

Universidade Federal de Pernambuco Centro de Ciências Exatas e da Natureza Programa de Pós-Graduação em Matemática

Renato Francisco Lopes Mello

Um modelo epidemiológico SIR com estrutura etária

Recife

2009

Renato Francisco Lopes Mello

Um modelo epidemiológico SIR com estrutura etária

Dissertação apresentada ao Departamento de Matemática da UFPE, como requisito para a obtenção do grau de MESTRE em Matemática.

Orientador: César Augusto Rodrigues Castilho

Recife

2009

Mello, Renato Francisco Lopes

Úm modelo epidemiológico SIR com estrutura etária / Renato Francisco Lopes Mello. - Recife: O Autor, 2009.

51 folhas

Dissertação (mestrado) – Universidade Federal de Pernambuco. CCEN. Matemática, 2009.

Inclui bibliografia e apêndice.

1. Biomatemática. I. Título.

574.19 CDD (22. ed.) MEI2009-124

Resumo

Estudaremos a existência e unicidade de soluções e o fenômeno de bifurcação para um modelo epidemiológico SIR com estrutura etária e transmissão dependente da idade. Formularemos o modelo como um sistema de equações diferenciais parciais munido de condições de contorno e a seguir o reformularemos como um problema de Cauchy semilinear abstrato em um espaço de Banach adequado, como o objetivo de demonstrar a existência e unicidade. Então trataremos da existência e unicidade de estados estacionários não-triviais, aplicando uma generalização da teoria de Perron-Frobenius.

Palavras-chave: Estrutura etária. Modelo epidemiológico. Problema de Cauchy abstrato. Semigrupo fortemente contínuo. Estado estacionário. Operador positivo. Bifurcação. Raio Espectral.

Abstract

We study the existence and uniqueness of solutions and threshold for an SIR type epidemic model with age-dependent transmission rate. We formulate the model as a ystem of partial di#erential equations with boundary conditions and after we rewrite it as an abstract semilinear Cauchy problem on a Banach space. Next we treat the existence and uniqueness of the stationary states by applying a generalization of the Perron-Frobenius theory.

Key words: Age structure. Epidemic model. Abstract Cauchy problem. Strongly contiuous semigroup. Stationary state. Positive operator. Threshold. Spectral radius.

Dissertação submetida ao Corpo Docente do Programa de Pós-graduação do Departamento de Matemática da Universidade Federal de Pernambuco como parte dos requisitos necessários para a obtenção do Grau de Mestrado em Matemática.

Aprovado:

César Augusto Rodrigues Castilho, UFPE

Orientador

Miguel Fidencio Loayza Lozano, UFPE

Cláudio Tadeu Cristino, UFRPE

UM MODELO SIR COM ESTRUTURA ETÁRIA

Por Renato Francisco Lopes Mello

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE MATEMÁTICA Cidade Universitária – Tels. (081) 2126 - 8414 – Fax: (081) 2126 - 8410 RECIFE – BRASIL

Fevereiro - 2009

Agradecimentos

À minha família, pelo apoio e incentivo que nunca faltaram.

Ao meu orientador, pelo encorajamento e especialmente pela confiança em meu trabalho, geralmente maior do que a minha própria.

Aos meus colegas das turmas da graduação e do mestrado, pela persistência nos encontros para estudos e pela união sem a qual o final da graduação e os primeiros semestres do mestrado teriam sido muito mais difíceis.

Aos meus professores da graduação e do mestrado, por toda a matemática que me ensinaram.

Aos funcionários das secretarias do Departamento de Matemática da UFPE, sempre atenciosos e eficientes.

Ao CNPq, Conselho Nacional de Pesquisa e Desenvolvimento, pelo apoio financeiro.

Sumário

Introdução			6
1	Fundamentos		8
	1.1	Definições básicas	8
	1.2	Derivação e integração em espaços de Banach	9
	1.3	Semigrupos e problema de Cauchy abstrato	14
	1.4	Teoria espectral	19
	1.5	Cones e ordenação parcial	20
	1.6	Positividade de operadores e teoria de Frobenius	22
	1.7	Concavidade de operadores	24
2	O n	nodelo SIR com estrutura etária	25
	2.1	O modelo demográfico	25
	2.2	Formulação do modelo SIR com estrutura etária	28
	2.3	Existência e unicidade de soluções	30
	2.4	Existência de estados estacionários	36
	2.5	Unicidade dos estados estacionários	41
	2.6	Estabilidade	44
\mathbf{C}	Considerações finais		
${f A}$	APÊNDICE - Teoremas auxiliares		
Ribliografia			49

Introdução

Nesta dissertação, consideraremos um modelo matemático para uma epidemia em uma população com estrutura etária para a qual o coeficiente de transmissão depende da idade. O modelo é do tipo SIR, isto é, destina-se a uma doença para a qual os indivíduos adquirem imunidade assim que ficam curados, e permanecem imunes pelo resto da vida. Todo indivíduo nasce suscetível à doença, e pode contraí-la apenas por contato com um indivíduo infectado, após o que se torna capaz de retransmiti-la muito rapidamente. Não haverá, portanto, classe latente. A doença é não-letal, de modo que não afeta a mortalidade, e assume-se que a população esteja em estado demográfico estacionário.

O modelo SIR independente de estrutura etária já foi satisfatoriamente investigado, e seu teorema de bifurcação é bem conhecido (ver [7]). Por outro lado, graças ao trabalho de McKendrick (ver [12]), foi reconhecida a importância da estrutura etária da população é como fator que afeta a dinâmica da transmissão da doença. Desde então muitos autores introduziram estrutura etária em seus modelos epidemiológicos.

Entre eles, Greenhalgh investigou o modelo SIR com estrutura etária no caso em que o coeficiente de transmissão depende da idade tanto do suscetível quanto do infeccioso, e conjecturou em [6] que:

- (1) O fenômeno de bifurcação (neste contexto, a existência de equilíbrios endêmicos) pode ser formulado em termos do raio espectral r(T) de certo operador integral T.
- (2) Um equilíbrio endêmico é possível se e somente se r(T) > 1 e, se esse equilíbrio existe, é único.
- (3) O equilíbrio livre de doença sempre existe e é localmente (e de fato globalmente) estável se r(T) < 1 e localmente instável se r(T) > 1.
- (4) Para valores realísticos dos parâmetros, o estado de equilíbrio endêmico é assintoticamente estável.

O principal propósito desta dissertação é apresentar a prova da conjectura de Greenhalg, sob condições adequadas, devida a Hisashi Inaba em [8]. No primeiro capítulo, serão apresentados os fundamentos necessários para o estudo do modelo, a saber, a teoria básica de semigrupos e problemas de Cauchy abstratos em espaços de Banach e uma generalização da teoria de Perron-Frobenius para esses espaços. No segundo capítulo, analisaremos a formulação do modelo e a seguir aplicaremos os fundamentos para demonstrar a existência e unicidade de soluções dado um valor inicial e a existência e unicidade dos estados estacionários. Ao final apresentaremos sem a demonstração o resultado de estabilidade obtido por Inaba, completando os itens da conjectura de Greenhalg.

O presente trabalho foi realizado com apoio do CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasil.

Capítulo 1

Fundamentos

Neste capítulo veremos definições e teoremas para espaços de Banach sobre derivação, integração, semigrupos e ordenação, necessários para o estudo do modelo epidemiológico com estrutura etária.

1.1 Definições básicas

Dizemos que X é um espaço de Banach se é um espaço vetorial normado completo, e denotaremos sua norma por $\|\cdot\|_X$ ou simplesmente $\|\cdot\|$. O conjunto das transformações lineares entre dois espaços de Banach X e Y será denotado por $\mathcal{L}(X,Y)$ e por $\mathcal{L}(X)$ se X=Y. Uma transformação linear $T\in\mathcal{L}(X,Y)$ é dita limitada se uma das seguintes condições equivalentes for satisfeita:

- (i) $\sup\{\|Tx\|_{Y} : x \in X \in \|x\|_{X} = 1\} < +\infty;$
- (ii) existe $c \in \mathbb{R}$ tal que $\|Tx\|_Y \le c \|x\|_X$;
- (iii) T é contínua;
- (iv) T é contínua em 0_X .

Denotamos o espaço das transformações lineares limitadas de X em Y por $\mathcal{B}(X,Y)$ e por $\mathcal{B}(X)$ se X=Y. Sua norma é denotada por $\|\cdot\|_{\mathcal{B}(X,Y)}$ ou simplesmente $\|\cdot\|$ e definida pelo supremo dado no item (i) ou, equivalentemente, pelo ínfimo dos c dados como no item (ii). Teremos $\|TS\| \leq \|T\| \|S\|$ se $T \in \mathcal{B}(X,Y)$ e $S \in \mathcal{B}(Y,Z)$, em que Z é também um espaço de Banach.

Uma função $\Phi: X \to Y$ é dita compacta se leva todo conjunto limitado em um conjunto relativamente compacto (ou seja, S limitado implica $\overline{\Phi(S)}$ compacto), e completamente contínua se além disso for contínua.

Denotaremos por $L^1(a,b)$ o espaço de Banach formado pelas funções integráveis de [a,b] em \mathbb{R} com igualdade q.t.p. e norma $\|\cdot\|_1$ dada por $\|\phi\|_1 = \int_a^b |\phi(s)| ds$. Analogamente denotaremos por $L^\infty(a,b)$ o espaço vetorial normado das funções limitadas q.t.p. em [a,b] com norma $\|\cdot\|_\infty$ dada por $\|\phi\|_\infty = \inf\{c: |\phi(s)| \leq c$ q.t.p. em $[a,b]\}$. Para ambos os casos, se uma classe de equivalência possuir um representante contínuo, a identificaremos com esse representante.

1.2 Derivação e integração em espaços de Banach

Nesta seção, X e Y são espaços de Banach arbitrários.

DEFINIÇÃO 1.2.1. Sejam $\Phi:U\subset X\to Y$ uma função, em que U é um aberto de X, e u um elemento de U.

(i) Dizemos que Φ é $G\hat{a}teaux$ -diferenciável em u se existe uma transformação linear $L_G \in \mathcal{B}(X,Y)$ tal que

$$\lim_{t\to 0} \frac{\|\Phi(u+th) - \Phi(u) - tL_G h\|_Y}{|t|} = 0 \text{ para todo } h \in X$$

e nesse caso dizemos que L_G é a derivada de Φ em u no sentido de Gâteaux.

(ii) Dizemos que Φ é Fréchet-diferenciável em u se existe uma transformação linear $L_F \in \mathcal{B}(X,Y)$ tal que

$$\lim_{\|h\|_X \to 0} \frac{\|\Phi(u+h) - \Phi(u) - L_F h\|_Y}{\|h\|_X} = 0$$

e nesse caso dizemos que L_F é a derivada de Φ em u no sentido de Fréchet.

Em qualquer caso denotamos a derivada por $D\Phi(u): X \to Y$. Isso não causa confusão devido à seguinte propriedade, evidente a partir das definições:

Proposição 1.2.2. Se uma função é Fréchet-diferenciável, então é também Gâteaux-diferenciável e as derivadas coincidem.

Nesse sentido, derivada de Fréchet é "mais forte". Se U for um subconjunto de \mathbb{R} , então os conceitos de derivação coincidem com o usual. Nesse caso usaremos as notações $\frac{d}{dt}\Phi(u)=\Phi'(u)=D\Phi(u)1 \text{ e diremos simplesmente que } \Phi \text{ é diferenciável em u.}$

É fácil demonstrar a partir dos limites que valem, para ambos os casos, as seguintes propriedades operatórias análogas às das derivadas em \mathbb{R}^n :

(i)
$$D(\alpha_1\Phi_1 + \alpha_2\Phi_2)(u) = \alpha_1 D\Phi_1(u) + \alpha_2 D\Phi_2(u);$$

(ii)
$$D(T)(u) = T$$
 se $T \in \mathcal{B}(X, Y)$;

(iii)
$$D(T \circ \Phi)(u) = T \circ D\Phi(u)$$
 se $T \in \mathcal{B}(X, Y)$.

Uma propriedade muito importante é a seguinte versão da Desigualdade do Valor Médio:

Proposição 1.2.3. Seja $U \subset X$ aberto e $a, b \in X$ tais que $[a, b] := \{(1 - t)a + tb : 0 \le t \le 1\} \subset U$. Suponha que $\Phi : U \to Y$ é uma função Gâteaux-diferenciável em qualquer ponto de [a, b], tal que $M = \sup_{u \in [a, b]} \|D\Phi(u)\| < +\infty$. Então

$$\|\Phi(b) - \Phi(a)\|_{Y} \le M\|b - a\|_{X}.$$

Demonstração. Defina $\Psi(t) = \Phi(ta + (1-t)b)$. Então $\Psi'(t) = D\Phi(a + t(b-a))(b-a)$ e $\|\Psi'(t)\|_Y \leq \tilde{M} := M|b-a|$ para todo $t \in [0,1]$. Queremos provar que $\|\Psi(1) - \Psi(0)\|_Y \leq \tilde{M}$, e para isso é suficiente demonstrar que $f(t) := \|\Psi(t) - \Psi(0)\|_Y - (\tilde{M} + \delta)t \leq 0$ para todo $t \in [0,1]$ e para todo $\delta > 0$. Fixo $\delta > 0$, seja $t_0 = \max\{t \in [0,1] : f(t) \leq 0\}$. Se $t_0 < 1$ e $\varepsilon > 0$, teremos

$$\begin{split} f(t_{0}+\varepsilon) &= \|\Psi(t_{0}+\varepsilon) - \Psi(t_{0}) + \Psi(t_{0}) - \Psi(0)\|_{Y} - (\tilde{M}+\delta)(t_{0}+\varepsilon) \\ &\leq \|\Psi(t_{0}+\varepsilon) - \Psi(t_{0})\|_{Y} - (\tilde{M}+\delta)\varepsilon + \|\Psi(t_{0}) - \Psi(0)\|_{Y} - (\tilde{M}+\delta)t_{0} + \\ &\leq \|\Psi(t_{0}+\varepsilon) - \Psi(t_{0})\|_{Y} - (\tilde{M}+\delta)\varepsilon. \end{split}$$

Logo, se tomamos $\varepsilon > 0$ suficiente pequeno,

$$f(t_0 + \varepsilon) \leq \left(\frac{\|\Psi(t_0 + \varepsilon) - \Psi(t_0)\|_Y}{\varepsilon} - \tilde{M}\right) \varepsilon - \delta \varepsilon$$

$$\leq (\delta - \delta)\varepsilon = 0,$$

o que contradiz a maximalidade de t_0 . Logo $t_0=1$ e a demonstração está completa. $\ \Box$

COROLÁRIO 1.2.4. Se U é um aberto conexo de X e $D\Phi(u) = 0 \in \mathcal{B}(X,Y)$ para todo $u \in U$, então Φ é constante.

Demonstração. Basta utilizar o fato de que todo aberto conexo (em um espaço métrico qualquer) é conexo por poligonais e aplicar a Desigualdade do Valor Médio ao longo de cada poligonal que ligue dois pontos arbitrários.

Se requeremos a continuidade da função derivada com respeito a $u \in U$, os conceitos de Fréchet e de Gâteaux coincidem, conforme assegura a proposição abaixo:

PROPOSIÇÃO 1.2.5. Nas notações anteriores, sejam $\Phi: U \to Y$, $u \in U$ e suponha que, numa vizinhança $V \subset U$ de u, Φ tenha derivada de Gâteaux $D\Phi(v) \in \mathcal{B}(X,Y) \ \forall v \in V$ tal que

$$D\Phi: V \to \mathcal{B}(X,Y)$$
$$v \mapsto D\Phi(v)$$

é contínua. Então Φ é também Fréchet-diferenciável (dizemos então que Φ é continuamente Fréchet-diferenciável em u).

Demonstração. Defina $\Psi(v) = \Phi(v) - D\Phi(u)v$ em V. Então Ψ é diferenciável, com derivada $D\Psi(v)h = D\Phi(v)h - D\Phi(u)h$ contínua com respeito a v. Tomando $\delta > 0$ tal que $\|h\|_X < \delta \Rightarrow u + h \in V$ e aplicando a Desigualdade do Valor Médio, teremos

$$\begin{split} \|\Phi(u+h) - \Phi(u) - D\Phi(u)h\|_Y &= \|\Psi(u+h) - \Psi(u)\|_Y \\ &\leq \sup_{0 \leq t \leq 1} \|D\Psi(u+th)\| \|h\|_X. \end{split}$$

Então, usando a continuidade de $D\Psi$,

$$\frac{\|\Phi(u+h) - \Phi(u) - D\Phi(u)h\|_Y}{\|h\|_X} \le \sup_{0 \le t \le 1} \|D\Psi(u+th)\| \to \|D\Psi(u)\| = 0.$$

Ou seja, Φ é Fréchet-diferenciável em u.

Passemos agora à integração. Veremos aqui a definição de integral de Bochner, porém em uma versão restrita às funções de domínio contido em \mathbb{R} , e usaremos (aqui e em todo o texto) a medida de Lebesgue, denotada por m. Para o caso geral e as demonstrações, consulte [16], Seção 5.5.

DEFINIÇÃO 1.2.6. Seja X um espaço de Banach e S um subconjunto mensurável de \mathbb{R} . Diremos que uma função $\phi: S \to X$ é simples se é identicamente nula no exterior de um conjunto B de medida finita, o qual por sua vez se decompõe como união finita disjunta de conjuntos mensuráveis B_i , $i=1,\ldots,n$, tais que $\phi\equiv x_i$ é constante em cada B_i . Podemos assumir que $x_i\neq x_j$ se $i\neq j$.

DEFINIÇÃO 1.2.7. Nas notações acima, a integral de uma função simples ϕ em S é definida por:

$$\int_{S} \phi(s)ds = \sum_{i=1}^{n} x_{i} m(B_{i}).$$

DEFINIÇÃO 1.2.8. Uma função $\phi: S \to X$ é dita *Bochner-integrável* se existe uma sequência $(\phi_n)_{n\in\mathbb{N}}$ de funções simples em S que converge q.t.p. para ϕ e

$$\lim_{n \to +\infty} \int_{S} \|\phi(s) - \phi_n(s)\|_X ds = 0.$$

A integral de Bochner de ϕ é definida por:

$$\lim_{n \to +\infty} \int_{S} \phi_n(s) ds = 0. \tag{1.1}$$

É claro que, se ϕ é Bochner-integrável em S, então é também Bochner-integrável em qualquer subconjunto mensurável de S. É possível mostrar que o limite em (1.1) independe da escolha de $(\phi_n)_{n\in\mathbb{N}}$.

A seguinte proposição caracteriza a Bochner-integrabilidade:

Proposição 1.2.9. (Bochner)

(i) Uma função mensurável $\phi: S \to X$ é Bochner-integrável se e somente se $\|\phi(\cdot)\|_X$ é Lebesgue-integrável em S.

(ii)
$$\left\| \int_{S} \phi(s) ds \right\|_{X} \le \int_{S} \|\phi(s)\|_{X} ds$$
.

Uma propriedade operacional muito importante é a seguinte:

PROPOSIÇÃO 1.2.10. Se $T \in \mathcal{B}(X,Y)$ e $\phi : S \to X$ é Bochner-integrável, então $T \circ \phi : S \to Y$ é também Bochner-integrável e:

$$\int_{S} T \circ \phi(s) ds = T \left(\int_{S} \phi(s) ds \right).$$

Em particular, o símbolo de integração é linear.

Como usual, denotamos $\int_a^b = -\int_b^a = \int_{(a,b)}$ se a < b. Agora podemos enunciar e demonstrar a seguinte versão do Teorema Fundamental do Cálculo:

Proposição 1.2.11. (i) Seja $\phi:[a,b] \to X$ uma função contínua. Então ϕ é integrável em [a,b] e, se definimos a função $\Phi:[a,b] \to X$ por

$$\Phi(t) = \int_{a}^{t} \phi(s)ds,$$

então Φ é diferenciável para todo $t \in [a, b]$ e $\Phi' = \phi$.

(ii) $Seja \ \Phi : [a,b] \to X \ uma \ função \ continuamente \ diferenciável \ em \ [a,b]. \ Então$

$$\Phi(t) - \Phi(a) = \int_{a}^{t} \Phi'(s) ds$$

para todo $t \in [a, b]$.

 $Demonstração. \quad \text{(i) Como ϕ \'e contínua, então } \|\phi(\cdot)\|_X \'e contínua, logo Lebesgue-integrável.$ Da Proposição 1.2.9, segue que ϕ \'e Bochner-integrável em [a,b]. Dados $t\in[a,b]$ e $h\neq 0$, teremos

$$\begin{aligned} \|h^{-1}(\Phi(t+h) - \Phi(t)) - \phi(t)\|_{X} &= \left\| h^{-1} \int_{t}^{t+h} [\phi(s) - \phi(t)] ds \right\|_{X} \\ &\leq |h|^{-1} \left| \int_{t}^{t+h} \|\phi(s) - \phi(t)\|_{X} ds \right|. \end{aligned}$$

Da continuidade de ϕ , segue que o limite da expressão acima é zero, então $\Phi'(t) = \phi(t)$.

(ii) Do item anterior, Φ' é integrável em [a,b]. Defina $\Psi(t) = \Phi(a) + \int_a^t \Phi'(s) ds$ em [a,b]. Do item anterior, Ψ é diferenciável e $\Psi' = \Phi'$. Do Corolário 1.2.4, segue que $\Psi \equiv \Phi$ em [a,b].

1.3 Semigrupos e problema de Cauchy abstrato

Seja X um espaço de Banach fixo.

DEFINIÇÃO 1.3.1. Um semigrupo fortemente contínuo ou simplesmente C_0 -semigrupo em X é uma família de funções T(t), $t \ge 0$, satisfazendo:

- (i) $T(t): X \to X$ é contínua para cada $t \ge 0$;
- (ii) $T(0) = id_X$ (onde id_X denota a função identidade em X);
- (iii) T(t+s) = T(t)T(s) para quaisquer $t, s \ge 0$ (o produto denota composição);
- (iv) $t \to T(t)x$ é uma função contínua de $[0,+\infty)$ em X para cada $x \in X$ fixo.

A propriedade (iii) é chamada de propriedade de semigrupo, e a (iv) de continuidade forte. O semigrupo é dito linear se T(t) for uma transformação linear para cada $t \geq 0$.

DEFINIÇÃO 1.3.2. Nas notações anteriores, seja $T(t): X \to X$ um C_0 -semigrupo. O gerador infinitesimal de $T(t), t \ge 0$ é a função $A: D \to X$ dada por

$$Ax = \lim_{t \to 0^+} \frac{T(t)x - x}{t},$$
(1.2)

onde D = D(A) é o conjunto de todos os pontos $x \in X$ para os quais o limite acima existe.

Dizemos ainda que T(t) é um semigrupo gerado por A. É fácil verificar que se T(t) é linear então D(A) é um subespaço vetorial de X, e A é uma transformação linear.

A semelhança da fórmula (1.2) com uma derivada evidentemente não é mera coincidência. De fato, quando for possível derivar à direita a função $T(\cdot)x$, teremos:

$$\frac{d^{+}}{dt}T(t)x = \lim_{h \to 0^{+}} \frac{T(t+h)x - T(t)x}{h}$$

$$= \lim_{h \to 0^{+}} \frac{T(h)T(t)x - T(t)x}{h} = AT(t)x. \tag{1.3}$$

Além disso a derivada pela direita existe em $t \geq 0$ se e somente se $T(t)x \in D(A)$. Se $T(t) \in \mathcal{B}(X)$ e $x \in D(A)$, teremos

$$\frac{d^{+}}{dt}T(t)x = \lim_{h \to 0^{+}} \frac{T(t)T(h)x - T(t)x}{h}$$
$$= T(t)\lim_{h \to 0^{+}} \frac{T(h)x - x}{h} = T(t)Ax,$$

então
$$T(t)x \in D(A)$$
 e

$$\frac{d^+}{dt}T(t)x = AT(t)x = T(t)Ax.$$

Na verdade é possível demonstrar resultados mais fortes se trabalharmos com limitação uniforme. Para isso, consideremos a definição e o teorema seguintes:

DEFINIÇÃO 1.3.3. Um C_0 -semigrupo T(t) é dito exponencialmente limitado se existem constantes $M \geq 0$, α tais que

$$||T(t)|| \le Me^{\alpha t}$$
 para todo $t \ge 0$.

Como $T(0) = id_X$, na verdade teremos $M \ge 1$. Se pudermos ter $\alpha = 0$, dizemos que T(t) é uniformemente limitado e se, além disso, M = 1, dizemos que é um semigrupo de contrações.

Teorema 1.3.4. Assumindo o princípio da limitação uniforme (ver Proposição A.1 do Apêndice), todo C_0 -semigrupo de operadores lineares limitados é exponencialmente limitado.

Demonstração. Seja T(t) um C_0 -semigrupo de operadores lineares limitados e seja $\eta > 0$. Para cada $x \in X$, o conjunto $\{T(t)x : x \in [0,\eta]\}$ é compacto e portanto limitado. Logo, pelo princípio da limitação uniforme, existe $M \geq 0$ tal que $||T(t)|| \leq M$ para todo $t \in [0,\eta]$.

Dado $t \geq 0$, podemos escrever $t = n\eta + \delta$ com $\delta \in [0, \eta)$ e $n \in \mathbb{N}$. Assim

$$||T(t)|| = ||T(\delta)|| ||T(\eta)^n|| \le M^{n+1} \le M^{t/\eta} \le Me^{\alpha t},$$

onde
$$\alpha = \frac{1}{\eta} \ln M$$
.

O princípio da limitação uniforme pode ser demonstrado a partir de uma versão fraca do axioma da escolha: o axioma das escolhas dependentes (ver [16]). Independentemente desse princípio, assumiremos no resto desta seção que T(t) é um C_0 -semigrupo linear exponencialmente limitado no espaço de Banach X com gerador infinitesimal A. Com isso, provaremos o seguinte:

Teorema 1.3.5. (i) Para todo $x \in X$ e $t \ge 0$, $\int_0^t T(s)xds \in D(A)$ e

$$A\int_0^t T(s)xds = T(t)x - x.$$

(ii) Para todo $x \in D(A)$ e t > 0, $T(t)x \in D(A)$ e $\frac{d}{dt}T(t)x = AT(t)x = T(t)Ax$.

(iii)
$$\overline{D(A)} = X$$
.

Demonstração. (i)

$$\begin{split} \frac{1}{h} \left(T(h) \int_0^t T(s) x ds - \int_0^t T(s) x ds \right) &= \frac{1}{h} \left(\int_h^{t+h} T(s) x ds - \int_0^t T(s) x ds \right) \\ &= \frac{1}{h} \left(\int_t^{t+h} T(s) x ds \right) - \frac{1}{h} \left(\int_0^h T(s) x ds \right). \end{split}$$

Tomando o limite e usando a Proposição 1.2.11, teremos $\int_0^t T(s)xds \in D(A)$ e

$$A\int_0^t T(s)xds = T(t)x - T(0)x.$$

(ii) Já temos de (1.3) que $T(t)x \in D(A)$ e $\frac{d^+}{dt}T(t)x = AT(t)x = T(t)Ax$ para todo $t \ge 0$. Resta agora verificar a derivada à esquerda. Tomando 0 < h < t, teremos:

$$\begin{split} & \left\| \frac{T(t-h)x - T(t)}{-h} - T(t)Ax \right\|_{X} \\ & = \left\| T(t-h) \frac{T(h)x - x}{h} - T(t)Ax \right\|_{X} \\ & \leq \left\| T(t-h) \left(\frac{T(h)x - x}{h} - Ax \right) \right\|_{X} + \| T(t-h)Ax - T(t)Ax \|_{X} \\ & \leq \| T(t-h) \| \left\| \frac{T(h)x - x}{h} - Ax \right\|_{X} + \| T(t-h)Ax - T(t)Ax \|_{X}. \end{split}$$

Como ||T(t)|| é localmente limitada e o semigrupo é contínuo, o termo à direita tende a zero e $\frac{d^-}{dt}T(t)x = T(t)Ax = AT(t)x$.

(iii) Pelo item anterior, $\frac{1}{t} \int_0^t T(s) x ds \in D(A)$ e, pelo item (i), $\frac{1}{t} \int_0^t T(s) x ds \to x$ quando $t \to 0^+$ para qualquer $x \in X$. Então $\overline{D(A)} = X$.

Agora, podemos considerar o problema de Cauchy semilinear abstrato em um espaço de Banach.

DEFINIÇÃO 1.3.6. Sejam X um espaço de Banach. Um problema de Cauchy semilinear abstrato consiste num sistema do tipo:

$$\begin{cases} \frac{d}{dt}u(t) = A(u(t)) + F(u(t)), \\ u(t_0) = u_0, \end{cases}$$
 (1.4)

onde $A:D(A)\subset X\to X$ é um operador linear, $F:X\to X$ é uma função, $u_0\in X$ e u é uma função de domínio real e imagem em X, a ser encontrada.

Uma solução clássica ou forte é uma função diferenciável $u(t) = u(t; t_0, u_0)$ definida em um intervalo $[t_0, t_m)$ e com imagem contida em D(A) que satisfaça o sistema (1.4) (a derivada é tomada à direita em $t = t_0$).

Uma solução fraca é uma função $u(t)=u(t;t_0,u_0)$ de um intervalo $[t_0,t_m)$ em X satisfazendo:

$$u(t) = T(t - t_0)u_0 + \int_{t_0}^t T(t - s)F(u(s))ds \ \forall t \in I,$$

onde T(t) é um semigrupo gerado por A.

Em ambos os casos, podemos ter $t_m = +\infty$, caso em que a solução é dita global.

A relação entre a solução fraca e a forte é dada a seguir:

Proposição 1.3.7. Se u(t) é solução clássica de (1.4), então também é solução fraca.

Demonstração. Se u é solução clássica, então:

$$\frac{d}{ds}u(s) = A(u(s)) + F(u(s))$$

$$T(t-s)\frac{d}{ds}u(s) = T(t-s)A(u(s)) + T(t-s)F(u(s))$$

$$T(t-s)\frac{d}{ds}u(s) = AT(t-s)u(s) + T(t-s)F(u(s))$$

$$T(t-s)\frac{d}{ds}u(s) - \frac{d}{dt}(T(t-s)u(s)) = T(t-s)F(u(s))$$

Com cálculos similares aos que aparecem na demonstração do item (ii) do Teorema 1.3.5, podemos mostrar que

$$\frac{d}{ds}(T(t-s)u(s)) = T(t-s)\frac{d}{ds}u(s) - \frac{d}{dt}(T(t-s)u(s)),$$

portanto

$$\frac{d}{ds}(T(t-s)u(s)) = T(t-s)F(u(s)).$$

Integrando os dois membros, teremos

$$\int_{t_0}^{t} \frac{d}{ds} (T(t-s)u(s))ds = \int_{t_0}^{t} T(t-s)F(u(s))ds$$
$$u(t) - T(t-t_0)u_0 = \int_{t_0}^{t} T(t-s)F(u(s))ds.$$

Então u é solução fraca.

O leitor pode encontrar em [15] a demonstração do seguinte teorema, que garante a existência e unicidade de soluções fraca e forte mediante certas condições para A e F.

Teorema 1.3.8. (Webb) Seja T(t), $t \geq t_0$, um C_0 -semigrupo de operadores lineares limitados no espaço de Banach X com gerador infinitesimal A. Seja $F: X \to X$ uma função continuamente Fréchet-diferenciável em X. Então:

(i) Para cada $x \in X$ existe um intervalo maximal de existência $[t_0, t_x)$ e uma única função contínua $t \to u(t; t_0, x)$ de $[t_0, t_x)$ em X tal que

$$u(t;t_0,x) = T(t-t_0)x + \int_{t_0}^t T(t-s)F(u(s;t_0,x))ds$$

para todo $t \in [t_0, t_x)$. Exatamente uma das possibilidades acontece: ou $t_x = +\infty$ ou $\sup_{t \to t_x^-} ||u(t; t_0, x)||_X = +\infty.$

- (ii) $u(t;t_0,x)$ é uma função contínua de x no sentido de que se $x \in X$ e $t_0 \le t \le t_x$, então existem constantes positivas C e ε tais que se $\hat{x} \in X$ e $||x \hat{x}|| < \varepsilon$, então $t < t_{\hat{x}}$ e $||u(s;t_0,x) u(s;t_0,\hat{x})|| \le C||x \hat{x}||$ para todo $t_0 \le s \le t$.
- (iii) Se $x \in D(A)$, então $u(t;t_0,x) \in D(A)$ para $t_0 \le t \le t_x$ e a função $t \to u(t;t_0,x)$ é continuamente diferenciável e satisfaz $\frac{d}{dt}u(t;t_0,x) = Au(t;t_0,x) + F(u(t;t_0,x))$ em $[t_0,t_x)$.

1.4 Teoria espectral

Sejam F um espaço vetorial complexo normado e $T:F\to F$ uma transformação linear e defina $T_\lambda=\lambda I-T$, onde I é o operador identidade de F.

Chamamos de conjunto resolvente, $\rho(T)$, o conjunto dos $\lambda \in \mathbb{C}$ para os quais a imagem $T_{\lambda}(F)$ é densa em F e a transformação T_{λ} tem inversa contínua. $R(\lambda, T) = (\lambda I - T)^{-1}$ é denominado operador resolvente de T (em λ), e o complemento de $\rho(T)$ em \mathbb{C} é denominado espectro de T, e denotado por $\sigma(T)$. O raio espectral de T é definido por:

$$r(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\}.$$

O conjunto $\sigma(T)$ se decompõe em três subconjuntos disjuntos, definidos abaixo:

- O espectro pontual, $P_{\sigma}(T)$, é formado pelos números complexos λ para os quais T_{λ} não tem inversa.
- O espectro contínuo, $C_{\sigma}(T)$, é formado pelos números complexos λ para os quais T_{λ} tem inversa descontínua com domínio denso em F.
- O espectro residual, $R_{\sigma}(T)$, é formado pelos números complexos λ para os quais T_{λ} tem inversa cujo domínio $T_{\lambda}(F)$ não é denso em F.

O espectro pontual é formado pelos autovalores de T, ou seja, pelos $\lambda \in \mathbb{C}$ tais que $Tx = \lambda x$ para algum $x \in F \setminus \{0\}$, e os x são chamados de autovetores. A multiplicidade de λ é a dimensão do autoespaço de T correspondente a λ , isto é, do núcleo de T_{λ} .

Observação. Esses e outros conceitos da teoria espectral podem ser definidos para espaços vetoriais reais via extensões. Seja E um espaço vetorial real normado. A complexificação de E é o espaço vetorial complexo F cujos elementos são da forma z=x+iy, $x,y\in E$, $i^2=-1$, munido da norma

$$||z||_F = \sup\{||x\cos\theta + y\sin\theta||_E : 0 \le \theta < 2\pi\}.$$

Podemos ver E como subconjunto de F. Se $T:E\to E$ é uma transformação linear, então $\tilde{T}:F\to F$ definida por $\tilde{T}(z)=Tx+iTy$ é a extensão de T para F. Se T é limitada então \tilde{T} também o é.

Assim, define-se $\sigma(T) = \sigma(\tilde{T})$, e da mesma forma $P_{\sigma}(T) = P_{\sigma}(\tilde{T})$ etc.

1.5 Cones e ordenação parcial

Nesta seção, apresentaremos o conceito de positividade em um espaço de Banach, necessários para a formulação da generalização da Teoria de Perron-Frobenius.

DEFINIÇÃO 1.5.1. Seja X um espaço de Banach. Um subconjunto fechado $K \subset X$ é um cone se as seguintes condições forem satisfeitas:

- (a) K é fechado;
- (b) $x, y \in K$ implies $x\psi + \beta y \in K \ \forall \alpha, \beta \ge 0$;
- (c) $x \in K \setminus \{0\}$ implies $-x \notin K$.

Da propriedade (a), seguem que $0 \in K$ e ainda que K é convexo. Um cone é dito total se o conjunto $\{x-y:\psi,\phi\in K\}$ é denso em X.

Os cones são estritamente relacionados com ordenações parciais. O espaço X é dito parcialmente ordenado se para certos pares de elementos $x, y \in X$ a relação \leq está definida e possui as propriedades:

- (i) $x \le y$ implica $tx \le ty$ para $t \ge 0$ e $tx \ge ty$ para t < 0;
- (ii) $x \le y$ e $y \le x$ implicam x = y;
- (iii) $x_1 \le y_1$ e $x_2 \le y_2$ implicam $x_1 + x_2 \le y_1 + y_2$;
- (iv) $x \le y$ e $y \le z$ implicam $x \le z$.

Dizemos que x e y são comparáveis se existem constantes positivas α, β tais que $\alpha x \le y \le \beta x$.

Um cone K nos permite definir em X uma ordenação parcial \leq_K do seguinte modo: escrevemos $x \leq_K y$ se e somente se $y - x \in K$. As propriedades (i), (iii) e (iv) seguem da condição (b) e a propriedade (ii) segue da condição (c).

Além disso, ordenações parciais induzidas por cones satisfazem a seguinte propriedade, advinda da condição (a):

(v) se
$$x_n \to x$$
 e $y_n \to y$ em X e $x_n \le y_n \ \forall n \in \mathbb{N}$, então $x \le y$.

Observação. Veja ainda que K é o conjunto dos elementos não-negativos de X, isto é, $K = \{x \in X : x \geq_K 0\}$. Mais do que isso, dada uma ordenação parcial \leq que satisfaça (i)-(v), é fácil verificar que o conjunto dos elementos não-negativos é sempre um cone.

- **Exemplos.** (i) Se $X = \mathbb{R}^n$, $K = \mathbb{R}^n_+ := \{(x_1, \dots, x_n) \in X : x_i \ge 0, i = 1, \dots, n\}$ é um cone total e induz a ordenação parcial dada por $(x_1, \dots, x_n) \ge (y_1, \dots, y_n) \iff x_i \ge y_i, i = 1, \dots, n.$
 - (ii) Se $X=L^1(a,b),~K=L^1_+(a,b):=\{\psi\in X:\psi\geq 0~\text{q.t.p.}\}$ é um cone total pois todo $\psi\in X$ se decompõe em $\psi=\psi^+-\psi^-,~\text{com}~\psi^+=\max\{\psi,0\}\in X$ e $\psi^-=\max\{-\psi,0\}\in X.$ A ordenação parcial induzida é dada por $\psi\geq\phi\iff\psi(x)\geq\phi(x)~\text{q.t.p.}$

O seguinte lema será útil posteriormente.

Lema 1.5.2. Seja X um espaço de Banach ordenado parcialmente pelo cone K. Sejam x_0 e v_0 elementos fixos de X, com $v_0 \neq 0$, e $R = \{x_0 + tv_0 : t \in \mathbb{R}\}$. Então R não pode estar contido em K e a interseção $R \cap K$ é vazia ou igual a $\{x_0 + tv_0 : t \in I\}$, onde I é da forma:

- (i) $[t_0, +\infty)$ se $v_0 \in K$;
- (ii) $(-\infty, t_1]$ se $-v_0 \in K$;
- (iii) $[t_0, t_1]$, $\{t_0\}$ em caso contrário.

Demonstração. Se todos os elementos de R pertencessem a K, então os elementos da forma $x(t) = \frac{1}{|t|}(x_0 + tv_0)$ pertenceriam a K. Como K é fechado, também pertenceriam a K os limites de x(t) em $+\infty$ e $-\infty$, respectivamente v_0 e $-v_0$. Como $v_0 \neq 0$, isso contradiz o item (i) da definição de cone.

Como K e R são ambos fechados e convexos, sua interseção também é. Se não for vazia, então a ela corresponde um conjunto fechado e convexo de valores de $t \in \mathbb{R}$, ou seja, um intervalo com uma das formas dadas.

Suponha
$$x_0+t_0v_0 \in R\cap K$$
. Se $v_0 \in K$, então $x_0+tv_0=(x_0+t_0v_0)+(t-t_0)v_0 \in R\cap K$
 $\forall t \geq t_0$. Então $I=[t_0,+\infty)$. Similarmente, $-v_0 \in K$ implica $I=(-\infty,t_1]$.

Uma interpretação geométrica do lema é a de que a interseção de qualquer reta com um cone deve ser uma semi-reta, um segmento, um ponto ou o vazio.

1.6 Positividade de operadores e teoria de Frobenius

Nesta seção, X é um espaço de Banach real ou complexo parcialmente ordenado pelo cone K e seu dual X' é o conjunto de todos os funcionais lineares contínuos em X. O valor de $f \in X'$ em $x \in X$ é denotado por $\langle f, x \rangle$. Denotamos por $\mathcal{B}(X)$ o conjunto de todos os operadores lineares limitados de X em X. Se $T \in \mathcal{B}(X)$, seu dual (ou adjunto) é o operador $T' \in \mathcal{B}(X')$ definido por T'y' = x' se e somente se $\langle x', x \rangle = \langle y', Tx \rangle \ \forall x \in X$.

O cone dual é o conjunto formado por todos os funcionais lineares contínuos positivos, ou seja, $f \in K'$ se e somente se $f \in X'$ e $\langle f, x \rangle \geq 0 \ \forall x \in K$. $x \in K$ é chamado de ponto quase interior se $\langle f, x \rangle > 0$ para todo $f \in K' \setminus \{0\}$. Um funcional linear $f \in K'$ é dito estritamente positivo se $\langle f, x \rangle > 0$ para todo $x \in K \setminus \{0\}$. Um operador linear $T \in \mathcal{B}(X)$ é dito positivo se $T(K) \subset K$. Dizemos que $T \geq S$ se $T, S \in \mathcal{B}(X)$ e T - S é positivo.

Um operador (não-linear) $A: X \to X$ é dito monótono se $x_1, x_2 \in X$, $x_1 \leq x_2$ implicam $A(x_1) \leq A(x_2)$ (no caso linear, monótono significa o mesmo que positivo).

DEFINIÇÃO 1.6.1. (Sawashima, 1964) Um operador linear positivo $T \in \mathcal{B}(X)$ é dito semi-não-suportante¹ se para cada par $x \in K \setminus \{0\}$, $f \in K' \setminus \{0\}$, existe um inteiro positivo p = p(x, f) tal que $\langle f, T^p x \rangle > 0$. Um operador $T \in \mathcal{B}(X)$ é dito não-suportante² se para cada par $x \in K \setminus \{0\}$, $f \in K' \setminus \{0\}$, existe um inteiro positivo p = p(x, f) tal que $\langle f, T^n x \rangle > 0$ para todo $n \geq p$.

Exemplos. Se $X = \mathbb{R}^n$ e $K = \mathbb{R}^n_+$, todas as transformações lineares de domínio X são contínuas. O cone dual é formado pelos funcionais $f \in X'$ da forma $f(x) = a_1x_1 + \dots a_nx_n$, com $a_i \geq 0, i = 1, \dots, n$. Os pontos quase interiores são aqueles cujas coordenadas são todas estritamente positivas, e os funcionais lineares $f \in K'$ estritamente positivos são aqueles da forma $f(x) = a_1x_1 + \dots a_nx_n$, com $a_i > 0, i = 1, \dots, n$. Os operadores lineares em X se identificam com matrizes $n \times n$, segundo a base canônica, e são positivos se e somente se as entradas da matriz correspondente forem todas não-negativas. É possível mostrar que qualquer operador positivo $T \in \mathcal{B}(\mathbb{R}^n)$ será semi-não-suportante se e somente se for não-suportante e se e somente se a matriz correspondente M possuir uma potência M^p cujas entradas são todas estritamente positivas.

A teoria clássica de Perron-Frobenius relaciona a existência de autovalores corres-

¹ e 2 em inglês são chamados de semi-nonsupporting e nonsupporting, respectivamente.

pondentes a autovetores positivos à positividade da matriz. Foram criadas generalizações para essa teoria, com diferentes conceitos de positividade para operadores em espaços de dimensão arbitrária, uma das quais usamos neste texto.

Para o nosso caso, o leitor pode encontrar em [13] e [3], respectivamente, as provas dos seguintes teoremas:

PROPOSIÇÃO 1.6.2. Seja K um cone total, $T \in \mathcal{B}(X)$ um operador semi-não-suportante com respeito a K e seja r(T) um pólo do resolvente $R(\lambda, T)$. Então:

- (i) $r(T) \in P_{\sigma}(T) \setminus \{0\}$ e r(T) é um pólo simples do resolvente.
- (ii) O autoespaço correspondente a r(T) é unidimensional e o autovetor correspondente $x_0 \in K$ é um ponto quase interior. A relação Ty = r(T)y com $y \in K$ implica que $y = cx_0$ para alguma constante $c \in \mathbb{C}$.
- (iii) O autoespaço de T' correspondente a r(T) é também um subespaço unidimensional de X' gerado por um funcional estritamente positivo $f_0 \in K'$.

Proposição 1.6.3. (Krein-Rutman) Sejam X um espaço de Banach, X_+ um cone total e $T \in \mathcal{B}(X)$ um operador compacto e positivo com raio espectral r(T) > 0. Então r(T) é um pólo do resolvente $R(\lambda, T)$ e um autovalor de T, com um autovetor positivo $x_0 \in X_+ \setminus \{0\}$.

1.7 Concavidade de operadores

DEFINIÇÃO 1.7.1. (Krasnoselkii [5]) Seja X um espaço de Banach real parcialmente ordenado pelo cone K. Um operador $A: X \to X$ é dito ser um operador côncavo se existe $x_0 \in K \setminus \{0\}$ que satisfaça:

- (i) para todo $x \in K \setminus \{0\}$, Ax é comparável com x_0 ;
- (ii) para todo $x \in K$ comparável com x_0 vale $A(tx) \ge tAx \ \forall 0 \le t \le 1$.

Precisaremos posteriormente do seguinte lema:

Lema 1.7.2. Suponha que o operador $A: X \to X$ é monótono e côncavo, e seja $x_0 \in K \setminus \{0\}$ dado como na definição acima. Se para todo $x \in K$ comparável com x_0 e para todo 0 < t < 1 existe $\eta = \eta(x,t) > 0$ tal que

$$A(tx) \ge tAx + \eta x_0,\tag{1.5}$$

então A tem no máximo um ponto fixo positivo.

Demonstração. Suponha que $x_1 \in K \setminus \{0\}$ e $x_2 \in K \setminus \{0\}$ são pontos fixos positivos de A. Graças à concavidade de A, podemos escolher constantes positivas $\alpha_1 = \alpha_1(x_1) > 0$ e $\beta_2 = \beta_2(x_2)$ tais que

$$x_1 = Ax_1 \ge \alpha_1 x_0 = \alpha_1 \beta_2^{-1} \beta_2 x_0 \ge \alpha_1 x_2^{-1} Ax_2 = \alpha_1 \beta_2^{-1} x_2.$$

Se definimos $k = \sup\{\mu : x_1 \ge \mu x_2\}$, então a designaldade acima implica k > 0. Se supomos que 0 < k < 1, então existe $\eta = \eta(x_2, k) > 0$ tal que

$$x_1 = Ax_1 \ge A(kx_2) \ge kAx_2 + \eta x_0 \ge kx_2 + \eta \beta_2^{-1} Ax_2 = (k + \eta \beta_2^{-1})x_2,$$

o que contradiz a definição de k. Então sabemos que $k \ge 1$ e $x_1 \ge x_2$. Do mesmo modo, podemos provar que $x_2 \ge x_1$. Portanto $x_1 = x_2$.

Capítulo 2

O modelo SIR com estrutura etária

Neste capítulo objetivamos estudar a formulação de um modelo epidemiológico SIR com estrutura etária, e depois a existência e unicidade de soluções. Começaremos definindo intuitivamente o modelo demográfico com estrutura etária.

2.1 O modelo demográfico

Em 1926 McKendrick introduziu estrutura etária em em modelo de população feminina, assumindo que ela pode ser descrita como função de duas variáveis idade e tempo. Representaremos por n(a,t) a densidade de indivíduos de idade a no instante t, ou seja, o número de indivíduos com idade entre a e $a + \Delta a$ é aproximado por $n(a,t)\Delta a$. Então a população total no instante t é aproximadamente $\sum_a n(a,t)\Delta a$, o que justifica a seguinte definição para a população total:

$$n(t) = \int_{0}^{+\infty} n(a, t) da.$$

É razoável esperar que n(a,t)=0 para a suficientemente grande, digamos maior que certo $\omega>0$, de modo que a integral seja não necessariamente infinita, mas não faremos isso por hora.

Assumiremos que os membros deixam a população apenas por morte, a uma taxa de mortalidade $\mu(a)$. Isso significa que, entre os instantes t e $t+\Delta t$, morre uma fração $\mu(a)\Delta t$ dos membros que tinham idade entre a e $a+\Delta a$ no instante t. No instante t há $n(a,t)\Delta a$ indivíduos com idades entre a e $a+\Delta a$, então entre os instantes t e $t+\Delta t$ o número de mortes entre membros desse grupo é $n(a,t)\Delta a\mu(a)\Delta t$ e os sobreviventes têm

idades entre $a + \Delta t$ e $a + \Delta t + \Delta a$ no instante $t + \Delta t$. Então

$$n(a + \Delta t, t + \Delta t)\Delta a \approx n(a, t)\Delta a - n(a, t)\mu(a)\Delta a\Delta t.$$

Dividindo por $\Delta a \Delta t$, teremos:

$$\frac{n(a + \Delta t, t + \Delta t) - n(a, t)}{\Delta t} + \mu(a)n(a, t) \approx 0.$$

Agora tomamos $\Delta t \to 0$. Se n(a,t) for uma função diferenciável de a e t, teremos

$$\lim_{\Delta t \to 0} \frac{n(a + \Delta t, t + \Delta t) - n(a, t)}{\Delta t} = n_a(a, t) + n_t(a, t).$$

Então obtemos a equação de McKendrick:

$$n_a(a,t) + n_t(a,t) = -\mu(a)n(a,t).$$
 (2.1)

A função $\mu(a) \geq 0$ é chamada de função mortalidade ou módulo de mortalidade. Seja $w(\alpha)$ o número de indivíduos que sobrevivem até a idade $\alpha > a_0$ dentre aqueles que tinham certa idade a_0 em certo instante t_0 ; então $w(\alpha) = p(\alpha, t_0 + (\alpha - a_0))$. Derivando com relação a α e aplicando (2.1), teremos:

$$w'(\alpha) = -\mu(\alpha)w(\alpha),$$

então $w(a_2) = w(a_1)e^{-\int_{a_1}^{a_2} \mu(\alpha)d\alpha}$. A exponencial representa a probabilidade de que um indíviduo de idade a_1 sobreviva até chegar à idade a_2 . Em particular,

$$\pi(a) = e^{-\int_0^a \mu(\alpha)d\alpha} \tag{2.2}$$

é a probabilidade de sobrevivência até a idade a (π é chamada de função sobrevivência).

Agora, vamos assumir que a natalidade seja governada por uma função $\nu(a) \geq 0$ chamada m'odulo de fecudidade, isto é, $\nu(a)\Delta t$ é o número de filhos gerados por indivíduos de idades entre a e $a+\Delta a$ entre os instantes t e $t+\Delta t$. Então o número total de nascimentos nesse intervalo é aproximado por $\Delta t \sum_a \nu(a) n(a,t) \Delta a$. Fazendo $\Delta t \to 0$, essa quantidade deverá coincidir com $n(0,t)\Delta t$, então obtemos a condição de renovação:

$$n(0,t) = \int_0^{\omega} \nu(a)n(a,t)da.$$

Para completar o modelo, precisamos especificar uma distribuição etária inicial, de modo que o modelo completo fica:

$$n_a(a,t) + n_t(a,t) = -\mu(a)n(a,t)$$
 (2.3a)

$$n(0,t) = \int_0^{+\infty} \nu(a)n(a,t)da \qquad (2.3b)$$

$$n(a,0) = N_0(a).$$
 (2.3c)

O estudo detalhado das soluções desse problema pode ser encontrado em [1] e se baseia nos métodos de Feller (ver [4]) usando transformadas de Laplace. Para a existência de solução basta que

$$\int_0^{+\infty} N_0(a)da < +\infty, \tag{2.4}$$

$$\int_{0}^{+\infty} \nu(a)\pi(a)da < +\infty. \tag{2.5}$$

O primeiro número é a população total no instante t = 0, n(a, 0), e o segundo pode ser interpretado como o número esperado de filhos gerados por cada indivíduo durante toda a sua vida.

Em nossas aplicações a população estará em estado demográfico estacionário, ou seja, n(a,t) independe de t. Se fizermos n(a,t) = N(a) e n(t) = N em (2.3), teremos:

$$N'(a) = -\mu(a)N(a) \tag{2.6a}$$

$$N(0) = \int_0^{+\infty} \nu(a)N(a)da \qquad (2.6b)$$

$$N(a) = N_0(a). (2.6c)$$

Da primeira equação, deduzimos que $N(a)=N(0)\pi(a)$. Então $N=N(0)\int_0^\infty \pi(a)da$. Da segunda equação, dividindo por N(0) (e excluindo a solução trivial $N(a)\equiv 0$), teremos:

$$\int_0^{+\infty} \nu(a)\pi(a)da = 1. \tag{2.7}$$

Deduzimos então a relação entre ν e π (e portanto μ) necessária para a existência de uma solução estacionária. Além disso, de (2.6c), vem:

$$N_0(a) = N_0(0)\pi(a). (2.8)$$

De fato, a solução de (2.3) é estacionária se e somente se forem satisfeitas (2.7) e (2.8).

Observação. (i) Em (2.6a), se integramos os dois membros de 0 a $+\infty$, podemos deduzir que $N(0) = \int_0^{+\infty} \mu(a) N(a) da$. Se definimos a mortalidade média

$$\mu^* = \frac{1}{N} \int_0^{+\infty} \mu(a) N(a) da$$

e a fecundidade média

$$\nu^* = \frac{1}{N} \int_0^{+\infty} \nu(a) N(a) da,$$

então $N(0)=\mu^*N$ e a equação (2.7) se reescreve como $\mu^*=\nu^*$.

(ii) É demonstrado ainda em [1] que, valendo (2.7), qualquer distribuição etária inicial N_0 converge quando $t \to +\infty$ para a solução estacionária, a qual portanto é assintoticamente estável. Mais ainda, independentemente de valer (2.7), qualquer distribuição etária inicial converge quando $t \to +\infty$ para uma distribuição etária persistente, o que significa que a população total não tende a uma constante mas tende a manter proporções constantes entre as faixas etárias. Mais precisamente, nessa situação teremos $n(a,t) = A(a)e^{rt}$, onde r é constante e significa a taxa de crescimento da população.

2.2 Formulação do modelo SIR com estrutura etária

No nosso modelo epidemiológico, dividiremos uma população fechada em três classes: suscetíveis, infecciosos e imunes. Não consideraremos aqui uma classe de incubação, então uma pessoa que contrai a doença fica infecciosa imediatamente. Assumiremos ainda que a população está em estado demográfico estacionário, conforme definido na seção anterior. Denotando por N(a) a população com idade a, a partir do item (i) da observação ao final da seção anterior, obtemos:

$$N(a) = \mu^* N e^{-\int_0^a \mu(\sigma) d\sigma}.$$
(2.9)

Assumiremos que cada indivíduo pode viver por um tempo de no máximo $\omega > 0$, isto é, N(a) > 0 se $a < \omega$ e N(a) = 0 se $a > \omega$. Isso significa que μ é localmente integrável em $[0, \omega)$ e

$$\int_{0}^{\omega} \mu(\sigma) d\sigma = +\infty.$$

Agora sejam X(a,t), Y(a,t) e Z(a,t) as densidades de indivíduos respectivamente suscetíveis, infecciosos e imunes na idade a e no instante t. Então

$$N(a) = X(a,t) + Y(a,t) + Z(a,t).$$

Denotaremos por γ a taxa instantânea de recuperação, isto é, entre os instantes t e $t + \Delta t$ uma fração aproximada por $\gamma \Delta t$ dentre os indivíduos infectados se cura. Seja $\beta(a,b)$ o coeficiente de transmissão, ou seja, entre os instantes t e $t + \Delta t$ uma fração aproximada por $\beta(a,b)\Delta b\Delta t$ dentre os indivíduos suscetíveis de idade a é infectada por algum indivíduo infeccioso de idade entre b e $b + \Delta b$ entre os instantes t e $t + \Delta t$. Definimos a força de

infecção $\lambda(a,t)$ por:

$$\lambda(a,t) = \int_0^\omega \beta(a,\sigma) Y(\sigma,t) d\sigma,$$

o que representa a probabilidade instantânea de que certo indivíduo de idade a seja infectado por algum indivíduo infeccioso (de qualquer idade). Assumiremos ainda que a doença não afete a taxa de mortalidade da população.

Com essas hipóteses, usando um raciocínio similar ao utilizado na seção anterior, a epidemia pode ser descrita pelo seguinte sistema de equações diferenciais parciais:

$$\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial a}\right) X(a,t) = -\lambda(a,t) X(a,t) - \mu(a) X(a,t), \tag{2.10a}$$

$$\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial a}\right) Y(a, t) = \lambda(a, t) X(a, t) - (\mu(a) + \gamma) Y(a, t), \qquad (2.10b)$$

$$\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial a}\right) Z(a, t) = \gamma Y(a, t) - \mu(a) Z(a, t), \qquad (2.10c)$$

com as condições de contorno

$$X(0,t) = \mu^* N, \quad Y(0,t) = 0, \quad Z(0,t) = 0.$$
 (2.11)

A fim de simplificar o sistema, consideremos as frações das populações de suscetíveis, infecciosos e imunes na idade a e no instante t:

$$x(a,t) := \frac{X(a,t)}{N(a)}, \quad y(a,t) := \frac{Y(a,t)}{N(a)}, \quad z(a,t) := \frac{Z(a,t)}{N(a)}.$$

Então o sistema (2.10) pode ser reescrito para uma forma mais simples:

$$\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial a}\right) x(a,t) = -\lambda(a,t) x(a,t), \qquad (2.12a)$$

$$\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial a}\right) y(a, t) = \lambda(a, t) x(a, t) - \gamma y(a, t), \tag{2.12b}$$

$$\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial a}\right) z(a, t) = \gamma y(a, t), \qquad (2.12c)$$

$$x(0,t) = 1, \quad y(0,t) = 0, \quad z(0,t) = 0,$$
 (2.13)

onde

$$\gamma(a,t) = \int_0^\omega \beta(a,\sigma) N(\sigma) y(\sigma,t) d\sigma, \quad N(a) = \mu^* N \pi(a).$$
 (2.14)

No restante deste texto, consideraremos o sistema (2.12)-(2.14) com condições iniciais:

$$x(a,0) = x_0(a), \quad y(a,0) = y_0(a), \quad z(a,0) = z_0(a),$$
 (2.15)

onde $x_0(a) + y_0(a) + z_0(a) = 1$. Então segue que para todo $t \ge 0$

$$x(a,t) + y(a,t) + z(a,t) = 1.$$
 (2.16)

2.3 Existência e unicidade de soluções

Nesta seção mostraremos que o problema de valor inicial e contorno (2.12-2.15) tem uma única solução. Primeiro note que é suficiente considerar o sistema apenas em termos de x(a,t) e y(a,t), pois uma vez que essas funções sejam conhecidas, z(a,t) pode ser obtida pela equação z(a,t) = 1 - x(a,t) - y(a,t). Seja $\hat{x}(a,t) = x(a,t) - 1$. Então obtemos o novo sistema para as variáveis \hat{x} e y:

$$\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial a}\right)\hat{x}(a,t) = -\lambda(a,t)(1+\hat{x}(a,t)), \tag{2.17a}$$

$$\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial a}\right) y(a, t) = \lambda(a, t)(1 + \hat{x}(a, t)) - \gamma y(a, t), \tag{2.17b}$$

$$\hat{x}(0,t) = 0, \quad y(0,t) = 0.$$
 (2.18)

$$\hat{x}(a,0) = \hat{x}_0(a) := x_0(a) - 1, \quad y(a,0) = y_0(a),$$
 (2.19)

Seja $X=L^1(0,\omega;\mathbb{R}^2)\simeq L^1(0,\omega)\times L^1(0,\omega)$ o espaço de Banach formado pelas classes de equivalência das funções Lebesgue-integráveis de $[0,\omega]$ em \mathbb{R}^2 , com igualdade q.t.p. e equipado com a norma $\|(\psi_1,\psi_2)\|_X=\|\psi_1\|_1+\|\psi_2\|_1$. Reescreveremos o problema de valor inicial e contorno (2.17-2.19) como um problema de Cauchy abstrato em X. Suponha que $\beta(a,b)\in L^\infty([0,\omega]\times[0,\omega])$. Definiremos os operadores lineares $A:D(A)\to X$ e $P:L^1(0,\omega)\to L^1(0,\omega)$ e o operador não-linear $F:X\to X$ por:

$$(A\phi)(a) = \left(-\frac{d}{da}\phi_{1}(a), -\frac{d}{da}\phi_{2}(a) - \gamma\phi_{2}(a) \right),$$

$$(P\psi)(a) = \int_{0}^{\omega} \beta(a, \sigma)N(\sigma)\psi(\sigma)d\sigma,$$

$$F(\phi)(a) = (-(P\phi_{2})(a)(1 + \phi_{1}(a)), (P\phi_{2})(a)(1 + \phi_{1}(a))),$$

onde $\phi=(\phi_1(a),\phi_2(a))\in X,\,\psi\in L^1(0,\omega),$ o domínio D(A) é dado por:

$$D(A) = \{ \phi \in X : \phi_i \in AC[0, \omega], \phi_i(0) = 0 \}$$

e $AC[0,\omega]$ denota o conjunto das funções absolutamente contínuas em $[0,\omega]$. Com as definições acima, poderemos reescrever (2.17) sob a forma do problema de Cauchy semilinear abstrato em X dado por

$$\frac{d}{dt}u(t) = Au(t) + F(u(t)), \quad u(0) = u_0 \in X,$$
(2.20)

onde $u_0(a) = (\hat{x}_0(a), y_0(a)), \ \hat{x}_0(a) := x_0(a) - 1.$

Para demonstrar a existência e unicidade das soluções desse problema, usaremos o Teorema 1.3.8. Suas hipóteses serão garantidas pelo seguinte lema:

Lema 2.3.1. Com as definições acima:

- (i) Os operadores A, P e F estão bem-definidos;
- (ii) P é um operador linear limitado e $P\psi \in L^{\infty}(0,\omega)$;
- (iii) F é um operador não-linear continuamente Fréchet-diferenciável;
- (iv) A é gerador de um C_0 -semigrupo de contrações $T(t), t \geq 0$.
- Demonstração. (i) e (ii) A está bem definido, pois $\phi_i \in AC[0,\omega]$ implica que ϕ_i é diferenciável q.t.p. e $\phi_i' \in L^1(0,\omega)$. Como β é limitada e $N(\sigma) \leq \mu^*N$, temos a estimativa:

$$|(P\psi)(a)| \le ||\beta||_{\infty} \mu^* N ||\psi||_1$$

Então $P\psi \in L^{\infty}(0,\omega)$. Integrando teremos

$$||P\psi||_1 \le \omega ||\beta||_{\infty} \mu^* N ||\psi||_1,$$

então $P\psi \in L^1(0,\omega)$, P está bem definido e é limitado, com norma $\|P\| \leq \omega \|\beta\|_{\infty} \mu^* N$. Além disso, $F(\phi) \in X \ \forall \phi \in X$, pois $P\phi_2 \in L^{\infty}(0,\omega)$ e $\phi_1 \in L^1(0,\omega)$ implicam $(P\phi_2)(1+\phi_1) \in L^1(0,\omega)$.

(iii) Basta provar que a função $G: X \to L_1(0,\omega)$ dada por

$$G(\phi)(a) = (P\phi_2)(a)(1 + \phi_1(a)), \quad \phi = (\phi_1, \phi_2)$$

é continuamente Fréchet-diferenciável. Sejam $\bar{\phi}=(\bar{\phi}_1,\bar{\phi}_2),\ H=(H_1,H_2)\in X.$ Calculando a derivada de Gâteaux:

$$DG(\bar{\phi})H = \lim_{t \to 0} \frac{G(\bar{\phi} + tH) - G(\bar{\phi})}{t}$$

$$= \lim_{t \to 0} \frac{(P\bar{\phi}_2)(a)H_1(a)t + (PH_2)(a)(1 + \bar{\phi}_1(a))t + (PH_2)(a)H_1(a)t^2}{t}$$

$$= (P\bar{\phi}_2)(a)H_1(a) + (PH_2)(a)(1 + \bar{\phi}_1(a))$$

Veja que para cada $\bar{\phi} \in X$ a transformação linear $DG(\bar{\phi})$ é limitada, pois

$$||DG(\bar{\phi})H||_{1} \leq ||(P\bar{\phi}_{2})H_{1}||_{1} + ||(PH_{2})(1+\bar{\phi}_{1})||_{1}$$

$$\leq ||P\bar{\phi}_{2}||_{\infty}||H_{1}||_{1} + ||PH_{2}||_{\infty}||(1+\bar{\phi}_{1})||_{1}$$

$$\leq ||P\bar{\phi}_{2}||_{\infty}||H_{1}||_{1} + ||\beta||_{\infty}\mu^{*}N||H_{2}||_{1}||(1+\bar{\phi}_{1})||_{1}$$

$$\leq (||P\bar{\phi}_{2}||_{\infty} + ||\beta||_{\infty}\mu^{*}N||(1+\bar{\phi}_{1})||_{1})||H||.$$

Então G tem derivada de Gâteaux. Basta agora mostrar que $DG: X \to \mathcal{B}(X, L^1(0, \omega))$ é contínua, onde $\mathcal{B}(X, L^1(0, \omega))$ é o espaço das transformações lineares limitadas de X em $L^1(0, \omega)$:

$$\begin{split} \|DG(\phi)H - DG(\bar{\phi})H\|_{1} & \leq \|P(\bar{\phi}_{2} - \phi_{2})H_{1}\|_{1} + \|(PH_{2})(\bar{\phi}_{1} - \phi_{1})\|_{1} \\ & \leq \|P(\bar{\phi}_{2} - \phi_{2})\|_{\infty} \|H_{1}\|_{1} + \|PH_{2}\|_{\infty} \|\bar{\phi}_{1} - \phi_{1}\|_{1} \\ & \leq \|\beta\|_{\infty} \mu^{*}N\|\bar{\phi}_{2} - \phi_{2}\|_{1} \|H_{1}\|_{1} + \|\beta\|_{\infty} \mu^{*}N\|H_{2}\|_{1} \|\bar{\phi}_{1} - \phi_{1}\|_{1} \\ & \leq (\|\beta\|_{\infty} \mu^{*}N\|\bar{\phi}_{2} - \phi_{2}\|_{1} + \|\beta\|_{\infty} \mu^{*}N\|\bar{\phi}_{1} - \phi_{1}\|_{1}) \|H\|_{X}. \end{split}$$

Daí,

$$||DG(\phi) - DG(\bar{\phi})|| \leq ||\beta||_{\infty} \mu^* N ||\bar{\phi}_2 - \phi_2||_1 + ||\beta||_{\infty} \mu^* N ||\bar{\phi}_1 - \phi_1||_1$$

$$\leq ||\beta||_{\infty} \mu^* N ||\bar{\phi} - \phi||_X.$$

Então DG é contínua e portanto F é continuamente Fréchet-diferenciável.

(iv)Para cada $t \geq 0$, defina $T(t): X \to X$ por

$$T(t)(\phi)(a) = \begin{cases} (\phi_1(a-t), \phi_2(a-t)e^{-\gamma t}) & \text{se } a \ge t, \\ (0,0) & \text{se } a < t. \end{cases}$$

Temos que mostrar que T(t) é um C_0 -semigrupo. Por simplicidade, vamos identificar cada $\psi \in L^1(0,\omega)$ com a função correspondente em $L^1(\mathbb{R})$, definindo $\psi \equiv 0$ em $(-\infty,0) \cup (\omega,+\infty)$. Assim T fica definido por:

$$T(t)(\phi)(a) = (\phi_1(a-t), \phi_2(a-t)e^{-\gamma t})$$

É claro que $T(0)=id_X$, e fácil verificar que T(t+s)=T(t)T(s). $T(t):X\to X$ é contínuo pois

$$\begin{aligned} ||T(t)\bar{\phi} - T(t)\phi||_{X} \\ &= \int_{0}^{\omega} |\bar{\phi}_{1}(a-t) - \phi_{1}(a-t)| da + \int_{0}^{\omega} |(\bar{\phi}_{2}(a-t) - \phi_{2}(a-t))e^{-\gamma t}| da \\ &\leq \int_{0}^{\omega - t} |\bar{\phi}_{1}(a) - \phi_{1}(a)| da + \int_{0}^{\omega - t} |\bar{\phi}_{2}(a) - \phi_{2}(a)|e^{-\gamma t} da \\ &\leq ||\bar{\phi}_{1} - \phi_{1}||_{1} + ||\bar{\phi}_{2} - \phi_{2}||_{1}e^{-\gamma t} \leq ||\bar{\phi} - \phi||_{X}. \end{aligned}$$

Em particular, $||T(t)|| \le 1$ para todo $t \ge 0$, então T é um semigrupo de contrações. Resta mostrar que $t \to T(t)\phi$, $t \in [0, +\infty)$ é contínua para cada $\phi \in X$. Sejam $0 \le s < t$. Temos que

$$||T(t)\phi - T(s)\phi||_{X}$$

$$= \int_{0}^{\omega} |\phi_{1}(a-t) - \phi_{1}(a-s)| da + \int_{0}^{\omega} |\phi_{2}(a-t)e^{-\gamma t} - \phi_{2}(a-s)e^{-\gamma s}| da$$

$$\leq \int_{0}^{\omega} |\phi_{1}(a-t) - \phi_{1}(a-s)| da + \int_{0}^{\omega} |\phi_{2}(a-t)e^{\gamma(a-t)} - \phi_{2}(a-s)e^{\gamma(a-s)}| da.$$

Mudando coordenadas e estendendo as funções para \mathbb{R} , vem:

$$\begin{split} & \left\| T(t)\phi - T(s)\phi \right\|_X \\ & \leq \int_{\mathbb{R}} \left| \phi_1(\sigma + s - t) - \phi_1(\sigma) \right| d\sigma + \int_{\mathbb{R}} \left| \phi_2(\sigma + s - t)e^{\sigma + s - t} - \phi_2(\sigma)e^{-\gamma\sigma} \right| da. \end{split}$$

Como ϕ_1 e $\phi_2(\cdot)e^{\gamma}$ são integráveis em \mathbb{R} , segue da Proposição A.2 do Apêndice a continuidade desejada.

Com isso, o Teorema 1.3.8 garante que, para cada $u_0 \in X$, existe um intervalo máximo de existência $[0,t_m)$ e uma única solução fraca de (2.20), isto é, uma única função contínua $t \to u(t;u_0)$ de $[0,t_m)$ em X tal que

$$u(t; u_0) = T(t)u_0 + \int_0^t T(t-s)F(u(s; u_0))ds$$
 (2.21)

para todo $t \in [0, t_m)$. Além disso, ou $t_m = +\infty$ ou $\lim_{t \to t_m^-} \|u(t; u_0)\|_X = +\infty$. Mais ainda, se $u_0 \in D(A)$, então $u(t; u_0) \in D(A)$ para $0 \le t < t_m$ e a função $t \to u(t; u_0)$ é continuamente diferenciável e satisfaz (2.20) em $[0, t_m)$. Nesse caso é fácil ver que a definição de T(t) implica que a solução fraca satisfaz ainda a condição de contorno u(t)(0) = (0, 0) para $0 \le t < t_m$, e portanto resolve (2.17).

Para garantir a existência de uma solução global, precisaremos do seguinte lema:

Lema 2.3.2. Sejam

$$\Omega := \{(\hat{x}, y) \in X : \hat{x} \ge -1, y \ge 0\}$$

e

$$\Omega_0 := \{(\hat{x}, y) \in X : -1 \le \hat{x} \le 0, 0 \le y \le 1\}.$$

Então a solução fraca $u(t; u_0)$, $u_0 \in \Omega$ de (2.20) "entra"em Ω_0 após um tempo finito e o conjunto Ω_0 é positivamente invariante.

Demonstração. Da primeira equação em (2.12), temos a representação

$$x(a,t) = \begin{cases} e^{-\int_0^a \lambda(\rho, t - a + \rho)d\rho} & \text{se } t > a, \\ x_0(a, t)e - \int_0^t \lambda(a - t + \rho, \rho)d\rho & \text{se } t < a, \end{cases}$$
(2.22)

o que mostra que $\hat{x}(a,t) \ge -1$ quando $x_0(a) \ge 0$. Se escrevemos a equação (2.12b) como o problema de Cauchy abstrato

$$\frac{d}{dt}y(t) = By(t) + (Py(t))(1 + \hat{x}(t)), \quad y(0) = y_0 \in L^1(0, \omega), \tag{2.23}$$

onde $\hat{x}(t)(a) = \hat{x}(a,t)$ e o operador B é definido por

$$B = -\frac{d}{da} - \gamma, \quad D(B) = \{ \psi \in L^1(0, \omega) : \psi \in AC[0, \omega], \psi(0) = 0 \},$$

então obtemos

$$y(t) = S(t)y(0) + \int_0^t S(t-s)(Py(s))(1+\hat{x}(s))ds, \qquad (2.24)$$

onde S(t) := exp(tB) é um C_0 -semigrupo gerado por B e dado por $(S(t)\psi)(a) = \psi(a-t)e^{-\gamma t}$. Agora, mostraremos que y(t) é positivo se assumimos que $\hat{x}(t) \geq -1$ e $y_0 \geq 0$. Dado $t' \in (0, t_m)$, defina o espaço $W = C([0, t']; L^1(0, \omega))$ das funções contínuas de [0, t'] em $L^1(0, \omega)$ munido da norma

$$\|\alpha\|_W = \sup_{t \in [0,t']} \|\alpha(t)\|_1 e^{Lt}$$

onde L será escolhido adequadamente. W é completo, e nele definimos o operador K : $W \to W$ dado por:

$$K(\alpha)(t) = S(t)y_0 + \int_0^t S(t-s)(P\alpha(s))(1+\hat{x}(s))ds.$$

É claro que y é ponto fixo de K. Se mostrarmos que K é uma contração forte, o Teorema do Ponto Fixo de Banach (Proposição A.4 do Apêndice) permitirá escrever y como o limite de uma sequência de elementos positivos.

Afirmação. Para uma escolha adequada de L, K é uma contração forte.

Demonstração.

$$|K(\bar{\alpha})(t)(a) - K(\alpha)(t)(a)| = |\int_{0}^{t} S(t-s)P(\bar{\alpha}(s) - \alpha(s))(a)(1 + \hat{x}(a,s))ds|$$

$$\leq \int_{0}^{t} |P(\bar{\alpha}(s) - \alpha(s))(a - (t-s))|e^{-\gamma(t-s)}(1 + \hat{x}(a,s))ds$$

$$\leq ||\beta||_{\infty} \mu^{*} N e^{-\gamma t} \int_{0}^{t} ||\bar{\alpha}(s) - \alpha(s)||_{1} e^{\gamma s} (1 + \hat{x}(a,s))ds$$

Como \hat{x} é contínua, $\|\hat{x}(\cdot,t)\|_1$ é limitada, daí podemos definir $C = \|\beta\|_{\infty} \mu^* N \sup_{t \in [0,t']} (\omega + \|\hat{x}(\cdot,t)\|_1)$. Então, integrando de 0 a ω , teremos:

$$\begin{split} \|K(\bar{\alpha})(t) - K(\alpha)(t)\|_1 & \leq Ce^{-\gamma t} \int_0^t \|\bar{\alpha}(s) - \alpha(s)\|_1 e^{\gamma s} ds \\ \|K(\bar{\alpha})(t) - K(\alpha)(t)\|_1 e^{-Lt} & \leq Ce^{-(\gamma + L)t} \int_0^t \|\bar{\alpha}(s) - \alpha(s)\|_1 e^{-Ls} e^{(\gamma + L)s} ds \\ & \leq Ce^{-(\gamma + L)t} \|\bar{\alpha} - \alpha\|_W \int_0^t e^{(\gamma + L)s} ds \\ & \leq \frac{C}{\gamma + L} \|\bar{\alpha} - \alpha\|_W (1 - e^{-(\gamma + L)t}) \end{split}$$

Tomando supremo, vem:

$$||K(\bar{\alpha}) - K(\alpha)||_W \le \frac{C}{\gamma + L} ||\bar{\alpha} - \alpha||_W.$$

Tomando $L>C-\gamma,\,K$ será uma contração forte.

Como W é completo, pelo Teorema do Ponto Fixo de Banach, a sequência $y = K^n(y_0)$ converge para o único ponto fixo de K, que é y. Além disso, é fácil ver que $\alpha(t) \in \Omega \ \forall t \in [0,t']$ implica $K(\alpha)(t) \in \Omega \ \forall t \in [0,t']$. Assim, $y(t;y_0) \in \Omega$ para todo $0 \le t \le t_m$ se $y_0 \in \Omega$.

Agora seja $w(t) := \hat{x}(t) + y(t)$. Então temos

$$\frac{d}{dt}w(t) = Cw(t) - \gamma y(t), \quad w(0) = \hat{x}_0 + y_0 \in L^1(0, \omega), \tag{2.25}$$

onde o operador C é dado por

$$C = -\frac{d}{da}, \quad D(C) = \{ \psi \in L^1(0, \omega) : \psi \in AC[0, \omega], \psi(0) = 0 \}.$$

De (2.25), segue que para y(t) positivo

$$w(t) = U(t)w(0) - \int_0^t U(t-s)\gamma y(s)ds \le U(t)w(0), \tag{2.26}$$

onde $U(t), t \geq 0$ é o C_0 -semigrupo positivo gerado pelo operador C, dado por $(S(t)\psi)(a) = \psi(a-t)$. Então $w(t)(a) \leq w(0)(a-t) = \hat{x}_0(a-t) + y_0(a-t), a > t$ e $w(t) \leq 0$ para $t \geq \omega$, que implica $\hat{x}(t) \leq 0$ e $y(t) \leq 1$ para $t \geq \omega$. Então segue que a solução fraca $u(t; u_0), u_0 \in \Omega$ entra em Ω_0 quando $t \geq \omega$, e se $u_0 \in \Omega_0$, então $u(t; u_0) \in \Omega_0$ para todo $t \geq 0$. Isso completa a demonstração.

Graças a esse lema, sabemos que a norma da solução local $u(t; u_0)$, $u_0 \in \Omega$ de (2.20) é limitada em seu intervalo de definição. Então obtemos o seguinte resultado:

Proposição 2.3.3. O problema de Cauchy abstrato (2.20) tem uma única solução clássica global em X com respeito ao dado inicial $u_0 \in \Omega \cap D(A)$.

Segue imediatamente que o problema de valor inicial e de contorno (2.12)-(2.14) tem uma única solução com respeito aos dados iniciais, a qual é continuamente diferenciável, global e positiva.

2.4 Existência de estados estacionários

Seja $(x^*(a), y^*(a))$ um estado estacionário do sistema 2.12. Então é fácil verificar que:

$$x^*(a) = e^{-\int_0^a \lambda^*(\sigma)d\sigma}, \tag{2.27a}$$

$$y^*(a) = \int_0^a e^{-\gamma(a-\sigma)} \lambda^*(\sigma) e^{-\int_0^\sigma \lambda^*(\eta)d\eta} d\sigma, \qquad (2.27b)$$

$$\lambda^*(a) = \int_0^\omega \beta(a, \sigma) N(\sigma) y^*(\sigma) d\sigma. \tag{2.27c}$$

Substituindo a segunda equação na terceira e integrando por partes, obtemos uma equação para $\lambda^*(a)$:

$$\lambda^*(a) = \int_0^\omega \phi(a,\sigma) \lambda^*(\sigma) e^{-\int_0^\sigma \lambda^*(\eta) d\eta} d\sigma, \qquad (2.28)$$

$$\phi(a,\sigma) = \int_{\sigma}^{\omega} \beta(a,\zeta)N(\zeta)e^{-\gamma(\zeta-\sigma)}d\zeta. \tag{2.29}$$

Veja que teremos

$$|\phi(a,\sigma)| \le \|\beta\|_{\infty} \int_{\sigma}^{\omega} N(\zeta) d\zeta \le \|\beta\|_{\infty} \omega N. \tag{2.30}$$

Da terceira equação de (2.27), segue que $|\lambda^*(a)| \leq \mu^* N \|\beta\|_{\infty} \|y^*\|_1$. Então segue de $y^* \in L^1(0,\omega)$ que $\lambda^* \in L^\infty(0,\omega)$. É claro que uma solução de (2.28) é $\lambda^*(a) \equiv 0$, a qual corresponde ao estado de equilíbrio livre de doença. Para investigar soluções positivas nãotriviais de (2.28), definimos o operador não linear $\Phi(\psi)$ no espaço de Banach $E = L^1(0,\omega)$ com o cone positivo $E_+ := \{\psi \in E : \psi \geq 0 \text{ q.t.p.}\}$ por:

$$\Phi(\psi)(a) := \int_0^\omega \phi(a, \sigma) \psi(\sigma) e^{-\int_0^\sigma \psi(\eta) d\eta} d\sigma, \quad \psi \in E.$$
 (2.31)

Como o domínio de Φ está incluído em $L^{\infty}(0,\omega)$, as soluções de (2.28) correspondem a pontos fixos do operador Φ . Observe que o operador Φ tem um majorante linear positivo T definido por:

$$(T\psi)(a) = \int_0^\omega \phi(a,\sigma)\psi(\sigma)d\sigma, \quad \psi \in E.$$
 (2.32)

Estudaremos T com base nas definições da seção anterior. Para tanto, precisaremos da seguinte suposição:

Suposição 2.4.1. (1) $\beta \in L^{\infty}((0,\omega) \times (0,\omega))$.

(2)
$$\lim_{h \to 0} \int_0^\omega |\beta(a+h,\zeta) - \beta(a,\zeta)| da = 0$$
 (2.33)

uniformemente para $\zeta \in \mathbb{R}$, onde β é estendida por $\beta(a,\zeta) = 0$ para $a,\zeta \in (-\infty,0) \cup (\omega,\infty)$.

(3) Existem números α com $0 < \alpha < \omega$ e $\varepsilon > 0$ tais que

$$\beta(a,\zeta) \ge \varepsilon \text{ para quase todo } (a,\zeta) \in (0,\omega) \times (\omega - \alpha,\omega).$$
 (2.34)

Então podemos provar que:

Lema 2.4.2. Sob as hipóteses da Suposição 2.4.1, o operador $T: E \to E$ é não-suportante e compacto.

Demonstração. Defina o funcional linear positivo $f_0 \in E_+^*$ por

$$\langle f_0, \psi \rangle := \int_0^\omega \left[\int_\sigma^\omega s(\zeta) N(\zeta) e^{-\gamma(\zeta - \sigma)} d\zeta \right] \psi(\sigma) d\sigma, \quad \psi \in E, \tag{2.35}$$

onde a função $s(\zeta)$ é definida por $s(\zeta) = 0$, $\zeta \in [0, \omega - \alpha)$; $s(\zeta) = \varepsilon$, $\zeta \in (\omega - \alpha, \omega)$. Então $\beta(a, \zeta) \geq s(\zeta)$ para quase todo $(a, \zeta) \in [0, \omega] \times [0, \omega]$. É fácil ver que o funcional f_0 é estritamente positivo e que

$$T\psi \ge \langle f_0, \psi \rangle e, \quad e = 1 \in E_+, \quad \psi \in E_+.$$
 (2.36)

Então para todo natural n, teremos:

$$T^{n+1}\psi \ge \langle f_0, \psi \rangle \langle f_0, e \rangle^n e.$$

Daí obtemos $\langle F, T^n \psi \rangle > 0$, $n \geq 1$ para todo par $\psi \in E_+ \setminus \{0\}$, $F \in E_+^* \setminus \{0\}$, isto é, T é não-suportante. Para demonstrar que T é compacto, usaremos o critério de Fréchet-Kolmogorov (Proposição A.3 do Apêndice). Como o critério se aplica ao espaço $L^1(\mathbb{R})$, fazemos a identificação $E \simeq \{\psi \in L^1(\mathbb{R}) : \psi(a) = 0 \ \forall a \in \mathbb{R} \setminus [0, \omega]\} \subset L^1(\mathbb{R})$, e estendemos T para $L^1(\mathbb{R})$ definindo $\phi(a, \sigma) = 0$ para (a, σ) fora de $[0, \omega] \times [0, \omega]$. Desse modo temos

 $T(L^1(\mathbb{R})) \subset E$ e é suficiente mostrar que T é compacto em $L^1(\mathbb{R})$. Primeiro, usando (2.30), teremos para todo $\psi \in L^1(\mathbb{R})$:

$$||T\psi||_{1} \leq \int_{0}^{\omega} \int_{0}^{\omega} |\phi(a,\sigma)\psi(\sigma)| d\sigma da$$

$$\leq ||\beta||_{\infty} \omega N \int_{0}^{\omega} \int_{0}^{\omega} |\psi(\sigma)| d\sigma da$$

$$\leq ||\beta||_{\infty} \omega^{2} N ||\psi||_{1}.$$

Então T é limitado. Seja K um subconjunto limitado de $L^1(\mathbb{R})$, com $\|\psi\|_1 \leq M \ \forall \psi \in K$. T(K) é limitado, queremos mostrar que T(K) é relativamente compacto. Veja que

$$\int_{0}^{\omega} |(T\psi)(a+h) - (T\psi)(a)| da \leq \int_{0}^{\omega} \int_{0}^{\omega} |\phi(a+h,\sigma) - \phi(a,\sigma)| |\psi(\sigma)| d\sigma da$$

$$\leq \int_{0}^{\omega} \left(\int_{0}^{\omega} |\phi(a+h,\sigma) - \phi(a,\sigma)| da \right) |\psi(\sigma)| d\sigma$$

$$\leq M \sup_{0 \leq \sigma \leq \omega} \int_{0}^{\omega} |\phi(a+h,\sigma) - \phi(a,\sigma)| da. \tag{2.37}$$

Usando a definição de ϕ , teremos:

$$\int_0^\omega |\phi(a+h,\sigma) - \phi(a,\sigma)| da \leq \int_0^\omega \int_0^w |\beta(a+h,\zeta) - \beta(a,\zeta)| N(\zeta) d\zeta da$$
$$\leq \mu^* N \int_0^\omega \int_0^w |\beta(a+h,\zeta) - \beta(a,\zeta)| d\zeta da.$$

Da suposição 2.4.1 e da equação (2.37), provamos que é satisfeita a condição (ii) do critério de Fréchet-Kolmogorov. Agora veja que, como $T(L^1(\mathbb{R})) \subset E$, teremos

$$\int_{|a| > \omega} |(T\psi)(a)| da = 0.$$

Então todas as condições necessárias são satisfeitas e concluímos que T(K) é relativamente compacto em $L^1(\mathbb{R})$. Portanto T é compacto.

Segue da Proposição 1.6.2 que o raio espectral r(T) do operador T é o único autovalor positivo com um autovetor positivo e ainda um autovalor do operador dual T' com um autofuncional estritamente positivo. Agora podemos provar o seguinte:

Proposição 2.4.3. (Resultados de bifurcação) Seja r(T) o raio espectral do operador T definido por (2.32). Então:

(1) Se $r(T) \leq 1$, então a única solução não-negativa da equação $\psi = \Phi(\psi)$ é a solução trivial $\psi \equiv 0$.

(2) Se r(T) > 1, a equação $\psi = \Phi(\psi)$ tem pelo menos uma solução não-trivial positiva.

Demonstração. Suponha que $r(T) \leq 1$. É fácil verificar que $T\psi - \Phi(\psi) \in E_+ \setminus \{0\}$ para $\psi \in E_+ \setminus \{0\}$. Se existe uma solução $\psi_0 \in E_+ \setminus \{0\}$ de $\psi = \Phi(\psi)$, então $\psi_0 = \Phi(\psi_0) \leq T\psi_0$. Seja $F_0' \in E_+' \setminus \{0\}$ o autovetor adjunto de T correspondente ao autovalor r(T). Tomando pares duais, encontramos $\langle F_0', T(\psi_0) - \psi_0 \rangle = (r(T) - 1) \langle F_0', \psi_0 \rangle > 0$, pois $T(\psi_0) - \psi_0 \in E_+ \setminus \{0\}$ e F_0' é estritamente positivo. Então temos r(T) > 1, o que é uma contradição. Vamos agora assumir que r(T) > 1. Usando a Suposição 2.4.1, de maneira análoga ao que foi feito na demonstração do Lema 2.4.2, podemos deduzir que

$$\int_{0}^{\omega} |\Phi(\psi)(a+h) - \Phi(\psi)(a)| da \leq \int_{0}^{\omega} \int_{0}^{\omega} |\phi(a+h,\sigma) - \phi(a,\sigma)| da |\psi(\sigma)| e^{-\int_{0}^{\sigma} \psi(\eta) d\eta} d\sigma$$

$$\leq \left(1 - e^{-\|\psi\|_{1}}\right) \sup_{0 < \sigma < \omega} \int_{0}^{\omega} |\phi(a+h,\sigma) - \phi(a,\sigma)| da$$

e ainda

$$\int_0^\omega |\Phi(\psi)(a)| da \le \left(1 - e^{-\|\psi\|_1}\right) \sup_{0 \le \sigma \le \omega} \int_0^\omega |\phi(a, \sigma)| da, \tag{2.38}$$
$$\int_{|a| \ge \omega} |\Phi(\psi)(a)| da = 0.$$

Então o operador Φ é completamente contínuo em E. Definamos M_0 por:

$$M_0 := \sup_{0 \le \sigma \le \omega} \int_0^{\omega} \phi(a, \sigma) da,$$

e o conjunto $\Omega = \{ \psi \in E : 0 \le \psi, \|\psi\|_1 \le M_0 \}$. Então, de 2.38, temos $\Phi(E_+) \subset \Omega$, em particular Ω é invariante por Φ). Definamos o operador Φ_r por:

$$\Phi_r(\psi) = \begin{cases} \Phi(\psi), & \text{se } \|\psi\|_1 \ge r, \ \psi \in E_+, \\ \Phi(\psi) + (r - \|\psi\|_1)\psi_0, & \text{se } \|\psi\|_1 \le r, \ \psi \in E_+, \end{cases}$$

onde ψ_0 é o autovetor positivo de T correspondente a r(T) > 1. Então Φ_r é também completamente contínuo. Considere o conjunto:

$$\Omega_r := \{ \psi \in E : 0 \le \psi, \|\psi\|_1 \le M_0 + r \|\psi_0\|_1 \}.$$

Então, dado $\psi \in \Omega_r$, teremos:

$$\|\Phi_r(\psi)\|_1 \le \|\psi\|_1 \le M_0 \text{ se } \|\psi\|_1 \ge r,$$

$$\|\Phi_r(\psi)\|_1 \le \|\Phi(\psi)\|_1 + (r - \|\psi\|_1)\|\psi_0\| \le M_0 + r\|\psi_0\|_1 \text{ se } \|\psi\|_1 \le r.$$

Então $\Phi_r(\Omega_r) \subset \Omega_r$. Como Ω_r é limitado, convexo e fechado em E, Φ_r tem um ponto fixo $\psi_r \in \Omega_r$ (Teorema do Ponto Fixo de Schauder, Proposição A.5 do Apêndice). Vejamos agora que a derivada de Fréchet de $\Phi(\psi)$ em $\psi = 0$ é o operador T. Seja $H \in E$.

$$\frac{\|\Phi(H) - \Phi(0) - TH\|_{1}}{\|H\|_{1}} \leq \int_{0}^{\omega} \int_{0}^{\omega} \phi(a, \sigma) |H(\sigma)| \frac{e^{-\int_{0}^{\sigma} \psi(\eta) d\eta} - 1}{\|H\|_{1}} d\sigma da$$

$$\leq M_{0} \int_{0}^{\omega} |H(\sigma)| \frac{|e^{-\int_{0}^{\sigma} \psi(\eta) d\eta} - 1|}{\|H\|_{1}} d\sigma$$

$$\leq M_{0} \int_{0}^{\omega} |H(\sigma)| \frac{e^{\|H\|_{1}} - 1}{\|H\|_{1}} d\sigma$$

Como $\lim_{t\to 0} \frac{e^{-t}-1}{t}=1$, podemos tomar $\delta>0$ tal que $|t|<\delta$ implica $\frac{|e^t-1|}{t}<2$, daí

$$\frac{\|\Phi(H) - \Phi(0) - TH\|_{1}}{\|H\|_{1}} \le M_{0} \int_{0}^{\omega} 2|H(\sigma)|d\sigma$$

Então o limite é zero quando $||H||_1 \to 0$, ou seja, T é a derivada de Fréchet de Φ em 0. Sabemos que T não tem autovetores em E_+ correspondendo ao autovalor 1. Agora, aplicaremos o método de Krasnoselkii (ver [5], Teorema 4.11), para mostrar que as normas dos pontos fixos são maiores que r se r é suficientemente pequeno, e consequentemente que Φ tem um ponto fixo positivo. Denote $\psi_n = \psi_{1/n}$. Teremos

$$0 < \|\psi_n\|_1 \le \frac{1}{n}.\tag{2.39}$$

Da definição de Φ_r , vem

$$\Phi(\psi_n) + \left(\frac{1}{n} - \|\psi\|_1\right)\psi_0 = \psi_n. \tag{2.40}$$

Como T é compacto, a imagem por T da esfera unitária é compacta, logo a sequência $T\frac{\psi_n}{\|\psi_n\|_1}$ admite subsequência convergente. Por simplicidade, suponhamos que ela converge para certo $\zeta \in E_+$. De (2.39), somando e subtraindo termos, temos

$$\left(\frac{1}{n\|\psi_n\|_1}\right)\psi_0 = \frac{\psi_n}{\|\psi_n\|_1} - \frac{\Phi(\psi_n) - T\psi_n}{\|\psi_n\|_1} + T\frac{\psi_n}{\|\psi_n\|_1}
\left(\frac{1}{n\|\psi_n\|_1}\right)\|\psi_0\|_1 \le 1 + \frac{\|\Phi(\psi_n) - T\psi_n\|_1}{\|\psi_n\|_1} + \left\|T\frac{\psi_n}{\|\psi_n\|_1}\right\|_1,$$
(2.41)

que implica

$$\limsup_{n \to \infty} \left(\frac{1}{n \|\psi_n\|_1} \right) \|\psi_0\|_1 \le 1 + \|\zeta\|_1.$$

De (2.39), teremos $\frac{1}{n\|\psi_n\|_1} \ge 0$. Então, podemos tomar uma subsequência de ψ_n tal que esse termo converge. Por simplicidade, podemos supor que esse termo converge para

 $\alpha \geq 0$. De (2.41), tomando limites temos agora que $\frac{\psi_n}{\|\psi_n\|_1}$ converge para certo $u_0 \in E_+$, com $\|u_0\| = 1$, e vale a relação:

$$\alpha \psi_0 = u_0 - T u_0. \tag{2.42}$$

Como 1 não é autovalor de T, devemos ter $\alpha \neq 0$. Então $u_0 \geq \alpha \phi_0$ com $\alpha > 0$, daí $u_0 + \alpha(-\phi_0) \geq 0$. Pelo Lema 1.5.2, existe t_0 maximal no sentido de que $u_0 \geq t_0 \phi_0$ e $u_0 \geq t \phi_0$ implica $t \leq t_0$. De (2.42), teremos:

$$u_0 \ge T(t_0\phi_0) + \alpha\psi_0 = (r(T)t_0 + \alpha)\psi_0.$$

Mas $r(T)t_0 + \alpha > t_0$, o que contradiz a definição de t_0 . Isso completa a demonstração. \square

2.5 Unicidade dos estados estacionários

Para provar a unicidade da solução estacionária, precisaremos da seguinte suposição:

Suposição 2.5.1. Para todo $(a, \sigma) \in [0, \omega] \times [0, \omega]$, vale a designaldade:

$$\beta(a,\sigma)N(\sigma) - \gamma \int_{\sigma}^{\omega} \beta(a,\zeta)N(\zeta)e^{-\gamma(\zeta-\sigma)}d\zeta \ge 0.$$
 (2.43)

Proposição 2.5.2. Suponha que valha a Suposição 2.5.1. Se r(T) > 1, então Φ tem apenas um ponto fixo positivo.

Demonstração. Do Lema 1.7.2 e da Proposição 2.4.3, é suficiente mostrar que Φ é um operador monótono côncavo satisfazendo a condição (1.5). Da definição de Φ , (equação (2.31)), segue que

$$\begin{split} \Phi(\psi)(a) &= \int_0^\omega \left(\int_\sigma^\omega \beta(a,\zeta) N(\zeta) e^{-\gamma(\zeta-\sigma)} d\zeta \right) \psi(\sigma) e^{-\int_0^\sigma \psi(\eta) d\eta} d\sigma \\ &= \int_0^\omega \int_0^\zeta \beta(a,\zeta) N(\zeta) e^{-\gamma(\zeta-\sigma)} \psi(\sigma) e^{-\int_0^\sigma \psi(\eta) d\eta} d\sigma d\zeta \\ &= \int_0^\omega \beta(a,\zeta) N(\zeta) e^{-\gamma\zeta} \left(\int_0^\zeta e^{\gamma\sigma} \left(-\frac{d}{d\sigma} \right) e^{-\int_0^\sigma \psi(\eta) d\eta} d\sigma \right) d\zeta \\ &= \int_0^\omega \beta(a,\zeta) N(\zeta) e^{-\gamma\zeta} \left(1 - e^{-\int_0^\sigma \psi(\eta) d\eta} + \gamma \int_0^\zeta e^{\gamma\zeta} e^{-\int_0^\sigma \psi(\eta) d\eta} d\sigma \right) d\zeta \\ &= \phi(a,0) - \int_0^\omega \beta(a,\zeta) N(\zeta) e^{-\int_0^\zeta \psi(\eta) d\eta} d\zeta \\ &+ \gamma \int_0^\omega \int_\sigma^\omega \beta(a,\zeta) N(\zeta) e^{-\gamma(\zeta-\sigma)} e^{-\int_0^\sigma \psi(\eta) d\eta} d\zeta d\sigma \\ &= \psi(a,0) - \int_0^\omega [\beta(a,\sigma) N(\sigma) - \gamma \phi(a,\sigma)] e^{-\int_0^\sigma \psi(\eta) d\eta} d\sigma. \end{split}$$

Da última fórmula, como estamos supondo $\beta(a,\sigma)N(\sigma) - \gamma\phi(a,\sigma) \geq 0 \ \forall (a,\sigma) \in [0,\omega] \times [0,\omega]$, é fácil verificar que $\bar{\psi}-\psi \in E_+$ implica $\Phi(\bar{\psi})-\Phi(\psi) \in E_+$ para quaisquer $\bar{\psi},\psi \in E$, ou seja, que o operador Φ é monótono. Agora veja que

$$\alpha(\psi)\psi_0 \le \Phi(\psi) \le \beta(\psi)\psi_0,$$

onde $\psi_0 \equiv 1$ e

$$\alpha(\psi) := \int_0^\omega f(\sigma)\psi(\sigma)e^{-\int_0^\sigma \psi(\eta)d\eta}d\sigma,$$
$$\beta(\psi) := M \int_0^\omega g(\sigma)\psi(\sigma)e^{-\int_0^\sigma \psi(\eta)d\eta}d\sigma,$$

onde $M:=\|\beta(a,b)\|_{\infty}<+\infty,\,f(\sigma)$ e $g(\sigma)$ são definidas por:

$$f(\sigma) := \int_{\sigma}^{\omega} s(\zeta) N(\zeta) e^{-\gamma(\zeta - \sigma)} d\zeta, \quad g(\sigma) := \int_{\sigma}^{\omega} N(\zeta) e^{-\gamma(\zeta - \sigma)} d\zeta$$

Então segue que $\alpha(\psi)>0$ e $\beta(\psi)>0$ para $\psi\in E_+\setminus\{0\}$. Além disso obtemos:

$$\Phi(t\psi)(a) - t\Phi(\psi)(a)
= t \int_0^\omega \phi(a,\sigma)\psi(\sigma)e^{-\int_0^\sigma \psi(\eta)d\eta} \left[e^{(1-t)\int_0^\sigma \psi(\eta)d\eta} - 1 \right] d\sigma
\ge t \int_0^\omega f(\sigma)\psi(\sigma)e^{-\int_0^\sigma \psi(\eta)d\eta} \left[e^{(1-t)\int_0^\sigma \psi(\eta)d\eta} - 1 \right] d\sigma,$$

de onde concluímos que Φ é um operador côncavo e que a condição (2.5.1) é satisfeita tomando-se $\psi_0 = 1$ e:

$$\eta(\psi,t) := t \int_0^\omega f(\sigma)\psi(\sigma)e^{-\int_0^\sigma \psi(\eta)d\eta} \left[e^{(1-t)\int_0^\sigma \psi(\eta)d\eta} - 1 \right] d\sigma.$$

Isso completa a demonstração.

Note que a Suposição 2.5.1 vale se $\beta(a,\sigma)N(\sigma)$ é não-decrescente como função de σ . De fato, temos:

$$\beta(a,\sigma)N(\sigma) - \gamma \int_{\sigma}^{\omega} \beta(a,\zeta)N(\zeta)e^{-\gamma(\zeta-\sigma)}d\zeta$$

= $\gamma \int_{\sigma}^{\omega} [\beta(a,\sigma)N(\sigma) - \beta(a,\zeta)N(\zeta)]e^{-\gamma(\zeta-\sigma)}d\zeta + e^{-\gamma(\omega-\sigma)}\beta(a,\sigma)N(\sigma),$

o que é não negativo para todo $(a, \sigma) \in [0, \omega] \times [0, \omega]$ se $\beta(a, \sigma)N(\sigma) - \beta(a, \zeta)N(\zeta) \ge 0$ para $\zeta \ge \sigma$. Em particular, a Suposição 2.5.1 vale se β independe da idade σ dos infectivos, porque N(a) é uma função decrescente. Outro tipo de condição que garante a Suposição 2.5.1 é a seguinte:

$$\pi(a) \ge k(1 - e^{-\gamma(\omega - a)}),$$
(2.44)

onde a constante k definida por:

$$k := \frac{\sup \beta(a, b)}{\inf \beta(a, b)}$$

é finita. Como $N(a)=\mu^*N\pi(a)\leq \mu^*N$, a suficiência da condição (2.44) segue da desigualdade

$$\beta(a,\sigma)N(\sigma) - \gamma\phi(a,\sigma) \ge \inf \beta(a,\sigma)\mu^*N[\pi(\sigma) - k(1 - e^{-\gamma(\omega-\sigma)})].$$

Observação 2.5.3. Independentemente de valer a Suposição 2.5.1, se $\beta(a,b)$ puder ser fatorada como u(a)v(b) (o que se chama de *hipótese de mistura proporcional*), existirá um único estado estacionário não-trivial sob a condição:

$$r(T) = \int_0^{\omega} \phi(\sigma, \sigma) d\sigma > 1.$$

Analisemos esse caso. De fato, da equação (2.29) teremos:

$$\phi(a,\sigma) = Cu(a)e^{\gamma\sigma},$$

onde $C = \int_0^\omega v(\zeta) N(\zeta) e^{-\gamma \zeta} d\zeta$, daí

$$(T\psi)(a) = Cu(a) \int_0^{\omega} e^{\gamma \sigma} \psi(\sigma) d\sigma.$$

Então todo autovalor de T deve ser múltiplo de u(a). Segue que, se T tem algum autovalor não-trivial, u será o único a menos de múltiplos, e o autovalor será

$$r(T) = C \int_0^{\omega} e^{\gamma \sigma} u(\sigma) d\sigma$$
$$= \int_0^{\omega} \phi(\sigma, \sigma) d\sigma.$$

Já vimos que se $r(T) \leq 1$, o único ponto fixo de Φ é o trivial. Vejamos o que ocorre para r(T) > 1. A existência de ponto fixo não-trivial já está garantida pela Proposição 2.4.3; falta a unicidade. Com a hipótese de mistura proporcional, Φ é dada por:

$$\Phi(\psi)(a) = Cu(a) \int_0^\omega e^{\gamma \sigma} \psi(\sigma) e^{-\int_0^\sigma \psi(\eta) d\eta} d\sigma.$$

Como a integral independe de a, se fizermos $\Phi(\psi)(a) = \psi(a)$ teremos que $\psi(a) = \tilde{c}u(a)$ para algum \tilde{c} que será positivo se ψ é não-trivial. Mostraremos que nesse caso \tilde{c} é único. Na equação de Φ , teremos que

$$Cu(a)\int_0^\omega e^{\gamma\sigma}\tilde{c}u(\sigma)e^{-\int_0^\sigma \tilde{c}u(\eta)d\eta}d\sigma = \tilde{u}(a).$$

Da Suposição 2.4.1, $u(a) \neq 0$ q.t.p., então:

$$\int_0^{\omega} C e^{\gamma \sigma} u(\sigma) e^{-\int_0^{\sigma} \tilde{c}u(\eta)d\eta} d\sigma = 1$$

A expressão acima decresce estritamente quando \tilde{c} aumenta, então o ponto fixo não-trivial $\psi = \tilde{c}u$ tem que ser único.

2.6 Estabilidade

Nas seções anteriores, demonstramos teoremas correspondentes a parte da conjectura de Greenhalg que trata da existência e e da unicidade de estados estacionários não-triviais para o modelo (2.12), relacionadas a r(T). No artigo [8] de Inaba, é ainda demonstrada a estabilidade dos estados estacionários, sob condições adequadas. Para isso é necessário considerar a seguinte condição:

Suposição 2.6.1. Denote por (x^*, y^*, z^*) um estado estacionário de (2.12). Então

$$y^*(\omega) < e^{-\gamma\omega}$$
.

O teorema de estabilidade é dado a seguir.

Proposição 2.6.2. (Resultados de estabilidade local) Seja r(T) o raio espectral do operador T definido por (2.32). Então:

- (i) Se r(T) < 1, o estado estacionário trivial de (2.12) é globalmente assintoticamente estável.
- (ii) Se r(T) > 1, o estado estacionário trivial é localmente instável.
- (iii) Se r(T) > 1 e a Suposição 2.6.1 vale no estado estacionário endêmico, então ele é localmente assintoticamente estável.

Considerações finais

Nesta dissertação examinamos o modelo epidemiológico SIR com estrutura etária e apresentamos fundamentos e grande parte da demonstração devida a Inaba da conjectura de Greenhalgh. A condição para a existência de estados estacionários não-triviais (Supo-sição 2.4.1) é bastante aceitável e robusta quanto à variação dos parâmetros. As condições para a unicidade (Suposição 2.5.1) e a estabilidade (Suposição 2.6.1) desse estado, porém, são mais sensíveis e menos aceitáveis biologicamente.

Outras limitações do modelo advém das seguintes suposições:

- (i) a população se encontra em estado demográfico estacionário;
- (ii) o período latente é considerado muito curto;
- (iii) a taxa de recuperação independe da idade;
- (iv) a infectividade independe da duração da infecção.

A suposição de equilíbrio demográfico é razoável para países com baixa taxa de crescimento populacional, mas populações em geral podem ter seu crescimento como um fator importante para a propagação da doença, devido a uma renovação mais intensa do grupo dos suscetíveis. As demais itens também podem ser importantes dependendo da particularidade da doença, portanto representam limitações do modelo.

Após a publicação do artigo [8] de Inaba, surgiram mais variações do modelo em novas publicações, nas quais algumas das limitações foram resolvidas. Em [10] é apresentado um modelo SEIR, ou seja, um modelo com recuperação e estado latente (E) nos mesmo moldes do modelo SIR que estudamos, e os autores demonstram resultados análogos. Em [9], Inaba apresenta um modelo SIR no qual a população está em distribuição etária persistente, ou seja, mantém as proporções entre as faixas etárias constantes mas pode estar crescendo ou decrescendo no total. Além disso, a taxa de recuperação depende

da idade, de modo que as condições (i) e (ii) são superadas. É também considerada a transmissão vertical.

Ainda assim, suposições biologicamente adequadas para a existência e unicidade do estado estacionário ainda não foram alcançadas, tratando-se portanto de um problema a ser trabalhado.

APÊNDICE - Teoremas auxiliares

Proposição A.1. (Princípio da limitação uniforme) Seja $\{T_a; a \in A\}$ uma família de operadores lineares limitados de um espaço de Banach X em um espaço linear normado Y. Se $\{\|T_a x\|_X : a \in A\}$ é limitado para todo $x \in X$, então $\{\|T_a\| : a \in A\}$ é limitado.

Demonstração. Ver [16], páginas 68, 69.
$$\Box$$

Proposição A.2. Se $\psi \in L^1(\mathbb{R})$, então

$$\lim_{h \to 0} \int_{\mathbb{D}} |\psi(a+h) - \psi(a)| da = 0$$

Demonstração. Ver [15], página 29.

Proposição A.3. (Critério de compacidade de Fréchet-Kolmogorov) Um subconjunto S de $L^p(\mathbb{R})$, $1 \leq p < \infty$ é relativamente compacto (em $L^p(\mathbb{R})$)se e somente se satisfaz as seguintes condições:

(i)
$$\sup_{\psi \in S} \|\psi\|_{L^p(\mathbb{R})} = \sup_{\psi \in S} \left(\int_{\mathbb{R}} |\psi(s)|^p ds \right)^{\frac{1}{p}} < +\infty;$$

(ii)
$$\lim_{t\to 0} \int_{\mathbb{R}} |\psi(t+s) - \psi(s)|^p ds = 0$$
 uniformemente em $\psi \in S$;

(iii)
$$\lim_{t\to\infty} \int_{|s|>\alpha} |\psi(s)|^p ds > 0$$
 uniformemente em $\psi \in S$.

Demonstração. Ver [16], páginas de 275 a 277.

Proposição A.4. (Teorema do Ponto Fixo de Banach) Seja (X,d) um espaço métrico completo e suponha que $K: X \to X$ seja uma contração forte, isto é, que exista $0 \le \alpha < 1$ tal que $d(K(x), K(y)) \le \alpha d(x,y) \ \forall x,y \in X$. Então K possui um único ponto fixo $x^* \in X$ e

$$\lim_{n \to +\infty} K^n(x) = x^* \ \forall x \in X,$$

onde $K^n = K^{n-1} \circ K$ e $K^0 = id_X$.

Demonstração. Dado $x \in X$ arbitrário, definamos $x_n = K^n(x)$. Então $d(x_{n+1}, x_n) \le \alpha d(x_n, x_{n-1})$ e, por indução, segue que $d(x_{n+1}, x_n) \le \alpha^n d(x_1, x_0)$. Agora, usando a desigualdade triangular, dados $n, m \in \mathbb{N}, n > m$, teremos

$$d(x_{n}, x_{m}) \leq d(x_{n}, x_{n-1}) + \dots + d(x_{m+1}, x_{m})$$

$$\leq \alpha^{n-1} d(x_{1}, x_{0}) + \dots + \alpha^{m-1} d(x_{1}, x_{0})$$

$$\leq \alpha^{m-1} (1 + \alpha + \dots + \alpha^{n-m}) d(x_{1}, x_{0})$$

$$\leq \alpha^{m-1} (1 + \alpha + \dots + \alpha^{n-m} + \dots) d(x_{1}, x_{0})$$

$$\leq \frac{\alpha^{m-1}}{1 - \alpha} d(x_{1}, x_{0}).$$

Então (x_n) é sequência de Cauchy e, portanto, convergente, uma vez que X é completo. Seja x^* seu limite. Como K é contração, é evidentemente contínua, logo

$$x^* = \lim K^{n+1}(x) = K(\lim K^n(x)) = K(x^*)$$

e portanto x^* é ponto fixo de K. Resta mostrar a unicidade. Se supomos que x_1^* e x_2^* são pontos fixos de K, então

$$d(x_1^*, x_2^*) = d(K(x_1^*), K(x_2^*)) \le \alpha d(x_1^*, x_2^*).$$

Como $0 \le \alpha < 1$, isso só é possível se $d(x_1^*, x_2^*) = 0$.

Proposição A.5. (Teorema do Ponto Fixo de Schauder) Seja X um espaço de Banach e $S \subset X$ fechado, limitado e convexo. Seja $f: S \to S$ contínua com imagem f(S) relativamente compacto. Então F tem pelo menos um ponto fixo.

Demonstração. Ver [2], páginas 149 e 150.

Referências Bibliográficas

- [1] BRAUER, Fred; CASTILLO-CHAVEZ, Carlos. Mathematicals models in population biology and epidemiology. New York: Springer-Verlag, 2001. p. 346-353.
- [2] CONWAY, John B.; A course in functional analysis. 2. ed. New York: Springer-Verlag, 1990. p. 149, 150.
- [3] DEIMLING, Klaus. *Nonlinear Functional Analysis*. Heidelberg: Springer-Verlag, 1985. p. 226-227.
- [4] FELLER, Willy. On the integral equation of renewal theory. *Annals of Mathematical Statistics*, v. 12, n. 3, p. 243-267, 1941.
- [5] KRASNOSELKII, M. A. Positive solutions of operator equations. Gronigen: P. Noordhoff, 1964.
- [6] GREENHALGH, David. Threshold and stability results for an epidemic model with an age-structured meeting rate. *IMA Journal of Mathematics Applied in Medicine and Biology*, v. 5, n. 2, p. 81-100, 1988.
- [7] HETHCOTE, Herbert W. Qualitative Analysis for communicable disease models.

 Mathematical Biosciences, v. 28, p. 335-356, 1976.
- [8] INABA, Hisashi. Threshold and stability results for an age-structured epidemic model. *Journal of Mathematical Biology*, v. 28, n. 4, p. 411-434, jun. 1990.
- [9] _____. Mathematical analysis of an age-structured SIR epidemic model with vertical transmission. Discrete and Continuous Dynamic Systems Series B, v. 6, n. 1, p. 69-96, jan. 2006.

- [10] LI, Xue-Zhi; GUPUR, Geni; GUANG-TIAN, Zhu. Threshold and stability results for an age-structured SEIR epidemic model. *Computers and Mathematics with Applications*, v. 42, p. 883-907, set./out. 2001.
- [11] MAREK, Ivo. Frobenius theory of positive operators: comparison theorems and applications. SIAM Journal on Applied Mathematics, v. 19, n. 3, p. 607-628, nov. 1970.
- [12] MCKENDRICK, Anderson Gray. Applications of mathematics to medical problems.

 Proceedings of the Edinburgh Mathematical Society, v. 44, p. 1-34, 1926.
- [13] NIIRO, Fumio; SAWASHIMA, Ikuko. On the spectral properties of positive irreducible operators in an arbitrary Banach lattice and problems of H. H. Schaefer. *Scientific papers of the College of General Education*, University of Tokio. v. 16. p. 145-183, 1966.
- [14] PAZY, A. Semigroups of linear operators and applications to partial differential equations. New York: Springer-Verlag, 1983. Applied Mathematical Sciences, 44.
- [15] WEBB, Glenn. F. Theory of nonlinear age-dependent population dynamics. New York: Marcel Dekker, 1985.
- [16] YOSIDA, Kôsaku. Functional Analysis. 6. ed. Berlin: Springer, 1980.