \lambda \leq \lambda_0$. Donde, $\frac{1}{M^{1-q}} \leq \frac{1}{2\lambda\alpha^q}$ e $M^{p-1} \leq \frac{1}{2\alpha^p}$ para $0 < \lambda \leq \lambda_0$. Portanto, $\lambda \frac{1}{M^{1-q}}\alpha^q \leq \frac{1}{2}$ e $M^{p-1}\alpha^p \leq \frac{1}{2}$ para $0 < \lambda \leq \lambda_0$. Logo, $\lambda \frac{1}{M^{1-q}}\alpha^q + M^{p-1}\alpha^p \leq 1$ para $0 < \lambda \leq \lambda_0$. Portanto, $M \geq \lambda M^q\alpha^q + M^p\alpha^p$ para $0 < \lambda \leq \lambda_0$.

Lema 3.2.2. Suponhamos que $0 < q < 1 < p, \lambda_1 > 0$.

- (i) Existe $\bar{\lambda} > 0$ tal que $\bar{\lambda}t^q + t^p > \lambda_1 t$, para todo t > 0,
- (ii) Se $\lambda > 0$, existe t > 0 sufficientemente pequeno tal que $\lambda_1 t \leq \lambda t^q + t^p$,

 $Demonstração. \ (i) \ \text{Como} \ \lambda t^q + t^p - \lambda_1 t = t^q (\lambda + t^{p-q} - \lambda_1 t^{1-q}), \text{ \'e suficiente mostrar que a função} \ f \ \text{definida por} \ f(t) = \lambda + t^{p-q} - \lambda_1 t^{1-q} \text{ \'e positiva para algum} \ \lambda > 0. \ \text{Derivando} \ f \ \text{obtemos} \ \text{que} \ t_0 = \left[\frac{\lambda_1(1-q)}{p-q}\right]^{1/(p-1)} \text{ \'e ponto de mínimo. Como} \ f(t_0) = \lambda + \lambda_1^2 \frac{(1-q)(1-p)}{(p-q)^2} \ \text{temos} \ \text{que}, \ \text{para} \ \lambda \ \text{grande}, \ f(t) \geq f(t_0) > 0 \ \text{para todo} \ t > 0.$

(ii) Considere $g(t) = \lambda t^q + t^p - \lambda_1 t$. Note que g(0) = 0 e $g'(t) = \lambda_{\frac{q}{t^{1-q}}} + p t^{p-1} - \lambda_1$. Daí, para t > 0 suficientemente pequeno, g'(t) > 0. Portanto, vale o resultado.

Lema 3.2.3. Suponhamos que f(t) seja uma função tal que $t^{-1}f(t)$ seja decrescente para t > 0. Sejam $v, w \in C^2(\bar{\Omega})$ satisfazendo

$$\begin{cases}
-\Delta v \leq f(v), & x \in \Omega \\
v > 0, & x \in \Omega \\
v = 0, & x \in \partial\Omega
\end{cases}$$
(3.3)

e

$$\begin{cases}
-\Delta w \ge f(w), & x \in \Omega \\
w > 0, & x \in \Omega \\
w = 0, & x \in \partial\Omega.
\end{cases}$$
(3.4)

 $Ent\tilde{a}o \ w \ge v \ em \ \Omega$.

Demonstração. De (3.3) e (3.4) temos

$$-v\Delta w + w\Delta v \ge f(w)v - f(v)w$$

$$= vw\left(\frac{f(w)}{w} - \frac{f(v)}{v}\right). \tag{3.5}$$

Seja $\theta(t)$ uma função suave e não-decrescente tal que $\theta(t)=0$ para $t\leq 0$ e $\theta(t)=1$ para $t\geq 1$. Por exemplo,

$$\theta(t) = \begin{cases} 0 & \text{se} & t \le 0\\ \frac{1}{1 + \frac{e^{1/t}}{e^{1/(1-t)}}} & \text{se} & 0 < t < 1\\ 1 & \text{se} & t \ge 1. \end{cases}$$

Defina $\theta_{\epsilon}(t) = \theta\left(\frac{t}{\epsilon}\right)$, $\epsilon > 0$. Note que $\theta_{\epsilon}(t) \geq 0$, $\forall t \in \mathbb{R}$. Multiplicando (3.5) por $\theta_{\epsilon}(v - w)$ e integrando, temos

$$\int_{\Omega} \left[-v\Delta w + w\Delta v \right] \theta_{\epsilon}(v - w) \, dx \, \ge \int_{\Omega} vw \left(\frac{f(w)}{w} - \frac{f(v)}{v} \right) \theta_{\epsilon}(v - w) \, dx. \tag{3.6}$$

Usando as Fórmulas de Green (veja o Teorema 1.7.2) e a regra da cadeia, temos

$$\int_{\Omega} -v\theta_{\epsilon}(v-w)\Delta w \, dx = \int_{\Omega} \nabla w \cdot \nabla (v\theta_{\epsilon}(v-w)) \, dx$$

$$= \int_{\Omega} \nabla w \cdot [\theta_{\epsilon}(v-w)\nabla v + v\theta'_{\epsilon}(v-w)(\nabla v - \nabla w)] \, dx$$

е

$$\int_{\Omega} w \theta_{\epsilon}(v - w) \Delta v \, dx = -\int_{\Omega} \nabla v \cdot \nabla (w \theta_{\epsilon}(v - w)) \, dx$$

$$= -\int_{\Omega} \nabla v \cdot [\theta_{\epsilon}(v - w) \nabla w + w \theta'_{\epsilon}(v - w) (\nabla v - \nabla w)] \, dx$$

Portanto

$$\begin{split} I &:= \int_{\Omega} \left[-v \Delta w + w \Delta v \right] \theta_{\epsilon}(v - w) \, dx \\ &= \int_{\Omega} v \theta_{\epsilon}'(v - w) \nabla w. (\nabla v - \nabla w) \, dx - \int_{\Omega} w \theta_{\epsilon}'(v - w) \nabla v. (\nabla v - \nabla w) \, dx \\ &= \int_{\Omega} v \theta_{\epsilon}'(v - w) (\nabla w - \nabla v). (\nabla v - \nabla w) \, dx - \int_{\Omega} (w - v) \theta_{\epsilon}'(v - w) \nabla v. (\nabla v - \nabla w) \, dx \\ &= -\int_{\Omega} v \theta_{\epsilon}'(v - w). |\nabla v - \nabla w|^2 \, dx + \int_{\Omega} (v - w) \theta_{\epsilon}'(v - w) \nabla v. (\nabla v - \nabla w) \, dx \end{split}$$

Mas como θ é não-decrescente, temos que $\theta'(t) \geq 0$ e consequentemente $\theta'_{\epsilon}(t) \geq 0$ para todo $t \in \mathbb{R}$. Logo,

$$I \leq \int_{\Omega} (v - w)\theta'_{\epsilon}(v - w)\nabla v.(\nabla v - \nabla w) dx$$
$$= \int_{\Omega} \nabla v.\nabla [\gamma_{\epsilon}(v - w)] dx$$
$$= -\int_{\Omega} \Delta v \gamma_{\epsilon}(v - w) dx,$$

onde $\gamma_{\epsilon}(t) = \int_0^t s\theta'_{\epsilon}(s) ds$.

Note que se $t \leq 0$ então $\gamma_{\epsilon}(t) = 0$, pois $\theta'_{\epsilon}(s) = 0$ para $s \leq 0$. Para t > 0, dividiremos em dois casos:

(i) $t < \epsilon$. Nesta caso,

$$\gamma_{\epsilon}(t) = \int_{0}^{t} s\theta'_{\epsilon}(s) \, ds \le t \int_{0}^{t} \theta'_{\epsilon}(s) \, ds = t[\theta_{\epsilon}(t) - \theta_{\epsilon}(0)] = t\theta\left(\frac{t}{\epsilon}\right) \le t < \epsilon.$$

(ii) $t \ge \epsilon$. Neste caso,

$$\gamma_{\epsilon}(t) = \int_{0}^{\epsilon} s\theta'_{\epsilon}(s) \, ds + \int_{\epsilon}^{t} s\theta'_{\epsilon}(s) \, ds.$$

Usando o fato de que $\theta'_{\epsilon}(s) = 0$ para $s \ge \epsilon$, temos

$$\gamma_{\epsilon}(t) = \int_{0}^{\epsilon} s\theta'_{\epsilon}(s) \, ds \le \epsilon \int_{0}^{\epsilon} \theta'_{\epsilon}(s) \, ds = \epsilon \left[\theta_{\epsilon}(\epsilon) - \theta_{\epsilon}(0)\right] = \epsilon$$

Portanto $0 \le \gamma_{\epsilon}(t) \le \epsilon$, $\forall t \in \mathbb{R}$. Logo,

$$-\int_{\Omega} \Delta v \gamma_{\epsilon} (v - w) dx \le C \epsilon, \text{ para alguma constante C.}$$

Donde

$$\int_{\Omega} \left[-v\Delta w + w\Delta v \right] \theta_{\epsilon}(v - w) \, dx \le C\epsilon.$$

Usando a desigualdade (3.6), temos

$$\int_{\Omega} vw \left(\frac{f(w)}{w} - \frac{f(v)}{v} \right) \theta_{\epsilon}(v - w) dx = \int_{\{x \in \Omega : v(x) > w(x)\}} vw \left(\frac{f(w)}{w} - \frac{f(v)}{v} \right) \theta_{\epsilon}(v - w) dx \le C\epsilon.$$

Usando (3.5), deduzimos que $vw\left(\frac{f(w)}{w} - \frac{f(v)}{v}\right) \in L^1(\{x \in \Omega : v(x) > w(x)\})$. De

$$\left| vw \left(\frac{f(w)}{w} - \frac{f(v)}{v} \right) \theta_{\epsilon}(v - w) \right| \le \left| vw \left(\frac{f(w)}{w} - \frac{f(v)}{v} \right) \right|,$$

o Teorema da Convergência Dominada nos assegura que

$$\int_{\{x \in \Omega : v(x) > w(x)\}} vw \left(\frac{f(w)}{w} - \frac{f(v)}{v} \right) dx \le 0.$$

Mas $\frac{f(v)}{v} < \frac{f(w)}{w}$ em $\{x \in \Omega : v(x) > w(x)\}$. Daí $\{x \in \Omega : v(x) > w(x)\}$ possui medida nula. Portanto $v \leq w$.

Lema 3.2.4. Sejam ψ e Ψ uma subsolução e uma supersolução de (3.1) respectivamente. Suponhamos que $\psi < \Psi$ e que ψ não é uma solução de (3.1). Seja u uma solução mínima de (3.1) tal que $\psi \leq u \leq \Psi$. Então $\nu_1 := \lambda_1[-\Delta - a(x)] \geq 0$, onde $a = a(x) = \lambda q u^{q-1} + p u^{p-1}$ e $\lambda_1[-\Delta - a(x)]$ denota o primeiro autovalor de $-\Delta - a(x)$ com condição de fronteira nula.

Demonstração. Suponhamos que $\nu_1<0$. Seja $\overline{\phi}>0$ uma autofunção correspondente satisfazendo

$$\begin{cases}
-\Delta \overline{\phi} - a \overline{\phi} &= \nu_1 \overline{\phi}, \quad x \in \Omega, \\
\overline{\phi} &= 0, \quad x \in \partial \Omega.
\end{cases}$$

Afirmamos que $u - \alpha \overline{\phi}$ é uma supersolução de (3.1) para $\alpha > 0$ suficientemente pequeno. De fato,

$$-\Delta(u-\alpha\overline{\phi}) - [\lambda(u-\alpha\overline{\phi})^q + (u-\alpha\overline{\phi})^p] = -\Delta u + \alpha\Delta\overline{\phi} - [\lambda(u-\alpha\overline{\phi})^q + (u-\alpha\overline{\phi})^p]$$
$$= \lambda u^q + u^p - \alpha\nu_1\overline{\phi} - \alpha a\overline{\phi} - \lambda(u-\alpha\overline{\phi})^q - (u-\alpha\overline{\phi})^p$$

$$= \lambda u^q + u^p - \alpha \nu_1 \overline{\phi} - \alpha (\lambda q u^{q-1} + p u^{p-1}) \overline{\phi} - \lambda (u - \alpha \overline{\phi})^q - (u - \alpha \overline{\phi})^p.$$

Definindo $g(x)=a^q-qa^{q-1}x-(a-x)^q,\ a>x\geq 0$, temos g(0)=0 e $g'(x)\geq 0$. Portanto, $(a-b)^q\leq a^q-qa^{q-1}b$, para $a>b\geq 0$. Daí,

$$(u - \alpha \overline{\phi})^q \le u^q - \alpha q u^{q-1} \overline{\phi},$$

Logo, $-\Delta(u-\alpha\overline{\phi}) - [\lambda(u-\alpha\overline{\phi})^q + (u-\alpha\overline{\phi})^p] \ge u^p - \alpha\nu_1\overline{\phi} - \alpha pu^{p-1}\overline{\phi} - (u-\alpha\overline{\phi})^p$, que é positivo para $\alpha>0$ suficientemente pequeno, pois $\nu_1<0$ e $\overline{\phi}>0$. Como consequência, $u-\alpha\overline{\phi}$ é uma supersolução de (3.1). Mais ainda, como ψ não é uma solução, temos que

 $u>\psi$. Tomando α possivelmente menor, podemos assumir que $u-\alpha\overline{\phi}\geq\psi$. Logo, (3.1) possui uma solução U satisfazendo $\psi\leq U\leq u-\alpha\overline{\phi};$ o que contradiz a minimalidade da solução u.

Lema 3.2.5. *Seja*

$$\Lambda = \sup\{\lambda > 0; \ o \ problema \ (3.1) \ possui \ solução\}. \tag{3.7}$$

Então,

- (i) $0 < \Lambda < \infty$.
- (ii) Para todo $\lambda \in (0, \Lambda)$ o problema (3.1) possui uma solução.

Demonstração. (i) Seja e a solução do problema

$$\begin{cases} -\Delta u = 1, & x \in \Omega, \\ u = 0, & x \in \partial \Omega. \end{cases}$$

Pelo Lema 3.2.1 existe $\lambda_0 > 0$ tal que para todo $0 < \lambda \le \lambda_0$ existe M > 0 satisfazendo $M \ge \lambda M^q \|e\|_\infty^q + M^p \|e\|_\infty^p$. Daí, $M = -\Delta(Me) \ge \lambda (Me)^q + (Me)^p$. Logo, a função Me é uma supersolução do problema (3.1). Seja φ_1 a primeira autofunção associada ao primeiro autovalor λ_1 do operador $-\Delta$ em $H_0^1(\Omega)$ com $\|\varphi_1\|_{L^\infty} = 1$. Se $\varepsilon > 0$ é suficientemente pequeno, temos do Lema 3.2.2 que $-\Delta(\varepsilon\varphi_1) = \lambda_1\varepsilon\varphi_1 \le \lambda(\varepsilon\varphi_1)^q + (\varepsilon\varphi_1)^p$, ou seja, $(\varepsilon\varphi_1)$ é uma subsolução. Como $-\Delta(Me - \varepsilon\varphi_1) = M - \varepsilon\lambda_1\varphi_1 > 0$ para ε possivelmente menor, pelo Teorema 1.8.3, temos $\varepsilon\varphi_1 < Me$. Segue-se do Teorema 2.1.1 que (3.1) possui uma solução u tal que

$$\varepsilon \varphi_1 \leq u \leq Me$$
 sempre que $\lambda \leq \lambda_0$.

Portanto $\Lambda \geq \lambda_0$.

Se λ é tal que (3.1) possui uma solução u, então

$$\lambda_1 \int_{\Omega} u\varphi_1 \, dx = \lambda \int_{\Omega} u^q \varphi_1 \, dx + \int_{\Omega} u^p \varphi_1 \, dx \, .$$

Usando o Lema 3.2.2 vemos que $\lambda < \bar{\lambda}$ e portanto, $\Lambda \leq \bar{\lambda}$.

Observação. Usaremos a notação $(3.1)_{\lambda}$ para enfatizar a dependência de λ no problema (3.1).

Para mostrar (ii), seja $\lambda < \Lambda$. Por definição de Λ , existe u_{μ} solução de $(3.1)_{\mu}$ com $\mu \in (\lambda, \Lambda)$. Temos que u_{μ} é uma supersolução de $(3.1)_{\lambda}$. Na demonstração do item (i) vimos que, para $\varepsilon > 0$ suficientemente pequeno, $\varepsilon \varphi_1$ é uma subsolução de $(3.1)_{\lambda}$. Observe que podemos tomar ε suficientemente pequeno de forma que $\varepsilon \varphi_1 < u_{\mu}$. Portanto $(3.1)_{\lambda}$ possui uma solução.

Lema 3.2.6. Para todo $\lambda \in (0, \Lambda)$, o problema $(3.1)_{\lambda}$ possui uma solução mínima u_{λ} .

Demonstração. Seja v_{λ} satisfazendo

$$\begin{cases}
-\Delta v_{\lambda} = \lambda v_{\lambda}^{q} & \text{em } \Omega, \\
v_{\lambda} > 0 & \text{em } \partial \Omega, \\
v_{\lambda} = 0 & \text{em } \partial \Omega.
\end{cases}$$

Já provamos que existe uma solução u > 0 do problema $(3.1)_{\lambda}$ para cada $\lambda \in (0, \Lambda)$. Por ser $-\Delta u \ge \lambda u^q$, podemos usar o Lema 3.2.3 com w = u para deduzir que toda solução u de $(3.1)_{\lambda}$ satisfaz $u \ge v_{\lambda}$. Note que v_{λ} é uma subsolução de $(3.1)_{\lambda}$.

Por ser $-\Delta u = \lambda u^q + u^p \ge \lambda v_\lambda^q + v_\lambda^p$, temos que u é uma supersolução do problema

$$\begin{cases}
-\Delta w &= \lambda v_{\lambda}^{q} + v_{\lambda}^{p}, & \text{em } \Omega, \\
w &> 0 & \text{em } \Omega, \\
w &= 0, & \text{em } \partial \Omega.
\end{cases}$$

Portanto, pelo teorema das sub e super soluções, existe uma $u_1 \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ tal que $v_{\lambda} \leq u_1 \leq u$ e

$$\begin{cases}
-\Delta u_1 &= \lambda v_{\lambda}^q + v_{\lambda}^p & \text{em } \Omega, \\
u_1 &> 0 & \text{em } \Omega, \\
u_1 &= 0 & \text{em } \partial \Omega.
\end{cases}$$

Note que u_1 é uma subsolução de $(3.1)_{\lambda}$. Usando indução, podemos provar que a iteração

$$-\Delta u_{n+1} = \lambda u_n^q + u_n^p \,, \quad u_0 = v_\lambda$$

está bem definida, que cada u_n é uma subsolução de $(3.1)_{\lambda}$, e que

$$v_{\lambda} \le u_1 \le u_2 \le \dots \le u_n \le \dots \le u. \tag{3.8}$$

Pelos argumentos usados no capítulo 2, temos que a função limite

$$u_{\lambda} = \lim_{n \to +\infty} u_n \tag{3.9}$$

é uma solução fraca do problema $(3.1)_{\lambda}$ e pertence a $C^{0,\alpha}(\overline{\Omega})$. Para que u_{λ} seja uma solução clássica, é suficiente que $\lambda[u_{\lambda}(x)]^q + [u_{\lambda}(x)]^p$ seja Hölder contínua. Já vimos que $[u_{\lambda}(x)]^q$ é Hölder contínua. Pelo teorema do valor médio, temos:

$$|[u_{\lambda}(x)]^{p} - [u_{\lambda}(y)]^{p}| \leq K|u_{\lambda}(x) - u_{\lambda}(y)|$$

$$\leq K|u_{\lambda}(x) - u_{\lambda}(y)|^{1-\theta}.|u_{\lambda}(x) - u_{\lambda}(y)|^{\theta}$$

$$\leq K'.|u_{\lambda}(x) - u_{\lambda}(y)|^{1-\theta}$$

Assim, a solução u_{λ} é clássica. Mostremos agora que u_{λ} é mínima. Sendo v uma solução qualquer de $(3.1)_{\lambda}$, vimos que $v \geq v_{\lambda}$ e v é uma supersolução de $(3.1)_{\lambda}$. Daí, $u_n \leq v$, $\forall n$. Assim, temos que $u_{\lambda} \leq v$.

Observação. Da igualdade

$$\lambda_1[-\Delta - a(x)] = \inf_{\phi \in H_0^1(\Omega), \|\phi\|_{H_0^1} = 1} \left(\int_{\Omega} |\nabla \phi|^2 - \int_{\Omega} a(x)\phi^2 \right),$$

temos $\lambda_1[-\Delta - a(x)] \ge 0$ se, e somente se,

$$\int_{\Omega} (|\nabla \phi|^2 - a\phi^2) \ dx \ge 0, \ \forall \phi \in H_0^1(\Omega).$$

3.3 Demonstração do Teorema 3.1.1

(i) A existência das soluções mínimas foi provada no Lema 3.2.6. Sendo u_{λ} solução mínima de $(1)_{\lambda}$, temos

$$\int -\Delta u_{\lambda} u_{\lambda} = \int \lambda u_{\lambda}^{q+1} + \int u_{\lambda}^{p+1}.$$

Portanto,

$$\int |\nabla u_{\lambda}|^2 = \lambda ||u_{\lambda}||_{q+1}^{q+1} + ||u_{\lambda}||_{p+1}^{p+1}.$$
 (3.10)

Pela Observação anterior,

$$\int_{\Omega} \left[|\nabla \phi|^2 - (\lambda q \phi^{q-1} + p \phi^{p-1}) \phi^2 \right] \ge 0, \quad \forall \phi \in H_0^1(\Omega).$$

Portanto, para $\phi = u_{\lambda}$, temos

$$\int_{\Omega} \left(|\nabla u_{\lambda}|^2 - \lambda q u_{\lambda}^{q+1} - p u_{\lambda}^{p+1} \right) \ge 0.$$

Assim,

$$\int |\nabla u_{\lambda}|^{2} - \lambda q \|u_{\lambda}\|_{q+1}^{q+1} - p \|u_{\lambda}\|_{p+1}^{p+1} \ge 0.$$
(3.11)

Substituindo (3.10), no funcional I_{λ} definido em (3.2), temos que

$$I_{\lambda}(u_{\lambda}) = \frac{\lambda(q-1)}{2(q+1)} \|u_{\lambda}\|_{q+1}^{q+1} + \frac{p-1}{2(p+1)} \|u_{\lambda}\|_{p+1}^{p+1}.$$
 (3.12)

Substituindo (3.10) em (3.11), temos

$$\lambda(q-1)\|u_{\lambda}\|_{q+1}^{q+1} + (p-1)\|u_{\lambda}\|_{p+1}^{p+1} \le 0.$$
(3.13)

Portanto $I_{\lambda}(u_{\lambda}) < 0$.

Resta mostrar que $\lambda < \lambda_1 \Rightarrow u_{\lambda} < u_{\lambda_1}$. De $\lambda < \lambda_1$, temos:

$$-\Delta u_{\lambda_1} = \lambda_1 u_{\lambda_1}^q + u_{\lambda_1}^p > \lambda u_{\lambda_1}^q + u_{\lambda_1}^p$$
, em Ω

Portanto, u_{λ_1} é uma supersolução de $(3.1)_{\lambda}$. Para $\varepsilon > 0$ suficientemente pequeno, $\varepsilon \varphi_1$ é uma subsolução de $(3.1)_{\lambda}$ e $\varepsilon \varphi_1 < u_{\lambda_1}$. Portanto, $(3.1)_{\lambda}$ possui uma solução v satisfazendo $\varepsilon \varphi_1 \leq v \leq u_{\lambda_1}$. Como u_{λ} é uma solução mínima de $(3.1)_{\lambda}$, temos $u_{\lambda} \leq v \leq u_{\lambda_1}$. Note que u_{λ} não é identicamente igual à u_{λ_1} , pois caso contrário teríamos

$$-\Delta u_{\lambda_1} = \lambda u_{\lambda_1}^q + u_{\lambda_1}^p, \text{ em } \Omega$$

Note que

$$-\Delta(u_{\lambda_1} - u_{\lambda}) \ge 0$$
, em Ω .

Pelo Teorema 1.8.3, temos que $u_{\lambda} < u_{\lambda_1}$.

(ii). Seja (λ_n) uma sequência crescente com $\lambda_n \to \Lambda$ e (u_{λ_n}) uma sequência de soluções mínimas tal que $I_{\lambda_n}(u_{\lambda_n}) < 0$. Provaremos que existe C > 0 tal que

$$\int |\nabla u_{\lambda_n}|^2 \le C \quad \text{e} \quad ||u_{\lambda_n}||_{p+1}^{p+1} \le C, \quad \forall n.$$

De fato, suponhamos que $\|u_{\lambda_n}\|_{H_0^1}^2 = \int |\nabla u_{\lambda_n}|^2 \to \infty$. Da imersão contínua $H_0^1(\Omega) \hookrightarrow L^2(\Omega)$, temos que $\|u_{\lambda_n}\|_{L^2} \le C\|u_{\lambda_n}\|_{H_0^1}$ e como $\|u_{\lambda_n}\|_{L^{q+1}} \le C\|u_{\lambda_n}\|_{L^2}$ concluímos que

$$||u_{\lambda_n}||_{q+1} \le C||u_{\lambda_n}||_{H_0^1}, \ \forall n.$$

Logo,

$$I_{\lambda_n}(u_{\lambda_n}) \ge \frac{1}{2} \|u_{\lambda_n}\|_{H_0^1}^2 - \frac{C\lambda_n}{q+1} \|u_{\lambda_n}\|_{H_0^1}^{q+1} - \frac{1}{p+1} \|u_{\lambda_n}\|_{p+1}^{p+1}.$$

Usando (3.10) obtemos

$$\begin{split} I_{\lambda_n}(u_{\lambda_n}) & \geq & \frac{1}{2} \|u_{\lambda_n}\|_{H_0^1}^2 - \frac{C\lambda_n}{q+1} \|u_{\lambda_n}\|_{H_0^1}^{q+1} + \frac{\lambda_n}{p+1} \|u_{\lambda_n}\|_{q+1}^{q+1} - \frac{1}{p+1} \|u_{\lambda_n}\|_{H_0^1}^2 \\ & = & \frac{p-1}{2(p+1)} \|u_{\lambda_n}\|_{H_0^1}^2 - \frac{C\lambda_n}{q+1} \|u_{\lambda_n}\|_{H_0^1}^{q+1} + \frac{\lambda_n}{p+1} \|u_{\lambda_n}\|_{q+1}^{q+1} \\ & \geq & \frac{p-1}{2(p+1)} \|u_{\lambda_n}\|_{H_0^1}^2 - \frac{C\lambda_n}{q+1} \|u_{\lambda_n}\|_{H_0^1}^{q+1}. \end{split}$$

A última desigualdade é não-negativa para $\|u_{\lambda_n}\|_{H^1_0}$ suficientemente grande; o que contradiz $I_{\lambda_n}(u_{\lambda_n}) < 0$. Portanto, existe uma constante C > 0 tal que $\|u_{\lambda_n}\|_{H^1_0}^2 \leq C$, $\forall n$. Usando (3.10), vemos que existe C > 0 tal que $\|u_{\lambda_n}\|_{p+1}^{p+1} \leq C$, $\forall n$.

Pelos Teoremas de Eberlein-Smulian e Rellich-Kondrachov, existe uma subsequência de (λ_n) , que também será denotada por (λ_n) , tal que

$$u_{\lambda_n} \rightharpoonup u^* \text{ em } H_0^1(\Omega),$$
 (3.14)

$$u_{\lambda_n} \to u^* \text{ em } L^2(\Omega) \text{ e}$$
 (3.15)

$$u_{\lambda_n} \to u^* \text{ q.s. em } \Omega.$$
 (3.16)

Sendo cada u_{λ_n} solução, temos

$$\int_{\Omega} \nabla u_{\lambda_n} \nabla v = \lambda_n \int_{\Omega} u_{\lambda_n}^q v + \int_{\Omega} u_{\lambda_n}^p v, \ \forall v \in H_0^1(\Omega).$$

Por (3.14), temos

$$\int_{\Omega} \nabla u_{\lambda_n} \nabla v \to \int_{\Omega} \nabla u^* \nabla v, \ \forall v \in H_0^1(\Omega).$$

Pelo Lema 1.7.1, temos que $u^* \in L^{p+1}(\Omega)$. Daí, pelo teorema da convergência dominada temos

$$\lambda_n \int_{\Omega} u_{\lambda_n}^q v + \int_{\Omega} u_{\lambda_n}^p v \to \Lambda \int_{\Omega} (u^*)^q v + \int_{\Omega} (u^*)^p v.$$

Ou seja, u^* é uma solução fraca de $(3.1)_A$.

A prova de (iii) segue diretamente da definição de Λ .

3.4 Demonstração do Teorema 3.1.2

Para a demonstração, precisaremos do seguinte resultado:

Lema 3.4.1. Seja z a única solução do problema

$$\begin{cases}
-\Delta z = z^q & em \Omega, \\
z > 0 & em \Omega, \\
z = 0 & em \partial\Omega.
\end{cases}$$
(3.17)

Então existe $\beta > 0$ tal que

$$\int_{\Omega} [|\nabla \phi|^2 - qz^{q-1}\phi^2] \ge \beta \|\phi\|_{L^2}^2, \quad \forall \phi \in H_0^1(\Omega).$$
 (3.18)

Demonstração. Suponhamos que $\lambda_1[-\Delta-qz^{q-1}]\leq 0.$ Assim, existe $\phi>0$ (primeira autofunção) tal que

$$-\Delta\phi - qz^{q-1}\phi = \lambda_1\phi \le 0. \tag{3.19}$$

Multiplicando (3.19) por z e usando as fórmulas de Green, obtemos

$$\int_{\Omega} \nabla \phi \nabla z \leq q \int_{\Omega} z^{q} \phi. \tag{3.20}$$

Por outro lado, z satisfaz (3.17). Logo,

$$\int_{\Omega} \nabla \phi \nabla z = \int_{\Omega} z^q \phi. \tag{3.21}$$

A última igualdade contradiz (3.20), pois q < 1. Portanto $\lambda_1[-\Delta - qz^{q-1}] > 0$. Logo,

$$\beta := \lambda_1[-\Delta - qz^{q-1}] = \inf_{\phi \in H_0^1 \setminus \{0\}} \frac{\left(\int_{\Omega} |\nabla \phi|^2 - q \int_{\Omega} z^{q-1} \phi^2\right)}{\|\phi\|_{L^2}^2} > 0.$$

Portanto,

$$\int_{\Omega} [|\nabla \phi|^2 - qz^{q-1}\phi^2] \ge \beta \|\phi\|_{L^2}^2, \quad \forall \phi \in H_0^1(\Omega).$$

Demonstração do Teorema 3.1.2. Sejam β o valor encontrado no Lema 3.4.1 e A>0 tal que $pA^{p-1}<\beta$. Se u é uma solução de $(3.1)_{\lambda}$ satisfazendo $\|u\|_{L^{\infty}}< A$, então, de $0\leq u_{\lambda}\leq u$, temos $\|u_{\lambda}\|_{L^{\infty}}< A$. Mostraremos que se $u=u_{\lambda}+v$ $(v\geq 0)$ é uma solução de $(3.1)_{\lambda}$ satisfazendo $\|u_{\lambda}\|_{L^{\infty}}< A$, então $v\equiv 0$.

Defina $\zeta(x) = \lambda^{\frac{1}{1-q}} z(x)$, com z solução de (3.17). Assim, $-\Delta \zeta = -\lambda^{\frac{1}{1-q}} \Delta z = \lambda^{\frac{1}{1-q}} z^q = \lambda \zeta^q$. Como u_λ é solução de (3.1) $_\lambda$, temos $-\Delta u_\lambda = \lambda u^q + u^p \geq \lambda u_\lambda^q$. Usando o Lema 3.2.3 com $f(t) = \lambda t^q$, $v = \zeta$ e $w = u_\lambda$, obtemos

$$u_{\lambda} \ge \lambda^{\frac{1}{1-q}} z. \tag{3.22}$$

Considerando $h(x) = (a+x)^q - a^q - qa^{q-1}x, \ a > 0, x \ge 0$, podemos provar que

$$(a+b)^q \le a^q + qa^{q-1}b, \quad \forall a > 0, \ b \ge 0.$$

Daí,

$$(u_{\lambda} + v)^q \le u_{\lambda}^q + q u_{\lambda}^{q-1} v. \tag{3.23}$$

Por ser $u = u_{\lambda} + v$ solução de $(3.1)_{\lambda}$, temos

$$-\Delta(u_{\lambda} + v) = \lambda(u_{\lambda} + v)^{q} + (u_{\lambda} + v)^{p}.$$

Usando (3.23), obtemos:

$$\begin{array}{rcl} -\Delta v & = & \lambda (u_{\lambda} + v)^{q} + (u_{\lambda} + v)^{p} + \Delta u_{\lambda} \\ & = & \lambda (u_{\lambda} + v)^{q} + (u_{\lambda} + v)^{p} - \lambda u_{\lambda}^{q} - u_{\lambda}^{p} \\ & \leq & \lambda u_{\lambda}^{q} + \lambda q u_{\lambda}^{q-1} v + (u_{\lambda} + v)^{p} - \lambda u_{\lambda}^{q} - u_{\lambda}^{p} \end{array}$$

Daí,

$$-\Delta v \le \lambda q u_{\lambda}^{q-1} v + (u_{\lambda} + v)^p - u_{\lambda}^q \tag{3.24}$$

De (3.22), temos

$$u_{\lambda}^{q-1} \le \lambda^{-1} z^{q-1} \tag{3.25}$$

Combinando (3.25) e (3.24), obtemos

$$-\Delta v \le qz^{q-1}v + (u_{\lambda} + v)^p - u_{\lambda}^p \tag{3.26}$$

Considerando $g(x)=(a+x)^p-a^p-p(a+x)^{p-1}x, \ a>0$ e $x\geq 0$, podemos mostrar que

$$(a+b)^p - a^p \le p(a+b)^{p-1}b, \ \forall a > 0, \ b \ge 0.$$

Daí,

$$(u_{\lambda} + v)^p - u_{\lambda}^p \le p(u_{\lambda} + v)^{p-1}v.$$

Mas, por ser $u_{\lambda} + v < A$, obtemos

$$(u_{\lambda} + v)^p - u_{\lambda}^p \le pA^{p-1}v \tag{3.27}$$

Combinando (3.27) com (3.26), obtemos

$$-\Delta v - qz^{q-1}v \le pA^{p-1}v \tag{3.28}$$

Multiplicando (3.28) por v, integrando e usando as fórmulas de Green, obtemos

$$\int_{\Omega} \left[|\nabla v|^2 - qz^{q-1}v^2 \right] \le \int_{\Omega} pA^{p-1}v^2.$$

Usando (3.18), obtemos $\beta \int_{\Omega} v^2 \leq pA^{p-1} \int_{\Omega} v^2$. Por ser $pA^{p-1} < \beta$, concluímos que $\int_{\Omega} v^2 = 0$. Daí, $v \equiv 0$.

3.5 Demonstração do Teorema 3.1.3.

Na demonstração precisamos do seguinte resultado técnico.

Lema 3.5.1. Sejam $0 \le q < 1 < p, A > 0, B > 0, e considere a função <math>\Psi_{A,B}(t) = t^2 - At^{q+1} - Bt^{p+1}, t \ge 0$. Então $\max\{\Psi_{A,B}(t): t \ge 0\} > 0$ se, e somente,

$$A^{p-1}B^{1-q} < \frac{(p-1)^{p-1}(1-q)^{1-q}}{(p-q)^{p-q}}$$

Mais ainda, para $t = t_B = [(1-q)/B(p-q)]^{1/(p-1)}$, temos

$$\Psi_{A,B}(t_B) = t_B^2 \left[\frac{p-1}{p-q} - AB^{\frac{1-q}{p-1}} \left(\frac{p-q}{1-q} \right)^{\frac{1-q}{p-1}} \right].$$

A demonstração é elementar e pode ser encontrada em [8].

 $Demonstração\ do\ Teorema\ 3.1.3.$ Para a demonstração usamos o Teorema do Passo da Montanha. Consideremos o funcional $I:H^1_0(\Omega)\to\mathbb{R}$ definido por

$$I(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \frac{\lambda}{q+1} \int_{\Omega} (u^+)^{q+1} - \frac{1}{p+1} \int_{\Omega} (u^+)^{p+1}.$$
 (3.29)

Mostraremos que I satisfaz

- (i) $I \in C^1(H_0^1(\Omega), \mathbb{R});$
- (ii) I(0) = 0 e I(u) > 0 se ||u|| = r > 0;
- (iii) I(e) < 0 para algum $e \in H_0^1(\Omega)$ com ||e|| > r;
- (iv) O funcional I satisfaz a condição (PS).

O item (i) segue da Proposição 1.6.1.

Usando a imersão $H_0^1(\Omega) \hookrightarrow L^{2^*}(\Omega)$ e a desigualdade de Hölder, temos

$$\frac{\lambda}{q+1} \int_{\Omega} u^{q+1} \leq \frac{\lambda}{q+1} \left(\int_{\Omega} 1 \right)^{\left[\left(\frac{q+1}{2^*} \right)' \right]^{-1}} \left(\int_{\Omega} \left(u^{q+1} \right)^{\frac{2^*}{q+1}} \right)^{\frac{q+1}{2^*}} \\
= \frac{\lambda}{q+1} |\Omega|^{\left[\left(\frac{q+1}{2^*} \right)' \right]^{-1}} \left(\int_{\Omega} |u|^{2^*} \right)^{\frac{q+1}{2^*}} \\
\leq \lambda C_1 ||u||_{2^*}^{q+1} \\
\leq \lambda C_1 \eta^{q+1} ||u||_{H_0^1}^{q+1}. \tag{3.30}$$

Da mesma forma, obtemos

$$\frac{1}{p+1} \int_{\Omega} (u^+)^{p+1} \le C_2 \eta^{p+1} ||u||_{H_0^1}^{p+1}. \tag{3.31}$$

De (3.29), (3.30) e (3.31) temos

$$I(u) \ge \frac{1}{2} \|u\|_{H_0^1}^2 - \lambda A \|u\|_{H_0^1}^{q+1} - B \|u\|_{H_0^1}^{p+1} = \frac{1}{2} f(\|u\|_{H_0^1}).$$

Do Lema 3.5.1 vemos que existe λ_0 tal que para $\lambda \in (0, \lambda_0)$ e $||u||_{H_0^1} = t_B$ temos que I(u) > 0. Ou seja, (ii) é válido.

Verifiquemos a condição (iii). Seja $u=t\varphi_1$ com φ_1 a primeira auto função associada ao primeiro autovalor λ_1 do operador $-\Delta$ em H^1_0 . Então

$$\begin{split} I(u) & \leq & \frac{1}{2}t^2 \int_{\Omega} |\nabla u|^2 - \frac{t^{p+1}}{p+1} \int_{\Omega} \varphi_1^{p+1} \\ & = & C_1 t^2 - C_2 t^{p+1} \xrightarrow{t \to +\infty} -\infty \end{split}$$

Portanto, basta escolher $e=t\varphi_1$ de forma que $\|e\|_{H^1_0}=t\|\varphi_1\|_{H^1_0}>t_B$ e I(e)<0.

Vejamos agora que I satisfaz (iv). Suponhamos $(u_n) \subset H_0^1(\Omega)$ satisfazendo $I(u_n) \to c$ e $I'(u_n) \to 0$. Afirmamos que (u_n) é limitada. De fato, é fácil notar que $I(u_n) \le C$ e $|\langle I'(u_n), u_n^+ \rangle| \le \delta ||u_n||_{H_0^1}$ para todo n. Mais ainda,

$$\Theta I(u_n) - \langle I'(u_n), u_n^+ \rangle \le C_1 + \delta \|u_n\|_{H_0^1}$$
 (3.32)

onde Θ será escolhido convenientemente mais adiante.

Note que

$$\int_{\Omega} \nabla u_n \nabla u_n^+ = \int_{\{u_n > 0\}} \nabla u_n \nabla u_n^+ + \int_{\{u_n < 0\}} \nabla u_n \nabla u_n^+
= \int_{\{u_n > 0\}} \nabla u_n \nabla u_n^+
= \int_{\{u_n > 0\}} |\nabla u_n|^2
\leq \int_{\Omega} |\nabla u_n|^2.$$

Portanto, o lado esquerdo de (3.32) é maior ou igual a

$$\frac{\Theta}{2} \int_{\Omega} |\nabla u_n|^2 - \frac{\lambda \Theta}{q+1} \int_{\Omega} (u_n^+)^{q+1} - \frac{\Theta}{p+1} \int_{\Omega} (u_n^+)^{p+1} - \int_{\Omega} |\nabla u_n|^2 + \lambda \int_{\Omega} (u_n^+)^q u_n^+ + \int_{\Omega} (u_n^+)^p u_n^+.$$

$$\left(\frac{\Theta}{2} - 1\right) \int_{\Omega} |\nabla u_n|^2 \le C_1 + ||u_n||_{H_0^1} + \lambda \left(\frac{\Theta}{q+1} - 1\right) \int_{\Omega} (u_n^+)^{q+1} + \left(\frac{\Theta}{p+1} - 1\right) \int_{\Omega} (u_n^+)^{p+1}.$$

Fixe $\Theta \in (2, p + 1)$. Usando a desigualdade de Young (Teorema 1.2.2) temos

$$\left(\frac{\Theta}{2} - 1\right) \int_{\Omega} |\nabla u_n|^2 \le C + \delta ||u_n||_{H_0^1}^2 + \delta ||u_n||_{H_0^1}^2.$$

Com δ suficientemente pequeno. Portanto, $||u_n||_{H_0^1} \leq C$.

Mostraremos agora que (u_n) possui uma subsequência convergente. Como (u_n) é limitada em $H_0^1(\Omega)$, existe uma subsequência (u_n) tal que $u_n \to u_0$ em $H_0^1(\Omega)$. Mostremos agora que (u_n) converge forte em $H_0^1(\Omega)$. Pelo Teorema 1.4.4, temos que $u_n \to u_0$ em $L^r(\Omega)$ com $1 \le r < 2^*$, em particular para um r satisfazendo $2^* < \frac{1}{r} < 1 - \frac{p}{2^*}$. Como $|I'(u_n)\varphi| \le \varepsilon ||\varphi||$, fazendo $\varphi = u_n - u_0$, obtemos

$$\left| \int_{\Omega} \nabla u_n \cdot \nabla (u_n - u_0) \right| \le \varepsilon ||u_n - u_0|| + \int_{\Omega} [\lambda (u^+)^p + (u^+)^q] |u_n - u_0|.$$

Pela desigualdade de Young, obtemos

$$\int_{\Omega} [\lambda(u^{+})^{p} + (u^{+})^{q}] |u_{n} - u_{0}| \leq \int_{\Omega} \{ [C_{1} + C_{2}(u^{+})^{p}] |u_{n} - u_{0}| \}
\leq C_{1} ||u_{n} - u_{0}||_{L^{1}} + C_{2} ||u_{n}||_{r'p}^{p} \cdot ||u_{n} - u_{0}||_{r}
\leq C_{1} ||u_{n} - u_{0}||_{r} + C_{2} ||u_{n}||_{2^{*}}^{p} \cdot ||u_{n} - u_{0}||_{r}.$$

Portanto,

$$\int_{\Omega} |\nabla u_n - u_0|^2 \le \varepsilon \left(\|u_n\|_{H_0^1} + \|u_0\|_{H_0^1} \right) + C_1 \|u_n - u_0\|_r + C_3 \|u_n - u_0\|_r + \int_{\Omega} |\nabla u_0 \cdot \nabla (u_n - u_0)|.$$
(3.33)

Como $u_n \rightharpoonup u_0$, definindo $T\varphi = \int_{\Omega} \nabla u_0 \nabla \varphi$, temos que $Tu_n \to Tu_0$, ou seja,

$$\int_{\Omega} \nabla u_0 \nabla u_n \to \int_{\Omega} \nabla u_0 \nabla u_0 \tag{3.34}$$

Da convergência $u_n \to u_0$ em $L^r(\Omega)$, (3.33) e (3.34) concluímos que $u_n \to u_0$ em $H_0^1(\Omega)$. Por conseguinte, I satisfaz a condição (PS).

Do Teorema 1.6.1 concluímos o resultado. \Box

Referências Bibliográficas

- [1] L. C. Evans, *Partial Differential Equations*, Graduate Studies in Mathematics, American Mathematical Society, Volume 19 (1998).
- [2] H. Brézis, Análisis Funcional, teoría y aplicaciones, Alianza, Madrid, 1984.
- [3] A. Ambrosetti, H. Brézis e G. Cerami, Combined Effects of Concave and Convex Nonlinearities in Some Elliptic Problems, J. Funct. Anal., 122, 1994, pp. 519-453.
- [4] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
- [5] L. A. Medeiros e M. Milla Miranda, Espaços de Sobolev, IM-UFRJ, 2000.
- [6] T. Cazenave, An introduction to semilinear elliptic equations, IM-UFRJ, 2006.
- [7] D. Gilbarg e N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.
- [8] D. G. de Figueiredo, J. P. Gossez, P. Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems. J. Funct. Anal. 199 (2003), no. 2, 452-467.
- [9] M. Willem, Minimax Theorems. Birkäuser, Boston, 1996.
- [10] H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88 (1983), 486-490.