Use este identificador para citar ou linkar para este item:
https://repositorio.ufpe.br/handle/123456789/37776
Compartilhe esta página
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.advisor | AMARAL, Getúlio José Amorim do | - |
dc.contributor.author | BARROS, Cristiany de Moura | - |
dc.date.accessioned | 2020-09-01T16:05:25Z | - |
dc.date.available | 2020-09-01T16:05:25Z | - |
dc.date.issued | 2020-02-11 | - |
dc.identifier.citation | BARROS, Cristiany de Moura. New methodologies for the real Watson distribution. 2020. Tese (Doutorado em Estatística) - Universidade Federal de Pernambuco, Recife, 2020. | pt_BR |
dc.identifier.uri | https://repositorio.ufpe.br/handle/123456789/37776 | - |
dc.description.abstract | Spherical data are output in various research lines. These data may be categorized as directional (when such line is directed) and axial (otherwise). Directional data can be understood as points on a sphere; while, axial data are pairs of antipodal points (i.e., opposite points) on a sphere. The Watson (W) model is often used for describing axial data. The W distribution has two parameters: the mean axis and the concentration parameter. It is known making inference under lower concentration is a hard task. First, to outperform this gap, for the W parameters, we provide an improved maximum likelihoodbased estimation procedure for the W concentration parameter. In particular, we present a closed-form expression for the second-order bias according to the Cox-Snell methodology. Further, an approximated expression for the Fisher information matrix is derived as well. To quantify the performance of the our proposal, a Monte Carlo study is made. Results indicate that our estimation procedure is suitable to obtain more accurate estimates for the W concentration parameter. Second, aims to study a natural extension of the minimum distance estimators discussed by Cao et al. (1994).More precisely, under the assumption of Watson directional distribution, to produce hypotheses and point statistical inference procedures, as well as goodness, and to propose mathematical antecedents for the statistical method based on the minimum distance of L² for the Watson model. Third, based on Renyi divergence, we propose two hypothesis tests to verify whether two samples come from populations with the same concentration parameter. The results of synthetic and real data indicate that the proposed tests can produce good performance on Watson data. The small sample behavior of the proposed estimators is using Monte Carlo simulations. An application is illustrated with real data sets. | pt_BR |
dc.description.sponsorship | CAPES | pt_BR |
dc.language.iso | por | pt_BR |
dc.publisher | Universidade Federal de Pernambuco | pt_BR |
dc.rights | openAccess | pt_BR |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Brazil | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/br/ | * |
dc.subject | Estatística aplicada | pt_BR |
dc.subject | Correção de viés | pt_BR |
dc.title | New methodologies for the real Watson distribution | pt_BR |
dc.type | doctoralThesis | pt_BR |
dc.contributor.advisor-co | NASCIMENTO, Abraão David Costa do | - |
dc.contributor.authorLattes | http://lattes.cnpq.br/7846076855119436 | pt_BR |
dc.publisher.initials | UFPE | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.degree.level | doutorado | pt_BR |
dc.contributor.advisorLattes | http://lattes.cnpq.br/7674916684282039 | pt_BR |
dc.publisher.program | Programa de Pos Graduacao em Estatistica | pt_BR |
dc.description.abstractx | Dados esféricos são produzidos em várias linhas de pesquisa. Esses dados podem ser categorizado como direcional (quando essa linha é direcionada) e axial (caso contrário). Dados direcionais podem ser entendidos como pontos em uma esfera; enquanto, dados axiais são pares de pontos antipodais (isto é, pontos opostos) em uma esfera. O modelo Watson (W) é frequentemente usado para descrever dados axiais. O W distribuição tem dois parâmetros: o eixo médio e a concentração parâmetro. Sabe-se que fazer inferência sob menor concentração é uma tarefa difícil. Primeiro, para superar essa lacuna, para os parâmetros W, fornecemos um procedimento melhorado de estimativa baseada em máxima verossimilhança para o W parâmetro de concentração. Em particular, apresentamos uma expressão de forma fechada para o viés de segunda ordem, de acordo com a metodologia de Cox-Snell. Além disso, uma expressão aproximada para a matriz de informações de Fisher é derivado também. Para quantificar o desempenho de nossa proposta, um estudo de Monte Carlo é feito. Os resultados indicam que nosso procedimento de estimativa é adequado para obter estimativas mais precisas para o parâmetro de concentração W. Second, realizamos o estudo sobre uma extensão natural dos estimadores de mínima distância discutidos por Cao et al. (1994). Mais precisamente, sob o pressuposto de distribuição direcional Watson, para produzir hipóteses e apontar procedimentos de inferência estatísticas, bem como bondade, e propor antecedentes matemáticos para o método estatístico com base na distância mínima de L² para o modelo de Watson. Terceiro, com base na divergência de Rényi, propomos dois testes de hipótese para verificar se duas amostras provêm de populações com a mesma concentração parâmetro. Os resultados de dados sintéticos e reais indicam que a proposta de testes podem produzir um bom desempenho nos dados da Watson. O comportamento em pequenas amostras dos estimadores propostos está usando simulações de Monte Carlo. Uma aplicação é ilustrada com conjuntos de dados reais. | pt_BR |
dc.contributor.advisor-coLattes | http://lattes.cnpq.br/9853084384672692 | pt_BR |
Aparece nas coleções: | Teses de Doutorado - Estatística |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
TESE Cristiany de Moura Barros.pdf | 2,44 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este arquivo é protegido por direitos autorais |
Este item está licenciada sob uma Licença Creative Commons