Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/48269

Compartilhe esta página

Título: Embarrassingly parallel autoconstructive multilayer perceptron neural networks
Autor(es): FARIAS, Felipe Costa
Palavras-chave: Inteligência computacional; Redes neurais
Data do documento: 5-Ago-2022
Editor: Universidade Federal de Pernambuco
Citação: FARIAS, Felipe Costa. Embarrassingly parallel autoconstructive multilayer perceptron neural networks. 2022. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.
Abstract: The present thesis proposes a method to automatically construct Multilayer Per-ceptron Artificial Neural Networks (MLP) to help non-expert users to still create robust models without the need to worry about the best combination of the number of neurons and activation functions by using specific splitting strategies, training parallelization, and multi-criteria model selection techniques. In order to do that, a data splitting algorithm (Similarity Based Stratified Splitting) was developed to produce statistically similar splits in order to better explore the feature space and consequently train better models. These splits are used to independently train several MLPs with different architectures in parallel (ParallelMLPs), using a modified matrix multiplication that takes advantage of the principle of locality to speed up the training of these networks from 1 to 4 orders of magnitude in CPUs and GPUs, when compared to the sequential training of the same models. It allowed the evaluation of several architectures for the MLPs in a very short time to produce a pool with a considerable amount of complex models. Furthermore, we were able to analyze and propose optimality conditions of theoretical optimal models and use them to automatically define MLP architectures by performing a multi-criteria model selection, since choosing a single model from an immense pool is not a trivial task. The code will be available at <https://github.com/fariasfc/parallel-mlps>.
URI: https://repositorio.ufpe.br/handle/123456789/48269
Aparece nas coleções:Teses de Doutorado - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
TESE Felipe Costa Farias.pdf2,79 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons