Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/49007

Compartilhe esta página

Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorPAULA NETO, Fernando Maciano de-
dc.contributor.authorSILVA, José Maurício Matapi da-
dc.date.accessioned2023-02-09T12:40:57Z-
dc.date.available2023-02-09T12:40:57Z-
dc.date.issued2022-09-13-
dc.identifier.citationSILVA, José Maurício Matapi da. Impacto da pandemia da COVID-19 e modelos de aprendizagem de máquina para predição de prematuridade no Brasil. 2022. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.pt_BR
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/49007-
dc.description.abstractPrematuridade é quando a criança nasce com menos de 37 semanas completas de gestação, sendo considerado um problema de saúde global, e ainda uma das principais consequências de mortes em neonatais e infantis menores de cinco anos de idade. A taxa de parto prematuro pode variar de acordo com a região geográfica e o nível de renda, mantendo uma maior frequência em países subdesenvolvidos. Nos países desenvolvidos, ele é amplamente avaliado como forma de compreender as causas e na criação de ações preventivas. Nesta pesquisa, foi proposta a utilização de algoritmos de aprendizado de máquina para predição de parto prematuro em em gestantes únicas, utilizando dados das capitais brasileiras. Foi verificado se os dois primeiros anos (2020-2021) da pandemia COVID-19 trouxeram impactos significativos para as estimativas dos modelos testados, em comparação ao que foi constatado na base de treinamento. Foram utilizados 6 classificadores de aprendizagem de máquina: Árvore de Decisão, Floresta Aleatória, Regressão Logística, Adaptive Boosting, Análise de Discriminante Linear e Rede Neural do tipo Multi-layer Perceptron, analisando as métricas de acurácia, precisão, revocação, F1-SCORE e área sobre a curva r eceiver operating characteristic. Portanto, com o processamento desses resultados, foi possível verificar a predição de parto prematuro com dados secundários no período de pandemia. A AUC dos modelos na base de validação variou de 0,7052 a 0,7729 (base sem balanceamento) e de 0,7199 a 0,7717 (base com balanceamento). Os resultados demonstraram que a COVID-19 impactou os modelos de Regressão logística, Análise discriminante linear e Multilayer perceptron (os quais são considerados estáveis), enquanto que os modelos baseados em árvore (Adaboost, Floresta aleatória e Árvore de decisão) não apresentam boa aderência à base de treino, devendo ser utilizados com cautela ou desconsiderados.pt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectInteligência computacionalpt_BR
dc.subjectAprendizado de máquinapt_BR
dc.subjectCOVID-19pt_BR
dc.titleImpacto da pandemia da COVID-19 e modelos de aprendizagem de máquina para predição de prematuridade no Brasilpt_BR
dc.typemasterThesispt_BR
dc.contributor.authorLatteshttp://lattes.cnpq.br/9034569639716602pt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.levelmestradopt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/9643216021359436pt_BR
dc.publisher.programPrograma de Pos Graduacao em Ciencia da Computacaopt_BR
dc.description.abstractxPrematurity is when a child is born with less than 37 completed weeks of gestation, being considered a global health problem, and still one of the main consequences of deaths in neonatal and five-year-old children. The premature birth rate may vary according to geographic region and income level, maintaining a higher frequency in underdeveloped countries. In the countries included, it is widely considered as a way of understanding the causes and creating preventive actions. In this research, the use of machine learning algorithms was proposed to predict premature birth in singletons, using data from Brazilian capitals. It was verified whether the first two years (2020-2021) of the COVID-19 pandemic had impacts on the estimates of the tested models, compared to what was found in the training base. Six machine learning classifiers were used: Decision Tree, Random Forest, Logistic Regression, Adaptive Boosting, Linear Discriminant Analysis and Multi-layer Perceptron Neural Network, analyzing the metrics of accuracy, precision, recall, F1-SCORE and area under curve r eceiver operational characteristic. Therefore, with the processing of these results, it was possible to verify the prediction of premature birth with secondary data in the pandemic period. The AUC of the models in the validation base ranges from 0.7052 to 0.7729 (unbalanced base) and from 0.7199 to 0.7717 (balanced base). The impressive results that COVID-19 impacted Logistic Regression, Linear Discriminant Analysis and Multilayer perceptron models (which are considered stable), while tree-based models (Adaboost, Random Forest and Decision Tree) did not show good adherence based on training, and should be used with caution or disregarded.pt_BR
Aparece nas coleções:Dissertações de Mestrado - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DISSERTAÇÃO José Maurício Matapi da Silva.pdf2,22 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons