Centro de Ciências Exatas e da Natureza Dept. Matemática

Doutorado em Matemática Pura

Existência e comportamento assintótico de soluções em espaços de Morrey para as equações de Boussinesq no \mathbb{R}^n e de Navier-Stokes no semi-plano \mathbb{R}^n_+

Marcelo Fernandes de Almeida

Tese de Doutorado

Recife-PE Março 2011

Este trabalho foi tipografado em La Com a classe UFPE-Thesis.

Universidade Federal de Pernambuco Centro de Ciências Exatas e da Natureza Dept. Matemática

Marcelo Fernandes de Almeida¹

Existência e comportamento assintótico de soluções em espaços de Morrey para as equações de Boussinesq no \mathbb{R}^n e de Navier-Stokes no semi-plano \mathbb{R}^n_+

Trabalho apresentado ao Programa de Doutorado em Matemática Pura como requisito parcial para obtenção do título de Doutor em Matemática Pura.

Orientador: Prof. Lucas Catão de Freitas Ferreira^a

"Suportado por CNPq e FAPESP-SP
Universidade Estadual de Campinas, IMECC. Campinas-SP,
Brasil.e-mail:lcff@ime.unicamp.br

Recife-PE Março 2011

¹Suportado por CNPq processo número 141003/2008-1. Universidade Federal de Pernambuco, Dmat. Recife-PE, Brasil. e-mail:nucaltiado@gmail.com

Catalogação na fonte Bibliotecária Jane Souto Maior, CRB4-571

Almeida, Marcelo Fernandes de

Existência e comportamento assintótico de soluções em espaços de Morrey para as equações de Boussinesq no RN e de Navier-Stokes no semi-plano RN / Marcelo Fernandes de Almeida - Recife: O Autor, 2011.

xii, 108 folhas

Orientador: Lucas Catão de Freitas Ferreira.

Tese (doutorado) Universidade Federal de Pernambuco. CCEN. Matemática, 2011.

Inclui bibliografia.

 Equações diferenciais Parciais.
 Sistema de Boussinesq.
 Equações de Navier-Stokes.
 Ferreira, Lucas Catão de Freitas (orientador).
 II. Título.

515.353 CDD (22. ed.) MEI2011 – 027

Tese submetida ao Corpo Docente do Programa de Pós-graduação do Departamento de Matemática da Universidade Federal de Pernambuco como parte dos requisitos necessários para a obtenção do Grau de Doutorado em Matemática.

Aprovado:

Lucas Catão de Freitas Ferreira, UNICAMP

Orientador

Cláudio Rodrigo Cueva Henriquez, UFPE

Bruno Luís de Andrade Santos, USP

Gabriela Del Valle Planas, UNICAMP

Everaldo Souto de Medeiros, UFPB

EXISTÊNCIA E COMPORTAMENTO ASSINTÓTICO DE SOLUÇÕES EM ESPAÇOS DE MORREY PARA AS EQUAÇÕES DE BOUSSINESQ NO RN E DE NAVIER-STOKES NO SEMI-PLANO RN

Por Marcelo Fernandes de Almeida

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE MATEMÁTICA Cidade Universitária – Tels. (081) 2126.8415– Fax: (081) 2126.8410 RECIFE – BRASIL, Março – 2011

Agradecimentos

Agradeço a toda minha família, a qual devo todo o apoio durante toda a minha vida; especialmente gostaria de agradecer a minha mãe Sirlene Fernandes, minha avó Noemia Francisca e ao meu avô Miguel Fernandes, por suas incontáveis histórias de aventuras, seus conselhos e incentivos; e os meus tios Elma Fernandes, Celma Fernandes, Filipe Fernandes e Edmilson Fernandes.

A família de minha irmã Cristiane Fernandes, pela qual tenho grande carinho. Ao meu tio José Carlos que me encorajou a fazer o curso de graduação em matemática, e aos meus quase-irmãos Marcos, Ana e Flávia.

Um agradecimento especial ao CNPq, por financiar uma bolsa de estudos durante todo o meu curso de Doutorado.

Agradeço ao professor Lucas C. F. Ferreira (Imecc/Unicamp), pela orientação, por suas inúmeras contribuições e conselhos durante minha vida de estudante. A professora Ana Tereza (UEFS), que durante os três anos de iniciação científica, contribuiu muito com a minha formação acadêmica.

Aos professores do Departamento de Matématica da UFPE, os quais contribuiram direta ou indiretamente, com a minha formação acadêmica.

Agradeço a todos os meus amigos da UFPE e, especialmente, a Zaqueu Alves, Bruno de Andrade, Alejandro Caicedo, Alysson Oliveira, Joilson Ribeiro, Luiz Santana, Adecarlos Carvalho, Renata Limeira e Giovana Siracusa; pelos momentos especiais passados juntos enquanto estudante de pós-graduação.

A todos os meus amigos da escola secundária, pelo apoio e incentivo de sempre.

Aos amigos de Campinas-SP, especialmente, a Cícero Alfredo, Luciana e Adson; por todos os momentos de alegria compartilhados.

Resumo

Nesta tese, estudamos dois modelos de mecânica dos fluidos em espaços de Morrey, os quais contêm funções fortemente singulares. O primeiro modelo é o sistema de Boussinesq (SB) em \mathbb{R}^n , e o segundo, as equações de Navier-Stokes (ENS) no semi-espaço \mathbb{R}^n_+ . Provamos novos resultados de existência global de soluções, de simetria auto-similar, de regularidade e de comportamento assintótico das soluções. Nossos resultados nos permitem considerar novas condições iniciais e campos gravitacionais singulares.

Palavras-chave: Sistema de Boussinesq; Equações de Navier-Stokes; Existência e auto-similaridade; Comportamento assintótico; Espaços de Morrey.

Abstract

In this thesis, we study two models of fluid mechanics in Morrey spaces, which contain very singular functions. The first model is the Boussinesq system in \mathbb{R}^n and the second one are the Navier-Stokes equations in the half-space \mathbb{R}^n_+ . We prove new results about global existence of solutions, self-similar symmetry, regularity and asymptotic behavior of solutions. Our results allow us to consider new singular initial conditions and gravitational fields.

Keywords: Boussinesq system; Navier-Stokes equations; Existence and self-similarity; Asymptotic behavior; Morrey spaces.

Sumário

1	INTRODUÇÃO				
	1.1	O sistema de Boussinesq	3		
	1.2	As equações de Navier-Stokes no semi-espaço \mathbb{R}^n_+	6		
	1.3	Organização da tese	7		
2	PRE	LIMINARES	9		
	2.1	Espaços de Morrey homogêneo	ç		
		2.1.1 Propriedades	11		
	2.2	Equação do calor	17		
		2.2.1 Equação do calor em \mathbb{R}^n	17		
		2.2.2 Equação do calor em \mathbb{R}^n_+	20		
	2.3	Operadores integrais singulares	22		
		2.3.1 Multiplicadores de Fourier	24		
		2.3.2 Projetor de Leray-Hopf	27		
	2.4	A função Beta	28		
3	0 S	STEMA DE BOUSSINESQ	3 C		
	3.1	Espaços funcionais e formulação integral	30		
		3.1.1 Formulação integral	33		
	3.2	Resultados	34		
	3.3	Prova dos resultados	37		
		3.3.1 Estimativas lineares	37		
		3.3.2 Estimativas bilineares	11		

				xii
		3.3.3	Prova do Teorema 3.2.1	45
		3.3.4	Prova do Corolário 3.2.4	52
		3.3.5	Prova do Teorema 3.2.5	53
		3.3.6	Prova do Teorema 3.2.6	58
4	AS	EQUAC	CÕES DE NAVIER-STOKES NO SEMI-ESPAÇO	63
	4.1	O pro	blema de Stokes homogêneo em \mathbb{R}^n_+	64
	4.2	O pro	blema de Stokes não-homogêneo em \mathbb{R}^n_+	73
		4.2.1	Formulção integral para as equações de Navier-Stokes em \mathbb{R}^n_+	77
	4.3	Espaç	os funcionais e solução branda	80
	4.4	Result	tados	82
	4.5	Prova	dos resultados	83
		4.5.1	Estimativas lineares	83
		4.5.2	Estimativas bilineares	91
		4.5.3	Prova do Teorema 4.4.1	93
		4.5.4	Prova do Corolário 4.4.2	98
		4.5.5	Prova do Teorema 4.4.3	100
ВІ	BLIC	GRAF	I A	104

Capítulo 1

Introdução

Em mecânica dos fluidos o estudo de problemas envolvendo a existência de soluções globais e regularidade global ainda está longe de ter uma resposta completa. O mais famoso deles, considera a questão se soluções suaves das equações de Navier-Stokes (ENS) em \mathbb{R}^n (quando n=3) formam uma singularidade em tempo finito. Apenas para fixar idéias, vamos escrever estas equações sem condições de fronteira e inicial; elas são dadas por

$$\frac{\partial u}{\partial t} - \nu \Delta u + (u \cdot \nabla)u + \nabla p = 0 \text{ e div } u = 0, \tag{1.0.1}$$

onde $u: \mathbb{R}^n \times (0,T) \to \mathbb{R}^n$ é o campo de velocidades do fluido e $p: \mathbb{R}^n \times (0,T) \to \mathbb{R}$ é a pressão do fluido. A mencionada questão ainda está em aberto e foi oficialmente posta pelo instituto Clay de matemática (veja [19]) como um dos sete problemas do milênio. Por outro lado, este mesmo problema foi resolvido em dimensão dois por Ladyzhenskaya em 1969 (veja [35]). Em [37], [45] e [6] o leitor encontrará algums resultados de regularidade parcial para as equações de Navier-Stokes no caso n=3.

De um ponto de vista qualitativo, uma diferença estrutural entre o caso bi-dimensional (2D, n=2) e o tri-dimensional (3D, n=3) é que a energia cinética máxima, a qual é uma quantidade globalmente conservada e dada por

$$M(u) = \sup_{0 < t < \infty} \frac{1}{2} \|u(\cdot, t)\|_{L^{2}(\mathbb{R}^{n})}^{2},$$

é invariante pelo *scaling* de (1.0.1) em dimensão dois, enquanto tal propriedade não se verifica no caso 3D. De fato, neste último caso a energia cinética máxima é super-crítica em relação

ao *scaling* (veja [49]), o que mostra um pior comportamento da concentração de energia em pequenas escalas. Mais precisamente, relembre que o *scaling* das equações de Navier-Stokes é dado por

$$u(x,t) \to u_{\lambda}(x,t) = \lambda u(\lambda x, \lambda^2 t), \quad \lambda > 0,$$
 (1.0.2)

e que u_{λ} é uma solução de (1.0.1) quando u é uma solução de (1.0.1). Uma conta simples mostra que $M(u_{\lambda}) = \lambda^{2-n}M(u)$, e tomando n=3, observe que $M(u_{\lambda}) \to \infty$ quando $\lambda \to 0$.

Obviamente as considerações feitas no último parágrafo são de uma natureza heurística, contudo nos motiva a usar técnicas de *scaling*, e espaços invariantes por tal transformação, para estudar as equações (1.0.1) e outros modelos de mecânica dos fluidos relacionados. De particular interesse seria encontrar soluções que carregassem as informações em pequena e em grande escala simultaneamente; isto é, que fossem invariantes pelo *scaling* característico do modelo estudado. Estas soluções são chamadas de soluções auto-similares.

Estas soluções também são importantes porque são candidatas naturais para descrever o comportamento assintótico da equação. Para ilustrar estas idéias, assuma que v(x,t) descreve o comportamento assintótico das soluções de um certo modelo no espaço de Banach $Z=BC((0,\infty);Y)$; em outras palavras $\lim_{t\to\infty}\|u(\cdot,t)-v(\cdot,t)\|_Y=0$. Assuma também que a norma deste espaço é invariante pelo scaling da equação, i.e. $\sup_{t>0}\|u\|_Y=\sup_{t>0}\|u_\lambda\|_Y$. Para t>>1 temos que $u\cong v$ em Z, e pela invariância da norma, $u_\lambda\cong v_\lambda$ em Z. Desde que u_λ também é uma solução, $u_\lambda\cong v$ e então obtemos que $v\cong v_\lambda$. Isto sugere que, em um espaço invariante pelo scaling, os assintóticos para as soluções do modelo devem ser auto-similares.

Nesta tese estamos interessados em dois modelos de mecânica dos fluidos, os quais serão estudados via técnicas de scaling e em espaços de Morrey (veja Definição 2.1.1, pg. 9). O primeiro modelo é o sistema de Boussinesq, que descreve o comportamento de um fluido viscoso incompressível sob o efeito da temperatura, e o segundo trata das equações de Navier-Stokes no semi-espaço \mathbb{R}^n_+ . O problema de formação de singularidades de soluções está ainda em aberto para ambos os modelos, e em conexão com isto, uma motivação natural aparece para estudá-los em espaços que contenham funções singulares, tais como os de Morrey. Para os dois modelos, estudaremos questões como existência de soluções globais (com dado inicial pequeno), auto-similaridade e comportamento assintótico.

1.1 O sistema de Boussinesq

O sistema de Boussinesq consiste das seguintes equações:

$$\frac{\partial u}{\partial t} - \nu \Delta u + (u \cdot \nabla)u + \frac{1}{\rho} \nabla p = \kappa \,\theta f + F_1, \quad x \in \mathbb{R}^n, \ t > 0, \tag{1.1.1}$$

div
$$u = 0,$$
 $x \in \mathbb{R}^n, \ t > 0,$ (1.1.2)

$$\frac{\partial \theta}{\partial t} - \chi \Delta \theta + (u \cdot \nabla)\theta = F_2, \qquad x \in \mathbb{R}^n, \ t > 0, \tag{1.1.3}$$

$$u(x,0) = u_0, \ \theta(x,0) = \theta_0 \text{ e div } u_0 = 0, \quad x \in \mathbb{R}^n,$$
 (1.1.4)

onde $p:\mathbb{R}^n imes (0,\infty) o \mathbb{R}, \ u:\mathbb{R}^n imes (0,\infty) o \mathbb{R}^n$ e $\theta:\mathbb{R}^n imes (0,\infty) o \mathbb{R}$ representam, respectivamente, a pressão, o campo de velocidades e a temperatura de um fluido viscoso em \mathbb{R}^n , $n \ge 2$. O termo F_2 é a temperatura de referência, F_1 é a força externa e f é o campo gravitacional. As constantes ν e ρ são a viscosidade e a densidade do fluido, respectivamente. O coeficiente de expansão do volume do fluido e a condutância térmica são denotados, respectivamente, por κ e χ . Para nossos propósitos, assumiremos que $\kappa > 0$ e, por simplicidade tomaremos $\nu = \rho = \chi = 1$ e $F_1 = F_2 = 0$.

As equações (1.1.1)-(1.1.3) são conhecidas como o sistema de Boussinesq (SB) e modela o transporte do calor via convecção natural em um fluido viscoso incompressível (veja [14]). A estrutura matemática deste modelo consiste em um sistema acoplado entre as equações de Navier-Stokes e a equação de advecção-difusão do calor, sendo o acoplamento feito via o termo gravitacional $\kappa \theta f$ (força de empuxo). Este último termo vem da aproximação de Boussinesq, a qual assume que a variação da densidade no termo gravitacional é proporcional à variação da temperatura do fluido (isto é $\kappa \theta$), e desconsidera qualquer outro tipo de variação de densidade no modelo.

Os tópicos de existência e comportamento assintótico de soluções para o problema (1.1.1)-(1.1.3) têm sido estudo por muitos autores, especialmente nos últimos 15 anos. Por exemplo, mencionamos os trabalhos [2, 10, 13, 15, 16, 20, 21, 22, 24, 28, 5, 32, 42], os quais discutimos na sequência. Os artigos [15, 24] mostraram a estabilidade de soluções fracas em um espaço que assume energia finita. Considerando campos gravitacionais f não-limitados, a existência de soluções na classe $L^p(0,T;L^q(\mathbb{R}^n))$ foi provada em [10]. O autor de [28] provou a estabilidade de soluções estacionárias pequenas em um domínio exterior. Ele considerou o espaço L^p -fraco (isto é $L^{(p,\infty)}$) e o campo gravitacional limitado, e sua abordagem foi baseada na análise do

semigrupo gerado pelo operador linearizado em torno da solução estacionária. Veja também [22], onde uma classe maior de soluções estacionárias estáveis foi obtida em um dominio exterior. No domínio \mathbb{R}^n e ainda nos espaços L^p -fraco, mas assumindo f um campo não limitado, autosimilaridade e resultados de comportamento assintótico foram obtidos em [20]. Neste trabalho foi usada uma abordagem diferente de [28] e os autores não usaram o operador linearizado. Em [21] e [32], o problema (1.1.1)-(1.1.4) foi estudado nos espaços de pseudo-medida PM^a , considerando o campo gravitacional f não-constante e constante, respectivamente. Tomando f =const e dado inicial em L^2 , o artigo [5] construiu soluções fortes em \mathbb{R}^3 com $\|u(t)\|_{L^p}$ crescendo para infinito, quando $t \to \infty$, para $1 \le p < 3$. De forma complementar, gostaríamos de mencionar os trabalhos [2, 13, 16], onde resultados de existência e regularidade de soluções fracas ou fortes para (1.1.1)-(1.1.4) com n=2, dado inicial em L^2 , f =const e viscosidade parcial, podem ser encontrados.

Como dito mais acima, nesta tese estamos interessados em estudar (1.1.1)-(1.1.4) em espaços de Morrey $\dot{\mathcal{L}}_{p,\lambda}$. Utilizando este espaço, construimos novas soluções (globais no tempo) e analisamos o seu comportamento assintótico. Nossos resultados assumem condições de pequenez no dado inicial $[u_0,\theta_0]$. Estes espaços contêm funções interessantes, as quais são fortemente singulares e não decaem quando $|x|\to\infty$ (veja Observação 2.1.5, pg. 16-17). Para efeito de comparação com os trabalhos anteriores, relembramos as inclusões próprias $L^{p_1} \varsubsetneq (L^{p_1}\text{-fraco}) \varsubsetneq \dot{\mathcal{L}}_{p_2,\lambda}$ com $\lambda=n(p_1-p_2)/p_1>0$; veja mais detalhes na Observação 2.1.5 (i). Também temos que $\dot{\mathcal{L}}_{p,\lambda}\not\subset PM^a$. De fato, na Observação 2.1.5 (ii), damos um exemplo de uma função $h\in\dot{\mathcal{L}}_{p,\lambda}$ tal que $h\notin PM^a$, para todo $0<\lambda< n$ e a>0. Assim, estaremos considerando uma nova classe de dados iniciais e de campos f.

Empregamos o método de Kato-Fujita (veja [29, 31]) e provamos a boa-colocação de soluções em espaços de Morrey com os índices escolhidos para que suas normas sejam invariantes pelo scaling de (1.1.1)-(1.1.4) (veja (3.1.5), pg. 32). Como consequência, obtemos a existência de soluções auto-similares (veja Corolário 3.2.4, pg. 35). Este tipo de simetria para as soluções é obtida quando o dado inicial $[u_0, \theta_0] \in \dot{\mathcal{L}}_{p,n-p}^{\sigma} \times \dot{\mathcal{L}}_{p,n-p}$ é homogêneo de grau -1 e o campo f apresenta uma certa propriedade de homogeneidade (veja (3.1.1), pg. 31). Assim, o fato dos espaços de Morrey conterem funções homogêneas é de fundamental importância (veja Lema 2.1.3(iv), pg. 12).

Nossos resultados cobrem o caso do campo gravitacional Newtoniano, isto é $f = -Gx |x|^{-3} \in (\dot{\mathcal{L}}_{p/2,n-p})^n$. De um ponto de vista físico, o sistema (1.1.1)-(1.1.4) pode ser interpretado como uma versão matemática em \mathbb{R}^n do famoso problema de Bénard (veja [28]). No Teorema 3.2.1(ii)

(pg. 35) mostramos que as soluções obtidas são estáveis para pequenas pertubações do campo f. Além disto, provamos alguns resultados em certos espaços com peso e em um subespaço de $\dot{\mathcal{L}}_{p,\lambda}$, nos quais o semigrupo do calor é fortemente contínuo. Sob certas condições de regularidade no campo gravitacional f, provamos que as soluções são suaves para t>0 (veja Teorema 3.2.5, pg. 36).

Aqui comentamos sobre algumas dificuldades técnicas que tivemos que contornar. Um aspecto interessante no tratamento do termo de acoplamento $\kappa \theta(x,t) f(x) \operatorname{com} f(x) \in (\dot{\mathcal{L}}_{p/2,n-p})^n$ é a necessidade de trabalhar com a velocidade u(x,t) e a temperatura $\theta(x,t)$ em diferentes espaços funcionais (veja Definição 3.1.1, pg. 31-32). Caso não fizéssemos isto, teríamos $\alpha = \beta$ e, estimando o operador ((3.1.10), pg. 34), obteríamos um fator singular $I(t) = \int_0^t (t-s)^{-1} s^{-\frac{\alpha}{2}} ds$ nas desigualdades (3.3.10) e (3.3.11). O problema de Cauchy para as equações de Navier-Stokes em \mathbb{R}^n em espaços de Morrey foi estudado em [25, 30, 50] e, desde que não existe o termo de acoplamento $\kappa \theta f$, todas as incógnitas do sistema, isto é $(u_1, u_2, ..., u_n)$, foram tratadas em um mesmo espaço funcional. Nossos resultados de existência estão mais próximos do espírito de [30, 50] do que o de [25]. Mais precisamente, neste último artigo os autores trabalharam com a 3D-NS com a formulação vorticidade-velocidade em certos espaços de Morrey, os quais contêm anéis de vórtice e são diferentes dos considerados aqui e em [30, 50]. De fato, usando a lei de Biot-Savart e um resultado de operadores potenciais em espaços de Morrey, também podemos considerar dados iniciais com vorticidade singular $\omega_0 = \nabla \times u_0$ sendo um anel de vórtice, ou mesmo uma medida concentrada em uma curva suave não-compacta (veja Observação 3.2.2, pg. 35).

Em geral, soluções obtidas através do Teorema 3.2.1 (pg. 34-35) não convergem a zero nos espaços $\dot{\mathcal{L}}_{p,n-p}^{\sigma} \times \dot{\mathcal{L}}_{p,n-p}$, quando $t \to \infty$. Por exemplo, as soluções auto-similares, pois estas possuem norma invariante pelo *scaling*. De fato, neste caso, a norma da solução $[u(x,t),\theta(x,t)]$ em $\dot{\mathcal{L}}_{p,n-p}^{\sigma} \times \dot{\mathcal{L}}_{p,n-p}$, para cada fixado t > 0, é sempre igual ao valor obtido no instante t = 1. Provamos um resultado de estabilidade assintótica (veja Teorema 3.2.6, pg. 36-37), o qual aplicado a uma solução auto-similar produz uma bacia atratora em $\dot{\mathcal{L}}_{p,n-p}^{\sigma} \times \dot{\mathcal{L}}_{p,n-p}$ em torno de cada solução auto-similar (veja Corolário 3.2.7, pg. 37). Por outro lado, soluções com dados iniciais no subespaço $\overline{C_{0,\sigma}^{\infty}}^{\|\cdot\|_{p,n-p}} \times \overline{C_0^{\infty}}^{\|\cdot\|_{p,n-p}}$ vão a zero quando $t \to \infty$, isto é, elas apresentam um comportamento assintótico simples na norma dos espaços $\dot{\mathcal{L}}_{p,n-p}^{\sigma} \times \dot{\mathcal{L}}_{p,n-p}$ (veja (3.2.7), pg. 37). Estes resultados mostram um cenário complexo em espaços de Morrey no que tange ao comportamento assintótico, com a existência de diferentes possíveis estados assintóticos para as soluções.

Finalmente, tomando $\theta_0 = \theta = f = 0$, o sistema (1.1.1)-(1.1.3) transforma-se nas equações de Navier-Stokes; quando aplicado a este caso, o Teorema 3.2.6 é um resultado novo para tais equações. Sua prova usa argumentos relacionados aos de [12], onde a estabilidade assintótica foi estudada nos espaços PM^a para as equações de Navier-Stokes.

Os principais resultados do Capítulo 3 foram publicados por de Almeiada e Ferreira em [1].

1.2 As equações de Navier-Stokes no semi-espaço \mathbb{R}^n_+

O segundo modelo que estudaremos são as equações de Navier-Stokes (ENS) no semi-espaço \mathbb{R}^n_+ :

$$\frac{\partial u}{\partial t} - \nu \Delta u + (u \cdot \nabla)u + \frac{1}{\rho} \nabla p = 0, \text{ em } \mathbb{R}^n_+ \times (0, \infty)$$
 (1.2.1)

$$\operatorname{div} u = 0, \text{ em } \mathbb{R}^n_+ \times (0, \infty) \tag{1.2.2}$$

$$u|_{\partial \mathbb{R}^n} = 0, \ t \in (0, \infty) \tag{1.2.3}$$

$$u|_{t=0} = u_0, \text{ em } \mathbb{R}^n_+,$$
 (1.2.4)

onde $u: \mathbb{R}^n_+ \times (0,\infty) \to \mathbb{R}^n$ é o campo de velocidades do fluido e $p: \mathbb{R}^n_+ \times (0,\infty) \to \mathbb{R}$ é a pressão do fluido. As constantes ν e ρ são a viscosidade e a densidade do fluido, respectivamente. As equações (1.2.1)-(1.2.4) descrevem o movimento de um fluido viscoso, homogêneo e incompressível no semi-espaço, isto é no domínio $\Omega = \mathbb{R}^n_+$. A incompressibilidade do fluido é expressada pela condição de divergente nulo (1.2.2). Por simplicidade, assumiremos que $\rho = \nu = 1$.

O problema do milênio, descrito mais acima para (ENS) no \mathbb{R}^n , é igualmente formulado para o caso do semi-espaço \mathbb{R}^n_+ , e também é um problema em aberto. De fato, (ENS) em \mathbb{R}^n_+ é mais "difícil" de tratar que em \mathbb{R}^n , devido ao domínio ser não compacto com uma fronteira não vazia; mais precisamente, aqui a fronteira também é não compacta. Esta diferença de dificuldade apresenta-se em diferentes abordagens, particularmente em técnicas de semigrupo (ou equações integrais) em espaços singulares tais como L^p , $L^{(p,\infty)}$, Besov homogêneo $\dot{B}^{-s}_{p,q}$, etc.

Existem inúmeros resultados de existência de solução global para (ENS) no \mathbb{R}^n em vários espaços singulares; referimos os artigos [12, 25, 26, 33, 30, 31, 29, 53, 50], e especialmente ao livro [36] onde o leitor poderá encontrar uma boa descrição do estado da arte. Por outro lado, no caso do \mathbb{R}^n_+ , o cenário é mais complicado e resultados de existência foram obtidos apenas em

 $L^n(\mathbb{R}^n_+)$, $L^{(n,\infty)}(\mathbb{R}^n_+)$ e $\dot{B}^{-s}_{q,\infty}(\mathbb{R}^n_+)$ (com s=1-n/p e $n< q<\infty$), veja [38, 44, 52, 55, 17], [53] e [11], respectivamente. De fato, em [11], os autores assumem que o dado $u_0\in L^n(\mathbb{R}^n_+)$, mas consideram as hipóteses de pequenez (no dado inicial) na norma do espaço de Besov $\dot{B}^{-s}_{q,\infty}$.

Antes de prosseguir, observe que o semi-espaço \mathbb{R}^n_+ é invariante por $x \to \lambda x$ (para $\lambda > 0$), e assim o *scaling* (1.0.2) faz sentido neste domínio.

Nesta tese, estudamos (1.2.1)-(1.2.4) no espaço de Morrey $\dot{\mathcal{L}}_{p,n-p}(\mathbb{R}^n_+)$ e com dado inicial pequeno. Aqui também consideramos espaços de funções invariantes por (1.0.2) (veja (4.3.4), pg. 81), e desde que $\dot{\mathcal{L}}_{p,n-p}(\mathbb{R}^n_+)$ contém funções homogêneas, obtemos a existência de soluções auto-similares. Analogamente ao sistema de Boussinesq, analisamos o comportamento assintótico das soluções, provando a existência de uma bacia atratora em torno de cada solução auto-similar. Enfatizamos que nossos resultados, de fato, fornecem novas soluções, pois podemos considerar novos dados iniciais. Para ver isto, relembramos as inclusões próprias

$$L^n(\mathbb{R}^n_+) \subsetneq L^{(n,\infty)}(\mathbb{R}^n_+) \subsetneq \dot{\mathcal{L}}_{p,n-p}(\mathbb{R}^n_+),$$

e que não há relação de inclusão alguma entre os espaços $\dot{B}_{q,\infty}^{-(1-n/q)}$ e $\dot{\mathcal{L}}_{p,n-p}$, quando 1 (veja [36]).

Como noção de solução, utilizamos uma formulação integral (veja (4.2.34), pg. 80) derivada via a fómula de Ukai [52], a qual está demonstrada em detalhes em [11]. Nesta formulação aparecem essencialmente dois tipos de operadores lineares, a saber, operadores singulares de Calderon-Zygmund e o semi-grupo do calor E(t) no semi-espaço. Operadores de Calderon-Zygmund são contínuous em espaços de Morrey. Assim, como um dos pontos chaves para aplicar um argumento de ponto fixo em espaços de funções a la Kato (veja (4.3.1), pg. 81), precisamos provar estimativas do tipo $\dot{\mathcal{L}}_{p_1,\lambda_1} - \dot{\mathcal{L}}_{p_2,\lambda_2}$ para E(t) e seu gradiente $\nabla_x E(t)$. Este é o conteúdo do Lemma 4.5.1, e em sua prova, adaptamos alguns argumentos de [30, Lema 2.1] (feitos no domínio \mathbb{R}^n) para o caso mais difícil do domínio \mathbb{R}^n . A principal dificuldade reside no fato que o semigrupo do calor em \mathbb{R}^n não é um operador do tipo convolução, como o é no caso do \mathbb{R}^n .

1.3 Organização da tese

A tese está organizada em três capítulos com suas respectivas seções. No capítulo 2, relembramos alguns resultados contendo algumas definições e resultados básicos que serão usados no presente trabalho. Em particular, incluímos neste capítulo as definições, e algumas propriedades,

8

dos espaços de Morrey e alguns de seus subspaços. No capítulo 3 estão enunciados e demonstrados nossos resultados para as equações de Boussinesq (1.1.1)-(1.1.3). Finalmente, osresultados para as equações de Navier-Stokes (1.2.1)-(1.2.4) estão enunciados e demonstrados no capítulo 4.

No início dos capítulos 3 e 4, que são os maiores capítulos, explicamos com mais detalhes a organização e a distribuição em seções (e subseções) do conteúdo de cada um deles.

Capítulo 2

Preliminares

O objetivo deste capítulo é relembrar algumas propriedades sobre os espaços de Morrey, os quais serão usados nos capítulos subsequentes para estudar os dois modelos mencionados na introdução. Também relembramos algumas definições e resultados básicos sobre a equação do calor, operadores integrais singulares e a função beta.

Nesta tese, por uma questão de simplicidade, usaremos as notações de Hardy e Vinogradov, as quais relembramos a seguir. Na notação de Hardy, a letra C denota várias constantes positivas em estimativas da forma $X \leq CY$, onde X,Y são certas quantidades estudadas. Já a convenção de Vinogradov $X \lesssim Y$ (ler-se X menor que ou comparável com Y) usaremos como sinônimo para a notação $|X| \leq CY$.

2.1 Espaços de Morrey homogêneo

Na sequência apresentamos a definição de espaços de Morrey homogêneo $\dot{\mathcal{L}}_{p,\lambda}(\Omega)$, onde Ω denota um subconjunto aberto de \mathbb{R}^n . O termo "homogêneo" é justificado por uma propriedade relembrada abaixo em (2.1.10). Na linha de equações diferenciais parciais um dos primeiros trabalhos usando estes espaços foi o trabalho de Morrey (veja [39]), introduzido em conexão com equações elípticas. Nos anos subsequentes outros resultados foram obtidos para outras equações, veja os artigos de Giga [25, 26], Kato [30], Taylor [50], Biler [3], Ruiz e Vega [43]. Na sequência, apresentamos a definição de espaços de Morrey.

Definição 2.1.1 (Espaços de Morrey homogêneo). Sejam $\Omega \subset \mathbb{R}^n$ aberto, $p \in [1, \infty)$ e $0 \le \lambda < \infty$

n. Assuma que $f \in L^p_{loc}(\Omega)$, dizemos que $f \in \dot{\mathcal{L}}_{p,\lambda}(\Omega)$, se

$$\int_{\Omega_r(x_0)} |f(x)|^p dx \lesssim r^{\lambda},\tag{2.1.1}$$

onde $\Omega_r(x_0) = \{ x \in \Omega ; |x - x_0| < r \}.$

Por simplicidade, quando não houver confusão, usaremos $\dot{\mathcal{L}}_{p,\lambda}$ para denotar $\dot{\mathcal{L}}_{p,\lambda}(\Omega)$. Algumas generalizações destes espaços, podem ser encontradas em [34, 9, 40].

Note que os espaços de Morrey são espaços vetoriais normados com a norma dada por

$$||f||_{p,\lambda} = \sup_{x_0 \in \Omega, r > 0} r^{-\lambda/p} ||f||_{L^p(\Omega_r(x_0))}.$$
 (2.1.2)

Além disso, $L^p(\Omega)$ são casos particulares de $\dot{\mathcal{L}}_{p,\lambda}(\Omega)$, basta tomar $\lambda=0$ e observar que $\dot{\mathcal{L}}_{p,0}(\Omega)=L^p(\Omega)$ para p>1. Na próxima proposição mostraremos que $\dot{\mathcal{L}}_{p,\lambda}$ é um espaço de Banach.

Proposição 2.1.2. Sejam $0 < \lambda < n$ e $1 \le p < \infty$. O espaço $\dot{\mathcal{L}}_{p,\lambda}(\Omega)$ é um espaço de Banach.

Demonstração:

Seja $\{f_k\}_{k=1}^{\infty}$ uma sequência de Cauchy em $\dot{\mathcal{L}}_{p,\lambda}(\Omega)$. Em particular, $\{f_k\}_{k=1}^{\infty}$ é uma sequência de Cauchy em $L^p(\Omega_r(x_0))$. Assumindo $p \geq 1$, a completude de $L^p(\Omega_r(x_0))$ assegura que existe

$$f \in L^p(\Omega_r(x_0)) \text{ tal que } ||f_k - f||_{L^p(\Omega_r(x_0))} \to 0.$$
 (2.1.3)

Mostraremos que $f \in \dot{\mathcal{L}}_{p,\lambda}(\Omega)$ e $||f - f_k||_{\dot{\mathcal{L}}_{p,\lambda}(\Omega)} \to 0$. Com efeito, primeiramente escreva

$$|f(x)|^p = |f(x) - f_k(x) + f_k(x)|^p$$

$$\leq 2^p \{|f(x) - f_k(x)|^p + |f_k(x)|^p\}.$$

Logo,

$$\frac{1}{r^{\lambda}} \int_{\Omega_r(x_0)} |f(x)|^p dx \le 2^p \frac{1}{r^{\lambda}} \int_{\Omega_r(x_0)} |f(x) - f_k(x)|^p dx + \frac{1}{r^{\lambda}} \int_{\Omega_r(x_0)} |f_k(x)|^p dx. \tag{2.1.4}$$

Desde que a sequência $\{f_k\}_{k=1}^{\infty}$ é de Cauchy em $\dot{\mathcal{L}}_{p,\lambda}(\Omega)$, então existe c>0 tal que $\|f_k\|_{\dot{\mathcal{L}}_{p,\lambda}(\Omega)}\leq c$, para todo $k\in\mathbb{N}$. Este fato, junto com a convergência (2.1.3) e a designaldade (2.1.4), implica

que

$$\frac{1}{r^{\lambda}} \int_{\Omega_r(x_0)} |f(x)|^p dx \le c,$$

e consequentemente $f \in \dot{\mathcal{L}}_{p,\lambda}(\Omega)$. Falta mostrar que

$$\sup_{r>0} \frac{1}{r^{\lambda}} \int_{\Omega_r(x_0)} |f(x) - f_k(x)|^p dx \xrightarrow{k \to \infty} 0. \tag{2.1.5}$$

Para isto escreva,

$$\frac{1}{r^{\lambda}} \int_{\Omega_{r}(x_{0})} |f(x) - f_{k}(x)|^{p} dx \leq 2^{p} \left\{ \frac{1}{r^{\lambda}} \int_{\Omega_{r}(x_{0})} |f_{l}(x) - f_{k}(x)|^{p} dx + \frac{1}{r^{\lambda}} \int_{\Omega_{r}(x_{0})} |f(x) - f_{l}(x)|^{p} dx \right\} \\
\leq 2^{p} \left\{ ||f_{l} - f_{k}||_{\dot{\mathcal{L}}_{p,\lambda}(\Omega)} + \frac{1}{r^{\lambda}} \int_{\Omega_{r}(x_{0})} |f(x) - f_{l}(x)|^{p} dx \right\}. \tag{2.1.6}$$

Desde que $\{f_k\}_{k=1}^{\infty}$ é de Cauchy em $\dot{\mathcal{L}}_{p,\lambda}(\Omega)$, então existe $n_0 \in \mathbb{N}$ tal que

$$||f_l - f_k||_{\dot{\mathcal{L}}_{p,\lambda}(\Omega)} < \varepsilon, \quad \text{para todo } k, l \ge n_0.$$
 (2.1.7)

Assim, pelas desigualdades (2.1.6) e (2.1.7), obtemos

$$\frac{1}{r^{\lambda}} \int_{\Omega_r(x_0)} |f(x) - f_k(x)|^p dx \le 2^p \varepsilon + \frac{2^p}{r^{\lambda}} \int_{\Omega_r(x_0)} |f(x) - f_l(x)|^p dx, \tag{2.1.8}$$

$$<2^{p}\varepsilon+C\varepsilon,\quad \text{para todo } k,l\geq n_{0}.$$
 (2.1.9)

Agora a convergência $f_k \to f$ em $\dot{\mathcal{L}}_{p,\lambda}(\Omega)$, segue por (2.1.9) e pelo fato de $\varepsilon > 0$ ser arbitrário.

Em [50, 25, 36], [30] e [40, 4] usa-se as notações $\mathcal{M}_p^q(\Omega)$, $M(A)(\Omega)$ e $\mathcal{E}_{\alpha,p}(\Omega)$, $\dot{\mathcal{L}}^{p,\alpha}(\Omega)$ para denotar o espaço $\dot{\mathcal{L}}_{p,\lambda}(\Omega)$ com $\lambda=n(1-\frac{p}{q})$ e $p\leq q$, $A=(\frac{1}{p},\frac{n-\lambda}{p})$ e $\alpha=\frac{n-\lambda}{p}$, respectivamente.

2.1.1 Propriedades

Nesta seção relembraremos algumas propriedades, as quais serão usadas ao longo dos capítulos subsequentes. Começamos relembrando uma propriedade de homogeneidade dos espaços $\dot{\mathcal{L}}_{p,\lambda}$, que será útil para estudar EDPs via técnicas de *scaling* em espaços de Morrey. Sejam

 $\Omega \subset \mathbb{R}^n$ e $\varepsilon > 0$. Supondo $\varepsilon \Omega \subset \Omega$, temos a seguinte relação de escala:

$$\|\delta_{\varepsilon}f\|_{\dot{\mathcal{L}}_{p,\lambda}} = \varepsilon^{-\frac{n-\lambda}{p}} \|f\|_{\dot{\mathcal{L}}_{p,\lambda}},\tag{2.1.10}$$

onde δ_{ε} denota a dilatação $\delta_{\varepsilon}f(x)=f(\varepsilon x), \ \varepsilon>0$. De fato, defina $\sup:=\sup_{r>0}$. Se $y\in\Omega_{r/\varepsilon}(0)$, então,

$$\|\delta_{\varepsilon}f\|_{\dot{\mathcal{L}}_{p,\lambda}}^{p} = \sup (r/\varepsilon)^{-\lambda} \int_{\Omega_{r}(0)} |f(\varepsilon y)|^{p} dy$$

$$= \sup \varepsilon^{(\lambda-n)} r^{-\lambda} \int_{\Omega_{r}(0)} |f(y)|^{p} dy$$

$$= \varepsilon^{(\lambda-n)} \|f\|_{\dot{\mathcal{L}}_{p,\lambda}}^{p}.$$

Outras propriedades dos espaços de Morrey estão resumidas no lema abaixo. Antes vamos relembrar as definições dos espaços $L^{q,\infty}(\Omega)$ e dos espaços $PM^a(\mathbb{R}^n)$, a>0. Seja $1< q<\infty$. Dizemos que $f\in L^{q,\infty}(\Omega)$, se

$$\sup_{t>0} t^{q} \mathbf{m}(\{x \in \Omega : |f(x)| > t\}) \le C, \tag{2.1.11}$$

onde $\mathbf{m}(\{\cdot\})$ denota a medida de Lebesgue em Ω . Definimos o espaço PM^a como:

$$PM^{a} = \{ g \in \mathcal{S}' : \hat{g} \in L^{1}_{loc} e \sup_{\xi \in \mathbb{R}^{n}} |\xi|^{a} |\hat{g}(\xi)| < \infty \},$$
 (2.1.12)

onde S' denota o espaço das distribuições temperadas e $\hat{g}(\xi)$ denota a transformada de Fourier de g:

$$\hat{g}(\xi) = \int_{\mathbb{R}^n} e^{-ix\cdot\xi} g(x) dx.$$

Lema 2.1.3 ([30]).

(i) (Inclusão contínua) Sejam $1 \le p \le q < \infty$ e $0 < \lambda, v < n$. Se $\frac{n-v}{q} = \frac{n-\lambda}{p}$, então a seguinte inclusão é contínua:

$$\dot{\mathcal{L}}_{q,v}(\Omega) \subset \dot{\mathcal{L}}_{p,\lambda}(\Omega). \tag{2.1.13}$$

(ii) (Desigualdade de Hölder) Sejam $l,p,q\in [1,\infty)$ e $0<\lambda,\upsilon,\mu< n$. Se $\frac{1}{l}=\frac{1}{p}+\frac{1}{q}$ e $\frac{\mu}{l}=\frac{\lambda}{p}+\frac{\upsilon}{q}$, então

$$||fg||_{\dot{\mathcal{L}}_{p,\nu}(\Omega)} \le ||f||_{\dot{\mathcal{L}}_{p,\lambda}(\Omega)} ||g||_{\dot{\mathcal{L}}_{q,\nu}(\Omega)}.$$
 (2.1.14)

(iii) (Imersão em espaços $L^p(\Omega)$ com peso) Sejam $p \in (1, \infty)$ e $\lambda \in [0, n)$. Se $k > \lambda$, então as seguintes inclusões são contínuas:

$$\dot{\mathcal{L}}_{p,\lambda}(\Omega) \subset L^p_{-k/p}(\Omega) \subset \mathcal{S}'(\Omega),$$
 (2.1.15)

onde $L_s^p(\Omega)$ $(s \in \mathbb{R})$ denota o espaço de Banach de funções mensuráveis f com a norma

$$||f||_{L^{p}(\Omega)} = ||(1+|x|^{2})^{\frac{s}{2}}f||_{L^{p}(\Omega)}.$$
(2.1.16)

(iv) (Funções homogêneas) Seja $\mathbb{S}^{n-1} \subset \mathbb{R}^n$ uma esfera unitária e $h \in L^{\infty}(\mathbb{S}^{n-1} \cap \Omega)$. Se 0 < d < n e $1 \le p < n/d$, então $h(x/|x|)|x|^{-d} \in \dot{\mathcal{L}}_{p,n-dp}(\Omega)$.

Demonstração:

A prova dos itens (i), (ii), (iii) e (iv) com $\Omega = \mathbb{R}^n$ pode ser encontrada em [30], e a do caso $\Omega \neq \mathbb{R}^n$ segue exatamente os mesmos argumentos de [30]. Incluímos as provas dos itens (i), (ii), (iii) e (iv) para a conveniência do leitor.

Prova de (i): Se $p \leq q$, podemos usar a desigualdade de Holder em $L^p(\Omega_r(x_0))$ e obter

$$\int_{\Omega_{r}(x_{0})} |f(x)|^{p} dx \leq |\Omega_{r}(x_{0})|^{1-p/q} \left(\int_{\Omega_{r}(x_{0})} |f(x)|^{q} dx \right)^{\frac{p}{q}} \\
= \omega_{n}^{1-p/q} r^{n(1-p/q)+\upsilon p/q} \left(\frac{1}{r^{\upsilon}} \int_{\Omega_{r}(x_{0})} |f(x)|^{q} dx \right)^{\frac{p}{q}}.$$
(2.1.17)

Usando a condição $\frac{n-v}{q} = \frac{n-\lambda}{p}$, podemos escrever

$$\lambda = n\left(1 - \frac{p}{q}\right) + \upsilon\frac{p}{q}.\tag{2.1.18}$$

Substituindo (2.1.18) em (2.1.17), segue que

$$\left(\frac{1}{r^{\lambda}} \int_{\Omega_r(x_0)} |f(x)|^p dx\right)^{\frac{1}{p}} \le \omega_n^{\frac{1}{p} - \frac{1}{q}} \left(\frac{1}{r^{\nu}} \int_{\Omega_r(x_0)} |f(x)|^q dx\right)^{\frac{1}{q}},\tag{2.1.19}$$

onde ω_n denota a área da esfera unitária \mathbb{S}^n . Assim, tomando $\sup_{r>0,x_0\in\Omega}$ em (2.1.19), obtemos

$$||f||_{p,\lambda} \le C||f||_{q,\upsilon}.$$

14

Prova de (ii): Se $\frac{1}{l} = \frac{1}{p} + \frac{1}{q}$, então

$$||fg||_{L^{1}(\Omega_{r}(x_{0}))} \le ||f||_{L^{p}(\Omega_{r}(x_{0}))} ||g||_{L^{q}(\Omega_{r}(x_{0}))}.$$

Usando a hipótese $\frac{\mu}{l} = \frac{\lambda}{p} + \frac{v}{q}$, obtemos que

$$r^{-\frac{\mu}{l}} \|fg\|_{L^{l}(\Omega_{r}(x_{0}))} \le r^{-\frac{\lambda}{p}} \|f\|_{L^{p}(\Omega_{r}(x_{0}))} r^{-\frac{\nu}{q}} \|g\|_{L^{q}(\Omega_{r}(x_{0}))}. \tag{2.1.20}$$

Tomando $\sup_{r>0,x_0\in\Omega}$ em (2.1.20), segue a desigualdade (2.1.14).

Prova de (iii):

Seja

$$\rho(r) = \int_{\{x \in \Omega; |x| < r\}} |f(x)|^p dx. \tag{2.1.21}$$

Se φ é uma função contínua em $\overline{\mathbb{R}^+}$, então

$$\int_{\Omega} \varphi(|x|)|f(x)|^p dx = \int_0^{\infty} \varphi(r)d\rho(r). \tag{2.1.22}$$

Assuma que $\varphi\in C^1(\Omega)$ e $\varphi(r)=o(r^{-\lambda})$ para r suficientemente grande. Usando integração por partes, obtemos

$$\int_0^\infty \varphi(r)d\rho(r) = \int_0^\infty (-\varphi'(r))\rho(r)dr. \tag{2.1.23}$$

Portanto, por (2.1.21) e a Definição 2.1.1, se $f \in \dot{\mathcal{L}}_{p,\lambda}$ então

$$\rho(r) \le \|f\|_{p,\lambda}^p r^{\lambda}. \tag{2.1.24}$$

Substituindo (2.1.23) em (2.1.22) e usando (2.1.24) obtemos

$$\int_{\Omega} \varphi(|x|)|f(x)|^p dx \le ||f||_{p,\lambda}^p \int_0^\infty |\varphi'(r)|r^{\lambda} dr. \tag{2.1.25}$$

Seja $\langle \cdot \rangle$ o colchete japonês $\langle x \rangle = (1+|x|^2)^{\frac{1}{2}}$. Tomando $\varphi(r) = \langle r \rangle^{-k}$ com $k > \lambda$ em (2.1.25), segue que $f \in L^p_{-k/p}(\Omega)$ e

$$||f||_{L^p_{-k/p}} \le C||f||_{\dot{\mathcal{L}}_{p,\lambda}(\Omega)}.$$

Prova de (iv): Vamos fazer a demonstração para o caso $\Omega=\mathbb{R}^n$, deixando o outro caso a cargo

do leitor. Neste caso, $\mathbb{S}^{n-1} \cap \Omega = \mathbb{S}^{n-1}$. Desde que $h \in L^{\infty}(\mathbb{S}^{n-1})$, é suficiente mostrar que $|x|^{-d} \in \dot{\mathcal{L}}_{p,n-dp}(\mathbb{R}^n)$. Considere, a mudança de coordenadas polares x=ry, onde r=|x| e $y=\frac{x}{|x|}\in\mathbb{S}^{n-1}$. Temos que

$$dx = r^{n-1} dr d\sigma(y),$$

onde σ denota a medida superficial em \mathbb{S}^{n-1} . Assim,

$$\int_{|x|< R} (|x|^{-d})^p dx = \int_{\mathbb{S}^{n-1}} \int_0^R r^{-dp} r^{n-1} dr d\sigma(y)$$

$$= \int_{\mathbb{S}^{n-1}} \int_0^R r^{n-dp-1} dr d\sigma(y)$$

$$= \int_{\mathbb{S}^{n-1}} \int_0^R r^{\lambda-1} dr d\sigma(y),$$

onde $\lambda = n - dp > 0$. Logo,

$$\int_{|x| < R} |x|^{-dp} dx = \omega_{n-1} R^{\lambda} / \lambda.$$

Observe que neste caso, o supremo na definição da norma (2.1.2) dos espaços de Morrey é assumido quando $x_0 = 0$; isto é, em bolas centradas na origem. Portanto,

$$|||x|^{-d}||_{p,n-dp}^p = \sup_{R>0} \left[R^{-\lambda} \int_{\{|x|< R\}} |x|^{-dp} dx \right] = \omega_{n-1}/\lambda < \infty.$$

Observação 2.1.4. Seja $1 \le p_2 < p_1 < \infty$ e $\lambda = n(p_1 - p_2)/p_1$. Então,

$$L^{p_1,\infty} \subset \dot{\mathcal{L}}_{p_2,\lambda}. \tag{2.1.26}$$

De fato, usando a desigualdade de Hölder em $L^{p_1,\infty}$ (veja [20]) e (2.1.2) obtemos

$$||f||_{p_2,\lambda} \le C||f||_{L^{(p_1,\infty)}} \sup_{r>0} r^{-\frac{\lambda}{p_2}} r^{n(\frac{1}{p_1} - \frac{1}{p_2})} = C||f||_{L^{(p_1,\infty)}},$$

onde $\|\cdot\|_{L^{(p_1,\infty)}}$ denota a norma em $L^{p_1,\infty}$.

Abaixo daremos um exemplo de uma função h que pertence aos espaços de Morrey, mas não

está em $L^{p,\infty}$ e PM^a ; ou seja, $L^{q,\infty} \subsetneq \dot{\mathcal{L}}_{p,\lambda}$ e $\dot{\mathcal{L}}_{p,\lambda} \nsubseteq PM^a$.

Observação 2.1.5. Seja $\phi \in C_c^{\infty}$ tal que $\phi(x) = 0$ quando $|x| \ge 1, \phi \ge 0, \phi(0) = 1$ e $\int \phi = 1$. Considere $\{x_j\} \subset \mathbb{R}^n$ uma sequência satisfazendo $|x_j| = 4^j$. Defina

$$h(x) = \sum_{j=1}^{\infty} \phi_j, \quad \phi_j = e^{i(x_j \cdot x)} \phi(x - x_j).$$
 (2.1.27)

Afirmamos que $h \in \dot{\mathcal{L}}_{p,\lambda}$ mas $h \notin L^{q,\infty}$ e $h \notin PM^a$, para todo $1 \leq p,q < \infty$, $0 \leq \lambda < n$ e a > 0.

Primeira parte: $h \in \dot{\mathcal{L}}_{p,\lambda}$ e $h \notin L^{q,\infty}$.

Seja N_{x_0r} o número de ϕ_j tais que $\Omega_r(x_0) \cap \operatorname{supp}(\phi_i) \neq \emptyset$ com $x_0 \in \mathbb{R}^n$ e r > 0. Observe que $\operatorname{supp}(\phi_{j_1}) \cap \operatorname{supp}(\phi_{j_2}) = \emptyset$ $(j_1 \neq j_2), h \in L^{\infty}$, e

$$\sup_{r<1} r^{-\frac{\lambda}{p}} \|h\|_{L^p(\Omega_r(x_0))} \le \sup_{r<1} r^{-\frac{\lambda}{p} + \frac{n}{p}} \|h\|_{L^\infty} \le \|h\|_{L^\infty}. \tag{2.1.28}$$

Além disso,

$$||h||_{L^p(\Omega_r(x_0))}^p = \sum_{j=1}^{\infty} ||\phi_j||_{L^p(\Omega_r(x_0))}^p \le N_{x_0r} ||\phi||_{L^p(\mathbb{R}^n)}^p \le (1 + \log_4 r) ||\phi||_{L^p(\mathbb{R}^n)}^p,$$

e então

$$\sup_{r\geq 1} r^{-\frac{\lambda}{p}} \|h\|_{L^p(\Omega_r(x_0))} \leq 2\|\phi\|_{L^p(\mathbb{R}^n)}. \tag{2.1.29}$$

Logo, (2.1.28) e (2.1.29) implicam que $h \in \dot{\mathcal{L}}_{p,\lambda}$. Agora vamos mostrar que $h \notin L^{q,\infty}$. Seja $0 < \varepsilon < 1$ e $A_{\varepsilon} = \{x \in \mathbb{R}^n : |\phi(x)| > \varepsilon\}$. Denote por **m** a medida de Lebesgue e \widetilde{N}_R o número de ϕ_j satisfazendo

$$(\Omega_R(x_0))^C \cap supp(\phi_j) \neq \varnothing.$$

Como $\mathbf{m}(A_{\varepsilon}) > 0$, temos que

$$\mathbf{m}\left(\{|x|>R:\ |h(x)|>\varepsilon\}\right) = \sum_{j} \mathbf{m}\left(\{|x|>R:\ |\phi_{j}(x)|>\varepsilon\}\right)$$

$$\geq \sum_{j\in \widetilde{N}_{R-1}} \mathbf{m}(A_{\varepsilon}) = \infty, \text{ para todo } R\geq 2, \tag{2.1.30}$$

o que mostra que $h \notin L^{q,\infty}$.

Segunda parte: $h \notin PM^a$.

Seja $0 < \varepsilon < 1$. Pela definição de h dada em (2.1.27) temos que $\hat{h}(\xi) = \sum_{j=1}^{\infty} e^{i(x_j \cdot \xi)} \hat{\phi}(\xi - x_j)$, e assim,

$$|\hat{h}(x_m)| = |e^{i|x_m|^2} \hat{\phi}(0) + \sum_{j \neq m} e^{i(x_j \cdot x_m)} \hat{\phi}(x_m - x_j)|$$

$$\geq \hat{\phi}(0) - \varepsilon = 1 - \varepsilon > 0,$$

para m suficientemente grande, pois $\hat{\phi} \in \mathcal{S}(\mathbb{R}^n)$. Portanto

$$\sup_{\xi \in \mathbb{R}^n} |\xi|^a |\hat{h}(\xi)| \ge \sup_m |x_m|^a |\hat{h}(x_m)| = \sup_m 4^{ma} |\hat{h}(x_m)| = \infty, \tag{2.1.31}$$

e, desta forma, $h \notin PM^a$ para qualquer a > 0.

2.2 Equação do calor

Nesta seção, vamos relembrar alguns fatos sobre a equação do calor. Considere a equação,

$$\begin{cases} u_t - \Delta u = 0, & \text{se } (x, t) \in \Omega \times (0, \infty) \\ u(x, 0) = u_0, & \text{se } x \in \Omega, \end{cases}$$
 (2.2.1)

onde $u: \Omega \times [0,\infty) \to \mathbb{R}$, u_0 é uma condição inicial e Ω é um aberto do \mathbb{R}^n . O problema (2.2.1) é conhecido como o problema de valor inicial (PVI) para a equação do calor em Ω . Complementaremos o (PVI) (2.2.1) com uma condição de fronteira do tipo Dirichlet de acordo com o domínio considerado.

2.2.1 Equação do calor em \mathbb{R}^n

Como podemos ver em [18, 23], a solução fundamental para a equação do calor em \mathbb{R}^n é dada por:

$$g(x,t) = \begin{cases} (4\pi t)^{n/2} e^{-\frac{|x|^2}{4t}}, & \text{se } t > 0\\ 0, & \text{se } t < 0. \end{cases}$$
 (2.2.2)

A função em (2.2.2) é conhecida como o núcleo do calor em \mathbb{R}^n . Adicionando ao (PVI) (2.2.1) a condição

$$u(x,0) = u_0 \in C(\mathbb{R}^n) \cap L^{\infty}, \tag{2.2.3}$$

obtemos que

$$u(x,t) = g(\cdot,t) * u_0(x)$$

é a solução para o problema (2.2.1). Tal solução define um semigrupo $\{S(t)\}_{t\geq 0}$, dado explicitamente por:

$$S(t)u_0 := e^{t\triangle}u_0 = \begin{cases} g(\cdot, t) * u_0, & \text{se } t > 0 \\ u_0, & \text{se } t = 0. \end{cases}$$
 (2.2.4)

Chamaremos $\{S(t)\}_{t\geq 0}$ de o semigrupo do calor.

Estimativas em $\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n)$:

Estimativas para o semigrupo do calor são conhecidas em diversos espaços funcionais. Na sequência relembraremos uma estimativa nos espaços $\dot{\mathcal{L}}_{p,\lambda}$ encontrada em [30, Lema 2.1]. Sejam $1\leqslant q_1,q_2\le\infty$ e $0\le\mu_1,\mu_2< n$ tais que $\frac{n-\mu_2}{q_2}\le\frac{n-\mu_1}{q_1}$, e $\mu_1=\mu_2$ quando $q_1\le q_2$. Para cada multi-índice k, existe uma constante C>0 tal que

$$\|\partial_x^k e^{t\triangle}\varphi\|_{q_2,\mu_2} \le Ct^{-\frac{|k|}{2} - (\frac{n-\mu_1}{q_1} - \frac{n-\mu_2}{q_2})} \|\varphi\|_{q_1,\mu_1}, \ \forall \ t > 0 \ \mathbf{e} \ \varphi \in \dot{\mathcal{L}}_{q_1,\mu_1}. \tag{2.2.5}$$

Um fato interessante é que o semigrupo do calor não é fortemente contínuo quando $t \to 0^+$ nos espaços $\dot{\mathcal{L}}_{p,\lambda}$; o motivo é que não temos um resultado de aproximação da identidade em $\dot{\mathcal{L}}_{p,\lambda}$ com $1 \le p < \infty$ e $0 < \lambda < n$. Desde que $e^{t\Delta}\varphi$ é uma função contínua para t > 0 e $\varphi \in \dot{\mathcal{L}}_{p,\lambda}$ (veja [30]), a não continuidade do semigrupo para t > 0 é uma consequência do fato que existem funções $f \in \dot{\mathcal{L}}_{p,\lambda}$ que não podem ser aproximadas por funções contínuas em $\dot{\mathcal{L}}_{p,\lambda}$. O exemplo a seguir pode ser encontrado em [56].

Fixe $x_0 \in \mathbb{R}^n$ e defina

$$f(x) = |x - x_0|^{-\frac{n-\lambda}{p}}$$
, para todo $x \in \mathbb{R}^n$.

Então, dada qualquer função h contínua em \mathbb{R}^n , temos que

$$||f - h||_{\dot{\mathcal{L}}_{p,\lambda}}^p \ge \frac{2^{-p-1}}{\lambda} \omega_{n-1},$$
 (2.2.6)

onde ω_{n-1} denota a área da esfera unitária \mathbb{S}^{n-1} . Denotando $M=\sup_{x\in\mathbb{R}^n}|h(x)|^p$ e usando coordenadas polares, obtemos

$$\frac{1}{r^{\lambda}} \int_{\Omega_{r}(x_{0})} |f(x) - h(x)|^{p} dx \geq 2^{-p} r^{-\lambda} \left\{ \int_{\Omega_{r}(x_{0})} |f(x)|^{p} dx - \int_{\Omega_{r}(x_{0})} |h(x)|^{p} dx \right\}$$

$$\geq 2^{-p} r^{-\lambda} \left\{ \int_{\Omega_{r}(x_{0})} |x - x_{0}|^{\lambda - n} dx - \omega_{n-1} M r^{n} \right\}$$

$$= 2^{-p} r^{-\lambda} \left\{ \int_{|y| < r} |y|^{\lambda - n} dy - \omega_{n-1} M r^{n} \right\}$$

$$= \frac{1}{2^{p} r^{\lambda}} \left\{ \int_{\mathbb{S}^{n-1}} \int_{0}^{r} s^{\lambda - n} s^{n-1} ds d\sigma(z) - \omega_{n-1} M r^{n} \right\}$$

$$= 2^{-p} r^{-\lambda} \left(\frac{\omega_{n-1}}{\lambda} r^{\lambda} - \omega_{n-1} M r^{n} \right)$$

$$= \omega_{n-1} 2^{-p} \left(\frac{1}{\lambda} - M r^{n-\lambda} \right).$$

Agora, escolhendo r tal que $(\frac{1}{\lambda}-Mr^{n-\lambda})\geq \frac{1}{2\lambda}$ e relembrando (2.1.2), segue (2.2.6).

Observe que o semigrupo $\{S(t)\}_{t\geq 0}$ é contínuo em t>0 e fracamente contínuo em $t=0^+$ (veja [30]). Uma maneira de contornar a falta de continuidade forte de $\{S(t)\}_{t\geq 0}$ em $t=0^+$ é considerar um conveniente subespaço, onde a translação é contínua. Seja $\tau_y \varphi(x) = \varphi(x-y)$ a translação por $y \in \mathbb{R}^n$ e defina o seguinte subespaço de $\dot{\mathcal{L}}_{p,\lambda}$:

$$\tilde{\mathcal{L}}_{p,\lambda} = \{ \varphi \in \dot{\mathcal{L}}_{p,\lambda} \, ; \, \|\tau_y \varphi - \varphi\|_{p,\lambda} \to 0 \, , \, y \to 0 \}. \tag{2.2.7}$$

Veremos na próxima proposição que o subespaço $\tilde{\mathcal{L}}_{p,\lambda}$ é o subespaço máximal no qual o semi-grupo $\{S(t)\}_{t\geqslant 0}$ é fortemente contínuo (veja mais detalhes em [56, Proposição 3] e [30, Lema 3.1]). De fato, basta tomar $\psi(x)=g(x,1)$, $\varepsilon=t^{\frac{1}{2}}$ e notar que $g(x,t)=t^{-\frac{n}{2}}g(\frac{x}{\sqrt{t}},1)$.

Proposição 2.2.1 ([56, 30]). Assuma que $0 \le \lambda < n$ e $p \ge 1$. Seja $\varphi \in \dot{\mathcal{L}}_{p,\lambda}$ e $\psi \in \mathcal{S}(\mathbb{R}^n)$ com $0 \le \psi \le 1$, $\int \psi = 1$, e $\psi_{\varepsilon}(x) = \varepsilon^{-n} \psi(\varepsilon^{-1}x)$. Então $\varphi * \psi_{\varepsilon} \in \dot{\dot{\mathcal{L}}}_{p,\lambda}$, para todo $\varepsilon > 0$; e $\varphi \in \dot{\dot{\mathcal{L}}}_{p,\lambda}$ se, e somente se,

$$\|\varphi * \psi_{\varepsilon} - \varphi\|_{p,\lambda} \to 0$$
, quando $\varepsilon \to 0$. (2.2.8)

Além disso, $\overline{C_0^1(\mathbb{R}^n)}^{\|\cdot\|_{p,\lambda}} \subset \widetilde{\mathcal{L}}_{p,\lambda}$ onde $C_0^k(\mathbb{R}^n)$ denota o conjunto das funções de suporte compacto em \mathbb{R}^n e com derivadas contínuas de ordem k.

2.2.2 Equação do calor em \mathbb{R}^n_+

Começamos fixando algumas notações e definindo alguns operadores úteis. Denote $x' = (x_1, \dots, x_{n-1}) \in \mathbb{R}^{n-1}$ e defina o operador γ no semi-espaço como

$$\gamma: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\partial \mathbb{R}^n_+), \quad \gamma u = a(x', t) = u((x', 0), t).$$
 (2.2.9)

O operador γ pode ser estendido unicamente, via análise de Fourier, para um mapa contínuo (veja [51]):

$$\gamma: H^s(\mathbb{R}^n) \to H^{s-1/2}(\partial \mathbb{R}^n_+), \text{ se } s > \frac{1}{2},$$
 (2.2.10)

onde $H^s(\mathbb{R}^n)$ denota o espaço de Sobolev não-homogêneo; mais precisamente

$$H^s(\mathbb{R}^n) = \{ u \in \mathcal{S}'(\mathbb{R}^n) ; \langle \xi \rangle^s \widehat{u}(\xi) \in L^2(\mathbb{R}^n) \}.$$

O problema de valor inicial e de fronteira do calor no semi-espaço \mathbb{R}^n_+ é o seguinte:

$$z_t - \Delta z = 0$$
, em $\mathbb{R}^n_+ \times \{t > 0\}$ (2.2.11)

$$\gamma z = a, \quad \text{em} \quad \partial \mathbb{R}^n_+ \times \{t > 0\}$$
 (2.2.12)

$$z|_{t=0} = z_0 \text{ em } \mathbb{R}^n_+,$$
 (2.2.13)

onde a e z_0 são as condições de fronteira e inicial, respectivamente. A solução do problema (2.2.11)-(2.2.13) é dada por:

$$z = [E(t)z_0](x) + [Fa](x,t), (2.2.14)$$

onde E(t) e F são os seguintes operadores definidos explicitamente:

$$[E(t)z_0](x) = \int_{\mathbb{R}^n_+} [g(x-y,t) - g(x-y^*,t)]z_0(y)dy, \qquad (2.2.15)$$

onde $y^* = (y_1, \dots, y_{n-1}, -y_n)$.

$$[Fa](x,t) = \int_0^t \int_{\partial \mathbb{R}^n} \partial_n g(x'-y', x_n, t-s) a(y', s) ds dy'. \tag{2.2.16}$$

Uma questão que aparece naturalmente é a seguinte: sobre quais hipóteses um resultado sim-

ilar ao da Proposição 2.2.1 pode ser verificado no semi-espaço \mathbb{R}^n_+ . Temos o seguinte corolário:

Corolário 2.2.2. Assuma que $1 \leq p < \infty$ e $0 < \lambda < n$. Então $\varphi \in \tilde{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n_+)$ se, e somente se, $\|E(t)\varphi - \varphi\|_{\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n_+)} \to 0$, quando $t \to 0^+$.

Demonstração:

Considere o operador restrição de \mathbb{R}^n para \mathbb{R}^n_+ definido por

$$rf = f|_{\mathbb{R}^n} = f(x', 0),$$
 (2.2.17)

e o operador extensão impar \tilde{e}

$$\tilde{e}f(x',x_n) = \begin{cases} f(x',x_n), & x_n > 0\\ -f(x',-x_n), & x_n < 0. \end{cases}$$
 (2.2.18)

Uma simples manipulação destes operadores mostra que $E(t)\varphi=rS(t)\tilde{e}\varphi$. Desde que o núcleo do calor pode ser escrito como

$$g(x,t) = t^{-\frac{n}{2}}g(t^{-\frac{1}{2}}x,1) = \varepsilon^{-n}\psi(\varepsilon^{-1}x) = \psi_{\varepsilon}$$
, onde $\psi(x) = g(x,1)$

e ψ satisfaz as hipóteses da Proposição 2.2.1, obtemos que

$$S(t)\tilde{e}\varphi \xrightarrow{t\to 0^+} \tilde{e}\varphi \text{ em } \dot{\mathcal{L}}_{p,\lambda} \text{ se, e somente se, } \tilde{e}\varphi \in \dot{\tilde{\mathcal{L}}}_{p,\lambda}(\mathbb{R}^n).$$
 (2.2.19)

Agora escreva

$$E(t)\varphi - \varphi = rS(t)\tilde{e}\varphi - r\tilde{e}\varphi,, \qquad (2.2.20)$$

e note que $\tilde{e}: \dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n_+) \to \dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n)$ e $r: \dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n) \to \dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n)$ são contínuos. Usando (2.2.20) e (2.2.19), segue que

$$||E(t)\varphi - \varphi||_{\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n_+)} \to 0$$
, quando $t \to 0^+$,

se, e somente se, $\varphi \in \dot{\dot{\mathcal{L}}}_{p,\lambda}(\mathbb{R}^n_+)$.

2.3 Operadores integrais singulares

A proposta desta seção é relembrar algumas propriedades de operadores integrais singulares, os quais serão abreviadamente referidos como operadores (ISO), para mais detalhes referimos o leitor a [27, pg.267] (veja também [8, 46, 47, 48]). Exemplos de tais operadores são, as transformadas Hilbert e Riesz, e o projetor de Leray. Os dois últimos serão vistos na próxima seção. Começamos definindo o tipo de núcleo destes operadores integrais.

Sejam $n \geq 2$ e \mathcal{O} uma função tal que,

$$\int_{\mathbb{S}^{n-1}} \mathcal{O}(x) dx = 0. \tag{2.3.1}$$

Chamamos de núcleo singular de Calderon-Zygmund uma função $K: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ contínua e homogênea de grau -n dada por:

$$K(x) = \frac{\mathcal{O}(x/|x|)}{|x|^n}.$$

Note que $K \notin L^1(\mathbb{R}^n)$ e, portanto, introduzimos a distribuição $W \in \mathcal{S}'(\mathbb{R}^n)$ como segue:

$$\langle W_{\mathcal{O}}, \varphi \rangle = \lim_{\varepsilon \to 0} \int_{|x| \ge \varepsilon} K(x) \varphi(x) dx = \lim_{\varepsilon \to 0} \int_{\varepsilon \le |x| \le \varepsilon^{-1}} K(x) \varphi(x) dx, \text{ para todo } \varphi \in \mathcal{S}(\mathbb{R}^n).$$
(2.3.2)

Observe que a distribuição $W_{\mathcal{O}}$ coincide com a função K em $\mathbb{R}^n \setminus \{0\}$, veja detalhes em [27]. Denote por \mathbb{M} o espaços das funções mensuráveis $f: \mathbb{R}^n \to \mathbb{C}$.

Definição 2.3.1 (Operadores integrais singulares). Seja $\mathcal O$ uma função satisfazendo (2.3.1). Para $0 < \varepsilon < N$ e $f \in L^1_{loc}(\mathbb R^n)$, seja

$$T^{(\varepsilon,N)}f(x) = \int_{\varepsilon \le |y| \le N} f(x-y) \frac{\mathcal{O}(y/|y|)}{|y|^n} dy.$$

Assuma que

$$Tf(x) = \lim_{\varepsilon \to 0, N \to \infty} T^{(\varepsilon, N)} f(x), \tag{2.3.3}$$

exista $q.t.p \ x \in \mathbb{R}^n$. O operador $T: L^1_{loc} \to \mathbb{M}$ tal que $f \to Tf$, onde Tf é dado por (2.3.3), é chamado de um operador integral singular (ISO).

Quando $f \in \mathcal{S}(\mathbb{R}^n)$ o operador T pode ser escrito como

$$Tf = (f * W_{\mathcal{O}})(x) = \lim_{\varepsilon \to 0} \int_{|y| > \varepsilon} f(x - y) \frac{\mathcal{O}(y/|y|)}{|y|^n} dy.$$
 (2.3.4)

Exemplo 2.3.2 (Transformada de Hilbert). Um exemplo de operador (ISO) é a transformada de Hilbert H(f) a qual corresponde a $\mathcal{O}(x) = \frac{x}{\pi}$. Note que $\frac{x}{\pi}$ tem integral nula em $\mathbb{S}^0 = \{-1, 1\}$. Em vista de (2.3.4),

$$H(f) = v.p. \int_{-\infty}^{\infty} \frac{f(x-y)}{|y|} dy$$
$$= (f * W_{\mathcal{O}})(x) = \lim_{\varepsilon \to 0} \int_{|y| > \varepsilon} \frac{f(x-y)}{|y|} dy,$$

para todo $f \in \mathcal{S}(\mathbb{R}^n)$.

Exemplo 2.3.3 (Transformada de Riesz). Outro exemplo são as transformadas de Riesz $R_j(f)$, $j = 1, \dots, n$, as quais correspondem a,

$$\mathcal{O}_j(x) = -c_n x_j \text{ e } K_j(x) = \frac{\mathcal{O}_j(x_j/|x|)}{|x|^n},$$

onde $c_n=\Gamma(\frac{n+1}{2})/\pi^{\frac{n+1}{2}}$. Observe que $\int_{\mathbb{S}^{n-1}}\mathcal{O}_j(x)dx=0$ e, para $f\in\mathcal{S}(\mathbb{R}^n)$ temos que

$$R_{j}f(x) = (f * W_{\mathcal{O}_{j}})(x) = -\lim_{\varepsilon \to 0} \int_{|y| \ge \varepsilon} \frac{\mathcal{O}_{j}(y_{j}/|y|)}{|y|^{n}} f(y) dy = -c_{n}v.p. \int_{\mathbb{R}^{n}} \frac{(x_{j} - y_{j})f(y)}{|x - y|^{n+1}} dy.$$
(2.3.5)

Um resultado importante sobre operadores da classe (ISO), garante que eles são do tipo forte (p,p) para todo 1 .

Um teorema mostrado por Peetre [40] e por Kato [30], afirma que operadores integrais singulares são contínuos também em espaços de Morrey.

Teorema 2.3.4 ([40, 30]). Sejam $0 \le \lambda < n \ e \ 1 < p < \infty$. Se $K : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ é um núcleo singular de Calderon-Zygmund, então o operador (ISO) T definido em (2.3.3) é contínuo de $\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n)$ para $\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n)$.

Seja e o operador extensão de \mathbb{R}^n_+ para \mathbb{R}^n dado por:

$$ef = \begin{cases} f, & x_n > 0 \\ 0, & x_n < 0. \end{cases}$$
 (2.3.6)

Uma consequência do Teorema 2.3.4 é a seguinte:

Proposição 2.3.5. Assuma que $1 , <math>0 \le \lambda < n$ e K é um núcleo singular de Calderon-Zygmund. Então o operador $\overline{T} = rTef$ é contínuo em $\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n_+)$.

Demonstração:

A continuidade de \overline{T} em $\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n_+)$ segue diretamente da continuidade de e, T e r; de fato, temos que

$$\|\overline{T}f\|_{\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n_+)} = \|rTef\|_{\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n_+)} \le \|Tef\|_{\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n)} \le \|ef\|_{\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n)} = \|f\|_{\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n_+)}. \tag{2.3.7}$$

Desde que R_j é um operador (ISO) o Teorema 2.3.4 resulta na seguinte proposição.

Proposição 2.3.6. Se $1 e <math>0 \le \lambda < n$, então os operadores integrais singulares R_j são contínuos em $\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n)$.

2.3.1 Operadores multiplicadores de Fourier e transformada de Riesz

Nesta parte relembramos alguns fatos importantes sobre as transformadas de Riesz R_j , j=1,...,n, e sua conexão com operadores multiplicadores de Fourier, os quais definimos na sequência.

Definição 2.3.7 (Multiplicador de Fourier). Seja $m: \mathbb{R}^n \to \mathbb{C}$ uma distribuição temperada. Um multiplicador de Fourier é um operador contínuo $D: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$ tal que

$$\widehat{Df}(\xi) = m(\xi)\widehat{f}(\xi) \text{ em } \mathcal{S}', \tag{2.3.8}$$

onde $m(D)=m(\xi_1,\cdots,\xi_n)$ é chamada de o símbolo do multiplicador de Fourier D.

Note que se $f \in \mathcal{S}$, então $\hat{f} \in \mathcal{S}$. Assim, Df está bem definido como uma distribuição temperada, pois \hat{f} é um isomorfismo em \mathcal{S}' . Mais precisamente,

$$\langle Df, \varphi \rangle = \langle \widehat{Df}, \varphi^{\vee} \rangle = \langle m(\xi) \widehat{f}(\xi), \varphi^{\vee} \rangle = \langle m(\xi), \widehat{f}(\xi) \varphi^{\vee} \rangle$$
, para todo $\varphi \in \mathcal{S}$.

Exemplo 2.3.8. O operador derivada parcial $D=\frac{\partial}{\partial x_j}$ pode ser visto formalmente como um multiplicador de Fourier. Com efeito, o símbolo m(D) de D é dado por $i\xi_j$. A transformada de Hilbert, é outro exemplo de multiplicador de Fourier; neste caso $m(\xi)=-isgn(\xi)$ e $\widehat{Hf}(\xi)=-isgn(\xi)\widehat{f}(\xi)$ (veja [27, pg.252]).

Outro exemplo de multiplicadores de Fourier são as transformadas de Riesz R_j . Neste caso temos que $m(R_j)=\frac{i\xi_j}{|\xi|}$ e formalmente escreve-se

$$R_j := \frac{\partial_j}{|\nabla|}, \quad j = 1, \dots, n, \tag{2.3.9}$$

onde $|\nabla|$ é um operador com símbolo $m(|\nabla|) = |\xi|$. De fato, (2.3.9) segue da seguinte propriedade (veja [27, pg.260]):

$$\langle \widehat{W}_{\mathcal{O}_j}, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x) \frac{x_j}{|x|} dx,$$

onde $W_{\mathcal{O}_j} \in \mathcal{S}'(\mathbb{R}^n)$ é dada por

$$\langle W_{\mathcal{O}_j}, \varphi \rangle = -\frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \lim_{\varepsilon \to 0} \int_{|y| \ge \varepsilon} \frac{\mathcal{O}_j(y_j/|y|)}{|y|^n} \varphi(y) dy.$$

Portanto, juntando os fatos listados acima, obtemos

$$R_j f(x) = (f * W_{\mathcal{O}_j})(x) = (\frac{i\xi_j}{|\xi|} \hat{f}(\xi))^{\vee}(x) = -\frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} v.p. \int_{\mathbb{R}^n} \frac{x_j - y_j}{|x - y|^{n+1}} f(y) dy. \quad (2.3.10)$$

Uma das utilidades da transformada de Riesz, é que ela conecta derivadas de segunda ordem com o operador laplaciano Δ em \mathbb{R}^n . De fato, considere a equação de Poisson

$$\Delta u = f, \text{ em } \mathbb{R}^n. \tag{2.3.11}$$

Seja $\xi \in \mathbb{R}^n$ tal que $\xi \neq 0$. aplicando a transformada de Fourier em (2.3.11), obtemos

$$\widehat{\partial_{i}\partial_{j}u}(\xi) = (i\xi_{i})(i\xi_{j})\widehat{u}(\xi)$$

$$= (i\xi_{i})(i\xi_{j})\frac{\widehat{f}}{-|\xi|^{2}}$$

$$= -\frac{i\xi_{i}}{|\xi|}\frac{i\xi_{j}}{|\xi|}\widehat{f}(\xi).$$
(2.3.12)

Assim, tomando a transformada inversa de Fourier em (2.3.12), segue que

$$\partial_i \partial_j f = -R_i R_j \Delta f, \tag{2.3.13}$$

para todo $1 \le i, j \le n$ e $f \in \mathcal{S}(\mathbb{R}^n)$.

Em particular, usando a Proposição 2.3.6 e (2.3.13), obtemos a estimativa

$$\|\partial_i \partial_j f\|_{\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n)} \lesssim \|\Delta f\|_{\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n)}. \tag{2.3.14}$$

Gostaríamos de definir um operador singular S_j em \mathbb{R}^{n-1} $(j=1,\cdots,n-1)$ com propriedades similares a das transformadas de Riesz, o qual será útil para estudar as equações de Navier-Stokes no semi-espaço \mathbb{R}^n_+ . Definimos o operador S_j como o operador com símbolo

$$m(S_j) = \frac{i\xi_j}{|\xi'|}. (2.3.15)$$

Em \mathbb{R}^{n-1} , S_j é um operador integral singular e portanto contínuo em $\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^{n-1})$. Em \mathbb{R}^n_+ e \mathbb{R}^n , S_j é entendido como:

$$\widehat{S_j f}(\xi', x_n) = \frac{i\xi_j}{|\xi'|} \widehat{f}(\xi', x_n), \qquad (2.3.16)$$

onde $^{\wedge}$ denota a transformada de Fourier em \mathbb{R}^{n-1} , isto é, na variável x' sendo $(x', x_n) \in \mathbb{R}^n$, ou $(x', x_n) \in \mathbb{R}^n$, conforme o caso.

O operador dado em (2.3.16) não define um operador integral singular. De fato (2.3.16) é um pouco mais "regular" que um operador (ISO), no sentido que seus núcleos são mais "regulares" na variável x_n . Usando resultados de [41, 50] (veja também [33]) obtem-se a seguinte proposição:

Proposição 2.3.9 ([41, 50]). Sejam S_j os operadores definidos em (2.3.16), $j=1,\cdots,n-1$. Então S_j é um operador contínuo em $\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n)$ e em $\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n)$, conforme consideremos o domínio

 \mathbb{R}^n_+ e \mathbb{R}^n , respectivamente.

Observação 2.3.10. Operadores do tipo multiplicadores de Fourier e operadores singulares do tipo Calderon-Zygmund são contínuos nos espaços L_s^p para $1 e <math>s \in \mathbb{R}$ (veja [7], [48]). Portanto, as Proposições 2.3.5, 2.3.6 e 2.3.9 continuam válidas se trocarmos $\dot{\mathcal{L}}_{p,\lambda}$ por L_s^p em seus enunciados.

2.3.2 Projetor de Leray-Hopf

O objetivo desta seção é definir o projetor de Leray (ou Leray-Hopf para alguns autores). Seja $u = (u_1, \dots, u_n)$ e $M(n \times n)$ o espaço das matrizes cuja entrada são funções. Definimos o projetor de Leray como o operador \mathbb{P} tal que,

$$\widehat{(\mathbb{P}u)}_{jk}(\xi) = m_{jk}(\xi)\hat{u}(\xi), \tag{2.3.17}$$

onde $(m_{jk}) \in M(n \times n)$ denota o símbolo de \mathbb{P} ; $m_{jk}(\mathbb{P}) = \delta_{jk} - \frac{\xi_j \xi_k}{|\xi|^2}$.

Escrevendo

$$(\widehat{\mathbb{P}u})_{j}(\xi) = [m_{j1}(\xi) \ m_{j2}(\xi) \ \cdots \ m_{jn}(\xi)][\hat{u}_{1}(\xi) \ \hat{u}_{2}(\xi) \ \cdots \ \hat{u}_{n}(\xi)]^{T},$$

obtemos que

$$\widehat{(\mathbb{P}u)}_{j}(\xi) = \sum_{k=1}^{n} (\delta_{jk} - \frac{\xi_{j}\xi_{k}}{|\xi|^{2}}) \hat{u}_{k}.$$

Portanto,

$$\widehat{(\mathbb{P}u)}_{j}(\xi) = \hat{u}_{j}(\xi) + \sum_{k=1}^{n} -\frac{\xi_{j}\xi_{k}}{|\xi|^{2}} \hat{u}_{k}
= \hat{u}_{j}(\xi) + \frac{i\xi_{j}}{|\xi|^{2}} \sum_{k=1}^{n} i\xi_{k} \hat{u}_{k}
= \hat{u}_{j}(\xi) + \frac{i\xi_{j}}{|\xi|^{2}} i\xi \cdot \hat{u}(\xi).$$
(2.3.18)

Usando (2.3.18) é fácil ver que $\mathbb{P}(\nabla \rho) = 0$ e $\nabla \cdot (\mathbb{P}v) = 0$, onde $\rho : \mathbb{R}^n \to \mathbb{R}$ e $v = (v_1, \dots, v_n)$ é um campo vetorial. Além disso, $\mathbb{P}(v) = v$ quando $\nabla \cdot v = 0$ e então $\mathbb{P}^2 u = \mathbb{P}u$. Logo, \mathbb{P} define uma projeção sobre o espaço dos campos com divergência nula. Desde que \mathbb{P}

é essencialmente uma combinação da identidade e transformadas de Riesz, a Proposição 2.3.6 produz o seguinte resultado:

Proposição 2.3.11. Se $1 e <math>0 \le \lambda < n$, então \mathbb{P} é um operador contínuo em $\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n)$.

Observação 2.3.12. Note que por (2.3.18) podemos definir a projeção de Leray como,

$$\mathbb{P}u = u - \nabla \Delta^{-1}(\operatorname{div}_x u). \tag{2.3.19}$$

De fato, relembre dos símbolos dos operadores ∂_j e Δ^{-1} dados respectivamente por $m(\partial_j) = -i\xi_j$ e $m(\Delta^{-1}) = \frac{1}{|\xi|^2}$, então $\partial_j \Delta^{-1}$ tem símbolo $m(\partial_j \Delta^{-1}) = i\xi_j/|\xi|^2$. E, portanto, passando a inversa de Fourier em (2.3.18) obtemos a j-ésima expressão de (2.3.19),

$$(\mathbb{P}u)_j = u_j - \partial_j \Delta^{-1}(\operatorname{div}_x u).$$

2.4 A função Beta

Nos capítulos 3 e 4 a função Beta surge em muitas estimativas. Para evitar repetições em nossos argumentos, nesta seção listamos algumas notações e relembramos alguns fatos sobre a função Beta.

Definição 2.4.1. Sejam x, y > 0. A função Beta $\beta(x, y)$ é a integral

$$\beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt. \tag{2.4.1}$$

Observe que a integral acima é finita, se x, y > 0. Com efeito,

$$\beta(x,y) = \int_0^{\frac{1}{2}} t^{x-1} (1-t)^{y-1} dt + \int_{\frac{1}{2}}^1 t^{x-1} (1-t)^{y-1} dt$$

$$\leq \max\{1, 2^{1-y}\} \int_0^{\frac{1}{2}} t^{x-1} dt + \max\{1, 2^{1-x}\} \int_{\frac{1}{2}}^1 t^{x-1} dt$$

$$\leq \max\{1, 2^{y-1}\} \frac{1}{x} 2^{-x} + \max\{1, 2^{1-x}\} \frac{1}{y} 2^{-y} < \infty.$$

Nas demonstrações de nossos teoremas de boa-colocação, veja os Teoremas 3.2.1 e 4.4.1, a função

$$I(t) = \int_0^t (t - s)^{d_1 - 1} s^{-d_2} ds$$
 (2.4.2)

será usada com frequência. Esta função pode ser rescrita em termos da função Beta. De fato, tomando s=tz temos que

$$I(t) = \int_0^t (t-s)^{d_1-1} s^{-d_2} ds = t^{d_1-d_2} \int_0^1 (1-z)^{d_1-1} z^{-d_2} dz = Ct^{d_1-d_2},$$
 (2.4.3)

onde

$$C = \beta(1 - d_2, d_1) = \int_0^1 (1 - z)^{d_1 - 1} z^{-d_2} dz < +\infty, \tag{2.4.4}$$

quando $d_1 > 0$ e $d_2 < 1$.

Capítulo 3

O sistema de Boussinesq em espaços de Morrey

Neste capítulo estudaremos a existência e o comportamento assintótico de soluções globais no tempo para o (PVI) (1.1.1)-(1.1.4) em espaços de Morrey.

Este capítulo está dividido em 3 seções. Na primeira seção 3.1, fixamos algumas notações e definimos os espaços funcionais adequados para abordar o sistema de Boussinesq (1.1.1)-(1.1.4). Nesta seção, apresentamos também a noção de solução branda (formulação integral), com a qual trataremos (veja Definição 3.1.3, pg. 33-33) e a definição precisa de solução auto-similar. Na seção 3.2, enunciamos nossos resultados de boa-colocação, regularidade e comportamento assintótico para (1.1.1)-(1.1.4). A seção subsequente, a seção 3.3, está reservada para as respectivas provas dos resultados. Esta última seção está dividida em três subseções. A primeira reservamos para as estimativas dos operadores lineares, a segunda para as estimativas dos operadores não-lineares (bilineares), e finalmente na última subseção, encontram-se às demonstrações dos teoremas e corolários.

3.1 Espaços funcionais e formulação integral

Nesta seção, damos algumas definições e notações que serão utilizadas no decorrer deste capítulo. Definimos $C^k_{0,\sigma}$ e $\dot{\mathcal{L}}^\sigma_{q,\mu}$ como o conjunto dos campos de vetores $u:\mathbb{R}^n\to\mathbb{R}^n$ tal que $\nabla\cdot u=0$ e u_i pertence a C^k_0 e $\dot{\mathcal{L}}_{q,\mu}$, respectivamente, para todo i=1,...,n. Também escrevemos $[u,\theta]$ ou $\begin{bmatrix} u \\ \theta \end{bmatrix}$ para representar o mesmo vetor, de acordo com nossa conveniência.

Assuma que o campo gravitacional f satisfaz a seguinte propriedade de homogeneidade:

$$f(x,t) = \lambda^2 f(\lambda x, \lambda^2 t) \quad (\lambda > 0). \tag{3.1.1}$$

Então

$$[u_{\lambda}(x,t),\theta_{\lambda}(x,t)] = \lambda[u(\lambda x,\lambda^2 t),\theta(\lambda x,\lambda^2 t)],$$

é uma solução do sistema (1.1.1)-(1.1.3), sempre que $[u(x,t),\theta(x,t)]$ for uma solução. Assim (1.1.1)-(1.1.3) tem o seguinte *scaling*:

$$[u(x,t),\theta(x,t)] \to [u_{\lambda}(x,t),\theta_{\lambda}(x,t)]. \tag{3.1.2}$$

Um de nossos objetivos é obter a existência de soluções auto-similares para o sistema (1.1.1)-(1.1.3) nos espaços de Morrey, ou seja, soluções que são invariantes por (3.1.2) (veja Definição 3.1.2). Para isto, é importante estudar as equações de Boussinesq (1.1.1)-(1.1.3) em espaços funcionais cujas normas são invariantes por (3.1.2). Antes de passarmos às definições destes espaços funcionais, denote $\|u\|_{q,\mu} = \max_{i=1,\dots,n} \|u_i\|_{q,\mu}$ e considere a seguinte notação para a norma no espaço produto $\dot{\mathcal{L}}_{q,\mu}^{\sigma} \times \dot{\mathcal{L}}_{r,\upsilon}$:

$$\left\| \begin{bmatrix} u \\ \theta \end{bmatrix} \right\|_{q,\mu,r,v} = \|u\|_{q,\mu} + \|\theta\|_{r,v} e \left\| \begin{bmatrix} u \\ \theta \end{bmatrix} \right\|_{q,\mu,q,\mu} = \left\| \begin{bmatrix} u \\ \theta \end{bmatrix} \right\|_{q,\mu}. \tag{3.1.3}$$

Na próxima definição, BC(I,X) representa a classe de funções limitadas e contínuas de um dado intervalo I para um espaço de Banach X.

Definição 3.1.1. Sejam $1 < p, q, r < \infty$, $\mu = n - p$, e $\alpha = 1 - \frac{n - \mu}{q}$, $\beta = 1 - \frac{n - \mu}{r}$. Definimos os espaços funcionais

$$H_p = BC((0,\infty); \dot{\mathcal{L}}_{p,\mu}^{\sigma} \times \dot{\mathcal{L}}_{p,\mu})$$

$$H_{q,r} = \{ [u,\theta] \in H_p : [t^{\frac{\alpha}{2}}u, t^{\frac{\beta}{2}}\theta] \in BC((0,\infty); \dot{\mathcal{L}}_{q,\mu}^{\sigma} \times \dot{\mathcal{L}}_{r,\mu}) \},$$

os quais são espaços de Banach com às respectivas normas

$$\left\| \begin{bmatrix} u \\ \theta \end{bmatrix} \right\|_{H_p} = \sup_{t>0} \left\| \begin{bmatrix} u(\cdot,t) \\ \theta(\cdot,t) \end{bmatrix} \right\|_{p,\mu} \\
\left\| \begin{bmatrix} u \\ \theta \end{bmatrix} \right\|_{H_{q,r}} = \left\| \begin{bmatrix} u \\ \theta \end{bmatrix} \right\|_{H_p} + \sup_{t>0} \left\| \begin{bmatrix} t^{\frac{\alpha}{2}}u(\cdot,t) \\ t^{\frac{\beta}{2}}\theta(\cdot,t) \end{bmatrix} \right\|_{q,\mu,r,\mu}.$$
(3.1.4)

Definição 3.1.2 (Solução auto-similar). Seja $[u, \theta]$ uma solução para o PVI (1.1.1)-(1.1.4). Dizemos que $[u, \theta]$ é uma solução auto-similar, se $[u, \theta] = [u_{\lambda}, \theta_{\lambda}], \forall \lambda > 0$.

Note que os espaços funcionais $H_{q,r}$ são invariantes pelo *scaling* (3.1.2) do sistema (1.1.1)-(1.1.3), isto é

$$||[u,\theta]||_{H_{q,r}} = ||[u_{\lambda},\theta_{\lambda}]||_{H_{q,r}}.$$
(3.1.5)

De fato, por (2.1.10), temos que

$$\begin{aligned} \left\| \begin{bmatrix} u_{\lambda} \\ \theta_{\lambda} \end{bmatrix} \right\|_{H_{q,r}} &= \sup_{t>0} \left\| \begin{bmatrix} u_{\lambda} \\ \theta_{\lambda} \end{bmatrix} \right\|_{p,\mu} + \sup_{t>0} \left\| \begin{bmatrix} t^{\frac{\alpha}{2}} u_{\lambda} \\ t^{\frac{\beta}{2}} \theta_{\lambda} \end{bmatrix} \right\|_{q,\mu,r,\mu} \\ &= \sup_{t>0} \left\| \begin{bmatrix} u(\cdot,\lambda^{2}t) \\ \theta(\cdot,\lambda^{2}t) \end{bmatrix} \right\|_{p,\mu} + \sup_{t>0} \left\| \begin{bmatrix} \lambda^{\alpha} t^{\frac{\alpha}{2}} u(\cdot,\lambda^{2}t) \\ \lambda^{\beta} t^{\frac{\beta}{2}} \theta(\cdot,\lambda^{2}t) \end{bmatrix} \right\|_{q,\mu,r,\mu}. \end{aligned}$$

Logo,

$$\begin{aligned} \left\| \begin{bmatrix} u_{\lambda} \\ \theta_{\lambda} \end{bmatrix} \right\|_{H_{q,r}} &= \sup_{\lambda^{2}t > 0} \left\| \begin{bmatrix} u(\cdot, \lambda^{2}t) \\ \theta(\cdot, \lambda^{2}t) \end{bmatrix} \right\|_{p,\mu} + \sup_{\lambda^{2}t > 0} \left\| \begin{bmatrix} (\lambda^{2}t)^{\frac{\alpha}{2}}u(\cdot, \lambda^{2}t) \\ (\lambda^{2}t)^{\frac{\beta}{2}}\theta(\cdot, \lambda^{2}t) \end{bmatrix} \right\|_{q,\mu,r,\mu} \\ &= \left\| \begin{bmatrix} u \\ \theta \end{bmatrix} \right\|_{H_{q,r}}. \end{aligned}$$

Neste parágrafo fixamos mais algumas notações. Sejam $\theta: \mathbb{R}^n \to \mathbb{R}, \ u,v: \mathbb{R}^n \to \mathbb{R}^n$ e $A=(a_{ij})_{n\times n}$ com $a_{ij}: \mathbb{R}^n \to \mathbb{R}$. Seja g(x,t) o núcleo do calor em \mathbb{R}^n (veja (2.2.2)) e denote por * o produto de convolução entre duas funções na variável x. Também usamos as conveções $g*u=(g*u_1,g*u_2,...,g*u_n)$ e $(\nabla_x g)*A=b=(b_1,b_2,...,b_n)$, onde $b_j=\sum_{i=1}^n (\partial_{x_i}g)*a_{ij}$. Considere os operadores

$$L \begin{bmatrix} u \\ \theta \end{bmatrix} = - \begin{bmatrix} \triangle_x u \\ \triangle_x \theta \end{bmatrix},$$

$$e^{-tL} \begin{bmatrix} u \\ \theta \end{bmatrix} = \begin{bmatrix} e^{t\triangle} u \\ e^{t\triangle} \theta \end{bmatrix} = \begin{bmatrix} g(\cdot, t) * u \\ g(\cdot, t) * \theta \end{bmatrix} \quad \text{e } \nabla_x e^{-tL} \begin{bmatrix} A \\ v \end{bmatrix} = \begin{bmatrix} (\nabla_x g) * A \\ \Sigma_{i=1}^n(\partial_{x_i} g * v_i) \end{bmatrix}. \tag{3.1.6}$$

Dado um multi-índice $k=(k_1,k_2,...,k_n)$ relembre a notação $\nabla_x^k=(\frac{\partial}{\partial x_1})^{k_1}...(\frac{\partial}{\partial x_n})^{k_n}$. Adotaremos a conveção

$$\nabla_x^k e^{-tL} \begin{bmatrix} u \\ \theta \end{bmatrix} = \begin{bmatrix} \nabla_x^k e^{t\triangle} u \\ \nabla_x^k e^{t\triangle} \theta \end{bmatrix} = \begin{bmatrix} (\nabla_x^k g)(\cdot, t) * u \\ (\nabla_x^k g)(\cdot, t) * \theta \end{bmatrix}.$$

3.1.1 Formulação integral

Na sequência introduzimos a noção de solução para o sistema (1.1.1)-(1.1.3) que usaremos nesta tese. Esta é obtida usando o princípio de Duhamel, depois de aplicar o projetor de Leray \mathbb{P} na equação (1.1.1) e eliminar a pressão p.

Desde que o $\operatorname{div}_x u = 0$, podemos escrever $u \cdot \nabla u = \nabla \cdot (u \otimes u)$, onde $(u \otimes u)$ é o tensor cuja ij-ésima componente é dada por $u_i u_j$ e $\nabla \cdot F$ denota o divergente do tensor $F = (F_{ij})$ definido por

$$(\nabla \cdot F)_i = \sum_{j=1}^n \frac{\partial}{\partial x_j} F_{ij}, \ i = 1, \dots, n.$$

Assim, após aplicar o projetor de Leray \mathbb{P} na equação (1.1.1), transformamos o resultado na seguinte equação integral

$$\begin{bmatrix} u(t) \\ \theta(t) \end{bmatrix} = e^{-tL} \begin{bmatrix} u_0 \\ \theta_0 \end{bmatrix} - \int_0^t e^{-(t-s)L} \begin{bmatrix} \mathbb{P}\nabla \cdot (u \otimes u) \\ u\theta \end{bmatrix} (s) ds + \int_0^t e^{-(t-s)L} \begin{bmatrix} \kappa \mathbb{P}(\theta f) \\ 0 \end{bmatrix} (s) ds,$$

relembrando que os operadores ∇ , $e^{t\Delta}$ e $\mathbb P$ são comutativos, temos a definição.

Definição 3.1.3. Uma solução branda para o problema de valor inicial (1.1.1)-(1.1.4) é um vetor $[u, \theta] \in H_p$ satisfazendo

$$\begin{bmatrix} u(t) \\ \theta(t) \end{bmatrix} = e^{-tL} \begin{bmatrix} u_0 \\ \theta_0 \end{bmatrix} - \int_0^t \nabla_x \cdot e^{-(t-s)L} \begin{bmatrix} \mathbb{P}(u \otimes u) \\ u\theta \end{bmatrix} (s) ds + \int_0^t e^{-(t-s)L} \begin{bmatrix} \kappa \mathbb{P}(\theta f) \\ 0 \end{bmatrix} (s) ds, \tag{3.1.7}$$

e $[u(t), \theta(t)] \rightharpoonup [u_0, \theta_0]$ no sentido de distribuição $(\mathcal{D}'(\mathbb{R}^n))$, quando $t \to 0^+$.

Usando a condição div $_xu=0$ e aplicando o divergente na equação (1.1.1), obtemos a equação

$$\Delta p = -\operatorname{div}_r((u \cdot \nabla u) - \kappa \theta f).$$

Portanto, usando (2.3.19), a pressão p pode ser recuperada no sentido de distribuições como

$$\nabla p = \nabla \Delta^{-1} \Delta p = -\nabla \Delta^{-1} \operatorname{div}_{x}((u \cdot \nabla u) - \kappa \theta f) = (\mathbb{P} - I)((u \cdot \nabla u) - \kappa \theta f). \tag{3.1.8}$$

O operador bilinear e o operador linear de acoplamento em (3.1.7) serão denotados, respectivamente, por

$$B([u,\theta],[v,\phi])(t) = -\int_0^t \nabla_x \cdot e^{-(t-s)L} \begin{bmatrix} \mathbb{P}(u \otimes v) \\ u\phi \end{bmatrix} (s)ds$$
 (3.1.9)

e

$$T_f(\theta)(t) = \kappa \int_0^t e^{-(t-s)L} \begin{bmatrix} \mathbb{P}(\theta f) \\ 0 \end{bmatrix} (s) ds.$$
 (3.1.10)

3.2 Resultados

Nesta parte, enunciamos nossos resultados para as equações de Boussinesq (1.1.1)-(1.1.3) em espaços de Morrey. Relembre que a notação p' denota o expoente conjugado de p.

Teorema 3.2.1. Assuma que $1 Suponha que <math>t^{\vartheta}f \in BC((0, \infty); (\dot{\mathcal{L}}_{b,\mu})^n)$ com $\vartheta = 1 - \frac{n-\mu}{2b}$ e denote

$$||f||_{\vartheta,(b,\mu)} = \sup_{t>0} t^{\vartheta} ||f(\cdot,t)||_{b,\mu}.$$

- (i) (Boa-colocação) Se $||f||_{\vartheta,(b,\mu)}$ é suficientemente pequeno, então existe $0 < \varsigma < 1$, $\varepsilon > 0$ e $\delta = \delta(\varepsilon) > 0$ tal que, se $||[u_0, \theta_0]||_{p,\mu} \le \delta$, o PVI (1.1.1)-(1.1.4) tem uma solução branda global no tempo $[u, \theta] \in H_{q,r}$ com dado inicial $[u_0, \theta_0]$. Além disso, a solução $[u, \theta]$ é única na bola fechada $B(0, \frac{2\varepsilon}{1-\varsigma}) \subset H_{q,r}$ e o mapa dado-solução $[u_0, \theta_0] \to [u(x, t), \theta(x, t)]$ de $\dot{\mathcal{L}}_{p,\mu}^{\sigma} \times \dot{\mathcal{L}}_{p,\mu}$ para $H_{q,r}$ é localmente Lipschitz.
- (ii) (Dependência contínua no campo f) Assuma que $\{[u_m, \theta_m]\}_{m \in \mathbb{N}}$ e $[u, \theta]$ são soluções do PVI (1.1.1)-(1.1.4), obtidas no item (i), correspondentes ao mesmo dado inicial $[u_0, \theta_0]$ e aos respectivos campos $\{f_m\}_{m \in \mathbb{N}}$ e f. Se $f_m \to f$ na norma $\|\cdot\|_{\vartheta,(b,\mu)}$, então

$$[u_m, \theta_m] \to [u, \theta] \ \textit{em} \ H_{q,r}.$$

- (iii) (**Problema de Bénard**) Sejam $n \geq 3$ e p > 2. Assuma que o coeficiente de expansão do volume κ é suficientemente pequeno. Então, podemos considerar no item (i) o caso físico em que $f(x) = -G\frac{x}{|x|^3}$, isto é, f é o campo gravitacional newtoniano.
- (iv) (Espaços com peso) Se $[u_0, \theta_0] \in \tilde{\mathcal{L}}_{p,\mu}^{\sigma} \times \tilde{\mathcal{L}}_{p,\mu}$, então a solução $[u, \theta]$ do item (i) pertence ao espaço $BC([0, \infty); \tilde{\mathcal{L}}_{p,\mu}^{\sigma} \times \tilde{\mathcal{L}}_{p,\mu})$. Além disso, se 1 < l < p e k > n l, então

$$[u, \theta] \in BC([0, \infty); (L_{-k/l}^l)^{n+1}).$$

Observação 3.2.2 (Vorticidade inicial sendo medida). Seja n=3. Relembre que a vorticidade do fluido é dada por $\omega=\nabla\times u$. Em virtude da lei de Biot-Savart e [30, Lema 4.1], podemos tomar u_0 com vorticidade inicial $\omega_0=\nabla\times u_0$ sendo um certo tipo de medida. De fato, pela lei de Bio-Savart um campo u_0 com div $u_0=0$ pode ser recuperado pela fórmula $u_0=\psi*\omega_0=\int_{\mathbb{R}^3}\psi(x-y)\omega(y)dy$, onde

$$\psi(x)h = C\frac{x \times h}{|x|^3}, \quad h \in \mathbb{R}^3,$$

C é uma constante e ψ denota o núcleo de Bio-Savart. Note também que ψ é homogêneo de grau -2=1-n e satisfaz

$$|\psi(x)| \le C|x|^{-2} = C|x|^{1-n}.$$

Se $\omega_0 \in \dot{\mathcal{L}}_{1,1} = \dot{\mathcal{L}}_{1,n-2}$, então usando [30, Lema 4.1] com $\delta = 1$ segue que $u_0 \in \dot{\mathcal{L}}_{p,n-p}$, para p < n/(n-1). Observe que $\dot{\mathcal{L}}_{1,n-2}$ contém medidas concentradas em superfícies $\Sigma \subset \mathbb{R}^n$ de dimensão n-2, isto é, medidas com suporte na superfície Σ . Assim, quando n=3, podemos considerar dados iniciais com vorticidades concentradas em curvas, tais como anéis de "vortex" (veja [25, Observação (2)]).

Observação 3.2.3 (Soluções locais). Pode-se obter uma versão local no tempo do Teorema 3.2.1, assumindo que $[u_0, \theta_0] \in \dot{\mathcal{L}}_{p,\mu}^{\sigma} \times \dot{\mathcal{L}}_{p,\mu}$ e usando as versões locais no tempo do espaço funcional $H_{q,r}$. Neste caso assume-se condições de pequenez no intervalo de existência (0,T) em lugar das hipóteses de pequenez no dado inicial.

A seguir enuciamos um corolário do Teorema 3.2.1.

Corolário 3.2.4. Assuma as hipóteses do Teorema 3.2.1. Se $[u_0, \theta_0] \in \dot{\mathcal{L}}_{p,\mu}^{\sigma} \times \dot{\mathcal{L}}_{p,\mu}$ é uma função vetorial homogênea de grau -1 e o campo gravitacional f satisfaz

$$f(x,t) = \lambda^2 f(\lambda x, \lambda^2 t)$$
, para todo $\lambda > 0$, $t > 0$ e $x \in \mathbb{R}^n$,

então a solução $[u, \theta]$ do Teorema 3.2.1 é uma solução auto-similar para o PVI (1.1.1)-(1.1.4).

Com algumas hipóteses adicionais no campo gravitacional f, o próximo teorema garante que a solução do Teorema 3.2.1 é suave para todo t>0.

Teorema 3.2.5. Seja $[u, \theta]$ a única solução do Teorema 3.2.1. Se $\nabla_t^i \nabla_x^j f \in BC((0, \infty); \dot{\mathcal{L}}_{b,\mu})$, $\forall i = 0, 1, \cdots, |k| \ e \ j = 0, 1, \cdots, |m|$, então

$$\nabla_t^k \nabla_x^m[u,\theta] \in BC((0,\infty); \dot{\mathcal{L}}_{q,\mu}^{\sigma} \times \dot{\mathcal{L}}_{r,\mu}), \tag{3.2.1}$$

onde k e m são multi-índices.

No próximo teorema obtemos um resultado de comportamento assintótico para as soluções brandas do sistema (1.1.1)-(1.1.4). Este resultado melhora o decaimento no tempo das soluções dado no Teorema 3.2.1, e mostra a existência de uma bacia atratora em torno de cada solução auto-similar.

Teorema 3.2.6. Assuma as hipóteses do Teorema 3.2.1. Sejam $[u, \theta]$ e $[v, \varphi]$ duas soluções brandas globais de (1.1.1)-(1.1.4) com respectivos dados iniciais $[u_0, \theta_0]$ e $[v_0, \varphi_0]$, e respectivos campos de vetores f e w. Assuma que

$$\lim_{t \to \infty} t^{\vartheta} \| f(\cdot, t) - w(\cdot, t) \|_{b,\mu} = 0.$$
 (3.2.2)

Então,

$$\lim_{t \to \infty} \left\| \begin{bmatrix} u(\cdot, t) - v(\cdot, t) \\ \theta(\cdot, t) - \varphi(\cdot, t) \end{bmatrix} \right\|_{n, t} = 0$$
(3.2.3)

se, e somente se

$$\lim_{t \to \infty} \left\| \begin{bmatrix} e^{t\triangle}(u_0 - v_0) \\ e^{t\triangle}(\theta_0 - \varphi_0) \end{bmatrix} \right\|_{p,\mu} = 0; \tag{3.2.4}$$

e

$$\lim_{t \to \infty} \left\| \begin{bmatrix} t^{\frac{\alpha}{2}}(u(\cdot, t) - v(\cdot, t)) \\ t^{\frac{\beta}{2}}(\theta(\cdot, t) - \varphi(\cdot, t)) \end{bmatrix} \right\|_{q, \mu, r, \mu} = 0$$
(3.2.5)

se, e somente se

$$\lim_{t \to \infty} \left\| \begin{bmatrix} t^{\frac{\alpha}{2}} e^{t\triangle} (u_0 - v_0) \\ t^{\frac{\beta}{2}} e^{t\triangle} (\theta_0 - \varphi_0) \end{bmatrix} \right\|_{q,\mu,r,\mu} = 0.$$
 (3.2.6)

Em particular, os limites (3.2.4) e (3.2.6) são verificados, se $[u_0 - v_0, \theta_0 - \varphi_0] \in \overline{C_{0,\sigma}^{\infty}}^{\|\cdot\|_{p,\mu}} \times \overline{C_0^{\infty}}^{\|\cdot\|_{p,\mu}}$; consequentemente obtemos que

$$\lim_{t \to \infty} \left\| \begin{bmatrix} u(\cdot, t) \\ \theta(\cdot, t) \end{bmatrix} \right\|_{p,\mu} = 0 \ e \ \lim_{t \to \infty} \left\| \begin{bmatrix} t^{\frac{\alpha}{2}} u(\cdot, t) \\ t^{\frac{\beta}{2}} \theta(\cdot, t) \end{bmatrix} \right\|_{q,\mu,r,\mu} = 0, \tag{3.2.7}$$

quando $[u_0, \theta_0] \in \overline{C_{0,\sigma}^{\infty}}^{\|\cdot\|_{p,\mu}} \times \overline{C_0^{\infty}}^{\|\cdot\|_{p,\mu}}$.

O próximo corolário segue imediatamente do teorema anterior.

Corolário 3.2.7 (Bacia de atração). Assuma as hipóteses do Teorema 3.2.1. Sejam $b=\frac{p}{2}$ (i.e. $\vartheta=0$), $[u_0,\theta_0]$ um vetor homogêneo de grau -1 e $[\phi,\psi]\in C_{0,\sigma}^\infty\times C_0^\infty$. Se $[u,\theta]$ e $[v,\varphi]$ são soluções brandas com respectivos dados iniciais $[u_0,\theta_0]$ e $[u_0+\phi,\theta_0+\psi]$ e campos de vetores $f(x,t)=-G\frac{x}{|x|^3}$ e w(x,t), tal que

$$\lim_{t \to \infty} \|w(\cdot, t) - G\frac{x}{|x|^3}\|_{b,\mu} = 0 \quad (e.g. \ w = f), \tag{3.2.8}$$

então a solução pertubada $[v, \varphi]$ é atraída pela solução auto-similar $[u, \theta]$ no sentido dado por (3.2.3) e (3.2.5).

3.3 Prova dos resultados

Nesta seção obtemos algumas estimativas para os termos lineares $e^{-tL}[u_0, \theta_0]$ e (3.1.10), e o termo não linear (3.1.9) da formulação integral (3.1.7).

3.3.1 Estimativas lineares

Iniciamos esta parte da seção com um lema para o operador $\nabla_x^k e^{-tL}$ agindo em espaços de Morrey.

Lema 3.3.1. Sejam $1 \le q_1 \le q_2 \le \infty, 1 \le r_1 \le r_2 \le \infty$ e $0 \le \mu_i, v_i < n$ tal que $\mu_1 = \mu_2$ e $v_1 = v_2$. Para cada multi-índice k, tem-se

$$\left\| \nabla_x^k e^{-tL} \begin{bmatrix} u \\ \theta \end{bmatrix} \right\|_{t=0} \lesssim \left\| \begin{bmatrix} t^{-(\gamma_1+|k|)/2} u \\ t^{-(\gamma_2+|k|)/2} \theta \end{bmatrix} \right\|_{t=0}, \quad para \ t > 0, \tag{3.3.1}$$

onde $\gamma_1 = \frac{n-\mu_1}{q_1} - \frac{n-\mu_2}{q_2}$ e $\gamma_2 = \frac{n-\nu_1}{r_1} - \frac{n-\nu_2}{r_2}$. Além disso, assuma que $q_1 = r_1 = p < q_2, r_2 < \infty$ e $0 \le \mu_i = \nu_i = \mu = n - p < n$. Se $[u_0, \theta_0] \in \mathring{\mathcal{L}}_{p,\mu}^{\sigma} \times \mathring{\mathcal{L}}_{p,\mu}$, então

$$\lim_{t \to 0^+} \left\| e^{-tL} \begin{bmatrix} t^{\frac{\alpha}{2}} u_0 \\ t^{\frac{\beta}{2}} \theta_0 \end{bmatrix} \right\|_{q_2, \mu, r_2, \mu} = 0 \ e \lim_{t \to 0^+} \left\| e^{-tL} \begin{bmatrix} u_0 \\ \theta_0 \end{bmatrix} - \begin{bmatrix} u_0 \\ \theta_0 \end{bmatrix} \right\|_{p, \mu, p, \mu} = 0. \tag{3.3.2}$$

Demonstração:

A demonstração da estimativa (3.3.1) segue aplicando a estimativa (2.2.5) de uma forma adequada. De fato,

$$\left\| \nabla_{x}^{k} e^{-tL} \begin{bmatrix} u \\ \theta \end{bmatrix} \right\|_{q_{2},\mu_{2},r_{2},\nu_{2}} = \left\| \begin{bmatrix} \nabla_{x}^{k} e^{t\triangle} u \\ \nabla_{x}^{k} e^{t\triangle} \theta \end{bmatrix} \right\|_{q_{2},\mu_{2},r_{2},\nu_{2}} \\
= \max_{i=1,\cdots,n} \left\| (\nabla_{x}^{k} g)(\cdot,t) * u_{i} \right\|_{q_{2},\mu_{2}} + \left\| (\nabla_{x}^{k} g)(\cdot,t) * \theta \right\|_{r_{2},\nu_{2}} \\
\lesssim t^{-(\gamma_{1}+|k|)/2} \max_{i=1,\cdots,n} \left\| u_{i} \right\|_{q_{1},\mu_{1}} + t^{-(\gamma_{2}+|k|)/2} \|\theta\|_{r_{1},\nu_{1}} \\
= \left\| \begin{bmatrix} t^{-(\gamma_{1}+|k|)/2} u \\ t^{-(\gamma_{2}+|k|)/2} \theta \end{bmatrix} \right\|_{q_{1},\mu_{1},r_{1},\nu_{1}} \quad \text{(por (3.1.3))}.$$

Agora tratamos com (3.3.2). Desde que

$$g(x,t)=t^{-n/2}g(xt^{-1/2},1)$$
 e $g(\cdot,1)\in\mathcal{S}(\mathbb{R}^n),$

se o dado inicial $[u_0, \theta_0]$ é tal que $[u_0, \theta_0] \in \tilde{\mathcal{L}}_{p,\mu}^{\sigma} \times \tilde{\mathcal{L}}_{p,\mu}$, então a Proposição 2.2.1 implica que

$$e^{-tL}[u_0, \theta_0] \to [u_0, \theta_0] \text{ em } \dot{\mathcal{L}}_{p,\mu}^{\sigma} \times \dot{\mathcal{L}}_{p,\mu},$$

quando $t \to 0^+$. Falta mostrar a primeira igualdade em (3.3.2). Note que (2.2.8) (veja Proposição 2.2.1, pg. 19) junto com (3.3.1) no caso k=0 e u=0, garante que $\tilde{\mathcal{L}}_{p,\mu}\subset \overline{\dot{\mathcal{L}}_{r_2,\mu}\cap\dot{\mathcal{L}}_{p,\mu}}^{\|\cdot\|_{p,\mu}}$. De fato, considere $\psi(x)=g(x,1)$ e $\varepsilon=t^{\frac{1}{2}}$ na Proposição 2.2.1. Dado $\varphi\in\dot{\mathcal{L}}_{p,\mu}$, por (2.2.8) segue que $\varphi*\psi_{\varepsilon}\to\varphi$ em $\dot{\mathcal{L}}_{p,\mu}$, quando $\varepsilon\to0$. Desde que a designaldade (3.3.1) com k=0, u=0 e $\varphi=\theta$ implica que $\varphi*\psi_{\varepsilon}\in\dot{\mathcal{L}}_{r_2,\mu}\cap\dot{\mathcal{L}}_{p,\mu}$, $\forall\,\varepsilon>0$; então φ pertence ao fecho de $\dot{\mathcal{L}}_{r_2,\mu}\cap\dot{\mathcal{L}}_{p,\mu}$ na norma $\|\cdot\|_{p,\mu}$. Analogamente, φ pertence ao fecho de $\dot{\mathcal{L}}_{q_2,\mu}\cap\dot{\mathcal{L}}_{p,\mu}$ na norma $\|\cdot\|_{p,\mu}$. Portanto,

$$\tilde{\dot{\mathcal{L}}}_{p,\mu}^{\sigma} \times \tilde{\dot{\mathcal{L}}}_{p,\mu} \subset \overline{\dot{\mathcal{L}}_{q_2,\mu}^{\sigma} \cap \dot{\mathcal{L}}_{p,\mu}}^{\|\cdot\|_{p,\mu}} \times \overline{\dot{\mathcal{L}}_{r_2,\mu}^{\sigma} \cap \dot{\mathcal{L}}_{p,\mu}}^{\|\cdot\|_{p,\mu}}.$$

Assim existe uma sequência

$$\{[u_{0,m},\theta_{0,m}]\}_{m\in\mathbb{N}}\subset \dot{\mathcal{L}}_{q_2,\mu}^{\sigma}\cap\dot{\mathcal{L}}_{p,\mu}\times\dot{\mathcal{L}}_{r_2,\mu}^{\sigma}\cap\dot{\mathcal{L}}_{p,\mu}$$

tal que, $[u_{0,m}, \theta_{0,m}] \stackrel{m \to \infty}{\longrightarrow} [u_0, \theta_0]$ em $\tilde{\mathcal{L}}_{p,\mu}^{\sigma} \times \tilde{\mathcal{L}}_{p,\mu}$. Agora, para cada $m \in \mathbb{N}$ fixado, usamos (3.3.1) com |k| = 0 para obter

$$\left\| e^{-tL} \begin{bmatrix} t^{\frac{\alpha}{2}} u_{0,m} \\ t^{\frac{\beta}{2}} \theta_{0,m} \end{bmatrix} \right\|_{q_{2},\mu,r_{2},\mu} \lesssim \lim_{m \to \infty} \left\| \begin{bmatrix} t^{\frac{\alpha}{2}} u_{0,m} \\ t^{\frac{\beta}{2}} \theta_{0,m} \end{bmatrix} \right\|_{q_{2},\mu,r_{2},\mu}$$

$$\lesssim \max\{t^{\frac{\alpha}{2}}, t^{\frac{\beta}{2}}\} \left\| \begin{bmatrix} u_{0,m} \\ \theta_{0,m} \end{bmatrix} \right\|_{q_{2},\mu,r_{2},\mu} . \tag{3.3.3}$$

Portanto, obtemos que

$$\left\| e^{-tL} \begin{bmatrix} t^{\frac{\alpha}{2}} u_{0,m} \\ t^{\frac{\beta}{2}} \theta_{0,m} \end{bmatrix} \right\|_{q_0,\mu,r_2,\mu} \longrightarrow 0, \text{ quando } t \to 0^+.$$
 (3.3.4)

Escrevendo

$$e^{-tL} \begin{bmatrix} t^{\frac{\alpha}{2}} u_0 \\ t^{\frac{\beta}{2}} \theta_0 \end{bmatrix} = -e^{-tL} \begin{bmatrix} t^{\frac{\alpha}{2}} (u_{0,m} - u_0) \\ t^{\frac{\beta}{2}} (\theta_{0,m} - \theta_0) \end{bmatrix} + e^{-tL} \begin{bmatrix} t^{\frac{\alpha}{2}} u_{0,m} \\ t^{\frac{\beta}{2}} \theta_{0,m} \end{bmatrix},$$
(3.3.5)

tomando a norma $\|[\cdot, \bullet]\|_{q_2,\mu,r_2,\mu}$ em (3.3.5) e usando a desigualdade (3.3.1), obtemos

$$\left\| e^{-tL} \begin{bmatrix} t^{\frac{\alpha}{2}} u_0 \\ t^{\frac{\beta}{2}} \theta_0 \end{bmatrix} \right\|_{q_2,\mu,r_2,\mu} \leq \left\| e^{-tL} \begin{bmatrix} t^{\frac{\alpha}{2}} (u_{0,m} - u_0) \\ t^{\frac{\beta}{2}} (\theta_{0,m} - \theta_0) \end{bmatrix} \right\|_{q_2,\mu,r_2,\mu} + \left\| e^{-tL} \begin{bmatrix} t^{\frac{\alpha}{2}} u_{0,m} \\ t^{\frac{\beta}{2}} \theta_{0,m} \end{bmatrix} \right\|_{q_2,\mu,r_2,\mu}$$

$$\leq \left\| \begin{bmatrix} (u_{0,m} - u_0) \\ (\theta_{0,m} - \theta_0) \end{bmatrix} \right\|_{p,\mu,p,\mu} + \left\| e^{-tL} \begin{bmatrix} t^{\frac{\alpha}{2}} u_{0,m} \\ t^{\frac{\beta}{2}} \theta_{0,m} \end{bmatrix} \right\|_{q_2,\mu,r_2,\mu}$$
(3.3.6)

Finalmente, a igualdade (3.3.2) é obtida computando o $\limsup_{t\to 0^+}$ em (3.3.7) e depois fazendo $m\to\infty$.

Na sequência derivamos estimativas para o termo linear $T_f(\theta)$ definido em (3.1.10).

Lema 3.3.2. Com as hipóteses do Teorema 3.2.1, obtemos as estimativas

$$\sup_{t>0} \|T_f(\theta)(t)\|_{p,\mu} \lesssim \sup_{t>0} t^{\vartheta} \|f(t)\|_{b,\mu} \sup_{t>0} t^{\frac{\beta}{2}} \|\theta(t)\|_{r,\mu}$$
(3.3.8)

$$\sup_{t>0} t^{\frac{\alpha}{2}} \|T_f(\theta)(t)\|_{q,\mu} \lesssim \sup_{t>0} t^{\vartheta} \|f(t)\|_{b,\mu} \sup_{t>0} t^{\frac{\beta}{2}} \|\theta(t)\|_{r,\mu}, \tag{3.3.9}$$

para todos os f e θ Lebesgue mensuráveis.

Demonstração:

Comecemos com a desigualdade (3.3.9). Denote $\frac{1}{d} = \frac{1}{r} + \frac{1}{b}$ e $\gamma = \frac{n-\mu}{d} - \frac{n-\mu}{q}$. Pelas hipóteses do Teorema 3.2.1, note que

$$\frac{1}{d} > \frac{r-p}{rp} + \frac{1}{r} = \frac{1}{p} > \frac{1}{q},$$

e então d < q. Aplicando o Lema 3.3.1 com |k| = 0 e depois a desigualdade de Hölder (2.1.14), obtemos

$$||T_{f}(\theta)(t)||_{q,\mu} \lesssim \int_{0}^{t} (t-s)^{-\frac{\gamma}{2}} ||\mathbb{P}(f\theta)(s)||_{d,\mu} ds$$

$$\lesssim \int_{0}^{t} (t-s)^{-\frac{\gamma}{2}} ||f(s)||_{b,\mu} ||\theta(s)||_{r,\mu} ds$$

$$\lesssim I(t) \sup_{t>0} t^{\vartheta} ||f(t)||_{b,\mu} \sup_{t>0} t^{\frac{\beta}{2}} ||\theta(t)||_{r,\mu}, \tag{3.3.10}$$

onde

$$I(t) = \int_0^t (t-s)^{-\frac{\gamma}{2}} s^{-\vartheta - \frac{\beta}{2}} ds = t^{-\frac{\gamma}{2} - \frac{\beta}{2} - \vartheta + 1} \int_0^1 (1-s)^{-\frac{\gamma}{2}} s^{-\vartheta - \frac{\beta}{2}} ds = Ct^{-(\frac{\gamma}{2} + \frac{\beta}{2} + \vartheta - 1)}, (3.3.11)$$

e

$$C = \int_0^1 (1-s)^{-\frac{\gamma}{2}} s^{-\vartheta - \frac{\beta}{2}} ds = \beta \left(1 - \vartheta - \frac{\beta}{2}, 1 - \frac{\gamma}{2}\right).$$

Observando que

$$\frac{\gamma}{2} + \frac{\beta}{2} + \vartheta - 1 = \frac{1}{2} - \frac{n-\mu}{2q} = \frac{\alpha}{2},$$

e usando (3.3.11), podemos escrever a desigualdade (3.3.10) como

$$||T_{f}(\theta)(t)||_{q,\mu} \lesssim \int_{0}^{t} (t-s)^{-\frac{\gamma}{2}} ||\mathbb{P}(f\theta)(s)||_{d,\mu} ds$$

$$\lesssim t^{-\frac{\alpha}{2}} \sup_{t>0} t^{\vartheta} ||f(t)||_{b,\mu} \sup_{t>0} t^{\frac{\beta}{2}} ||\theta(t)||_{r,\mu}.$$
(3.3.12)

A desigualdade (3.3.9) segue de (3.3.12). A demonstração de (3.3.8) pode ser obtida analogamente a de (3.3.9), substituindo $q \in \alpha$ por $p \in 0$, respectivamente.

3.3.2 Estimativas bilineares

No próximo lema provamos a bi-continuidade do operador bilinear (3.1.9) no espaço funcional $H_{q,r}$.

Lema 3.3.3. Assuma as hipóteses do Teorema 3.2.1. Então existe uma constante K > 0 tal que

$$\left\| \int_0^t \nabla_x e^{-(t-s)L} \begin{bmatrix} \mathbb{P}(u \otimes v) \\ u\varphi \end{bmatrix}(s) ds \right\|_{H_{q,r}} \le K \left\| \begin{bmatrix} u \\ \theta \end{bmatrix} \right\|_{H_{q,r}} \left\| \begin{bmatrix} v \\ \varphi \end{bmatrix} \right\|_{H_{q,r}}, \tag{3.3.13}$$

para toda u, v, θ e φ Lebesgue mensuráveis.

Demonstração:

Primeiramente escreva

$$B([u,\theta],[v,\varphi]) = [B_1(u,v), B_2(u,\varphi)], \tag{3.3.14}$$

onde B_1 e B_2 podem ser explicitados usando (3.1.9) e a notação (3.1.6); de fato

$$B_1(u,v)(x,t) = -\int_0^t (\nabla_x g(\cdot,t-s)) * \mathbb{P}(u \otimes v)(x,s) ds$$
 (3.3.15)

e

$$B_2(u,\varphi)(x,t) = -\int_0^t \sum_{i=1}^n (\partial_{x_i} g(\cdot, t-s) * \varphi u_i)(x,s) ds.$$
 (3.3.16)

Assim,

$$||B([u,\theta],[v,\varphi])||_{q,\mu,r,\mu} = \left| \left| \begin{bmatrix} B_1(u,v) \\ B_2(u,\varphi) \end{bmatrix} \right| \right|_{q,\mu,r,\mu}.$$

Seja $\frac{1}{d}=\frac{1}{q}+\frac{1}{r}<1$ e $\gamma_1=\gamma_2=\frac{n-\mu}{q}$. Aplicando o Lema 3.3.1 com |k|=1 e a continuidade do projetor $\mathbb P$ em espaços de Morrey (veja Proposição 2.3.11), obtemos

$$\left\| \begin{bmatrix} t^{\frac{\alpha}{2}} B_{1}(u, v) \\ t^{\frac{\beta}{2}} B_{2}(u, \varphi) \end{bmatrix} \right\|_{q, \mu, r, \mu} \lesssim \int_{0}^{t} \left\| \begin{bmatrix} t^{\frac{\alpha}{2}} (t - s)^{-\frac{\gamma_{1}}{2} - \frac{1}{2}} \mathbb{P}(u \otimes v) \\ t^{\frac{\beta}{2}} (t - s)^{-\frac{\gamma_{2}}{2} - \frac{1}{2}} u \varphi \end{bmatrix} \right\|_{\frac{q}{2}, \mu, d, \mu} (s) ds$$

$$\lesssim \int_{0}^{t} \left[t^{\frac{\alpha}{2}} (t - s)^{-\frac{\gamma_{1}}{2} - \frac{1}{2}} \|u \otimes v\|_{q/2, \mu} + t^{\frac{\beta}{2}} (t - s)^{-\frac{\gamma_{2}}{2} - \frac{1}{2}} \|u \varphi\|_{d, \mu} \right] ds.$$

$$:= J_{1} + J_{2}. \tag{3.3.17}$$

Usando a desigualdade de Hölder (2.1.14), J_1 e J_2 podem ser estimados como segue:

$$J_{1} \leq t^{\frac{\alpha}{2}} \int_{0}^{t} (t-s)^{-\frac{\gamma_{1}}{2}-\frac{1}{2}} \|u(s)\|_{q,\mu} \|v(s)\|_{q,\mu} ds$$

$$\leq t^{\frac{\alpha}{2}} \int_{0}^{t} (t-s)^{-\frac{\gamma_{1}}{2}-\frac{1}{2}} s^{-\alpha} ds \sup_{t>0} t^{\frac{\alpha}{2}} \|u(t)\|_{q,\mu} \sup_{t>0} t^{\frac{\alpha}{2}} \|v(t)\|_{q,\mu}$$

$$= I_{1}(t) \sup_{t>0} t^{\frac{\alpha}{2}} \|u(t)\|_{q,\mu} \sup_{t>0} t^{\frac{\alpha}{2}} \|v(t)\|_{q,\mu}$$

$$(3.3.18)$$

e

$$J_{2} \leq t^{\frac{\beta}{2}} \int_{0}^{t} (t-s)^{-\frac{\gamma_{2}}{2}-\frac{1}{2}} \|u(s)\|_{q,\mu} \|\varphi(s)\|_{r,\mu} ds$$

$$\leq t^{\frac{\beta}{2}} \int_{0}^{t} (t-s)^{-\frac{\gamma_{2}}{2}-\frac{1}{2}} s^{-\frac{\alpha+\beta}{2}} ds \sup_{t>0} t^{\frac{\alpha}{2}} \|u(t)\|_{q,\mu} \sup_{t>0} t^{\frac{\beta}{2}} \|v(t)\|_{r,\mu}$$

$$= I_{2}(t) \sup_{t>0} t^{\frac{\alpha}{2}} \|u(t)\|_{q,\mu} \sup_{t>0} t^{\frac{\beta}{2}} \|v(t)\|_{r,\mu}, \qquad (3.3.19)$$

onde (veja (2.4.3))

$$I_{1}(t) = t^{\frac{\alpha}{2}} \int_{0}^{t} (t-s)^{-\frac{\gamma_{1}}{2} - \frac{1}{2}} s^{-\alpha} ds = t^{\frac{\alpha}{2}} t^{-\frac{1}{2} - \frac{\gamma_{1}}{2} - \alpha + 1} \int_{0}^{1} (1-s)^{-\frac{\gamma_{1}}{2} - \frac{1}{2}} s^{-\alpha} ds = K$$
 (3.3.20)

$$I_{2}(t) = t^{\frac{\beta}{2}} \int_{0}^{t} (t-s)^{-\frac{\gamma_{2}}{2} - \frac{1}{2}} s^{-\frac{\alpha+\beta}{2}} ds = t^{\frac{\beta}{2}} t^{-\frac{1}{2} - \frac{\gamma_{2}}{2} - \frac{\alpha+\beta}{2} + 1} \int_{0}^{1} (1-s)^{-\frac{\gamma_{2}}{2} - \frac{1}{2}} s^{-\frac{\alpha+\beta}{2}} ds = K,$$
 (3.3.21)

pois
$$\gamma_1=\gamma_2=\frac{n-\mu}{q}$$
 e
$$-\frac{\gamma_i}{2}-\frac{1}{2}=\frac{\alpha}{2}-1.$$

43

Note que

$$I_1(t) = t^{\frac{\alpha}{2}} t^{-\frac{\alpha}{2}} \int_0^1 (1-s)^{\frac{\alpha}{2}-1} s^{-\alpha} ds = \beta \left(1-\alpha, \frac{\alpha}{2}\right),$$

e

$$I_2(t) = t^{\frac{\beta}{2}} t^{-\frac{\beta}{2}} \int_0^1 (1-s)^{\frac{\alpha}{2}-1} s^{-\frac{\alpha+\beta}{2}} ds = \beta \left(1 - \frac{\alpha+\beta}{2}, \frac{\alpha}{2}\right).$$

Calculando $\sup_{t>0}$ em (3.3.17) e usando (3.3.18)-(3.3.21), temos que

$$\sup_{t>0} \left\| \begin{bmatrix} t^{\frac{\alpha}{2}} B_1(u,v) \\ t^{\frac{\beta}{2}} B_2(u,\varphi) \end{bmatrix} \right\|_{q,\mu,r,\mu} \lesssim \sup_{t>0} \left\| \begin{bmatrix} t^{\frac{\alpha}{2}} u \\ t^{\frac{\beta}{2}} \theta \end{bmatrix} \right\|_{q,\mu,r,\mu} \sup_{t>0} \left\| \begin{bmatrix} t^{\frac{\alpha}{2}} v \\ t^{\frac{\beta}{2}} \varphi \end{bmatrix} \right\|_{q,\mu,r,\mu}. \tag{3.3.22}$$

Procedendo de forma similar à demonstração da estimativa (3.3.22) obtemos a seguinte estimativa:

$$\sup_{t>0} \left\| \begin{bmatrix} B_1(u,v) \\ B_2(u,\varphi) \end{bmatrix} \right\|_{p,\mu,p,\mu} \lesssim \sup_{t>0} \left\| \begin{bmatrix} u \\ \theta \end{bmatrix} \right\|_{p,\mu,p,\mu} \sup_{t>0} \left\| \begin{bmatrix} t^{\frac{\alpha}{2}}v \\ t^{\frac{\beta}{2}}\varphi \end{bmatrix} \right\|_{q,\mu,r,\mu}. \tag{3.3.23}$$

Relembrando a definição da norma $\|[\cdot, \bullet]\|_{H_{q,r}}$ (veja (3.1.4)), a estimativa (3.3.13) segue diretamente de (3.3.22) e (3.3.23).

Lema 3.3.4. Seja f como no Teorema 3.2.1, $[u_0, \theta_0] \in \dot{\mathcal{L}}_{p,\mu} \times \dot{\mathcal{L}}_{p,\mu}$ e $[u, \theta] \in H_{q,r}$. Então

$$e^{-tL}[u_0, \theta_0] \rightharpoonup [u_0, \theta_0], \ T_f(\theta(t)) \rightharpoonup 0 \ em \ \mathcal{D}'(\mathbb{R}^n), \ quando \ t \to 0^+$$
 (3.3.24)

$$B([u(t), \theta(t)], [u(t), \theta(t)]) \rightharpoonup 0 \text{ em } \mathcal{D}'(\mathbb{R}^n), \text{ quando } t \to 0^+.$$
 (3.3.25)

Demonstração:

Vamos provar apenas a convegência de B, pois as outras duas seguem por argumentos análogos. Dado $[\varphi, \phi] \in C_0^\infty(\mathbb{R}^n) \times C_0^\infty(\mathbb{R}^n)$, precisamos mostrar que

$$\langle B([u(t), \theta(t)], [u(t), \theta(t)]), [\varphi, \phi] \rangle \to 0$$
, quando $t \to 0^+$. (3.3.26)

De fato, escrevendo

$$|\langle B([u(t), \theta(t)], [v(t), \psi(t)]), [\varphi, \phi] \rangle| = \left| \begin{bmatrix} \langle B_1(u, v), \varphi \rangle \\ \langle B_2(u, \psi), \phi \rangle \end{bmatrix} \right|,$$

é suficiente mostrar que $B_1(u,v)(t) \to 0$ e $B_2(u,\psi)(t) \to 0$ em $\mathcal{D}'(\mathbb{R}^n)$, quando $t \to 0^+$. Na sequência demonstraremos a convergência fraca de $B_1(u,v)(t)$; a convergência fraca de B_2 segue de maneira analóga. Seja $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ tal que $supp(\varphi) \subset \Omega_r(x_0)$, onde $\Omega_r(x_0)$ denota uma bola de raio r e centro $x_0 \in \mathbb{R}^n$.

Usando o teorema de Fubini, temos

$$r^{-\mu}|\langle B_1(u,v),\varphi\rangle| = \left|\int_0^t r^{-\mu} \int_{\mathbb{R}^n} \nabla_x e^{-(t-s)L} \mathbb{P}(u\otimes v)(x,s)\varphi(x) dx ds\right|.$$

Seja $l=\frac{p}{\eta+1}>1$ com $0<\eta<\frac{p}{q}$ e $1=\frac{1}{l}+\frac{1}{l'}$. Usando que $supp(\varphi)\subset\Omega_r(x_0)$ e a L^p -desigualdade de Hölder, temos que

$$r^{-\mu}|\langle B_{1}(u,v),\varphi\rangle| \leq \int_{0}^{t} r^{-\mu} \int_{\Omega_{r}(x_{0})} |\nabla_{x}e^{-(t-s)L}\mathbb{P}(u\otimes v)\varphi(x)| dxds$$

$$\leq \int_{0}^{t} r^{-\frac{\mu}{l}} \|\nabla_{x}e^{-(t-s)L}\mathbb{P}(u\otimes v)\|_{L^{l}(\Omega_{r}(x_{0}))} r^{-\frac{\mu}{l'}} \|\varphi\|_{L^{l'}(\Omega_{r}(x_{0}))} ds$$

$$\leq \int_{0}^{t} \|\nabla_{x}e^{-(t-s)L}\mathbb{P}(u\otimes v)\|_{\dot{\mathcal{L}}_{l,\mu}} \|\varphi\|_{\dot{\mathcal{L}}_{l',\mu}} ds. \tag{3.3.27}$$

Seja $\frac{1}{d} = \frac{1}{q} + \frac{1}{p}$. Como $\eta < \frac{p}{q}$, segue que

$$\frac{1}{d} > \frac{1}{p} + \frac{\eta}{p} = \frac{1}{l},$$

ou seja, 1 < d < l. Usando o Lema 3.3.1 e a desigualdade de Holder em espaços de Morrey (veja Lema 2.1.3(ii), pg. 12), obtemos

$$\|\nabla_{x}e^{-(t-s)L}\mathbb{P}(u\otimes v)\|_{\dot{\mathcal{L}}_{l,\mu}} \leq C(t-s)^{\frac{n-\mu}{2l}-\frac{n-\mu}{2d}-\frac{1}{2}}\|u(s)\|_{\dot{\mathcal{L}}_{p,\mu}}\|v(s)\|_{\dot{\mathcal{L}}_{q,\mu}}$$

$$\leq C(t-s)^{\frac{n-\mu}{2l}-\frac{n-\mu}{2d}-\frac{1}{2}}s^{-\frac{\alpha}{2}}\sup_{0< s< t}\|u(s)\|_{\dot{\mathcal{L}}_{p,\mu}}\sup_{0< s< t}s^{\frac{\alpha}{2}}\|v(s)\|_{\dot{\mathcal{L}}_{q,\mu}}.$$

$$(3.3.28)$$

Substituindo (3.3.28) em (3.3.27), segue que

$$r^{-\mu} |\langle B_1(u,v), \varphi \rangle| \le I(t) \sup_{t>0} \|u(t)\|_{\dot{\mathcal{L}}_{p,\mu}} \sup_{t>0} t^{\frac{\alpha}{2}} \|v(t)\|_{\dot{\mathcal{L}}_{q,\mu}} \|\varphi\|_{\dot{\mathcal{L}}_{l',\mu}},$$

onde

$$I(t) = C \int_0^t (t-s)^{\frac{n-\mu}{2l} - \frac{n-\mu}{2d} - \frac{1}{2}} s^{-\frac{\alpha}{2}} ds = C t^{\frac{n-\mu}{2l} - \frac{n-\mu}{2d} - \frac{1}{2} - \frac{\alpha}{2} + 1}.$$

Relembrando que $\frac{\alpha}{2} = \frac{1}{2} - \frac{n-\mu}{2q}$, obtemos

$$r^{-\mu} |\langle B_1(u,v),\varphi\rangle| \leq C t^{\frac{n-\mu}{2l} - \frac{n-\mu}{2p}} \sup_{t>0} \|u(t)\|_{\dot{\mathcal{L}}_{p,\mu}} \sup_{t>0} t^{\frac{\alpha}{2}} \|v(t)\|_{\dot{\mathcal{L}}_{q,\mu}} \|\varphi\|_{\dot{\mathcal{L}}_{l',\mu}}. \quad (3.3.29)$$

Note que $\frac{n-\mu}{2l} - \frac{n-\mu}{2p} = \frac{\eta}{2} > 0$. Portanto, usando (3.3.29) segue que $\langle B_1(u,v), \varphi \rangle \to 0$, quando $t \to 0^+$, pois r > 0 está fixado.

3.3.3 Prova do Teorema **3.2.1**

Parte (i) (Boa-colocação)

As desigualdades (3.3.8)-(3.3.9) mostram que o operador linear T_f dado por (3.1.10) é contínuo no espaço funcional $H_{q,r}$. Além disso, se $||f||_{\vartheta,(b,\mu)}$ é suficientemente pequeno, então a norma de T_f satisfaz

$$\zeta = ||T_f||_{H_{q,r} \to H_{q,r}} \le C||f||_{\vartheta,(b,\mu)} < 1.$$

Seja $0<\varepsilon<\frac{(1-\zeta)^2}{4K}$ e considere a bola fechada $\mathcal{B}_{\frac{2\varepsilon}{1-\zeta}}=\{[u,\theta]\in H_{q,r};\|[u,\theta]\|_{H_{q,r}}\leq \frac{2\varepsilon}{1-\zeta}\}$ munida da métrica completa $\mathcal{Z}(\cdot,\cdot)$ dada por $\mathcal{Z}([u,\theta],[\tilde{u},\tilde{\theta}])=\|[u-\tilde{u},\theta-\tilde{\theta}]\|_{H_{q,r}}$.

Considere o operador

$$\Phi([u,\theta]) := e^{-tL}[u_0,\theta_0] + B([u,\theta],[u,\theta]) + T_f(\theta).$$

Mostraremos que Φ está bem definida na bola $\mathcal{B}_{\frac{2\varepsilon}{1-\zeta}}$, e além disso que ela é uma contração no espaço métrico $(\mathcal{B}_{\frac{2\varepsilon}{1-\zeta}},\mathcal{Z})$. De fato, primeiro note que o Lema 3.3.3 implica que

$$||B||_{H_{q,r} \times H_{q,r} \to H_{q,r}} \le K,$$
 (3.3.30)

onde K é a constante que vem do Lema 3.3.3. Usando (3.3.30) e a continuidade de T_f podemos

_

obter a contração desejada. De fato, dado $[u,\theta], [\tilde{u},\tilde{\theta}] \in \mathcal{B}_{\frac{2\varepsilon}{1-\varepsilon}}$, temos que

$$\begin{split} \left\| \Phi([u,\theta]) - \Phi([\tilde{u},\tilde{\theta}]) \right\|_{H_{q,r}} &\leq \|B([u,\theta],[u,\theta]) - B([\tilde{u},\tilde{\theta}],[\tilde{u},\tilde{\theta}])\|_{H_{q,r}} + \|T_f(\theta) - T_f(\tilde{\theta})\|_{H_{q,r}} \\ &\leq \|B([u-\tilde{u},\theta-\tilde{\theta}],[u,\theta]) + B([\tilde{u},\tilde{\theta}],[u-\tilde{u},\theta-\tilde{\theta}])\|_{H_{q,r}} \\ &+ \|T_f(\theta) - T_f(\tilde{\theta})\|_{H_{q,r}}. \end{split}$$

Portanto,

$$\begin{split} \left\| \Phi([u,\theta]) - \Phi([\tilde{u},\tilde{\theta}]) \right\|_{H_{q,r}} &\leq K(\|[u,\theta]\|_{H_{q,r}} + \|[\tilde{u},\tilde{\theta}]\|_{H_{q,r}}) \|[u - \tilde{u},\theta - \tilde{\theta}]\|_{H_{q,r}} \\ &+ \zeta \|[u - \tilde{u},\theta - \tilde{\theta}]\|_{H_{q,r}} \\ &= \left[K\left(\|[u,\theta]\|_{H_{q,r}} + \|[\tilde{u},\tilde{\theta}]\|_{H_{q,r}} \right) + \zeta \right] \|[u - \tilde{u},\theta - \tilde{\theta}]\|_{H_{q,r}} \\ &\leq \left(\frac{4\varepsilon K}{1 - \zeta} + \zeta \right) \|[u - \tilde{u},\theta - \tilde{\theta}]\|_{H_{q,r}}, \end{split}$$
(3.3.32)

onde $\frac{4\varepsilon K}{1-\zeta}+\zeta<1$ (pela escolha de ε feita acima).

Agora, vamos mostrar que Φ é invariante na bola $\mathcal{B}_{\frac{2\varepsilon}{1-\zeta}}$, isto é, $\Phi(\mathcal{B}_{\frac{2\varepsilon}{1-\zeta}})\subset \mathcal{B}_{\frac{2\varepsilon}{1-\zeta}}$. Relembre que $\Phi([0,0])=e^{-tL}[u_0,\theta_0]$ e escreva

$$\Phi([u,\theta]) = (\Phi([u,\theta]) - \Phi([0,0])) + \Phi([0,0])$$

$$= (\Phi([u,\theta]) - e^{-tL}[u_0,\theta_0]) + e^{-tL}[u_0,\theta_0].$$
(3.3.33)

Tomando $[\tilde{u},\tilde{\theta}]=0$ em (3.3.31) e usando (3.3.33), segue que

$$\|\Phi([u,\theta])\|_{H_{q,r}} \leq \|e^{-tL}[u_0,\theta_0]\|_{H_{q,r}} + \|\Phi([u,\theta]) - e^{-tL}[u_0,\theta_0]\|_{H_{q,r}}$$

$$\leq \|e^{-tL}[u_0,\theta_0]\|_{H_{q,r}} + K\|[u,\theta]\|_{H_{q,r}}^2 + \zeta\|[u,\theta]\|_{H_{q,r}}.$$
 (3.3.34)

Pelo Lema 3.3.1, existe $C_L>0$ e $\delta=\frac{\varepsilon}{C_L}$ tal que

$$||e^{-tL}[u_0, \theta_0]||_{H_{q,r}} \le C_L ||[u_0, \theta_0]||_{p,\mu,p,\mu} \le C_L \delta = \varepsilon.$$
(3.3.35)

Então usando as desigualdades (3.3.34) e (3.3.35), obtemos que

$$\begin{split} \|\Phi([u,\theta])\|_{H_{q,r}} &\leq \varepsilon + K \|[u,\theta]\|_{H_{q,r}}^2 + \zeta \|[u,\theta]\|_{H_{q,r}} \\ &\leq \left(1-\zeta + \frac{4\varepsilon K}{1-\zeta} + 2\zeta\right) \frac{\varepsilon}{1-\zeta} \\ &= \left(1+\zeta + \frac{4\varepsilon K}{1-\zeta}\right) \frac{\varepsilon}{1-\zeta} < \frac{2\varepsilon}{1-\zeta} \text{ , para todo } [u,\theta] \in \mathcal{B}_{\frac{2\varepsilon}{1-\zeta}}, \end{split}$$

ou seja, $\Phi(\mathcal{B}_{\frac{2\varepsilon}{1-\zeta}})\subset \mathcal{B}_{\frac{2\varepsilon}{1-\zeta}}$. Portanto, Φ tem um único ponto fixo $[u,\theta]$ em $\mathcal{B}_{\frac{2\varepsilon}{1-\zeta}}$, o qual é uma solução da equação integral (3.1.7). Para mostrar que $[u,\theta]$ é uma solução branda no sentido da Definição 3.1.3, falta mostrar a convergência para o dado inicial. A convergência fraca de $[u(t),\theta(t)] \rightharpoonup [u_0,\theta_0]$ em $\mathcal{D}'(\mathbb{R}^n)$, segue de $e^{-tL}[u_0,\theta_0] \rightharpoonup [u_0,\theta_0]$, $B([u,\theta],[u,\theta])(t) \rightharpoonup 0$ e $T_f(\theta)(t) \rightharpoonup 0$ em $\mathcal{D}'(\mathbb{R}^n)$, quando $t \to 0^+$ (veja Lema 3.3.4, pg. 43).

Na sequência demonstraremos a Lipschitz continuidade do mapa dado-solução. Sejam $[u,\theta]$ e $[\tilde{u},\tilde{\theta}]$ duas soluções em $\mathcal{B}_{\frac{2\varepsilon}{1-\zeta}}$ obtidas via o argumento de ponto fixo acima, onde $[u_0,\theta_0]$ e $[\tilde{u}_0,\tilde{\theta}_0]$ são seus respectivos dados iniciais. Subtraindo as correspondentes equações integrais e procedendo analogamente a prova de (3.3.32), obtemos que

$$\left\| \begin{bmatrix} u - \tilde{u} \\ \theta - \tilde{\theta} \end{bmatrix} \right\|_{H_{a,r}} \le C_L \left\| \begin{bmatrix} u_0 - \tilde{u}_0 \\ \theta_0 - \tilde{\theta}_0 \end{bmatrix} \right\|_{p,\mu,p,\mu} + \left(\frac{4\varepsilon K}{1 - \zeta} + \zeta \right) \left\| \begin{bmatrix} u - \tilde{u} \\ \theta - \tilde{\theta} \end{bmatrix} \right\|_{H_{a,r}},$$

e então

$$\left\| \begin{bmatrix} u - \tilde{u} \\ \theta - \tilde{\theta} \end{bmatrix} \right\|_{H_{q,r}} \le \frac{C_L}{1 - \left(\frac{4\varepsilon K}{1 - \zeta} + \zeta\right)} \left\| \begin{bmatrix} u - \tilde{u} \\ \theta - \tilde{\theta} \end{bmatrix} \right\|_{H_{q,r}},$$

o que implica a Lipschitz continuidade desejada, porque $\frac{4\varepsilon K}{1-\zeta}+\zeta<1.$

Parte (ii) (Dependência contínua no campo f)

Denote por $[u_h, \theta_h]$ e $[u_f, \theta_f]$ as soluções brandas dadas pelo item (i) com o mesmo dado inicial $[u_0, \theta_0]$ e associadas aos respectivos campos gravitacionais h e f. Considere

$$\zeta_h = ||T_h||_{H_{q,r} \to H_{q,r}}, \ 0 < \varepsilon_h < \frac{(1 - \zeta_h)^2}{4K}$$

_

e

$$\zeta_f = ||T_f||_{H_{q,r} \to H_{q,r}}, \ 0 < \varepsilon_f < \frac{(1 - \zeta_f)^2}{4K},$$

como na demonstração do item (i) do teorema. Usando (3.3.31) temos que

$$\left\| \begin{bmatrix} u_h - u_f \\ \theta_h - \theta_f \end{bmatrix} \right\|_{H_{q,r}} \le K \left[\left\| \begin{bmatrix} u_h \\ \theta_h \end{bmatrix} \right\|_{H_{q,r}} + \left\| \begin{bmatrix} u_f \\ \theta_f \end{bmatrix} \right\|_{H_{q,r}} \right] + \left\| \begin{bmatrix} u_h - u_f \\ u_h - u_f \end{bmatrix} \right\|_{H_{q,r}} + \left\| T_h(\theta_h) - T_f(\theta_f) \right\|_{H_{q,r}}.$$

Notando que

$$T_h(\theta_h) - T_f(\theta_f) = T_{h-f}(\theta_h) + T_f(\theta_h - \theta_f)$$

e tomando $\varepsilon = \max\{\varepsilon_h, \varepsilon_f\}$ e $\zeta = \max\{\zeta_h, \zeta_f\}$, obtemos

$$\left\| \begin{bmatrix} u_h - u_f \\ \theta_h - \theta_f \end{bmatrix} \right\|_{H_{q,r}} \le \frac{4\varepsilon K}{1 - \zeta} \left\| \begin{bmatrix} u_h - u_f \\ \theta_h - \theta_f \end{bmatrix} \right\|_{H_{q,r}} + C \|h - f\|_{\vartheta,(b,\mu)} \left\| \begin{bmatrix} u_h \\ \theta_h \end{bmatrix} \right\|_{H_{q,r}} + \zeta \left\| \begin{bmatrix} u_h - u_f \\ \theta_h - \theta_f \end{bmatrix} \right\|_{H_{q,r}}.$$

$$(3.3.36)$$

Após algumas simplificações na desigualdade (3.3.36) e relembrando que $[u_h, \theta_h] \in \mathcal{B}_{\frac{2\varepsilon_h}{1-\zeta_h}} \subset \mathcal{B}_{\frac{2\varepsilon}{1-\zeta}}$, segue que

$$\left\| \begin{bmatrix} u_h - u_f \\ \theta_h - \theta_f \end{bmatrix} \right\|_{H_{q,r}} \le C \frac{2\varepsilon}{1 - \zeta} \left[1 - \left(\frac{4\varepsilon K}{1 - \zeta} + \zeta \right) \right]^{-1} \|h - f\|_{\vartheta,(b,\mu)}. \tag{3.3.37}$$

Finalizamos a demonstração observando que (3.3.37) implica a dependência contínua desejada.

Parte (iii)(Problema de Bénard)

Desde que $f(x)=-G\frac{x}{|x|^3}\in (\dot{\mathcal{L}}_{b,n-2b})^n$, é suficiente assumir $\kappa>0$ tal que κG é suficientemente pequeno e tomar $b=\frac{n-\mu}{2}=\frac{p}{2}$ $(\vartheta=0)$ no item (i).

Parte (iv)

- Espaços com peso: Quando 1 < l < p e k > n - l, provaremos que

$$[u, \theta] \in BC([0, \infty); (L_{-k/l}^l)^{n+1}).$$

De fato, se 1 < l < p e k > n - l, então os itens (i) e (iii) do Lema 2.1.3 implicam as inclusões contínuas

$$\dot{\mathcal{L}}_{p,n-p} \subset \dot{\mathcal{L}}_{l,n-l} \subset L^l_{-k/l}$$
.

Como $[u, \theta] \in H_{q,r}$, então (veja Definição 3.1.1)

$$[u, \theta] \in H_p \subset BC((0, \infty); (L_{-k/l}^l)^{n+1}).$$

Logo, falta apenas falta mostrar que

$$[u(t), \theta(t)] \to [u_0, \theta_0] \text{ em } (L^l_{-k/l})^{n+1}, \text{ quando } t \to 0^+.$$
 (3.3.38)

Para isto, sejam $0 < \eta < \frac{p}{b}$, $l = \frac{p}{1+\eta}$, $\frac{1}{r} = \frac{1}{b} + \frac{1}{p}$ e relembre que $\mu = n - p$. Note que r < l. Aplicando primeiramente Lema 3.3.1 e depois o Lema 2.1.3 (ii), obtemos

$$\left\| \int_0^t e^{(t-s)\Delta} \mathbb{P}(\theta(s)f(s)) ds \right\|_{l,\mu} \lesssim \int_0^t (t-s)^{\frac{n-\mu}{2l} - \frac{n-\mu}{2d}} \|f(s)\|_{b,\mu} \|\theta(s)\|_{p,\mu} ds$$

$$= \int_0^t (t-s)^{\frac{\eta}{2} - \frac{n-\mu}{2b}} \|f(s)\|_{b,\mu} \|\theta(s)\|_{p,\mu} ds,$$

pois

$$\frac{n-\mu}{l} - \frac{n-\mu}{d} = \eta - \frac{n-\mu}{h}.$$

Desde que $[u,\theta]\in H_p$ e $t^\vartheta f\in BC((0,\infty);(\dot{\mathcal{L}}_{b,\mu})^n)$, estimamos

$$\left\| \int_{0}^{t} e^{(t-s)\triangle} \mathbb{P}(\theta(s)f(s)) ds \right\|_{l,\mu} \lesssim \int_{0}^{t} (t-s)^{\frac{\eta}{2} - \frac{n-\mu}{2b}} s^{-\vartheta} ds \|f\|_{\vartheta,(b,\mu)} \sup_{t>0} \|\theta(t)\|_{p,\mu}$$
$$= I(t) \|f\|_{\vartheta,(b,\mu)} \sup_{t>0} \|\theta(t)\|_{p,\mu}. \tag{3.3.39}$$

Relembrando que $\vartheta=1-\frac{n-\mu}{2b}$ e fazendo s=tz, temos que

$$I(t) = t^{\frac{\eta}{2}} \beta \left(1 - \vartheta, 1 - \frac{\eta}{2} + \frac{n - \mu}{2b} \right). \tag{3.3.40}$$

Substituindo (3.3.40) em (3.3.39), obtemos

$$\left\| \int_0^t e^{(t-s)\triangle} \mathbb{P}(\theta(s)f(s)) ds \right\|_{l,\mu} \lesssim t^{\frac{\eta}{2}} \|f\|_{\vartheta,(b,\mu)} \sup_{t>0} \|\theta(t)\|_{p,\mu}. \tag{3.3.41}$$

Fazendo $t \to 0^+$ em (3.3.41), obtemos a convergência

$$T_f(\theta)(t) \to 0 \text{ em } \dot{\mathcal{L}}_{l,\mu}^{\sigma} \times \dot{\mathcal{L}}_{l,\mu}.$$
 (3.3.42)

De forma similar à estimativa (3.3.41), temos que

$$\left\| \int_0^t \nabla_x e^{-(t-s)L} \begin{bmatrix} \mathbb{P}(u \otimes u) \\ u\theta \end{bmatrix}(s) ds \right\|_{l,\mu,l,\mu} \lesssim t^{\frac{\eta}{2}} \left\| \begin{bmatrix} u \\ \theta \end{bmatrix} \right\|_{H_p} \left\| \begin{bmatrix} u \\ \theta \end{bmatrix} \right\|_{H_p} \to 0, \text{ quando } t \to 0^+.$$

$$(3.3.43)$$

Pela inclusão contínua $\dot{\mathcal{L}}_{l,\mu} \subset L^l_{-k/l}$, (veja Lema 2.1.3(iii)) e as convergências (3.3.42) e (3.3.43), obtemos que

$$B([u,\theta],[u,\theta])(t) \to 0 \text{ e } T_f(\theta)(t) \to 0 \text{ em } (L^l_{-k/l})^n \times L^l_{-k/l}, \text{ quando } t \to 0^+.$$
 (3.3.44)

Agora como e^{-tL} é um C_0 -semigrupo em $\mathbb{P}(L^l_{-k/l})^n \times L^l_{-k/l}$ e

$$[u_0, \theta_0] \in \dot{\mathcal{L}}_{p,\mu}^{\sigma} \times \dot{\mathcal{L}}_{p,\mu} \subset \mathbb{P}(L_{-k/l}^l)^n \times L_{-k/l}^l,$$

temos a convergência forte $e^{-tL}[u_0, \theta_0] \to [u_0, \theta_0]$ em $(L_{-k/l}^l)^{n+1}$, quando $t \to 0^+$. Isto junto com (3.3.44), acarreta a convergência (3.3.38).

- Continuidade forte em $t=0^+$: Assumindo que $[u_0,\theta_0]\in \tilde{\mathcal{L}}_{p,\mu}^\sigma imes \tilde{\mathcal{L}}_{p,\mu}$, provaremos que

$$[u,\theta] \in BC([0,\infty); \tilde{\mathcal{L}}_{p,\mu}^{\sigma} \times \tilde{\mathcal{L}}_{p,\mu}).$$

De fato, se $[v,\varphi] \in \dot{\mathcal{L}}_{l_1,\mu}^{\sigma} \times \dot{\mathcal{L}}_{l_2,\mu}$ $(1 < l_i \leq p)$, então pela Proposição 2.2.1 e a estimativa (3.3.1) segue que $\nabla_x^k e^{-tL}[v,\varphi]$ pertence a $\check{\mathcal{L}}_{p,\mu}^{\sigma} \times \check{\mathcal{L}}_{p,\mu}$, $\forall \ t > 0$. Desde que $[u,\theta] \in BC((0,\infty);\dot{\mathcal{L}}_{p,\mu}^{\sigma} \times \dot{\mathcal{L}}_{p,\mu})$

 $\dot{\mathcal{L}}_{p,\mu}$), obtemos

$$[u,\theta] \in BC((0,\infty); \tilde{\mathcal{L}}_{p,\mu}^{\sigma} \times \tilde{\mathcal{L}}_{p,\mu}).$$

Portanto, basta provar que $[u(t), \theta(t)] \xrightarrow{t \to 0^+} [u_0, \theta_0]$, quando $[u_0, \theta_0] \in \tilde{\mathcal{L}}_{p,\mu}^{\sigma} \times \tilde{\mathcal{L}}_{p,\mu}$. Para isto, primeiro usando (3.3.2) note que

$$e^{-tL}[u_0, \theta_0] \xrightarrow{t \to 0^+} [u_0, \theta_0] \text{ em } \dot{\mathcal{L}}_{p,\mu}^{\sigma} \times \dot{\mathcal{L}}_{p,\mu},$$

quando $[u_0,\theta_0]\in \widetilde{\dot{\mathcal{L}}}_{p,\mu}^\sigma imes \widetilde{\dot{\mathcal{L}}}_{p,\mu}$. Assim, somente precisamos mostrar que

$$||B([u,\theta],[u,\theta])||_{p,\mu} \in ||T_f(\theta)||_{p,\mu} \longrightarrow 0$$
, quando $t \to 0^+$. (3.3.45)

Para isto, é suficiente mostrar que

$$\lim_{t \to 0^+} \left\| \begin{bmatrix} t^{\frac{\alpha}{2}} u(t) \\ t^{\frac{\beta}{2}} \theta(t) \end{bmatrix} \right\|_{q,\mu,r,\mu} = 0. \tag{3.3.46}$$

De fato, com uma pequena modificação na prova das estimativas (3.3.8) e (3.3.23), e tomando $\sup_{0 < t < T}$ no lugar de $\sup_{t > 0}$, temos que

$$\sup_{0 < t < T} \|T_f(\theta)(t)\|_{p,\mu} \lesssim \sup_{0 < t < T} t^{\vartheta} \|f(t)\|_{b,\mu} \sup_{0 < t < T} t^{\frac{\beta}{2}} \|\theta(t)\|_{r,\mu}$$
(3.3.47)

e

$$\sup_{0 < t < T} \left\| \begin{bmatrix} B_1(u, v) \\ B_2(u, \theta) \end{bmatrix} \right\|_{p, \mu, p, \mu} \lesssim \sup_{0 < t < T} \left\| \begin{bmatrix} u \\ \theta \end{bmatrix} \right\|_{p, \mu, p, \mu} \sup_{0 < t < T} \left\| \begin{bmatrix} t^{\frac{\alpha}{2}} v \\ t^{\frac{\beta}{2}} \theta \end{bmatrix} \right\|_{q, \mu, r, \mu}. \tag{3.3.48}$$

Tomando $T \to 0^+$ em (3.3.47) e (3.3.48), obtemos (3.3.45) a partir de (3.3.46).

Na sequência provaremos (3.3.46). Desde que $[u, \theta]$ é solução de (3.1.7), em vista da primeira igualdade em (3.3.2) falta mostrar que

$$\lim_{t \to 0^{+}} \left\| \begin{bmatrix} t^{\frac{\alpha}{2}} B_{1}(u(t), u(t)) \\ t^{\frac{\beta}{2}} B_{2}(u(t), \theta(t)) \end{bmatrix} \right\|_{q, \mu, r, \mu} = \lim_{t \to 0^{+}} t^{\frac{\alpha}{2}} \left\| T_{f}(\theta(t)) \right\|_{q, \mu} = 0.$$
 (3.3.49)

Devido ao argumento de ponto fixo, a solução $[u, \theta]$ dada no item (i) pode ser aproximada pela

sequência de Picard:

$$\begin{bmatrix} u_1 \\ \theta_1 \end{bmatrix} = e^{-tL} \begin{bmatrix} u_0 \\ \theta_0 \end{bmatrix} \tag{3.3.50}$$

$$\begin{bmatrix} u_{k+1} \\ \theta_{k+1} \end{bmatrix} = \begin{bmatrix} u_1 \\ \theta_1 \end{bmatrix} - \int_0^t \left(\nabla_x e^{-(t-s)L} \begin{bmatrix} \mathbb{P}(u_k \otimes u_k) \\ u_k \theta_k \end{bmatrix} (s) - \begin{bmatrix} \mathbb{P}(f\theta_k) \\ 0 \end{bmatrix} (s) \right) ds, \quad k \in \mathbb{N}. \quad (3.3.51)$$

A primeira igualdade em (3.3.2) garante que

$$\lim_{t \to 0^{+}} \sup_{0 < s < t} \left\| \begin{bmatrix} s^{\frac{\alpha}{2}} u_{1}(s) \\ s^{\frac{\beta}{2}} \theta_{1}(s) \end{bmatrix} \right\|_{q, u, r, u} = \lim_{t \to 0^{+}} \left\| e^{-tL} \begin{bmatrix} t^{\frac{\alpha}{2}} u_{0} \\ t^{\frac{\beta}{2}} \theta_{0} \end{bmatrix} \right\|_{q, u, r, u} = 0.$$
 (3.3.52)

Além disso, da prova de (3.3.22) segue que

$$0 \le \left\| \begin{bmatrix} t^{\frac{\alpha}{2}} B_1(u_1, u_1) \\ t^{\frac{\beta}{2}} B_2(u_1, \theta_1) \end{bmatrix} \right\|_{q, \mu, r, \mu} \le C \sup_{0 < s < t} \left\| \begin{bmatrix} s^{\frac{\alpha}{2}} u_1(s) \\ s^{\frac{\beta}{2}} \theta_1(s) \end{bmatrix} \right\|_{q, \mu, r, \mu}^2.$$
(3.3.53)

Agora, tomando $\limsup_{t\to 0^+}$ em (3.3.53) e usando (3.3.52), obtemos que

$$\lim_{t \to 0^+} \left\| \begin{bmatrix} t^{\frac{\alpha}{2}} B_1(u_1(t), u_1(t)) \\ t^{\frac{\beta}{2}} B_2(u_1(t), \theta_1(t)) \end{bmatrix} \right\|_{q,\mu,r,\mu} = 0.$$
 (3.3.54)

Anologamente, temos que

$$\lim_{t \to 0^+} t^{\frac{\alpha}{2}} \|T_f(\theta_1(t))\|_{q,\mu} = 0.$$
(3.3.55)

Por (3.3.51), podemos usar um argumento de indução e mostrar que $[u_k, \theta_k]$ satisfaz (3.3.54) e (3.3.55), para todo k. Finalmente, desde que $[u, \theta]$ é o limite da sequência $[u_k, \theta_k]$ em $H_{q,r}$ e $B(\cdot, \cdot)$, $T_f(\cdot)$ são operadores contínuos em $H_{q,r}$, então $[u, \theta]$ também verifica (3.3.49).

3.3.4 Prova do Corolário 3.2.4

Novamente usaremos um argumento de indução. Como já mencionado acima, a solução $[u,\theta]$ dada pelo Teorema 3.2.1 (i) é o limite em $H_{q,r}$ da sequência de Picard (3.3.50)-(3.3.51). Relembre que o núcleo do calor g satisfaz

$$g(x,t) = \lambda^n g(\lambda x, \lambda^2 t) \quad \forall \ \lambda > 0, t > 0 \text{ e } x \in \mathbb{R}^n.$$
 (3.3.56)

Usando (3.3.56) e que $[u_0, \theta_0]$ é um vetor homogêneo de grau -1, temos que $[u_1, \theta_1]$ é invariante pelo *scaling* (3.1.2), isto é,

$$\begin{bmatrix} u_1(x,t) \\ \theta_1(x,t) \end{bmatrix} = \lambda \begin{bmatrix} u_1(\lambda x, \lambda^2 t) \\ \theta_1(\lambda x, \lambda^2 t) \end{bmatrix} \forall \lambda > 0, t > 0 e x \in \mathbb{R}^n.$$

Desde que $B([u_1, \theta_1], [u_1, \theta_1])$ e $T_f(\theta_1)$ são invariantes por (3.1.2), usando (3.3.51) segue que

$$[u_2(x,t),\theta_2(x,t)] = [\lambda u_2(\lambda x, \lambda^2 t), \lambda \theta_2(\lambda x, \lambda^2 t)].$$

Por indução, concluímos que $[u_k, \theta_k]$ é invariante por (3.1.2), para todo k. Em outras palavras $[u_k, \theta_k] = [(u_k)_{\lambda}, (\theta_k)_{\lambda}] \ \forall \ \lambda > 0$. Agora, escrevendo

$$[u, \theta] - [u_{\lambda}, \theta_{\lambda}] = ([u, \theta] - [u_{k}, \theta_{k}]) + ([u_{k}, \theta_{k}] - [u_{\lambda}, \theta_{\lambda}])$$
$$= ([u, \theta] - [u_{k}, \theta_{k}]) + ([(u_{k})_{\lambda}, (\theta_{k})_{\lambda}] - [u_{\lambda}, \theta_{\lambda}]),$$

segue que

$$\begin{aligned} \|[u,\theta] - [u_{\lambda},\theta_{\lambda}]\|_{H_{q,r}} & \leq \|[u,\theta] - [u_{k},\theta_{k}]\|_{H_{q,r}} + \|[(u_{k})_{\lambda},(\theta_{k})_{\lambda}] - [u_{\lambda},\theta_{\lambda}]\|_{H_{q,r}} \\ & \leq 2\|[u,\theta] - [u_{k},\theta_{k}]\|_{H_{q,r}}, \end{aligned}$$

pois a norma $\|[\cdot, \bullet]\|_{H_{q,r}}$ é invariante pelo *scaling* (3.1.2) (veja (3.1.5)). Como $[u_k, \theta_k] \to [u, \theta]$ em $H_{q,r}$, obtemos que $[u, \theta] = [u_\lambda, \theta_\lambda]$, isto é, $[u, \theta]$ é uma solução auto-similar.

3.3.5 Prova do Teorema 3.2.5

Provaremos este teorema usando um argumento de indução, o qual detalharemos na sequência. Se k=m=0, então pelo Teorema 3.2.1, segue que a equação integral (3.1.7) tem uma solução. Suponha que $\nabla_x^j[u,\theta] \in BC((0,\infty),\dot{\mathcal{L}}_{q,\mu}\times\dot{\mathcal{L}}_{r,\mu})$ para $j=1,2,\cdots,m-1$, então por indução em m, provaremos que a solução $[u(t),\theta(t)]$ da equação integral (3.1.7) possui derivadas de ordem m em espaços de Morrey. Na demonstração somente está envolvido t>0 e, portanto,

tomaremos $\sigma > 0$ e provaremos o resultado para $t > \sigma$.

Defina \mathcal{H} como o espaço de funções $[u,\theta]$ mensuráveis em $\mathbb{R}^n \times (\sigma,T)$ tais que,

$$\nabla_x^j[u,\theta] \in BC((\sigma,T); \dot{\mathcal{L}}_{q,\mu}^{\sigma} \times \dot{\mathcal{L}}_{r,\mu}), \quad j = 1, 2, \cdots, m-1$$
 (3.3.57)

$$(t-\sigma)^{\frac{1}{2}}\nabla_x^m[u,\theta] \in BC((\sigma,T); \dot{\mathcal{L}}_{g,\mu}^{\sigma} \times \dot{\mathcal{L}}_{r,\mu}). \tag{3.3.58}$$

Em \mathcal{H} , consideramos a seguinte norma

$$||[u,\theta]||_{\mathcal{H}} = \sum_{j=1}^{m-1} \sup_{t \in (\sigma,T)} ||\nabla_x^j[u(\cdot,t),\theta(\cdot,t)]||_{q,\mu,r,\mu} + \sup_{t \in (\sigma,T)} (t-\sigma)^{\frac{1}{2}} ||\nabla_x^m[u(\cdot,t),\theta(\cdot,t)]||_{q,\mu,r,\mu}$$
(3.3.59)

Considere a aplicação

$$\Phi_{\sigma}([u,\theta]) := e^{-(t-\sigma)L}[a_1, a_2] + B_{\sigma}([u,\theta], [u,\theta]) + T_{\sigma f}(\theta),$$

onde $\sigma > 0$, $[a_1, a_2] = [u(\sigma), \theta(\sigma)]$,

$$B_{\sigma}([u,\theta],[v,\phi])(t) = -\int_{\sigma}^{t} \nabla_{x} \cdot e^{-(t-s)L} \begin{bmatrix} \mathbb{P}(u \otimes v) \\ u\phi \end{bmatrix} (s)ds, \qquad (3.3.60)$$

e

$$T_{\sigma f}(\theta)(t) = \kappa \int_{\sigma}^{t} e^{-(t-s)L} \begin{bmatrix} \mathbb{P}(\theta f) \\ 0 \end{bmatrix} (s) ds.$$
 (3.3.61)

Mostraremos que Φ_{σ} tem um ponto fixo em \mathcal{H} , quando $T - \sigma$ é suficientemente pequeno. Para isto, comecemos com estimativas para os termos bilineares. Pela regra de Leibnitz,

$$\nabla_x^m B_{\sigma}([u,\theta],[v,\varphi]) = B_{\sigma}([u,\theta],\nabla_x^m[v,\varphi]) + \dots + B_{\sigma}(\nabla_x^i[u,\theta],\nabla_x^j[v,\varphi]) + \dots + B_{\sigma}(\nabla_x^m[u,\theta],[v,\varphi]),$$
(3.3.62)

onde i + j = m. Similarmente à prova de (3.3.13), temos que

$$||B_{1\sigma}(u,v)||_{q,\mu} \le C(t-\sigma)^{\frac{\alpha}{2}} \sup_{t \in (\sigma,T)} ||u(t)||_{q,\mu} \sup_{t \in (\sigma,T)} ||v(t)||_{q,\mu}$$
(3.3.63)

$$||B_{2\sigma}(u,\varphi)||_{r,\mu} \le C(t-\sigma)^{\frac{\alpha}{2}} \sup_{t \in (\sigma,T)} ||u(t)||_{q,\mu} \sup_{t \in (\sigma,T)} ||\varphi(t)||_{r,\mu}, \tag{3.3.64}$$

onde

$$B_{\sigma}([u,\theta],[v,\varphi]) = [B_{1\sigma}(u,v), B_{2\sigma}(u,\varphi)],$$
 (3.3.65)

e

$$B_{1\sigma}(u,v)(x,t) = -\int_{\sigma}^{t} \nabla_{x} e^{-(t-s)L} \mathbb{P}(u \otimes v)(x,s) ds,$$

$$B_{1\sigma}(u,\varphi)(x,t) = -\int_{\sigma}^{t} \nabla_{x} e^{-(t-s)L} (\varphi u)(x,s) ds.$$

Assumindo que $[u, \theta], [v, \varphi] \in \mathcal{H}$, por (3.3.62), (3.3.71) e (3.3.64), segue que

$$\left\| \begin{bmatrix} \nabla_x^j B_{1\sigma}(u, v) \\ \nabla_x^j B_{2\sigma}(u, \varphi) \end{bmatrix} \right\|_{q, \mu, r, \mu} \le C(t - \sigma)^{\frac{\alpha}{2}} \left\| \begin{bmatrix} u \\ \theta \end{bmatrix} \right\|_{\mathcal{H}} \left\| \begin{bmatrix} v \\ \varphi \end{bmatrix} \right\|_{\mathcal{H}}, \tag{3.3.66}$$

para todo $1 \le j \le m-1$. Na sequência queremos mostrar que

$$(t-\sigma)^{\frac{1}{2}} \|\nabla_x^m B_{\sigma}([u,\theta],[v,\varphi])\|_{q,\mu,r,\mu} \le C(t-\sigma)^{\frac{\alpha}{2}} \left\| \begin{bmatrix} u \\ \theta \end{bmatrix} \right\|_{\mathcal{H}} \left\| \begin{bmatrix} v \\ \varphi \end{bmatrix} \right\|_{\mathcal{H}}.$$
 (3.3.67)

Se $[u, \theta], [v, \varphi] \in \mathcal{H}$, então

$$\left\| \sum_{\substack{i+j=m\\i,j\neq m}} B_{\sigma}(\nabla_x^i[u,\theta], \nabla_x^j[v,\varphi]) \right\|_{q,\mu,r,\mu} \le C(t-\sigma)^{\frac{\alpha}{2}} \left\| \begin{bmatrix} u\\\theta \end{bmatrix} \right\|_{\mathcal{H}} \left\| \begin{bmatrix} v\\\varphi \end{bmatrix} \right\|_{\mathcal{H}}. \tag{3.3.68}$$

Além disso, pelo Lema 3.3.1, a desigualdade de Hölder (2.1.14) e usando que

$$(t-\sigma)^{\frac{1}{2}} \nabla_x^m [u,\theta] \in BC((\sigma,T); \dot{\mathcal{L}}_{g,\mu}^{\sigma} \times \dot{\mathcal{L}}_{r,\mu}),$$

obtemos

$$||B_{\sigma}(\nabla_{x}^{m}[u,\theta],[v,\varphi])||_{q,\mu,r,\mu} \leq C(t-\sigma)^{\frac{\alpha}{2}-\frac{1}{2}} \sup_{t \in (\sigma,T)} ||(t-\sigma)^{\frac{1}{2}}\nabla_{x}^{m}[u,\theta]||_{q,\mu,r,\mu} \sup_{t \in (\sigma,T)} ||[v,\varphi]||_{q,\mu,r,\mu}.$$
(3.3.69)

Em vista de (3.3.62), as desigualdades (3.3.68) e (3.3.69) produzem

$$\|(t-\sigma)^{\frac{1}{2}}\nabla_{x}^{m}B_{\sigma}([u,\theta],[v,\varphi])\|_{q,\mu,r,\mu} \leq C[(t-\sigma)^{\frac{\alpha}{2}+\frac{1}{2}}+2(t-\sigma)^{\frac{\alpha}{2}}] \|\begin{bmatrix} u\\\theta\end{bmatrix}\|_{\mathcal{H}} \|\begin{bmatrix} v\\\varphi\end{bmatrix}\|_{\mathcal{H}}$$

$$\leq C(t-\sigma)^{\frac{\alpha}{2}} \|\begin{bmatrix} u\\\theta\end{bmatrix}\|_{\mathcal{H}} \|\begin{bmatrix} v\\\varphi\end{bmatrix}\|_{\mathcal{H}}, \qquad (3.3.70)$$

para $(t-\sigma)$ suficientemente pequeno. Agora usando a definição de \mathcal{H} , obtemos

$$\left\| \begin{bmatrix} B_{1\sigma}(u,u) \\ B_{2\sigma}(v,\varphi) \end{bmatrix} \right\|_{\mathcal{H}} \le C(T-\sigma)^{\frac{\alpha}{2}} \left\| \begin{bmatrix} u \\ \theta \end{bmatrix} \right\|_{\mathcal{H}} \left\| \begin{bmatrix} v \\ \varphi \end{bmatrix} \right\|_{\mathcal{H}},$$

para $(T - \sigma)$ suficientemente pequeno, ou seja,

$$||B_{\sigma}||_{\mathcal{H} \times \mathcal{H} \to \mathcal{H}} \le C(T - \sigma)^{\frac{\alpha}{2}}.$$
 (3.3.71)

Agora tratamos com as estimativas de $T_{\sigma f}$ em \mathcal{H} . Primeiro note que

$$\nabla_x^j T_{\sigma f}(\theta(t)) = \sum_{k_1 + k_2 = j} \int_{\sigma}^t e^{(t-s)L} \begin{bmatrix} \mathbb{P}(\nabla_x^{k_1} \theta(s) \nabla_x^{k_2} f(s)) \\ 0 \end{bmatrix} ds.$$

Por hipótese, temos que $\sup_{t \in (\sigma,T)} \|\nabla_x^j f(t)\|_{b,\mu} \le C, \forall j=0,1,\cdots,m$. Logo, analogamente à prova de (3.3.9), temos que

$$\|\nabla_{x}^{j} T_{\sigma f}(\theta(t))\|_{q,\mu} \leq C \int_{\sigma}^{t} (t-s)^{-\frac{\gamma}{2}} ds \sum_{k_{1}+k_{2}=j} \sup_{t \in (\sigma,T)} \|\nabla_{x}^{k_{1}} \theta(t)\|_{r,\mu} \sup_{t \in (\sigma,T)} \|\nabla_{x}^{k_{2}} f(t)\|_{b,\mu}$$

$$\leq C(t-\sigma)^{-\frac{\gamma}{2}+1} \left\| \begin{bmatrix} u \\ \theta \end{bmatrix} \right\|_{\mathcal{H}}, \text{ para } j = 1, \cdots, m-1, \tag{3.3.72}$$

onde $\gamma = \frac{n-\mu}{d} - \frac{n-\mu}{q}$. Além disso, escrevendo

$$\nabla_x^m T_{\sigma f}(\theta(t)) = \sum_{k_1 + k_2 = m - 1} \int_{\sigma}^t \nabla_x e^{(t - s)L} \begin{bmatrix} \mathbb{P}(\nabla_x^{k_1} \theta(s) \nabla_x^{k_2} f(s)) \\ 0 \end{bmatrix} ds,$$

também podemos obter a seguinte estimativa:

$$\|\nabla_x^m T_{\sigma f}(\theta)\|_{q,\mu} \le C \int_{\sigma}^{t} (t-s)^{-\frac{\gamma}{2} - \frac{1}{2}} ds \sum_{k_1 + k_2 = m-1} \sup_{t \in (\sigma, T)} \|\nabla_x^{k_1} \theta(t)\|_{r,\mu} \sup_{t \in (\sigma, T)} \|\nabla_x^{k_2} f(t)\|_{b,\mu}$$

$$\le C(t-\sigma)^{-\frac{\gamma}{2} + \frac{1}{2}} \left\| \begin{bmatrix} u \\ \theta \end{bmatrix} \right\|_{\mathcal{H}}.$$

Portanto,

$$\sup_{t \in (\sigma,T)} (t - \sigma)^{\frac{1}{2}} \|\nabla_x^m T_{\sigma f}(\theta)\|_{q,\mu} \le C(T - \sigma)^{-\frac{\gamma}{2} + 1} \left\| \begin{bmatrix} u \\ \theta \end{bmatrix} \right\|_{\mathcal{U}}.$$
 (3.3.73)

Por (3.3.72) e (3.3.73), temos que

$$||T_{\sigma f}||_{\mathcal{H} \to \mathcal{H}} \le C(T - \sigma)^{-\frac{\gamma}{2} + 1}. \tag{3.3.74}$$

Finalmente, tratamos com o termo $e^{(t-\sigma)L}[a_1, a_2] \in \mathcal{H}$. Pelo Lema 3.3.1, temos que

$$\|\nabla_{x}^{j} e^{-(t-\sigma)L}[a_{1}, a_{2}]\|_{q,\mu,r,\mu} = \|e^{-(t-\sigma)L} \nabla_{x}^{j} [a_{1}, a_{2}]\|_{q,\mu,r,\mu}$$

$$\leq C \|\nabla_{x}^{j} [a_{1}, a_{2}]\|_{q,\mu,r,\mu}, \tag{3.3.75}$$

pois, pela hipótese de indução, $\nabla_x^j[a_1,a_2] = \nabla_x^j[u(\sigma),\theta(\sigma)] \in \dot{\mathcal{L}}_{q,\mu} \times \dot{\mathcal{L}}_{r,\mu}, \forall \ j=1,\cdots,m-1.$ Portanto, por (3.3.75) segue que

$$\nabla_x^j e^{-(t-\sigma)L}[a_1, a_2] \in BC((\sigma, T); \dot{\mathcal{L}}_{q,\mu}^{\sigma} \times \dot{\mathcal{L}}_{r,\mu}).$$

Agora, novamente pela hipótese de indução e o Lema 3.3.1, temos que

$$\|\nabla_x^m e^{-(t-\sigma)L}[a_1, a_2]\|_{q,\mu,r,\mu} = \|\nabla_x e^{-(t-\sigma)L} \nabla_x^{m-1}[a_1, a_2]\|_{q,\mu,r,\mu}$$

$$< C(t-\sigma)^{-\frac{1}{2}} \|\nabla_x^{m-1}[a_1, a_2]\|_{q,\mu,r,\mu}.$$
(3.3.76)

Assim,

$$(t-\sigma)^{\frac{1}{2}} \nabla_x^m e^{-(t-\sigma)L}[a_1, a_2] \in BC((\sigma, T); \dot{\mathcal{L}}_{q,\mu}^{\sigma} \times \dot{\mathcal{L}}_{r,\mu}).$$

Usando (3.3.75) e (3.3.76), obtemos

$$||e^{-(t-\sigma)L}[a_1, a_2]||_{\mathcal{H}} \le C \max_{i=1,\dots,m-1} ||\nabla_x^j[a_1, a_2]||_{q,\mu,r,\mu}.$$
(3.3.77)

Em vista de (3.3.71), (3.3.74) e (3.3.77), tomando $T-\sigma$ suficientemente pequeno, podemos aplicar um argumento de ponto fixo análogo ao do Teorema 3.2.1 e obter um ponto fixo $[\tilde{u}, \tilde{\theta}] \in \mathcal{H}$ para Φ_{σ} , o qual é uma solução da equação

$$[\tilde{u}, \tilde{\theta}] = e^{-(t-\sigma)L}[a_1, a_2] + B_{\sigma}([\tilde{u}, \tilde{\theta}], [\tilde{u}, \tilde{\theta}]) + T_{\sigma f}(\tilde{\theta}). \tag{3.3.78}$$

Note que a solução $[u, \theta]$ dada pelo Teorema 3.2.1 também satisfaz (3.3.78). Por unicidade de solução, segue que $[\tilde{u}, \tilde{\theta}] = [u, \theta]$ e então $[u, \theta] \in \mathcal{H}$, o que produz a desejada regularidade de $[u, \theta]$, para k = 0. O caso $k \neq 0$ segue analogamente.

3.3.6 Prova do Teorema **3.2.6**

Primeiramente provaremos a equivalência (3.2.5)-(3.2.6). Assuma (3.2.6) e relembre que

$$B([u,\theta],[v,\varphi]) = [B_1(u,v),B_2(u,\varphi)].$$

Subtraindo as equações integrais satisfeitas por $[u,\theta]$ e $[v,\varphi]$ e computando a norma $\|[\cdot,*]\|_{q,\mu,r,\mu}$, obtemos a seguinte desigualdade:

$$\left\| \begin{bmatrix} t^{\frac{\alpha}{2}}(u-v) \\ t^{\frac{\beta}{2}}(\theta-\varphi) \end{bmatrix} \right\|_{q,\mu,r,\mu} \leq \left\| e^{-tL} \begin{bmatrix} t^{\frac{\alpha}{2}}(u_{0}-v_{0}) \\ t^{\frac{\beta}{2}}(\theta_{0}-\varphi_{0}) \end{bmatrix} \right\|_{q,\mu,r,\mu} + \left\| \begin{bmatrix} t^{\frac{\alpha}{2}}B_{1}(u-v,u) \\ t^{\frac{\beta}{2}}B_{2}(u-v,\theta) \end{bmatrix} \right\|_{q,\mu,r,\mu}
+ \left\| \begin{bmatrix} t^{\frac{\alpha}{2}}B_{1}(v,u-v) \\ t^{\frac{\beta}{2}}B_{2}(v,\theta-\varphi) \end{bmatrix} \right\|_{q,\mu,r,\mu} + \left\| t^{\frac{\alpha}{2}}T_{f}(\theta-\varphi) \right\|_{q,\mu} + \left\| t^{\frac{\alpha}{2}}T_{f-w}(\varphi) \right\|_{q,\mu}
:= I_{0}(t) + I_{1}(t) + I_{2}(t) + I_{3}(t) + I_{4}(t).$$
(3.3.79)

Aplicando o Lema 3.3.1, a desigualdade de Hölder e fazendo a mudança de variável $s \to st$, estimamos I_1 e I_2 como

$$I_{1}(t) \leqslant Ct^{\frac{\alpha}{2}} \int_{0}^{t} (t-s)^{\frac{\alpha}{2}-1} s^{-\alpha} s^{\frac{\alpha}{2}} \|u(s) - v(s)\|_{q,\mu} ds \sup_{t>0} t^{\frac{\alpha}{2}} \|u(t)\|_{q,\mu}$$

$$+ Ct^{\frac{\beta}{2}} \int_{0}^{t} (t-s)^{\frac{\alpha}{2}-1} s^{-\frac{\beta+\alpha}{2}} s^{\frac{\alpha}{2}} \|u(s) - v(s)\|_{q,\mu} ds \sup_{t>0} t^{\frac{\beta}{2}} \|\theta(t)\|_{r,\mu}$$

$$\leq C \int_{0}^{1} (1-s)^{\frac{\alpha}{2}-1} s^{-\alpha} (ts)^{\frac{\alpha}{2}} \|u(ts) - v(ts)\|_{q,\mu} ds \sup_{t>0} t^{\frac{\alpha}{2}} \|u(t)\|_{q,\mu}$$

$$+ C \int_{0}^{1} (1-s)^{\frac{\alpha}{2}-1} s^{-\frac{\beta+\alpha}{2}} (ts)^{\frac{\alpha}{2}} \|u(ts) - v(ts)\|_{q,\mu} ds \sup_{t>0} t^{\frac{\beta}{2}} \|\theta(t)\|_{r,\mu}$$

$$(3.3.80)$$

e

$$I_{2}(t) \leq Ct^{\frac{\alpha}{2}} \int_{0}^{t} (t-s)^{\frac{\alpha}{2}-1} s^{-\alpha} s^{\frac{\alpha}{2}} \|u(s) - v(s)\|_{q,\mu} ds \sup_{t>0} t^{\frac{\alpha}{2}} \|v(t)\|_{q,\mu}$$

$$+ Ct^{\frac{\beta}{2}} \int_{0}^{t} (t-s)^{\frac{\alpha}{2}-1} s^{-\frac{\beta+\alpha}{2}} s^{\frac{\beta}{2}} \|\theta(s) - \varphi(s)\|_{r,\mu} ds \sup_{t>0} t^{\frac{\alpha}{2}} \|v(t)\|_{q,\mu}$$

$$\leq C \int_{0}^{1} (1-s)^{\frac{\alpha}{2}-1} s^{-\alpha} (ts)^{\frac{\alpha}{2}} \|u(ts) - v(ts)\|_{q,\mu} ds \sup_{t>0} t^{\frac{\alpha}{2}} \|v(t)\|_{q,\mu}$$

$$+ C \int_{0}^{1} (1-s)^{\frac{\alpha}{2}-1} s^{-\frac{\beta+\alpha}{2}} (ts)^{\frac{\beta}{2}} \|\theta(ts) - \varphi(ts)\|_{r,\mu} ds \sup_{t>0} t^{\frac{\alpha}{2}} \|v(t)\|_{q,\mu}. \tag{3.3.81}$$

Para os termos $I_3(t)$ e $I_4(t)$, temos que

$$I_{3}(t) \leq Ct^{\frac{\alpha}{2}} \int_{0}^{t} (t-s)^{\vartheta + \frac{\beta}{2} - \frac{\alpha}{2} - 1} s^{-\vartheta - \frac{\beta}{2}} s^{\frac{\beta}{2}} \|\theta(s) - \varphi(s)\|_{r,\mu} ds \sup_{t>0} t^{\vartheta} \|f(t)\|_{b,\mu}$$

$$\leq C \int_{0}^{1} (1-s)^{\vartheta + \frac{\beta}{2} - \frac{\alpha}{2} - 1} s^{-\vartheta - \frac{\beta}{2}} (ts)^{\frac{\beta}{2}} \|\theta(ts) - \varphi(ts)\|_{r,\mu} ds \sup_{t>0} t^{\vartheta} \|f(t)\|_{b,\mu}$$
(3.3.82)

e

$$I_{4}(t) \leq Ct^{\frac{\alpha}{2}} \int_{0}^{t} (t-s)^{\vartheta + \frac{\beta}{2} - \frac{\alpha}{2} - 1} s^{-\vartheta - \frac{\beta}{2}} s^{\vartheta} \| f(s) - w(s) \|_{b,\mu} ds \sup_{t>0} t^{\frac{\beta}{2}} \| \varphi(t) \|_{r,\mu}$$

$$\leq C \int_{0}^{1} (t-s)^{\vartheta + \frac{\beta}{2} - \frac{\alpha}{2} - 1} s^{-\vartheta - \frac{\beta}{2}} (ts)^{\vartheta} \| f(ts) - w(ts) \|_{b,\mu} ds \sup_{t>0} t^{\frac{\beta}{2}} \| \varphi(t) \|_{r,\mu}. \tag{3.3.83}$$

Sejam ζ_1, ε_1 e ζ_2, ε_2 como na prova do Teorema 3.2.1 e correspondendo às soluções $[u, \theta]$ e $[v, \varphi]$, respectivamente. Escolha $\varepsilon_1, \varepsilon_2$ suficientemente pequeno de forma que $\frac{4\varepsilon K}{1-\zeta}+\zeta<1$, onde

 $\varepsilon=\max\{\varepsilon_1,\varepsilon_2\},\,\zeta=\max\{\zeta_1,\zeta_2\}$ e K é como no Lema 3.3.3. Finalmente, relembremos que

$$\|[u,\theta]\|_{H_{q,r}} \le \frac{2\varepsilon_1}{1-\zeta_1} \le \frac{2\varepsilon}{1-\zeta} \ \mathbf{e} \ \|[v,\varphi]\|_{H_{q,r}} \le \frac{2\varepsilon_2}{1-\zeta_2} \le \frac{2\varepsilon}{1-\zeta}.$$
 (3.3.84)

Defina $\Omega(t)=t^{\frac{\alpha}{2}}\|u(t)-v(t)\|_{q,\mu}+t^{\frac{\beta}{2}}\|\theta(t)-\varphi(t)\|_{r,\mu}$. Precisamos mostrar que

$$\lim_{t \to \infty} \Omega(t) = 0. \tag{3.3.85}$$

Para isto, calcule o $\limsup_{t\to\infty}$ nas desigualdades (3.3.80)-(3.3.83), use (3.3.84) e depois aplique o teorema da convergência dominada para obter

$$\limsup_{t \to \infty} I_1(t) + \limsup_{t \to \infty} I_2(t) \le \frac{4\varepsilon K}{1 - \zeta} \limsup_{t \to \infty} \Omega(t)$$
(3.3.86)

e

$$\limsup_{t \to \infty} I_3(t) + \limsup_{t \to \infty} I_4(t) \leq \zeta \limsup_{t \to \infty} \Omega(t) + \frac{2\varepsilon K}{1 - \zeta} C \int_0^1 (1 - s)^{\vartheta + \frac{\beta}{2} - \frac{\alpha}{2} - 1} s^{-\vartheta - \frac{\beta}{2}} ds \limsup_{t \to \infty} t^{\vartheta} ||f(t) - w(t)||_{b,\mu}.$$
(3.3.87)

Calculando o $\limsup_{t\to\infty}$ em (3.3.79) e usando (3.3.86)-(3.3.87), obtemos

$$\limsup_{t \to \infty} \Omega(t) \leq \limsup_{t \to \infty} \left\| e^{-tL} \left[t^{\frac{\alpha}{2}} (u_0 - v_0) \right] \right\|_{q,\mu,r,\mu} + \frac{4\varepsilon K}{1 - \zeta} \limsup_{t \to \infty} \Omega(t) +
+ \zeta \limsup_{t \to \infty} \Omega(t) + C \int_0^1 (1 - s)^{\vartheta + \frac{\beta}{2} - \frac{\alpha}{2} - 1} s^{-\vartheta - \frac{\beta}{2}} ds \lim_{t \to \infty} t^{\vartheta} \| f(t) - w(t) \|_{b,\mu}.
= \left(\frac{4\varepsilon K}{1 - \zeta} + \zeta \right) \limsup_{t \to \infty} \Omega(t),$$
(3.3.88)

onde na última desigualdade, usamos (3.2.2) e a hipótese (3.2.6). Finalmente, a convergência (3.3.85) segue por (3.3.88), pois $\frac{4\varepsilon K}{1-\zeta}+\zeta<1$ e então

$$0 \le \left[1 - \left(\frac{4\varepsilon K}{1 - \zeta} + \zeta\right)\right] \limsup_{t \to \infty} \Omega(t) \le 0,$$

o que implica $\lim_{t\to\infty}\Omega(t)=\limsup_{t\to\infty}\Omega(t)=0.$

Na sequência mostraremos a recíproca da afirmação (3.2.6). Trabalhando como na prova de (3.3.79) e (3.3.88), obtemos

$$\lim \sup_{t \to \infty} \left\| e^{-tL} \left[t^{\frac{\alpha}{2}} (u_0 - v_0) \right] \right\|_{q,\mu,r,\mu} \le \lim \sup_{t \to \infty} \Omega(t) + \frac{4\varepsilon K}{1 - \zeta} \lim \sup_{t \to \infty} \Omega(t) + \zeta \lim \sup_{t \to \infty} \Omega(t) + C \int_0^1 (1 - s)^{\vartheta + \frac{\beta}{2} - \frac{\alpha}{2} - 1} s^{-\vartheta - \frac{\beta}{2}} ds \lim_{t \to \infty} t^{\vartheta} \|f(t) - w(t)\|_{b,\mu} = 0,$$

devido as hipóteses (3.2.6) e (3.2.2). A equivalência entre (3.2.3) e (3.2.4) pode ser obtida analogamente à prova acima. Os detalhes são deixados a cargo do leitor.

Falta mostrar a última afirmação do teorema. Para isto, basta mostrar o caso $[v_0, \varphi_0] \equiv 0$. Seja 1 < l < p, $\gamma_1 = \frac{n-\mu}{l} - \frac{n-\mu}{q}$ e $\gamma_2 = \frac{n-\mu}{l} - \frac{n-\mu}{r}$. Por hipótese, existe uma sequência $\{[u_{0,m}, \theta_{0,m}]\}_{m \in \mathbb{N}} \subset \dot{\mathcal{L}}_{l,\mu} \cap \dot{\mathcal{L}}_{p,\mu}^{\sigma} \times \dot{\mathcal{L}}_{l,\mu} \cap \dot{\mathcal{L}}_{p,\mu}$ tal que $[u_{0,m}, \theta_{0,m}] \to [u_0, \theta_0]$ em $\dot{\mathcal{L}}_{p,\mu}^{\sigma} \times \dot{\mathcal{L}}_{p,\mu}$. Usando a estimativa (3.3.1) com |k| = 0, obtemos

$$\begin{split} \left\| e^{-tL} \begin{bmatrix} t^{\frac{\alpha}{2}} u_{0,m} \\ t^{\frac{\beta}{2}} \theta_{0,m} \end{bmatrix} \right\|_{q,\mu,r,\mu} &\leq C \lim_{m \to \infty} \left\| \begin{bmatrix} t^{\frac{\alpha}{2}} t^{-\frac{\gamma_1}{2}} u_{0,m} \\ t^{\frac{\beta}{2}} t^{-\frac{\gamma_2}{2}} \theta_{0,m} \end{bmatrix} \right\|_{l,\mu,l,\mu} \\ &\leq C t^{-(\frac{n-\mu}{2l} - \frac{1}{2})} \left\| \begin{bmatrix} u_{0,m} \\ \theta_{0,m} \end{bmatrix} \right\|_{l,\mu,l,\mu} \to 0, \text{ quando } t \to \infty, \end{split} \tag{3.3.89}$$

pois $p=n-\mu, \, l < p$ e $[u_{0,m}, \theta_{0,m}] \in (\dot{\mathcal{L}}_{l,\mu})^{n+1}$. Usando (3.3.89) e (3.3.1), segue que

$$\lim_{t \to \infty} \left\| e^{-tL} \begin{bmatrix} t^{\frac{\alpha}{2}} u_0 \\ t^{\frac{\beta}{2}} \theta_0 \end{bmatrix} \right\|_{q,\mu,r,\mu} \le \lim_{t \to \infty} \left(C \left\| e^{-tL} \begin{bmatrix} (u_{0,m} - u_0) \\ (\theta_{0,m} - \theta_0) \end{bmatrix} \right\|_{p,\mu,p,\mu} + \left\| e^{-tL} \begin{bmatrix} t^{\frac{\alpha}{2}} u_{0,m} \\ t^{\frac{\beta}{2}} \theta_{0,m} \end{bmatrix} \right\|_{q,\mu,r,\mu} \right) \le C \left\| \begin{bmatrix} (u_{0,m} - u_0) \\ (\theta_{0,m} - \theta_0) \end{bmatrix} \right\|_{p,\mu,p,\mu} + \lim_{t \to \infty} \left\| e^{-tL} \begin{bmatrix} t^{\frac{\alpha}{2}} u_{0,m} \\ t^{\frac{\beta}{2}} \theta_{0,m} \end{bmatrix} \right\|_{q,\mu,r,\mu}$$

$$= C \left\| \begin{bmatrix} (u_{0,m} - u_0) \\ (\theta_{0,m} - \theta_0) \end{bmatrix} \right\|_{p,\mu,p,\mu} . \tag{3.3.90}$$

62

Fazendo $m \to \infty$ em (3.3.90), obtemos

$$\lim \sup_{t \to \infty} \left\| e^{-tL} \begin{bmatrix} t^{\frac{\alpha}{2}} u_0 \\ t^{\frac{\beta}{2}} \theta_0 \end{bmatrix} \right\|_{q,\mu,r,\mu} = 0, \tag{3.3.91}$$

o qual é (3.2.6) com $[v_0, \varphi_0] \equiv 0$. Além disso, note que na prova de (3.3.89) e (3.3.90) podemos tomar q = r = p e $\alpha = \beta = 0$. Neste caso, fazendo $m \to \infty$ em (3.3.90), obtemos (3.2.4).

Capítulo 4

As equações de Navier-Stokes em \mathbb{R}^n_+ em espaços de Morrey

Neste capítulo estudaremos a existência e o comportamento assintótico de soluções globais no tempo para as equações de Navier-Stokes em \mathbb{R}^n_+ (1.2.1)-(1.2.4) em espaços de Morrey.

Este capítulo está dividido em 5 seções. Na primeira seção 4.1, relembramos e provamos (por uma questão de completude) a fórmula de Ukai [52] para o problema de Stokes homogêneo em \mathbb{R}^n_+ , e mostramos que ela fornece uma fórmula explicita para o semigrupo de Stokes. Novamente por completude, na seção 4.2, relembramos e provamos uma fórmula integral obtida em [11] para o problema de Stokes (linear) não-homogêneo em \mathbb{R}^n_+ . Ainda nesta seção, apresentamos a formulação integral para as equações de Navier-Stokes (1.2.1)-(1.2.4). Na seção 4.3, fixamos algumas notações e definimos os espaços funcionais envolvendo as variáveis t e x. Ainda nesta mesma seção, apresentamos a noção de solução branda e de solução auto-similar em \mathbb{R}^n_+ . Na seção 4.4 apresentamos nossos resultados de existência, auto-similaridade e comportamento assintóticos para (1.2.1)-(1.2.4). Na última seção, seção 4.5, encontram-se as provas dos teoremas e corolários. Como fizemos no capítulo anterior, dividimos a seção em três partes, a saber, as subseções 4.5.1, 4.5.2 e 4.5.3. Na subseção 4.5.1, provamos as estimativas dos operadores lineares, e particularmente, as estimativas para o semigrupo do calor E(t) em \mathbb{R}^n_+ em espaços de Morrey. Na subseção 4.5.2, provamos as estimativas dos operadores não-lineares, e finalmente na subseção 4.5.3, encontram-se às demonstrações dos teoremas e corolários deste capítulo.

4.1 O problema de Stokes homogêneo em \mathbb{R}^n_+

Nesta seção relembramos uma fórmula devido a Ukai [52] para a solução do seguinte problema de valor inicial no semi-espaço \mathbb{R}^n_+ :

$$\partial_t u - \Delta u + \nabla p = 0, \text{ em } \mathbb{R}^n_+ \times (0, \infty)$$
 (4.1.1)

$$\nabla \cdot u = 0, \text{ em } \mathbb{R}^n_+ \times (0, \infty)$$
 (4.1.2)

$$\gamma u = a(x',t), \text{ em } \partial \mathbb{R}^n_+ \times (0,\infty)$$
 (4.1.3)

$$u|_{t=0} = u_0(x), \nabla \cdot u_0 = 0, \text{ em } \mathbb{R}^n_+$$
 (4.1.4)

onde $u: \mathbb{R}^n_+ \times (0, \infty) \to \mathbb{R}^n$ é um campo vetorial, γ é o operador definido em (2.2.9) e $\gamma u_0 = 0$. Esta fórmula será útil para obter uma expressão explícita para o semigrupo de Stokes no semiespaço (veja Corolário 4.1.4).

Antes de apresentarmos a fórmula de Ukai [52], considere os seguintes operadores V_1, V_2 : $\mathcal{S}(\mathbb{R}^n_+) \to \mathcal{S}'(\mathbb{R}^n_+)$ definidos por:

$$\widehat{V_1 u} = -\frac{i\xi'}{|\xi'|} \cdot \widehat{u}' + \widehat{u}_n \tag{4.1.5}$$

$$\widehat{V_2 u} = \widehat{u}' + \frac{i\xi'}{|\xi'|}\widehat{u}_n. \tag{4.1.6}$$

Denote $R' = (R_1, \dots, R_{n-1})$ e $S = (S_1, \dots, S_{n-1})$, onde R_j e S_j são os operadores definidos em (2.3.9) e (2.3.16), respectivamente. Para simplificar as notações, convencionaremos que o símbolo de R' e S são dados respectivamente por

$$m(R') = \frac{i\xi'}{|\xi|} e m(S) = \frac{i\xi'}{|\xi'|}.$$
 (4.1.7)

Defina o operador

$$Uf = rR' \cdot S(R' \cdot S + R_n)ef, \tag{4.1.8}$$

onde r e o operador definido em (2.2.17) e e é dado por

$$ef = \begin{cases} f, & x_n > 0 \\ 0, & x_n < 0. \end{cases}$$
 (4.1.9)

Note que, com as convenções acima, podemos escrever

$$V_1 u = -S \cdot u' + u_n (4.1.10)$$

$$V_2 u = u' + S u_n. (4.1.11)$$

Por fim, seja D um operador com símbolo $m(D)=e^{-|\xi'|x_n}$ e $N=-\frac{D}{|\nabla'|}$, onde $|\nabla'|$ é o operador com símbolo $m(|\nabla'|)=|\xi'|$. Relembre os operadores E(t) e F definidos em (2.2.15) e (2.2.16), respectivamente.

Proposição 4.1.1 (Ukai [52]). A solução para o PVIF (4.1.1)-(4.1.4) pode ser expressada como

$$u_n = Da_n + U(E(t)V_1u_0 + FV_1a), \quad u' = E(t)V_2u_0 + FV_2a - Su_n$$
 (4.1.12)

$$p = -D\gamma \partial_n E(t) V_1 u_0 + |\nabla'| DV_1 a - D\gamma F V_1 a - N[(\partial_t a)_n]. \tag{4.1.13}$$

Demonstração: Dividimos a demonstração em três passos. No primeiro, usando que u e p satisfazem o sistema (4.1.1)-(4.1.4), obtemos uma fórmula para a n-éssima coordenada do campo u. No segundo passo obtemos uma fórmula para u', e no último, determinamos a pressão.

1º passo:

Tomando o divergente na equação (4.1.1) e usando a condição (4.1.2), obtemos a seguinte equação na variável de Fourier ξ' :

$$(\partial_n^2 - |\xi'|^2)\widehat{p}(\xi', x_n) = 0, (4.1.14)$$

onde $^{\wedge}$ denota a transformada de Fourier em ξ' . Usando a condição $b=\gamma \widehat{p}$, a solução da equação (4.1.14) é dada por

$$\hat{p} = e^{-|\xi'|x_n} \gamma \hat{p}.$$

Portanto, $\partial_n \hat{p} = -|\xi'|\hat{p}$, isto é,

$$(\partial_n + |\xi'|)\hat{p} = 0. \tag{4.1.15}$$

Usaremos a relação (4.1.15) para obter a equação (4.1.18). Para isto, defina

$$z = (\partial_n + |\nabla'|)u_n. \tag{4.1.16}$$

Aplicando o operador $(\partial_n + |\nabla'|)$ a *n*-ésima equação de (4.1.1), obtemos

$$z_t - \Delta z + (\partial_n + |\nabla'|)\partial_n p = 0. \tag{4.1.17}$$

Usando a relação (4.1.15) note que o operador $\partial_n + |\nabla'|$ elimina a derivada normal da pressão p; de fato

$$m(\partial_n + |\nabla'|)\widehat{\partial_n p}(\xi', x_n) = \partial_n(\partial_n + |\xi'|)\widehat{p}(\xi', x_n) = 0,$$

onde $m(\partial_n + |\nabla'|)$ é o símbolo do operador multiplicador de Fourier $\partial_n + |\nabla'|$ (veja Definição 2.3.7). Assim, a equação (4.1.17) é reduzida a

$$z_t - \Delta z = 0. \tag{4.1.18}$$

Na sequência, vamos mostrar que $\gamma z = |\nabla'| V_1 a$. A demonstração de que $z|_{t=0} = |\nabla'| V_1 u_0$ é semelhante e deixamos a cargo do leitor.

Expressando a condição (4.1.2) em variáveis de Fourier, temos que $i\xi' \cdot \widehat{u}' + \partial_n \hat{u}_n = 0$. Agora, pela condição (4.1.3) e a definição do operador V_1 (ver (4.1.5)) segue que

$$\widehat{\gamma z} = (\partial_n + |\xi'|) \hat{a}_n$$

$$= |\xi'| \left[-\frac{i\xi'}{|\xi'|} \cdot \hat{a}' + \hat{a}_n \right]$$

$$= |\xi'| \widehat{V_1 \gamma u} = |\xi'| \widehat{V_1 a}.$$

Adicionando a condição de fronteira $\gamma z = |\nabla'| V_1 a$ em $\partial \mathbb{R}^n_+$ e a condição inicial $z|_{t=0} = |\nabla'| V_1 u_0$ na equação (4.1.18), obtemos o seguinte problema do calor no semi-espaço:

$$\begin{cases} z_t - \Delta z = 0 & \text{em} \quad \mathbb{R}^n_+ \times \{t > 0\} \\ \gamma z = |\nabla'| V_1 a \\ z|_{t=0} = |\nabla'| V_1 u_0. \end{cases}$$

$$(4.1.19)$$

Como vimos em (2.2.14),

$$z = E(t)|\nabla'|V_1 u_0 + F|\nabla'|V_1 a \tag{4.1.20}$$

é a solução do problema (4.1.19). Sendo conhecida a expressão de z, usamos a condição de

fronteira na n-ésima coordenada de (4.1.3) para obter a equação diferencial

$$\hat{z} = (\partial_n + |\xi'|)\hat{u}_n, \operatorname{com}\widehat{\gamma u_n} = \hat{a}_n. \tag{4.1.21}$$

Pelo método da variação de parámetros, temos que

$$\hat{u}_n = m(D)\hat{a}_n + \int_0^{x_n} e^{-|\xi'|(x_n - y_n)} \hat{z}(\xi', y_n, t) dy_n.$$
(4.1.22)

Observando que $|\nabla'|$ comuta com E(t) e F, e substituindo (4.1.20) em (4.1.22), obtemos

$$\hat{u}_n = m(D)\hat{a}_n + |\xi'| \int_0^{x_n} e^{-|\xi'|(x_n - y_n)} (E(t)V_1 u_0 + FV_1 a)^{\hat{}}(\xi', y_n, t) dy_n. \tag{4.1.23}$$

Relembre o operador U (ver (4.1.8)) e defina o operador \tilde{U} como

$$\widehat{\tilde{U}}f(\xi',x_n) = |\xi'| \int_0^{x_n} e^{-|\xi'|(x_n - y_n)} f(\xi',y_n) dy_n.$$
(4.1.24)

Note que para concluir o primeiro passo precisamos mostrar que $U = \tilde{U}$. De fato, substituindo $f(\xi', y_n)$ por $(\widehat{E(t)V_1}u_0 + \widehat{FV_1}a)(\xi', y_n, t)$ em (4.1.24) e usando que $U = \tilde{U}$, por (4.1.23) segue que

$$\widehat{u}_n = m(D)\widehat{a}_n + m(U)(\widehat{E(t)V_1}u_0 + \widehat{FV_1}a). \tag{4.1.25}$$

Concluímos este passo com um lema, o qual mostra que $U=\tilde{U}.$

Lema 4.1.2. Os operadores U e \tilde{U} coincidem.

Prova: Seja $h:\mathbb{R}\to\mathbb{R}$ tal que $h(s)=|\xi'|e^{-|\xi'|s}$ para s>0, e h(s)=0 para s<0. Observe que

$$\widehat{\widetilde{U}}f = r \int_{\mathbb{D}} h(x_n - y_n) ef(y_n) dy_n,$$

e assim o símbolo de \tilde{U} é dado por $m(\tilde{U})=\widehat{h}(\xi_n)$. Para mostrar que os operadores U e \tilde{U} coincidem, provaremos que eles têm os mesmos símbolos. De fato, em vista de (4.1.7) e (4.1.8),

o símbolo de U é dado por $m(U) = |\xi'|(i\xi_n + |\xi'|)^{-1}$, pois

$$m(U) = \frac{i\xi'}{|\xi|} \cdot \frac{i\xi'}{|\xi'|} \left[\frac{i\xi'}{|\xi|} \cdot \frac{i\xi'}{|\xi'|} + \frac{i\xi_n}{|\xi|} \right]$$
$$= |\xi'| \left[\frac{|\xi'| - i\xi_n}{|\xi|^2} \right]$$
$$= |\xi'| (i\xi_n + |\xi'|)^{-1}.$$

Logo,

$$m(\tilde{U}) = \hat{h}(\xi_n) = |\xi'| \int_0^\infty e^{-(i\xi_n + |\xi'|)s} ds$$

$$= |\xi'| (i\xi_n + |\xi'|)^{-1} \int_0^\infty e^{-u} du$$

$$= |\xi'| (i\xi_n + |\xi'|)^{-1}$$

$$= m(U).$$

2º passo:

Para obter a expressão para componente $u'=(u_1,\cdots,u_{n-1})$ do campo u, relembre o operador $V_2=u'+Su_n$, onde $S=\frac{\nabla'}{|\nabla'|}$ (veja (4.1.7)) e seja $w=V_2u$. Aplicando V_2 na equação (4.1.1) e usando (4.1.15), obtemos

$$w_{t} - \Delta w = -V_{2} \nabla p$$

$$= -(\nabla' p + S \partial_{n} p)$$

$$= -\frac{\nabla'}{|\nabla'|} (\partial_{n} + |\nabla'|) p$$

$$= -S(\partial_{n} + |\nabla'|) p = 0. \tag{4.1.26}$$

Adicionando em (4.1.26) a condição de fronteira $\gamma w = V_2 a$ e a condição inicial $w|_{t=0} = V_2 u_0$, obtemos o seguinte o problema do calor no semi-espaço:

$$\begin{cases} w_t - \Delta w = 0 \\ \gamma w = V_2 a \\ w|_{t=0} = V_2 u_0. \end{cases}$$

$$(4.1.27)$$

Portanto, a solução do problema (4.1.27) é dada por $w = E(t)V_2u_0 + FV_2a$. Desde que $w = u' + Su_n$, obtemos

$$u' = E(t)V_2u_0 + FV_2a - Su_n.$$

3º passo

Falta apenas obter a expressão para a pressão p. Considere a n-ésima equação de (4.1.1) e use a expressão de u_n , para escrever

$$\partial_n p = -(\partial_t - \Delta)u_n = -(\partial_t - \Delta)Da_n - (\partial_t - \Delta)U(E(t)V_1u_0 + FV_1a).$$

Note que $\Delta Da_n = 0$, e assim

$$\partial_n p = -D[(\partial_t a)_n] - (\partial_t - \Delta)U(E(t)V_1 u_0 + FV_1 a). \tag{4.1.28}$$

Na sequência, vamos mostrar que

$$(\partial_t - \Delta)Uf = |\nabla'|\{|\nabla'|D\gamma f - D\gamma \partial_n f\} + U(\partial_t - \Delta)f. \tag{4.1.29}$$

Para isto, primeiro note que

$$\frac{\partial}{\partial x_n} e^{|\xi'|(x_n - y_n)} = -\frac{\partial}{\partial y_n} e^{|\xi'|(x_n - y_n)}.$$

Usando o Lema 4.1.2 e integração por partes, obtemos

$$\partial_{n}Uf = |\xi'| \partial_{x_{n}} \int_{0}^{x_{n}} e^{-|\xi'|(x_{n} - y_{n})} f(y_{n}) dy_{n}
= |\xi'| \int_{0}^{x_{n}} \partial_{x_{n}} e^{-|\xi'|(x_{n} - y_{n})} f(y_{n}) dy_{n} + |\xi'| \int_{0}^{x_{n}} e^{-|\xi'|(x_{n} - y_{n})} \partial_{x_{n}} f(y_{n}) dy_{n}
= -|\xi'| \int_{0}^{x_{n}} f(y_{n}) \partial_{y_{n}} e^{-|\xi'|(x_{n} - y_{n})} dy_{n} + U \partial_{n} f
= |\xi'| \left\{ -\left[f(y_{n}) e^{-|\xi'|(x_{n} - y_{n})} \right]_{y_{n} = 0}^{y_{n} = x_{n}} + f(x_{n}) \right\} + U \partial_{n} f
= |\xi'| e^{-|\xi'|x_{n}} \gamma f + U \partial_{n} f.$$
(4.1.30)

Calculando ∂_n em (4.1.30), segue que

$$\partial_n^2 U f = \partial_n \{ |\xi'| e^{-|\xi'|x_n} \gamma f + U \partial_n f \}$$

$$= |\xi'| \partial_n e^{-|\xi'|x_n} \gamma f + |\xi'| e^{-|\xi'|x_n} \gamma \partial_n f + \partial_n U \partial_n f$$

$$= -|\xi'|^2 e^{-|\xi'|x_n} \gamma f + |\xi'| e^{-|\xi'|x_n} \gamma \partial_n f + U \partial_n^2 f$$

$$= -|\xi'| \{ |\xi'| D \gamma f - D \gamma \partial_n f \} + U \partial_n^2 f. \tag{4.1.31}$$

Como $|\nabla'|U = U|\nabla'|$ e $\partial_t U = U\partial_t$, usando (4.1.31) temos que

$$(\partial_t - \Delta)Uf = (\partial_t - \Delta')Uf + \partial_n^2 Uf \tag{4.1.32}$$

$$= |\nabla'|\{|\nabla'|D\gamma f - D\gamma \partial_n f\} + U(\partial_t - \Delta)f, \tag{4.1.33}$$

onde $\Delta' = \sum_{i=1}^{n-1} \partial_i^2$. Substituindo f por $E(t)V_1u_0 + FV_1a$ na equação (4.1.29) e depois substituindo o resultado em (4.1.28), obtemos que

$$\partial_{n}p = -D[(\partial_{t}a)_{n}] - |\nabla'|\{|\nabla'|D\gamma - D\gamma\partial_{n}\}(E(t)V_{1}u_{0} + FV_{1}a) + U(\partial_{t} - \Delta)(E(t)V_{1}u_{0} + FV_{1}a)$$

$$= -D[(\partial_{t}a)_{n}] - |\nabla'|\{|\nabla'|D\gamma - D\gamma\partial_{n}\}(E(t)V_{1}u_{0} + FV_{1}a)$$

$$= -D[(\partial_{t}a)_{n}] - |\nabla'|\{|\nabla'|D\gamma FV_{1}a - D\gamma\partial_{n}FV_{1}a\} + |\nabla'|D\gamma\partial_{n}E(t)V_{1}u_{0}.$$
(4.1.35)

Relembrando que $\partial_n p = -|\nabla'|p$ (veja (4.1.15)), obtemos

$$p = -N[(\partial_t a)_n] + |\nabla'| D\gamma F V_1 a - D\gamma \partial_n V_1 a - D\gamma \partial_n E(t) V_1 u_0,$$

o que conclui a demonstração.

Observação 4.1.3. Tomando em (4.1.12) $\gamma u = a = 0$ e usando a continuidade de E(t) em $L^p(\mathbb{R}^n_+)$, obtemos que

$$u(t) \to u_0 \text{ em } L^p(\mathbb{R}^n_+), \text{ quando } t \to 0^+.$$
 (4.1.36)

De fato, é fácil ver que

$$u(t) \to P_0 u_0 \text{ em } L^p(\mathbb{R}^n_+), \text{ quando } t \to 0^+,$$
 (4.1.37)

onde P_0 é o operador definido por

$$(P_0 u_0)' = V_2 u_0 - SUV_1 u_0 \quad e \quad (P_0 u_0)_n = UV_1 u_0. \tag{4.1.38}$$

Assim, precisamos mostrar que

$$P_0 u_0 = u_0. (4.1.39)$$

Usando a condição $\nabla \cdot u_0 = 0$, segue que $\widehat{\nabla \cdot u_0} = i \xi' \cdot \widehat{u_0}' + \partial_n (\widehat{u_0})_n = 0$. Relembre a definição do operador V_1 e note que

$$\widehat{V_1 u_0} = -\frac{i\xi'}{|\xi'|} \cdot \widehat{u_0}' + (\widehat{u_0})_n
= |\xi'|^{-1} (\partial_n + |\xi'|) (\widehat{u_0})_n.$$
(4.1.40)

Como o símbolo do operador U é dado por $m(U) = |\xi'|(\partial_n + |\xi'|)^{-1}$, então por (4.1.40) e (4.1.38), temos

$$\widehat{(P_0u_0)}_n = m(U)|\xi'|^{-1}(\partial_n + |\xi'|)(\widehat{u_0})_n = (\widehat{u_0})_n$$

e

$$\widehat{(P_0 u_0)'} = \widehat{V_2 u_0} - \widehat{S(P_0 u_0)_n}
= \widehat{u_0'} + \frac{i\xi'}{|\xi'|} (\widehat{u_0})_n - \frac{i\xi'}{|\xi'|} (\widehat{u_0})_n
= \widehat{u_0'}.$$

Na sequência, vamos provar que a fórmula (4.1.12) define um C_0 -semigrupo em $L^p(\mathbb{R}^n_+)$, onde 1 .

Corolário 4.1.4. Assuma que $1 e <math>u_0 \in L^p(\mathbb{R}^n_+)$ satisfaz $\nabla \cdot u_0 = 0$ e $\gamma u_0 = 0$. Então o campo u dado pela fórmula (4.1.12) coincide com $e^{-tA}u_0$, onde A é o operador de Stokes e e^{-tA} é o semigrupo de Stokes no semi-espaço \mathbb{R}^n_+ .

Demonstração:

Sabemos que o operador de Stokes gera um C_0 -semigrupo em $L^p(\mathbb{R}^n_+)$ (veja e.g. [17]). Se mostrarmos que a fórmula (4.1.12) define um C_0 -semigrupo em $L^p(\mathbb{R}^n_+)$ para o problema de

Stokes

$$\begin{array}{rcl} \partial_t u - \Delta u + \nabla p & = & 0, \text{ em } \mathbb{R}^n_+ \times (0, \infty) \\ \\ \nabla \cdot u & = & 0, \text{ em } \mathbb{R}^n_+ \times (0, \infty) \\ \\ \gamma u & = & 0, \text{ em } \partial \mathbb{R}^n_+ \times (0, \infty) \\ \\ u|_{t=0} & = & u_0, \ \nabla \cdot u_0 = 0, \text{ em } \mathbb{R}^n_+ \\ \\ \gamma u_0 & = & 0, \text{ em } \partial \mathbb{R}^n_+, \end{array}$$

então por unicidade concluímos que eles coincidem, pois têm o mesmo gerador infinitesimal.

Para isto, defina a família de operadores $\{\mathfrak{S}(t)\}_{t>0}$ por

$$\mathfrak{S}(t)u_0 := (E(t)V_2u_0 - Su_n, u_n), \text{ onde } u_n = UE(t)V_1u_0.$$
 (4.1.41)

Queremos mostrar que $\mathfrak{S}(t)$ é um semigrupo fortemente contínuo em $L^p(\mathbb{R}^n_+)$, isto é,

(i)
$$\mathfrak{S}(t)\mathfrak{S}(s)u_0 = \mathfrak{S}(t+s)u_0$$

(ii)
$$\mathfrak{S}(0) = I$$

(iii)
$$\mathfrak{S}(t)u_0 \to u_0$$
 em $L^p(\mathbb{R}^n_+)$, quando $t \to 0^+$.

Desde que E(0) = I, então $\mathfrak{S}(0) = P_0 u_0 = u_0$, pois $\nabla \cdot u_0 = 0$. O item (iii) segue direto de (4.1.36). Para mostrar o item (i), primeiro consideramos a n-ésima coordenada de (4.1.41). Usando (4.1.5), calculamos:

$$(\mathfrak{S}(t)\mathfrak{S}(s)u_{0})_{n} = UE(t)V_{1}\mathfrak{S}(s)u_{0}$$

$$= UE(t)[-S \cdot \mathfrak{S}'(s)u_{0} + (\mathfrak{S}(s)u_{0})_{n}]$$

$$= UE(t)[-S \cdot \mathfrak{S}'(s)u_{0}] + UE(t)(\mathfrak{S}(s)u_{0})_{n}$$

$$= UE(t)[-S \cdot \mathfrak{S}'(s)u_{0}] + UE(t)UE(s)V_{1}u_{0}$$

$$= UE(t)[-S \cdot \mathfrak{S}'(s)u_{0}] + U^{2}E(t+s)V_{1}u_{0}$$

$$= U[-S \cdot (E(t+s)V_{2}u_{0} - SUE(t+s)V_{1}u_{0})] + U^{2}E(t+s)V_{1}u_{0}$$

$$= U[-S \cdot (E(t+s)V_{2}u_{0} - SUE(t+s)V_{1}u_{0})] + UE(t+s)V_{1}u_{0}]$$

$$= UV_{1}\mathfrak{S}(t+s)u_{0}$$

$$(4.1.42)$$

Escreva

$$\mathfrak{S}(t)\mathfrak{S}(s)u_0 = ((\mathfrak{S}(t)\mathfrak{S}(s)u_0)', (\mathfrak{S}(t)\mathfrak{S}(s)u_0)_n).$$

Logo,

$$(\mathfrak{S}(t)\mathfrak{S}(s)u_0)' = E(t)V_2\mathfrak{S}(s)u_0 - S(\mathfrak{S}(t)\mathfrak{S}(s)u_0)_n \tag{4.1.43}$$

Agora, observe (pela definição de V_2 , veja (4.1.6)) que o termo $E(t)V_2\mathfrak{S}(s)u_0$ satisfaz

$$E(t)V_{2}\mathfrak{S}(s)u_{0} = E(t)[(\mathfrak{S}(s)u_{0})' + S(\mathfrak{S}(s)u_{0})_{n}]$$

$$= E(t)[E(s)V_{2}u_{0} - SUE(s)V_{1}u_{0} + SUE(s)V_{1}u_{0}]$$

$$= [E(t+s)V_{2}u_{0} - SUE(t+s)V_{1}u_{0} + SUE(t+s)V_{1}u_{0}]$$

$$= (\mathfrak{S}(t+s)u_{0})' + S(\mathfrak{S}(t+s)u_{0})$$

$$= V_{2}\mathfrak{S}(t+s)u_{0}$$
(4.1.44)

e então, por (4.1.42) e (4.1.44), temos que

$$\mathfrak{S}(t)\mathfrak{S}(s)u_0 = (V_2 - SUV_1, UV_1)\mathfrak{S}(t+s)u_0$$
$$= P_0\mathfrak{S}(t+s)u_0$$

Desde que $\nabla \cdot \mathfrak{S}(t+s)u_0 = 0$, segue que $P_0\mathfrak{S}(t+s)u_0 = \mathfrak{S}(t+s)u_0$.

4.2 O problema de Stokes não-homogêneo em \mathbb{R}^n_+

O problema de Stokes não-homogêneo em \mathbb{R}^n_+ é dado por

$$\partial_t u - \Delta u = f - \nabla p, \text{ em } \mathbb{R}^n_+ \times (0, \infty)$$
 (4.2.1)

$$\nabla \cdot u = 0, \text{ em } \mathbb{R}^n_+ \times (0, \infty) \tag{4.2.2}$$

$$\gamma u = 0, \text{ em } \partial \mathbb{R}^n_+ \times (0, \infty) \tag{4.2.3}$$

$$\gamma f = 0, \text{ em } \partial \mathbb{R}^n_+ \times [0, \infty)$$
 (4.2.4)

$$u|_{t=0} = u_0(x), \nabla \cdot u_0 = 0, \text{ em } \mathbb{R}^n_+.$$
 (4.2.5)

O objetivo desta seção é apresentar uma fórmulação integral para o problema (4.2.1)-(4.2.5), a qual é devida a Cannone, Planchon e Schonbek [11]. A demonstração faz uso de alguns argumentos similares aos da prova da Proposição 4.1.1.

Proposição 4.2.1 (Cannone, Planchon, Schonbek [11]). Assuma que $n \geq 3$ e f suave. Se u é uma solução clássica do problema (4.2.1)-(4.2.5), então

$$u_n = UE(t)V_1u_0 + U\int_0^t E(t-s)\tilde{N}fds$$
 (4.2.6)

$$u' = E(t)V_2u_0 - \int_0^t E(t-s)S\tilde{M}(f)ds - Su_n, \tag{4.2.7}$$

onde \tilde{N} é o operador

$$\tilde{N}f = -(R_n^2 + R_n \frac{|\nabla'|}{|\nabla|})(S_1 \tilde{e}(f_1) + \dots + S_{n-1} \tilde{e}(f_{n-1})) + (-R_n^2 + R_n \frac{|\nabla'|}{|\nabla|})\tilde{e}(f_n) + f_n, \quad (4.2.8)$$

 $e \tilde{M} \acute{e} o operador$

$$\tilde{M}(f) = (R_n^2 + R_n \frac{|\nabla'|}{|\nabla|}) \tilde{e}(\nabla \cdot f).$$

Demonstração: Aplicando o divergente na equação (4.2.1) e usando a condição (4.2.2), obtemos

$$\Delta p = \nabla \cdot f \text{ em } \mathbb{R}^n_+. \tag{4.2.9}$$

Portanto, assumindo que $\gamma p = b(x')$, obtemos

$$p = Db + \int_{\mathbb{R}^n_+} \Phi(x - y)\tilde{e}(\nabla \cdot f)(y)dy, \tag{4.2.10}$$

onde Φ é a solução fundamental para equação de Laplace em \mathbb{R}^n . Definindo $z = (\partial_n + |\nabla'|)u_n$ e seguindo a mesma estratégia do 1º passo na demonstração da Proposição 4.1.1, obtemos o seguinte problema não-homogêneo do calor no semi-espaço:

$$\begin{cases} z_{t} - \Delta z = (\partial_{n} + |\nabla'|) f^{n} - (\partial_{n} + |\nabla'|) \partial_{n} p & \text{em } \mathbb{R}^{n}_{+} \times (0, \infty) \\ \gamma z = 0 & \text{em } \partial \mathbb{R}^{n}_{+} \times (0, \infty) \\ z|_{t=0} = |\nabla'| V_{1} u_{0} & \text{em } \mathbb{R}^{n}_{+}. \end{cases}$$

$$(4.2.11)$$

Denote

$$\mathcal{K}(f,p) = (\partial_n + |\nabla'|)f^n - (\partial_n + |\nabla'|)\partial_n p. \tag{4.2.12}$$

Na sequência, vamos mostrar que

$$\mathcal{K}(f,p) = |\nabla'|\tilde{N}(f),\tag{4.2.13}$$

onde \tilde{N} é o operador (4.2.8). Para isto, primeiro relembre a equação (4.1.15) e o símbolo $m(D)=e^{-|\xi'|x_n}$ do operador D, e note que $(\partial_n+|\xi'|)m(D)=0$. Portanto, escrevendo (4.2.10) na variável de Fourier ξ' , temos que

$$\widehat{p} = m(D)\widehat{b} + \frac{(\partial_n + |\xi'|)}{|\xi|^2} \widehat{e}(\widehat{\nabla \cdot f}),$$

e então

$$(\partial_{n} + |\xi'|)\partial_{n}\widehat{p} = \partial_{n}(\partial_{n} + |\xi'|)m(D)\widehat{b} + \partial_{n}(\partial_{n} + |\xi'|)|\xi|^{-2}\widehat{e}(\widehat{\nabla \cdot f})$$

$$= \partial_{n}\frac{\partial_{n} + |\xi'|}{|\xi|^{2}}\widehat{e}(\widehat{\nabla \cdot f}). \tag{4.2.14}$$

Relembre o operador extensão \tilde{e} (veja (2.2.18)) e note que $\partial_n \tilde{e}(f_n) = \tilde{e}(\partial_n f_n)$. Logo,

$$\tilde{e}(\nabla \cdot f) = \sum_{j=1}^{n-1} \partial_j \tilde{e}(f_j) + \partial_n \tilde{e}(f_n). \tag{4.2.15}$$

Substituindo (4.2.15) em (4.2.14) e usando (4.2.12), obtemos

$$\widehat{\mathcal{K}(f,p)} = (\partial_n + |\xi'|)\widehat{f}_n - \sum_{j=1}^{n-1} \partial_n \frac{\partial_n + |\xi'|}{|\xi|^2} \widehat{\partial_j \widetilde{e}(f_j)} - \partial_n \frac{\partial_n + |\xi'|}{|\xi|^2} \partial_n \widehat{\widetilde{e}(f_n)}. \quad (4.2.16)$$

Note também que

$$\partial_n \frac{\partial_n + |\xi'|}{|\xi|^2} = \partial_n \frac{\partial_n + |\xi'|}{|\xi|^2} + \frac{|\xi'|^2}{|\xi|^2} - \frac{|\xi'|^2}{|\xi|^2} = \frac{\partial_n^2 + |\xi'|^2}{|\xi|^2} + \frac{\partial_n |\xi'| - |\xi'|^2}{|\xi|^2}$$
$$= 1 + |\xi'| \frac{\partial_n - |\xi'|}{|\xi|^2}.$$

Portanto,

$$\widehat{\mathcal{K}(f,p)} = |\xi'|\widehat{f}_n - \sum_{j=1}^{n-1} \partial_n \frac{\partial_n + |\xi'|}{|\xi|^2} \widehat{\partial_j \widetilde{e}(f_j)} - |\xi'| \frac{\partial_n - |\xi'|}{|\xi|^2} \partial_n \widehat{\widetilde{e}(f_n)}.$$
(4.2.17)

Observe que

$$\partial_{n} \frac{\partial_{n} + |\xi'|}{|\xi|^{2}} \widehat{\partial_{j} \tilde{e}(f_{j})} = |\xi'| \left\{ \frac{\partial_{n}}{|\xi|} \frac{\partial_{n}}{|\xi|} + \frac{\partial_{n}}{|\xi|} \frac{|\xi'|}{|\xi|} \right\} \frac{i\xi_{j}}{|\xi'|} \widehat{\tilde{e}(f_{j})}$$

$$= |\xi'| \left\{ m(R_{n})m(R_{n}) + m(R_{n}) \frac{|\xi'|}{|\xi|} \right\} \widehat{S_{j} \tilde{e}(f_{j})}$$
(4.2.18)

e

$$|\xi'| \frac{\partial_n - |\xi'|}{|\xi|^2} \partial_n \widehat{\tilde{e}(f_n)} = |\xi'| \partial_n \frac{\partial_n - |\xi'|}{|\xi|^2} \widehat{\tilde{e}(f_n)}$$

$$= |\xi'| \left\{ \frac{\partial_n}{|\xi|} \frac{\partial_n}{|\xi|} - \frac{\partial_n}{|\xi|} \frac{|\xi'|}{|\xi|} \right\} \widehat{\tilde{e}(f_n)}$$

$$= |\xi'| \left\{ m(R_n) m(R_n) - m(R_n) \frac{|\xi'|}{|\xi|} \right\} \widehat{\tilde{e}(f_n)}. \tag{4.2.19}$$

Substituíndo (4.2.18) e (4.2.19) na equação (4.2.17), obtemos

$$\widehat{\mathcal{K}(f,p)} = |\xi'|\widehat{\widetilde{N}(f)},$$

o que implica (4.2.13). Assim, por (4.2.11), temos que

$$\begin{cases} z_t - \Delta z = |\nabla'| \tilde{N}(f) & \text{em } \mathbb{R}^n_+ \times (0, \infty) \\ \gamma z = 0 & \text{em } \partial \mathbb{R}^n_+ \times (0, \infty) \\ z|_{t=0} = |\nabla'| V_1 u_0 & \text{em } \mathbb{R}^n_+, \end{cases}$$
(4.2.20)

e então

$$z = E(t)|\nabla'|V_1 u_0 + \int_0^t E(t-s)|\nabla'|\tilde{N}f(s)ds.$$
 (4.2.21)

Relembrando que $z=(\partial_n+|\nabla'|)u_n$, obtemos a seguinte equação diferencial

$$\widehat{z} = (\partial_n + |\xi'|)\widehat{u}_n$$
, com $\widehat{\gamma u_n} = 0$.

Logo,

$$\hat{u}_n = \int_0^{x_n} e^{-|\xi'|(x_n - y_n)} \hat{z}(\xi', y_n, t) dy_n. \tag{4.2.22}$$

Relembre que $|\nabla'|$ comuta com E(t). Substituindo (4.2.21) em (4.2.22) e usando o Lema 4.1.2, obtemos

$$u_n = UE(t)V_1u_0 + U\int_0^t E(t-s)\tilde{N}f(s)ds.$$

Para obter a fórmula para a componente u' do campo u defina $w=V_2u=u'+Su_n$. Aplicando V_2 em (4.2.1), obtemos

$$\begin{cases} w_t - \Delta w = -S(\partial_n + |\nabla'|)p \\ \gamma w = 0 \\ w|_{t=0} = V_2 u_0. \end{cases}$$

$$(4.2.23)$$

Note que $-S(\partial_n + |\nabla'|)p = -S\tilde{M}(f)$, pois por (4.2.14) podemos escrever

$$(\partial_n + |\xi'|)\hat{p} = \frac{\partial_n + |\xi'|}{|\xi|^2} \widehat{e}(\widehat{\nabla \cdot f}), \tag{4.2.24}$$

o que implica em

$$(\partial_n + |\nabla'|)p = (R_n^2 + R_n \frac{|\nabla'|}{|\nabla|})\tilde{e}(\nabla \cdot f) = \tilde{M}(f).$$

Portanto

$$w = E(t)V_2u_0 + \int_0^t E(t-s)[-S\tilde{M}f](s)(s)ds,$$

e então,

$$u' = E(t)V_2u_0 + \int_0^t E(t-s)[-S\tilde{M}f](s)ds - Su_n.$$

4.2.1 Formulção integral para as equações de Navier-Stokes em \mathbb{R}^n_+

Nesta parte, derivamos uma formulação integral para o problema (4.2.1)-(4.2.5) usando a Proposição 4.2.1. Primeiro, note que a condição div u=0 implica que

$$u \cdot \nabla v = \nabla \cdot (u \otimes v) = \left(\sum_{i=1}^{n} \partial_{i}(u_{i}v_{1}), \sum_{i=1}^{n} \partial_{i}(u_{i}v_{2}), \cdots, \sum_{i=1}^{n} \partial_{i}(u_{i}v_{n}) \right)$$

$$:= (\partial_{i}(u_{i}v_{k}))_{k=1}^{n},$$

com a convenção da soma de Einstein em i. Assumindo u suave e tomando $f=-u\cdot\nabla u$ em (4.2.6)-(4.2.7), obtemos

$$u = \left(E(t)V_2u_0 - SUE(t)V_1u_0 - \int_0^t (E(t-s)S\tilde{M}\partial_i(u_iu_k) - SUE(t-s)\tilde{N}\partial_i(u_iu_k))ds,\right)$$

$$UE(t)V_1u_0 + \int_0^t UE(t-s)\tilde{N}\partial_i(u_iu_k)ds.$$

$$(4.2.25)$$

Note que para $i=1,\cdots,n-1$ o operador ∂_i comuta com os operadores $S_i,R_j,\tilde{N},\tilde{M},\frac{|\nabla'|}{|\nabla|}$ e \tilde{e} . Além disso,

$$E(t)\partial_i = \partial_i E(t),$$

onde E(t) é o semigrupo do calor em \mathbb{R}^n_+ (veja Capítulo 2):

$$E(t)f = \int_{\mathbb{R}^{n}_{+}} [g(x-y,t) - g(x-y^{*},t)]f(y)dy, \qquad (4.2.26)$$

e $y^*=(y_1,\cdots,y_{n-1},-y_n)$. Portanto,

$$E(t)S\tilde{M}\partial_i(u_iv_k) = \partial_i E(t)S\tilde{M}(u_iv_k) \ \mathbf{e} \ E(t)\tilde{N}\partial_i(u_iv_k) = \partial_i E(t)\tilde{N}(u_iv_k). \tag{4.2.27}$$

Quando i=n, observe que a derivada normal ∂_n não comuta com E(t), ou seja,

$$E(t)\partial_n f = \partial_n H(t)f, \tag{4.2.28}$$

onde

$$H(t)f = \int_{\mathbb{R}^n_+} [g(x-y,t) + g(x-y^*,t)]f(y)dy.$$
 (4.2.29)

De fato, relembrando que $\partial_j g(x,t) = -\frac{x_j}{2t} g(x,t)$, temos que

$$\frac{\partial}{\partial y_n}g(x-y,t) = -\frac{\partial}{\partial x_n}g(x-y,t) = -\nabla_x g(x-y,t) \cdot \tau = \frac{x_n - y_n}{2t}g(x-y,t) e$$

$$\frac{\partial}{\partial y_n}g(x-y^*,t) = \frac{\partial}{\partial x_n}g(x-y^*,t),$$

onde $\tau=(0,\cdots,0,1)$ é um vetor normal a $\partial\mathbb{R}^n_+$. Um argumento de integração por partes produz

$$E(t)\partial_{n}f = \int_{\mathbb{R}^{n}_{+}} [g(x-y,t) - g(x-y^{*},t)]\partial_{n}f(y)dy$$

$$= \int_{\mathbb{R}^{n-1}} [g(x-y,t) - g(x-y^{*},t)f(y)]_{y_{n}=0}^{y_{n}=\infty} dy'$$

$$- \int_{\mathbb{R}^{n}_{+}} \partial_{n}[g(x-y,t) - g(x-y^{*},t)]f(y)dy. \tag{4.2.30}$$

Usando $\gamma f = 0$ em (4.2.30), obtemos

$$E(t)\partial_{n}f = -\int_{\mathbb{R}^{n}_{+}} \partial_{y_{n}}[g(x-y,t) - g(x'-y',x_{n}+y_{n},t)]f(y)dy$$

$$= \int_{\mathbb{R}^{n}_{+}} \left[-\frac{x_{n}-y_{n}}{2t}g(x-y,t) + \frac{x_{n}+y_{n}}{2t}g(x'-y',x_{n}+y_{n},t) \right]f(y)dy$$

$$= \int_{\mathbb{R}^{n}_{+}} \partial_{x_{n}}[g(x-y,t) + g(x'-y',x_{n}+y_{n},t)]f(y)dy$$

$$= \partial_{n}H(t)f,$$

o que implica (4.2.28). Agora, observe que ∂_n comuta com os operadores $\tilde{M}, \tilde{N}, S_l$ $(l=1,\cdots,n-1), R_j$ $(j=1,\cdots,n), \frac{|\nabla'|}{|\nabla|}$ e \tilde{e} . Assim, por (4.2.28), temos que

$$E(t)S\tilde{M}\partial_n(u_iv_k) = \partial_n H(t)S\tilde{M}(u_iv_k) \text{ e } E(t)\tilde{N}\partial_n(u_iv_k) = \partial_n H(t)\tilde{N}(u_iv_k). \tag{4.2.31}$$

Por (4.2.27) e (4.2.31), obtemos

$$G(t)S\tilde{M}\partial_i(u_iv_k) = \partial_i G(t)S\tilde{M}(u_iv_k) \text{ e } G(t)\tilde{N}\partial_i(u_iv_k) = \partial_i G(t)\tilde{N}(u_iv_k), \tag{4.2.32}$$

onde

$$G(t) = \begin{cases} E(t), \text{ para } i = 1, \dots, n-1 \\ H(t), \text{ para } i = n. \end{cases}$$
 (4.2.33)

Usando (4.2.32) e a convenção da soma de Einstein em i, podemos escrever (4.2.25) como

$$u = A_1 E(t) A_2 u_0 + B(u, u)(t), \tag{4.2.34}$$

onde

$$A_1 E(t) A_2 u_0 := (E(t) V_2 u_0 - SUE(t) V_1 u_0, UE(t) V_1 u_0)$$
(4.2.35)

e

$$B(u,v)(x,t) := \int_0^t B_1 \nabla \cdot G(t-s) B_2(u \otimes v)(s) ds, \qquad (4.2.36)$$

sendo A_i operadores que dependem essencialmente de r, e, S_j $(j=1, \cdots, n-1)$ e R_i $(i=1, \cdots, n)$; e B_1, B_2 são matrizes de operadores que dependem dos operadores $r, e, R_i, S_j, \frac{|\nabla'|}{|\nabla|}$ e \tilde{e} .

Conforme (4.2.33), enfatizamos que a ação de G(t-s) em (4.2.36) é a ação em cada elemento da matriz $B_2(u \otimes v)$ dos semigrupos E(t-s) ou H(t-s), dependendo se a derivada envolvida é ∂_n ou não.

Observação 4.2.2. Note que a condição $\gamma f = 0$ implica por (4.1.30) que

$$\partial_n U f = U \partial_n f. \tag{4.2.37}$$

4.3 Espaços funcionais e solução branda

Nesta seção, daremos algumas definições e notações que serão usadas nas seções subsequentes. Considere o campo $u\colon \mathbb{R}^n_+ \times (0,\infty) \to \mathbb{R}^n$ tal que $u_i(\cdot,t) \in \dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)$ para todos $i=1,\cdots,n$ e denote

$$||u(\cdot,t)||_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)} = \max_{i=1,\dots,n} ||u_i(\cdot,t)||_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)}.$$

Dado um espaço de Banach $Y \subset \mathcal{S}'(\mathbb{R}^n_+)$, relembramos que

$$Y^{\sigma} = \{ u \in Y ; \operatorname{div}_x u = 0 \}.$$

Assim como no Capítulo 3, vamos utilizar técnicas de *scaling* para estudar o problema (1.2.1)-(1.2.4). Neste caso, é fácil ver que se (u, p) é uma solução para (1.2.1)-(1.2.2), então $(u_{\lambda}, p_{\lambda})$

dado por

$$u_{\lambda}(x,t) = \lambda u(\lambda x, \lambda^2 t) e p_{\lambda}(x,t) = \lambda p(\lambda x, \lambda^2 t),$$

também é uma solução para (1.2.1)-(1.2.2). Logo as equações de Navier-Stokes têm o seguinte scaling

$$(u,p) \to (u_{\lambda}, p_{\lambda}).$$
 (4.3.1)

Uma solução (u,p) é chamada uma solução auto-similar quando ela é invariante pelo *scaling* (4.3.1) $\forall \lambda > 0$, isto é, $(u,p) = (u_{\lambda},p_{\lambda}) \ \forall \lambda > 0$. Estudaremos (1.2.1)-(1.2.2) em espaços que são invariantes por (4.3.1).

Definição 4.3.1. Sejam $n \ge 3$, $1 < q, p < \infty$, $\mu = n - p$ e $\alpha = 1 - \frac{n - \mu}{q}$. Definimos os espaços normados H, H_q como

$$H = BC((0, \infty), \dot{\mathcal{L}}_{p,\mu}^{\sigma}(\mathbb{R}_{+}^{n})),$$

$$H_{q} = \{u \in H : t^{\frac{\alpha}{2}}u(x, t) \in BC((0, \infty), \dot{\mathcal{L}}_{q,\mu}(\mathbb{R}_{+}^{n}))\},$$

com as respectivas normas dadas por

$$||u||_{H} = \sup_{t>0} ||u(\cdot,t)||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^{n}_{+})}, \tag{4.3.2}$$

$$||u||_{H_q} = ||u||_H + \sup_{t>0} t^{\frac{\alpha}{2}} ||u(\cdot,t)||_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)}. \tag{4.3.3}$$

Observação 4.3.2. Os espaços funcionais H e H_q são espaços de Banach.

A norma do espaço H_q é invariante pela relação (4.3.1). De fato, seja

$$\|\delta_{\varepsilon}g\|_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)} = \varepsilon^{-\frac{n-\mu}{p}} \|g\|_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)},$$

onde $\delta_{\varepsilon}g(x) = g(\varepsilon x)$. Temos que

$$||u_{\lambda}||_{H_{q}} = \sup_{t>0} ||u_{\lambda}||_{\dot{\mathcal{L}}_{p,\mu}} + \sup_{t>0} t^{\frac{\alpha}{2}} ||u_{\lambda}||_{\dot{\mathcal{L}}_{q,\mu}}$$

$$= \sup_{t>0} ||u(\cdot, \lambda^{2}t)||_{\dot{\mathcal{L}}_{p,\mu}} + \sup_{t>0} t^{\frac{\alpha}{2}} ||u(\cdot, \lambda^{2}t)||_{\dot{\mathcal{L}}_{q,\mu}} \lambda^{\alpha}$$

$$= \sup_{\lambda^{2}t>0} ||u(\cdot, \lambda^{2}t)||_{\dot{\mathcal{L}}_{p,\mu}} + \sup_{\lambda^{2}t>0} (\lambda^{2}t)^{\frac{\alpha}{2}} ||u(\cdot, \lambda^{2}t)||_{\dot{\mathcal{L}}_{q,\mu}}$$

$$= ||u||_{H_{q}}. \tag{4.3.4}$$

Na sequência introduzimos a noção de solução branda para o problema (1.2.1)-(1.2.4), a qual é motivada pela fórmula integral (4.2.34).

Definição 4.3.3 (Solução branda). Uma solução branda para o PVI (1.2.1)-(1.2.4) é um campo vetorial $u \in H_q$ satisfazendo a equação integral

$$u(t) = A_1 E(t) A_2 u_0 + \int_0^t B_1 \nabla \cdot G(t - s) B_2(u \otimes u)(s) ds.$$
 (4.3.5)

Agora definimos a noção de solução branda auto-similar.

Definição 4.3.4 (Solução auto-similar). Seja u uma solução branda para o PVI (1.2.1)-(1.2.4). Dizemos que u é uma solução auto-similar quando u satisfaz a relação

$$u_{\lambda}(x,t) = \lambda u(\lambda x, \lambda^2 t), \forall \lambda > 0.$$

4.4 Resultados

A seguir enunciaremos nossos resultados para o problema (1.2.1)-(1.2.4).

Teorema 4.4.1. Sejam $1 , <math>n \ge 3$, $p' < q e \mu = n - p$. Considere $u_0 \in \dot{\mathcal{L}}^{\sigma}_{p,\mu}(\mathbb{R}^n_+)$.

- (i) (Boa-colocação). Existe $\varepsilon > 0$ e $\delta = \delta(\varepsilon)$ ($\delta = C\varepsilon$), tal que, se $\|u_0\|_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)} \leqslant \delta$ então o PVIF (1.2.1)-(1.2.4) tem uma solução branda global em H_q , a qual é a única na bola fechada $\mathcal{B}(0,2\varepsilon) = \{u \in H_q \; ; \; \|u\|_{H_q} \leq 2\varepsilon\}$.
- (ii) (Continuidade forte em $t=0^+$) Se $u_0\in \tilde{\mathcal{L}}^{\sigma}_{p,\mu}(\mathbb{R}^n_+)$, então a solução do item (i) pertence $a\ BC([0,\infty),\tilde{\mathcal{L}}^{\sigma}_{p,\mu}(\mathbb{R}^n_+))$.
- (iii) (Espaços com peso) Se 1 < l < p e k > n l, então a solução do item (i) pertence a $BC([0,\infty),(L^l_{-k/l})^n(\mathbb{R}^n_+)).$

Assumindo uma certa homogeneidade no dado inicial, obtemos o seguinte resultado de autosimilaridade:

Corolário 4.4.2 (Solução auto-similar). Assuma as hipóteses do Teorema 4.4.1. Se u_0 é um vetor homogêneo de grau -1, então a solução u obtida no Teorema 4.4.1 é uma solução branda auto-similar para o PVIF (1.2.1)-(1.2.4).

Também provamos um teorema de estabilidade assintótica, o qual mostra que certas pertubações do dado inicial dissipam-se quando $t \to +\infty$.

Teorema 4.4.3 (Estabilidade assintótica). Assuma as hipóteses do Teorema 4.4.1. Sejam u e v duas soluções brandas globais para o problema (1.2.1)-(1.2.4) obtidas através do Teorema 4.4.1, com respectivos dados iniciais $u_0 e v_0$. Temos que:

$$\lim_{t \to \infty} \|u(t) - v(t)\|_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)} = 0 \tag{4.4.1}$$

se, e somente se

$$\lim_{t \to \infty} ||A_1 E(t) A_2(u_0 - v_0)||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)} = 0.$$
(4.4.2)

Além disto,

$$\lim_{t \to \infty} t^{\frac{\alpha}{2}} \|u(t) - v(t)\|_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)} = 0 \tag{4.4.3}$$

se, e somente se

$$\lim_{t \to \infty} t^{\frac{\alpha}{2}} \|A_1 E(t) A_2(u_0 - v_0)\|_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)} = 0. \tag{4.4.4}$$

Observação 4.4.4 (Bacia de atração). Assuma as hipóteses do Teorema 4.4.1. Seja u uma solução branda auto-similar com dado inicial u_0 homogêneo de grau -1. Se v é uma solução branda com dado inicial $v_0 = u_0 + \varphi$ tal que $\varphi \in C_0^{\infty}(\mathbb{R}^n_+)$ e

$$\lim_{t \to \infty} ||A_1 E(t) A_2 \varphi||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)} = 0,$$

então a solução branda pertubada v é atraída pela solução branda auto-similar u no sentido de (4.4.1) e (4.4.3).

4.5 Prova dos resultados

Nesta seção provaremos os resultados da seção anterior. Começamos com algumas estimativas para os operadores $A_1E(t)A_2$ e B(u,v)(t), as quais serão usadas para produzir um argumento de contração.

4.5.1 Estimativas lineares

Nesta parte, obtemos estimativas para os operadores E(t) e H(t) (veja Lema 4.5.1) e o operador $A_1E(t)A_2$ (veja Lema 4.5.2).

Lema 4.5.1. Sejam $1 \leqslant q_1 \leqslant q_2 \leqslant \infty$ e $0 \leq \lambda < n$. Se $u_0 \in \dot{\mathcal{L}}_{q_1,\lambda}(\mathbb{R}^n_+)$, então

$$\|\nabla^k E(t)u_0\|_{\dot{\mathcal{L}}_{q_2,\lambda}(\mathbb{R}^n_+)} \le C t^{-\frac{1}{2}(\gamma_1 - \gamma_2) - \frac{|k|}{2}} \|u_0\|_{\dot{\mathcal{L}}_{q_1,\lambda}(\mathbb{R}^n_+)}$$
(4.5.1)

$$\|\nabla^k H(t)u_0\|_{\dot{\mathcal{L}}_{q_2,\lambda}(\mathbb{R}^n_+)} \le C t^{-\frac{1}{2}(\gamma_1 - \gamma_2) - \frac{|k|}{2}} \|u_0\|_{\dot{\mathcal{L}}_{q_1,\lambda}(\mathbb{R}^n_+)},\tag{4.5.2}$$

onde $\gamma_1=rac{n-\lambda}{q_1},\,\gamma_2=rac{n-\lambda}{q_2}$ e k é um multi-índice.

Demonstração: Vamos adaptar algumas idéias da prova de [30, Lema 2.1] e dividir a demonstração em três passos.

1º passo: Primeiro provamos (4.5.1) no caso k = 0 e $q_1 = q_2$. Para isto, primeiro provaremos a estimativa pontual

$$|[E(t)u_0](x)|^p \le [E(t)|u_0|^p](x). \tag{4.5.3}$$

Relembre que $g(x,t) = (4\pi t)^{-\frac{n}{2}} e^{-\frac{|x|^2}{4t}}$ e note que $g(x,t) = \tilde{g}(x',t)h(x_n,t)$, onde $x = (x',x_n)$,

$$\tilde{g}(x',t) = (4\pi t)^{-\frac{n-1}{2}} e^{-\frac{|x'|^2}{4t}} e h(x_n,t) = (4\pi t)^{-\frac{1}{2}} e^{-\frac{|x_n|^2}{4t}}.$$

Agora defina a medida $dV_t(y')=\tilde{g}(x'-y',t)dy'$ para cada t fixado. Assim, relembrando (4.2.26), temos que

$$|[E(t)u_0](x)|^p = \left| \int_{\mathbb{R}^n_+} (g(x-y,t) - g(x'-y',x_n+y_n,t))u_0(y)dy \right|^p$$

$$= \left| \int_{\mathbb{R}^n_+} \tilde{g}(x'-y',t)(h(x_n-y_n,t) - h(x_n+y_n,t))u_0(y)dy \right|^p$$

$$= \left| \int_{\mathbb{R}^{n-1}} \int_0^\infty (h(x_n-y_n,t) - h(x_n+y_n,t))u_0(y)dy_n \tilde{g}(x'-y',t)dy' \right|^p$$

$$= \left| \int_{\mathbb{R}^{n-1}} \int_0^\infty (h(x_n-y_n,t) - h(x_n+y_n,t))u_0(y',y_n)dy_n dV_t(y') \right|^p.$$

Desde que

$$V_t(\mathbb{R}^{n-1}) = \int_{\mathbb{R}^{n-1}} \tilde{g}(x'-y',t)dy'$$
$$= \int_{\mathbb{R}^{n-1}} \tilde{g}(y',t)dy' = \int_{\mathbb{R}^{n-1}} \tilde{g}(y',1)dy' = 1,$$

e $\phi(s)=|s|^p$ é uma função convexa em $\mathbb R$, a designaldade de Jensen implica

$$|[E(t)u_0](x)|^p \le \int_{\mathbb{R}^{n-1}} \left| \int_0^\infty (h(x_n - y_n, t) - h(x_n + y_n, t)) u_0(y', y_n) dy_n \right|^p dV_t(y'). \quad (4.5.4)$$

Agora note que $h(x_n-y_n,t)>h(x_n+y_n,t)$ para todo $x_n,y_n\neq 0$, e defina a medida

$$d\mu_t(y_n) = [h(x_n - y_n, t) - h(x_n + y_n, t)]dy_n.$$
(4.5.5)

Em vista de (4.5.4) e (4.5.5), temos que

$$|[E(t)u_0](x)|^p \le \int_{\mathbb{D}^{n-1}} \left| \int_0^\infty u_0(y', y_n) d\mu_t(y_n) \right|^p dV_t(y'). \tag{4.5.6}$$

Afirmamos que $\mu_t[(0,\infty)] \leq 1$. De fato,

$$\mu_{t}[(0,\infty)] = \int_{0}^{\infty} d\mu(y_{n}) = \int_{0}^{\infty} (h(x_{n} - y_{n}, t) - h(x_{n} + y_{n}, t)) dy_{n}$$

$$= \int_{0}^{\infty} h(x_{n} - y_{n}, t) dy_{n} - \int_{0}^{\infty} h(x_{n} + y_{n}, t) dy_{n}$$

$$= -\int_{-\infty}^{x_{n}} h(y_{n}, t) dy_{n} - \int_{x_{n}}^{\infty} h(y_{n}, t) dy_{n}$$

$$= \int_{-x_{n}}^{\infty} h(y_{n}, t) dy_{n} - \int_{x_{n}}^{\infty} h(y_{n}, t) dy_{n}$$

$$= \int_{-x_{n}}^{x_{n}} h(y_{n}, t) dy_{n} \le \int_{-\infty}^{\infty} h(y_{n}, t) = \int_{-\infty}^{\infty} h(y_{n}, t) = 1.$$

Assim, aplicando a desigualdade de Jensen em (4.5.6), temos que

$$|[E(t)u_0](x)|^p \leq \int_{\mathbb{R}^{n-1}} \int_0^\infty |u_0(y', y_n)|^p d\mu_t(y_n) dV_t(y')$$

$$= \int_{\mathbb{R}^n_+} \tilde{g}(x' - y', t) (h(x_n - y_n, t) - h(x_n + y_n, t)) |u_0(y)|^p dy$$

$$= [E(t)|u_0|^p](x).$$

Relembre que $\Omega_r(x_0) = \{x \in \mathbb{R}^n_+ \, ; \, |x - x_0| < r\},$

$$\int_{\Omega_r(x_0)} |u_0(x)|^{q_1} dx \le r^{\lambda} ||u_0||_{\dot{\mathcal{L}}_{q_1,\lambda}(\mathbb{R}^n_+)}^{q_1},$$

e a extensão $\tilde{e}:\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n_+)\to\dot{\mathcal{L}}_{p,\lambda}(\mathbb{R}^n)$ dada por

$$\tilde{e}u_0(x', x_n) = \begin{cases} u_0(x', x_n), & x_n > 0\\ -u_0(x', -x_n), & x_n < 0. \end{cases}$$

Note que $\|\tilde{e}u_0\|_{\dot{\mathcal{L}}_{q_1,\lambda}(\mathbb{R}^n)} \leq 2\|u_0\|_{\dot{\mathcal{L}}_{q_1,\lambda}(\mathbb{R}^n_+)}$. Usando a estimativa (4.5.3), obtemos

$$\int_{\Omega_{r}(x_{0})} |[E(t)u_{0}](x)|^{q_{1}} dx \leq \int_{\Omega_{r}(x_{0})} [E(t)|u_{0}|^{q_{1}}](x) dx
= \int_{\Omega_{r}(x_{0})} \int_{\mathbb{R}^{n}_{+}} [g(x-y,t) - g(x'-y^{*},t)]|u_{0}(y)|^{q_{1}} dy dx
\leq \int_{\Omega_{r}(x_{0})} \int_{\mathbb{R}^{n}} g(x-y,t)|\tilde{e}u_{0}(y)|^{q_{1}} dy dx.$$

Tomando z = x - y, segue que

$$\int_{\Omega_{r}(x_{0})} |[E(t)u_{0}](x)|^{q_{1}} dx \leq \int_{\Omega_{r}(x_{0})} \int_{\mathbb{R}^{n}} g(z,t) |\tilde{e}u_{0}(x-z)|^{q_{1}} dz dx
\leq \int_{\mathbb{R}^{n}} g(z,t) \int_{\Omega_{r}(x_{0})} |\tilde{e}u_{0}(x-z)|^{q_{1}} dx dz
\leq \int_{\mathbb{R}^{n}} g(z,t) dz r^{\lambda} ||\tilde{e}u_{0}||_{\dot{\mathcal{L}}_{q_{1},\lambda}(\mathbb{R}^{n})}^{q_{1}}
\leq r^{\lambda} ||\tilde{e}u_{0}||_{\dot{\mathcal{L}}_{q_{1},\lambda}(\mathbb{R}^{n})}^{q_{1}}
\leq 2^{q_{1}} r^{\lambda} ||u_{0}||_{\dot{\mathcal{L}}_{q_{1},\lambda}(\mathbb{R}^{n})}^{q_{1}}.$$
(4.5.7)

Multiplicando (4.5.7) por $r^{-\lambda}$ e tomando o supremo em r>0 no resultado, obtemos

$$||E(t)u_0||_{\dot{\mathcal{L}}_{q_1,\lambda}(\mathbb{R}^n_+)} \le 2||u_0||_{\dot{\mathcal{L}}_{q_1,\lambda}(\mathbb{R}^n_+)}.$$
 (4.5.8)

2º passo:

Vamos provar a estimativa (4.5.1) para os casos $q_1 < q_2 = \infty$ e $q_1 < q_2 < \infty$, ambos com k = 0. O primeiro caso segue das estimativas (4.5.3) e ((2.1.25), pg. 14). De fato, por (4.5.3), temos

$$|[E(t)u_{0}](x)|^{q_{1}} \leq \int_{\mathbb{R}^{n}_{+}} [g(x-y,t) - g(x'-y',x_{n}+y_{n},t)]|u_{0}(y)|^{q_{1}}dy$$

$$\leq \int_{\mathbb{R}^{n}_{+}} g(x-y,t)|u_{0}(y)|^{q_{1}}dy. \tag{4.5.9}$$

Seja

$$\rho(r) = \int_{\{z \in \mathbb{R}^n_{\perp}; |z-x| < r\}} |u_0(z)|^{q_1} dz,$$

e note que $\rho(r) \leq r^{\lambda} \|u_0\|_{\dot{\mathcal{L}}_{q_1,\lambda}(\mathbb{R}^n_+)}^{q_1}$. Fixando t>0 e usando ((2.1.22), pg. 14) com $\varphi(r)=(4\pi t)^{-\frac{n}{2}}e^{-\frac{r^2}{4t}}$, obtemos por (4.5.9) que

$$|[E(t)u_0](x)|^{q_1} \leq \int_{\mathbb{R}^n_+} g(|x-y|,t)|u_0(y)|^{q_1} dy$$

$$= \int_0^\infty g(r,t)d\rho(r)$$

$$\leq \int_0^\infty |\partial_r g(r,t)|\rho(r)dr$$

$$\leq \int_0^\infty |\partial_r g(r,t)|r^{\lambda} dr ||u_0||_{\dot{\mathcal{L}}_{q_1,\lambda}(\mathbb{R}^n_+)}^{q_1}.$$

Observe que $|\partial_r g(r,t)| \leq rac{r}{2t} |g(r,t)|$. Portanto, tomando $z = rac{r^2}{4t}$, segue que

$$|[E(t)u_{0}](x)|^{q_{1}} \leq \frac{1}{2t} \int_{0}^{\infty} r|g(r,t)|r^{\lambda} dr \|u_{0}\|_{\dot{\mathcal{L}}_{q_{1},\lambda}(\mathbb{R}^{n}_{+})}^{q_{1}}$$

$$= \frac{1}{2t} t^{-\frac{n}{2}} \int_{0}^{\infty} e^{-\frac{r^{2}}{4t}} r^{\lambda+1} dr \|u_{0}\|_{\dot{\mathcal{L}}_{q_{1},\lambda}(\mathbb{R}^{n}_{+})}^{q_{1}}$$

$$= \frac{1}{2} t^{-\frac{n-\lambda}{2}} \int_{0}^{\infty} e^{-z} z^{\frac{\lambda}{2}} dz \|u_{0}\|_{\dot{\mathcal{L}}_{q_{1},\lambda}(\mathbb{R}^{n}_{+})}^{q_{1}}$$

$$\leq C t^{-\frac{n-\lambda}{2}} \|u_{0}\|_{\dot{\mathcal{L}}_{q_{1},\lambda}(\mathbb{R}^{n}_{+})}^{q_{1}}. \tag{4.5.10}$$

Portanto, (4.5.10) implica que

$$||E(t)u_0||_{L^{\infty}(\mathbb{R}^n_+)} \le Ct^{-\frac{1}{2}\gamma_1}||u_0||_{\dot{\mathcal{L}}_{q_1,\lambda}(\mathbb{R}^n_+)}. \tag{4.5.11}$$

Por outro lado, usando que $q_1 < q_2$, estimamos

$$\int_{\Omega_r(x_0)} |E(t)u_0|^{q_2} dx \le ||E(t)u_0||_{\infty}^{q_2-q_1} \int_{\Omega_r(x_0)} |E(t)u_0|^{q_1} dx.$$

Por (4.5.11), obtemos

$$\int_{\Omega_r(x_0)} |E(t)u_0|^{q_2} dx \le C t^{-\frac{1}{2}\gamma_1(q_2-q_1)} ||u_0||_{\dot{\mathcal{L}}_{q_1,\lambda}(\mathbb{R}^n_+)}^{q_2-q_1} \int_{\Omega_r(x_0)} |E(t)u_0|^{q_1} dx.$$

Logo,

$$r^{-\frac{\lambda}{q_2}} \left[\int_{\Omega_r(x_0)} |E(t)u_0|^{q_2} dx \right]^{\frac{1}{q_2}} \le Ct^{-\frac{1}{2}\gamma_1(1-\frac{q_1}{q_2})} ||u_0||_{\dot{\mathcal{L}}_{q_1,\lambda}}^{(1-\frac{q_1}{q_2})} \left[r^{-\lambda} \int_{\Omega_r(x_0)} |E(t)u_0|^{q_1} dx \right]^{\frac{1}{q_2}}.$$
(4.5.12)

Tomando o supremo para r > 0 em (4.5.12) e usando a estimativa (4.5.8), obtemos

$$||E(t)u_{0}||_{\dot{\mathcal{L}}_{q_{2},\lambda}} \leq Ct^{-\frac{1}{2}\gamma_{1}(1-q_{1}/q_{2})} ||u_{0}||_{\dot{\mathcal{L}}_{q_{1},\lambda}}^{1-q_{1}/q_{2}} ||u_{0}||_{\dot{\mathcal{L}}_{q_{1},\lambda}}^{q_{1}/q_{2}}$$

$$\leq Ct^{-\frac{1}{2}\frac{n-\lambda}{q_{1}} + \frac{1}{2}\frac{n-\lambda}{q_{1}}\frac{q_{1}}{q_{2}}} ||u_{0}||_{\dot{\mathcal{L}}_{q_{1},\lambda}}$$

$$= Ct^{-\frac{1}{2}(\gamma_{1}-\gamma_{2})} ||u_{0}||_{\dot{\mathcal{L}}_{q_{1},\lambda}}, \tag{4.5.13}$$

como queríamos.

3º passo: Vamos demonstrar a estimativa (4.5.1) para o caso |k|=1, pois o caso |k|>1 segue por argumentos análogos. Pela desigualdade $|\partial_i g(x,t)| \leq C t^{-1/2} |g(x,2t)|$ e por (4.2.29), temos que

$$|\partial_{i}E(t)u_{0}| \leq \int_{\mathbb{R}^{n}_{+}} (|\partial_{i}g(x-y,t)| + |\partial_{i}g(x'-y',x_{n}+y_{n},t)|)|u_{0}(y)|dy$$

$$\leq Ct^{-\frac{1}{2}} \int_{\mathbb{R}^{n}_{+}} (g(x-y,2t) + g(x'-y',x_{n}+y_{n},2t))|u_{0}(y)|dy$$

$$= Ct^{-\frac{1}{2}}H(2t)|u_{0}|, \tag{4.5.14}$$

onde $i=1,\cdots,n$. O próximo passo é observar que (4.5.11) e (4.5.13) continuam válidas se

trocarmos E(t) por H(2t), pois

$$|H(t)u_0| = \left| \int_{\mathbb{R}^n_+} (g(x-y,t) + g(x-y^*,t))u_0(y)dy \right| \le 2\int_{\mathbb{R}^n_+} g(x-y,t)|u_0(y)|dy, \quad (4.5.15)$$

e então podemos repetir os mesmos argumentos usados para E(t), apenas com uma pequena adaptação devido ao fator 2 em (4.5.15). Portanto, por (4.5.13) e (4.5.14), temos que

$$\|\partial_{i}E(t)u_{0}\|_{\dot{\mathcal{L}}_{q_{2},\lambda}} \leq Ct^{-\frac{1}{2}}\|H(2t)|u_{0}|\|_{\dot{\mathcal{L}}_{q_{2},\lambda}}$$

$$\leq Ct^{-\frac{1}{2}}t^{-\frac{1}{2}(\gamma_{1}-\gamma_{2})}\|u_{0}\|_{\dot{\mathcal{L}}_{q_{1},\lambda}}$$

$$= Ct^{-\frac{1}{2}(\gamma_{1}-\gamma_{2})-\frac{1}{2}}\|u_{0}\|_{\dot{\mathcal{L}}_{q_{1},\lambda}}.$$
(4.5.16)

As estimativas para H(t) seguem analogamente.

Lema 4.5.2. Sejam $n \geq 3$, $p = n - \mu \ e \ 0 \leq \mu < n < q < \infty$. Se $u_0 \in \dot{\mathcal{L}}^{\sigma}_{p,\mu}(\mathbb{R}^n_+)$, então $A_1E(t)A_2u_0 \in H_q \ e$

$$||A_1 E(t) A_2 u_0||_{H_q} \le C ||u_0||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)}. \tag{4.5.17}$$

Demonstração:

Os operadores R_j $(j=1,\cdots,n)$ são contínuos em $\dot{\mathcal{L}}_{r,\mu}(\mathbb{R}^n)$, pela Proposição 2.3.6, e os operadores S_i $(i=1,\cdots,n-1)$ são contínuos em $\dot{\mathcal{L}}_{r,\mu}$, pela Proposição 2.3.9, quando $1 < r < \infty$. Desde que

$$Uf = rR' \cdot S(R' \cdot S + R_n)ef,$$

então U é contínuo em $\dot{\mathcal{L}}_{r,\mu}(\mathbb{R}^n_+)$. Consequentemente, os operadores A_1 e A_2 são contínuos em $\dot{\mathcal{L}}_{r,\mu}(\mathbb{R}^n_+)$. Usando o Lema 4.5.1 e a continuidade dos operadores A_1 em $\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)$ e A_2 em $\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)$, obtemos que

$$||A_{1}E(t)A_{2}u_{0}||_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^{n}_{+})} \leq ||E(t)A_{2}u_{0}||_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^{n}_{+})}$$

$$\leq Ct^{-\frac{1}{2}(\frac{n-\mu}{p} - \frac{n-\mu}{q})}||A_{2}u_{0}||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^{n}_{+})}$$

$$\leq Ct^{-\frac{\alpha}{2}}||u_{0}||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^{n}_{+})}$$
(4.5.18)

e

$$||A_1 E(t) A_2 u_0||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)} \le ||E(t) A_2 u_0||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)}$$

$$\le C ||u_0||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)}. \tag{4.5.19}$$

Observação 4.5.3. Se $u_0 \in \widetilde{\dot{\mathcal{L}}}_{p,\mu}^{\sigma}(\mathbb{R}^n_+)$, então

$$A_1 E(t) A_2 u_0 \to u_0 \text{ em } \dot{\mathcal{L}}_{p,\mu}^{\sigma}(\mathbb{R}_+^n), \text{ quando } t \to 0^+.$$
 (4.5.20)

Para provar (4.5.20), primeiro relembre a definição dos operadores A_i (veja (4.2.35)). Como os operadores A_i dependem essencialmente de operadores multiplicadores de Fourier, segue que A_i comuta com translações, isto é,

$$\tau_y[A_i u_0] = A_i[\tau_y u_0], \tag{4.5.21}$$

onde $\tau_y u_0(x) = u_0(x-y)$ denota a translação por $y \in \mathbb{R}^n_+$. Isto nos permite concluir que $A_i(\check{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)) \subset \check{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)$. De fato, primeiro note que

$$\|\tau_{y}[A_{i}u_{0}] - A_{i}u_{0}\|_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^{n}_{+})} = \|A_{i}\tau_{y}u_{0} - A_{i}u_{0}\|_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^{n}_{+})}$$

$$= \|A_{i}[\tau_{y}u_{0} - u_{0}]\|_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^{n}_{+})}$$

$$\leq C\|\tau_{y}u_{0} - u_{0}\|_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^{n}_{+})}. \tag{4.5.22}$$

Em vista da definição de $\tilde{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)$ (veja (2.2.7), pg. 19), se $u_0 \in \tilde{\mathcal{L}}_{p,\mu}^{\sigma}(\mathbb{R}^n_+)$ então, fazendo $y \to 0$ em (4.5.22), segue que

$$\|\tau_y[A_i u_0] - A_i u_0\|_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)} \to 0,$$

o que é equivalente a $A_i u_0 \in \tilde{\dot{\mathcal{L}}}_{p,\mu}(\mathbb{R}^n_+)$.

Relembre que $u_0 = P_0 u_0$, quando $\nabla \cdot u_0 = 0$ (veja (4.1.39)). Usando a definição dos operadores A_i e a do operador P_0 (veja (4.1.38)), note que $u_0 = P_0 u_0 = A_1 A_2 u_0$; então

$$||A_1 E(t) A_2 u_0 - u_0||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)} = ||A_1 [E(t) A_2 u_0 - A_2 u_0]||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)}$$

$$\leq C ||E(t) A_2 u_0 - A_2 u_0||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)}. \tag{4.5.23}$$

Desde que $A_2u_0 \in \tilde{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)$, o Corolário 2.2.2 implica que

$$||E(t)A_2u_0 - A_2u_0||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)} \stackrel{t \to 0^+}{\longrightarrow} 0.$$
 (4.5.24)

Fazendo $t \to 0^+$ em (4.5.23) e usando (4.5.24), obtemos a convergência (4.5.20).

4.5.2 Estimativas bilineares

Reservamos esta seção para mostrar a continuidade em H_q do termo bilinear da equação integral (4.3.5).

Lema 4.5.4. Sejam $n \geq 3$, $p=n-\mu$, $0 \leq \mu < n < q < \infty$ e p' < q. Existe K>0 tal que

$$||B(u,v)||_{H_a} \le K||u||_{H_a}||v||_{H_a}, \tag{4.5.25}$$

para toda u e v funções mensuráveis.

Demonstração:

Relembre que

$$B(u,v)(t) = \int_0^t B_1 \nabla \cdot G(t-s) B_2(u \otimes v)(s) ds,$$

onde G(t) é dado por (4.2.33). Desde que o operador B_1 é contínuo em $\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)$, obtemos

$$||B(u,v)(t)||_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)} \le \int_0^t ||\nabla \cdot G(t-s)B_2(u \otimes v)(s)||_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)} ds. \tag{4.5.26}$$

Note que $0 \le \mu < n$ e $\frac{q}{2} < q$. Por (4.5.26) e o Lema 4.5.1, segue que

$$||B(u,v)(t)||_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)} \le C \int_0^t (t-s)^{-\frac{1}{2}(\frac{n-\mu}{q/2} - \frac{n-\mu}{q}) - \frac{1}{2}} ||B_2(u \otimes v)(s)||_{\dot{\mathcal{L}}_{\frac{q}{2},\mu}(\mathbb{R}^n_+)} ds. \quad (4.5.27)$$

Como $q > n \ge 3$, então $\frac{q}{2} > 1$ e consequentemente o operador B_2 é contínuo em $\dot{\mathcal{L}}_{q/2,\mu}(\mathbb{R}^n_+)$, e então

$$||B(u,v)(t)||_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)} \le C \int_0^t (t-s)^{-\frac{1}{2}(\frac{n-\mu}{q/2} - \frac{n-\mu}{q}) - \frac{1}{2}} ||(u \otimes v)(s)||_{\dot{\mathcal{L}}_{q/2,\mu}(\mathbb{R}^n_+)} ds.$$
 (4.5.28)

Portanto, pela desigualdade de Hölder (2.1.14), obtemos

$$||B(u,v)(t)||_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^{n}_{+})} \leq C_{1} \int_{0}^{t} (t-s)^{\frac{\alpha}{2}-1} ||u(s)||_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^{n}_{+})} ||v(s)||_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^{n}_{+})} ds$$

$$\leq C_{1} \int_{0}^{t} (t-s)^{\frac{\alpha}{2}-1} s^{-\alpha} ds \sup_{t>0} t^{\frac{\alpha}{2}} ||u(t)||_{\dot{\mathcal{L}}_{q,\mu}} \sup_{t>0} t^{\frac{\alpha}{2}} ||v(t)||_{\dot{\mathcal{L}}_{q,\mu}}$$

$$\leq I(t) ||u||_{H_{q}} ||v||_{H_{q}},$$

$$(4.5.29)$$

onde

$$I(t) = C_1 \int_0^t (t-s)^{\frac{\alpha}{2}-1} s^{-\alpha} ds = t^{\frac{\alpha}{2}-1-\alpha+1} \int_0^1 (1-s)^{\frac{\alpha}{2}-1} s^{-\alpha} ds = C_1 \beta (1-\alpha, \frac{\alpha}{2}) t^{-\frac{\alpha}{2}} = K_1 t^{-\frac{\alpha}{2}},$$

onde $\beta(\cdot, \cdot)$ é a função Beta (veja (2.4.1)). Assim,

$$\sup_{t>0} t^{\frac{\alpha}{2}} \|B(u,v)(t)\|_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)} \le K_1 \|u\|_{H_q} \|v\|_{H_q}. \tag{4.5.30}$$

Agora tratamos com a norma $\sup_{t>0}\|\cdot\|_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)}$. Seja $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$ e $\frac{\mu}{r}=\frac{\mu}{p}+\frac{\mu}{q}$, e note que 1< r< p. Usando o Lema 4.5.1, temos que

$$||B(u,v)(t)||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)} \leq C \int_0^t (t-s)^{-\frac{1}{2}(\frac{n-\mu}{r}-\frac{n-\mu}{p})-\frac{1}{2}} ||B_2(u\otimes v)(s)||_{\dot{\mathcal{L}}_{r,\mu}(\mathbb{R}^n_+)} ds$$

$$\leq C \int_0^t (t-s)^{-\frac{1}{2}(\frac{n-\mu}{r}-\frac{n-\mu}{p})-\frac{1}{2}} ||(u\otimes v)(s)||_{\dot{\mathcal{L}}_{r,\mu}(\mathbb{R}^n_+)} ds.$$

Logo, pela desigualdade de Hölder, segue que

$$||B(u,v)(t)||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^{n}_{+})} \leq C_{2} \int_{0}^{t} (t-s)^{-\frac{n-\mu}{2q}-\frac{1}{2}} ||u(s)||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^{n}_{+})} ||v(s)||_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^{n}_{+})} ds$$

$$\leq C_{2} \int_{0}^{t} (t-s)^{-\frac{n-\mu}{2q}-\frac{1}{2}} s^{-\frac{\alpha}{2}} ds \sup_{t>0} ||u(t)||_{\dot{\mathcal{L}}_{p,\mu}} \sup_{t>0} t^{\frac{\alpha}{2}} ||v(t)||_{\dot{\mathcal{L}}_{q,\mu}}$$

$$\leq I(t) ||u||_{H_{q}} ||v||_{H_{q}},$$

$$(4.5.32)$$

onde

$$I(t) = C_2 \int_0^t (t-s)^{\frac{\alpha}{2}-1} s^{-\frac{\alpha}{2}} ds = C_2 \int_0^1 (1-s)^{\frac{\alpha}{2}-1} s^{-\frac{\alpha}{2}} ds = C_2 \beta (1-\frac{\alpha}{2},\alpha) = K_2.$$

Assim,

$$\sup_{t>0} \|B(u,v)(t)\|_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)} \le K_2 \|u\|_{H_q} \|v\|_{H_q}. \tag{4.5.33}$$

Concluímos a prova observando que (4.5.30) e (4.5.33) produzem (4.5.25) com $K = K_1 + K_2$.

4.5.3 Prova do Teorema **4.4.1**

Parte (i) (Boa-colocação)

Pelo Lema 4.5.4, o operador bilinear B(u,v)(t) é limitado de $H_q \times H_q$ para H_q , isto é,

$$||B||_{H_q \times H_q \to H_q} \le K. \tag{4.5.34}$$

Seja $0 < \varepsilon < \frac{1}{4K}$. Pelo Lema 4.5.2 existe uma constante C > 0 tal que

$$||A_1 E(t) A_2 u_0||_{H_q} \le C ||u_0||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)} \le C\delta.$$

Tomando $\delta = \frac{\varepsilon}{C}$, segue que

$$||A_1E(t)A_2u_0||_{H_q} \le \varepsilon,$$
 (4.5.35)

quando $||u_0||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)} \leq \delta$.

Seja $\mathcal{B}(0,2\varepsilon)$ a bola fechada em H_q de raio 2ε . Considere o espaço métrico $(\mathcal{B}(0,2\varepsilon),d)$ munido da métrica $d(x,y)=\|x-y\|_{H_q}$. Note que, $(\mathcal{B}(0,2\varepsilon),d)$ é um espaço métrico completo. Defina o operador $\Psi:H_q\to H_q$ por

$$\Psi(u) = A_1 E(t) A_2 u_0 + B(u, u).$$

Vamos mostrar que $\Psi(\mathcal{B}(0,2\varepsilon)) \subset \mathcal{B}(0,2\varepsilon)$ e que Ψ é uma contração em $(\mathcal{B}(0,2\varepsilon),d)$. De fato,

$$\|\Psi(u) - \Psi(v)\|_{H_{q}} \leqslant \|B(u, u) - B(v, v)\|_{H_{q}}$$

$$\leqslant \|B(u - v, u)\|_{H_{q}} + \|B(v, u - v)\|_{H_{q}}$$

$$\leqslant K\|u - v\|_{H_{q}}(\|u\|_{H_{q}} + \|v\|_{H_{q}})$$

$$\leqslant 4K\varepsilon\|u - v\|_{H_{q}}.$$
(4.5.36)

Além disso, por (4.5.34) e (4.5.35), temos que

$$\begin{split} \|\Psi(u)\|_{H_q} &\leq \|A_1 E(t) A_2 u_0\|_{H_q} + \|B(u,u)\|_{H_q} \\ &\leq \varepsilon + K \|u\|_{H_q}^2 \\ &\leq \varepsilon + 4K\varepsilon.\varepsilon \\ &< 2\varepsilon. \end{split}$$

Ou seja, $\Psi(\mathcal{B}(0,2\varepsilon)) \subset \mathcal{B}(0,2\varepsilon)$. Como $4K\varepsilon < 1$, então a estimativa (4.5.36) implica que Ψ é uma contração. Portanto, o operador Ψ tem um único ponto fixo u em $\mathcal{B}(0,2\varepsilon)$, o qual é a única solução para a equação integral (4.3.5) em $\mathcal{B}(0,2\varepsilon)$.

Parte (ii) (Continuidade forte em $t=0^+$)

Assumindo $u_0 \in \tilde{\dot{\mathcal{L}}}_{p,\mu}^{\sigma}(\mathbb{R}_+^n)$, mostraremos que

$$u \in BC([0,\infty); \tilde{\mathcal{L}}_{p,\mu}^{\sigma}(\mathbb{R}_{+}^{n})).$$
 (4.5.37)

De fato, se $v \in \dot{\mathcal{L}}^{\sigma}_{l,\mu}(\mathbb{R}^n_+)$ $(1 < l \leq p)$, então pela Proposição 2.2.1 e a estimativa (4.5.1), é fácil ver que $A_1E(t)A_2v$ pertence a $\tilde{\mathcal{L}}^{\sigma}_{p,\mu}(\mathbb{R}^n_+)$ (relembre que A_1 é invariante por translações), para todo t>0. Como $u \in H_q$, procedendo como na prova do Teorema 3.2.1(iv), temos que

$$u \in BC((0,\infty), \tilde{\mathcal{L}}_{p,\mu}^{\sigma}(\mathbb{R}_{+}^{n})).$$

Assim, falta apenas mostrar que $u(\cdot,t) \to u_0$ em $\dot{\mathcal{L}}^{\sigma}_{p,\mu}(\mathbb{R}^n_+)$, quando $t \to 0^+$. Pela Observação 4.5.3, se $u_0 \in \dot{\mathcal{L}}^{\sigma}_{p,\mu}(\mathbb{R}^n_+)$, então $A_1E(t)A_2u_0 \to u_0$ em $\dot{\mathcal{L}}^{\sigma}_{p,\mu}(\mathbb{R}^n_+)$, quando $t \to 0^+$. Portanto, desde que u satisfaz a equação integral (4.3.5), é suficiente mostrar que

$$||B(u,u)(t)||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)} \longrightarrow 0$$
, quando $t \to 0^+$. (4.5.38)

Para isto, primeiro afirmamos que

$$t^{\frac{\alpha}{2}} \|A_1 E(t) A_2 u_0\|_{\dot{\mathcal{L}}_{\sigma,\nu}(\mathbb{R}^n)} \to 0$$
, quando $t \to 0^+$. (4.5.39)

Com efeito, usando a Proposição 2.2.1 e o Lema 4.5.1, temos que

$$\dot{\mathcal{L}}_{p,\mu}^{\sigma}(\mathbb{R}_{+}^{n}) \subset \overline{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}_{+}^{n}) \cap \dot{\mathcal{L}}_{p,\mu}^{\sigma}(\mathbb{R}_{+}^{n})}^{\|\cdot\|_{p,\mu}},$$

pois $1 \le p < q$. Considere uma sequência

$$\{u_{0,m}\}_{m\in\mathbb{N}}\subset\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)\cap\dot{\mathcal{L}}^{\sigma}_{p,\mu}(\mathbb{R}^n_+)$$

tal que $u_{0,m} \to u_0$ em $\check{\mathcal{L}}^{\sigma}_{p,\mu}(\mathbb{R}^n_+)$. Para cada m fixado em \mathbb{N} , usamos (4.5.1) para obter

$$\begin{split} t^{\frac{\alpha}{2}} \|A_1 E(t) A_2 u_{0,m}\|_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)} &\lesssim \lim_{m \to \infty} t^{\frac{\alpha}{2}} \|A_2 u_{0,m}\|_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)} \\ &\lesssim t^{\frac{\alpha}{2}} \|u_{0,m}\|_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)} \to 0 \text{, quando } t \to 0^+. \end{split}$$

Agora,

$$t^{\frac{\alpha}{2}} \|A_{1}E(t)A_{2}u_{0}\|_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^{n}_{+})} \leq t^{\frac{\alpha}{2}} \|E(t)A_{2}(u_{0,m} - u_{0})\|_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^{n}_{+})} + t^{\frac{\alpha}{2}} \|A_{1}E(t)A_{2}u_{0,m}\|_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^{n}_{+})}$$

$$\leq C \|u_{0,m} - u_{0}\|_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^{n}_{+})} + t^{\frac{\alpha}{2}} \|A_{1}E(t)A_{2}u_{0,m}\|_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^{n}_{+})}. \tag{4.5.40}$$

Computando $\limsup_{t\to 0^+}$ em (4.5.40), resulta que

$$\limsup_{t \to 0^{+}} t^{\frac{\alpha}{2}} \|A_{1}E(t)A_{2}u_{0}\|_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^{n}_{+})} \leq C \|u_{0,m} - u_{0}\|_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^{n}_{+})} + \limsup_{t \to 0^{+}} t^{\frac{\alpha}{2}} \|A_{1}E(t)A_{2}u_{0,m}\|_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^{n}_{+})}$$

$$\leq C \|u_{0,m} - u_{0}\|_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^{n}_{+})} + 0$$

$$= C \|u_{0,m} - u_{0}\|_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^{n}_{+})}.$$

$$(4.5.41)$$

Obtemos a convergência (4.5.39) fazendo $m \to \infty$ em (4.5.41). Observe que para provar (4.5.38) é suficiente verificar que

$$\lim_{t \to 0^+} t^{\frac{\alpha}{2}} \|u(\cdot, t)\|_{\dot{\mathcal{L}}_{q, \mu}(\mathbb{R}^n_+)} = 0. \tag{4.5.42}$$

De fato, note que uma simples adaptação na prova de (4.5.31) (ou (4.5.33)) produz

$$||B(u,u)(t)||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)} \le K_2 \sup_{0 < t < T} t^{\frac{\alpha}{2}} ||u(t)||_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)} \sup_{0 < t < T} ||u(t)||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+)}, \tag{4.5.43}$$

para todo 0 < t < T. Assim, tomando $T \to 0^+$ em (4.5.43) e usando (4.5.42), obtemos (4.5.38).

Para finalizar a prova, precisamos provar (4.5.42). Por (4.3.5) e (4.5.39) basta mostrar que

$$\lim_{t \to 0^+} t^{\frac{\alpha}{2}} \|B(u, u)(t)\|_{\dot{\mathcal{L}}_{q, \mu}(\mathbb{R}^n_+)} = 0. \tag{4.5.44}$$

Devido ao argumento de ponto fixo usado na prova do Teorema 4.4.1, sabemos que a solução u é o limite da sequência de Picard

$$u_1 = A_1 E(t) A_2 u_0 (4.5.45)$$

$$u_{k+1} = u_1 + B(u_k, u_k)(\cdot, t), \tag{4.5.46}$$

onde

$$B(u_k, u_k)(\cdot, t) = \int_0^t B_1 \nabla \cdot G(t - s) B_2(u_k \otimes u_k)(s) ds.$$

Por (4.5.39), segue que

$$\lim_{t \to 0^+} \sup_{0 < s < t} s^{\frac{\alpha}{2}} \|u_1(s)\|_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)} = \lim_{t \to 0^+} t^{\frac{\alpha}{2}} \|A_1 E(t) A_2 u_0\|_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)} = 0. \tag{4.5.47}$$

Uma adaptação da prova de (4.5.29) produz

$$t^{\frac{\alpha}{2}} \|B(u_1, u_1)\|_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)} \lesssim \left(\sup_{0 < s < t} s^{\frac{\alpha}{2}} \|u_1(s)\|_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)} \right)^2. \tag{4.5.48}$$

Tomando o $\lim_{t\to 0^+}$ em (4.5.48) e usando (4.5.47), obtemos (4.5.44) com u_1 no lugar de u. Assim, segue que u_2 satisfaz (4.5.42). Usando um argumento de indução, pode-se mostrar que

$$\lim_{t \to 0^+} t^{\frac{\alpha}{2}} \|B(u_k, u_k)(t)\|_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^n_+)} = 0, \tag{4.5.49}$$

para todo k. Finalmente, (4.5.44) é verificada, porque $B(u_k, u_k) \to B(u, u)$ em H_q (pois $u_k \to u$ em H_q) e a convergência em H_q preserva a propriedade (4.5.42).

Parte (iii) (Espaços com peso)

Como 1 < l < p e k > n - l, segue pelo Lema 2.1.3 (i) e (iii) que as inclusões

$$\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^n_+) \subset \dot{\mathcal{L}}_{l,\mu}(\mathbb{R}^n_+) \subset L^l_{-k/l}(\mathbb{R}^n_+)$$

são contínuas, e então

$$u \in H_q \subset BC((0,\infty); (L^l_{-k/l})^n(\mathbb{R}^n_+)).$$

Falta apenas mostrar que

$$u(\cdot, t) \to u_0 \text{ em } (L^l_{-k/l})^n(\mathbb{R}^n_+), \text{ quando } t \to 0^+.$$
 (4.5.50)

Seja $l = \frac{p}{\eta+1} > 1$ com $0 < \eta < \frac{p}{q}$, e seja $\frac{1}{d} = \frac{1}{p} + \frac{1}{q}$. Então 1 < d < l, e usando o Lema 4.5.1 e a desigualdade de Hölder (2.1.14), temos

$$||B(u,u)(t)||_{\dot{\mathcal{L}}_{l,\mu}(\mathbb{R}^{n}_{+})} \leq C \int_{0}^{t} (t-s)^{\frac{n-\mu}{2l} - \frac{n-\mu}{2d} - \frac{1}{2}} s^{-\frac{\alpha}{2}} ds \sup_{t>0} ||u(t)||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^{n}_{+})} \sup_{t>0} t^{\frac{\alpha}{2}} ||u(t)||_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^{n}_{+})}$$

$$\leq C t^{\frac{\eta}{2}} \sup_{t>0} ||u(t)||_{\dot{\mathcal{L}}_{p,\mu}(\mathbb{R}^{n}_{+})} \sup_{t>0} t^{\frac{\alpha}{2}} ||u(t)||_{\dot{\mathcal{L}}_{q,\mu}(\mathbb{R}^{n}_{+})}$$

$$\leq C t^{\frac{\eta}{2}} ||u||^{2}_{H_{q}}. \tag{4.5.52}$$

Desde que $\frac{\eta}{2} > 0$, segue por (4.5.52) que $B(u,u)(t) \to 0$ em $\dot{\mathcal{L}}_{l,\mu}^{\sigma}(\mathbb{R}_{+}^{n})$, quando $t \to 0^{+}$. Como a inclusão $\dot{\mathcal{L}}_{l,\mu}(\mathbb{R}_{+}^{n}) \subset L_{-k/l}^{l}(\mathbb{R}_{+}^{n})$ é contínua, concluímos que

$$B(u, u)(t) \to 0 \text{ em } (L^l_{-k/l})^n(\mathbb{R}^n_+), \text{ quando } t \to 0^+.$$
 (4.5.53)

Portanto, para mostrar (4.5.50) falta apenas verificar que

$$A_1 E(t) A_2 u_0 \to u_0 \text{ em } (L^l_{-k/l})^n(\mathbb{R}^n_+), \text{ quando } t \to 0^+,$$
 (4.5.54)

pois $u(t)=A_1E(t)A_2u_0+B(u,u)(t)$. Na sequência mostraremos (4.5.54). O semigrupo do calor S(t) em \mathbb{R}^n é um C_0 -semigrupo em $(L^l_{-k/l})^n(\mathbb{R}^n)$ (veja [30, pg.135]). Relembrando que $E(t)u_0=rS(t)\tilde{e}u_0$, obtemos

$$E(t)u_0 - u_0 = rS(t)\tilde{e}u_0 - r\tilde{e}u_0.$$

Assim, pela óbvia continuidade do operador restrição r,

$$||E(t)u_0 - u_0||_{(L^l_{-k/l})^n(\mathbb{R}^n_+)} \le ||S(t)\tilde{e}u_0 - \tilde{e}u_0||_{(L^l_{-k/l})^n(\mathbb{R}^n)} \to 0$$
, quando $t \to 0^+$, (4.5.55)

pois $\tilde{e}u_0 \in L^l_{-k/l}(\mathbb{R}^n)$. Desde que A_1 e A_2 são essencialmente composição de operadores sin-

gulares, segue que eles são contínuos em $L^l_{-k/l}$ (veja [48], [7]). Logo $\{E(t)\}_{t\geq 0}$ é contínuo em $L^l_{-k/l}(\mathbb{R}^n_+)$. Finalmente, (4.5.54) segue por (4.5.55) e a continuidade dos operadores A_1 e A_2 em $L^l_{-k/l}$.

4.5.4 Prova do Corolário 4.4.2

Como já apontado na seção anterior, a solução do Teorema 4.4.1 pode ser obtida como o limite em H_q da sequência de Picard:

$$\begin{cases} u_1(\cdot,t) = A_1 E(t) A_2 u_0 \\ u_{k+1}(\cdot,t) = u_1(\cdot,t) + B(u_k,u_k)(\cdot,t). \end{cases}$$
(4.5.56)

Usando a propriedade do núcleo do calor em \mathbb{R}^n

$$g(x,t) = \lambda^n g(\lambda x, \lambda^2 t)$$
 para todo $\lambda > 0$, (4.5.57)

e o fato que u_0 é homogênea de grau -1, segue que

$$G(t)u_0(x) = \lambda G(\lambda^2 t)u_0(\lambda x). \tag{4.5.58}$$

De fato, primeiro note que

$$E(\lambda^2 t) u_0(\lambda x) = [rS(\lambda^2 t)\tilde{e}u_0](\lambda x). \tag{4.5.59}$$

Logo, por (4.5.57) e (4.5.59), temos que

$$E(\lambda^{2}t)u_{0}(\lambda x) = r \int_{\mathbb{R}^{n}} g(\lambda x - y, \lambda^{2}t)\tilde{e}u_{0}(y)dy$$

$$= r \int_{\mathbb{R}^{n}} g(\lambda x - \lambda y, \lambda^{2}t)\tilde{e}u_{0}(\lambda y)\lambda^{n}dy$$

$$= r \int_{\mathbb{R}^{n}} \lambda^{-n}g(x - y, t)\tilde{e}u_{0}(\lambda y)\lambda^{n}dy$$

$$= r \int_{\mathbb{R}^{n}} g(x - y, t)\tilde{e}u_{0}(\lambda y)dy.$$

Agora a homogeneidade do dado inicial implica em nossa afirmação, pois

$$E(\lambda^{2}t)u_{0}(\lambda x) = r \int_{\mathbb{R}^{n}} g(x-y,t)\tilde{e}\lambda^{-1}u_{0}(y)dy$$
$$= \lambda^{-1}[rS(t)\tilde{e}u_{0}](x)$$
$$= \lambda^{-1}E(t)u_{0}(x). \tag{4.5.60}$$

Analogamente, temos que

$$H(t)u_0(x) = \lambda H(\lambda^2 t)u_0(\lambda x). \tag{4.5.61}$$

Portanto, (4.5.58) segue pela definição de G(t) (veja (4.2.33)). Usando (4.5.60), vamos mostrar que $\lambda u_1(\lambda x, \lambda^2 t) = u_1(x, t)$. De fato, note que $V_i u_0(\lambda x) = \lambda^{-1} V_i u_0(x)$ (i = 1, 2). Portanto, substituindo $V_i u_0(\lambda x)$ por $u_0(\lambda x)$ em (4.5.60), temos

$$\lambda u_{1}(\lambda x, \lambda^{2}t) = \lambda [E(\lambda^{2}t)V_{2}u_{0}(\lambda x) - SUE(\lambda^{2}t)V_{1}u_{0}(\lambda x), UE(\lambda^{2}t)V_{1}u_{0}(\lambda x)]$$

$$= \lambda \lambda^{-1}[E(t)V_{2}u_{0}(x) - SUE(t)V_{1}u_{0}(x), UE(t)V_{1}u_{0}(x)]$$

$$= [E(t)V_{2}u_{0}(x) - SUE(t)V_{1}u_{0}(x), UE(t)V_{1}u_{0}(x)]$$

$$= u_{1}(x, t). \tag{4.5.62}$$

Agora, observe que os operadores S_j , R_j , r, e, \tilde{e} são operadores de grau zero, isto é,

$$S_j[\delta_{\lambda}f](x) = S_j[f](\lambda x) \ \forall \lambda > 0,$$

onde $\delta_{\lambda}f(x)=f(\lambda x)$; o mesmo acontece para $R_j,\,r,\,e,\,\tilde{e}$. Desde que as matrizes de operadores B_1 e B_2 dependem essencialmente destes operadores, então B_1 e B_2 também são de grau zero. Logo, usando este último fato, (4.5.62), a propriedade (4.5.58) e a definição de B(u,v) segue que

$$\lambda u_2(\lambda x, \lambda^2 t) = u_2(x, t). \tag{4.5.63}$$

Usando um argumento de indução, é fácil ver que

$$\lambda u_k(\lambda x, \lambda^2 t) = u_k(x, t), \text{ para todo } k > 0.$$
 (4.5.64)

Agora, por (4.5.64) e a invariância da norma em H_q (veja (4.3.4)), obtemos

$$\begin{aligned} \|u(x,t) - \lambda u(\lambda x, \lambda^2 t)\|_{H_q} &= \|u(x,t) - u_k(x,t) + u_k(x,t) - \lambda u(\lambda x, \lambda^2 t)\|_{H_q} \\ &\leq \|u(x,t) - u_k(x,t)\|_{H_q} + \|\lambda u_k(\lambda x, \lambda^2 t) - \lambda u(\lambda x, \lambda^2 t)\|_{H_q} \\ &= 2\|u(x,t) - u_k(x,t)\|_{H_q} \to 0, \end{aligned}$$

quando $k \to \infty$. Portanto

$$u(x,t) = \lambda u(\lambda x, \lambda^2 t), \forall \lambda > 0,$$

e então u é uma solução auto-similar.

4.5.5 Prova do Teorema **4.4.3**

Vamos demonstrar somente a segunda equivalência. A primeira segue por argumentos semelhantes, e a deixamos a cargo do leitor. Primeiramente, se u(t) e v(t) satisfazem a equação integral (4.3.5), então

$$||u(t) - v(t)||_{\dot{\mathcal{L}}_{q,\mu}} \le ||A_1 E(t) A_2(u_0 - v_0)||_{\dot{\mathcal{L}}_{q,\mu}} + ||B(u,u)(t) - B(v,v)(t)||_{\dot{\mathcal{L}}_{q,\mu}}.$$
(4.5.65)

Agora observe que

$$B(u, u)(t) - B(v, v)(t) = B(u - v, u)(t) + B(v, u - v)(t).$$
(4.5.66)

Substituindo (4.5.66) em (4.5.65) e usando a desigualdade triangular, obtemos

$$||u(t) - v(t)||_{\dot{\mathcal{L}}_{q,\mu}} \le ||A_1 E(t) A_2(u_0 - v_0)||_{\dot{\mathcal{L}}_{q,\mu}} + ||B(u - v, u)(t)||_{\dot{\mathcal{L}}_{q,\mu}} + + ||B(v, u - v)(t)||_{\dot{\mathcal{L}}_{q,\mu}} \stackrel{\text{def}}{=} I_0 + I_1 + I_2.$$
(4.5.67)

Desde que

$$\lim_{t \to \infty} t^{\frac{\alpha}{2}} \|A_1 E(t) A_2 (u_0 - v_0)\|_{\dot{\mathcal{L}}_{q,\mu}} = 0, \tag{4.5.68}$$

precisamos mostrar que

$$\lim_{t \to \infty} t^{\frac{\alpha}{2}} (I_1(t) + I_2(t)) = 0. \tag{4.5.69}$$

Usando o Lema 4.5.1, a desigualdade de Hölder e depois fazendo a substituição $s \to st$, segue que

$$I_{1}(t) \leq C_{1} \int_{0}^{t} (t-s)^{\frac{\alpha}{2}-1} s^{-\alpha} s^{\frac{\alpha}{2}} \|u(s) - v(s)\|_{\dot{\mathcal{L}}_{q,\mu}} ds \sup_{t>0} t^{\frac{\alpha}{2}} \|u(t)\|_{\dot{\mathcal{L}}_{q,\mu}}$$

$$= C_{1} t^{-\frac{\alpha}{2}} \int_{0}^{1} (1-s)^{\frac{\alpha}{2}-1} s^{-\alpha} (ts)^{\frac{\alpha}{2}} \|u(ts) - v(ts)\|_{\dot{\mathcal{L}}_{q,\mu}} ds \sup_{t>0} t^{\frac{\alpha}{2}} \|u(t)\|_{\dot{\mathcal{L}}_{q,\mu}}.$$

$$(4.5.70)$$

Similarmente,

$$I_{2}(t) = C_{1}t^{-\frac{\alpha}{2}} \int_{0}^{1} (1-s)^{\frac{\alpha}{2}-1} s^{-\alpha}(ts)^{\frac{\alpha}{2}} \|u(ts) - v(ts)\|_{\dot{\mathcal{L}}_{q,\mu}} ds \sup_{t>0} t^{\frac{\alpha}{2}} \|v(t)\|_{\dot{\mathcal{L}}_{q,\mu}}. \quad (4.5.71)$$

Tomando $\Gamma(t):=t^{\frac{\alpha}{2}}\|u(t)-v(t)\|_{\dot{\mathcal{L}}_{q,\mu}}$, note que o $\limsup_{t\to\infty}\Gamma(t)$ existe, pois $u,v\in H_q$ e por definição

$$\lim\sup_{t\to\infty}\Gamma(t)=\lim_{k\to\infty}\{\sup_{t>k}\Gamma(t)\},\ k\in\mathbb{N}.$$

Pelo Teorema 4.4.1, as soluções u, v pertencem a bola fechada $\mathcal{B}(0, 2\varepsilon)$ em H_q . Logo

$$\sup_{t>k} \Gamma(t) = \sup_{t>k} t^{\frac{\alpha}{2}} ||u(t) - v(t)||_{\dot{\mathcal{L}}_{q,\mu}} \le 4\varepsilon,$$

e então $\sup_{t\geq k}\Gamma(t)\in L^1(]0,1[)$. Usando (4.5.70) e (4.5.71), e o teorema da convergência dominada, temos que

$$\limsup_{t \to \infty} t^{\frac{\alpha}{2}} (I_1(t) + I_2(t)) \leq C_1 \beta (1 - \alpha, \frac{\alpha}{2}) \limsup_{t \to \infty} \Gamma(t) (\sup_{t > 0} t^{\frac{\alpha}{2}} ||u(t)||_{\dot{\mathcal{L}}_{q,\mu}} + \sup_{t > 0} t^{\frac{\alpha}{2}} ||v(t)||_{\dot{\mathcal{L}}_{q,\mu}})$$

$$\leq K.4\varepsilon \limsup_{t \to \infty} \Gamma(t), \tag{4.5.72}$$

pois pela prova de (4.5.25) e (4.5.29) vemos que $C_1\beta(1-\alpha,\frac{\alpha}{2})=K_1\leq K_1+K_2=K$. Agora, multiplicando (4.5.67) por $t^{\frac{\alpha}{2}}$, aplicando o $\limsup_{t\to+\infty}$ no resultado e usando (4.5.68) e

(4.5.72), obtemos que

$$\limsup_{t \to \infty} \Gamma(t) \leq \lim_{t \to \infty} t^{\frac{\alpha}{2}} ||A_1 E(t) A_2(u_0 - v_0)||_{\dot{\mathcal{L}}_{q,\mu}} + 4K\varepsilon \limsup_{t \to \infty} \Gamma(t)$$

$$\leq 0 + 4K\varepsilon \limsup_{t \to \infty} \Gamma(t)$$

$$= 4K\varepsilon \limsup_{t \to \infty} \Gamma(t).$$
(4.5.73)

Como $4K\varepsilon < 1$ e $\Gamma(t) \ge 0$, a desigualdade (4.5.73) implica que

$$0 \le (1 - 4K\varepsilon) \limsup_{t \to \infty} \Gamma(t) \le 0,$$

e então

$$\lim_{t \to \infty} \Gamma(t) = \limsup_{t \to \infty} \Gamma(t) = 0,$$

o que implica (4.5.69) e consequentemente

$$\lim_{t \to +\infty} t^{\frac{\alpha}{2}} ||u(t) - v(t)||_{H_q} = 0.$$

Para mostrar que (4.4.3) implica (4.4.4), tome $\Gamma(t)=t^{\frac{\alpha}{2}}\|u(t)-v(t)\|_{\dot{\mathcal{L}}_{q,\mu}}$ e suponha que $\lim_{t\to\infty}\Gamma(t)=0$. Desde que u e v são soluções do Teorema 4.4.1, então u e v satisfazem a equação integral (4.3.5). Logo, podemos escrever

$$A_1 E(t) A_2(u_0 - v_0) = u(t) - v(t) - \left[B(u, u)(t) - B(v, v)(t) \right]. \tag{4.5.74}$$

Usando a desigualdade triangular e a hipótese $\lim_{t\to\infty} \Gamma(t) = 0$, resulta que

$$\limsup_{t \to \infty} t^{\frac{\alpha}{2}} \|A_{1}E(t)A_{2}(u_{0} - v_{0})\|_{\dot{\mathcal{L}}_{q,\mu}} \leq \limsup_{t \to \infty} t^{\frac{\alpha}{2}} \|u(t) - v(t)\|_{\dot{\mathcal{L}}_{q,\mu}}
+ \limsup_{t \to \infty} t^{\frac{\alpha}{2}} \|[B(u,u)(t) - B(v,v)(t)\|_{\dot{\mathcal{L}}_{q,\mu}}
\leq 0 + \limsup_{t \to \infty} t^{\frac{\alpha}{2}} \|[B(u,u)(t) - B(v,v)(t)\|_{\dot{\mathcal{L}}_{q,\mu}}
= \limsup_{t \to \infty} t^{\frac{\alpha}{2}} \|B(u,u)(t) - B(v,v)(t)\|_{\dot{\mathcal{L}}_{q,\mu}}.$$
(4.5.75)

Pela definição de I_1 , I_2 (veja (4.5.67)) e a igualdade (4.5.66), observe que

$$t^{\frac{\alpha}{2}} \|B(u,u)(t) - B(v,v)(t)\|_{\dot{\mathcal{L}}_{a,u}} \le t^{\frac{\alpha}{2}} (I_1(t) + I_2(t)). \tag{4.5.76}$$

CAPÍTULO 4. AS EQUAÇÕES DE NAVIER-STOKES NO SEMI-ESPAÇO

103

Tomando o $\limsup_{t\to\infty}$ em (4.5.76), segue pela desigualdade (4.5.72) que

$$\limsup_{t \to \infty} t^{\frac{\alpha}{2}} \|B(u, u)(t) - B(v, v)(t)\|_{\dot{\mathcal{L}}_{q, \mu}} \le 4K\varepsilon \limsup_{t \to \infty} t^{\frac{\alpha}{2}} \Gamma(t) = 0. \tag{4.5.77}$$

Substituindo (4.5.77) em (4.5.75), obtemos a convergência desejada.

Referências Bibliográficas

- [1] de Almeida, Marcelo F. e Ferreira, Lucas C. F., On the well-posedness and large time behavior for Boussinesq equations in Morrey spaces. Differential and Integral Equations, 2011. 1.1
- [2] Abidi, H. e Hmidi, T., On the global well-posedness for Boussinesq system. *J. Differential Equations* 233 (2007), 199–220. 1.1
- [3] Biler, P., The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, Studia Math. **114** (1995), no. 2, 181–205. **2.1**
- [4] Blasco, O., Alberto, R. e Vega, L., Non-interpolation in Morrey-Campanato and block spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. **28** (1999), no. 1, 31–40. **2.1**
- [5] Brandolese, L. e Schonbek, M., E., Large time decay and growth for solutions of a viscous Boussinesq system, *Preprint arXiv:1003.4921v1*, 2010. 1.1
- [6] Caffarelli, L., Kohn, R. e Nirenberg, L., Partial regularity of suitable weak solutions of the Navier–Stokes equations, Comm. Pure Appl. Math. **35** (1982), 777–831. 1
- [7] Coifman, R. R. e Fefferman, C., Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51 (1974), 241–250. 2.3.10, 4.5.3
- [8] Calderon, A. P. e Zygmund, A., On singular integrals, Amer. J. Math. **78** (1956), 289–309.
- [9] Campanato, S., Proprietá di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa (3) **18** (1964), 137–160. **2.1**

- [10] Cannon, J. R. e DiBenedetto, E., The initial value problem for the Boussinesq equations with data in L^p , Approximation methods for Navier-Stokes problems, Lecture Notes in Math. 771 (1980), 129–144. 1.1
- [11] Cannone, M., Planchon, F. e Schonbek, M., Strong solutions to the incompressible Navier-Stokes equations in the half-space, Comm. Partial Differential Equations **25** (2000), no. 5-6, 903–924. 1.2, 4, 4.2, 4.2.1
- [12] Cannone, M. e Karch, G., Smooth or singular solutions to the Navier-Stokes system?, *J. Differential Equations* 197 (2004), 247–274. 1.1, 1.2
- [13] Chae, Dongho, Global regularity for the 2D Boussinesq equations with partial viscosity terms. *Adv. Math.* 203 (2006), 497–513. 1.1
- [14] Chandrasekhar, S., *Hidrodinamic and Hydromagnetic Stability*, Dover, New york, 1981.
- [15] Chen, Z., Kagei, Y. e Miyakawa, T., Remarks on stability of purely conductive steady states to the exterior Boussinesq problem, *Adv. Math. Sci. Appl.*, 1 (1992), 411–430. 1.1
- [16] Danchin, R. e Paicu, M., Global well-posedness issue for the inviscid Boussinesq system with Youdovitch's type data, *Commun. Math. Phys.* 290 (2009), 1–14. 1.1
- [17] Desch, W., Hieber, M. e Prüss, J., L^p -theory of the Stokes equation in a half-space, J. Evol. Equ. 1 (2001), no. 1, 115–142. 1.2, 4.1
- [18] Evans, L. C., Partial differential equations. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. 2.2.1
- [19] Fefferman, C., Navier-Stokes Equation. Veja http://www.claymath.org/millennium/Navier-Stokes-Equations. 1
- [20] Ferreira, L.C.F. e Villamizar Roa, E.J., Well-posedness and asymptotic behaviour for the convection problem in \mathbb{R}^n , Nonlinearity **19** (2006), 2169–2191. 1.1, 2.1.4
- [21] Ferreira, L.C.F. e Villamizar-Roa, E.J., Existence of solutions to the convection problem in a pseudomeasure-type space, *Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.* 464 (2008), 1983–1999. 1.1

- [22] Ferreira, L.C.F. e Villamizar-Roa, E.J., On the stability problem for the Boussinesq equations in weak- L^p spaces, *Commun. Pure Appl. Anal.* 9 (2010), 667–684. 1.1
- [23] Folland, G. B., Introduction to partial differential equations. Second edition. Princeton University Press, Princeton, NJ, 1995. 2.2.1
- [24] Galdi, G. e Padula, M., A new approach to energy theory in the stability of fluid motion, *Arch. Rational Mech. Anal.*, 110 (1990), 187–286. 1.1
- [25] Giga, Y. e Miyakawa, T., Navier-Stokes flow in \mathbb{R}^3 with measures as initial vorticity and Morrey spaces, *Comm. Partial Differential Equations* **14** (1989), 577–618. 1.1, 1.2, 2.1, 2.1, 3.2.2
- [26] Giga, Y. e Kambe, T., Large time behavior of the vorticity of two-dimensional viscous flow and its application to vortex formation. Comm. Math. Phys. 117 (1988), no. 4, 549–568. 1.2, 2.1
- [27] Grafakos, L., Classical and modern Fourier analysis. Pearson Education, Inc., Upper Saddle River, NJ, 2004. xii+931 pp. ISBN: 0-13-035399-X. 2.3, 2.3, 2.3.8, 2.3.1
- [28] Hishida, T., On a class of Stable Steady flow to the Exterior Convection Problem, *J. Differential Equations* 141 (1997), 54-85. 1.1
- [29] Kato, T., Strong L^p -solutions of the Navier- Stokes equation in \mathbb{R}^m , with applications to weak solutions, *Math. Z.* 187 (1984), 471–480. 1.1, 1.2
- [30] Kato, T., Strong solutions of the Navier-Stokes equation in Morrey spaces, *Bol. Soc. Brasil. Mat.* **22** (1992), 127–155. 1.1, 1.2, 2.1, 2.1, 2.1, 2.1, 2.2.1, 2.2.1, 2.2.1, 2.2.1, 2.2.1, 2.3, 2.3.4, 3.2.2, 4.5.1, 4.5.3
- [31] Kato, T. e Fujita, H., On the nonstationary Navier-Stokes system, *Rend. Sem. Mat. Univ. Padova* 32 (1962), 243–260. 1.1, 1.2
- [32] Karch, G. e Prioux, N., Self-similarity in viscous Boussinesq equations. *Proc. Amer. Math. Soc.* 136 (2008), 879-888. 1.1
- [33] Kozono, H. e Yamazaki, M., The stability of small stationary solutions in Morrey spaces of the Navier-Stokes equation, Indiana Univ. Math. J. **44** (1995), no. 4, 1307–1336. 1.2, 2.3.1

- [34] Kufner, A., John, O. and Fucik, O., Functions Spaces. Noordhoff International Publishing. 1977. 454+XV pages. 2.1
- [35] Ladyzhenskaya, O. A., *The mathematical theory of viscous incompressible flow*, Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol. 2 Gordon and Breach, New York, 1969 1
- [36] Lemarie-Rieusset, P. G., Recent developments in the Navier-Stokes problem, Research Notes in Mathematics, 431 Chapman & Hall/CRC, Boca Raton, FL, (2002). 1.2, 2.1
- [37] Leray, J., Essai sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934), 193–248. 1
- [38] Lewis, J. E. The initial-boundary value problem for the Navier-Stokes equations with data in L^p . Indiana Univ. Math. J. 22 (1972/73), 739–761. 1.2
- [39] Morrey, C. B. Jr., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. **43** (1938), no. 1, 126–166. 2.1
- [40] Peetre, J., On the theory of $\mathcal{L}_{p,\lambda}$ spaces, J. Functional Analysis 4 (1969), 71–87. 2.1, 2.1, 2.3, 2.3.4
- [41] Peetre, J., On convolution operators leaving $\mathcal{L}_{p,\lambda}$ spaces invariant, Ann. Mat. Pura Appl. **72** (1966), 295–304. 2.3.1, 2.3.9
- [42] Prioux, N., Asymtotic Stability results for some nonlinear evolution equations, *Adv. Math. Sci. Appl.* 17 (2007), 33–65. 1.1
- [43] Ruiz, A. and Vega, L., Corrigenda to: "Unique continuation for Schrödinger operators with potential in Morrey spaces" Publ. Mat. **35** (1991), no. 1, 291–298; and a remark on interpolation of Morrey spaces, Publ. Mat. **39** (1995), no. 2, 405–411. 2.1
- [44] Saal, J., Stokes and Navier-Stokes equations with Robin boundary conditions in a half-space, J. Math. Fluid Mech. 8 (2006), no. 2, 211–241. 1.2
- [45] Scheffer, V., Turbulence and Hausdorff dimension, in Turbulence and the Navier–Stokes Equations, Lecture Notes in Math. **565**, Springer Verlag, Berlin, 1976, 94–112. 1

- [46] Stein, E. M. and Zygmund, A., Boundedness of translation invariant operators on Hölder spaces and L^p -spaces, Ann. of Math. **85** (1967), 337–349. 2.3
- [47] Stein, E. M., Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1970. 2.3
- [48] Stein, E. M., Note on singular integrals. Proc. Amer. Math. Soc. 8 (1957), 250–254. 2.3, 2.3.10, 4.5.3
- [49] Tao, T., Why global regularity for Navier–Stokes is hard. Veja http://terrytao.wordpress.com/2007/03/18/why-global-regularity-for-navier-stokes-is-hard.
- [50] Taylor, M. E., Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, *Comm. Partial Differential Equations* **17** (1992), 1407–1456. 1.1, 1.2, 2.1, 2.3, 2.3.1, 2.3.9
- [51] Taylor, M. E., Partial differential equations. Basic theory. Texts in Applied Mathematics, 23. Springer-Verlag, New York, 1996. xvi+563 pp. 2.2.2
- [52] Ukai, S., A solution formula for the Stokes equation in \mathbb{R}^n_+ , Comm. Pure Appl. Math. **40** (1987), no. 5, 611–621. 1.2, 4, 4.1, 4.1, 4.1.1
- [53] Yamazaki, M., The Navier-Stokes equations in the weak- L^n space with time-dependent external force. Math. Ann. 317 (2000), no. 4, 635–675. 1.2
- [54] Yosida, K., Functional Analysis, Reprint of the sixth (1980) edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.
- [55] Weisseler, F. B., The Navier-Stokes initial value problem in L^p , Arch. Rational Mech. Anal. **74** (1980), no. 3, 219–230. 1.2
- [56] Zorko, C. T., Morrey space, *Proc. Amer. Math. Soc.* **98** (1986), 586–592. 2.2.1, 2.2.1