Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/30409

Comparte esta pagina

Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorOSPINA, Patricia Leone Espinheira-
dc.contributor.authorTRINDADE, Daniele de Brito-
dc.date.accessioned2019-04-29T22:29:45Z-
dc.date.available2019-04-29T22:29:45Z-
dc.date.issued2018-02-21-
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/30409-
dc.description.abstractNesta tese generalizamos o modelo de regressão beta com erros de medidas (Carrasco, 2014) propondo um modelo com formas funcionais não lineares para os preditores. Foram avaliados três métodos de estimação denotados por máxima verossimilhança aproximada, máxima pseudo-verossimilhança aproximada e calibração da regressão. Para avaliação das metodologias de estimação realizamos um estudo de simulação de Monte Carlo sob diferentes cenários. Foi possível evidenciar que os métodos de máxima verossimilhança aproximada e máxima pseudo-verossimilhança aproximada tiveram melhor desempenho, em geral, quando comparados aos métodos de calibração da regressão e naive. Vale salientar também que os desempenhos dos estimadores associados à não lineariade e dispersão variável são afetados negativamente quando o coeficiente de confiabilidade diminui. Intervalos de confiança foram construídos com o objetivo de avaliar, através dos estudos de simulação de Monte Carlo, taxas de cobertura. Novos resíduos foram propostos para o modelo de regressão beta não linear com erros de medidas com o objetivo de verificar as suposições assumidas ao modelo e detectar pontos aberrantes. Também foram construídas medidas de predição e de qualidade de ajuste considerando os três métodos de estimação e tais medidas foram avaliadas através de estudos de simulação de Monte Carlo. Três aplicações considerando dados reais são analisadas. Utilizamos as linguagens de programação Ox (Doornik, 2011) e R como suportes computacionais.pt_BR
dc.description.sponsorshipCAPESpt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectEstatísticapt_BR
dc.subjectRegressão betapt_BR
dc.titleModelo de regressão beta não linear com erros nas variáveispt_BR
dc.typedoctoralThesispt_BR
dc.contributor.authorLatteshttp://lattes.cnpq.br/2762049608974570pt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.leveldoutoradopt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/5451260154742484pt_BR
dc.publisher.programPrograma de Pos Graduacao em Estatisticapt_BR
dc.description.abstractxIn this thesis we generalize the beta regression model with measurement errors (Carrasco, 2014) proposing a model with nonlinear functional forms. Three estimation methods denoted by approximate maximum likelihood, approximate maximum pseudo likelihood, and regression calibration were evaluated. To evaluate the estimation methodologies, we performed a Monte Carlo simulation study on different scenarios. It was possible to show that the approximate maximum likelihood and approximate maximum pseudo-likelihood methods performed better, in general, when compared to the calibration regression and the naive methods. Besides that the performance of estimators associated with nonlinearity and variable dispersion are negatively affected when degree of reliability decreases. Confidence intervals were constructed through the Monte Carlo simulation studies with the objective of evaluating the coverage rates. New residuals were proposed for the nonlinear beta regression model with measurement errors in order to verify the assumptions over the model and to detect aberrant points. Prediction and quality of fit measures were also constructed considering the three estimation methods. Also, the methods were evaluated through Monte Carlo simulation studies. Three applications considering real data are analyzed. We use the programming languages Ox (Doornik, 2011) and R as computational supports.pt_BR
Aparece en las colecciones: Teses de Doutorado - Estatística

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TESE Daniele de Brito Trindade.pdf3,3 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons