Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/33518

Comparte esta pagina

Título : Likelihood based inference for autoregressive censored mixed-effects models, with applications to hiv viral loads dataset
Autor : OLIVARI, Rommy Camasca
Palabras clave : Probabilidade e estatística; Modelos AR(p) autorregressivo; Dados censurados
Fecha de publicación : 27-feb-2019
Editorial : Universidade Federal de Pernambuco
Resumen : In AIDS clinical trials, the HIV-1 RNA measurements are often subject to some upper and lower detection limits, depending on the quantification assays. Linear and nonlinear mixedeffects models, with modifications to accommodate censored observations, are routinely used to analyze this type of data (VAIDA; LIU, 2009). This work presents a likelihood based approach for fitting Linear and nonlinear mixedeffects models, with modifications to accommodate censored observations and considering an structure autoregressive of order p (AR(p)) dependence on the error term. An EM-type algorithm is developed for computing the maximum likelihood estimates, obtaining as a byproduct the standard errors of the fixed effects and the likelihood value. Moreover, the constraints on the parameter space arising, from the stationarity conditions for the autoregressive parameters, in the EM algorithm are handled by a reparametrization scheme, as discussed by Lin e Lee (2007). Finally, the proposed algorithm is implemented in the R package ARpMMEC, which is available. It presents an application to real data and developed three simulation studies that show the relevance and applicability of the proposed model.
URI : https://repositorio.ufpe.br/handle/123456789/33518
Aparece en las colecciones: Dissertações de Mestrado - Estatística

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
DISSERTAÇÃO Rommy Camasca Olivari.pdf1,61 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons