

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE QUÍMICA FUNDAMENTAL PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

DISSERTAÇÃO DE MESTRADO

Monitoramento Automático de pH, Níquel e Cloreto em Banhos de Níquel Tipo Watts Utilizando um Sistema SIA

Autor: José Edson da Silva

Orientadoras: Valdinete Lins da Silva (DEQ – UFPE)

Maria Fernanda Pimentel (DEQ – UFPE)

Dissertação submetida ao Corpo Docente do Programa de Pos-graduação em Química do Departamento de Química Fundamental da Universidade Federal de Pernambuco como parte dos requisitos necessários para a obtenção do Grau de Mestre em Química.

Profa. Valdinete Lins da Silva	
Departamento de Engenharia Química - UFPE (Orientadora)	
Description of the second	
Prof. Ivo Milton Raimundo Junior Instituto de Química da UNICAMP	

Prof. Berlicio de Barros Neto
Departamento de Química Fundamental – UFPE

Monitoramento Automático de pH, Níquel e Cloretos em Banho de Níquel tipos Watts Utilizando um Sistema SIA

por

José Edson da Silva

Universidade Federal de Pernambuco Centro de Ciências Exatas e da Natureza Departamento de Química Fundamental Recife - PE - Brasil 29 de Maio de 2002

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA

DEPARTAMENTO DE QUÍMICA FUNDAMENTAL PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

Monitoramento Automático de pH, Níquel e Cloretos em Banhos de Níquel Tipo Watts Utilizando um Sistema SIA

Dissertação apresentada à pós-graduação em Química do Departamento de Química Fundamental da Universidade Federal de Pernambuco, como requisito à obtenção do título de Mestre em Química.

Área de concentração: Química Analítica

Orientadoras: Prof^a. Dra. Valdinete Lins da Silva (UFPE)

Profa. Dra. Maria Fernanda Pimentel (UFPE)

Autor: José Edson da Silva

"Sonhe com aquilo que você quiser.

Seja o que você quer ser...

As pessoas mais felizes não têm as melhores coisas. Elas sabem fazer o melhor das oportunidades que aparecem em seus caminhos.

O futuro mais brilhante é baseado num passado intensamente vivido".

(Clarice Lispector)

AGRADECIMENTOS

A Deus por me conceder forças para me permitir chegar até este momento.

Aos meus pais por todo amor e apoio, contribuindo diretamente para que me tornasse o homem que sou hoje.

À coordenação da pós-graduação em Química, representadas pelos professores Oscar Malta e Rosa Souto Maior pela oportunidade que me foi dada.

Ao secretário da pós-graduação em química, Maurílio, por toda ajuda que me foi dada.

A Raimundo Camilo e seu filho, Paulo Henrique, donos da CROMOSUL pela disposição demonstrada em ajudar fornecendo as amostras do banho eletrolítico.

Ao prof. Augusto Knoechelmann (DEQ-UFPE) pela ajuda na elaboração do abstract.

Às minhas amigas portuguesas Belmira Pereira, funcionária do laboratório da Faculdade de Farmácia da Universidade do Porto, Adriana Pimenta (doutoranda) e Cristina Couto (pós-doutoranda) integrantes do mesmo laboratório, por toda ajuda no período em que estive em Portugal.

Aos pesquisadores da Faculdade de Farmácia da Universidade do Porto, ALBERTO N. ARAÚJO e MARIA DA CONCEIÇÃO B.S.M. MONTENEGRO, por toda amizade, colaboração e atenção em todos os momentos, desde quando estive em Portugal até o final deste trabalho no Brasil

Ao prof. Ricardo S. Honorato (DQF-UFPE) pela ajuda concedida no início deste trabalho na montagem e funcionamento do sistema e por toda disposição em ajudar.

Às minhas orientadoras, VALDINETE LINS DA SILVA E MARIA FERNANDA PIMENTEL. Vocês duas sempre foram mais do que orientadoras para mim. Foram verdadeiras MÃES. Obrigado pelo respeito, pela oportunidade, por toda confiança depositada e por terem feito de mim aquilo que sou hoje. A vocês minha sincera admiração e meus maiores agradecimentos.

A todos os amigos do Laboratório de Engenharia Ambiental e Controle da Qualidade (DEQ-UFPE) pela amizade, carinho e todo apoio em todos esses anos.

A todos os colegas e professores do DQF com quem estudei. Obrigado pela amizade e apoio recebidos ao longo desses dois anos.

Aos amigos do Curso de Química Industrial pela força em diversos momentos da minha vida.

À CAPES pela concessão da bolsa de mestrado.

Ao acordo bilateral CAPES/ICCTI pelo deslocamento até Portugal.

SUMÁRIO

LISTA DE FIGURAS LISTA DE TABELAS	i ii
RESUMO	iii
ABSTRACT	iv
1 - INTRODUÇÃO	1
2 - REVISÃO BIBLIOGRÁFICA	3
2.1 - Processos de galvanoplastia.	3
2.2 - O processo de eletrodeposição de níquel	4
2.2.1 - Banhos de níquel tipo Watts	7
2.2.2 - Importância dos componentes do banho de níquel tipo Watts	8
2.2.3 - Importância do controle de pH em banhos de níquel tipo Watts	11
2.3 - Análise por injeção sequencial.	12
2.4 - Potenciometria.	15
2.5 - Eletrodos íons-seletivos.	16
2.5.1 - Eletrodos indicadores e de referência.	18
2.5.2 - A equação de Nernst	19
2.5.3 - Aplicações dos eletrodos íon-seletivos a sistemas de análise em fluxo	21
2.6 - Planejamentos fatoriais.	24
3 - PROCEDIMENTO EXPERIMENTAL	27
3.1 - Descrição do sistema SIA	27
3.2 - Construção dos sensores potenciométricos	30
3.2.1 - Construção do eletrodo tubular de cloreto	30
3.2.2 - Construção do eletrodo tubular de pH	31
3.3 - Preparação das soluções	33
3.3.1 - Preparação das amostras do banho e padrões das curvas de	
calibração	34
3.3.2 - Preparação do transportador	35
3.4 - Varredura numa amostra simulando o banho de níquel tipo Watts	36

3.5 - Otimização do sistema SIA	36
4 – RESULTADOS E DISCUSSÕES	38
4.1 – Varredura numa amostra simulando o banho de níquel tipo Watts	38
4.2 - Otimização do sistema SIA	39
4.2.1 - Otimização das determinações de pH e níquel.	39
4.2.2 - Otimização da determinação de cloreto	43
4.3 - Aplicação do sistema otimizado à análise de amostras do banho de níquel tipo	
Watts	48
5 – CONCLUSÕES E ETAPAS FUTURAS	51
6 - REFERÊNCIAS BIBLIOGRÁFICAS	53

LISTA DE FIGURAS

Figura 1: Diagrama representando um tradicional sistema de análise por injeção sequencial.	14
Figura 2: Zonas de amostras (A), reagentes (R) e produtos de reação (P) obtidas num sistema SIA.	14
Figura 3: Diagrama do sistema SIA utilizado no monitoramento de banhos de galvanoplastia.	27
Figura 4: Esquema da construção do eletrodo tubular para determinação de cloretos.	31
Figura 5: Esquema da construção do eletrodo tubular para determinação de pH em banhos eletrolíticos.	33
Figura 6: Espectro de varredura na amostra do banho de níquel tipo Watts apresentando três regiões de absorção máxima.	38
Figura 7: Interpretação conjunta dos efeitos do volume de amostra e vazão de bombeamento na inclinação do eletrodo tubular de pH.	42
Figura 8: Interpretação conjunta dos efeitos das concentrações do tampão e nitrato na inclinação do eletrodo tubular de cloretos com diálise.	47

LISTA DE TABELAS

Tabela 1: Composição de alguns tipos de banhos de níquel.	6
Tabela 2: Componentes e pH de um banho eletrolítico de níquel tipo Watts.	7
Tabela 3: Composição da membrana sensora recomendada pela Fluka para construção de um eletrodo de pH.	32
Tabela 4: Padrões utilizados na construção das curvas analíticas para pH, níquel e cloretos no sistema SIA proposto para monitoramento de banhos eletrolíticos tipo Watts.	35
Tabela 5: Variáveis e níveis utilizados na otimização do sistema SIA desenvolvido para monitoramento de banhos eletrolíticos.	37
Tabela 6: Matriz de planejamento e resultados obtidos no planejamento fatorial fracionário 2 ⁴⁻¹ aplicado à otimização das determinações de pH e níquel em SIA.	39
Tabela 7: Contrastes calculados e seus respectivos erros padrão para o planejamento fatorial fracionário2 ⁴⁻¹ aplicado à otimização das determinações de pH e níquel (valores significativos em azul).	41
Tabela 8: Efeitos calculados e seus respectivos erros padrão para determinação de pH após a remoção dos efeitos considerados pequenos. Os valores em azul são aqueles considerados significativos.	42
Tabela 9: Matriz de planejamento para o fatorial fracionário 2 ⁵⁻¹ aplicado à otimização da determinação de cloretos no sistema SIA.	43
Tabela 10: Contrastes calculados e seus respectivos erros padrão para o planejamento fatorial fracionário2 ⁵⁻¹ aplicado à otimização da determinação potenciométrica de cloretos num sistema SIA com diálise. Os valores em azul são aqueles considerados significativos.	45
Tabela 11: Matriz de planejamento e resultados do planejamento fatorial 2 ² utilizado para avaliar a influência das concentrações do tampão e de nitrato na determinação de cloretos em SIA.	46
Tabela 12: Efeitos calculados e seus respectivos erros padrão para o planejamento fatorial 2 ² aplicado para avaliar a influência da concentração do tampão e concentração de nitrato no transportador.	46
Tabela 13: Duração de cada etapa do ciclo analítico no sistema SIA proposto para monitoramento de banhos eletrolíticos.	48
Tabela 14: Equações das curvas analíticas para pH, níquel e cloretos.	49
Tabela 15: Resultados obtidos na análise de pH, níquel e cloretos em amostras do banho de níquel. As amostras A, B e C foram aquelas recém-preparadas, enquanto as amostras D e E foram as amostras obtidas da indústria.	50

RESUMO

A necessidade de se realizar análises multiparamétricas, associadas a uma grande velocidade analítica para se tomar decisões rápidas, conduz ao desenvolvimento de sistemas automáticos de monitoramento on-line em muitos processos industriais. A galvanoplastia industrial é um procedimento bastante utilizado para evitar o desgaste de peças metálicas. Para que um processo de eletrodeposição seja bem sucedido, é necessário o controle constante da composição dos banhos eletrolíticos. Com este objetivo, neste trabalho foram propostos o desenvolvimento e a aplicação de um sistema SIA para determinação de pH, cloreto e níquel em banhos de níquel tipo Watts.

Para a realização das medidas de pH e cloreto utilizou-se detecção potenciométrica com eletrodos seletivos tubulares, enquanto a determinação direta de níquel foi realizada por espectrofotometria direta em 660 nm. Para viabilizar a determinação de cloreto, recorreu-se à diálise da amostra em linha com membrana de acetato de celulose para diluição e separação da matriz. O sistema foi otimizado, empregando-se a técnica de planejamentos fatoriais onde foram avaliados a composição química da solução transportadora (tampão fosfato) e os parâmetros hidrodinâmicos. Foi obtida como condição ótima um volume de amostra de 500 μL, concentração do tampão de 0,025 mol L⁻¹, pH 6,3 e vazões dos fluidos nas etapas de diálise e de bombeamento de 2,22 e 9,10 mL min⁻¹, respectivamente. Nessas condições obteve-se linearidade de 1 a 5; 0,1-1,6 mol L⁻¹ e 0,1-1,0 mol L⁻¹ para pH, níquel e cloreto, respectivamente. O sistema SIA apresentou uma frequência analítica de 45 amostras h⁻¹, com erros relativamente baixos (menores que 5 %) quando aplicado à análise de banhos de níquel tipo Watts.

Palavras-chave: galvanoplastia, injeção sequencial, planejamentos fatoriais

ABSTRACT

The need to rapidly perform multiparametric analysis makes the development of automatic on-line monitoring systems highly desirable for many industrial processes. Electroplating is a process used to protect metallic pieces from corrosion. For this process to be successful, electrolytic baths must be constantly monitored. Consequently, the development of a sequential injection analysis (SIA) system was undertaken to determine the pH, chloride and nickel concentrations in Watts type nickel baths.

For pH and chloride measurements, potentiometry with tubular selective was used, and nickel was determined by spectrophotometry at 660 nm. To reduce interference effects in chloride measurements, on-line dialysis of the samples with a cellulose acetate membrane was made. Applying the factorial planning technique, where the chemical composition of the carrier solution and the hydrodynamic parameters were evaluated, optimised the system. The best operation conditions were obtained with sample of 500 μ L, a phosphate buffer concentration of 0.025 mol L⁻¹, pH 6.3 and a flow rate of 2.22 and 9.10 mL L⁻¹ for dialysis and propulsion fluids, respectively. For these conditions, a linear response ranges from 1 to 5 units of pH, 0.1 to 1.6 mol L⁻¹ and 0.1 to 1.0 mol L⁻¹ nickel and chloride, were obtained. This SIA system demonstrated a analytical throughput of 45 samples h⁻¹, together with relative errors lower than 5 %, when applied to the Watts type nickel baths.

keywords: galvanoplasty, sequential injection, factorial planning

Introdução 1

1 - INTRODUÇÃO

A galvanoplastia é um procedimento eletrolítico industrial bastante utilizado para evitar a corrosão, recuperar peças metálicas ou com propósitos meramente decorativos

Os processos de galvanoplastia encontram-se bastante difundidos, embora sejam frequentemente realizados de modo empírico, com custos econômicos elevados e impactos ambientais importantes. A utilização de estratégias de monitoramento da composição dos banhos poderá permitir um controle mais eficiente da sua composição, de modo a melhorar o processo, minimizar o volume de descarga de efluentes e reduzir os custos de operação.

Geralmente, o controle químico dos banhos não é acessível às indústrias de galvanoplastia por não possuírem técnicos com formação química adequada ou porque necessitam do uso de vidraria analítica e técnicas clássicas de análise (volumetrias e gravimetrias) que limitam a velocidade analítica ou a possibilidade de realizar um controle mais eficiente dos banhos (PANOSSIAN, 1997).

A diversidade de espécies químicas que compõe os diferentes tipos de banhos (sais de cromo, níquel, ferro, zinco, alumínio, estanho, ácidos sulfúrico, bórico, nítrico e clorídrico, peróxidos, cloretos, carbonatos, sulfamatos e cianetos) permite concluir que a versatilização do controle químico só é possível se for encarada na perspectiva da microanálise, da automatização e monitoramento dos parâmetros químicos que se revelem importantes.

A análise por injeção sequencial (SIA, do inglês *Sequential Injection Analysis*) surgiu no início dos anos 90 e constitui um conceito de microanálise automatizada inserida no conjunto mais vasto de técnicas automáticas de análise em fluxo, das quais

Introdução 2

as análises por injeção em fluxo e fluxo segmentado constituem as duas técnicas mais conhecidas (RUZICKA & MARSHALL, 1990). A técnica SIA revela-se muito vantajosa no que diz respeito ao consumo de reagentes, velocidade analítica e à qualidade dos resultados, sendo bastante versátil na sua aplicação, pois permite o desenvolvimento de sistemas multiparamétricos sem reconfiguração física dos sistemas analíticos.

A aplicação de sensores que possibilitem o monitoramento automático dos processos de galvanoplastia poderá constituir-se numa alternativa para versatilização desses processos. Entre os sensores, os eletrodos seletivos são simples e baratos, pois tratam-se de unidades detectoras de fácil construção e operação, podendo ser utilzados em ampla faixa de concentrações, além de possibilitar o seu uso sem a necessidade de um pré-tratamento da amostra.

Com base no que foi exposto anteriormente, neste trabalho foi desenvolvido um sistema SIA para determinações on-line de pH, cloreto e níquel em banhos eletrolíticos, utilizando sensores potenciométricos e espectrofotometria. Este sistema foi otimizado, através da aplicação de planejamentos fatoriais, e aplicado à análise de amostras sintéticas e reais de banhos de níquel tipo Watts.

2 – REVISÃO BIBLIOGRÁFICA

2.1 – Processos de galvanoplastia

Define-se galvanoplastia como a tecnologia responsável pela transferência de íons metálicos de uma dada superfície sólida ou meio líquido denominado eletrólito, para outra superfície, seja ela metálica ou não. Trata-se de um dos mais antigos processos industriais, que surgiu com a necessidade de se obter características físico-químicas diferentes dos materiais utilizados para confecção de diferentes tipos de peças e equipamentos. Pode-se dividir o processo de galvanoplastia em duas formas principais: a deposição por meio de eletrólise e a deposição química, que é mais elaborada e, portanto, menos difundida.

O processo de eletrodeposição é resultado da migração de partículas carregadas eletricamente de uma solução aquosa para uma superfície qualquer com o auxílio de corrente elétrica. Essas partículas podem ser íons, moléculas grandes (proteínas), colóides ou macromoléculas (goma ou látex). Na eletrodeposição de metais, utiliza-se uma célula eletrolítica contendo uma solução eletrolítica. Estas soluções contêm sais inorgânicos do metal a ser depositado e geralmente são denominadas de banhos eletrolíticos, divididos em dois grupos principais:

- 1) Banhos orgânicos incluem as pinturas, esmaltes, vernizes e lacas;
- 2) Banhos inorgânicos são os mais utilizados em eletrodeposição. Os banhos mais comuns são os banhos de cromo, cobre, estanho, níquel e zinco. Outros banhos ganham destaque como os banhos de metais nobres, como ouro, prata, ródio, platina, etc., e banhos do tipo liga zinco/metal, como zinco/ferro, zinco/níquel e zinco/cobalto.

Outro nome comum na área de tratamento de superficies metálicas é o termo galvanização. Este nome é em homenagem ao cientista italiano Luigi Galvani (1757-1798). A galvanização, porém, é a aplicação de uma camada protetora de zinco a um metal, principalmente o ferro, para inibir a corrosão. Essa proteção depende essencialmente da camada depositada.

2.2 - O processo de eletrodeposição de níquel

A eletrodeposição de níquel começou em 1843, quando R. Botger descreveu um processo que utilizava sulfatos duplos de amônio e níquel. No entanto, a aplicação em escala comercial só começou por volta de 1869 em Boston (EUA).

O processo de eletrodeposição de níquel é usado largamente com propósitos decorativos, na engenharia e na eletroformação de peças em moldes, porque a aparência e outras propriedades do níquel eletrodepositado podem ser variadas controlando-se a composição e outros parâmetros operacionais do banho. Aplicações decorativas respondem por 80% do níquel consumido em processos galvânicos e os 20% restantes ficam por conta de aplicações em engenharia ou eletroformação de peças. O consumo mundial de níquel para galvanoplastia, incluindo níquel consumido como sais de banhos eletrolíticos, é de aproximadamente 82000 toneladas e responde por 11 a 12% do consumo total de níquel (DI BARI, 1994).

Modernas soluções de banhos de níquel decorativos contêm aditivos orgânicos que modificam o processo de eletrocristalização de maneira que camadas de níquel altamente brilhantes são depositadas diretamente das soluções. Antes da introdução dos "banhos orgânicos", coberturas decorativas eram produzidas por polimento mecânico de placas de níquel, uma prática que continuou de 1870 até cerca de 1945. Pela primeira

vez, em 1927, finas camadas de cromo foram eletrodepositadas sobre coberturas de níquel polidas para impedir a ocorrência de manchas em peças expostas a ambientes externos. Essa prática continua com as coberturas de níquel agora disponíveis. Esforços para se conseguir efeitos decorativos melhorados para coberturas de níquel eletrodepositadas começaram no final da década de 40 e levaram ao desenvolvimento de coberturas de níquel de multicamadas (década de 50).

O processo de deposição de níquel é semelhante aos outros processos de eletrodeposição que empregam ânodos de metais solúveis. Ele requer a passagem de corrente direta entre os dois eletrodos que estão imersos numa solução aquosa de sais de níquel. O fluxo de corrente direta faz com que um dos eletrodos se dissolva (o ânodo) e o outro se torne coberto com níquel (o cátodo). O níquel em solução está presente na forma de íons divalentes positivamente carregados (Ni²⁺). Quando a corrente flui, os íons positivos reagem com dois elétrons e são convertidos a níquel metálico (Ni⁰) na superfície do catodo. O inverso ocorre no anodo, onde níquel metálico é dissolvido para formar íons Ni²⁺ que passam para solução. Assim, os íons níquel liberados no cátodo são substituídos por aqueles formados no ânodo (DI BARI, 1994).

A redução de íons Ni²⁺ não é a única reação que ocorre no catodo. Uma pequena percentagem da corrente é consumida na liberação de íons hidrogênio da água. Isto reduz a eficiência do cátodo na deposição de níquel de 100 para 92 a 97 %, dependendo da natureza do eletrólito. O hidrogênio liberado nesse processo forma bolhas na superfície do cátodo.

Sob condições normais, a eficiência de dissolução no anodo é de 100% e nenhum íon hidroxila (OH⁻) é liberado da água. Se o pH da solução estiver alto demais, contudo, íons OH⁻ podem ser liberados preferencialmente à dissolução de níquel, e oxigênio será produzido. Sob essas condições, o anodo de níquel torna-se passivo e

cessa a dissolução de níquel. Ânodos de níquel que resistem à passivação já estão disponíveis comercialmente (DI BARI, 1994).

Em condições normais de operação, a concentração de Ni²⁺ e o pH da solução aumentarão lentamente com a utilização do banho. A taxa de aumento na concentração de Ni²⁺ depende da eficiência entre o catodo e o anodo. Por causa da variação na eficiência do catodo anteriormente comentada, a taxa de aumento na concentração de Ni²⁺ depende da natureza do banho e não do tipo de material solúvel do anodo que está sendo usado. Alguns exemplos dos diversos tipos de banho de níquel existentes estão apresentados na Tabela 1. Existem banhos de níquel brilhantes, semi-brilhantes, foscos, banhos de deposição rápida, banhos para obtenção de camadas dúcteis, com baixas tensões ou de alta dureza e banhos destinados à eletroformação (DI BARI, 1994; PEREZ OLMOS *et. al*, 1995).

Tabela 1: Composição de alguns tipos de banhos de níquel.

Tipo de Banho	Constituintes	Quantidade (g L ⁻¹)
Cloreto	Cloreto de níquel (NiCl ₂ .6H ₂ O)	225 - 300
Cioreto	Ácido bórico (H ₃ BO ₃)	30 - 35
	Sulfato de níquel (NiSO ₄ .6H ₂ O)	240 - 300
Watts	Cloreto de níquel (NiCl ₂ .6H ₂ O)	40 - 60
	Ácido bórico (H ₃ BO ₃)	25 - 40
	Sulfato de níquel (NiSO ₄ .6H ₂ O)	150 - 225
Sulfato/Cloreto	Cloreto de níquel (NiCl ₂ .6H ₂ O)	150 - 225
	Ácido bórico (H ₃ BO ₃)	30 - 45
	Sulfato de níquel (NiSO ₄ .6H ₂ O)	180
Níquel duro	Cloreto de amônio (NH ₄ Cl)	25
	Ácido bórico (H ₃ BO ₃)	30

2.2.1 – Banhos de níquel tipo Watts

Um dos marcos importantes da história da eletrodeposição de níquel foi a introdução dos banhos de deposição rápida por O. P. Watts (1916). O banho de eletrodeposição de níquel descrito por Watts acabou substituindo todos os outros em uso até aquele momento. Ele permanece como a base da maioria dos processos decorativos de deposição de níquel e é usado para aplicações em engenharia e na produção de peças. Os banhos modernos tipo Watts são mais concentrados do que aquele concebido inicialmente, apresentando sua composição de acordo com a que é encontrada na Tabela 2. A solução de Watts é relativamente barata e fácil de controlar. Este banho é operado em elevadas temperaturas e é capaz de ser usado com altas densidades de correntes elétricas (DI BARI, 1994).

Tabela 2: Composição de um banho eletrolítico de níquel tipo Watts.

Constituinte	Valor
Cloreto de níquel hexaidratado (NiCl ₂ .6H ₂ O) (g L ⁻¹)	30 - 60
Sulfato de níquel hexaidratado (NiSO ₄ .6H ₂ O) (g L ⁻¹)	240 - 300
Ácido bórico (H ₃ BO ₃) (g L ⁻¹)	25 - 40
Agentes surfactantes (mL L ⁻¹)	2 - 3
рН	1,5 - 4,5

Boa qualidade dos depósitos de níquel pode ser conseguida utilizando-se os constituintes dentro da faixa especificada na Tabela 2, com a temperatura variando entre 44 e 66°C.

2.2.2 - Importância dos componentes do banho de níquel tipo Watts

Os constituintes de um banho de níquel tipo Watts possuem várias funções, descritas a seguir:

a) Função do cloreto de níquel (NiCl₂.6H₂O)

O cloreto de níquel contém aproximadamente 24,7% de níquel e serve principalmente para melhorar a corrosão do anodo. Na ausência de cloreto, os anodos de níquel eletrolíticos passivam-se se tornando inertes. Na presença destes, o níquel é corroído através do mecanismo de corrosão por pite (tipo de corrosão caracterizada pelo aparecimento de furos no material) e os anodos passam a funcionar como anodos solúveis.

O íon cloreto também aumenta a condutividade e uniformidade da espessura da camada depositada. O aumento de condutividade se traduz num aumento da eficiência do processo em virtude de uma maior eficiência de corrente. Mesmo em componentes de geometria simples, como chapas, existe uma diferença na espessura da camada de níquel eletrodepositada entre as bordas e o centro da chapa. Isto ocorre porque os banhos ácidos possuem baixo poder de penetração. A presença de cloreto melhora sensivelmente o poder de penetração dos banhos. Assim sendo, quanto maior a concentração de cloreto de níquel maior será a uniformidade da camada depositada em termos de espessura (PANOSSIAN, 1995).

A resistência à tração aumenta com o conteúdo de cloreto nos banhos. Entretanto, quantidade excessiva de cloreto de níquel aumenta a tensão interna dos depósitos. Tensão interna seria a força criada dentro do depósito como resultado do

processo de eletrocristalização e/ou da co-deposição de impurezas, tais como hidrogênio enxofre e outros elementos.

A presença de íons cloreto no banho também apresenta outras desvantagens, como aumento da corrosividade da solução e possibilidade do cloreto de níquel sofrer oxidação no anodo, quando passivo, com formação de gás cloro, altamente prejudicial aos banhos de níquel.

A quantidade de íons cloretos necessária para uma boa dissolução dos anodos depende dos outros parâmetros do processo, principalmente do pH e da composição dos anodos. Como regra geral, adota-se a concentração mínima de 15 g L⁻¹ de íons cloreto (cerca de 50 g L⁻¹ de NiCl₂.6H₂O) como adequada para uma boa dissolução dos anodos (PEREZ OLMOS *et al.*, 1995).

b) Função do sulfato de níquel (NiSO₄.6H₂O)

É disponível comercialmente na forma pura, sendo relativamente barato e podendo ser encontrado como sal hexa ou heptahidratado. O sulfato de níquel possui alta solubilidade (570 g L⁻¹ a 50°C) e é a maior fonte de íons níquel em solução, contendo cerca de 22,3% de níquel. Os íons sulfato são estáveis nas condições operacionais dos banhos de níquel. Uma alta concentração destes é utilizada quando altas densidades de corrente são requeridas (PANOSSIAN, 1995).

c) Função do ácido bórico (H₃BO₃)

É usado em banhos eletrolíticos com objetivo de fazer o tamponamento das soluções. O ácido bórico é adicionado em concentrações suficientemente altas para que

ele se encontre na forma polimérica, tamponando as soluções. Ele reduz a tendência de formação de depósitos com aspecto de queimado, controla o pH da interface catodo/banho, onde ocorre mais acentuadamente aumento de pH devido ao consumo de íons H⁺ com formação de gás hidrogênio, e ajuda a reduzir a formação de gases no anodo (PEREZ OLMOS *et al.*, 1996).

O ácido bórico é um excelente tamponante para banhos de níquel porque é comercializado com alto grau de pureza, apresenta baixo custo, não é volátil, é estável nas condições de operação dos banhos de níquel que operam com baixa densidade de corrente e tem função de cooperar com os agentes surfactantes. Contudo, sua concentração também pode afetar a aparência dos depósitos. Primeiramente, o depósito pode se tornar branqueado em altas densidades de corrente com a concentração próxima de 30 g L⁻¹ e, então, quando a concentração aproxima-se de 15 a 23 g L⁻¹ os depósitos podem ficar com aspecto de queimado e rachados. Nenhum efeito sobre a aparência do depósito é observado em altas concentrações, mesmo na saturação (45 g L⁻¹).

Deve-se ressaltar que os banhos contendo ácido bórico em concentrações iguais ou superiores a 40 g L⁻¹ não podem operar a temperatura abaixo de 35°C, pois ocorre a sua cristalização (PANOSSIAN, 1995).

d) Função dos agentes surfactantes

Formulados especificamente para banhos de níquel, são quase sempre adicionados para controlar a formação de furos. A função desses agentes surfactantes é baixar a tensão superficial dos banhos eletrolíticos de maneira que bolhas de ar e de hidrogênio não fiquem aderidas às peças que estão sendo cobertas com níquel (DI BARI, 1994).

De tudo o que foi abordado sobre as funções dos componentes do banho de níquel tipo Watts, conclui-se que os seguintes parâmetros devem ser monitorados para que a eletrodeposição de níquel seja bem sucedida: a) o conteúdo de níquel; b) a concentração de cloreto; c) a concentração de ácido bórico; e d) a adição de agentes orgânicos. A concentração do metal níquel deve ser mantida entre 60 e 80 g L⁻¹ na maioria das aplicações comerciais. Como foi observado anteriormente, os níveis de cloreto influenciam diretamente na qualidade dos banhos eletrolíticos, de modo que o seu controle é de fundamental importância para melhorar os depósitos de níquel (PEREZ OLMOS *et al.*, 1995).

2.2.3 - Importância do controle de pH em banhos de níquel tipo Watts

Um dos parâmetros mais importantes num banho de níquel é o pH. Nos banhos modernos, o pH varia entre 2 e 4,5, sendo considerados ideais, valores entre 3,5 e 3,8. As melhores propriedades do depósito serão obtidas mantendo-se o pH abaixo de 4. Por causa da formação de gás hidrogênio durante a eletrodeposição de níquel, duas situações podem ocorrer. A primeira é a ocorrência de corrosão por pites devido à aderência de bolhas de hidrogênio no catodo. A outra situação que surge da formação de hidrogênio é o rápido aumento de pH na superfície do catodo. Atualmente, a primeira situação não constitui um problema, visto que nos processos comerciais são utilizados agentes tensoativos que evitam a formação de poros. Já o aumento de pH traz problemas graves porque isso provoca a formação de partículas coloidais de hidróxido de níquel. O pH da solução aumentará durante a operação normal dos banhos, necessitando a adição de ácidos regularmente para mantê-lo dentro dos limites estabelecidos para um melhor desempenho. Uma diminuição do pH, acompanhada de uma redução na concentração de

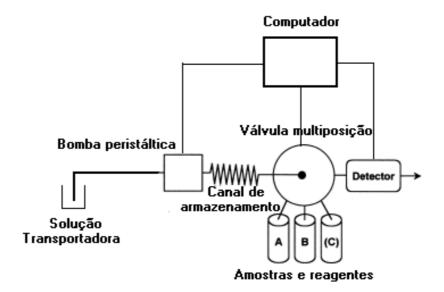
níquel, indica que o processo não está funcionando apropriadamente. Teoricamente, o hidróxido de níquel em solução de apenas sulfato de níquel começa a precipitar em pH 4,89. No entanto, na prática, acredita-se que a partir de pH 6,0 tem-se início de precipitação de hidróxidos (PANOSSIAN, 1995).

A formação de hidróxidos pode prejudicar o depósito de níquel provocando-lhes aspereza, porosidade, mudança na estrutura, refinamento de grãos, aumento das tensões internas, diminuição da ductilidade e o consumo de aditivos para o banho.

Além dos problemas citados, quanto maior for o pH, maior será a tendência de passivação do anodo e maior será a quantidade necessária de cloreto para dissolução do anodo.

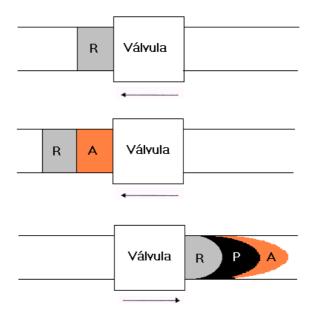
2.3 - Análise por injeção sequencial

O aumento na demanda por análises nas áreas clínicas, farmacêuticas, industriais e processos analíticos de controle levou ao desenvolvimento da primeira técnica de análise em fluxo conhecida como análise por injeção em fluxo (FIA, do inglês *flow injection analysis*) em 1974 (RUZICKA & HANSEN, 2000).


A análise por injeção sequencial surgiu no início dos anos 90 e constitui um conceito de microanálise automatizada inserida no conjunto mais vasto de técnicas automáticas de análise em fluxo, das quais as análises por injeção em fluxo e em fluxo segmentado constituem as duas técnicas mais conhecidas. A sua proposta visou, primeiramente, satisfazer alguns requisitos impostos à implementação, em análise de rotina, dos procedimentos baseados em fluxo, particularmente no que diz respeito à versatilidade, robustez e simplicidade (CERDÀ *et al.*, 1999). Desde seu surgimento, a análise por injeção seqüencial tem sido aplicada em mais de 40 situações de controle

analítico de processos, incluindo monitoramento de processos biotecnológicos, petroquímicos, farmacêuticos e análises de efluentes (BARNETT *et al.*, 1999).

Enquanto os sistemas FIA utilizam uma bomba multicanal e um fluxo unidirecional, os sistemas SIA utilizam um único canal de uma bomba peristáltica para impulsionar ou aspirar as soluções. Dessa forma, mediante uma calibração da bomba, podem-se definir de maneira reprodutível os volumes de amostras ou reagentes que serão usados na análise.


O conceito de análise por injeção sequencial é baseado na mistura da amostra com um reagente para produzir uma resposta mensurável. Para isto necessita-se de operações a serem realizadas com as soluções, como injeção e mistura de amostras e reagentes, limpeza do detector e recondicionamento. Essas operações, somando-se as injeções sequenciais de reagentes adicionais, re-calibrações e etapas de separação podem ser realizadas em analisadores automatizados.

Um sistema SIA tradicional é controlado por computador e consta de um líquido transportador; um sistema de injeção dos fluidos, geralmente uma bomba do tipo peristáltica ou seringa; uma válvula seletora de canais; um canal de armazenamento (holding coil) e um ou mais detectores (Figura 1). Todos os componentes do sistema estão ligados por tubos que compõem o percurso analítico. Os tubos mais usados são de Teflon ou polietileno (RUZICKA & MARSHALL, 1990).

Figura 1: Diagrama representando um tradicional sistema de análise por injeção sequencial.

O funcionamento de um sistema SIA é bastante simples. A válvula de seleção serve como uma central distribuidora através da qual volumes apropriados de amostra e reagentes são sequencialmente aspirados para o canal de armazenamento. Dessa forma, uma coluna de zonas bem definidas de reagentes, amostras e produtos de reação é obtida (Figura 2).

Figura 2: Zonas de amostras (A), reagentes (R) e produtos de reação (P) obtidas num sistema SIA.

Em seguida, por uma alteração no sentido do fluxo, essa zona de amostra e reagente é impulsionada em direção ao detector. Maiores detalhes sobre os princípios básicos da análise por injeção seqüencial podem ser encontrados na literatura em trabalhos de RUZICKA & MARSHAL (1990), GÜBELLI *et al.* (1991) e CHRISTIAN (1994a).

A grande vantagem apresentada pelo sistema SIA relativamente ao FIA está na possibilidade de adaptação a cada necessidade particular, sem que para isso se tenha que efetuar alguma re-configuração física do sistema. Além disso, qualquer alteração dos volumes de amostras e reagentes utilizados pode ser feita simplesmente alterando-se o tempo de aspiração ou bombeamento das soluções ou a velocidade de rotação da bomba peristáltica (IVASKA *et al.*, 1993). Somando-se a estas vantagens, a técnica SIA revelase bastante econômica no que diz respeito ao consumo de reagentes, velocidade analítica e à qualidade dos resultados, sendo bastante versátil na sua aplicação.

2.4 - Potenciometria

A potenciometria é uma técnica eletroanalítica que se baseia na medida do potencial de uma célula galvânica na ausência de corrente. A análise potenciométrica compreende dois métodos: a potenciometria direta e a titulação potenciométrica. A potenciometria direta é um processo que utiliza uma única medida do potencial de eletrodo para determinar a atividade de uma espécie iônica em solução. Uma vantagem apresentada pela potenciometria direta é que as medidas são feitas sem que a integridade das soluções seja afetada.

A base da potenciometria foi estabelecida por Nernst, em 1888, descrevendo a origem do potencial de eletrodo entre um metal e uma solução contendo íons deste

metal. Também foi Nernst que em 1897 propôs o primeiro sensor potenciométrico usado para medir a acidez de uma solução aquosa. Devido à grande necessidade de se quantificar o grau de acidez de uma solução, no início do século XX, a cooperação entre indústria e academia contribuiu para o desenvolvimento da potenciometria havendo assim uma grande corrida para pesquisa nesta área (FERNANDES *et al.*, 2001).

O objetivo de uma medição potenciométrica é obter informações sobre a composição de uma solução mediante o potencial que aparece entre dois eletrodos. A medição do potencial é realizada segundo condições reversíveis, de forma termodinâmica, e isto implica que se deve deixar o sistema um tempo suficiente para alcançar o equilíbrio. O potencial medido pode então ser utilizado para determinar a quantidade analítica de interesse para algum componente da amostra sob investigação.

2.5 – Eletrodos íon-seletivos

Os eletrodos íon-seletivos (ISE, do inglês *Ion-Selective Electrodes*) são conhecidos há mais de 30 anos e formam somente uma pequena parte do campo da eletroanalítica (FRANT, 1997)

Eletrodos íon-seletivos são semi-celas eletroquímicas, consistindo de uma membrana íon-seletiva, uma solução de preenchimento e um eletrodo interno de referência (construção convencional) ou de uma membrana íon-seletiva e um contato sólido. O potencial voltagem desenvolvido por um ISE é função da atividade de um íon específico. Para uma solução diluída, a atividade iônica medida será virtualmente a mesma que a concentração iônica e para soluções mais concentradas, dado o valor do coeficiente de atividade, podemos converter a atividade iônica na concentração correspondente.

Os eletrodos íon-seletivos são de fácil construção e se caracterizam por possuírem grandes intervalos de resposta linear e seletividades adequadas, permitindo realizar as análises de forma direta em amostras de composição heterogênea com relação ao analito. Além de fácil construção e da simplicidade da aparelhagem que lhes está associada, suas medidas não são afetadas pela cor ou turbidez das amostras e suas medições não são destrutivas, o que permite determinações multiparamétricas (COUTO & MONTENEGRO, 2000). A maioria dos eletrodos íon-seletivos se encaixa numa das seguintes categorias:

- 1) Eletrodos de membrana de vidro para H⁺ e outros cátions.
- 2) Eletrodos de estado sólido baseados em cristais de sais inorgânicos.
- 3) Eletrodos de base líquida usando uma membrana de polímero hidrófobo saturado com um líquido hidrófobo trocador de íons.
- 4) Eletrodos combinados com outros possuindo membranas capazes de separar uma espécie de outras ou de gerar a espécie de interesse em uma reação química.

Os ISEs respondem de uma maneira linear ao logaritmo da atividade do constituinte não-complexado. O tempo de resposta é de segundos ou minutos. Logo, os eletrodos podem ser usados para monitorar fluxos contínuos em aplicações industriais. Como normalmente deseja-se conhecer os valores de concentração, e não de atividade, é comum o uso de sal inerte para deixar todos os padrões e amostras com força iônica constante. Assim, se os coeficientes de atividade permanecem constantes, o potencial medido pelo eletrodo fornece diretamente as concentrações da espécie sob análise (HARRIS, 1999).

2.5.1 - Eletrodos indicadores e de referência

Os eletrodos podem ser classificados em dois tipos principais: eletrodos indicadores e eletrodos de referência. O eletrodo indicador é aquele cujo potencial é dependente da atividade do íon a ser determinado. Para que um eletrodo seja empregado como eletrodo indicador, ele deve apresentar grande sensibilidade à espécie a ser determinada, alto grau de reprodutibilidade e resposta rápida à variação de atividade da espécie sob análise. O eletrodo de referência é aquele que possui potencial constante contra o qual será feita a medida do potencial da espécie sob investigação. Em razão da estabilidade desse eletrodo, qualquer mudança no potencial do sistema será ocasionada pela contribuição do eletrodo indicador ou de trabalho. Os eletrodos indicadores, essenciais para a prática potenciométrica, são de dois tipos gerais, os eletrodos baseados em sistema oxidação-redução e os eletrodos de membrana. Os primeiros são constituídos de um metal participando do próprio sistema oxidação-redução ou, então, de um metal inerte em contato com um sistema de oxidação-redução. Os eletrodos de membrana são baseados em reações de troca iônica e difusão de íons nas interfaces dos diversos tipos de membranas.

Os eletrodos desse tipo apresentam alta seletividade e suas membranas devem possuir condutividade elétrica e ser compostas por materiais de baixa solubilidade. Estes eletrodos se classificam em: a) eletrodos de membrana cristalina, que pode ser homogênea ou heterogênea e b) eletrodos de membrana não-cristalina (HARRIS, 1999).

Os eletrodos do sistema oxidação-redução podem ser classificados de três formas: a) eletrodos de primeira classe; b) eletrodos de segunda classe e c) Eletrodos de terceira classe.

a) Eletrodos de primeira classe - são constituídos de um pedaço de metal puro em contato com uma solução contendo os cátions desse mesmo metal e estão diretamente envolvidos nas reações de eletrodos. Um exemplo é um eletrodo de prata mergulhado numa solução de nitrato de prata (HOLMES, 2000).

- b) Eletrodos de segunda classe Um exemplo desse tipo de eletrodo é o de pratacloreto de prata que pode ser usado para medir a atividade do íon cloreto em solução (HOLMES, 2000). Os eletrodos de segunda classe foram muito utilizados até 1993, devido à facilidade de construção e obtenção (COUTO & MONTENEGRO, 2000).
- c) Eletrodos de terceira classe são constituídos de um metal em contato com uma mistura composta de um sal pouco solúvel do metal, e mais um segundo sal pouco solúvel com ânion comum ao primeiro. Um exemplo da utilização de eletrodos de terceira classe é o uso na titulação complexométrica com EDTA (CHRISTIAN, 1994b).

Sobre o funcionamento de um eletrodo íon-seletivo, algumas teorias postulam que o íon em análise migra através de uma membrana seletivamente permeável, de uma região de alta para uma região de baixa concentração, ou alteram o potencial elétrico dessa membrana. Entretanto, o mecanismo de funcionamento de um eletrodo íon-seletivo não está totalmente elucidado, existindo ainda muitas controvérsias a esse respeito (FERNANDES *et al.*, 2001; PUNGOR; 2001).

2.5.2 - A equação de Nernst

A relação quantitativa entre o potencial de eletrodo e a atividade das espécies em solução foi primeiramente enunciada em 1889 por Hermann Walther Nernst,

estabelecendo uma equação que levaria o seu nome. Ele demonstrou experimentalmente que o potencial de eletrodo para uma reação do tipo,

$$aA + bB + ... + ne \Leftrightarrow cC + dD + ...$$

pode ser descrito pela equação:

$$E = E^{0} - 2,303 \frac{RT}{nF} \log \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$
 (1)

Onde:

E = potencial (em mV) estabelecido entre os eletrodos indicador e de referência.

E⁰ = potencial padrão do eletrodo (constante característica particular do par eletrodo indicador/referência).

R = constante dos gases (8,314 J K⁻¹ mol⁻¹).

T = temperatura em Kelvin.

n = nº de elétrons transferidos.

F = constante de Faraday (96500 Coulomb).

O fator $2,303 \frac{RT}{nF}$ é conhecido como o *slope* (inclinação) do eletrodo. À temperatura constante este deveria ser dependente apenas da carga do íon que está sendo medido. Para íons monovalentes, por exemplo, o valor dessa inclinação a 25°C (298K) deveria ser de 59,2 mV. Sob condições operacionais normais, porém, espera-se que essa inclinação varie entre 50 e 60 mV por causa de variações na temperatura, desvios do "comportamento ideal " e condução iônica variável pela membrana íon-seletiva (SKOOG *et al.*, 1988).

2.5.3 - Aplicações dos eletrodos íon-seletivos a sistemas de análise em fluxo

Os eletrodos íon-seletivos podem ser aplicados nas mais diversas áreas. Entre elas podemos destacar aplicações na indústria de alimentos, em meio ambiente para o monitoramento da poluição, na agricultura, no controle de banhos eletrolíticos, em análises clínicas, na indústria farmacêutica, em pesquisa, etc.

Devido à necessidade cada vez maior de se agilizar o processo de análise e reduzir custos, a partir da década de 70 começaram a surgir associações de eletrodos íon-seletivos a sistemas de análise em fluxo. A inserção de detectores potenciométricos em sistemas de análise desse tipo contribui para melhoria de suas características operacionais como reprodutibilidade do sinal analítico, velocidade de resposta e condicionamento contínuo da membrana sensora. Pelas vantagens enumeradas compreende-se porque a potenciomentria, como processo de detecção, tenha sofrido um grande avanço nas últimas duas décadas, tendo-se estabelecido novos tipos de sensores potenciométricos, novos processos de construção e diferentes tipos de acoplamento aos sistemas de análise em fluxo, resultando num grande número de trabalhos publicados a partir de 1984.

O surgimento da análise por injeção sequencial (SIA) veio resolver algumas das limitações inerentes aos sistemas FIA (COUTO & MONTENEGRO, 2000). Apesar disso, poucos trabalhos foram desenvolvidos utilizando esta técnica associada ao uso de eletrodos íon-seletivos. Particularmente alguns trabalhos são encontrados na área da indústria de alimentos (LUCA *et al.*, 1998).

A forma como o eletrodo está incorporado ao sistema em fluxo influencia diretamente nos resultados analíticos. Para se conseguir bons resultados, deve ser prestada a máxima atenção à configuração e geometria da célula detectora a fim de se

evitar o aparecimento de volume morto, formação e retenção de bolhas, alterações da estabilidade, reprodutibilidade de potenciais e variações na resposta da membrana sensora. Os eletrodos íon-seletivos podem apresentar diferentes formas de incorporação nos sistemas em fluxo, podendo consistir numa adaptação de eletrodos convencionais ou eletrodos especialmente construídos para este fim, que são os chamados eletrodos tubulares.

Os eletrodos convencionais, quando aplicados a sistemas em fluxo, apresentam a vantagem de não ser preciso introduzir modificação alguma nos eletrodos. Entretanto, esta forma de eletrodo possui como desvantagens a alteração das condições hidrodinâmicas do fluxo e instabilidade mecânica que surge da dificuldade de se fixálos no sistema, provocando ruídos elétricos e criando volumes mortos, o que causa perdas de contato eletrolítico entre o eletrodo indicador e o de referência.

Os eletrodos tubulares foram desenvolvidos na tentativa de superar os problemas apresentados pelos eletrodos convencionais integrantes de sistemas de análise em fluxo. Estes consistem em sensores nos quais as soluções sob análise entram em contato com a membrana sensora através de um canal que os atravessa de um lado a outro. Esse canal pode ter o mesmo diâmetro do percurso analítico, o que evita alterações do fluxo hidrodinâmico apresentadas pela forma convencional, o que, por sua vez, evita a dispersão da amostra após a passagem pelo detector. Esta característica os torna apropriados para colocação em sistemas de determinações multiparamétricas (FERREIRA *et al.*, 1994; MARTELLI *et al.*, 1998; ALEGRET *et al.*, 1984; COUTO & MONTENEGRO, 2000).

Apesar das desvantagens da incorporação de eletrodos convencionais em sistemas de análise em fluxo, anteriormente abordadas, alguns pesquisadores ainda utilizam essa forma de detector para algumas aplicações. O uso de um sistema de

análise por injeção em fluxo com eletrodos íon-seletivos convencionais em série, para determinações de fluoreto e cálcio em águas naturais ou efluentes, foi proposto por VAN STADEN & STEFAN (1999). ALPIZAR *et al.* (1996) também utilizaram eletrodos convencionais para determinação potenciométrica de fluoretos e cloretos em águas naturais, utilizando a técnica de análise por injeção seqüencial.

Sensores potenciométricos tubulares foram desenvolvidos para determinação em fluxo de pH como alternativa ao eletrodo convencional de vidro. O trabalho de MARTELLI *et al.* (1998) é um dos pioneiros no desenvolvimento e aplicação de um eletrodo tubular de membrana polimérica construído especialmente para determinação desse parâmetro. Este sensor logo apresentou características superiores aos do eletrodo de vidro como, por exemplo, menor tempo de resposta e maior durabilidade. Em seguida, um outro sistema em fluxo foi desenvolvido por TEIXEIRA *et al.* (2000) utilizando um sensor potenciométrico tubular para determinação de pH. Esse sensor era baseado numa mistura de Fe₂O₃, grafite e resina epóxi. Nenhum dos dois sistemas descritos visava uma aplicação particular. Em ambos os casos os sistemas propostos apresentaram alta velocidade analítica e ampla faixa linear de resposta

No que se refere ao uso de sistemas em fluxo com eletrodos tubulares, diversas aplicações industriais têm sido noticiadas. Na indústria farmacêutica o uso desses eletrodos para determinações em fluxo de ácido acetil salicílico foi proposto por ROVER JÚNIOR *et al.* (1998), apresentando excelente concordância de resultados entre o método potenciométrico adotado e o método espectrofotométrico de referência. A análise do teor de nitrogênio total em laticínios utilizando um eletrodo tubular em fluxo seletivo ao íon amônio foi proposta como metodologia alternativa ao procedimento tradicional (método de Kjeldahl), revelando o método potenciométrico

em fluxo possuir maior frequência analítica, precisão e exatidão adequadas, além de uma maior faixa de resposta linear (LIMA *et al.*, 1999).

Alguns trabalhos têm relatado aplicações de eletrodos íon-seletivos na indústria de revelação de fotografias, na qual o controle do íon brometo nas substâncias reveladoras é muito importante (MASADOME et al., 1999). Trabalhos relacionando aplicações de eletrodos íon-seletivos ao monitoramento de certos parâmetros em banhos eletrolíticos também são conhecidos. Na literatura são encontrados trabalhos sobre o desenvolvimento e uso de eletrodos seletivos tubulares para aplicação à determinação dos íons cloreto e tetrafluoroborato em diferentes tipos de banhos eletrolíticos, inclusive banhos de níquel tipo Watts (PEREZ OLMOS et al., 1994; ARAÚJO, 1994; PEREZ OLMOS et al., 1995). Em todos esses trabalhos, os resultados obtidos no sistema em fluxo utilizando detectores potenciométricos tubulares apresentaram boa concordância com os métodos de referência, com a vantagem de um baixo consumo de amostra e maiores velocidades analíticas.

Com base no exposto pela literatura a respeito de sistemas de análise em fluxo utilizando detecção potenciométrica, verifica-se que a aplicação de tais sistemas ao monitoramento e controle de banhos eletrolíticos é uma opção viável e bastante vantajosa.

2.6 – Planejamentos fatoriais

A primeira etapa a fazer no planejamento de um experimento é determinar quais são os fatores e as respostas de interesse para o sistema que se deseja estudar. Os fatores, isto é, as variáveis controladas pelo experimentador, tanto podem ser qualitativos como quantitativos. Em seguida, é preciso definir claramente que objetivo

Revisão bibliográfica 25

se pretende alcançar com os experimentos, porque isso determinará o tipo de planejamento experimental que deverá ser utilizado (BARROS NETO *et al.*, 2001).

Se o sistema em questão for afetado por muitas variáveis, torna-se difícil a determinação do grau de influência de uma ou mais variáveis sobre uma resposta de interesse. A maneira tradicional univariada de se estudar o nível dessa influência mantendo-se as variáveis fixas enquanto varia-se outra, muitas vezes conduz a uma falsa condição ótima quando existem interações apreciáveis entre essas variáveis. Nesses casos é necessária a utilização de técnicas de otimização multivariada para se avaliar o sistema como um todo. Para esta finalidade normalmente é empregado um tipo particular de planejamento experimental chamado de planejamento fatorial. Planejamento Fatorial é uma ferramenta estatística que permite determinar se as variáveis escolhidas para serem estudadas em um sistema têm ou não influência sobre a resposta desse sistema. Permite, também, avaliar e quantificar o nível dessa influência e a existência de interação entre as variáveis. Na realização de um planejamento fatorial o que se deseja saber é como a resposta depende dos fatores.

Para se executar um planejamento fatorial, primeiramente, é necessário especificar os níveis em que cada variável será estudada, isto é, os valores dos fatores que serão empregados nos experimentos. Os níveis inferiores e superiores são representados pelos sinais (-) e (+), respectivamente, se o fatorial apresentar apenas 2 níveis.

Um planejamento fatorial requer a execução de experimentos para todas as possíveis combinações dos níveis dos fatores. Em geral, se houver n_1 níveis no fator 1, n_2 no fator 2,..., n_k no fator k, o planejamento fatorial terá n_1 x n_2 x n_k ensaios diferentes. Costuma-se representar um planejamento fatorial de dois níveis e k variáveis por 2^k . Se, por exemplo, for desejado realizar um experimento onde o número de variáveis é 4 e

Revisão bibliográfica 26

cada uma dessas variáveis for estudada em dois níveis, o número de ensaios do fatorial completo é 2⁴, ou seja, 16 experimentos deverão ser realizados (BARROS NETO *et al.*, 2001).

O número de ensaios necessários para se executar um planejamento fatorial completo aumenta rapidamente com o aumento do número de variáveis consideradas no estudo. O que acontece nesses casos é que na maioria das vezes os efeitos de interação são pequenos e são destituídos de qualquer importância prática. Além disso, crescem as chances de que uma ou mais variáveis não tenha qualquer efeito sobre a resposta. Visando-se estudar de modo eficiente a relação entre as variáveis e respostas de um sistema sem ter que para isso aumentar o número de ensaios, geralmente pode-se fazer uso de planejamentos fatoriais fracionários, que possibilitam extrair informações de um sistema sem a necessidade de se realizar muitos experimentos.

Para que seja evitada a ocorrência de qualquer distorção estatística nos resultados, é recomendado que os ensaios sejam realizados em ordem totalmente aleatória. Desejando-se estimar o erro experimental, pelo menos alguns dos ensaios devem ser realizados em replicata. Para testar o ajuste do modelo linear, costuma-se incluir um ponto, chamado de ponto central, que é a média entre os valores dos níveis superiores e inferiores de cada variável, e realizar repetições neste ponto. É preciso tomar cuidado com a autenticidade das repetições. A preparação de todas deve seguir os mesmos passos para que os erros cometidos (durante a preparação) não levem a uma falsa interpretação dos efeitos (BARROS NETO *et al.*, 2001).

3 - PROCEDIMENTO EXPERIMENTAL

3.1 - Descrição do sistema SIA

O sistema SIA utilizado para monitoramento de banhos eletrolíticos é composto por uma bomba peristáltica (BP), marca Gilson Minipuls 3 (Viliers-le-Bell, France); uma válvula multiposição de 8 canais (VM) da Valco Instruments, modelo CheminertTM C15- 3118 E (Houston, USA); um registrador (RG) marca Loyds Instruments modelo Graphic2000; um espectrofotômetro (E), marca Femto 435 (São Paulo, Brasil), equipado com uma célula de fluxo, construída em laboratório, de aproximadamente 200 μL e 1 cm de percurso ótico; uma câmara de diálise (CD); sensores potenciométricos (eletrodos de cloreto e pH); um potenciômetro (P), marca Radelkis OP-208/1 (Budapest, Hungary); um eletrodo de referência (ER) de Ag/AgCl de dupla junção da Thermo Orion 92-00-02 (Beverly, USA) e um microcomputador (MC) ligado à uma interface Advantech PCL 818L, para controle do sistema e aquisição dos sinais (Figura 3).

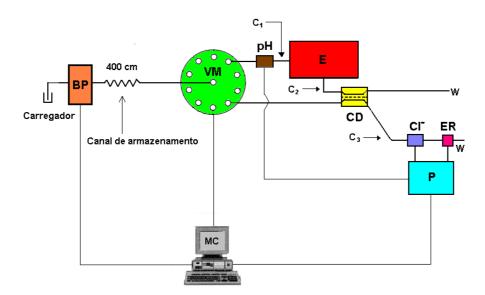


Figura 3: Diagrama do sistema SIA utilizado no monitoramento de banhos de galvanoplastia.

28

O sistema tubular conectando os diferentes dispositivos foi construído utilizando-se tubos de PTFE com diâmetro interno de 0,8 mm. A bobina de armazenamento possuía um comprimento de 400 cm e a distância entre o eletrodo de pH e espectrofotômetro tinha um comprimento de 40 cm (C₁). O percurso analítico compreendido entre o espectrofotômetro e a câmara de diálise media aproximadamente 40 cm (C₂), enquanto o comprimento do percurso entre a câmara de diálise e o eletrodo de cloreto possuía 30 cm (C₃) (Figura 3). Na extremidade de saída da câmara de diálise, foi colocado um tubo enrolado de PTFE com 40 cm de comprimento para que fosse com o objetivo de criar uma maior pressão no canal doador em relação ao canal receptor.

Os suportes para os eletrodos potenciométricos e de referência foram construídos de acordo com ALEGRET *et al.* (1989). Para aterramento do sistema, foi incorporado antes do eletrodo de cloreto um tubo oco de aço inox com de 5 cm e 0,7 mm de diâmetro interno, ligado por um fio à um terra. A aquisição de sinais, oriundos do potenciômetro e espectrofotômetro, e as operações de comando da bomba peristáltica e válvula seletora de fluidos foram efetuadas através de um computador equipado com uma interface Advantech PCL 818L, por meio de um programa desenvolvido em Quick Basic 4.5.

Como pode ser observado na Figura 3, o sensor de pH e o espectrofotômetro (para determinação de níquel) estão localizados no mesmo canal, enquanto o sensor para determinação de cloreto está localizado em outro canal. O sensor para pH é constituído por um eletrodo tubular de membrana polimérica. Por sua vez, o sensor para cloreto se constitui num eletrodo tubular de membrana cristalina heterogênea composta por AgCl/Ag₂S. Devido à complexidade das amostras e ao seu elevado nível de cloreto, no canal onde está localizado o sensor para cloreto existe uma câmara de diálise que

utiliza membrana de acetato de celulose, com "cut off" de 18000 D, para diluição e separação da matriz (VAN STADEN, 1991; ARAÚJO *et al.*, 1995; MORAIS *et al.*, 1997; GRUDPAN *et al.*, 1999).

A unidade de diálise foi construída em um bloco de perspex, escavando-se em uma das faces de cada bloco um canal de 4 mm de altura, 5 mm de largura e 10 cm de comprimento (GRUDPAN *et al.*, 1999). Entre as faces escavadas dos dois blocos de perspex foi inserida uma membrana de celulose (Spectra/Por®, ref. 132562). Essa membrana era substituída semanalmente ou sempre que eram obtidos resultados irreprodutíveis por injeções sucessivas de uma mesma solução. Finalmente, no sistema encontra-se um espectrofotômetro UV-Visível para determinação do teor de níquel.

O funcionamento do sistema SIA proposto é realizado por seis etapas. Nas duas primeiras etapas, coloca-se uma amostra contida no tubo de acesso à porta 1 da válvula de seleção ou efetua-se a limpeza do tubo bombeando-se o resto da amostra anterior. A terceira etapa consiste na aspiração de um volume definido da amostra para o canal de armazenamento, através da porta número 1 da válvula de seleção. Na quarta etapa, a porta número 2 é selecionada, a direção do fluxo é invertida e a amostra é enviada rapidamente em direção aos detectores de pH e níquel. A quinta etapa inicia-se após a passagem da amostra pelo espectrofotômetro. A vazão de bombeamento é alterada e a amostra é enviada lentamente pelo canal de cima da câmara de diálise (canal doador) para permitir um maior tempo de contato entra a amostra e a membrana, de maneira a permitir que o processo de diálise ocorra. Finalmente, terminada a diálise, com a passagem de todo o volume de amostra pela câmara, inicia-se a sexta e última etapa com a seleção da porta número 3 da válvula (canal receptor) e envio da amostra dialisada em direção ao eletrodo de cloreto.

3.2 - Construção dos sensores potenciométricos

3.2.1 – Construção do eletrodo tubular de cloretos

Os sensores usados na determinação potenciométrica de cloreto foram construídos em laboratório. Na Figura 4 está apresentado um esquema da construção desses eletrodos. Estes consistem em sensores cujas membranas são compostas por uma mistura de sulfeto de prata com cloreto de prata (razão molar de 1:1). Essas membranas foram obtidas prensando-se 0,25 g da mistura sensora sob 19.000 Kg cm⁻², num equipamento que possibilita exercer pressão de até 31.000 Kg cm⁻². Dessa forma, foram obtidos discos com 10 mm de diâmetro e aproximadamente 0,4 mm de espessura. Os discos assim obtidos foram colados (com uma resina epóxi à base de prata) a uma placa retangular de prata previamente soldada a um cabo elétrico (Figuras 4A e 4B). Em seguida, a membrana foi colocada em um cilindro de perspex com cerca de 10 mm de diâmetro, 7 mm de altura e com uma cavidade retangular de 3 x 4,5 x 7,5 mm e preenchida com uma resina epóxi não-condutora (Figura 4C). Após o endurecimento dessa unidade, foi feito um furo perpendicular aos lados do cilindro perspex, atravessando a membrana no centro e o eletrodo foi introduzido em um suporte para ser colocado no sistema em fluxo (Figura 4A a 4D) (FERREIRA *et al.*, 1993).

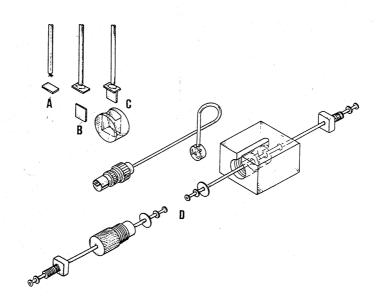


Figura 4: Esquema da construção do eletrodo tubular para determinação de cloretos.

3.2.2 – Construção do eletrodo tubular de pH

Os sensores para determinação do pH usados neste trabalho também foram construídos em laboratório. A membrana sensora foi preparada segundo recomendações da Fluka. Essa membrana é composta pela mistura dos reagentes químicos apresentados na Tabela 3, onde podem ser observadas as funções de cada um dos componentes da solução sensora.

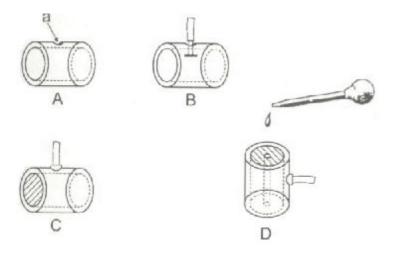

Para a preparação da membrana sensora de pH, 0,020 g de um composto ionóforo de hidrogênio ETH 1907 (Sigma, ref. I-4022) e 0,020 g de tetrakis (4-clorofenil) borato de potássio (Aldrich, ref. 36525-4) foram dissolvidos em 1,36 g de 2-nitrofenil octil éter (Sigma, ref. N-6768). Esta solução foi adicionada a 0,60 g de PVC, previamente dissolvido em cerca de 20 mL de tetrahidrofurano (Quimex, Brasil, ref. 805).

Tabela 3: Composição da membrana sensora recomendada pela Fluka para construção de um eletrodo de pH.

Substância	Quantidade	% na mistura	Função
Ionóforo de hidrogênio	0,02g	1	Composto seletivo aos íons H ⁺
2-nitrofenil octil éter	1,36g	68	Solvente mediador para mistura sensora
Tetrakis (4-clorofenil) borato de potássio	0,02g	1	Diminui a resistência da membrana e as interferências iônicas
PVC (alto peso molecular)	0,60g	30	Funciona como suporte para a mistura sensora
Tetrahidrofurano (THF)	20 mL	-	Dissolver o PVC

O suporte (eletrodo tubular) para receber a solução sensora foi preparado misturando-se resina epóxi à base de bisfenol, grafite (granulometria 50 μm, da Merck) e endurecedor HR (álcool benzil isoforonediamina, da marca Ciba Geigy S.A.), na proporção de 2:4:1, respectivamente. Essa mistura, após devidamente homogeneizada, foi colocada dentro do suporte cilíndrico oco de perspex, com um canal interno medindo 8 mm de diâmetro interno e 7 mm de comprimento (Figura 5A). Através de um orificio lateral foi inserido um cabo condutor com uma placa de cobre retangular de 6 x 2 mm, a qual foi ajustada na parede do cilindro (Figura 5B). Em seguida, o cilindro foi preenchido com a mistura grafite-epóxi e após a secagem do suporte os dois lados do cilindro foram lixados, recobertos com uma camada de cola Araldite não-condutora e deixados novamente para secar (Figura 5C). Logo após, o cilindro foi perfurado de um lado a outro, obtendo-se um canal de aproximadamente 1 mm de diâmetro. Nesse canal, foi gotejada a solução sensora de forma a se obter uma membrana com espessura desejada, assoprando-se para que a gota não obstruísse o mesmo (Figura 5D) Este

procedimento foi repetido até que fosse observada a formação da membrana no interior do canal.

Figura 5: Esquema da construção do eletrodo tubular utilizado na determinação de pH em banhos eletrolíticos.

Após a secagem da membrana sensora, antes de serem utilizados pela primeira vez para realização das medidas, os eletrodos eram condicionados bombeando-se uma solução de HCl 10⁻³ mol L⁻¹ durante 2 horas a uma vazão de 0,1 mL min⁻¹. Cada vez que o eletrodo era reutilizado, efetuava-se o re-condionamento com a mesma solução de HCl, desta vez por 15 minutos (MARTELLI *et al.*, 2000).

3.3 - Preparação das soluções

Todas as soluções utilizadas neste trabalho foram preparadas utilizando-se reagentes de grau analítico dissolvidos com água destilada.

3.3.1 - Preparação das amostras do banho e padrões das curvas de calibração

As amostras dos banhos de níquel foram preparadas pesando-se rigorosamente as massas correspondentes dos constituintes do banho de níquel tipo Watts (NiSO₄.6H₂O, NiCl₂.6H₂O e H₃BO₃) e transferindo-se para um béquer onde foi adicionada água destilada. Logo após, as soluções foram levadas para aquecimento em chapa elétrica e depois do resfriamento foram transferidas para balões de 100 mL e aferidas. Cada amostra foi composta por três repetições preparadas individualmente.

Os padrões utilizados na construção das curvas analíticas foram preparados em duplicata, da mesma maneira que foram preparadas as amostras do banho eletrolítico. Nestes, os teores de ácido bórico e sulfato de níquel foram mantidos fixos em seus níveis máximos (40 e 300 g/L, respectivamente) enquanto variou-se o teor de cloreto de níquel. Em seguida, o pH dessas soluções foi ajustado com ácido sulfúrico ou hidróxido de lítio concentrados, conforme o caso. Desta forma, é possível realizar com esses padrões a calibração dos três sensores simultaneamente. É importante ressaltar que os padrões foram utilizados sem a necessidade de um ajuste de força iônica, visto que essa variável não teve influência sobre o sistema. Todos os padrões e amostras recémpreparadas foram armazenados em frascos de polietileno na temperatura ambiente. Na Tabela 4 estão apresentados os padrões com seus respectivos valores de pH e concentrações de cloreto e níquel.

Tabela 4: Padrões utilizados na construção das curvas analíticas para pH, níquel e cloreto no sistema SIA proposto para monitoramento de banhos eletrolíticos tipo Watts.

Padrão	pН	[Ni ²⁺] (mol L ⁻¹)	[Cl ⁻] (mol L ⁻¹)
1	1,0	1,60	1,00
2	1,5	0,40	0,30
3	2,0	0,50	0,20
4	2,5	1,50	0,70
5	3,0	0,90	0,50
6	3,5	1,30	0,40
7	4,0	1,20	0,10
8	4,5	0,60	0,01
9	5,0	0,10	0,05

3.3.2 - Preparação do transportador

As soluções tampão utilizadas como transportador no sistema desenvolvido foram preparadas por adição dos volumes adequados de soluções 0,50 mol L⁻¹, dos sais fosfato de potássio monobásico (KH₂PO₄) e fosfato de sódio dibásico (Na₂HPO₄) e diluição apropriada com água ao volume final. Os tampões preparados dessa maneira tiveram suas concentrações variando entre 0,025 e 0,1 mol L⁻¹, com o pH fixado em 6,3 a 25°C.

Para avaliar a importância do ajuste de força iônica foram adicionadas a estas soluções quantidades apropriadas de nitrato de sódio (NaNO₃), cuja concentração variou de 0 a 0,1 mol L⁻¹. Finalmente, o pH das soluções tampão foi ajustado com KOH 1 mol L⁻¹ ou com uma solução tampão fosfato de pH 4,0, contendo nitrato nas mesmas concentrações das soluções ajustadas, conforme o caso.

3.4 - Varredura numa amostra simulando o banho de níquel tipo Watts

A determinação do teor de níquel em banhos eletrolíticos no sistema SIA é feita de forma direta, aproveitando-se a própria cor do banho (verde escuro), sem o uso de agentes complexantes (WHITMAN *et al.*, 1988).

Inicialmente, foi feita uma varredura numa amostra sintética utilizando um espectrofotômetro UV-visível de duplo feixe (modelo HITACHI U2000), para se verificar os comprimentos de onda de absorção da amostra. Uma vez definidos os comprimentos de onda, construiu-se curvas de calibração em dois dos comprimentos de onda utilizando-se uma cubeta de acrílico com percurso ótico de 1 cm e padrões de concentração de níquel variando entre 0,4 e 1,7 mol L⁻¹, visando a definição da melhor condição de trabalho.

3.5 - Otimização do sistema SIA

Para determinação das condições ótimas de operação do sistema SIA foram aplicadas ferramentas estatísticas de otimização multivariada, particularmente planejamentos fatoriais fracionários.

As variáveis selecionadas para o processo de otimização envolveram a composição química da solução transportadora, volume de injeção de amostra e as vazões nas diferentes etapas que constituem o ciclo analítico. Os níveis para essas variáveis foram definidos em experimentos univariados previamente realizados.

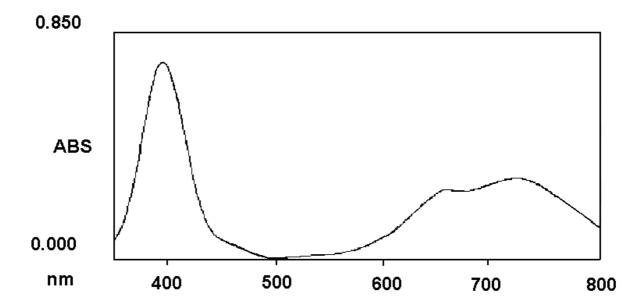
Inicialmente, a otimização das condições da determinação de pH e níquel foi realizada através da aplicação de um planejamento fatorial fracionário 2⁴⁻¹, acrescido de um ponto central em triplicata. Para isso, foram consideradas a influência do volume de amostra, a concentração do tampão fosfato, a concentração de nitrato de sódio na

solução transportadora e a vazão de transporte da amostra em direção aos detectores (parâmetros 1 a 4 da Tabela 5).

Tabela 5: Variáveis e níveis utilizados na otimização do sistema SIA desenvolvido para monitoramento de banhos eletrolíticos.

Variáveis	Níveis			
variaveis	Superior (+)	Ponto Central (0)	Inferior (-)	
1 - Volume de amostra (μL)	820	660	500	
2 - Concentração do tampão (mol L ⁻¹)	0,100	0,0625	0,025	
3 - Concentração de NaNO ₃ (mol L ⁻¹)	0,10	0,05	0	
4 - Vazão para eletrodo (mL min ⁻¹)	9,10	7,38	5,65	
5 - Vazão de diálise (mL min ⁻¹)	2,22	1,39	0,55	

Para a otimização das condições de determinação do íon cloreto, foi aplicado um planejamento fatorial fracionário 2⁵⁻¹, considerando-se além das variáveis estudadas para pH e níquel, a vazão à qual se processava a passagem da amostra na unidade de diálise (parâmetro 5 da Tabela 5). Nesse caso incluiu-se um ponto central composto por quatro repetições.


No processo de otimização multivariada para pH e cloreto considerou-se como resposta a otimizar as inclinações das curvas de calibração obtidas em cada ensaio, cujo valor alvo é aquele fornecido pela equação de Nernst para íons monovalentes (59,2 mV década⁻¹). No caso da determinação de níquel foram utilizadas como respostas os valores de R² obtidos com o ajuste do modelo linear.

Nos ensaios realizados, para otimização das determinações de pH e níquel utilizaram-se 5 soluções de calibração com valores de pH compreendidos entre 1 e 5 unidades e concentrações de níquel entre 0,1 e 1,6 mol L⁻¹. Para a otimização da determinação de cloreto foram usados três padrões de calibração para construção das curvas analíticas com concentrações de cloreto 0,1; 0,5 e 1,0 mol L⁻¹.

4 – RESULTADOS E DISCUSSÕES

4.1 – Varredura numa amostra simulando o banho de níquel tipo Watts

Os resultados da varredura revelaram a existência de três comprimentos de onda onde se é possível fazer a determinação de níquel em banhos do tipo Watts. Estes comprimentos de onda foram: 394,5; 657,5 e 722,5 nm, com absorções máximas de 0,738; 0,269 e 0,316, respectivamente (Figura 6).

Figura 6: Espectro de varredura na amostra de um banho eletrolítico do tipo Watts, com concentração de níquel 1,60 mol L⁻¹, apresentando três regiões de absorção máxima.

Apesar do maior pico de absorção ter sido obtido em 394,5 nm, este comprimento de onda não foi utilizado nos estudos devido ao fato de se encontrar na região do ultravioleta e por causa da alta sensibilidade apresentada, havendo problemas de linearidade, uma vez que em geral as concentrações de níquel encontradas nos banhos são elevadas. Outra vantagem e se realizar as determinações em 660 nm é que, uma vez que essa é a região do espectro correspondente à cor vermelha, o

espectrofotômetro poderia ser substituído por um simples diodo emissor de luz (LED, do inglês Light Emissor Diode)

Assim, as curvas de calibração foram construídas em 660 e 725 nm, sendo escolhido 660 nm como condição de trabalho em virtude de, nesse comprimento de onda, ter sido obtida linearidade mais adequada para faixa de concentração de níquel encontrada no banho.

4.2 - Otimização do sistema SIA

4.2.1 - Otimização das determinações de pH e níquel

A matriz de planejamento do fatorial fracionário 2⁴⁻¹ empregado na otimização da determinação de pH e níquel está apresentada na Tabela 6, juntamente com os resultados obtidos nos ensaios (em módulo para pH). Para determinação de pH, os valores de R² obtidos foi superior a 0,99 em todos os casos.

Tabela 6: Matriz de planejamento e resultados obtidos no planejamento fatorial fracionário 2⁴⁻¹ aplicado à otimização das determinações de pH e níquel em SIA.

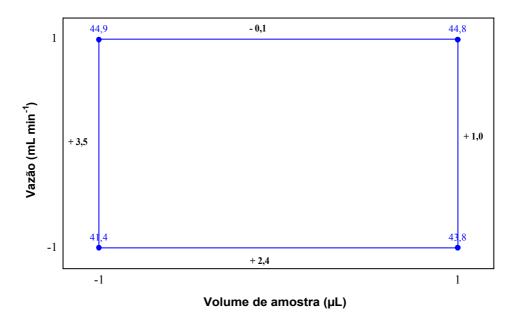
Ensaio	Amostra (µL)	Tampão (mol L ⁻¹)	NaNO ₃ (mol L ⁻¹)	Vazão (mL min ⁻¹)	Inclinação (mV década ⁻¹)	R ² (níquel)
1	-	-	-	-	41,8	0,9831
2	+	-	-	+	44,3	0,9984
3	-	+	-	+	44,6	0,9911
4	+	+	-	-	44,0	0,9908
5	-	-	+	+	44,7	0,9960
6	+	-	+	-	43,1	0,9890
7	-	+	+	-	40,5	0,9938
8	+	+	+	+	44,8	0,9863
9A	0	0	0	0	44,8	0,9928
9B	0	0	0	0	44,4	0,9904
9C	0	0	0	0	43,6	0,9910

Na Tabela 7 estão apresentados os contrastes e seus erros padrão. A significância estatística dos contrastes foi avaliada calculando-se os intervalos com um nível de 95 % de confiança para cada contraste (última linha da Tabela 7).

Numa primeira análise apenas o efeito da vazão apresentou-se significativo nos níveis estudados para determinação do pH. Um aumento de vazão de 5,65 para 9,10 mL min⁻¹ se traduz num aumento médio na inclinação de 2,24 mV década⁻¹. Este resultado mostrou-se apropriado visto que para aumentar a velocidade analítica é necessário enviar a amostra de forma mais rápida o quanto possível até a câmara de diálise, onde devido à menor vazão o processo analítico é lento. Para a determinação de níquel, apenas o contraste VA x CN (=CT x V) apresentou-se significativo nos níveis estudados. Porém, este contraste não foi levado em consideração visto que em todos os ensaios foram obtidas linearidades adequadas, o que permite adotar como condições ótimas para o níquel, as mesmas adotadas para determinação do pH.

Apesar dos demais contrastes não terem se apresentado significativos nos níveis estudados para o sensor de pH, o volume da amostra e a interação **VA x V** (=**CT x CN**), forneceram resultados bem maiores que os outros efeitos, devendo ser melhor investigados (Tabela 7).

Tabela 7: Contrastes calculados e seus respectivos erros padrão para o planejamento fatorial fracionário2⁴⁻¹ aplicado à otimização das determinações de pH e níquel.


		Estimativa		
		pН	Níquel	
M	Média global	$43,71 \pm 0,22$	$0,9956 \pm 0,0002$	
	Contrastes			
VA	Volume de amostra (µL)	$1,16 \pm 0,43$	$0,00006 \pm 0,00044$	
CT	Concentração do tampão (mol L ⁻¹)	$0,02 \pm 0,43$	$-0,00056 \pm 0,00044$	
CN	Concentração de NaNO ₃ (mol L ⁻¹)	$-0,43 \pm 0,43$	$0,00022 \pm 0,00044$	
V	Vazão (mL min ⁻¹)	$2,24 \pm 0,43$	$0,00190 \pm 0,00044$	
	$VA \times CT = CN \times V$	$0,68 \pm 0,43$	$-0,00202 \pm 0,00044$	
	$VA \times CN = CT \times V$	$0,21 \pm 0,43$	$-0,00370 \pm 0,00044$	
	$VA \times V = CT \times CN$	$-1,25 \pm 0,43$	$-0,00067 \pm 0,00044$	
t (2, 0,95	5) X S	1,84	0,00270	

Com o objetivo de avaliar melhor os efeitos do volume da amostra e da interação **VA x V** (= **CT x CN**), desprezou-se os efeitos das variáveis **CT** e **CN** (considerados muito pequenos), resultando num planejamento fatorial completo 2^2 com repetições, refazendo-se novamente os cálculos. Dessa forma, pôde ser observado que o volume da amostra passa a ser significativo na determinação do pH. Também o efeito de interação entre volume da amostra e vazão (interação **VA x V**) tornou-se significativo (Tabela 8).

O volume da amostra só se torna significativo (+2,4 mV) quando a vazão está em seu nível mínimo. Se a vazão estiver no nível máximo, aumentar o volume da amostra não apresenta efeito significativo (Figura 7). Isto é vantajoso para o sistema proposto, visto que se trabalhando com uma vazão alta pode-se utilizar um menor volume de amostra.

Tabela 8: Efeitos calculados e seus respectivos erros padrão para determinação de pH após a remoção dos efeitos considerados desprezíveis.

		Estimativa
M	Média global	$43,48 \pm 0,21$
	Efeitos principais	
1	Volume de amostra (µL)	$1,16 \pm 0,42$
4	Vazão (mL min ⁻¹)	$2,24 \pm 0,42$
	Efeito de interação de dois	fatores
14	Volume x Vazão	$-1,26 \pm 0,42$
$t_{(6, 0,95)} \times s$	S	1,03

Figura 7: Interpretação conjunta dos efeitos do volume de amostra e vazão de bombeamento na inclinação do eletrodo tubular de pH.

4.2.2 - Otimização da determinação de cloreto

A matriz de planejamento para um fatorial fracionário 2⁵⁻¹ e os resultados obtidos nos ensaios (em módulo) estão apresentados na Tabela 9.

Tabela 9: Matriz de planejamento para o fatorial fracionário 2⁵⁻¹ aplicado à otimização da determinação de cloretos no sistema SIA.

	Fatores					
Ensaio	Volume (µL)	Concentração do tampão (mol L ⁻¹)	NaNO ₃ (mol L ⁻¹)	Vazão p/ eletrodo (mL min ⁻¹)	Vazão de diálise (mL min ⁻¹)	Inclinação (mV dec ⁻¹)
1	-	-	-	-	+	51,7
2	+	-	-	-	-	39,9
3	-	+	-	-	-	47,7
4	+	+	-	-	+	52,9
5	-	-	+	-	-	38,6
6	+	-	+	-	+	38,8
7	-	+	+	-	+	31,6
8	+	+	+	-	-	49,7
9	-	-	-	+	-	46,0
10	+	-	-	+	+	50,7
11	-	+	-	+	+	76,7
12	+	+	-	+	-	63,8
13	-	-	+	+	+	62,5
14	+	-	+	+	-	64,0
15	-	+	+	+	-	64,6
16	+	+	+	+	+	48,4
17A	0	0	0	0	0	48,8
17B	0	0	0	0	0	49,9
17C	0	0	0	0	0	52,2
17D	0	0	0	0	0	47,3

Os resultados do planejamento fatorial mostraram que a inclinação do eletrodo de cloretos variou de 31,6 a 76,7 mV. Esse último valor da faixa correspondeu ao ensaio 11, indicando aparentemente resposta supernerstiana nas condições em que foi realizado

esse ensaio. Os experimentos de 12 a 15 apresentaram valores de inclinação próximos ao valor alvo (59,2 mV).

Entre os contrastes principais, apenas o volume de amostra e vazão de diálise não foram significativos nos níveis estudados para determinação de cloreto em banhos eletrolíticos num sistema SIA. Entretanto, foram observados também diversos contrastes de interação significativos, permitindo concluir que este é um típico caso em que não é possível se fazer uma otimização univariada, uma vez que todas as variáveis interagem entre si (Tabela 10).

O resultado do ensaio 13 mostrou-se bastante interessante do ponto de vista econômico e de aumento na velocidade analítica, visto que nesse experimento foram utilizados menor volume de amostra (500 μL), menor concentração do tampão (0,025 mol L⁻¹), maior vazão de bombeamento para o eletrodo (9,22 mL min⁻¹) e maior vazão de diálise (2,22 mL min⁻¹). Porém, a concentração de nitrato nesse ensaio está em seu nível máximo (0,100 mL min⁻¹). Nos ensaios 11 e 12, onde não existe nitrato no transportador e a concentração do tampão é diferente daquela correspondente ao ensaio 13, também foram obtidos resultados satisfatórios (Tabela 9). Sendo assim, optou-se por avaliar melhor o efeito das concentrações do tampão e de NaNO₃ nesse mesmo tampão.

Tabela 10: Contrastes calculados e seus respectivos erros padrão para o planejamento fatorial fracionário2⁵⁻¹ aplicado à otimização da determinação potenciométrica de cloreto num sistema SIA com diálise. Os valores em azul são aqueles considerados significativos.

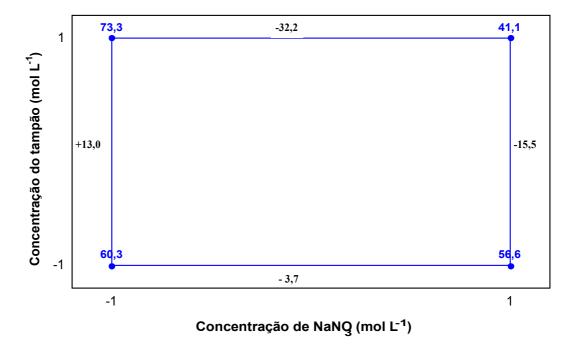
		Estimativa
M	Média global	$51,3 \pm 0,47$
	Contrastes	
VA	Volume de amostra	$-1,39 \pm 1,03$
CT	Concentração do tampão	$5,39 \pm 1,03$
CN	Concentração de NaNO ₃	$-3,90 \pm 1,03$
VE	Vazão para o eletrodo	$15,72 \pm 1,03$
VD	Vazão de diálise	-0.14 ± 1.03
	$VA \times CT = CN \times VE \times VD$ $VA \times CN = CT \times VE \times VD$	-0.04 ± 1.03 2.28 ± 1.03
	$VA \times VE = CT \times CN \times VD$	$-4,33 \pm 1,03$
	$VA \times VD = CT \times CN \times VE$	$-6,51 \pm 1,03$
	$CT \times CN = VA \times VE \times VD$	$-7,79 \pm 1,03$
	$CT \times VE = VA \times CN \times VD$	$2,19 \pm 1,03$
	$CT \times VD = VA \times CN \times VE$	$-3,95 \pm 1,03$
	$CN \times VE = VA \times CT \times VD$	$4,49 \pm 1,03$
	$CN \times VD = VA \times CT \times VE$	$-8,77 \pm 1,03$
	$VE \times VD = VA \times CT \times CN$	$0,12 \pm 1,03$
t (3, 0,95) x	S	3,39

Um novo planejamento fatorial completo 2^2 foi executado para avaliar melhor o efeito das variáveis, concentração de NaNO3 e concentração do tampão, na determinação potenciométrica de cloreto utilizando diálise para separação e diluição da amostra. Esse planejamento foi realizado em duplicata, utilizando os mesmos níveis dessas variáveis do planejamento fatorial fracionário. O volume de amostra e as vazões de diálise e bombeamento para o eletrodo foram fixados em 500 μ L, 2,22 e 9,10 mL L⁻¹, respectivamente. Os resultados obtidos e a matriz de planejamento do fatorial 2^2 estão apresentados na Tabela 11.

Tabela 11: Matriz de planejamento e resultados do planejamento fatorial 2² utilizado para avaliar a influência das concentrações do tampão e de nitrato na determinação de cloretos em SIA.

Ensaio	Tampão (mol L ⁻¹) NaNO ₃ (mol L ⁻¹)		Inclinação (mV)	
Elisalo	rampao (mor L)	IvaIvO3 (IIIOI L.)	A	В
1	0,025	0	57,1	63,6
2	0,10	0	72,2	74,4
3	0,025	0,10	57,3	55,8
4	0,10	0,10	39,1	43,1

Calculando-se os efeitos e os intervalos com 95 % de confiança, observa-se que o efeito principal da concentração do tampão não se mostrou significativo nos níveis estudados. Entretanto, o efeito da concentração de nitrato no tampão apresentou-se significativo, diminuindo a resposta (em média) em 17,9 mV quando se aumenta a concentração de nitrato de sódio no tampão (Tabela 12).


Tabela 12: Efeitos calculados e seus erros padrão para o planejamento fatorial 2² aplicado para avaliar as influências da concentração do tampão e concentração de nitrato no transportador.

		Estimativa
M	Média global	$57,83 \pm 1,01$
	Efeitos principais	
1	Concentração do tampão (mol L ⁻¹)	$-1,26 \pm 2,02$
4	Concentração de NaNO ₃ (mol L ⁻¹)	$-17,96 \pm 2,02$
	Efeito de interação de dois fatores	
14	Conc. do tampão x Conc. de NaNO ₃	$-14,20 \pm 2,02$
t (4, 0,95) X	S	5,61

Também foi observado um efeito de interação significativo entre as duas variáveis que pode ser melhor visualizado na Figura 8. Introduzir nitrato quando a

concentração do tampão está em seu nível inferior não afeta significativamente a inclinação. Quando a concentração tampão está em seu nível superior, introduzir nitrato diminui a inclinação em 32,2 mV. Por outro lado, aumentar a concentração do tampão, na ausência de nitrato, aumenta a inclinação em 13,0 mV. Ao contrário, um aumento da concentração do tampão na presença de nitrato diminui a inclinação em 15,5 mV. O motivo dessa diminuição não foi possível explicar.

Pelo que foi exposto, verifica-se que a condição representada pelo ensaio 1 (menor concentração do tampão e ausência de nitrato) torna-se uma opção atraente, do ponto de vista econômico, para ser adotada como condição de trabalho, uma vez que nessa condição existe um menor consumo de reagentes químicos na preparação do tampão transportador. Além do mais, nessa condição também é obtido uma inclinação próxima do valor teórico de 59,2 mV fornecido pela equação de Nernst para íons monovalentes (Figura 8).

Figura 8: Interpretação conjunta dos efeitos das concentrações do tampão e nitrato na inclinação do eletrodo tubular de cloretos com diálise.

4.3 – Aplicação do sistema à análise de amostras do banho de níquel tipo Watts

Uma vez definidas as condições de operação do sistema SIA (volume de amostra de 500 μL, tampão fosfato 0,025 mol L⁻¹, sem nitrato de sódio, vazões de diálise e de bombeamento para o eletrodo de 2,22 e 9,10 mL min⁻¹, respectivamente), procedeu-se à análise das amostras do banho de níquel tipo Watts.

As amostras novas do banho seguiram os procedimentos de preparação já descritos neste trabalho. Por sua vez, a amostra do banho em uso foi obtida diretamente de uma indústria local, a CROMOSUL, localizada em Recife, Pernambuco. Trata-se de uma indústria de pequeno porte que além do processo de eletrodeposição de níquel, também realiza a eletrodeposição de cobre e cromo.

O processo analítico otimizado leva 80 segundos para ser realizado, dividido em uma etapa de aspiração da amostra (10 s); etapa de envio da amostra para o canal do eletrodo de pH, espectrofotômetro e câmara de diálise (8 s), processo de diálise (32 s), etapa de arraste do restante da amostra que permanece na célula de fluxo após o término da diálise (10 s) que se processa a uma vazão de 9,10 mL min⁻¹ e, finalmente, a etapa de bombeamento e limpeza do eletrodo de cloreto que leva 20 segundos (Tabela 13). O sistema otimizado desta forma permite a análise de 45 amostras por hora.

Tabela 13: Duração de cada etapa do ciclo analítico no sistema SIA proposto para monitoramento de banhos eletrolíticos.

Posição	Tempo (s)	Ação
1	10	Amostragem
2	8	Medida do pH e níquel
2	32	Processo de diálise
2	10	Limpeza da célula de fluxo
3	20	Medida de cloreto

As curvas analíticas para pH, níquel e cloreto empregadas na análise das amostras do banho recém-preparadas e do banho em uso foram construídas com os padrões em duplicata, apresentando linearidades adequadas na faixa de interesse para determinação desses parâmetros em banhos de níquel tipo Watts (Tabela 14).

Tabela 14: Equações das curvas analíticas para pH, níquel e cloretos.

Parâmetro	Equação do modelo	\mathbb{R}^2
pН	$Sinal_{(mV)} = (41,51 \pm 0,44) pH + (257,5 \pm 1,5)$	0,9982
Níquel	$Sinal_{(Abs)} = (0.81 \pm 0.09) Ni^{2+} (mol L^{-1}) - (0.048 \pm 0.09)$	0,9981
Cloreto	$Sinal_{(mV)} = (-63,60 \pm 1,50)Cl_{(mol L^{-1})} + (103,70 \pm 0,80)$	0,9996

Essas curvas, quando aplicadas às amostras do banho recém-preparado e às amostras do banho em uso, forneceram resultados coerentes com os esperados apresentado erros considerados baixos. Para a determinação de pH nas amostras do banho novo, os erros relativos variaram entre -0,49 % a 3,44 %. Na determinação de níquel, esses erros variaram entre -1,50 % a 2,32 %, enquanto que para cloreto esses valores situaram-se na faixa de 2,63 % a 4,52 %. No caso das amostras do banho em uso onde não se conheciam previamente os valores nominais dos parâmetros determinados, foi realizado um ensaio de recuperação adicionando-se cloreto de níquel 0,1 mol L⁻¹ a uma amostra real de um banho de níquel. A amostras do banho antes e depois da adição de cloreto de níquel foram chamadas de amostras D e E, respectivamente. Os resultados obtidos no ensaio de recuperação também apresentaram boa concordância com aqueles esperados, evidenciando a viabilidade do sistema proposto (Tabela 15).

Tabela 15: Resultados obtidos na análise de pH, níquel e cloretos em amostras do banho de níquel. As amostras A, B e C foram aquelas recém-preparadas, enquanto as amostras D e E foram as amostras obtidas da indústria.

Amostra	pН		Ni ²⁺ (mol L ⁻¹)		Cl (mol L-1)	
	Esperado*	Encontrado	Esperado	Encontrado	Esperado	Encontrado
A	1,50	1,51±0,02	0,90	0,92±0,03	0,20	0,21±0,01
В	3,00	$3,10\pm0,01$	1,50	$1,49\pm0,02$	0,34	$0,31\pm0,01$
C	4,50	$4,48\pm0,02$	0,20	$0,200\pm0,002$	0,42	$0,45\pm0,01$
D	5,14	$5,12\pm0,02$	1,91±0,01	$1,98\pm0,003$	$0,56\pm0,003$	$0,53\pm0,02$

^(*) Valor de pH medido com um eletrodo convencional de vidro.

5 – CONCLUSÕES E ETAPAS FUTURAS

Neste trabalho verificou-se que a análise multiparamétrica, em banhos eletrolíticos, associada ao conceito de análise por injeção sequencial possibilitou o desenvolvimento de um sistema simples, robusto e com elevada frequência de amostragem.

A aplicação de ferramentas estatísticas de otimização multivariada ao sistema SIA desenvolvido permitiu o estabelecimento de condições de operação com baixo custo de operação e alta velocidade analítica (45 amostras por hora).

A determinação potenciométrica do pH utilizando eletrodos tubulares pôde ser realizada na faixa de resposta linear de 1 a 5 unidades de pH e com sensibilidade adequada ao controle desse parâmetro no banho, cujo valor ótimo situa-se entre pH 3,5 e 3,8. Para monitoramento do teor de níquel nos banhos, o sistema SIA apresentou linearidade apropriada na faixa de concentração entre 0,1 e 1,6 mol L⁻¹ utilizando detecção espectrofotométrica. Esta faixa linear foi adequada à determinação da concentração desse metal em banhos eletrolíticos, cujo valor deve ser mantido entre 1,0 e 1,4 mol L⁻¹ para um melhor desempenho durante o processo de eletrodeposição. Os resultados obtidos na determinação de cloreto, utilizando diálise para separação e diluição do analito, permitiram a determinação desse parâmetro na faixa de concentração de 0,1 a 1,0 mol L⁻¹ com auxílio de um eletrodo tubular. Esta faixa linear também se apresentou adequada à determinação de cloreto, uma vez que a concentração ótima de cloretos para uma boa operação do banho eletrolítico tio Watts está entre 0,3 e 0,5 mol L⁻¹.

O sistema SIA empregado no monitoramento de banhos de níquel tipo Watts apresentou resposta apropriada para os parâmetros objetos de controle do presente

trabalho (pH, níquel e cloretos) com erros relativamente baixos (menores que 5%). Em etapas futuras, o sistema será empregado para monitorar os parâmetros estudados em amostras dos banhos sob utilização na indústria.

Referências Bibliográficas 53

6 - REFERÊNCIAS BIBLIOGRÁFICAS

ALEGRET, S., ALONSO J.; BARTROLI; PAULÍS, J.M.; LIMA, J.L.F.C.; MACHADO, A.A.S.C. - Flow-through tubular PVC matrix membrane electrode inner reference solution for flow injection analysis. *Analytica Chimica Acta.* v. 164. p. 147-152. 1984.

- ALEGRET, S.; FLORIDO, A.; LIMA, J.L.F.C.; MACHADO, A.A.S.C. Flow-through tubular iodide and bromide selective electrodes based on epoxy resin heterogeneous membranes. *Talanta*. **v. 36**. nº 8. p. 825-829. 1989.
- ALPÍZAR, J.; CRESPÍ, A.; CLADERA, A.; FORTEZA, R.; CERDÀ, V. Simultaneous determination of chloride and fluoride ions in water by sequential injection analysis. *Electroanalysis*. v. 8. nº 11. p. 1051-1054. 1996.
- ARAÚJO, A.N.; ETXEBARRIA, M.B.; LIMA, J.LF.C; MONTENEGRO, M.C.B.S.M.; PÉREZ OLMOS Tubular detectors for flow-injection potentiometric determination of tetrafluorborate in electroplating baths. *Analytica Chimica Acta.* v. 293. p. 35-41. 1994.
- ARAÚJO, A. N.; ETXEBARRIA, M. B.; LIMA, J.L.F.C.; MONTENEGRO, M. C. B.S. M.; PÉREZ OLMOS, R. Flow injection analysis of chloride levels in electroplating baths using on-line dialysis and potenciometric deteccion. *Analytical Chemistry*. v. 351. p. 614-617. 1995.
- BARNETT, N.W.; LENEHAN, C.E.; LEWIS, S.W. Sequential injection analysis an alternative approach to process analytica chemistry. *Analytical Chemistry*. **v. 18.** n° 5. p. 346-353. 1999.
- BARROS NETO, B.; SCARMINIO, I.S.; BRUNS, R.E.. Como fazer experimentos: pesquisa e desenvolvimento na indústria. Campinas: Editora da UNICAMP, 2001 401 p.
- CERDÀ, V.; ESTELA, J.M.; FORTEZA, R.; CLADERA A.; BECERRA, E.; ALTIMIRA, P.; SITJAR, P. Flow techniques in water analysis. *Talanta*. v. 50. p. 695-705. 1999.
- CHRISTIAN, G.D. Sequential injection analysis for electrochemical measurements and process analysis. *Analyst.* v. 119. p. 2309-2314. 1994a.
- CHRISTIAN, G.D.- Analytical Chemistry: 5^a ed. New York: Editora John Wiley & Sons. 500 p. 1994b.

COUTO, C.M.C.M; MONTENEGRO, M.C.B.S.M. - Detectores potenciométricos para sistemas de análise por injeção em fluxo: evolução e aplicação. *Química Nova*, v. 23. nº 6. p. 774-784. 2000.

- DI BARI, G. Nickel Plating. Surface Engineering. v. 5. p. 201. 1994.
- FERNANDES, J.C.B.; KUBOTA, L.T.; OLIVEIRA NETO, G. Eletrodos íonseletivos: histórico, mecanismo de resposta, seletividade e revisão dos conceitos, *Quimica. Nova*, v. 24, Nº 1, 120-130, 2001.
- FERREIRA, I.M.P.L.V.O.; COSTA LIMA, J.L.F.; ROCHA, L.S.M. Construction and evaluation of tubular potenciometric detectors sensitive to chloride, bromide, and iodide and based on homogeneous crystalline membranes. *Fresenius Journal Analytical Chemistry.* v. 347. p. 314-319. 1993.
- FERREIRA, I.M.P.L.V.O., COSTA LIMA, J.L.F, RANGEL, A.O.S.S. Flow injection titration of chloride in food products with a silver tubular. *Food Chemistry.* v. 50. p. 423-428. 1994.
- FRANT, M. S. Where did ion selective electrodes come from? The story of their development and commercialization. *Journal of Chemical Education*. **v. 74**. n° 2. p. 159. 1997
- GRUDPAN, K.; JAKMUNEE, J.; SOOKSAMITI, P. Flow injection dialysis for the determination of anions using ion chromatography. *Talanta*. **v. 49**. p. 215-223. 1999.
- GÜBELLI, T. CHRISTIAN, G.D.; RUZICKA, J. Fundamentals of sinusoidal flow sequential injection spectrophotometry. *Analytical Chemistry*. v. 63. p. 2407-2413. 1991.
- HARRIS, D.C. Análise Química Quantitativa. 5ª ed. New York: Editora Livros Técnicos e Científicos S.A., 920 p. 319-353, 1999.
- HOLMES, A. A pratical introduction to ion selective electrodes Part 1: Theory. *Metal Finish.* v. 10. n° 98. p. 38-45. 2000.
- IVASKA, A.; RUZICKA, J. From flow injection to sequential injection: comparison of methodologies and selection of liquid drives. *Analyst.* v. 118. p. 885-889. 1993.
- LIMA, J.F.C.C.; DELERUE-MATOS, C.; VAZ, M.C. Flow-injection analysis of Kjeldahl nitrogen in milk and dairy products by potenciometric detection. *Analytica Chimica Acta*. v. 385. p. 437-441. 1999.
- LUCA, G.C.; BOAVENTURA, F.R.; MONTENEGRO, M.C.B.S.M.; ARAÚO, A.N.; LIMA, J.LF.C Development of a potenciometric procedure for determination of glycerol and 2,3-butadienol in wine by sequential injection analysis. *Analytica Chimica Acta.* v. 366. p. 193-199. 1998.

MARTELLI, P.; REIS, B.F., ZAGATTO; E.A.G., LIMA, J.L.F.; LAPA, R.A. - Construção e avaliação de um eletrodo tubular sensível ao íon hidrogênio como detector em sistemas de análise em fluxo. *Química Nova.* v. 21. nº 2. p. 133-138. 2000.

- MASADOME, T.; ASANO, Y.; NAKAMURA, T. Flow injection determination of bromide ion in a developer using bromide ion-selective electrode detector. *Talanta*. **v. 50**. p. 595-600. 1999.
- MORAIS, S.; ALCAINA-MIRANDA, M.I.; LÁZARO, F.; PLANTÁ, M.; MAQUIEIRA, A.; PUCHADES, R. Evaluation of the dialysing yield of membranes with different composition: application to the analysis of chloride in fruit juices by flow injection. *Analytica Chimica Acta.* v. 353. p. 245-254. 1997.
- PANOSSIAN, Z. Banho de níquel tipo watts: função dos principais constituintes. *Revista Tratamento de Superficie.* nº 74. p. 32-38. 1995.
- PANOSSIAN, Z. Banho de níquel tipo Watts: Parte IX Controle do processo. *Revista Tratamento de Superficie*. nº 82. p. 20-27. 1997.
- PEREZ OLMOS, R.; ETXEBARRIA, B.; RUIZ, M.P.; LIMA, J.L.FC.; MONTENEGRO, M.C.B.S.M.; ALÇADA, M.N.M.P. Construction and evaluation of tetrafluorborate selective electrodes: Aplication to plating baths analysis. *Fresenius Journal of Analytical Chemistry.* v. 348. p. 341-345. 1994.
- PEREZ OLMOS, R.; LOPEZ, J.J.; ETXEBARRIA, M.B.; MERINO, J.M.; LIMA, J.L.F.C.; MONTENEGRO, M.C.B.S.M. Determinacion de cloruros en baños de niquelado mediante electrodos selectivos de iones. *Química e Indústria*. p. 290-295. 1995.
- PEREZ OLMOS, R.; GARCÍA, M.; ETXEBARRIA, M.B.; LIMA, J.L.F.C.; MONTENEGRO, M.C.B.S.M. Determination of boric acid in nickel plating baths using a tetrafluoroborate selective electrode. *Analusis.* v. 24. p. 143-145. 1996.
- PUNGOR, E. The new theory of ion-selective electrodes. Sensors. p. 1-12. 2001.
- ROVER JÚNIOR, L.; GARCIA, C.A.B.; OLIVEIRA NETO, G.; KUBOTA, L.T.; GALEMBECK, F. Acetylsalicylic acid determination in pharmaceutical samples by FIA-potenciometry using a salicylate-sensitive tubular electrode with an ethylene-vinyl acetate membrane. *Analytica Chimica Acta*, **v. 366**. p. 103-109. 1998.
- RUZICKA, J.; MARSHALL, G.D. Sequential injection: a new concept for chemical sensors, process analysis and laboratory assays. *Analytica Chimica Acta.* v. 237. p. 329-343. 1990.
- RUZICKA, J.; HANSEN, E.H. Flow injection analysis. *Analytical Chemistry*. p. 212-217A. 2000.

Referências Bibliográficas 56

SKOOG, D.A.; WEST, D.M.; HOLLER, F.J. - Fundamentals of analytical chemistry, 5^a ed. Orlando: Saunders College Publishing. 894 p. 1988.

- TEIXEIRA, M.F.S.; RAMOS, L.A.; CASSIANO, N.M.; FATIBELLO-FILHO O.; BOCCHI, N. Evaluation of Fe₂O₃-based graphite-epoxy tubular electrodes as pH sensor in flow injection potentiometry. *Journal Brazilian of Chemical Society.* v. 11. nº 1. p. 27-31. 2000.
- VAN STADEN, J.F. Automated dilution in flow injection analysis with double online dialysis: a system for the determination of chloride in industrial effluents and plating bath solutions. *Fresenius Journal Analytical Chemistry*. v. 340. p. 415-418. 1991.
- VAN STADEN, J.F; STEFAN, R.I. Simultaneous flow injection determination of calcium and fluoride in natural and borehole water with conventional ion-selective electrodes in series. *Talanta*. v. 49. p. 1017-1022. 1999.
- WHITMAN, D.A.; CHRISTIAN, G.D.; RUZICKA, J. Spectrophotometric determination of nickel (II), iron (II), boric acid and chloride in plating baths by flow-injection analysis. *Analyst.* v. 113. n° 12. p. 1821-1826. 1988.