

Universidade Federal de Pernambuco Centro de Ciências Exatas e da Natureza Programa de Pós-Graduação em Matemática Curso de Mestrado em Matemática

Soluções Homográficas e Configurações Centrais

por

Débora Lopes da Silva

sob orientação do

Prof. Dr. Hildeberto Eulalio Cabral

Dissertação apresentada ao Corpo Docente do Programa de Pós-Graduação em Matemática - CCEN - UFPE, como requisito parcial para obtenção do título de Mestre em Matemática.

Recife - PE Fevereiro /2007

UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE MATEMÁTICA

Soluções Homográficas e Configurações Centrais

Dissertação apresentada ao Departamento de Matemática da Universidade Federal de Pernambuco, como parte dos requisitos para obtenção do título de Mestre em Matemática.

Débora Lopes da Silva

Orientador: Hildeberto Cabral

Silva, Débora Lopes da

Soluções Homográficas e Configurações Centrais / Débora Lopes da Silva Dória. - Recife: O autor, 2007.

vii, 72 p.: il., fig.

Dissertação (mestrado) - Universidade Federal de Pernambuco. CCEN. Matemática, 2007.

Inclui bibliografia.

- 1. Mecânica Celeste. 2. Configurações Centrais.
- 3. Soluções Homográficas. I. Título.
 - 521 CDD (22.ed.) MEI2007-040

Tese submetida ao Corpo Docente do Programa de Pós-graduação do Departamento de Matemática da Universidade Federal de Pernambuco como parte dos requisitos necessários para a obtenção do Grau de Mestrado em Ciências.

Aprovado: Hildet all OLR

Hildeberto Eulálio Cabral, DMAT-UFPE

Orientador

Eduardo Shirllipe Goes Leandro DMAT-UFPE

Alán Almeida Santos, DM-UFS

SOLUÇÕES HOMOGRÁFICAS E CONFIGURAÇÕES CENTRAIS

Por Débora Lopes da Silva

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE MATEMÁTICA Cidade Universitária - Tels. (081) 2126 - 8414 - Fax: (081) 2126 - 8410 RECIFE - BRASIL

Fevereiro - 2007

Dedicatória

Aos meus pais, Ana Maria Lopes e Argemiro Lopes .

Agradecimentos

À muitos são os meus agradecimentos, primeiramente agradeço à Deus por ter me dado oportunidades de alcançar meus objetivos, e por sua suprema sabedoria em guiar com cuidado os meus passos.

Agradeço a todos os amigos e professores da UFRN, em especial, aos professores, Maria Aparecida, Roberto Sá, Ronaldo e Benedito Tadeu, por terem sido os grandes responsáveis por eu alcançar esta fase da minha vida, e aos PETianos. Quanto ao departamento de matemática da UFPE, agradeço à todos os amigos e colegas que contribuíram direta ou indiretamente com este trabalho. Ao meu amor, amigo e companheiro, Humberto, agradeço pelo carinho, apoio e incentivo, com os quais fui capaz de seguir em frente quando eu achei que num dava mais pra continuar. À funcionária Tânia por toda ajuda.

Não posso deixar de agradecer a família Recife Rugby Clube por todo apoio, e por ser o lugar onde conseguia descarregar todo o meu estresse, em especial à Amandinha, Anete, Gigi, Dany, Dyana e Kátia que, juntamente comigo, formamos um seven no dia da defesa. Não posso esquecer de Chelo nosso queridíssimo técnico, e as outras meninas Nina, Kika, Karla, Manaíra, Lane, Talita e Naty que sempre marcaram presença em minha vida.

Ao meu orientador, professor Hildeberto Cabral, agradeço muito pela paciência e atenção conferidas durante toda execução deste trabalho. Aos membros da banca, Eduardo Leandro e Alan Almeida pelas sugestões. Aos amigos "extra matemática" de Natal que fizeram e fazem parte da minha vida, Macinha, Leide e Sandrina, e também à família Helcai. Agradeço, também, à grande família Solange, Amaranta, Tamira e Audísio. Finalmente, aos meus pais, Argemiro e Ana, e aos meus irmãos Daniel, Hiram e Heber agradeço pelo amor, carinho e apóio sempre constante, sem os quais eu não estaria alcançando meus objetivos e seguindo a profissão que desejo.

O Senhor é o meu pastor e nada me faltará.

Deitar-me faz em verdes pastos,

guia-me mansamente às águas tranqüilas.

Refrigera minha alma,

guia-me pela vereda da justiça por amor do seu nome.

Ainda que eu andasse pelo vale da sombra da morte

não temeria mal algum,

porque tu estás comigo,

a tua vara e o teu cajado me consolam.

Preparas uma mesa perante mim na presença de meus inimigos,

unges a minha cabeça com óleo

e o meu cálice transborda.

Certamente que a bondade e a misericórdia

me seguiram todos os dias da minha vida,

e habitarei na casa do Senhor por longos dias.

Resumo

O objetivo desta dissertação é estudar soluções homográficas do problema Newtoniano de n corpos e as configurações formadas em cada instante fixado, chamadas configurações centrais.

Palavras Chave: Mecânica Celeste, Configuração Central, Soluções Homográficas

A	bstract

The subject this word is to study the homographics solutions of N body problem and its relation with the central configurations.

Key Words: Celestial Mechanics, Central Configuration, Homographic Solution

Conteúdo

\mathbf{B}	ibliog	grafia		1
	Inti	roduçã	0	8
1	Solı	uções l	Homográficas	13
	1.1	O pro	blema de n corpos e Definição de Solução Homográfica	13
	1.2	Trans	formações Ortogonais e Soluções Homográficas	17
	1.3	Soluçõ	ões Homográficas Flat e Não-Flat	20
	1.4	Carac	terização das Soluções Homográficas	36
2	Cor	ıfigura	ações Centrais	39
	2.1	Outra	caracterização das Configurações Centrais	42
	2.2	Aplica	ações	44
		2.2.1	Três Corpos numa Reta	44
		2.2.2	Dois Corpos na Reta, Três Corpos no Plano e Quatro Corpos no	
			Espaço	46
	2.3	O Pro	oblema da Finitude	47
		2.3.1	Um contínuo de equilíbrios relativos no problema de 5 corpos	48
		2.3.2	Configurações Centrais Colineares	50
		2.3.3	Configurações Centrais Planares Não-Colineares	52
		2.3.4	Configurações Centrais Não-Planares	55
	2.4	Colisõ	des Simultâneas	56
3	Solu	ıções H	Iomográficas e Configurações Centrais	63
	3.1	O Pro	bblema de Kepler	63

Bibliografia				
3.4	Soluções de Equilíbrio Relativo	68		
3.3	Geometria das Soluções Homográficas	68		
3.2	Configurações Centrais e Soluções Homográficas	65		

Introdução

A Mecânica Celeste é um ramo da astronomia e da matemática proveniente de duas leis da natureza, a segunda lei da dinâmica que afirma ser a força resultante atuando sobre um corpo igual ao produto de sua massa por sua aceleração, e a lei da gravitação universal que estabelece que a força de atração gravitacional entre dois corpos é diretamente proporcional ao produto de suas massas e inversamente proporcional ao quadrado da distância entre elas. Embora o estudo dos movimentos planetários seja milenar, a Mecâmica Celeste nasceu no século XVII. Mais precisamente, seu início é considerado em 1686, ano em que foi publicado o famoso tratado PhilosophiæNaturalis Principia Mathematica, por Sir Isaac Newton.

O problema de n corpos em Mecânica Celeste consiste em determinar a dinâmica de n corpos no espaço, sob a ação apenas da força gravitacional que age mutuamente entre eles. Para n=2 tal problema está completamente resolvido, pois pode ser reduzido a um problema de força central no qual a força atratora varia com o inverso do quadrado da distância, o chamado problema de Kepler. Para o caso n=3 o problema é o de um sistema dinâmico num espaço de dimensão dezoito, sendo possível baixar sua ordem para oito devido às dez integrais primeiras encontradas por Clairaut e Euler. Esta ordem é ainda muito alta e seria preciso encontrar novas integrais primeiras. No entanto, em 1887 o matemático alemão Bruns mostrou que todas as integrais primeiras que são funções algébricas das coordenadas das posições e velocidades são funções das dez integrais primeiras já encontradas, tornando o problema de 3—corpos analiticamente impossível de ser resolvido. A partir daí, ao invés de buscar soluções para o problema de n—corpos, o que muitos matemáticos têm feito é estudar particularidades do problema. Dentre estas, as soluções homográficas e o tema correlato configurações centrais são os

CONTEÚDO 10

objetivos de estudo deste trabalho.

Uma solução homográfica do problema de n corpos é tal que a configuração inicial é preservada ao longo do tempo a menos de homotetias e rotações. Para n=3, Lagrange [?] mostrou que tal solução é sempre planar, e ele enfatiza (p. 292) que este é um teorema central. No mesmo artigo, Lagrange também mostra que esta tal solução particular do problema de 3 corpos que estão situados nos vértices de um triângulo equilátero, cada vetor posição das massas, com referência ao centro de massa, descreve um movimento Kepleriano, e em cada instante os três corpos continuam formando um triângulo equilátero. O resultado de Lagrange para soluções homográficas é generalizado por Pizzeti (Rend. Acc. Lincei (5)13₁ (1904), 276-283) mostrando que toda solução homográfica flat (ou seja, solução que em cada instante existe um plano contendo os corpos) do problema newtoniano de n corpos é planar. Aqui, estamos supondo que os corpos estão em \mathbb{R}^3 , mas para o caso dos corpos estarem em um espaço de dimensão arbitrária n, Alan Albouy e Chenciner [1] mostraram que uma solução homográfica deve sempre estar em um subespaço fixo de dimensão par. Pizzeti também mostrou que se uma solução homográfica do problema de n corpos não é flat então ela é homotética. Assim, com os dois teoremas dados por Pizzeti, podemos caracterizar todas as soluções homográficas em ou planares ou homotéticas, tornando mais simples a determinação de suas órbitas. Estas soluções têm a característica de que a configuração formada pelos corpos em cada instante é de caráter especial, tais configurações são chamadas de configurações centrais.

Para o problema de *n* corpos da mecânica Newtoniana, uma configuração central é uma configuração de *n* partículas onde o vetor aceleração de cada partícula é um múltiplo escalar comum do vetor posição correspondente, se supusermos que a origem do nosso sistema de coordenadas é o centro de massa. Tal propriedade geométrica justifica o nome dado a este tipo de configuração. A noção de configuração central foi introduzida por Laplace em 1789 conduzido pelo tratamento, por ele dado, as soluções homotéticas de Lagrange. As configurações centrais têm papel relevante no estudo do problema de *n* corpos. Além das órbitas Keplerianas do problema de 2 corpos, as únicas soluções explícitas do problema de *n* corpos são órbitas homográficas que formam em cada instante uma configuração central; de acordo com um teorema provado por Sundman [13] em 1907, todas as órbitas que se iniciam ou terminam em colisão total são assintóticas a um movi-

CONTEÚDO 11

mento homotético, i.e, a configuração formada pelos corpos tende a uma configuração central; todas as mudanças de topologia nas variedades integrais $I_{H,M}$, correspondentes a energia $H = \frac{1}{2} \sum_{i} m_i ||\dot{q}_i|| + U$ e momento angular $M = \sum_{i} m_i q_i \times \dot{q}_i$ constantes, são devidas a configurações centrais. Um exemplo deste tipo de configuração é o caso do triângulo equilátero que pode ser usado para analisar a configuração Sol-Jupiter-Trojanos [11]. Daí, o interesse que muitos matemáticos têm de entender melhor este tipo de configuração. Muitas questões surgem, dentre elas destacamos o problema de determinar a quantidade de configurações centrais para um dado conjunto de massas. Mas, para que essa contagem faça sentido é necessário passarmos ao quociente módulo as rotações (SO(3)) em torno do centro de massa e as homotetias. Contamos, então, as classes de configurações centrais. Esta questão proposta inicialmente por Wintner [13](§360), e reforçada por Smale [9] em sua lista de problemas matemáticos para o próximo século é conhecida como a conjectura de Wintner/Smale: Dadas n massas positivas no problema de n corpos, o número de classes configurações de centrais é finito. A hipótese das massas serem positivas é de extrema importância, pois se uma das massas fosse negativa (força repulsiva) esse número deixaria de ser finito, teríamos na verdade a existência de um contínuo de equilíbrios relativos, [7]. No que diz respeito ao problema da finitude, poucos são os resultados em caráter geral, ou seja, válidos para valores positivos arbitrários das massas m_i . Em 1767, Euler mostrou que existe uma configuração central para cada ordenamento de três massas arbitrárias contidas numa reta. Já, em 1772, Lagrange mostrou que para cada tripla $m_1,\,m_2,\,m_3$ existem exatamente duas configurações centrais planas de três corpos, a saber, triângulos equiláteros com vértices $q_1,\ q_2,\ q_3$ e $q_1,\ q_3,\ q_2.$ Lehmann-Filhés mostrou, em 1891, que para cada ordenamento das massas m_1, \ldots, m_n existe uma configuração central colinear. Um dos resultados de maior importância, foi mostrado por Moulton [3], em 1910, afirmando a existência de uma única configuração central colinear para cada ordenamento dos n-corpos, portanto o número de configurações centrais colineares de n-corpos é $\frac{n!}{2}$. Mais tarde, 1970, Smale [10] mostrou esse resultado de uma forma mais simples. Em 2004, Moeckel e Hampton mostraram que o número de configurações centrais planares de 4 corpos é finito. Alguns resultados de caráter menos geral, mas de importância bastante significativa são dados a seguir. Em 1926, Lindow mostrou que todas as configurações centrais formadas por n massas iguais

CONTEÚDO 12

nos vértices de um polígono regular e 1 massa nula no plano do polígono são simétricas. Em particular, se n=3, existem exatamente 10 configurações centrais. Pedersen mostrou numericamente, em 1944, que no problema restrito de 4 corpos com 3 massas arbitrárias na configuração equilátera de Lagrange, existem 8, 9 ou 10 configurações centrais. Perko e Walter, em 1984, mostraram que as configurações formadas por n massas nos vértices de um polígono regular, com n>3, são centrais se e somente se as massas são iguais. Mais recentemente, Albouy mostrou, em 1995, que todas as configurações centrais de 4 corpos de massas iguais são simétricas. Existem exatamente quatro possibilidades no plano: a configuração colinear, o quadrado, o triângulo equilátero com uma massa no centro, e um triâgulo isósceles com um dos corpos no eixo de simetria. E, em 2001, Moeckel mostrou que para n corpos de massas genericamente arbitrárias em dimensão n-2, o número de configurações centrais é finito.

Este trabalho é essencialmente baseado no livro de Wintner [13], sendo dividido em três capítulos.

No capítulo 1, é feito um estudo sobre soluções homográficas no problema de *n* corpos objetivando os resultados obtidos por Pizzeti em 1904. Veremos também que cada teorema decorre do fato da força atratora ser inversamente proporcional ao quadrado da distância, pois em cada caso construiremos um exemplo mostrando que, se esse não fosse o caso, tais resultados não valeriam.

O capítulo 2 é dedicado ao estudo das configurações centrais onde daremos uma caracterização em termo das distâncias mútuas que são as coordenadas mais apropriadas para tal estudo, devido a sua invariância com relação as rotações e, quanto as homotetias, por um múltiplo escalar. Mostraremos, também, o teorema de Moulton com a demonstração baseada na dada por Smale. Mostraremos o surpreendente resultado dado por Sundman em 1907, com respeito aos corpos colidirem simultaneamente e, no limite, formarem uma configuração central.

O capítulo 3 é a junção dos capítulos anteriores, onde mostraremos a relação existente entre configurações centrais e soluções homográficas, já dada anteriormente em linhas gerais.

Capítulo 1

Soluções Homográficas

Neste capítulo falaremos sobre um tipo especial de solução do problema newtoniano de $n \geq 3$ corpos em \mathbb{R}^3 , as soluções homográficas. Os resultados principais são os teoremas 1 e 2, toda solução homográfica flat do problema newtoniano de n corpos é planar, e toda solução homográfica não flat do problema newtoniano de n corpos é homotética. Estes dois resultados nos permitem caracterizar tais soluções entre planar e homotética, e esta caracterização será a ferramenta chave para o terceiro capítulo.

1.1 O problema de n corpos e Definição de Solução Homográfica

Sejam m_i e q_i $(i=1,\ldots,n)$ as massas e os vetores posições de n corpos em \mathbb{R}^3 . Pela segunda lei de Newton, temos que a força \vec{F}_i atuando sobre q_i é dada por

$$\vec{F}_i = m_i \ddot{q}_i.$$

A lei gravitacional newtoniana estabele que a força de atração \vec{F}_{ij} que q_j faz sobre q_i $(i \neq j)$ é

$$\vec{F_{i}j} = G \frac{m_{i}m_{j}}{||q_{i} - q_{j}||^{2}} \frac{q_{j} - q_{i}}{||q_{j} - q_{i}||}$$

onde G é a constante da gravitação universal. No caso de termos n partículas, a força gravitacional resultante atuando sobre q_i é

$$\vec{F}_i = \sum_{j \neq i} \vec{F}_j = \sum_{j \neq i} G \frac{m_i m_j}{||q_i - q_j||^3} (q_j - q_i)$$

De uma forma geral, podemos considerar a idéia acima para os corpos estarem em \mathbb{R}^d . O problema de *n*-corpos em mecânica celeste propõe estudarmos a dinâmica dos corpos de coordenadas q_i $(i=1,\ldots,n)$ considerando apenas a força gravitacional entre eles. Neste caso, teremos $\vec{F}_1 = \vec{F}_2$. Portanto,

$$m_i \ddot{q}_i = \sum_{j \neq i} G \frac{m_i m_j}{||q_i - q_j||^3} (q_j - q_i),$$
 (1.1)

é o sistema de equações diferenciais que rege o sistema das n partículas. É comum considerar as unidades de modo a se ter G=1. Consideremos a função U de $q=(q_1,\ldots,q_n)$ definida por

$$U(q) = \sum_{i \le j} \frac{m_i m_j}{||q_i - q_j||}$$

então a equação (1.1) toma a forma

$$m_i \ddot{q}_i = \nabla_{q_i} U, \quad i = 1, \dots, n.$$
 (1.2)

onde $\nabla_{q_i}U(q)$ é o gradiente de U em relação ao vetor q_i . A função U(q) é conhecida como a função potencial Newtoniana. Seja $T(\dot{q})=\sum_{j=1}^n\frac{||\dot{q}||^2}{2m_j}$ a energia cinética do sistema. A função

$$h(q, \dot{q}) = T(\dot{q}) - U(q), \tag{1.3}$$

que é chamada a energia total do sistema, é uma integral primeira, isto é, ela é constante ao longo de cada solução. De fato,

$$\dot{h} = \sum_{j} m_j \dot{q}_j \ddot{q}_j - \sum_{j} \nabla_{q_j} U(q) \cdot \dot{q}_j = \sum_{j} (m_j \ddot{q}_j - \nabla_{q_j} U) \cdot \dot{q}_j = 0.$$

Assim, $h \equiv const.$ Além desta, existem outras integrais primeiras, como veremos a seguir. O centro de massa do sistema é o vetor

$$C = \frac{1}{\mu} \sum_{j} m_j q_j \tag{1.4}$$

onde $\mu = \sum_{j} m_{j}$, e dele tiramos seis integrais primeiras. De fato,

$$\ddot{C}(t) = \frac{1}{\mu} \sum_{i=1}^{n} m_i \ddot{q}_i = \frac{1}{\mu} \sum_{i} \sum_{j \neq i} \frac{m_i m_j (q_i - q_j)}{||q_i - q_j||^3} = 0,$$

pois ao fazermos variar os índices i e j, os termos $\frac{m_i m_j (q_i - q_j)}{||q_i - q_j||^3}$ se cancelarão com os $\frac{m_i m_j (q_j - q_i)}{||q_i - q_j||^3}$. Integrando $\ddot{C}(t)$ duas vezes com respeito a t obtem-se vetores constantes $A, B \in \mathbb{R}^3$ tais que

$$C(t) = tA + B,$$

isto nos diz que C descreve a reta que passa por B com velocidade A. Donde,

$$A = \frac{1}{\mu} \sum_{j} m_j \dot{q}_j \quad e \quad B = \frac{1}{\mu} \sum_{j} m_j q_j - t \sum_{j} m_j \dot{q}_j$$

nos dão mais seis integrais primeiras. Uma importante observação com respeito ao centro de massa é a seguinte:

OBS 1 O centro de massa independe da escolha da origens do sistema de coordenadas.

Demonstração: De fato, consideremos dois sistemas de coordenadas com origens O e \overline{O} . Sejam Q_1, \ldots, Q_n os pontos onde estão localizadas as massas, e C e \overline{C} os pontos onde estão localizados os centros de massas calculados com relação a cada sistema. Como $OQ_i = O\overline{O} + \overline{O}Q_i$, temos que

$$\begin{split} OC &= \frac{1}{\mu} \left(\sum m_i OQ_i \right) = \frac{1}{\mu} \left(\sum m_i (O\overline{O} + \overline{O}Q_i) \right) \\ &= O\overline{O} + \frac{1}{\mu} \left(\sum m_i \overline{O}Q_i \right) = O\overline{O} + \overline{O} \ \overline{C} = O\overline{C} \end{split}$$

Como os vetores OC e $O\overline{C}$ têm a mesma origem O segue-se que $C=\overline{C}$, como queríamos mostrar.

Devido à observação acima e ao fato do centro de massa descrever um reta uniformemente, é comum, para facilitar nas contas, supormos que $C(t) = 0 \, \forall t$, ou seja, que o centro de massa está fixo na origem do sistema de coordenadas. Doravante, sempre que falarmos em sistema de coordenadas, estaremos nos referindo ao sistema de coordenadas inercial

com origem no centro de massa. As outras três integrais primeiras são obtidas do vetor momento angular, definido por

$$M = \sum_{j} m_j(q_j \times \dot{q}_j). \tag{1.5}$$

De fato, derivando M com relação a t obtemos que

$$\dot{M} = \sum_{j} m_{j} (\dot{q}_{j} \times \dot{q}_{j}) + \sum_{j} q_{j} \times m_{j} \ddot{q}_{j}$$
$$= \sum_{j} \sum_{i} q_{j} \times \frac{m_{j} m_{i}}{||q_{i} - q_{j}||^{3}} (q_{i} - q_{j}) = 0.$$

Disto, decorre que existem mais três integrais primeiras. Com isto, mostramos a existência de dez integrais primeiras. Na verdade, o matemático alemão Bruns mostrou, em 1887, que qualquer outra integral algébrica será função das dez integrais primeiras encontradas acima.

Dadas as informações necessárias sobre o problema de n corpos, definiremos o que é uma solução homográfica do sistema de equações diferenciais (1.1).

Definição 1 (Solução homográfica) 1 Uma dada solução q(t) do problema de n corpos é dita homográfica se existem funções diferenciáveis $r:I\to\mathbb{R}_+$ e $\Omega:I\to SO(3)$, definidas num intervalo aberto $I\subseteq\mathbb{R}$, tais que

$$q_i(t) = r(t)\Omega(t)q_i(t_0). \tag{1.6}$$

Intuitivamente, uma solução homográfica é tal que a configuração inicial $q = (q_1, \ldots, q_n)$ é preservada ao longo do tempo a menos de homotetias e rotações. Uma pergunta natural seria: existem soluções homográficas do problema de n corpos? Para respondermos a esta pergunta, consideremos 3 corpos no plano fazendo a identificação de \mathbb{C} com \mathbb{R}^2 . Desta forma, uma solução homográfica pode ser escrita como

$$q_i(t) = \phi(t)a_i \tag{1.7}$$

onde $\phi: \mathbb{R} \to \mathbb{C}$ e $a_i \in \mathbb{C}$ (i = 1, ..., n), já que o produto de números complexos corresponde a uma rotação seguida de uma homotetia. Agora, suponhamos que a_1 , a_2 e a_3 são os vértices de um triângulo equilátero no plano complexo.

¹Podemos definir uma solução homográfica sem considerarmos o centro de massa na origem, neste caso (1.6) se escreve como $q_j(t) - C(t) = r(t)\Omega(t)(q_j(t_0) - C(t_0))$

Definamos $q_i(t) = e^{i\omega t}a_i$ onde $\omega^2 = \frac{m_1 + m_2 + m_3}{l^3}$, sendo $l = ||a_1 - a_2|| = ||a_1 - a_3||$ o lado do triângulo equilátero. Vemos que q_i satisfaz a equação (1.7), com $\phi(t) = e^{i\omega t}$. Falta mostrar que $q_i(t)$ é solução da equação (1.1). Com efeito,

$$\ddot{q}_i = -\omega^2 \phi(t) a_i = -\frac{m_1 + m_2 + m_3}{l^3} \phi(t) a_i$$

daí,

$$\ddot{q}_{i} = -\frac{\phi(t)a_{i}}{l^{3}} \sum_{j} m_{j} = \frac{\phi(t)}{l^{3}} [-\sum_{j} m_{j}a_{i}] = \frac{\phi(t)}{l^{3}} [(-m_{i}a_{i}) - \sum_{j\neq i} m_{j}a_{i}]$$

$$= \frac{\phi(t)}{l^{3}} [(\sum_{j\neq i} m_{j}a_{j}) - \sum_{j\neq i} m_{j}a_{i}] = \frac{1}{l^{3}} \sum_{j\neq i} m_{j}(a_{j}\phi(t) - a_{i}\phi(t))$$

$$= \sum_{j\neq i} \frac{m_{j}(q_{j}-q_{i})}{||q_{i}-q_{j}||}.$$

Na segunda igualdade, usamos o fato de que $m_1q_1+m_2q_2+m_3q_3=0$ e, na última, usamos que $||\phi(t)||=1$ donde, $l=||a_i-a_j||.||\phi(t)||=||a_i\phi(t)-a_j\phi(t)||=||q_i-q_j||$. Mostramos, então, que $q=(q_1,q_2,q_3)$ definida acima é uma solução homográfica do problema de 3 corpos com massas m_1, m_2 e m_3 .

1.2 Transformações Ortogonais e Soluções Homográficas

Seja $\Omega(t) \in SO(3)$, $\forall t$. Suponhamos que $\Omega(t)$ é de classe C^2 . Sendo $(\Omega(t))^T \Omega(t) = I$ segue-se que $\frac{d}{dt}[(\Omega(t))^T \Omega(t)] = 0$, donde $\dot{\Omega}^T \Omega + \Omega^T \dot{\Omega} = 0$, logo, $\Omega^{-1} \dot{\Omega} = -(\Omega^{-1} \dot{\Omega})^T$ implicando que $\Omega^{-1} \dot{\Omega}$ é uma matriz anti-simétrica. Assim, existe uma matriz $\Sigma = \Sigma(t)$ tal que

$$\Sigma \equiv \Omega^{-1}\dot{\Omega} = \begin{pmatrix} 0 & -s_3 & s_2 \\ s_3 & 0 & -s_1 \\ -s_2 & s_1 & 0 \end{pmatrix} = -\Sigma^T$$
 (1.8)

O sinal das componentes s_1 , s_2 , s_3 são escolhidos de tal forma que

$$\Sigma X = S \times X \text{ onde } X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ e } S = \begin{pmatrix} s_1 \\ s_2 \\ s_3 \end{pmatrix}$$
 (1.9)

A relação $\Sigma \equiv \Omega^{-1} \dot{\Omega}$ nos dá uma equação diferencial de primeira ordem

$$\dot{\Omega} = \Omega \Sigma$$
.

cuja solução é

$$\Omega = \Omega(t_0)e^{\int_{t_0}^t \Sigma(x)dx}.$$
(1.10)

Proposição 1 Sejam s_1 , s_2 , s_3 as entradas da matriz Σ dada em (1.8). Então, supondo $\Omega(t_0) = I$ (matriz identidade de ordem 3), teremos:

a)
$$\Sigma = \begin{pmatrix} 0 & -s_3 & 0 \\ s_3 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \Omega = \begin{pmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix}; \quad \dot{\phi} = s_3$$

b)
$$\Sigma = \begin{pmatrix} 0 & 0 & s_2 \\ 0 & 0 & 0 \\ -s_2 & 0 & 0 \end{pmatrix} \Leftrightarrow \Omega = \begin{pmatrix} \cos \phi & 0 & \sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{pmatrix}; \quad \dot{\phi} = s_2$$

c)
$$\Sigma = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -s_1 \\ 0 & s_1 & 0 \end{pmatrix} \Leftrightarrow \Omega = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{pmatrix}; \quad \dot{\phi} = s_1$$

Demontração do item a):

Suponhamos que $\Sigma = s_3 E$, com

$$E = \left(\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

Então, $\Omega = e^{\phi E}$ onde $\phi = \int_{t_0}^t s_3(x) dx$. Sendo

$$e^{\phi E} = I + \phi E + \frac{(\phi E)^2}{2!} + \frac{(\phi E)^3}{3!} + \dots$$

e observando que

$$E^{2} = -\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E^{3} = -E, E^{4} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E^{5} = E, E^{6} = -\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \dots$$

segue que

$$\Omega = e^{\phi E} = I + \left(-\frac{\phi^2}{2!} + \frac{\phi^4}{4!} + \dots\right) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \left(\phi - \frac{\phi^3}{3!} + \frac{\phi^5}{5!} + \dots\right) \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

resultando

$$\Omega = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \cos \phi \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \sec \phi \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Isto significa que num sistema de coordenadas (x,y,z) a matriz Ω é uma rotação em torno do eixo z.

As demonstrações dos itens b) e c) são análogas a do item a) tomando-se E como sendo

$$\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right) e \left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right),$$

respectivamente.

Reciprocamente, se

$$\Omega = \begin{pmatrix} \cos \phi & -\sin \phi & 0\\ \sin \phi & \cos \phi & 0\\ 0 & 0 & 1 \end{pmatrix}$$

temos

$$\dot{\Omega} = \begin{pmatrix} -\dot{\phi}\sin\phi & -\dot{\phi}\cos\phi & 0\\ \dot{\phi}\cos\phi & -\dot{\phi}\sin\phi & 0\\ 0 & 0 & 0 \end{pmatrix}.$$

Sendo $\Sigma = \Omega^T \dot{\Omega}$, resulta que

$$\Sigma = \Omega^T \dot{\Omega} = \begin{pmatrix} 0 & -s_3 & 0 \\ s_3 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

onde $s_3 = \dot{\phi}$.

O raciocínio é análogo para os itens b) e c).

Vamos, agora, deduzir algumas relações correspondentes a uma solução homográfica. De acordo com a Definição 1, uma solução homográfica tem a forma

$$q_i = r\Omega q_i^0 \quad i = 1, \dots, n.$$

Derivando duas vezes com relação a t, segue-se que

$$\ddot{q}_i = (\ddot{r}\Omega + 2\dot{r}\dot{\Omega} + r\ddot{\Omega})q_i^0.$$

Sendo $\dot{\Omega} = \Omega \Sigma$, temos $\ddot{\Omega} = \dot{\Omega} \Sigma + \Omega \dot{\Sigma}$ donde

$$\ddot{q}_i = \Omega(\ddot{r}I + 2\dot{r}\Sigma + r(\Sigma^2 + \dot{\Sigma})). \tag{1.11}$$

Usando a convenção 1.8, temos

$$\Sigma = \begin{pmatrix} 0 & -s_3 & s_2 \\ s_3 & 0 & -s_1 \\ -s_2 & s_1 & 0 \end{pmatrix}$$
 e $\Sigma^2 = \begin{pmatrix} -s_2^2 - s_3^2 & s_1 s_2 & s_1 s_3 \\ s_2 s_1 & -s_3^2 - s_1^2 & s_2 s_3 \\ s_3 s_1 & s_3 s_2 & -s_1^2 - s_2^2 \end{pmatrix}$. (1.12)

Substituindo a relação (1.11) na equação do problema de n corpos (1.1) e lembrando que Ω é uma tranformação ortogonal, logo preserva norma, segue-se que

$$\Omega(\ddot{r}I + 2\dot{r}\Sigma + r(\Sigma^2 + \dot{\Sigma}))q_i^0 = \Omega\left(r^{-2}\sum_{j\neq i}\frac{m_j}{||q_i^0 - q_j^0||^3}(q_j^0 - q_i^0)\right).$$

Sendo Ω invertível, considerando a matriz $K = (k_{pq})$ definida por

$$K = r^2(\ddot{r}I + 2\dot{r}\Sigma + r(\Sigma^2 + \dot{\Sigma})) \tag{1.13}$$

e o vetor $a = (a_1, \ldots, a_n)$ dado por

$$a_i = \sum_{i \neq j} \frac{m_j}{|q_i^0 - q_j^0|} (q_j^0 - q_i^0)$$

resulta que se $q_i=r\Omega q_i^0$ é uma solução homográfica, então

$$Kq_i^0 = a_i i = 1, \dots, n$$
 (1.14)

sendo a_i independente de t.

1.3 Soluções Homográficas Flat e Não-Flat

O objetivo desta seção é mostrar que toda solução homográfica flat (ver Definição 5 adiante) é planar, e se ela não for flat então é homotética (ver 1.29), isto é, Ω é constante. A demonstração baseia-se no fato da força gravitacional Newtoniana ser inversamente proporcional ao quadrado da distância.

Definição 2 (Solução Retilínea) Uma dada solução do problema de n corpos é retilínea se existe uma linha reta Λ_0 que contém os n corpos para todo instante t.

Definição 3 (Solução Colinear) Uma dada solução do problema de n corpos é colinear se existe, para cada t, uma reta $\Lambda = \Lambda(t)$ que contém os n corpos neste instante t.

Seja
$$M = \sum_{i=1}^{n} m_i q_i \times \dot{q}_i$$
 o momento angular dos n corpos. Temos o seguinte Lema

Lema 1 Seja $q_i(t)$ (i = 1, ..., n) uma solução colinear e não-retilínea. Então, temos que $M \neq 0$.

Demonstração: Sendo $q_i(t)$ colinear segue que existe um vetor unitário e = e(t) e uma função $\lambda_i = \lambda_i(t)$ tais que $q_i(t) = \lambda_i(t)e(t)$, aqui estamos supondo que a reta passa pela origem do nosso sistema de coordenadas que é sempre verdade, como veremmos na Proposição 3 adiante. Derivando q_i em relação a t temos $\dot{q}_i = \dot{\lambda}e + \lambda \dot{e}$, donde,

$$M = \left(\sum_{i=1}^{n} \lambda_{i}^{2} m_{i}\right) e \times \dot{e}$$

Como e é unitário, temos $e \cdot e = 1$, donde $e \cdot \dot{e} = 0$, ou seja, e e \dot{e} são ortogonais implicando que $e \times \dot{e} \neq 0$, pois $\dot{e} \neq 0$, já que a solução não é retilínea. Assim, $M \neq 0$ pois, para algum índice i, temos que $\lambda_i \neq 0$.

Definição 4 (Solução Planar) Uma solução do problema de n-corpos é dita planar se existe um plano Π_0 que contém os n corpos para todo t.

Proposição 2 Toda solução colinear é planar.

Demonstração: Seja $q_i = q_i(t)$ uma solução colinear, então $q_i \times q_k = 0$ onde i, k = 1, ..., n. Daí, $(q_i \times q_k) \cdot \dot{q}_i = 0$, donde, $(q_i \times \dot{q}_i) \cdot q_k = 0$, logo, $M \cdot q_k = 0$ (k = 1, ..., n), ou seja, para todo t, todos os corpos estão no plano que passa pela origem e cujo vetor normal é o vetor constante M.

Definição 5 (Solução Flat) Uma solução do problema de n corpos \acute{e} dita Flat se existe para todo t um plano $\Pi(t)$ que contém os n corpos no instante t.

No que diz respeito às definições anteriores, toda solução planar é flat, mas nem toda solução flat é planar, ver [13] página 245. Por exemplo, no problema de 3 corpos em \mathbb{R}^3 , toda solução é flat mas em geral não é planar.

Proposição 3 Dada uma solução flat, plano $\Pi(t)$ que contém os corpos, em cada instante t, passa pela origem do sistema de coordenadas, que é o centro de massa.

Demonstração: Seja q_i $(i=1,\ldots,n)$ uma solução flat do problema de n corpos com massas m_i . Assim, para cada t existe um plano $\Pi=\Pi(t)$ que contém os corpos de massas m_i , para todo $i=1,\ldots,n$. Seja $q_0\in\Pi(t)$, assim $(q_k-q_0)\times(q_j-q_0)$ é ortogonal (q_k-q_0) , logo a Π . Seja $C=\frac{1}{\mu}\sum_{i=1}^n m_iq_i$ o centro de massa, então $C=\frac{1}{\mu}\sum_{i=1}^n m_i(q_i-q_0)+q_0$ implicando que $C-q_0=\frac{1}{\mu}\sum_{i=1}^n m_i(q_i-q_0)$. Sendo $(C-q_0)\cdot(q_k-q_0)\times(q_j-q_0)=0$ resulta que $(C-q_0)$ é paralelo à $\Pi(t)$, donde $C\in\Pi(t)$, para todo t.

Se $q_i = q_i(t)$ é uma solução homográfica (Definição 1) então q_i é caracterizada pela existência de uma rotação $\Omega = \Omega(t)$ e uma função escalar r = r(t) > 0 tais que, para todo t, $q_i(t) = r\Omega q_i(t_0)$, $i = 1, \ldots, n$.

Teorema 1 Uma solução homográfica flat do problema newtoniano de n corpos é uma solução planar.

Demonstração:

Seja $q_i = q_i(t)$ uma solução homográfica do problema de n corpos. Pela Proposição 2 podemos supor que q_i não é uma solução colinear. Sendo assim, existem índices α , β e um instante t_0 tais que $q_\alpha \times q_\beta \neq 0$ neste instante. Sendo a solução flat, segue-se que para cada t existe um plano $\Pi(t)$ contendo os n corpos. Pela Proposição 3, este plano passa pela origem do sistema de coordenadas. Se (x, y, z) denota o sistema de coordenadas no

instante t_0 , podemos supor que $\Pi(t_0)$ é o plano xy. Então, $q_{i3}(t_0)=0$ para $i=1,\ldots,n$. De (1.57) segue-se que

$$\begin{pmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{pmatrix} \begin{pmatrix} q_{i1}(t_0) \\ q_{i2}(t_0) \\ 0 \end{pmatrix} = \begin{pmatrix} a_{i1} \\ a_{i2} \\ 0 \end{pmatrix}$$

onde $a_i = (a_{i1}, a_{i2}, 0)$. Daí,

$$k_{i1}(t)q_{i1}(t_0) + k_{i2}(t)q_{i2}(t_0) = a_{ij}$$
 $j = 1, 2, 3 \text{ e } i = 1 \dots n$

Fazendo $i = \alpha$ e $i = \beta$ teremos o seguinte sistema

$$\begin{cases} k_{j1}(t)q_{\alpha 1}(t_0) + k_{j2}(t)q_{\alpha 2}(t_0) &= a_{\alpha j} \\ k_{j1}(t)q_{\beta 1}(t_0) + k_{j2}(t)q_{\beta 2}(t_0) &= a_{\beta j} \end{cases}$$
(1.15)

Vamos mostrar que k_{j1} e k_{j2} independem de t. Sendo A a matriz dos coeficientes do sistema anterior nas incógnitas k_{j1} e k_{j2} , temos que

$$q_{\alpha}(t_0) \times q_{\beta}(t_0) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ q_{\alpha 1}(t_0) & q_{\alpha 2}(t_0) & 0 \\ q_{\beta 1}(t_0) & q_{\beta 2}(t_0) & 0 \end{vmatrix} = (q_{\alpha 1}(t_0)q_{\beta 2}(t_0) - q_{\beta 1}(t_0)q_{\alpha 2}(t_0)) \vec{k} = (\det A) \vec{k}.$$

Segue-se que det $A \neq 0$, pois $q_{\alpha}(t_0) \times q_{\beta}(t_0) \neq 0$. Assim, podemos resolver (1.15) e achar k_{j1} , k_{j2} em função de $a_{\alpha j}$, $a_{\beta j}$, $q_{\alpha i}(t_0)$, $q_{\beta i}(t_0)$ (i=1,2) resultando que k_{j1} e k_{j2} independem de t. Além disso, para j=3, o sistema anterior é homogêneo, logo $k_{31} = k_{32} = 0$. Assim,

$$k_{12} + k_{21} = const, \quad k_{11} - k_{22} = const$$
 (1.16)

e

$$k_{31} \equiv 0, k_{32} \equiv 0 \tag{1.17}$$

matriz
$$K = (\kappa_{pq})$$
 em (1.13) e dada por
$$K = r^2 \begin{pmatrix} \ddot{r} + r(-s_2^2 - s_3^2) & -2\dot{r}s_3 + r(s_1s_2 - \dot{s}_3) & 2\dot{r}s_2 + r(s_1s_3 + \dot{s}_2) \\ 2\dot{r}s_3 + r(s_2s_1 + \dot{s}_3) & \ddot{r} + r(-s_3^2 - s_1^2) & -2\dot{r}s_1 + r(s_2s_3 - \dot{s}_1) \\ -2\dot{r}s_2 + r(s_3s_1 - \dot{s}_2) & -2\dot{r}s_1 + r(s_3s_2 + \dot{s}_1) & \ddot{r} + r(-s_1^2 - s_2^2) \end{pmatrix},$$
(1.18)

onde as funções s_1 , s_2 , s_3 são as entradas da matriz antissimétrica Σ dada em (1.8). Segue-se que

$$k_{12} + k_{21} = r^3 s_1 s_2, \quad k_{11} - k_{22} = r^3 (s_1^2 - s_2^2)$$

e

$$k_{31} = r^2[-2\dot{r}s_2 + r(-\dot{s}_2 + s_3s_1)], \quad k_{32} = r^2[2\dot{r}s_1 + r(\dot{s}_1 + s_3s_2)]$$

Logo, as equações (1.16) e (1.17) implicam que

$$r^3 s_1 s_2 \equiv 0, \quad r^3 (s_1^2 - s_2^2) \equiv 0,$$
 (1.19)

e

$$r^{2}[-2\dot{r}s_{2} + r(-\dot{s}_{2} + s_{3}s_{1})] \equiv const, \quad r^{2}[2\dot{r}s_{1} + r(\dot{s}_{1} + s_{3}s_{2})] \equiv const$$
 (1.20)

Vemos que (1.19) implica que $r^3s_1^2 \equiv const$ e $r^3s_2^2 \equiv const$, resultando que existem constantes c_1 e c_2 tais que

$$s_1 = c_1 r^{-\frac{3}{2}} e s_2 = c_2 r^{-\frac{3}{2}}$$
 (1.21)

Substituindo (1.21) em (1.20) teremos o seguinte sistema com incógnitas $c_1, c_2,$

$$\begin{cases} s_3 r c_1 - \frac{1}{2} \dot{r} c_2 &= 0\\ \frac{1}{2} \dot{r} c_1 + s_3 r c_2 &= 0 \end{cases}$$
 (1.22)

cujo determinante é $(s_3r)^2 + (\frac{1}{2}\dot{r})^2$. Assim, teremos duas condições:

- (i) O sistema é possível e determinado: $(s_3r)^2 + (\frac{1}{2}\dot{r})^2 \neq 0$, donde $c_1 = c_2 = 0$
- (ii) O sistema é possível e indeterminado: $(s_3r)^2 + (\frac{1}{2}\dot{r})^2 = 0$. Neste caso, $s_3 \equiv 0$ e $r \equiv const$.

A condição (i) implica que $s_1 = s_2 = 0$ por (1.21). Assim, pela Proposição $1, \Omega$ é uma rotação em torno do eixo z. Logo, a solução $q_i = r\Omega q_i^0$ está no plano xy que é o plano $\Pi(t_0)$.

Vamos mostrar que a condição (ii) não pode ocorrer. Se $r \equiv const$ segue-se de (1.21) que $s_1 = const$, $s_2 = const$ e $s_3 = 0$. Agora, observemos que, se $s_3 = 0$, o eixo de $\frac{1}{2}x \cdot y \equiv const$ e $x - y \equiv const$ implicam que $4xy = (x + y)^2 - (x - y)^2 \equiv const$, como $x - y \equiv const$ segue-se que $x + y \equiv const$ e, assim, $x = \frac{1}{2}[(x + y) + (x - y)] \equiv const$, resultando que $y \equiv const$.

rotação de Ω pertence ao plano xy. Mais precisamente, este eixo é o vetor $S=(s_1,s_2,0)$. De fato, por (1.10) $\Omega=e^{\int_{t_0}^t \Sigma dt}$ e, como Σ é constante resulta que

$$\Omega = e^{(t-t_0)\Sigma} = I + ((t-t_0)\Sigma) + \frac{(t-t_0)^2}{2!}\Sigma^2 + \frac{(t-t_0)^3}{3!}\Sigma^3 + \dots$$

implicando que

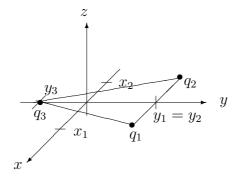
$$\Omega S = S + (t - t_0)\Sigma S + \frac{(t - t_0)^2}{2!}\Sigma^2 S + \frac{(t - t_0)^3}{3!}\Sigma^3 S + \dots$$
 (1.23)

Mas, como visto anteriormente $\Sigma S = S \times S = 0$ resultando que $\Omega S = S$, ou seja, S é o eixo de rotação de Ω . Como $r \equiv const$, isto só seria possível se todos os corpos girassem em torno do eixo constante S, todos contidos em um plano ortogonal a S. Como no instante t_0 os corpos estariam na interseção deste plano com o plano invariável, todos estariam sobre uma reta girando ortogonalmente em torno de S. Isto significa que a solução seria colinear, contrariando a hipótese inicial. Logo, a condição (ii) não pode ocorrer.

Um fato importante a observar é que a demonstração anterior baseia-se no fato de que a força gravitacional newtoniana é inversamente proporcional ao quadrado da distância. Vamos contruir um exemplo no qual, se a força atratora é inversamente proporcional ao cubo da distância e o teorema anterior não é válido.

Sejam m_i e $q_i=(\xi_i,\eta_i,\zeta_i)$ (i=1,2,3) as massas e os vetores posições de três corpos em \mathbb{R}^3 em relação ao sistema de coordenadas cuja origem é o centro de massa. Suponhamos que no instante t_0

$$x_1^0 = -x_2^0 > 0 = x_3^0; \ y_1^0 = y_2^0 > 0 > y_3^0; \ z_1^0 = z_2^0 = z_3^0 = 0$$
 (1.24)



Assumindo que a atração entre os três corpos é inversamente proporcional ao cubo da distância, teremos que

$$m_i \ddot{q}_i = \sum_{j \neq i} \frac{m_i m_j}{|q_i - q_j|^4} (q_j - q_i) = \nabla_{q_i} U$$
 (1.25)

onde $U(q) = \frac{1}{2} \sum_{i < j} \frac{m_i m_j}{|q_i - q_j|^2}$. Escolhemos o fator de proporcionalidade $\frac{1}{2}$ de tal forma que o módulo da força entre duas partículas de massa 1 separadas por uma distância unitária seja 1. Supondo que $q_i = q_i(t)$ é uma solução homográfica resulta que

$$rKq_i^0 = a_i$$

onde $a_i = (a_{i1}, a_{i2}, 0)$ é o vetor constante $\sum_{j \neq i} \frac{m_j}{|q_i^0 - q_j^0|^4} (q_j^0 - q_i^0)$, ou seja, $m_i a_{i1} = \frac{dU}{dx_i}$ e

 $m_i a_{i2} = \frac{dU}{dy_i}$ (i = 1, 2, 3); e K é a matriz definida em (1.13). Consideremos Ω como sendo uma rotação em torno do eixo y. Então,

$$\Omega = \begin{pmatrix} \cos \phi & 0 & -\sin \phi \\ 0 & 1 & 0 \\ \sin \phi & 0 & \cos \phi \end{pmatrix}.$$

Pela Proposição 1,

$$\Sigma = \left(\begin{array}{ccc} 0 & 0 & s_2 \\ 0 & 0 & 0 \\ -s_2 & 0 & 0 \end{array} \right)$$

onde $s_2 = \dot{\phi}$. Logo, a equação $rKq_i^0 = a_i$ nos dá

$$r^{3} \begin{pmatrix} \ddot{r} - rs_{2}^{2} & 0 & -2\dot{r}s_{2} + r\dot{s}_{2} \\ 0 & \ddot{r} & 0 \\ 2r\dot{s}_{2} + \dot{r}s_{2} & 0 & \ddot{r} - rs_{2}^{2} \end{pmatrix} \begin{pmatrix} x_{i}^{0} \\ y_{i}^{0} \\ 0 \end{pmatrix} = \begin{pmatrix} a_{i1} \\ a_{i2} \\ 0 \end{pmatrix},$$

donde

$$\begin{cases} (\ddot{r} - r\dot{\phi}^2)x_i^0 = a_{i1}r^{-3} \\ \ddot{r}y_i^0 = a_{i2}r^{-3} \\ (2r\dot{s}_2 + \dot{r}s_2)x_i^0 = 0 \end{cases}$$
 (1.26)

Por (1.24) vemos que

$$U_{x_1}^0 = -U_{x_2}^0 < 0 = U_{x_3}^0; \ U_{y_1}^0 = U_{y_2}^0 < 0 < U_{y_3}^0; \ U_{z_1}^0 = U_{z_2}^0 = U_{z_3}^0 = 0$$
 (1.27)

Assim, por (1.24) para i = 1, 2 o sistema (1.26) equivale à

$$\begin{cases} \ddot{r} - r\dot{\phi}^2 = -ar^{-3} \\ \ddot{r} = -br^{-3} \\ (2r\dot{s}_2 + \dot{r}s_2) = 0 \end{cases}$$
 (1.28)

onde $a=-\frac{a_{i1}}{x_i^0}$ e $b=-\frac{a_{i2}}{y_i^0}$, pois $\frac{a_{11}}{x_1^0}=\frac{a_{21}}{x_2^0}$ e $\frac{a_{12}}{y_1^0}=\frac{a_{22}}{y_2^0}$. Se i=3 a primeira e a terceira equações de (1.26) são válidas devido a (1.24). Podemos escolher as posições dos corpos de tal forma que a>b. Das duas primeiras equações do sistema (1.28) segue que $\dot{\phi}=(a-b)^{\frac{1}{2}}r^{-2}$. Usando esta última relação, vemos que a terceira equação de (1.28) é uma identidade em t. Sendo $\dot{\phi}=s_3$ vemos que para $q_i=(x_i,y_i,z_i)$ ser uma solução homográfica satisfazendo (1.25), r(t) e ϕ devem satisfazer o par de condições

$$\dot{\phi} = (a-b)^{\frac{1}{2}}r^{-2} \qquad \ddot{r} = br^{-3}$$

cuja solução é

$$r = r(t) = (1 + 2a^{\frac{1}{2}})^{\frac{1}{2}}$$
 e $\phi = \phi(t) = \frac{1}{2}(a - b)^{\frac{1}{2}}a^{-\frac{1}{2}}\log(1 + 2a^{\frac{1}{2}}t)$

Isto prova a existência de uma solução flat não-planar no caso da força ser proporcional ao inverso do cubo das distâncias.

Existem dois tipos especiais de soluções homográficas.

No primeiro tipo, a solução se expande ou se contrai mas não roda, isto é, $\Omega(t) \equiv I$. Estas soluções homográficas particulares são, em vista de $q_i = r\Omega q_i^0$, caracterizadas por

$$q_i = rq_i^0 \qquad (\Omega(t) \equiv I, \ r = r(t) > 0)$$
 (1.29)

e são chamadas soluções homotéticas.

No segundo tipo, a configuração roda sem dilatação ou contração, isto é, $r(t) \equiv 1$. Estas soluções homográficas particulares são, em vista de $q_i = r\Omega q_i^0$, caracterizadas por

$$q_i = \Omega q_i^0$$
 $(r(t) = 1, \Omega = \Omega(t))$

e são chamadas soluções de *equilíbrio relativo*. Esta terminologia é justificada pelo fato que as partículas se encontram em repouso com relação a um sistema em rotação conveniente.

Uma caracterização destes dois tipos particulares de soluções homográficas pode ser dada como segue:

- I) Uma solução homográfica é homotética se, e somente se, ela não tem plano invariável (isto é, M=0).
- II) Uma solução homográfica é uma solução de equilíbrio relativo se, e somente se, é planar e roda com uma velocidade angular constante.

Obs.: O plano invariável de uma solução é o plano que passa pelo centro de massa, e cujo vetor normal é o vetor momento angular M. Estas duas afirmações serão mostradas no final deste capítulo.

Vamos, agora, demonstrar uma propriedade de soluções colineares não-retilíneas do problema de n corpos.

Proposição 4 Toda solução colinear não retilínea do problema de n corpos é homográfica.

Demonstração: Seja $q_i(t)$ uma solução colinear não-retilínea do problema de n corpos. Vamos mostrar que ela é homográfica. Pela Proposição, 2 $q_i(t)$ é planar. Podemos escolher o plano Π^0 que contém os corpos em todo instante t como sendo o plano xy do nosso sistema de coordenadas. Escolhamos neste plano um sistema de coordenadas $(\overline{x}, \overline{y})$ cuja origem também é o centro de massa, mas que gira com velocidade angular $\dot{\phi} = \dot{\phi}(t)$ de tal maneira que o eixo $\overline{x}(t)$ seja a reta que contém os corpos no instante t. Então a coordenada \overline{y}_i de m_i se anula para todo t. Como a rotação do sistema é em torno do eixo dos z, ela é dada pela matriz

$$\Omega = \begin{pmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Agora, $X = \Omega \overline{X}$ nos diz que

$$\Omega^{-1}\ddot{X} = \frac{\ddot{x}}{X} + 2\Sigma\dot{\overline{X}} + (\dot{\Sigma} + \Sigma^2)\overline{X} = \begin{pmatrix} \ddot{\overline{x}}_i - 2\dot{\phi}\dot{\overline{y}}_i - \dot{\phi}^2\overline{x}_i - \ddot{\phi}\overline{y}_i \\ \ddot{\overline{y}}_i - 2\dot{\phi}\dot{\overline{x}}_i - \dot{\phi}^2\overline{y}_i - \ddot{\phi}\overline{x}_i \\ 0 \end{pmatrix} = \begin{pmatrix} \ddot{\overline{x}}_i - \dot{\phi}^2\overline{x}_i \\ -2\dot{\phi}\dot{\overline{x}}_i - \ddot{\phi}\overline{x}_i \\ 0 \end{pmatrix}$$

onde \overline{X} denota o vetor posição de um ponto no sistema rotacional $(\overline{x}, \overline{y}, 0)$ e X denota o vetor posição do mesmo ponto em nosso sistema (x, y, 0). Observemos que

$$2\dot{\phi}\dot{\overline{x}}_i + \ddot{\phi}\overline{x}_i = 0 \tag{1.30}$$

para todo i e todo t, já que a força gravitacional tem, sobre o eixo \overline{y} , projeção nula. Mas a velocidade angular $\dot{\phi}$ é uma função analítica de t e, portanto, se anula no máximo para valores isolados de t. De fato, $\dot{\phi}(t) \equiv 0$ é excluído pois estamos supondo que a solução não é retilínea. Além disso, $\overline{x}_i \neq 0$ para ao menos n-1 dos n valores de i. Consequentemente, podemos dividir (1.30) por $\dot{\phi}\overline{x}_i$ para ao menos n-1 valores de i. Segue-se, então, que

$$\frac{\dot{\overline{x}}_i}{\overline{x}_i} = -\frac{\ddot{\phi}}{2\dot{\phi}}$$

donde

$$\overline{x}_i(t) = r(t)\overline{x}_i(0), \tag{1.31}$$

onde

$$r(t) = e^{-\int \frac{\ddot{\phi}}{2\dot{\phi}} dt}.$$

Portanto, (1.31) é válido para ao menos n-1 dos n valores de i e para a função r(t) que é independente de i. Para completar a prova temos apenas que substituir (1.31) na relação do centro de massa $\sum_i q_i m_i = 0$ e concluir, assim, que o n-ésimo $\overline{x}_i(t)$ não precisa ser excluído, de modo que como $x_i = \Omega \overline{x}_i$, obtemos

$$x_i(t) = r(t)\Omega \overline{x}_i(0),$$

provando que a solução é homográfica.

Em virtude do Lema 1 (página 21), da afirmação (I) (página 27) e da proposição que acabamos de demonstrar, toda solução colinear mas não-retilínea é homográfica mas

não-homotética, enquanto que as soluções colineares homotéticas são idênticas às soluções retilíneas que são homográficas. Observemos também que para que uma solução colinear seja solução de equilíbrio relativo, é necessário (mas, por (II), não suficiente) que a solução seja não-retilínea.

A próxima proposição é basicamente álgebra linear, e será importante para uso posterior na demonstração do teorema 2.

Proposição 5 Se Σ_0 é uma matriz anti-simétrica constante, existe uma matriz ortogonal P_0 tal que $P_0\Sigma_0P_0^{-1}$ é anti-simétrica e todos os termos da última coluna são nulos, consequentemente os termos da última linha também são nulos.

Demonstração: Sendo Σ_0 uma matriz anti-simétrica, vimos em (1.8) e (1.9) que existe um vetor $S=(s_1,s_2,s_3)$ tal que $\Sigma_0X=S\times X$. Sendo $\{e_1,e_2,e_3\}$ a base canônica de \mathbb{R}^3 , consideremos a base ortonormal $v_1=\frac{S}{|S|},\ v_2=\frac{S\times e_3}{|S\times e_3|}$ e $v_3=v_1\times v_2$ e definamos a transformação linear T tal que $T(v_1)=e_3,\ T(v_2)=e_1$ e $T(v_3)=e_2$. A matriz P_0 associada a transformação T é uma matriz ortogonal com determinante 1, pois T leva base ortonormal em base ortonormal preservando a mesma orientação da base canônica. Temos também que $\Sigma_0^T=-\Sigma_0$ e P_0 ortogonal implica que $(P_0\Sigma_0P_0^{-1})^T=(P_0^{-1})^T\Sigma_0^TP_0^T=-P_0\Sigma_0P_0^{-1}$, ou seja, $P_0\Sigma_0P_0^{-1}$ é antisimétrica, e $(P_0\Sigma_0P_0^{-1})e_3=P_0\Sigma v_1=0$, pois $\Sigma v_1=S\times v_1$ e v_1 é múltiplo de S implicando que a última coluna da matriz $P_0\Sigma_0P_0^{-1}$ é nula, e portanto, também a última linha.

Teorema 2 Toda solução homográfica não-flat do problema newtoniano de n corpos é homotética .

Demonstração: Seja $q_i = q_i(t), i = 1, ..., n$, uma solução homográfica que não é flat. Então, existem índices α , β e γ , e um instante t_0 , tal que $\det(q_{\alpha}^0, q_{\beta}^0, q_{\gamma}^0) \neq 0$, onde $q_i^0 = q_i(t_0)$. Vimos em (1.13) que $Kq_i^0 = a_i$ se $q_i = r\Omega q_i^0$ resultando que $K(t)(q_{\alpha}^0, q_{\beta}^0, q_{\gamma}^0) = (a_{\alpha}, a_{\beta}, a_{\gamma}),$ donde, $K(t) = (a_{\alpha}, a_{\beta}, a_{\gamma})(q_{\alpha}^0, q_{\beta}^0, q_{\gamma}^0)^{-1}$ já que $(q_{\alpha}^0, q_{\beta}^0, q_{\gamma}^0)$ é invertível, pois $\det(q_{\alpha}^0, q_{\beta}^0, q_{\gamma}^0) \neq 0$. Assim, K é uma matriz constante. Sendo $K \equiv r^2(\ddot{r}I + 2\dot{r}\Sigma + r(\Sigma^2 + \dot{\Sigma}))$

e observando que $\Sigma^T = -\Sigma$ e $(\Sigma^2)^T = \Sigma^2$, resulta que $R_{pq} = \frac{1}{2}(K + K^T) = r^2\ddot{r}I + r^3\Sigma^2$. Como $K \equiv const$, segue-se que

$$(R_{pq}) = r^2 \ddot{r} I + r^3 \Sigma^2 \equiv const \tag{1.32}$$

Como $R_{pq}=r^3s_ps_q$ para $p\neq q$ e $R_{pp}=r^2\ddot{r}+r^3(-s_i^2-s_j^2)$ para $i,j\neq p$ segue-se que

$$r^3 s_{\mu} s_{\gamma} = const \ e \ r^3 (s_{\mu}^2 - s_{\gamma}^2) = const; \quad \mu, \gamma = 1, 2, 3$$
 (1.33)

Pelo que foi visto, (1.33) implica que

$$r^3 s_{\mu}^2 = const; \quad \mu = 1, 2, 3$$
 (1.34)

Da relação anterior segue que $\Sigma = r^{-\frac{3}{2}}\Sigma_0$, onde Σ_0 é uma matriz antisimétrica constante, pois

$$\Sigma = r^{-\frac{3}{2}} \begin{pmatrix} 0 & -r^{\frac{3}{2}}s_3 & r^{\frac{3}{2}}s_2 \\ r^{\frac{3}{2}}s_3 & 0 & -r^{\frac{3}{2}}s_1 \\ -r^{\frac{3}{2}}s_2 & r^{\frac{3}{2}}s_1 & 0 \end{pmatrix}$$

e $r^3 s_{\mu}^2 = const$ implica que $r^{\frac{3}{2}} s_{\mu} = const$ para $\mu = 1, 2, 3$.

Pela Proposição 5 existe uma matriz ortogonal P_0 tal que $P_0\Sigma_0P_0^{-1}$ é anti-simétrica e tem última linha nula. Disto, segue-se que $P_0\Sigma P_0^{-1}$ é anti-simétrica e tem a última linha nula, ou seja,

$$P_0 \Sigma P_0^{-1} = \begin{pmatrix} 0 & -\overline{s}_3 & 0 \\ \overline{s}_3 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Como $\Sigma = \Omega^{-1}\dot{\Omega}$, temos $P_0\Sigma P_0^{-1} = P_0\Omega^{-1}P_0^{-1}P_0\dot{\Omega}P_0^{-1} = (\overline{\Omega})^{-1}\dot{\overline{\Omega}}$, onde $\overline{\Omega} = P_0\Omega P_0^{-1}$. Pela Proposição 1, $\overline{\Omega}$ é uma rotação que deixa fixo o eixo e_3 . Consequentemente, se $S_0 = (s_1^0, s_2^0, s_3^0)$ é o vetor associado a matriz Σ_0 como na Proposição 5 então $\Omega S_0 = P_0^{-1}\overline{\Omega}P_0S_0 = P_0^{-1}\overline{\Omega}e_3 = P_0^{-1}e_3 = S_0$. Se x, y, z denotam as coordenadas do nosso sistema cuja origem está fixado no centro de massa, podemos escolhê-lo de tal forma que S_0 coincida com o eixo z. Ou seja,

$$\Omega = \begin{pmatrix} \cos \phi & -\sin \phi & 0\\ \sin \phi & \cos \phi & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Segue-se, então, pela Proposição 1 que $s_1 = s_2 = 0$ e $s_3 = \dot{\phi}$.

Queremos mostrar que $\dot{\phi} \equiv 0$ e r não é constante para então concluirmos a demonstração. Para isto, faremos uso da relação (1.33) e do fato do momento angular $M = \sum_{i=1}^{n} m_i q_i \times \dot{q}_i$ ser constante.

Sendo q_i uma solução homográfica, $q_i = r\Omega q_i^0$ implicando que $\dot{q}_i = (\dot{r}\Omega + r\dot{\Omega})q_i^0$. Daí, $M = \sum_{i=1}^n m_i (r\Omega q_i^0) \times (\dot{r}\Omega + r\dot{\Omega})q_i^0 = \sum_{i=1}^n m_i (r\Omega q_i^0) \times r\dot{\Omega}q_i^0$. Como $\Omega \in SO(3)$, temos $\Omega u \times \Omega v = \Omega(u \times v)$, segue-se que $M = r^2\Omega\left(\sum_{i=1}^n m_i q_i^0 \times \Sigma q_i^0\right)$. Observemos que $\Sigma q_i^0 = s_3 p_i^0$ onde $p_i^0 = (-q_{2i}, q_{1i}, 0)$. Assim,

$$M = r^2 s_3 \Omega \left(\sum_{i=1}^n m_i q_i^0 \times p_i^0 \right)$$

Desenvolvendo o produto vetorial acima obteremos que

$$q_i^0 \times p_i^0 = \sum_{i=1}^n m_i ((q_{1i})^2 + (q_{2i})^2),$$

e lembrando que Ω deixa fixo o eixo z, vemos que

$$M = r^2 s_3 \sum_{i=1}^{n} m_i ((q_{1i})^2 + (q_{2i})^2).$$

Já vimos no início deste capítulo que M é constante. Seja $c = \sum_{i=1}^n m_i ((q_{1i})^2 + (q_{2i})^2)$ e observemos que c = 0 implica que $q_{1i} = q_{2i} = 0$ para todo $i = 1, \ldots, n$, mas isto não pode ocorrer, pois estamos supondo que a solução não é planar. Logo, $c \neq 0$ resultando que $\frac{M}{c} = r^2 s_3 = r^2 \dot{\phi}$. Disto, decorre que

$$r^2\dot{\phi} = const\tag{1.35}$$

Das equações (1.34) e (1.35) se $s_3 = \dot{\phi} \neq 0$, para todo t, então $r = \frac{r^4 \phi 2}{r^3 \dot{\phi}^2} \equiv const$. Mas, se $r \equiv const$ então K se reduz a $K = r^3(\dot{\Sigma} + \Sigma^2)$, logo tem determinante nulo visto que $s_1 = s_2 = 0$ implica que todos os elementos da terceira coluna da matriz $\dot{\Sigma}$ e Σ^2 se anulam. Por outro lado, vimos no início da demonstração que $K = (a_\alpha, a_\beta, a_\gamma)(q_\alpha^0, q_\beta^0, q_\gamma^0)^{-1}$, logo det $K = det(a_\alpha, a_\beta, a_\gamma)det(q_\alpha^0, q_\beta^0, q_\gamma^0)^{-1} \neq 0$. Assim, $\dot{\phi} = 0$ e $r \neq 0$ implicando que q_i $i = 1, \ldots, n$ é uma solução homotética.

Poderíamos ter a impressão de que esta complicada prova do teorema 2 é desnecessária, visto que a demonstração parece ser uma consequência apenas da conservação do momento angular. Mas este não é o caso, como veremos considerando o caso da força de atração ser inversamente proporcional ao cubo da distância. Notemos que neste caso, a relação (1.34) será $r^4s_{\mu}^2=const;\;\mu=1,2,3,\;$ e esta é mesma condição que $r^2\dot{\phi}=const\;$ achada na demonstração do teorema anterior como sendo uma consequência da conservação do momento angular. Portanto teríamos apenas uma relação envolvendo r e $\dot{\phi}$, e portanto a prova não poderia ser concluída. Mas será que pode existir uma outra demonstração para o teorema sem envolver estas relações? A resposta é não, como veremos na construção de uma solução homográfica do problema de n corpos (para o caso da força ser inversamente proporcional ao cubo da distância) que não é flat e não é homotética.

Assumindo que a atração entre os n=4 corpos é inversamente proporcional ao cubo da distância e supondo que os vetores posições dos corpos m_i são $q_i(t)=(x_i(t),y_i(t),z_i(t))$ para (i=1,2,3,4), teremos

$$m_i x_i = U_{x_i}, \quad m_i y_i = U_{y_i}, \quad m_i z_i = U_{z_i} \qquad (i = 1, 2, 3, 4)$$
 (1.36)

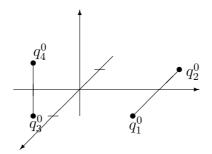
onde

$$U = \frac{1}{2} \sum_{i < j} \frac{m_i m_j}{||q_i - q_j||^2} \operatorname{com} ||q_i - q_j||^2 = (x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2$$
 (1.37)

Escolhamos as massas e os vetores posições tais que

$$x_1^0 = -x_2^0 < 0 = x_3^0 = x_4^0, \quad y_3^0 = y_4^0 < 0 < y_1^0 = y_2^0, \quad z_3^0 = -z_4^0 < 0 = z_1^0 = z_2^0$$
 (1.38)

$$m_1 = m_2, \quad m_3 = m_4 \tag{1.39}$$



onde o sobre-escrito 0 refere-se a $t=t_0$. Sendo a origem do nosso sistema de coordenadas o centro de massa, temos

$$\sum_{i=1}^{4} m_i x_i^0 = 0, \quad \sum_{i=1}^{4} m_i y_i^0 = 0 \quad \sum_{i=1}^{4} m_i z_i^0 = 0; \tag{1.40}$$

consequentemente

$$\sum_{i}^{4} U_{x_i}^0 = 0, \quad \sum_{i}^{4} U_{y_i}^0 = 0 \quad \sum_{i}^{4} U_{z_i}^0 = 0.$$
 (1.41)

As equações em (1.36) são dadas por

$$\ddot{q}_i = \sum_{j \neq i} \frac{m_j}{||q_i - q_j||^4} (q_j - q_i), \quad i = 1, 2, 3, 4.$$
(1.42)

Supondo que $q_i = r\Omega q_i^0$ e lembrando que Ω é uma transformação ortogonal, logo preserva norma, teremos que (1.42) pode ser reescrita como

$$r^{3}\ddot{q}_{i} = \Omega\left(\sum_{j \neq i} \frac{m_{j}}{||q_{i}^{0} - q_{j}^{0}||^{4}} (q_{j}^{0} - q_{i}^{0})\right). \tag{1.43}$$

segue-se, por (1.13), que

$$r^3 K q_i^0 = \frac{U_{q_i}^0}{m_i} \tag{1.44}$$

onde, em vez de (1.13), K agora é a matriz

$$K = \ddot{r}I + 2\dot{r}\Sigma + r(\Sigma^2 + \dot{\Sigma}).$$

Tomemos a rotação em torno do eixo y, ou seja,

$$\Omega = \begin{pmatrix} \cos \phi & 0 & -\sin \phi \\ 0 & 1 & 0 \\ \sin \phi & 0 & \cos \phi \end{pmatrix}$$

Então, pela Proposição 1, temos

$$\Sigma = \begin{pmatrix} 0 & 0 & s_2 \\ 0 & 0 & 0 \\ -s_2 & 0 & 0 \end{pmatrix}, \text{ donde, } \Sigma^2 = \begin{pmatrix} -s_2^2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -s_2^2 \end{pmatrix}$$

Assim,

$$K = \begin{pmatrix} \ddot{r} - rs_2^2 & 0 & 2\dot{r}s_2 + r\dot{s}_2 \\ 0 & \ddot{r} & 0 \\ -2\dot{r}s_2 - r\dot{s}_2 & 0 & \ddot{r} - rs_2^2 \end{pmatrix}$$

Logo, por (1.43), temos

$$\begin{cases}
r^{3}(\ddot{r} - rs_{2}^{2})x_{i}^{0} + r^{3}(2\dot{r}s_{2} + r\dot{s}_{2})z_{i}^{0} = \frac{U_{x_{i}}^{0}}{m_{i}} \\
r^{3}\ddot{r}y_{i} = \frac{U_{y_{i}}^{0}}{m_{i}} & i = 1, 2, 3, 4, \\
r^{3}(-\dot{r}s_{2} - r\dot{s}_{2})x_{i} + (\ddot{r} - rs_{2}^{2})r^{3}z_{i} = \frac{U_{z_{i}}^{0}}{m_{i}}
\end{cases}$$
(1.45)

e por (1.38), temos

$$\begin{cases} U_{x_1}^0 = -U_{x_2}^0 > 0 = U_{x_3}^0 = U_{x_4}^0, \\ U_{y_3}^0 = U_{y_4}^0 > 0 > U_{y_1}^0 = U_{y_2}^0, \\ U_{z_3}^0 = -U_{z_4}^0 > 0 = U_{z_1}^0 = U_{z_2}^0 \end{cases}$$

$$(1.46)$$

Usando (1.38) teremos que (1.45) pode ser escrito como

$$\begin{cases} r^{3}(\ddot{r} - rs_{2}^{2})x_{i}^{0} = \frac{U_{x_{i}}^{0}}{m_{i}} \\ r^{3}\ddot{r}y_{i} = \frac{U_{y_{i}}^{0}}{m_{i}} & i = 1, 2 \\ r^{3}(-\dot{r}s_{2} - r\dot{s}_{2})x_{i} = 0 \end{cases}$$

$$(1.47)$$

e

$$\begin{cases} r^{3}(2\dot{r}s_{2} + r\dot{s}_{2})z_{i}^{0} = \frac{U_{x_{i}}^{0}}{m_{i}} \\ r^{3}\ddot{r}y_{i} = \frac{U_{y_{i}}^{0}}{m_{i}} & i = 3, 4 \\ (\ddot{r} - rs_{2}^{2})r^{3}z_{i} = \frac{U_{z_{i}}^{0}}{m_{i}} \end{cases}$$

$$(1.48)$$

Vemos que as segundas equações dos sistemas (1.47) e (1.48) nos dão que $\ddot{r}=-br^{-3}$, pois $b=\frac{U_{y_1}^0}{y_1m_1}=\frac{U_{y_2}^0}{y_2m_2}=\frac{-U_{y_3}^0}{-y_3m_3}=\frac{-U_{y_4}^0}{-y_4m_4}$ devido a $\sum_{i=1}^4 m_iy_i=0$, $\sum_{i=1}^4 U_{y_i}^0=0$ e às relações (1.38), (1.46). A primeira equação de (1.47) e a terceira equação de (1.48) serão coerentes se colocarmos as restrições adicionais: $x_1^0=z_3^0=-z_4^0=-x_2^0$ e $m_1=m_2=m_3=m_4$. Vemos, então, que as funções r(t) e $\phi(t)$, onde $\dot{\phi}=s_2$, são as mesmas do exemplo referente ao Teorema 1. Isto prova que sob uma força que varia com o inverso do cubo das distâncias, existem soluções homográficas espaciais que não são homotéticas.

1.4 Caracterização das Soluções Homográficas

Seja q_i , $i=1,\ldots,n$, uma solução homográfica do problema newtoniano de n corpos. Então $q_i=r\Omega q_i^0$, donde,

$$J = J^0 r^2, \quad U = U^0 r^{-1}, \quad \Omega^{-1} U_{q_i} = U_{q_i}^0 r^{-2}$$
 (1.49)

onde, $U = \sum_{i < j} \frac{m_i m_j}{||q_i - q_j||}$ é o potencial newtoniano e

$$J = \sum_{i=1}^{n} m_i q_i^2$$

é o momento de inércia. Derivando J duas vezes com relação a t obtemos

$$\ddot{J} = 2\sum m_i(\dot{q}_i \cdot \dot{q}_i + q_i \cdot \ddot{q}_i) = 4T - 2U,$$
 (1.50)

pois, $\sum_i q_i \cdot \nabla_{q_i} U = -U$. Isolando T na relação da energia h = T - U, dada em (2.39), e substituindo em (1.50), segue-se que

$$\ddot{J} = 2U + 4h. \tag{1.51}$$

Sendo J dado em (1.49) segue-se que $\ddot{J}=(r\ddot{r}+\dot{r}^2)J^0$, substituindo esta relação em (1.51) teremos que

$$(r\ddot{r} + \dot{r}^2)J^0 - r^{-1}U^0 = 2h, (1.52)$$

Suponhamos que $q_i = (q_{i1}(t), q_{i2}(t), q_{i3}(t))$ é uma solução homográfica planar do problema de n corpos. Assim, nosso sistema de coordenadas pode ser escolhido de tal forma que $q_{i3} = 0$ (i = 1, ..., n), ou seja, a trajetória de q_i está sempre no plano xy do nosso sistema de coordenadas. Disto, a transformação Ω pode ser escrita como

$$\Omega = \begin{pmatrix} \cos \phi & -\sin \phi & 0\\ \sin \phi & \cos \phi & 0\\ 0 & 0 & 1 \end{pmatrix}$$

onde $\dot{\phi} = \dot{\phi}(t)$ denota a velocidade do sistema rotacional $X = \Omega^{-1}q$. Consequentemente,

$$\dot{q}_i^2 = (\dot{r}q_i^0)^2 + (\dot{\phi}q_i^0)^2. \tag{1.53}$$

De fato, sendo q_i uma solução homográfica temos que $\dot{q}_i=\dot{r}\Omega+r\dot{\Omega}q_i^0=\Omega(\dot{r}I+r\Sigma)q_i^0$ implicando que $\dot{q}_i=\dot{r}I+r\Sigma=(\dot{r}q_i^0)^2+2\dot{r}q_i^0r\Sigma q_i^0+(r\Sigma q_i^0)^2$, pois Ω preserva norma. Pela Proposição 1

$$\Sigma q_i^0 = \left(egin{array}{ccc} 0 & -\dot{\phi} & 0 \\ \dot{\phi} & 0 & 0 \\ 0 & 0 & 0 \end{array}
ight) \left(egin{array}{c} q_{i1}^0 \\ q_{i2}^0 \\ 0 \end{array}
ight) = \dot{\phi} \left(egin{array}{c} -q_{i2}^0 \\ q_{i1}^0 \\ 0 \end{array}
ight)$$

e $\Sigma q_i^0 \Sigma q_i^0 = q_i^0 q_i^0$, logo

$$\dot{q}_i^2 = (\dot{r}q_i^0)^2 + (r\dot{\phi}q_i^0)^2. \tag{1.54}$$

e

$$q_i \times \dot{q}_i = (0, 0, \phi(r\dot{q}_i^0)^2).$$
 (1.55)

Sendo $T=\frac{1}{2}\sum_i m_i \dot{q}_i^2$ a energia cinética e $M=\sum m_i q_i \times \dot{q}_i$ o momento angular, segue-se que

$$T = \frac{1}{2}(\dot{r}^2 + r^2\dot{\phi}^2)J_0 \quad e \quad \dot{\phi}r^2J^0 = ||M||, \quad (J^0 > 0)$$
 (1.56)

por substituição direta de (1.54) e (1.55) nas equações de T e M.

Sabemos da Proposição 1 que a matriz Σ é tal que $s_1 = s_2 = 0$ e $s_3 = \dot{\phi}$. Daí, a matriz $K = r^2(\ddot{r}I + 2\dot{r}\Sigma + r(\Sigma^2 + \dot{\Sigma}))$ definida em (1.13) se escreve como

$$K = \begin{pmatrix} r^{2}(\ddot{r} - r\ddot{\phi}^{2}) & -r^{2}(r\ddot{\phi} + 2\dot{r}\dot{\phi}) & 0\\ r^{2}(r\ddot{\phi} + 2\dot{r}\dot{\phi}) & r^{2}(\ddot{r} - r\ddot{\phi}^{2}) & 0\\ 0 & 0 & r^{2}\ddot{r} \end{pmatrix}$$
(1.57)

No caso geral, a formulação equivalente $\ddot{J}=2U+4h$ da energia T-U=h pode ser escrita como

$$(r\ddot{r} + \dot{r}^2)J^0 - r^{-1}U^0 = 2h.$$

De fato, $J=J^0r^2\Rightarrow \ddot{J}=2\dot{r}^2J^0+2r\ddot{r}J^0$. Basta, então, substituir \ddot{J} na equação $\ddot{J}=2U+4h$ e usar (1.49).

Suponhamos que a solução q_i não é planar, então os teoremas 1 e 2 garantem que q_i é homotética, ou seja, $q_i = rq_i^0$ $\phi = 0$. Portanto a energia cinética $T = \frac{1}{2} \sum m_i \dot{q}_i^2$ se reduz a

$$\frac{1}{2} \sum m_i (\dot{r} q_i^0)^2 \equiv \frac{1}{2} \dot{r}^2 J^0$$

Visto que a relação $T = \frac{1}{2}(\dot{r}^2 + r^2\dot{\phi}^2)J_0$ é válida no caso planar, logo, a energia total de toda solução homográfica pode ser escrita como

$$\frac{1}{2}(\dot{r}^2 + r^2\dot{\phi}^2)J_0 - r^{-1}U^0 = h, (1.58)$$

se $\dot{\phi} = \dot{\phi}(t)$ é definido como sendo a velocidade angular do sistema de coordenada rotacional no caso planar, e é definido como $\dot{\phi} \equiv 0$ no caso não planar. Neste sentido, $\dot{\phi}r^2J^0 = ||M||$, $(J^0 > 0)$ é válido no caso não-planar também visto que q_i não planar implica, pelo Teorema 2, que q_i é homotética e assim $M = \sum_{i=1}^n m_i q_i \times \dot{q}_i = \sum_{i=1}^n m_i r q_i^0 \times \dot{r} q_i^0 = 0$. Também no caso não planar, a relação (1.57) é válida, pois $\dot{\phi} \equiv 0 \Rightarrow \Sigma = 0$, daí $k = r^2 \left(\ddot{r}I + 2\dot{r}\Sigma + r(\dot{\Sigma} + \Sigma^2) \right)$.

Vamos mostrar, agora, que (I) e (II) (páginas 27 e 28) da seção anterior são válidas. $Demontração\ de\ (I)\ e\ (II)$: Se uma solução homográfica é planar então $\dot{\phi}r^2J^0=|M|$, como visto em (1.56). Vemos que M=0 se e somente se a velocidade angular $\dot{\phi}\equiv 0$ e que r(t)=const>0 se e somente se $\dot{\phi}\equiv const\neq 0\neq ||M||$. Isto prova (I) e (II) para o caso planar. Se uma solução homográfica não é planar então, pelos teoremas (1) e (2), ela é homotética e portanto não pode ser de equilíbrio relativo. Isto completa a prova de (II) e mostra que para provar (I) temos que mostrar que M=0 para toda solução homográfica não-planar. Mas se a solução q_i não é planar, $q_i=rq_i^0$, e daí $M=\sum_{i=1}^n m_i q_i \times \dot{q}_i=\sum_{i=1}^n m_i rq_i^0 \times \dot{r}q_i^0=0$.

Capítulo 2

Configurações Centrais

Neste capítulo introduziremos o conceito de configuração central mostrando alguns exemplos e resultados importantes. No decorrer do capítulo consideraremos $q_i = (q_{i1}, q_{i2}, q_{i3}) \in \mathbb{R}^3$ como sendo o vetor posição do *i*-ésimo corpo de massa m_i , $i = 1, \ldots, n$. Neste capítulo, iremos supor também que a origem do nosso sistema de coordenadas é o centro de massa.

Vimos que uma solução homográfica no plano tem a forma (1.7). Derivando duas vezes em relação a t e substituindo em (1.1) teremos

$$m_i \ddot{\phi} a_i = \sum_{j \neq i} \frac{m_i m_j (a_j - a_i)}{||a_i - a_j||^3} \frac{\phi(t)}{||\phi(t)||^3}$$

resultando que

$$||\phi(t)||^3 \phi(t)^{-1} \ddot{\phi}(t) = \sum_{j \neq i} \frac{m_i m_j (a_j - a_i)}{||a_i - a_j||^3} m_i^{-1} a_i^{-1}$$

Como o segundo membro da equação anterior não depende t, segue-se que a função de t no primeiro membro é constante, logo, existe $-\lambda \in \mathbb{C}$ tal que

$$\ddot{\phi} = -\frac{\lambda \phi}{||\phi||^3} \tag{2.1}$$

e, consequentemente

$$\sum_{j \neq i} \frac{m_i m_j (a_j - a_i)}{||a_i - a_j||^3} + \lambda m_i a_i = 0, \quad i = 1, \dots, n$$
(2.2)

Mostraremos que λ é um número real positivo e com isso a equação (2.1) corresponderá ao problema de Kepler no plano sobre o qual falaremos com mais detalhe no capítulo três

desta dissertação. As equações em (2.2) são conhecidas como as equações das configurações centrais no plano. De uma forma geral temos

Definição 6 (Configuração Central) 1 Uma configuração de n-corpos, $q=(q_1,\ldots,q_n)$ com massas m_i $(i=1,\ldots,n)$, é dita central se existir um $\lambda \in \mathbb{R}$ tal que

$$\sum_{j \neq i} \frac{m_i m_j (q_j - q_i)}{||q_i - q_j||^3} + \lambda m_i q_i = 0, \quad i = 1, \dots, n.$$
(2.3)

Comparando a equação das configurações centrais (2.3) com a equação newtoniana dos n corpos, vemos que, geometricamente, uma configuração central de n partículas é tal que o vetor aceleração de cada partícula é um múltiplo escalar comum do vetor posição correspondente. Esta propriedade geométrica justifica o nome dado a este tipo de configuração. Quando falamos em configuração central estamos nos referindo a uma posição das massas, isto é, independente do parâmetro t.

Agora, vamos usar a relação de Euler para funções homogêneas para mostrarmos que $\lambda>0.$

Lembremos que uma função $f: \mathbb{R}^n \to \mathbb{R}$ é dita homogênea de grau k se para todo α real positivo, $f(\alpha q) = \alpha^k f(q)$. Derivando a igualdade anterior em relação a α e fazendo $\alpha = 1$ teremos que $\nabla f(x) \cdot x = k f(x)$.

Sendo $J = \sum_{i} m_{j} ||q_{j}||^{2}$ a equação (2.3) toma a forma

$$U_{q_i} + \lambda \frac{1}{2} J_{q_i} = 0, \quad i = 1, \dots, n$$
 (2.4)

ou seja,

$$\nabla(U + \lambda \frac{1}{2}J) = 0. \tag{2.5}$$

Sendo U(q) uma função homogênea de grau -1 e J homogênea de grau 2, segue-se que $\sum U_{q_i} \cdot q_i = -U$, e $\sum J_{q_i} \cdot q_i = 2J$ Assim, tomando o produto interno por q_i em (2.4) e somando obtemos $-U + \lambda J = 0$, isto é,

$$\lambda = \frac{U}{I} > 0$$

¹Nesta definição, estamos considerando o centro de massa na origem. Se este não fosse o caso, a equação (2.3) seria escrita como $\sum_{j\neq i} \frac{m_i m_j (q_j - q_i)}{||q_i - q_j||^3} + \lambda m_i (q_i - C) = 0, \quad i = 1, \dots, n.$

Observe que a equação (2.5) nos diz que as configurações centrais podem ser vistas como pontos críticos de U restrito a hiperfície $J = J_0, J_0 \in \mathbb{R}$.

Podemos ver a condição (2.4) para configurações centrais de outra forma. Como $\lambda=\frac{U}{I},$ (2.4) pode ser reescrito na forma

$$J2UU_{q_i} + U^2J_{q_i} = 0$$

ou seja, as massas m_i formam uma configuração central se, e somente, $q=(q_1,\ldots,q_n)$ satisfaz as equações

$$(JU^2)_{q_i} = 0, \quad i = 1, \dots, n$$
 (2.6)

A relação anterior nos diz que $q=(q_1,\ldots,q_n)$ é um ponto crítico da função JU^2 .

Teorema 3 Se q_1, \ldots, q_n formam uma configuração central para as massas as massas m_i $(i = 1, \ldots, n)$, então $\overline{q}_i = \beta q_i$ também forma uma configuração central com massa m_i , onde β é um escalar. O mesmo ocorre para a configuração $\widetilde{q}_i = \Omega q_i$, onde $\Omega \in O(3)$.

Demonstração: De fato, q_i configuração central implica que existe λ tal que $U_{q_i} = \lambda m_i q_i$. Daí,

$$U_{q_i}(\overline{q}) = \sum_{j \neq i} \frac{m_i m_j}{||\overline{q}_i - \overline{q}_j||^3} (\overline{q}_j - \overline{q}_i)$$
$$= \frac{1}{\beta^2} U_{q_i}(q) = \frac{1}{\beta^2} \lambda m_i q_i = \frac{\lambda}{\beta^3} m_i \overline{q}_i,$$

ou seja, $U_{q_i}(\overline{q}) = \overline{\lambda} m_i \overline{q}_i$ onde $\overline{\lambda} = \frac{\lambda}{\beta^3}$. Analogamente,

$$\sum_{j\neq i} \frac{m_i m_j}{||\widetilde{q}_i - \widetilde{q}_j||^3} (\widetilde{q}_j - \widetilde{q}_i) = \Omega \left(\sum_{j\neq i} \frac{m_i m_j}{||q_i - q_j||^3} (q_j - q_i) \right) = \Omega(\lambda m_i q_i) = \lambda m_i \widetilde{q}_i.$$

resultando que $\widetilde{q}_i \ (i=1,\dots,n)$ também formam uma configuração central.

Na próxima seção, vamos falar sobre uma caracterização das configurações centrais em termos das distâncias mútuas.

2.1 Outra caracterização das Configurações Centrais

Outra caracterização das configurações centrais pode ser obtida expressando (2.3) em termos das $\frac{1}{2}n(n-1)$ distâncias mútuas $\rho_{ik} = ||q_i - q_k||$, onde $1 \le i < k \le n$. Em virtude de que $\sum m_i q_i = 0$, podemos escrever J em termos das distâncias mútuas, pois, tomando $\mu = \sum m_i$, temos

$$\sum_{i} m_{i} ||q_{i} - q_{j}||^{2} = \sum_{i} m_{i} (||q_{i}||^{2} + ||q_{j}||^{2} - 2q_{i} \cdot q_{j}) = J + \mu ||q_{j}||^{2}.$$

Multiplicando a igualdade anterior por m_i e somando em j, obtemos

$$\sum_{i,j} m_i m_j ||q_i - q_j||^2 = \mu J + \mu J = 2\mu J.$$

Portanto, temos as relações

$$J = \mu^{-1} \sum_{i < j} m_i m_j \rho_{ij}^2$$
 e $U = \sum_{i < j} \frac{m_i m_j}{\rho_{ij}}$ (2.7)

Entretanto, não podemos substituir (2.6) pelas $\frac{1}{2}n(n-1)$ condições $(JU^2)_{\rho_{ik}}=0$ a menos que os ρ_{ik} sejam funções independentes, o que não é o caso em geral. Com efeito, se considerarmos ρ_{ik} como função dos q_i então

$$(JU^2)_{q_i} = \sum_k (JU^2)_{\rho_{ik}} \left(\frac{\partial \rho_{ik}}{\partial q_i}\right),$$

daí para que $(JU^2)_{q_i} = 0$ implique $(JU^2)_{\rho_{ik}} = 0$ é preciso que os vetores $\frac{\partial \rho_{ik}}{\partial q_i}$ (k = 1, ..., n) sejam linearmente independentes para cada i.

Como ilustração, mais à frente faremos um exemplo de três corpos no plano. Neste caso, as três distâncias mútuas são linearmente independentes e, portanto, nosso problema é resolver as equações $(JU^2)_{\rho_{ik}}=0$ com $i,k=1,\ldots,n$. Agora, se quisermos determinar as configurações centrais de uma forma geral (colinear, co-planar mas não colinear, não coplanar) teremos que considerar algumas restrições. Por exemplo, consideremos o caso n=4. Vamos expressar a condição para que os 4 corpos estejam em um mesmo plano em termos das distâncias mútuas, ou seja, sejam coplanares mas não colineares. Para isto, consideremos dois conjuntos de pontos (x_i, y_i, z_i) e (x_i', y_i', z_i') . Então, os volumes V

e V' dos dois tetraedros são dados por

$$6V = \begin{vmatrix} x_1 & x_2 & x_3 & x_4 & 0 \\ y_1 & y_2 & y_3 & y_4 & 0 \\ z_1 & z_2 & z_3 & z_4 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{vmatrix}$$
 e
$$6V' = \begin{vmatrix} x_1' & y_1' & z_1' & 0 & 1 \\ x_2' & y_2' & z_2' & 0 & 1 \\ x_3' & y_3' & z_3' & 0 & 1 \\ x_4' & y_4' & z_4' & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{vmatrix}$$

Cosideremos $(i,j)=(x_i-x_j')^2+(y_i-y_j')^2+(z_i-z_j')^2$ então $-\frac{1}{2}(i,j)=(x_ix_j'+y_iy_j'+z_iz_j')-\frac{1}{2}(x_i^2+y_i^2+z_i^2)-\frac{1}{2}(x_i'^2+y_i'^2+z_i'^2)$. Agora, tomando o produto 36VV', subtraindo a última linha multiplicada por $\frac{1}{2}(x_i^2+y_i'^2+z_i'^2)$ de cada coluna e subtraindo a última coluna multiplicada por $\frac{1}{2}(x_i'^2+y_i'^2+z_i'^2)$ de cada coluna, obtemos

$$288VV' = \begin{vmatrix} (11) & (12) & (13) & (14) & 1 \\ (21) & (22) & (23) & (24) & 1 \\ (31) & (32) & (33) & (34) & 1 \\ (41) & (42) & (43) & (44) & 1 \\ 1 & 1 & 1 & 1 & 0 \end{vmatrix}.$$

Se os dois tetraedros coincidem então (ii) = 0 e

$$288V^{2} = \begin{vmatrix} 0 & \rho_{12}^{2} & \rho_{13}^{2} & \rho_{14}^{2} & 1 \\ \rho_{21}^{2} & 0 & \rho_{23}^{2} & \rho_{24}^{2} & 1 \\ \rho_{31}^{2} & \rho_{32}^{2} & 0 & \rho_{34}^{2} & 1 \\ \rho_{41}^{2} & \rho_{42}^{2} & \rho_{43}^{2} & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{vmatrix} \equiv R$$

$$(2.8)$$

com $\rho_{ij}=(x_i-x_j)^2+(y_i-y_j)^2+(z_i-z_j)^2$. Consequentemente, $R\equiv 0$ expressa a condição dos quatro corpos estarem em um e no mesmo plano. Então, neste caso, nossa condição para uma configuração central torna-se

$$(JU^2)_{\rho_{ik}} + \chi R_{\rho_{ik}} = 0 (2.9)$$

onde χ denota um multiplicador de Lagrange. A dedução acima foi feita por Hagihara (??). De uma forma geral, ver Wintner [13]

$$p = \frac{1}{2}(n-1)(n-2), \quad p = \frac{1}{2}(n-2)(n-3), \quad p = \frac{1}{2}(n-3)(n-4)$$

representam, respectivamente, a quantidade de condições para que os n corpos sejam colineares, co-planares mas não colineares, ou não co-planares. Nosso problema é, então, achar os extremos de JU^2 restrito as p condições $R_k=0,\,k=1,\ldots,p$, ou seja, determinar os ρ_{ik} tais que

$$(JU^2)_{\rho_{ik}} + \sum_{s=1}^p \chi_s(R_s)_{\rho_{ik}} = 0$$
 (2.10)

onde χ_1, \ldots, χ_p denotam os multiplicadores de Lagrange.

Daremos algumas aplicações deste método na seção seguinte.

2.2 Aplicações

2.2.1 Três Corpos numa Reta

Neste caso queremos determinar todas as configurações centrais colineares uma vez dadas as três massas arbitrárias m_1 , m_2 , m_3 . Seguindo a informação dada na seção anterior, a quantidade de condições R=0 é $p=\frac{1}{2}(n-1)(n-2)=1$, pois n=3. Assim, (2.10) passa a ser escrito como

$$(JU^2)_{\rho_{ik}} + \chi R_{\rho_{ik}} = 0.$$

Vamos determinar esta condição R. Dizer que os três corpos são colineares é dizer que a área determinada pelos três vetores $\rho_{ij} = q_i - q_j$ é nula, ou que uma das três relações seguintes ocorrem, $\rho_{13} = \rho_{12} + \rho_{23}$, $\rho_{12} = \rho_{13} + \rho_{32}$, $\rho_{23} = \rho_{21} + \rho_{13}$. Uma forma de escrever estas três condições é

$$R = \begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & \rho_{12}^2 & \rho_{13}^2 \\ 1 & \rho_{12}^2 & 0 & \rho_{23}^2 \\ 1 & \rho_{13}^2 & \rho_{23}^2 & 0 \end{vmatrix} = 0,$$

pois quando calculado o determinante acima, vemos que

$$R = -(\rho_{12} + \rho_{23} + \rho_{13})(\rho_{12} + \rho_{23} - \rho_{13})(\rho_{12} - \rho_{23} + \rho_{13})(-\rho_{12} + \rho_{23} + \rho_{13}).$$

Escolhamos a notação de tal forma que m_2 esteja entre m_1 e m_3 . Assim, devido a expressão dada para R, a condição R=0 pode ser vista apenas como $\rho_{13}=\rho_{12}+\rho_{23}$. Se

(ijk) denota uma das três permutações cíclicas de (1,2,3) então

$$R_{\rho_{ik}} = (-1)^j$$
 para todo (ijk) .

Usando as relações dadas em (2.7), segue-se que $(JU^2)_{\rho_{ik}} + \chi R_{\rho_{ik}} = 0$ é

$$\mu^{-1}2m_i m_k \rho_{ik} U^2 + J2U - m_i m_k \rho_{ik}^{-2} + \chi(-1)^j = 0,$$

donde,

$$\mu^{-1}\rho_{ik}U - J\rho_{ik}^{-2} + \frac{\chi(-1)^j m_j}{2m_1 m_2 m_3 U} = 0.$$

Tomando $K = \frac{\chi}{2m_1m_2m_3U}$, nosso problema se reduz a resolvermos

$$\mu^{-1}\rho_{ik}U - J\rho_{ik}^{-2} + \chi(-1)^j m_j K = 0.$$
(2.11)

Se pensarmos em (2.11) como um sistema linear em U, J e K com coeficientes ρ_{ik} , ρ_{ik}^{-2} , m_i então devemos ter

$$\begin{vmatrix} \rho_{23} & \rho_{23}^{-2} & m_1 \\ \rho_{31} & \rho_{31}^{-2} & m_2 \\ \rho_{12} & \rho_{12}^{-2} & m_3 \end{vmatrix} = 0, \text{ onde } \rho_{13} = \rho_{12} + \rho_{31}.$$
 (2.12)

Agora, seja

$$\lambda = \frac{\rho_{12}}{\rho_{23}}.\tag{2.13}$$

Como $\rho_{13} = \rho_{12} + \rho_{23}$, temos $\frac{\rho_{13}}{\rho_{23}} = 1 + \lambda$. Mostraremos que $\lambda = \lambda(m_1, m_2, m_3)$ apenas. De fato, multiplicando a primeira e a segunda coluna de (2.12) por ρ_{23}^{-1} e ρ_{23}^{-2} respectivamente, usando (2.13) e desenvolvendo o determinante, vemos que a condição (2.12) aparece na forma

$$(m_2+m_3)\lambda^5 + (2m_2+3m_3)\lambda^4 + (m_2+3m_3)\lambda^3 - (3m_1+m_2)\lambda^2 - (3m_1+2m_3)\lambda - (m_1+m_2) = 0.$$
(2.14)

Consequentemente, o problema é reduzido à determinação de todas as raízes $\lambda = \lambda(m_1, m_2, m_3)$ da equação de quinto grau do polinômio anterior. Pela regra dos sinais de Descartes existe apenas uma raiz positiva. Isto prova que uma vez fixada a ordem das massas existe exatamente uma configuração central colinear dos 5 corpos com as massas dispostas na ordem dada.

Assim, dadas três massas existem exatamente três classes de configurações centrais associadas a essas massas.

2.2.2 Dois Corpos na Reta, Três Corpos no Plano e Quatro Corpos no Espaço

Como uma outra aplicação do critério (2.10) será fácil mostrar que dadas n massas arbitrárias m_i apenas o tetraedro regular é uma configuração central não planar, com as dadas massas nos vértices, se n=4, que para n=3, apenas o triângulo equilátero é uma configuração central não colinear e, que para n=2, o segmento é uma configuração central.

De fato, para os três casos acima $p=\frac{1}{2}(n-1)(n-2),\ p=\frac{1}{2}(n-2)(n-3)$ e $p=\frac{1}{2}(n-3)(n-4)$ respectivamente, resultando que p=0 nos três casos n=2,3,4. Assim, (2.10) se reduz a

$$(JU^2)_{\rho_{ik}} = 0$$
, ou seja, $J_{\rho_{ik}}U + J2UU_{\rho_{ik}} = 0$

o que equivale a

$$\mu^{-1}2m_i m_k \rho_{ik} U - J2 \frac{m_i m_k}{\rho_{ik}^2} = 0$$
, isto é, $\rho_{ik}^3 = \mu \frac{J}{U}$.

Assim, a distância entre as massas tem que ser as mesmas como queríamos mostrar.

Gostaria de citar uma maneira bastante elegante de deduzir o caso de três corpos no plano encontratado por Lagrange [5]. Esta forma utiliza o seguinte teorema que é devido a Moeckel [12].

Teorema 4 Seja $q = (q_1, \ldots, q_n)$ uma configuração central plana e sejam q_i e q_j dois de seus pontos. Se um dos dois cones abertos determinados pela reta que passa por q_i e q_j e pela mediatriz do segmento q_iq_j contém pontos de q, o outro cone também contém pontos de q.

Dados 3 corpos nos vértices de um triângulo, se considerarmos o segmento que une dois dos corpos, pelo teorema acima, o outro corpo tem que estar na mediatriz deste segmento. Permutando-se os corpos o terceiro corpo tem que sempre estar na correspondente mediatriz. Assim, o triângulo tem que ser equilátero. Este argumento é devido à Hampton.

O teorema 4 utiliza uma linha de pesquisa não mencionada neste trabalho, que é o estudo das simetrias das configurações centrais.

2.3 O Problema da Finitude

Quais são as classes de configurações centrais que existem para um dado conjunto de massas?

Classificar as soluções de (2.3) é muito difícil. Para n=3, Euler mostrou em 1767 que existem exatamente 3 soluções colineares. Logo depois, em 1772, Lagrange mostrou que para cada tripla m_1 , m_2 , m_3 existem, além das soluções de Euler, exatamente duas configurações centrais planas de três corpos, a saber, triângulos equiláteros com vértices $q_1, q_2, q_3 \in q_1, q_3, q_2$. Assim, para n=3 as soluções de (2.3) estão classificadas. Para n=4, Albouy classificou todas as configurações centrais de 4 corpos de massas iguais: a configuração colinear, o quadrado, o triângulo equilátero com uma massa no centro, e um triângulo isósceles com um dos corpos no eixo de simetria. Além destes resultados, não se tem uma classificação completa das soluções de (2.3) para algum número de massas. Na verdade, o problema de determinar o número de configurações centrais já é bastante difícil. Primeiro, expliquemos o que queremos dizer com o número de configurações centrais. Mostraremos no próximo capítulo que para cada instante t_0 fixado em uma solução homográfica teremos que as massas m_i formam uma configuração central. Assim, para que essa contagem faça sentido é necessário passarmos ao quociente módulo as isometrias em torno do centro de massa e as homotetias. As simetrias de translação são eliminadas quando fixamos o centro de massa na origem. Contamos, então, as classes de configurações centrais módulos estas simetrias. Este problema é tão difícil que existe uma conjectura relativo a ele, a conjectura de Wintner/Smale [13], [9], que diz: Dadas n massas positivas no problema de n corpos, o número de classes de configurações centrais é finito. Poderíamos questionar se existe apenas um número finito de inteiros n para os quais podemos escolher ao menos um conjunto m_1, \ldots, m_n possuindo ao menos uma configuração central. Esta foi uma questão proposta por Wintner [13] antes da conjectura da finitude mencionada acima. Vamos considerar as duas questões seguintes:

- i) Dado um $n \in \mathbb{N}$, existe um conjunto de massas m_1, \ldots, m_n formando uma configuração central?
- ii) O número de elementos do conjunto $\mathbb{N}_1 \subset \mathbb{N}$ formado pelos n's dados em i) é finito?

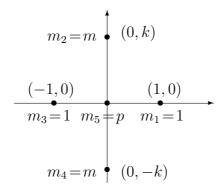
Nas subseções que seguem, trataremos essas duas questões separadamente. O item i) é sempre verdadeiro. Porém, em todos os três casos, colinear, planar não-colinear e não-planar, o item ii) não é válido, como veremos mais à frente.

Quanto a conjectura de Wintner/Smale, poucos resultados gerais existem. Começaremos construindo um exemplo que reforça a hipótese das massas serem positivas.

2.3.1 Um contínuo de equilíbrios relativos no problema de 5 corpos

Esta seção é baseada no artigo de G. Roberts [7]. Construiremos um exemplo de solução do problema de 5—corpos onde uma das massas é negativa (isto é, força repulsiva) e o número de classes de configurações centrais não é finito. Na verdade, mostraremos a existência de um contínuo de configurações centrais. Devido a massa negativa, este não é um contra-exemplo para a questão de Wintner/Smale do caso newtoniano.

Comecemos nossa procura por uma família de equilíbrios relativos considerando uma configuração que consiste de quatro corpos no vértice de um losango, cujas massas são iguais nos vértices opostos, e um corpo no centro do trapézio com massa arbitrária.



Sejam $m_1=1, m_2=m, m_3=1, m_4=m, m_5=p$ as massas e $q_1=(1,0), q_2=(0,k), q_3=(-1,0), q_4=(0,-k), q_5=(0,0)$ as posições dos cinco corpos. Observemos que os lados do losango medem $c=\sqrt{k^2+1}$. Queremos determinar λ para que a configuração $q=(q_1,q_2,q_3,q_4,q_5)$ satisfaça a equação (2.3).

$$\frac{\partial U}{\partial q_1}(q) + \lambda m_1 q_1 = 0 \Leftrightarrow \frac{m}{c^3}(-1, k) + \frac{1}{8}(-2, 0) + \frac{m}{c^3}(-1, -k) + p(-1, 0) + \lambda(1, 0) = 0$$

Para i = 1:

Para i=2:

$$\frac{\partial U}{\partial q_2}(q) + \lambda m_2 q_2 = 0 \Leftrightarrow \frac{1}{c^3}(1, -k) + \frac{1}{c^3}(-1, -k) + \frac{m}{(2k)^3}(0, -2k) + \frac{p}{k^3}(0, -k) + \lambda(0, k) = 0$$

Para i = 3:

$$\frac{\partial U}{\partial q_3}(q) + \lambda m_3 q_3 = 0 \Leftrightarrow \frac{1}{8}(2,0) + \frac{m}{c^3}(1,k) + \frac{m}{c^3}(1,-k) + p(1,0) + \lambda(-1,0) = 0$$

Para i = 4:

$$\frac{\partial U}{\partial q_4}(q) + \lambda m_4 q_4 = 0 \Leftrightarrow \frac{1}{c^3}(1,k) + \frac{m}{(2k)^3}(0,2k) + \frac{1}{c^3}(-1,k) + \frac{p}{k^3}(0,k) + \lambda(0,-k) = 0$$

Para i = 5:

$$\frac{\partial U}{\partial q_5}(q) + \lambda m_5 q_5 = 0 \Leftrightarrow \frac{\partial U}{\partial q_5}(q) + \lambda m_5(0,0) = 0$$

Observe que obtemos a mesma equação ao fazermos i=1 e i=3, e a mesma quando fazemos i=2 e i=4. Isso pode ser observado diretamente, pois devido às simetrias as forças sobre q_1 e q_3 diferem somente por um sinal, assim como as forças sobre q_2 e q_4 . Ao fazermos i=5, λ desaparece e não tem como determiná-lo, o que também já é esperado, pois a força atuando sobre q_5 é nula. Assim, para determinarmos λ temos que resolver as seguintes equações

$$\frac{m}{c^3}(-1,k) + \frac{1}{8}(-2,0) + \frac{m}{c^3}(-1,-k) + p(-1,0) + \lambda(1,0) = 0$$
 (2.15)

e

$$\frac{1}{c^3}(1,-k) + \frac{1}{c^3}(-1,-k) + \frac{m}{(2k)^3}(0,-2k) + \frac{p}{k^3}(0,-k) + \lambda(0,k) = 0 \tag{2.16}$$

De (2.15) e (2.16) segue-se que

$$-\frac{m}{c^3} - \frac{2}{8} - \frac{m}{c^3} - p + \lambda = 0 \Leftrightarrow \lambda = \frac{2m}{c^3} + \frac{1}{4} + p$$

e

$$-2\frac{k}{c^3} - \frac{2km}{8k^3} - \frac{kp}{k^3} + \lambda k = 0 \Leftrightarrow \lambda = \frac{2}{c^3} + \frac{m}{4k^3} + \frac{p}{k^3}$$

Daí,

$$\frac{2m}{c^3} + \frac{1}{4} + p = \frac{2}{c^3} + \frac{m}{4k^3} + \frac{p}{k^3} \Leftrightarrow m\left(\frac{2}{c^3} - \frac{1}{4k^3}\right) + p\left(1 - \frac{1}{k^3}\right) = \frac{2}{c^3} - \frac{1}{4}$$
 (2.17)

Se m=1 e $p=-\frac{1}{4}$ na equação (2.17) então

$$\frac{2}{c^3} - \frac{1}{4k^3} - \frac{1}{4}\left(1 - \frac{1}{4k^3}\right) = \frac{2}{c^3} - \frac{1}{4} \quad \forall k \in \mathbb{R}.$$

 \mathbf{e}

$$\lambda = \frac{2}{c^3}$$

Assim, para o conjunto de massas $(1,1,1,1,-\frac{1}{4})$ achamos uma família uniparamétrica de configurações centrais degeneradas para o problema de 5-corpos. Para um ponto de vista alternativo, sejam $q_1=(j,0),\ q_2=(-j,0)$ e as massas os valores $(1,1,1,1,-\frac{1}{4})$. Então $c=\sqrt{j^2+k^2}$ e $I=j^2+k^2$. Fixando I=1 temos c=1, daí

$$U(q) = \sum_{\substack{i,j=1\\i < j}}^{5} \frac{m_i m_j}{||q_i - q_j||} = \frac{1}{c^2} + \frac{1}{2j} + \frac{1}{c^2} - \frac{1}{4j} + \frac{1}{c^2} + \frac{1}{2k} - \frac{1}{4k} + \frac{1}{c^2} - \frac{1}{4j} - \frac{1}{4k} = 4$$

Portanto, para as massas $(1,1,1,1,-\frac{1}{4})$ a função potencial U restrita a hiperfície I=1 tem uma curva de pontos críticos

$$(\cos t, 0, 0, \sin t, -\cos t, 0, 0, -\sin t, 0, 0)$$
 para $0 \le t \le \frac{\pi}{2}$

2.3.2 Configurações Centrais Colineares

A maior contribuição conhecida para o problema da finitude é a determinação de todas as classes de configurações centrais colineares para dadas n massas arbitrárias. Se n=2 ou n=3 vimos na seção 2.2 que existem exatamente 1 e 3 classes de configurações centrais, respecticamente. O caso n=3 foi mostrado por Euler em [6] no ano de 1767. Em 1891, Lehmann-Filhés mostrou que para cada ordenamento de m_1, \ldots, m_n existe uma configuração central colinear. Finalmente, em 1910, Moulton [3] mostrou que para cada ordenamento dos n corpos existe uma única configuração central colinear, portanto o número de configurações centrais colineares de n corpos é $\frac{n!}{2}$. Em 1970, Smale deu uma demonstração diferente da dada por Moulton. A demonstração que faremos aqui é baseada na demonstração feita por Smale [10], e obitida de ([8]).

Teorema 5 Dadas n massas m_i (i = 1, ..., n) o número de classes de configurações centrais é exatamente $\frac{n!}{2}$.

Demonstração: Seja $q=(q_1,\ldots,n)\in\mathbb{R}^n$. Definamos o conjunto $S=\{q\in\mathbb{R}^n|J(q)=1,C(q)=0\}$ onde $J=\sum m_iq_i^2$ e $C=\frac{1}{\mu}\sum m_iq_i$ são o momento de inércia e o centro de massa, respectivamente. Podemos ver S como uma esfera topológica de dimensão n-2 em \mathbb{R}^n . Seja $\Delta'_{ij}=\{q\in\mathbb{R}^n|q_i=q_j\}$ e $\Delta'=\cup\Delta'_{ij}$; seja, também, $\Delta=\Delta'\cap S$. Seja \mathbf{U} a restrição do potencial U à $S-\Delta$. Por exemplo, se n=3, $S\cap\Delta'_{ij}$ é um dos grandes círculos. Notemos que $S-\Delta$ tem n! componentes conexas. Isto é devido a uma componente conexa de $S-\Delta$ corresponder a uma ordenação particular dos q_i . Ou seja, para cada componente conexa existe uma ordenação $q_{i_1}< q_{i_2}< \ldots < q_{i_n}$, onde (i_1,i_2,\ldots,i_n) é uma permutação de $1,2,\ldots,n$. Existem n! tais permutações. Visto que $\mathbf{U}\to\infty$ quando $q\to\Delta$, a função \mathbf{U} tem ao menos um mínimo em cada componente conexa. Disto, segue-se que existe ao menos n! pontos críticos de \mathbf{U} . Vamos mostrar que esses pontos críticos são únicos em cada componente conexa.

Seja a um ponto crítico de U. Consideremos a derivada de U em a na direção de $v=(v_1,\ldots,v_n)\in T_pS$, onde T_pS é o espaço tangente a S em a. Assim,

$$D\mathbf{U}(a)(v) = -\sum \frac{m_i m_j (v_j - v_i)}{|a_j - a_i|^2} + \lambda \sum m_i a_i v_i$$
 (2.18)

onde $\lambda = \frac{U(a)}{J(a)}$, e a derivada segunda é

$$D^{2}\mathbf{U}(a)(v,w) = 2\sum \frac{m_{i}m_{j}}{|a_{i} - a_{i}|^{3}}((w_{j} - w_{i})(v_{j} - v_{i})) + \lambda \sum m_{i}w_{i}v_{i}.$$
(2.19)

Vemos que, $D^2\mathbf{U}(a)(v,v) > 0$ quando $v \neq 0$, já que $\lambda > 0$. Assim $D^2\mathbf{U}(a)$ é definida positiva em cada ponto crítico, implicando que tais pontos críticos são mínimos de \mathbf{U} . Logo, não pode existir mais que um ponto crítico em cada componente conexa resultando que existem exatamente n! pontos críticos. Removendo à simetria devido a reflexão em torno da origem obtemos $\frac{n!}{2}$ classes de configurações centrais.

O teorema que acabamos de mostrar, responde nossas perguntas dadas em i) e ii). Dado $n \in \mathbb{N}$ existe um conjunto de massas m_1, \ldots, m_n tal que o número de configurações centrais é exatamente $\frac{n!}{2}$. Quanto a ii), o número de elementos em \mathbb{N}_1 não pode ser finito, já que o n dado no Teorema 5 é arbitrário.

2.3.3 Configurações Centrais Planares Não-Colineares

Se n=3, a determinação de todas as configurações centrais planares e não colineares foi feita na Seção 2.2. Se n>3 a quantidade de condições p dadas em (2.10) é maior ou igual a 1. Temos, então, que procurar essas condições que, de um modo geral, não são fáceis de ser achadas. Por exemplo, no menor caso possível, n=4, teremos que p=(n-2)(n-3)=1 e a condição, R, é aquela dada em (2.8). Neste caso, se colocarmos as massas no vértice de uma quadrilátero, podemos mostrar que os quatro lados e as duas diagonais do quadrilátero devem satisfazer a condição necessária

$$(\rho_{13}^3 - \rho_{23}^3)(\rho_{12}^3 - \rho_{24}^3)(\rho_{14}^3 - \rho_{34}^3) = (\rho_{14}^3 - \rho_{24}^3)(\rho_{13}^3 - \rho_{34}^3)(\rho_{12}^3 - \rho_{23}^3)$$

Vamos mostrar isto. Se q_i (i=1,2,3,4) representa uma configuração central das massas m_i então, pela Definição 2.3, deve existir um $\lambda > 0$ tal que

$$\sum_{j \neq i} \frac{m_i m_j (q_j - q_i)}{||q_i - q_j||^3} + \lambda m_i q_i = 0, \quad i = 1, 2, 3, 4.$$

Como estamos supondo que os corpos estão no plano, então $q_i=(x_i,y_i)\in\mathbb{R}^2$ para todo i, e

$$X_i \equiv \sum_{j \neq i} m_j \frac{x_j - x_i}{\rho_{ij}^3} + \lambda x_i = 0$$
$$Y_i \equiv \sum_{j \neq i} m_j \frac{y_j - y_i}{\rho_{ij}^3} + \lambda y_i = 0$$

devem ser satisfeitas, onde $\rho_{ij} = ||q_i - q_j||$. Disto,

$$X_{i} - X_{j} = (x_{j} - x_{i}) \left[-\lambda \frac{m_{i} + m_{j}}{\rho_{ij}^{3}} + \sum_{\substack{k \neq j \\ k \neq i}} \frac{m_{k}}{\rho_{ij}^{3}} \right] + \sum_{\substack{k \neq j \\ k \neq i}} m_{k} (x_{k} - x_{i}) \left(\frac{1}{\rho_{ik}^{3}} - \frac{1}{\rho_{jk}^{3}} \right) = 0$$

$$Y_{i} - Y_{j} = (y_{j} - y_{i}) \left[-\lambda \frac{m_{i} + m_{j}}{\rho_{ij}^{3}} + \sum_{\substack{k \neq j \\ k \neq i}} \frac{m_{k}}{\rho_{ij}^{3}} \right] + \sum_{\substack{k \neq j \\ k \neq i}} m_{k} (y_{k} - y_{i}) \left(\frac{1}{\rho_{ik}^{3}} - \frac{1}{\rho_{jk}^{3}} \right) = 0$$

Muliplicando estas duas equações por $(x_j - x_i)$ e $(y_j - y_i)$, respectivamente, e depois subtraindo obteremos

$$\sum_{\substack{k \neq j \\ k \neq i}} m_k(i, j, k) \left(\frac{1}{\rho_{ik}^3} - \frac{1}{\rho_{jk}^3} \right) = 0$$

onde

$$(i, j, k) = \begin{vmatrix} x_i & y_i & 1 \\ x_j & y_j & 1 \\ x_k & y_k & 1 \end{vmatrix}.$$

Para o nosso caso, n = 4, obtemos

$$m_3(123)(\rho_{13}^{-3} - \rho_{23}^{-3}) + m_4(124)(\rho_{14}^{-3} - \rho_{24}^{-3}) = 0$$

$$m_2(132)(\rho_{12}^{-3} - \rho_{23}^{-3}) + m_4(134)(\rho_{14}^{-3} - \rho_{34}^{-3}) = 0$$

$$m_2(142)(\rho_{12}^{-3} - \rho_{24}^{-3}) + m_3(143)(\rho_{13}^{-3} - \rho_{34}^{-3}) = 0$$

$$m_1(231)(\rho_{12}^{-3} - \rho_{13}^{-3}) + m_4(234)(\rho_{24}^{-3} - \rho_{34}^{-3}) = 0$$

$$m_1(241)(\rho_{12}^{-3} - \rho_{14}^{-3}) + m_3(243)(\rho_{23}^{-3} - \rho_{34}^{-3}) = 0$$

$$m_1(341)(\rho_{13}^{-3} - \rho_{14}^{-3}) + m_2(342)(\rho_{23}^{-3} - \rho_{24}^{-3}) = 0$$

Se supusermos que $m_1 = m_2 = m_3 = m_4$ e que cada massa está no vértice de um quadrado então as condições acima são satisfeitas e teremos uma configuração central. Também usando as equações acima, vemos que o quadrado é uma configuração central apenas quando as massa são iguais. Agora, usando as três primeiras equações e supondo que as massas são não nulas e que cada três corpos não são colineares, ou seja, $(i, j, k) \neq 0$ $\forall i, j, k$ veremos que

$$(\rho_{13}^3 - \rho_{23}^3)(\rho_{12}^3 - \rho_{24}^3)(\rho_{14}^3 - \rho_{34}^3) = (\rho_{14}^3 - \rho_{24}^3)(\rho_{13}^3 - \rho_{34}^3)(\rho_{12}^3 - \rho_{23}^3)$$

como queríamos mostrar. Esta relação foi deduzida por Dziobek em 1900. A dedução anterior pode ser encontrada ([4])

Mostraremos, agora, que a configuração formada por n massas iguais nos vértices de um polígono regular é uma configuração central. Disto, vemos que a questão dada no item i) também é verdadeira, pois dado um número n basta tormarmos $m_1 = \ldots = m_n$ nos vértices de um polígono regular de n lados. E como n é arbitrário, o número de elementos de \mathbb{N}_1 , em ii), não pode ser finito.

Seja $\omega = e^{i\frac{2\pi}{n}}$ a raiz n-ésima da unidade, então $\omega^0, \omega, \ldots, \omega^{n-1}$ são os vértices de um polígono regular de n lados e com raio 1. Para mostrarmos que a configuração formada é central temos que mostrar que a aceleração gravitacional sobre todo ω^j , $(j=1,\ldots,n)$, é proporcional a ω^j com o mesmo fator de proporcionalidade, isto é, existe $\lambda>0$ tal que

$$\sum_{k \neq j} \frac{m(\omega^k - \omega^j)}{||\omega^j - \omega^k||} = -\lambda \omega^j, \quad j = 0, \dots, n - 1.$$
(2.20)

Para j=0, o lado esquerdo de (2.20) pode ser escrito como

$$\sum_{j\neq 0} \frac{m}{||\omega^0 - \omega^j||^3} (\omega^j - \omega^0) = \sum_{j\neq 0} \frac{m\omega^j}{||\omega^0 - \omega^j||^3} - \left(\sum_{j\neq 0} \frac{m}{||\omega^0 - \omega^j||^3}\right) \omega^0.$$
 (2.21)

Basta mostrar que $\sum_{j\neq 0} \frac{m^2 \omega^j}{||\omega^0 - \omega^j||^3}$ é múltiplo de ω^0 . Se n é impar então

$$\sum_{j \neq 0} \frac{m\omega^{j}}{||\omega^{0} - \omega^{j}||^{3}} = m \left[\left(\frac{\omega}{||\omega^{0} - \omega||^{3}} + \frac{\omega^{n-1}}{||\omega^{0} - \omega^{n-1}||^{3}} \right) + \dots + \left(\frac{\omega^{k}}{||\omega^{0} - \omega^{k}||^{3}} + \frac{\omega^{n-k}}{||\omega^{0} - \omega^{n-k}||^{3}} \right) \right]$$

onde $k = \frac{n-1}{2}$. Se n é par então

$$\sum_{j \neq 0} \frac{m\omega^{j}}{||\omega^{0} - \omega^{j}||^{3}} = m \left[\left(\frac{\omega}{||\omega^{0} - \omega||^{3}} + \frac{\omega^{n-1}}{||\omega^{0} - \omega^{n-1}||^{3}} \right) + \dots + \left(\frac{\omega^{k}}{||\omega^{0} - \omega^{k}||^{3}} + \frac{\omega^{n-k}}{||\omega^{0} - \omega^{n-k}||^{3}} \right) \right] + \frac{\omega^{\frac{n}{2}}}{||\omega^{0} - \omega^{\frac{n}{2}}||^{3}}$$

onde $k = \frac{n-2}{2}$. Agora, observemos que para $i = 1, \dots, k$

$$||\omega^0 - \omega^{n-i}|| = ||\omega^0 - \omega^i||$$
 e
 $\omega^i + \omega^{n-i} = \lambda_i \omega^0$.

e que
$$\frac{\omega^{\frac{n}{2}}}{||\omega^0 - \omega^{\frac{n}{2}}||^3} = \lambda_0 \omega^0$$
 Assim,

$$\sum_{j \neq 0} \frac{m\omega^j}{||\omega^0 - \omega^j||^3} = \Lambda_1 \omega^0 \tag{2.22}$$

Vemos, então, de (2.21) e (2.22) que (2.20) é válido para j=0, ou seja,

$$\sum_{k \neq 0} \frac{m(\omega^k - \omega^0)}{||\omega^0 - \omega^k||^3} = -\lambda \omega^0 \tag{2.23}$$

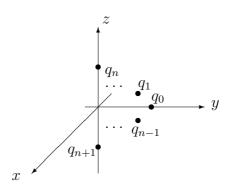
Multiplicando a relação anterior por $\omega^j,$ e observando que $\omega^{i+n}=\omega^i$ segue-se que

$$\sum_{k \neq j} \frac{m(\omega^k - \omega^j)}{||\omega^j - \omega^k||^3} = -\lambda \omega^j$$

mostrando, assim, que $\omega=(\omega^0,\omega,\omega^1,\dots,\omega^{n-1})$ é uma configuração central.

2.3.4 Configurações Centrais Não-Planares

Vamos mostrar, agora, que o modelo polar da configuração poligonal acima também é uma configuração central, se o número de vértices deste polígono é par. Ou seja, dado um polígono regular com um número par de lados, coloquemos uma reta passando pelo centro deste polígono e perpendicular ao plano que o contém, tomemos duas massas iguais M sobre esta reta, situadas a uma mesma distância z do centro do polígono, e n massas iguais m situadas nos vértices deste polígono. Podemos supor que o plano que contém o polígono é o plano xy, e a reta o eixo z. Sejam q_0, \ldots, q_{n-1} os vetores posições das massas m. Para os outros dois corpos de massa M, suponhamos que os vetores posições sejam $q_n = (0,0,z)$ e $q_{n+1} = (0,0,-z)$.



Queremos mostrar que existe λ tal que a equação (2.3) seja satisfeita, para todo $j=1,\ldots,n+1$. Já vimos anteriormente que o polígono regular com n massas iguais nos vértices forma uma configuração central, assim, para $i=0,\ldots,n-1$ existe Λ tal que

$$\sum_{\substack{k=0\\k\neq i}}^{n-1} \frac{m}{||q_k - q_i||^3} (q_k - q_i) = -\Lambda q_i,$$

disto, segue-se que, para $i = 0, \ldots, n-1$

$$\sum_{\substack{k=0\\k\neq i}}^{n+1} \frac{m_k}{||q_k - q_i||^3} (q_k - q_i) = \Lambda q_i + \frac{M}{(1+z^2)^{\frac{3}{2}}} (q_n - q_i) + \frac{M}{(1+z^2)^{\frac{3}{2}}} (q_{n+1} - q_i)$$

já que $||q_i - q_n|| = ||q_i - q_{n+1}|| = (1 + z^2)^{\frac{3}{2}}$. Como $q_n = -q_{n+1}$, então

$$\sum_{\substack{k=0\\k\neq i}}^{n+1} \frac{m_k}{||q_k - q_i||^3} (q_k - q_i) = -\left(\Lambda + 2\frac{M}{(1+z^2)^{\frac{3}{2}}}\right) q_i, \quad i = 0, \dots, n-1.$$

Como o número de vértices do polígono regular é par, resulta que $\sum_{i=0}^{n-1} q_i = 0$. Disto, e do fato de $||q_i - q_n|| = (1 + z^2)^{\frac{3}{2}}$, para $i = 0, \ldots, n-1$, segue-se que

$$\sum_{k \neq n} \frac{m_k}{||q_k - q_n||^3} (q_k - q_n) = \sum_{i=0}^{n-1} \frac{m}{||q_i - q_n||} (q_i - q_n) + \frac{M(-2q_n)}{||2q_n||^3} = -\left(\frac{nm}{(1+z^2)^{\frac{3}{2}}} + \frac{2M}{(2z)^3}\right) q_n.$$

Se tomarmos i=n+1 teremos a mesma equação anterior. Agora, para que $q=(q_1,\ldots,q_n)$ forme uma configuração central devemos ter

$$\frac{nm}{(1+z^2)^{\frac{3}{2}}} + \frac{2M}{(2z)^3} = \Lambda + 2\frac{M}{(1+z^2)^{\frac{3}{2}}}$$

ou seja, se, para z > 0, definirmos a função

$$F(z) = -\Lambda + \frac{nm - M}{(1 + z^2)^{\frac{3}{2}}} + \frac{2M}{(2z)^3}$$

queremos mostrar que existe um z_0 tal que $F(z_0)=0$. Mas, $\lim_{z\to 0^+}F(z)=+\infty$ e $\lim_{z\to +\infty}F(z)=-\Lambda<0$, como F é contínua em todo $z\neq 0$, segue-se que deve existir um $z_0>0$ tal que $F(z_0)=0$. Isto mostra que, para $z=z_0$ o modelo polar mencionado anteriormente é uma configuração central com $\lambda=\Lambda-2\frac{M}{(1+z^2)^{\frac{3}{2}}}$.

2.4 Colisões Simultâneas

Nesta seção aplicaremos a noção de configuração central a um surpreendente resultado de análise referente ao posicionamento de *n* corpos quando estes tendem a uma colisão simultânea. Faremos uso basicamente de desigualdades envolvendo a função momento

 $J = \mu^{-1} \sum_{j < k} m_j m_k \rho_{jk}^2$ e a energia cinética $T = \frac{1}{2} \mu^{-1} \sum_{j < k} ||\dot{q}_j - \dot{q}_k||^2$. Observemos que, $\rho_{jk} = ||q_j - q_k||$ implica que

$$\dot{\rho}_{jk} = \frac{q_j - q_k}{||q_j - q_k||} \dot{q}_j - \frac{q_j - q_k}{||q_j - q_k||} \dot{q}_k,$$

donde,

$$||\dot{\rho}_{jk}|| \le ||\dot{q}_j - \dot{q}_k||,$$

disto,

$$|\dot{U}| = -\sum_{j \le k} m_j m_k \frac{\dot{\rho}_{jk}}{\rho_{jk}^2} \le \sum_{j \le k} m_j m_k \frac{||\dot{q}_j - \dot{q}_k||}{\rho_{jk}^2}$$
 onde $\frac{m_j m_k}{\rho_{jk}} < U$,

daí, $|\dot{U}| \leq U^2 \sum_{j < k} \frac{||\dot{q}_j - \dot{q}_k||}{m_j m_k}$. Segue das equações dadas para J e T que

$$m_j m_k (\dot{q}_j - \dot{q}_k)^2 \le 2\mu T.$$

Seja $M_0 = \mu^{\frac{1}{2}} \sum_{j < k} (m_j m_k)^{-\frac{3}{2}}$, assim

$$|\dot{U}| \le M_0 U^2 (2T)^{\frac{1}{2}}$$

donde,

$$||\ddot{J}|| \le M_0(||\ddot{J}|| + 4|h|)^{\frac{3}{2}}$$

já que $\dot{U} = \frac{1}{2}\ddot{J}$ e $U^2(2T)^{\frac{1}{2}} \leq \frac{1}{4}(|\ddot{J}| + 4|h|)^{\frac{3}{2}}$. Similarmente, podemos mostrar que existe m_0 dependendo apenas das massas tal que

$$(\ddot{J} - 4h)J^{\frac{1}{2}} \ge m_0 > 0.$$

Fazendo uso da relação $T=\ddot{J}-2h$ já vista anteriormente, vemos que

$$\ddot{J}-2h-\frac{1}{4}\frac{\dot{J}^2}{J}\geq \frac{M^2}{J}.$$

onde M é o momento angular.

Seja Q=Q(t) a função

$$Q = -2hJ^{\frac{1}{2}} + \frac{\frac{1}{4}\dot{J}^2 + M^2}{I^{\frac{1}{2}}}$$
 (2.24)

Definição 7 (Colisão Simultânea) Dizemos que n corpos de massas m_i (i = 1, ..., n) colidem simultaneamente se, quando t tender a um instante t_0 , todos os corpos tenderem ao centro de massa, isto é,

$$\lim_{t \to t_0} q_i(t) = 0, \quad \forall i = 1, \dots, n$$
 (2.25)

Observemos que $\lim_{t\to t_0} q_i(t) = 0 \Leftrightarrow \lim_{t\to t_0} J = 0$. Isto é devido a que $\lim_{t\to t_0} \left(\sum m_i q_i^2\right) = \sum m_i (\lim q_i)^2$. Vemos, então, que quando os corpos tendem a uma colisão quando t tende a t_0 então

$$\lim_{t \to t_0} Q(t) = \lim_{t \to t_0} \frac{\frac{1}{4}\dot{J}^2 + M^2}{J^{\frac{1}{2}}}.$$

Pode-se mostrar que o limite acima existe e não pode ser negativo. Mas, para que exista colisão é necessário que M=0, logo deve existir o limite

$$\lim \frac{\dot{J}^2}{I^{\frac{1}{2}}} = \mu_0$$

onde $\mu_0 = \lim Q$.

Usando as relações dadas até então veremos que

$$J \sim \left(\frac{3}{2}\mu_0^{\frac{1}{2}}\right)^{\frac{4}{3}} (t - t_0)^{\frac{4}{3}} \tag{2.26}$$

$$\dot{J} \sim (12\mu_0^2)^{\frac{1}{3}} (t - t_0)^{\frac{1}{3}} \tag{2.27}$$

$$\ddot{J} \sim \left(\frac{2}{3}\mu_0^{\frac{2}{3}}\right)^{\frac{4}{3}} (t - t_0)^{-\frac{2}{3}} \tag{2.28}$$

onde a notação $f_1 \sim f_2$ significa que $\lim_{t \to t_0} \frac{f_1}{f_2} = 1$.

O que mostraremos é que se t está muito próximo do instante t_0 , referido na Definição 7, então a configuração formada pelas n partículas estará muito próxima de uma configuração central. Segundo Wintner [13], esta descrição assintótica de qualquer colisão simultânea é, talvez, o mais profundo dentre os teoremas locais conhecidos no problema de n corpos.

Observemos que $\lim_{t\to t_0}q_i(t)=0 \Leftrightarrow \lim_{t\to t_0}J=0$. Isto é devido a que $\lim\left(\sum m_iq_i^2\right)=\sum m_i(\lim q_i)^2$.

Proposição 6 Seja g(u) uma função real tal que $0 < u < +\infty$ duas vezes diferenciável. Se $\lim_{u \to +\infty} g(u) = L < \infty$ e $|\ddot{g}(u)| < const$ quando $u \to +\infty$ então $\lim_{u \to +\infty} \dot{g}(u) = 0$.

Demonstração: Observemos que não pode existir um par η e δ de números suficientemente pequenos tal que $|\dot{g}(u)| > \eta$ para todo $u \in (a,b)$ tal que $|b-a| = \delta$, ou seja, (a,b) é um intervalo qualquer de comprimento δ . Pois se este fosse o caso, sendo a função diferenciável podemos aplicar o teorema do valor médio em cada intevalo e assim concluir que $|g(a)-g(b)| > \delta \eta$, contradizendo o fato da função ter limite finito. Consequentemente, deve existir para todo $\epsilon > 0$ um $N = N_{\epsilon}$ tal que qualquer inntervalo de comprimento ϵ e que esteja contido no intervalo $[N_{\epsilon}, \infty)$ contém ao menos um ponto u tal que $|\dot{g}(u)| < \epsilon$. Como $|\ddot{g}(u)| < const$ então, aplicando novamente o teorema do valor médio, $\dot{g}(u)$ não pode variar num intervalo de comprimento ϵ por mais que $\epsilon \cdot const$, disto segue que $|\dot{g}(u)| < \epsilon + \epsilon \cdot const$ sempre que $u > N_{\epsilon}$. O que mostra que $\dot{g}(u) \to 0$ quando $u \to +\infty$.

Vamos supor, sem perda de generalidade, que $t_0 = 0$. Podemos reescrever (2.26), (2.27) e (2.28) como

$$t^{-\frac{4}{3}}J \to \nu > 0 \tag{2.29}$$

$$t\frac{d(t^{-\frac{4}{3}}J)}{dt} \to 0 \tag{2.30}$$

$$t^2 \frac{d^2(t^{-\frac{4}{3}}J)}{dt^2} \to 0 \tag{2.31}$$

respectivamente, onde $\nu = (\frac{3}{2}\mu_0^{12})^{\frac{4}{3}}$. De fato, sendo $t_0 = 0$ segue de (2.26) que $\frac{J}{(\frac{3}{2}\mu_0^{\frac{1}{2}})^{\frac{4}{3}}t^{\frac{4}{3}}} \rightarrow$

 $1 \Rightarrow \frac{Jt^{-\frac{4}{3}}}{\nu} \to 1 \Rightarrow Jt^{-\frac{4}{3}} \to \nu, \text{ o que mostra (2.29)}. \text{ De (2.27) temos que } \dot{J} \sim (12\mu_0^2)^{\frac{1}{3}}(t-t_0)^{\frac{1}{3}}, \text{ mas } (12\mu_0^2)^{\frac{1}{3}}t^{\frac{1}{3}} = 2^{\frac{2}{3}}3^{\frac{1}{3}}\mu_0^{\frac{2}{3}}t^{\frac{1}{3}} = 2^22^{-\frac{4}{3}}3^{-1}3^{\frac{4}{3}}\mu_0^{\frac{2}{3}}t^{\frac{1}{3}} = \frac{43}{(2}\mu_0^{\frac{1}{2}})^{\frac{4}{3}}t^{\frac{1}{3}} = \frac{4}{3}\nu_0t^{\frac{1}{3}},$ portanto $\dot{J} \sim \frac{4}{3}\nu_0t^{\frac{1}{3}}$ implicando que $\frac{\dot{J}t^{-\frac{1}{3}}}{\frac{4}{3}\nu_0} \to 1 \Rightarrow \dot{J}t^{-\frac{1}{3}} - \frac{4}{3}\nu_0 \to 0$, sendo $t^{-\frac{4}{3}}J \to \nu_0$ por (2.29) então $\dot{J}t^{-\frac{1}{3}} - \frac{4}{3}t^{-\frac{4}{3}}J \to 0 \Rightarrow t(t^{-\frac{4}{3}}\dot{J} - \frac{4}{3}t^{-\frac{4}{3}-1}J) \to 0 \Rightarrow t\frac{d(t^{-\frac{4}{3}}J)}{dt} \to 0$ o que conclui a prova de (2.30). Analogamente, podemos mostrar (2.31).

Agora, convenientemente, façamos a seguinte mudança

$$\mathbf{q}_i = t^{-\frac{2}{3}} q_i, \quad \varrho_{ik} = t^{-\frac{2}{3}} \rho_{ik}, \quad \mathbf{J} = t^{-\frac{4}{3}} J \quad \text{e} \quad \mathbf{U} = t^{-\frac{2}{3}} U.$$
 (2.32)

Então, a formulção exata do que iremos mostrar é

Teorema 6 Se q_i $(i=1,\ldots,n)$ colidem simultaneamente no instante t=0 ent $\tilde{a}o$

$$(\boldsymbol{J}\boldsymbol{U}^2)_{\boldsymbol{q}_i} \to 0, \qquad i = 1, \dots, n.$$

A mudança que fizemos em (2.32) não irá alterá, pelo que foi visto no Teorema 3. Demonstração: Primeiro, será mostrado que quando $t \to +0$ então

$$\frac{2}{9}\mathbf{J} - \mathbf{U} \to 0,\tag{2.33}$$

$$\varrho_{ik} > const > 0 \tag{2.34}$$

Para este fim, será conveniente substituirmos t por $\mathbf{t} = -\log t$, portanto $\mathbf{t} \to +\infty$ quando $t \to 0$. Daí,

$$t = e^{-\mathbf{t}} \tag{2.35}$$

$$tf' = -\dot{f}, \quad t^2 f'' = \ddot{f} + \dot{f}$$
 (2.36)

onde 'e ponto denotam as derivadas com respeito a t e t, respectivamente. A relação (2.36) segue do fato que se considerarmos $\mathbf{t} = \mathbf{t}(t)$ então, usando a regra da cadeia, $f' = \dot{f} \frac{d\mathbf{t}}{dt} = \dot{f} - \frac{1}{t} \Rightarrow -tf' = \dot{f}$. Usando a relação que acabamos de mostrar, segue que $(f')' = \left(i\frac{1}{t}\dot{f}\right)' = \frac{1}{t^2}\dot{f} + \frac{1}{t^2}\ddot{f} \Rightarrow t^2f''\dot{f} + \ddot{f}$. Se usarmos as relações (2.35), (2.36) e (2.32) as equações do movimento $m_i q_i'' = U_{q_i}$ podem ser escrita como

$$m_i(\ddot{\mathbf{q}}_i - \frac{1}{3}\dot{\mathbf{q}}_i - \frac{2}{9}\mathbf{q}_i) = \mathbf{U}_{\mathbf{q}_i}$$
 (2.37)

com
$$\mathbf{U} = \sum_{j < k} \frac{m_j m_k}{\varrho_{jk}}; \quad \varrho_{jk} = |\mathbf{q}_j - \mathbf{q}_k|$$
 (2.38)

De fato, $m_i q_i'' = m_i (t^{\frac{2}{3}} \mathbf{q}_i)'' = m_i (-\frac{2}{9} t^{-\frac{4}{3}} \mathbf{q}_i + \frac{4}{3} t^{-\frac{1}{3}} \mathbf{q}_i' + t^{\frac{2}{3}} \mathbf{q}_i'')$, usando (2.36) $tf' = -\dot{f}$ e $t^2 f'' = \ddot{f} + \dot{f}$, segue que $m_i q_i'' = m_i t^{-\frac{4}{3}} \left(\ddot{\mathbf{q}}_i - \frac{1}{3} \dot{\mathbf{q}}_i - \frac{2}{9} \mathbf{q}_i \right)$, assim $m_i q_i'' = U_{q_i} \Rightarrow m_i \left(\ddot{\mathbf{q}}_i - \frac{1}{3} \dot{\mathbf{q}}_i - \frac{2}{9} \mathbf{q}_i \right) = \mathbf{U}_{q_i}$ já que, por (2.32), $t^{\frac{4}{3}} U_{q_i} = \mathbf{U}_{q_i}$. Similarmente, (2.32), (2.35) e (2.36) implicam que a energia $\frac{1}{2} \sum_{i=1}^{n} m_i q_i'^2 - U = h$ e sua formulação equivalente J'' = 2U + 4h, ja mencionada no capítulo anterior, podem ser escritas como

$$\frac{1}{2} \sum m_i (\dot{\mathbf{q}}_i - \frac{2}{3} \mathbf{q}_i)^2 - \mathbf{U} = h e^{-\frac{2}{3} \mathbf{t}}$$
 (2.39)

$$\ddot{\mathbf{J}} - \frac{5}{3}\dot{\mathbf{J}} + \frac{4}{9}\mathbf{J} = 2\mathbf{U} + 4he^{-\frac{2}{3}\mathbf{t}}.$$
 (2.40)

Finalmente, aplicando (2.36) a função $f = \mathbf{J}$ podemos mostrar que (2.26), (2.27) e (2.28)

são equivalentes à

$$\mathbf{J} \to \nu_0 \tag{2.41}$$

$$\dot{\mathbf{J}} \to 0 \tag{2.42}$$

$$\ddot{\mathbf{J}} \to 0 \tag{2.43}$$

onde $t \to 0$, isto é $\mathbf{t} \to +\infty$. Fazendo $\mathbf{t} \to +\infty$ em (2.39), onde h = const, vemos que (??), $\frac{2}{9}\mathbf{J} - \mathbf{U} \to 0$, é implicada por (2.41) e (2.43). Por outro lado, (2.33) e (2.41) implicam que $\mathbf{U} \to L < \infty$ resultando que existe uma contante M tal que $|\mathbf{U}| \leq M$. Daí, $\frac{m_j m_k}{\varrho_{jk}} < \sum_{j < k} \frac{m_j m_k}{\varrho_{jk}} = \mathbf{U} \Rightarrow \frac{m_j m_k}{\varrho_{jk}} \leq M \Rightarrow \varrho_{jk} > const > 0$. O que mostra (2.34). Mostraremos, agora, que quando $t \to +0$, isto é, quando $\mathbf{t} \to +\infty$,

$$\dot{\mathbf{q}}_i \to 0 \tag{2.44}$$

$$||\ddot{\mathbf{q}}_i|| < const \tag{2.45}$$

$$||\ddot{\mathbf{q}}_i|| < const. \tag{2.46}$$

De fato, de (2.39)

$$he^{-\frac{2}{3}\mathbf{t}} = \frac{1}{2} \sum_{i} m_{i} (\dot{\mathbf{q}}_{i} - \frac{2}{3}\mathbf{q}_{i})^{2} - \mathbf{U}$$

$$= \frac{1}{2} \sum_{i} m_{i} (\dot{\mathbf{q}}_{i}^{2} - \frac{4}{3}\dot{\mathbf{q}}_{i}\mathbf{q}_{i} + \frac{4}{9}\mathbf{q}_{i}^{2}) - \mathbf{U}$$

$$= \frac{1}{2} \sum_{i} m_{i} \dot{\mathbf{q}}_{i}^{2} - \frac{2}{3} \sum_{i} m_{i} \dot{\mathbf{q}}_{i}\mathbf{q}_{i} + \frac{2}{9} \sum_{i} m_{i}\mathbf{q}_{i}^{2} - \mathbf{U}$$

por (2.42) e (2.33), $\frac{1}{3}\dot{\mathbf{J}} = \frac{2}{3}\sum m_i\dot{\mathbf{q}}_i\mathbf{q}_i \to 0$ e $\frac{2}{9}\mathbf{J} - \mathbf{U} = \frac{2}{9}\sum m_i\mathbf{q}_i^2 - \mathbf{U} \to 0$ respectivamente. Como $he^{-\frac{2}{3}\mathbf{t}} \to 0$ segue que $\frac{1}{2}\sum m_i\dot{\mathbf{q}}_i^2 \to 0$ implicando que $\dot{\mathbf{q}}_i \to 0$. Mostramos, então, (2.44). Para mostrarmos (2.45) e (2.46) observemos que

$$||\mathbf{q}_i|| < const \ \mathbf{e} \tag{2.47}$$

$$|\mathbf{U}_{\mathbf{q}_i}| < const. \tag{2.48}$$

De fato, por (2.41) $\mathbf{J} = \sum m_i \mathbf{q}_i^2 \to \nu_0$ implicando que existe \overline{M} tal que $|J| < \overline{M}$, como $|\mathbf{q}_i|^2 < |J|$ então $|\mathbf{q}_i| < const.$ A relação (2.48) segue diretamente de (2.34). Agora, vamos mostrar (2.45). Por (2.37) temos que $m_i(\ddot{\mathbf{q}}_i - \frac{1}{3}\dot{\mathbf{q}}_i - \frac{2}{9}\mathbf{q}_i) = \mathbf{U}_{\mathbf{q}_i} \Rightarrow ||\mathbf{U}_{\mathbf{q}_i}|| > m_i||\ddot{\mathbf{q}}_i|| - m_i||\frac{1}{3}\dot{\mathbf{q}}_i + \frac{2}{9}\mathbf{q}_i)|| \Rightarrow m_i||\ddot{\mathbf{q}}_i|| < m_i||\frac{1}{3}\dot{\mathbf{q}}_i + \frac{2}{9}\mathbf{q}_i)|| + ||\mathbf{U}_{\mathbf{q}_i}||$ implicando que $||\ddot{\mathbf{q}}_i|| < const$ como queríamos. Finalmente, diferenciando com relação a \mathbf{t} a igualdade $m_i(\ddot{\mathbf{q}}_i - \frac{1}{3}\dot{\mathbf{q}}_i - \frac{2}{9}\mathbf{q}_i) =$

 $\mathbf{U}_{\mathbf{q}_i}$, dada em (2.37), e usando (2.44) e (2.45) vemos que para mostrarmos (2.46) temos que mostrar que a derivada segunda da função $\mathbf{U}(\mathbf{q}_1,\ldots,\mathbf{q}_n)$ é limitada quando $\mathbf{t}\to +infty$, mas isto segue diretamente do uso de (2.47), (2.37) e (2.34).

Como por (2.44) e (2.46), $\dot{\mathbf{q}}_i \to 0$ e $\ddot{\mathbf{q}}_i || < const$, segue pela Proposição 6 que $\ddot{\mathbf{q}}_i \to 0$. Segue, portanto, de (2.37) que $\frac{2}{9}m_i\mathbf{q}_i + \mathbf{U}_{\mathbf{q}_i} \to 0$. Visto que $\mathbf{J} = \sum m_i\mathbf{q}_i^2$, então $\frac{2}{9}m_i\mathbf{q}_i + \mathbf{U}_{\mathbf{q}_i} \to 0 \Rightarrow \frac{1}{9}\mathbf{J}_{\mathbf{q}_i} + \mathbf{U}_{\mathbf{q}_i} \to 0$. Esta relação quando combinada com (2.41) e (2.33) mostra que $(\mathbf{J}\mathbf{U}^2)_{\mathbf{q}_i} \to 0$.

Capítulo 3

Soluções Homográficas e Configurações Centrais

Os resultados mostrados nos Teoremas 1 e 2 do Capítulo 1 nos dão uma classificação de todas as possíveis soluções homográficas. No início daquele capítulo mostramos a existência de uma solução homográfica construindo um exemplo planar de três corpos. Mas, de um modo geral, mostraremos neste capítulo que sempre existe tal solução. Pela Definição 1.7, uma solução homográfica é determinada pela existência de um par de funções r(t) e $\Omega(t)$, e por n posições iniciais $q_i^0 = q_i(t_0)$. Mostraremos neste capítulo que $q^0 = (q_1^0, \ldots, q_n^0)$ formam uma configuração central. Começaremos considerando o problema de Kepler, que será utilizado no decorrer deste capítulo.

3.1 O Problema de Kepler

O problema de Kepler consiste do estudo do movimento de um ponto $q \in \mathbb{R}^3$ que é atraído para origem segundo a força de atração gravitacional newtoniana, ou seja, a dinâmica ddescrita pela seguinte equação

$$\ddot{q} = -\frac{\lambda}{||q||^3}q\tag{3.1}$$

onde $\lambda > 0$. Observemos que a energia total

$$h = \frac{1}{2}||\dot{q}||^2 - \frac{\lambda}{||q||} \tag{3.2}$$

CAPÍTULO 3. SOLUÇÕES HOMOGRÁFICAS E CONFIGURAÇÕES CENTRAIS 64 é uma integral de (3.1). De fato,

$$\dot{h} = \dot{q} \cdot \ddot{q} + \frac{\lambda}{||q||^3} q \cdot \dot{q} = \dot{q} \cdot \left(\ddot{q} + \frac{\lambda}{||q||^3} q \right) = 0$$

Seja M o momento angular, $M=q\times\dot{q}$. Então, M é outra constante do movimento de (3.1), pois

$$\dot{M} = \dot{q} \times \dot{q} + q \times \ddot{q} = q \times \left(-\frac{\lambda}{||q||^3}q\right) = 0$$

A seguinte proposição introduz outra constante do movimento.

Proposição 7 Considerando o movimento Kepleriano dado em (3.1), existe um vetor constante e, chamado o vetor de Laplace, tal que

$$\lambda \left(\mathbf{e} + \frac{q}{||q||} \right) = \dot{q} \times M \tag{3.3}$$

Demonstração: Temos

$$\frac{d}{dt} \left(\frac{q}{||q||} \right) = \frac{||q||\dot{q} - \frac{q \cdot \dot{q}}{||q||^2} q}{||q||^2} = \frac{(q \times \dot{q}) \times q}{||q||^3} = M \times \frac{q}{||q||^3} = -\frac{1}{\lambda} M \times \ddot{q}.$$

logo,

$$\frac{d}{dt}\left(\lambda \frac{q}{||q||}\right) = \frac{d}{dt}(\dot{q} \times M),$$

donde decorre (3.3), por integração da equação anterior.

Suponhamos que M=0. Pela Proposição 7 segue-se que $\mathbf{e}+\frac{q}{||q||}=0$ implicando que $q=-||q||\mathbf{e}$, ou seja, o movimento é retilíneo.

Suponhamos que $M \neq 0$. Neste caso q e \dot{q} são ortogonais a M implicando que o movimento ocorre no plano ortogonal a M, o plano invariável. Soponhamos daqui por diante que $M \neq 0$.

i) Se e = 0 então o produto interno de (3.3) por q nos dá que

$$\lambda\left(\frac{q}{||q||}\right) \cdot q = (\dot{q} \times M) \cdot q$$

implicando

$$(q \times \dot{q}) \cdot M = ||M||^2,$$

CAPÍTULO 3. SOLUÇÕES HOMOGRÁFICAS E CONFIGURAÇÕES CENTRAIS 65 donde,

$$||q|| = \frac{||M||^2}{\lambda} \tag{3.4}$$

logo, o movimento ocorre em um círculo. Agora, pela equação da energia vemos que $||\dot{q}||$ é constante, logo, o movimento é circular e uniforme.

ii) Se $\mathbf{e} \neq 0$, então tomando o produto interno de (3.3) por q teremos que

$$\lambda(\mathbf{e} \cdot q + ||q||) = ||M||^2.$$
 (3.5)

Sendo θ o ângulo entre \mathbf{e} e q segue que

$$||q|| = \frac{||M||^2/\lambda}{1 + ||\mathbf{e}||\cos\theta} \tag{3.6}$$

A equação (3.6) é a equação polar de um cônica com foco na origem e excentricidade $||\mathbf{e}||$. Para descrevermos presisamente que tipo de cônica o movimento descreve, temos que estudar a excentricidade. De (3.3) segue-se que

$$\lambda^2 \left(\mathbf{e} + \frac{q}{||q||} \right) \cdot \left(\mathbf{e} + \frac{q}{||q||} \right) = ||\dot{q} \times M||^2$$

Como \dot{q} ortogonal a M segue que $||\dot{q} \times M||^2 = ||\dot{q}||^2 ||M||^2$, donde

$$\lambda^{2} \left(||\mathbf{e}||^{2} + \frac{2\mathbf{e} \cdot q + 1}{||q||} \right) = ||\dot{q}||^{2} ||M||^{2}$$
(3.7)

De (3.5) vemos que $\mathbf{e} \cdot ||q|| = \frac{||M||^2}{\lambda} - q$, substituindo esta relação em (3.7) e observando que da equação da energia, obtemos $||\cdot q||^2 = 2h + \frac{2\lambda}{||q||}$, concluímos de (3.3) que

$$\lambda^2(||\mathbf{e}||^2 - 1) = 2||M||^2h.$$

Concluímos desta equação que a órbita é uma elipse, uma parábola ou uma hipérbole, conforme seja a energia total h negativa, nula ou positiva.

3.2 Configurações Centrais e Soluções Homográficas

Nesta seção mostraremos, na Proposição 8, que em cada instante t de uma solução homográfica a configuração formada pelas n-massas é uma configuração central. E, reciprocamente, mostraremos na Proposição 9 que se as massas m_i formam uma configuração central q_i^0 então existem funções r(t) e $\Omega(t)$ tais que $q_i(t) = r(t)\Omega(t)$ é uma solução homográfica.

CAPÍTULO 3. SOLUÇÕES HOMOGRÁFICAS E CONFIGURAÇÕES CENTRAIS 66

Proposição 8 Se $q_i(t)$ (i = 1, ..., n) é uma solução homográfica do problema de n corpos com massas m_i então em cada instante t_0 fixado, q_i^0 forma uma configuração central das massas m_i .

Demonstração: Dividiremos a demonstração em dois casos. Caso 1: A solução homográfica é planar. Caso 2: A solução homográfica não é planar.

Caso 1:

Sendo $q_i = q_i(t)$ uma solução homográfica planar do problema de n corpos então, como em (1.7), podemos escrever $q_i(t) = \phi(t)a_i$ onde $\phi : \mathbb{R} \to \mathbb{C}$ e $a_i \in \mathbb{C}$ (i = 1, ..., n). Substituindo na equação (1.1) do problema de n corpos segue-se que

$$||\phi(t)||^{3}\phi(t)^{-1}\ddot{\phi}(t) = \sum_{j\neq i} \frac{m_{i}m_{j}(a_{j} - a_{i})}{||a_{i} - a_{j}||} m_{i}^{-1} a_{i}^{-1}$$
(3.8)

Como o lado direito não depende de t, a função de t no primeiro membro é constante, logo, existe $\lambda > 0$ tal que $||\phi(t)||^3 (\phi(t))^{-1} \phi(t) = -\lambda$, ou

$$\ddot{\phi}(t) = \frac{\lambda}{\|\phi(t)\|^3} \phi(t). \tag{3.9}$$

A substituição em (3.8) nos dá $-\lambda a_i = \sum_{j\neq i} \frac{m_j(a_j-a_i)}{||a_i-a_j||^3}$, provando que $a=(a_1,\ldots,a_n)$ e, por conseguinte, cada $q_i(t_0)=\phi(t_0)a_i$, é uma configuração central.

Caso 2:

Como visto no Capítulo 1, se uma solução homográfica não é planar então necessariamente ela é homotética, ou seja $q_i = rq_i^0$, onde $q_i^0 = q_i(t_0)$, para algum t_0 . Substituindo q_i na equação (1.1), segue-se que

$$(\ddot{r}r^2)m_iq_i^0 = \sum_{j \neq i} \frac{m_i m_j}{||q_i^0 - q_j^0||^3} (q_j^0 - q_i^0)$$
(3.10)

Como anteriormente, a função $\ddot{r}r^2$ deve ser igual a uma constante $-\lambda$ e sua substituição em (3.10) mostra que q_i^0 , logo, cada $q_i(t_0) = r(t_0)q_i^0$ é uma configuração central.

Proposição 9 Seja q_i^0 uma configuração central das massas m_i . Então, existem funções r(t) e $\Omega(t)$ tais que $q_i(t) = r(t)\Omega(t)q_i^0$ é uma solução homográfica.

CAPÍTULO 3. SOLUÇÕES HOMOGRÁFICAS E CONFIGURAÇÕES CENTRAIS 67

Demonstração:

 ${\it Caso}~1\colon {\it Suponhamos}~{\it que}~q_i^0$ é uma configuração central planar.

Neste caso, podemos escrever $q_i^0 = a_i \in \mathbb{C}$. Assim, existe $\lambda > 0$ tal que

$$\lambda m_i a_i = \sum_{j \neq i} \frac{m_i m_j (a_j - a_i)}{||a_i - a_j||}$$
(3.11)

Seja $\phi(t): I \to \mathbb{C}$ uma função que satisfaz (3.9) para o λ dado em (3.11). Sabemos que tal função existe pela seção anterior. Definamos, então, $q_i(t) = \phi(t)a_i$. Como $\phi(t)$ satisfaz (3.9) e λ satisfaz (3.11), segue-se que a equação (3.8) é satisfeita, logo,

$$m_i \ddot{\phi}(t) a_i = \sum_{j \neq i} \frac{m_i m_j (\phi(t) a_j - \phi(t) a_i)}{||\phi(t) a_i - \phi(t) a_j||}$$
 ou $m_i \ddot{q}_i = \sum_{j \neq i} \frac{m_i m_j (q_j - q_i)}{||q_i - q_j||},$

ou seja, q_i é uma solução do problema de n corpos e, clararamente, uma solução homográfica.

Caso2: Suponhamos que q_i^0 é uma configuração central não-planar. Então, existe λ tal que

$$\lambda m_i q_i^0 = \sum_{j \neq i} \frac{m_i m_j (q_j^0 - q_i^0)}{||q_i^0 - q_j^0||}$$
(3.12)

Neste caso, basta considerarmos r(t) como sendo a função que é solução da equação diferencial $\ddot{r}r^2 = -\lambda$. O teorema de existência e unicidade de equações diferenciais nos garante a existência de tal função r(t). Disto e de (3.12) segue-se que $q_i(t) = r(t)q_i^0$ satisfaz a equação (3.10), logo,

$$m_i \ddot{r} q_i^0 = \sum_{j \neq i} \frac{m_i m_j (r q_j^0 - r q_i^0)}{||r q_i^0 - r q_j^0||^3} \quad \text{ou}$$
$$m_i \ddot{q}_i = \sum_{j \neq i} \frac{m_i m_j (q_j - q_i)}{||q_i - q_j||^3}.$$

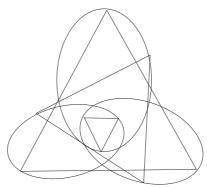
Isto prova que $q_i(t) = r(t)q_i^0$, i = 1, ..., n, é uma solução do problema de n corpos. É claro que esta é uma solução homotética.

3.3 Geometria das Soluções Homográficas

Se supusermos que a solução homográfica do problema de n corpos não é planar então ela é homotética, ou seja, $q_i(t) = r(t)q_i^0$ (i = 1..., n) onde r é uma função real positiva denida em um intervalo aberto e, pela seção anterior, $q = (q_1^0, ..., q_n^0)$ é uma configuração central das massas m_i . Substituindo em (1.1) obteremos a relação (3.10). Vemos, então, que a trajetória de cada q_i é retilínia.

Por outro lado, suponhamos que a solução homográfica é planar, então $q_i(t) = \phi(t)a_i$ onde os a_i 's formam uma configuração central plana e $\phi(t)$ satisfaz a equação $\ddot{\phi}(t) = -\lambda \frac{\phi(t)}{||\phi(t)||^3}$ que é o problema de Kepler dado na Seção 3.1 deste capítulo. Assim, cada corpo descreve uma elipse, uma parábola ou uma hipérbole, conforme a energia h seja negativa, zero ou positiva.

Como ilustração, tomemos a configuração central equilátera de Lagrange de n=3 corpos, com energia h<0.



Como visto no Capítulo 1, se $q = (q_1, \ldots, q_n)$ é uma configuração central então q e βq pertencem a mesma classe de configuração central. Disto, podemos tomar o λ da definição de configuração central como sendo 1. Assim, uma solução homográfica planar é uma solução de equilíbrio relativo se, e somente se, as n trajetórias no plano invariante descrevem círculos concêntricos em torno do centro de massa que é a origem do nosso sistema de coordenadas.

3.4 Soluções de Equilíbrio Relativo

Consideremos o problema planar de n corpos. Denotemos o nosso sistema de coordenadas inercial por (x, y), e consideremos um sistema não inercial de coordenadas (X, Y) que

CAPÍTULO 3. SOLUÇÕES HOMOGRÁFICAS E CONFIGURAÇÕES CENTRAIS 69 gire em torno do centro de massa com velocidade angular constante ω . Portanto, se $q_i = (x_i, y_i)$ no nosso sistema inercial, escrevemos q_i no sistema rotacional como

$$q_i = \begin{pmatrix} \cos \omega t & -\sin \omega t \\ \sin \omega t & \cos \omega t \end{pmatrix} \begin{pmatrix} X_i \\ y_i \end{pmatrix} = (X_i \cos \omega t - Y_i \sin \omega t, X_i \sin \omega t + Y_i \cos \omega t)$$

Escrevamos as equações diferenciais do problema de n corpos em termos das coordenadas do sistema rotacional (X, Y). Sendo $q_i = \Omega Z_i$, onde $Z_i = (X_i, Y_i)$ teremos que

$$m_i \ddot{q}_i = U_{q_i}$$

$$m_i (\ddot{\Omega} Z_i + 2\dot{\Omega} \dot{Z}_i + \Omega \ddot{Z}_i) = U_{q_i}$$

Observemos que

$$\dot{\Omega} = \Omega \begin{pmatrix} 0 & \omega \\ -\omega & 0 \end{pmatrix} e \ddot{\Omega} = -\omega^2 \Omega$$

Assim,

$$m_i \left(\ddot{\Omega} Z_i + 2 \dot{\Omega} \dot{Z}_i + \Omega \ddot{Z}_i \right) = U_{q_i} \Rightarrow m_i \left(-\omega^2 \Omega Z_i + 2\Omega \begin{pmatrix} 0 & -\omega \\ \omega & 0 \end{pmatrix} \dot{Z}_i + \Omega \ddot{Z}_i \right) = \Omega U_{Z_i}$$

donde,

$$m_i(\ddot{X}_i - 2\omega \dot{Y}_i - \omega^2 X_i) = U_{X_i}$$
e (3.13)

$$m_i(\ddot{Y}_i + 2\omega \dot{X}_i - \omega^2 Y_i) = U_{Y_i}. \tag{3.14}$$

Uma solução homográfica de equilíbrio relativo é caracterizada pela existência de um valor ω constante, tal que (3.13) e (3.14) têm, para este valor particular de ω , uma solução da forma

$$X_i(t) \equiv X_i^0, \ Y_i(t) \equiv Y_i^0 \tag{3.15}$$

$$\sum m_i X_i^0 = 0, \quad \sum m_i Y_i^0 = 0 \tag{3.16}$$

Substituindo (3.15) em (3.13) e (3.14) segue-se que

$$\omega^2 X_i^0 = \sum_{k \neq i} m_k \frac{X_i^0 - X_k^0}{\rho_{ik}^{03}}, \quad \omega^2 Y_i^0 = \sum_{k \neq i} m_k \frac{Y_i^0 - Y_k^0}{\rho_{ik}^{03}}$$
(3.17)

onde $\rho_{ik}^0=[(X_i^0-X_k^0)^2+(Y_i^0-Y_k^0)^2]^{\frac{1}{2}}$. Segue, portanto, que o problema de determinar todos os conjuntos das 2n+1 constantes X_i^0 , Y_i^0 e ω que satisfazem as 2n+2 condições

CAPÍTULO 3. SOLUÇÕES HOMOGRÁFICAS E CONFIGURAÇÕES CENTRAIS 70 dadas em (3.17), é equivalente ao problema de enumerar todas as configurações centrais das massas m_i .

Se (3.15) é uma solução de equilíbrio relativo correspondente às massas m_i com velocidade angular ω então $X_i = \rho X_i^0$ e $Y_i = \rho Y_i^0$ é, para todo $\rho > 0$ uma solução de equilíbrio relativo com velocidade angular $\rho^{-\frac{3}{2}}\omega$, pois

$$\sum_{k=1}^{n} m_k \frac{X_i - X_k}{\rho_{ik}^3} = \frac{\rho}{\rho^3} \sum_{k=1}^{n} m_k \frac{X_i^0 - X_k^0}{\rho_{ik}^{03}} = \rho^{-2} \omega^2 X_i^0 = \rho^{-3} \omega^2 X_i = (\rho^{-\frac{3}{2}\omega})^2 X_i$$

Analogamente, mostramos para Y_i . Esta mudança arbitrária de dimensão linear junto com a possível passagem de t para $\pm t + const$, esgotam todas as soluções de equilíbrio relativo pertencentes a mesma configuração central das massas m_i , visto que a translação no tempo em um sistema autônomo não altera a solução.

Como ilustração, calculemos a velocidade angular da solução de equilíbrio relativo do problema de n=3 corpos.

No caso colinear de n corpos podemos escolher o eixo X do sistema rotacional (X, Y) tal que a segunda coordenada de cada corpo neste sistema seja zero, isto é, $X_i^0 = 0$. Além disto, suponhamos que $X_i^0 < X_{i+1}^0$. Assim, (3.17) se reduz a

$$\omega^2 X_i^0 = \sum_{k \neq i} m_k \frac{X_i^0 - X_k^0}{(X_i^0 - X_k^0)^3} = \sum_{k=1}^{i-1} \frac{m_k}{(X_i^0 - X_k^0)^2} - \sum_{k=i+1}^n \frac{m_k}{(X_i^0 - X_k^0)^2}$$

Se n=3 então

$$\omega^{2} X_{1}^{0} = -\frac{m_{2}}{\rho_{12}^{02}} - \frac{m_{3}}{\rho_{13}^{02}}$$

$$\omega^{2} X_{2}^{0} = -\frac{m_{3}}{\rho_{23}^{02}} - \frac{m_{1}}{\rho_{12}^{02}}$$

$$\omega^{2} X_{3}^{0} = -\frac{m_{1}}{\rho_{12}^{02}} - \frac{m_{2}}{\rho_{22}^{02}}$$

Sendo $\rho_{13}^0=\rho_{12}^0+\rho_{23}^0$, basta determinar $\rho_{12}^0,\,\rho_{13}^0$ e ω^2 satisfazendo

$$\begin{split} \rho_{12}^{02}\omega^2 &= (X_1^0 - X_2^0)\omega^2 = -\frac{m_2}{\rho_{12}^{02}} - \frac{m_3}{\rho_{13}^{02}} + \frac{m_3}{\rho_{23}^{02}} - \frac{m_1}{\rho_{12}^{02}} \\ &= \frac{-m_2 - m_1}{\rho_{12}^{02}} - \frac{m_3}{(\rho_{12}^0 + \rho_{23}^0)^2} + \frac{m_3}{\rho_{23}^{02}} \end{split}$$

e

$$\begin{split} \rho_{23}^{02}\omega^2 &= (X_3^0 - X_2^0)\omega^2 = \frac{m_1}{\rho_{13}^{02}} + \frac{m_2}{\rho_{23}^{02}} + \frac{m_3}{\rho_{23}^{02}} - \frac{m_1}{\rho_{12}^{02}} \\ &= \frac{m_2 + m_3}{\rho_{23}^{02}} + \frac{m_1}{(\rho_{12}^0 + \rho_{23}^0)^2} - \frac{m_1}{\rho_{12}^{02}} \end{split}$$

CAPÍTULO 3. SOLUÇÕES HOMOGRÁFICAS E CONFIGURAÇÕES CENTRAIS 71 Definamos a matriz (σ_{pq}) por

$$\begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix} = \begin{pmatrix} \omega^2 - \frac{+m_2 + m_1}{\rho_{12}^{03}} - \frac{m_3}{(\rho_{12}^0 + \rho_{23}^0)^3} & \frac{m_3}{(\rho_{12}^0 + \rho_{23}^0)^3} - \frac{m_3}{\rho_{23}^{03}} \\ -\frac{m_1}{(\rho_{12}^0 + \rho_{23}^0)^2} - \frac{m_1}{\rho_{12}^{02}} & \omega^2 - \frac{m_2 + m_3}{\rho_{23}^{02}} - \frac{m_1}{(\rho_{12}^0 + \rho_{23}^0)^2} \end{pmatrix}.$$

Observemos que

$$\rho_{12}^0 \sigma_{11} = \rho_{23}^0 \sigma_{12}, \quad \rho_{12}^0 \sigma_{21} = \rho_{23}^0 \sigma_{22}$$

implicando que o determinante de (σ_{pq}) se anula e que σ_{11} , σ_{22} são de mesmo sinal que σ_{12} , σ_{21} . Mas, sendo σ_{12} e σ_{21} negativos segue que σ_{11} e σ_{22} são negativos. Disto,

$$\sigma_{pq} < 0 \ (p = 1, 2; q = 1, 2)$$
 (3.18)

$$\sigma_{11}\sigma_{22} - \sigma_{12}\sigma_{21} = 0. (3.19)$$

Finalmente, substituindo $\rho = \rho_{12}^0 + \rho_{23}^0$ e $\lambda = \frac{\rho_{12}^{00}}{\rho_{23}^{00}}$ e então expressando o determinante de (σ_{pq}) em termos de λ e ρ achamos que (3.19) pode ser escrito como

$$\omega^2 \rho^3 = m_1 + m_3 + m_2 (1 + \lambda)^2 (1 + \lambda^{-2}), \tag{3.20}$$

 $\lambda = \lambda(m_1, m_2, m_3)$ sendo a única raíz positiva de (??), Capítulo ??.

Agora, consideremos o caso de uma solução de equilíbrio relativo com n=3 e as massas m_i não colineares. Vimos, no Capítulo ??, que tal configuração forma um triângulo equilátero. Consequentemente, se $\rho=\rho_{12}^0=\rho_{13}^0=\rho_{23}^0$ então

$$\omega^2 \rho^3 X_i^0 = (\sum_{k \neq i} m_k) X_i^0 - \sum_{k \neq i} m_k X_k = (\sum_{k \neq i} m_k) X_i^0 + m_i X_i^0 = (m_1 + m_2 + m_3) X_i^0$$

implicando que

$$\omega^2 \rho^3 = m_1 + m_2 + m_3$$

Bibliografia

- [1] A. Albouy and A. Chenciner, Le probl'eme des n corps et les distances mutuelles, Invent. Math. 131 (1998) 151-184.
- [2] Cabral, H. E., Soluções periódicas do problema restrito dos três corpos. Recife, 1996. (Tese para concurso de professor titular).
- [3] F. R. Moulton, The Straight Line Solutions of the Problem of n Bodies, Ann. of Math 12 (1910) 1-17.
- [4] ??, CEuvres 11 vol. 6 (1772), 272-292.
- [5] J. L. Lagrange, Essai sur le problème de trois corps, CEuvres 11 vol. 6 (1772), 272-292.
- [6] L. Euler, De motu retilíneo trium corporum se mutuo attahentium, Novi Comm. Acad. Sci. Imp. Petrop. 11 (1767) 144-151
- [7] Roberts, G. E., A continuum of Relative Equlibria in the 5-Body Problem, Phys D 127 (1999), no 3-4, 141-145.
- [8] Meyer, K. R., Periodic Solutions of The n-Body Problem.
- [9] Smale, S., Mathematical Problems for the next century, Mathematical Intelligencer 20 (1998) 7-15.
- [10] S. Smale, Topology and Mechanics, II, The planar n-body problem, Invent. Math. 11 (1970) 45-64.
- [11] Szebeheley. V, Theory of orbits, Academic Press, New York, (1967)
- [12] R. Moeckel On Central Configurations, Math. Zeit. 205(1990)499-517

BIBLIOGRAFIA 73

[13] Wintner, A., The Analytical Foundations of Celestial Mechanics, Princeton Math. Series 5, Princeton University Press, Princeton, NJ (1941).