Use este identificador para citar ou linkar para este item:
https://repositorio.ufpe.br/handle/123456789/53312
Compartilhe esta página
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.advisor | NEPOMUCENO, Thyago Celso Cavalcante | - |
dc.contributor.author | RODRIGUES, Naialy Patrícia | - |
dc.date.accessioned | 2023-10-30T17:04:47Z | - |
dc.date.available | 2023-10-30T17:04:47Z | - |
dc.date.issued | 2023-08-21 | - |
dc.identifier.citation | RODRIGUES, Naialy Patrícia. Avaliação quantitativa da dinâmica de atendimento na Caixa Econômica Federal: reformulação das filas nos setores Caixa, Gov-Social e Expresso antes e durante a pandemia. 2023. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Pernambuco, Caruaru, 2023. | pt_BR |
dc.identifier.uri | https://repositorio.ufpe.br/handle/123456789/53312 | - |
dc.description.abstract | O setor bancário brasileiro tem sido alvo de reclamações devido às longas filas. No âmbito da Caixa Econômica Federal (CEF), esse problema foi acentuado com o Decreto n.o 10.316 que regulamenta o Auxílio Emergencial para reduzir os impactos econômicos derivados do SARS- CoV-2 (COVID-19). O decreto imputou os valores dos subsídios para pessoas em situação de risco e decidiu que somente a CEF se encarregar do cadastramento, e o repasse dos valores para a população provocando uma demanda massiva dos órgãos da CEF, formando grandes filas de espera. A presente pesquisa visa a busca pela melhoria nos tempos de espera de filas de três setores em uma agência bancária da CEF. Para isso, utilizou-se dos cálculos da teoria das filas empregando-os no Python® e foram plotados cenários com configurações de contratações, e posteriormente, realizada uma Análise Envoltória de Dados no RStudio® pelo método Free Disposal Hull (FDH) orientado ao output desses cenários. Os inputs utilizados foram a quantidade de atendentes simuladas dos setores Expresso, Gov-Social e Caixa, setores esses que são a principal porta de entrada para cadastramento e recebimento de verbas destinadas ao fomento e ao desenvolvimento social e que, portanto, absorvem as maiores demandas de pessoas. Para o output foram considerados os tempos médios de espera simulados. O total de Decision Making Unit (DMUs) plotadas foi de 197, sendo 120 pertencentes ao grupo de 2019 e 77 pertinente ao grupo de 2020. O primeiro grupo o qual foi o de 2019 apenas 9 DMUs se mostraram eficientes e no ano de 2020 7 das 77 unidades se evidenciaram como eficientes. Ademais, foi realizado um ranqueamento mês a mês para observar qual cenário, mesmo que não eficiente, se destacava. Os resultados obtidos foram que o setor Expresso necessitava de contratação de mais mão de obra do que os demais setores. Em 2019, a melhor alocação era a contratação de dois funcionários para o setor Caixa, de dois para o setor Gov-Social e de três para o setor Expresso. No que diz respeito ao ano de 2020, as contratações recomendadas foram à ordem de um servidor para o setor Caixa e cinco colaboradores para o setor Expresso. Por fim, o estudo identificou desafios relacionados à demanda exponencial causada pela pandemia de COVID-19. Constatou-se que, apesar da capacidade máxima de contratações apresentadas pelo especialista atrelado operação dos serviços de forma otimizada pelos dois modelo e simulações usados, alguns meses de 2020 o número de servidores ainda foi aquém da necessidade para atender a demanda. | pt_BR |
dc.description.sponsorship | FACEPE | pt_BR |
dc.language.iso | por | pt_BR |
dc.publisher | Universidade Federal de Pernambuco | pt_BR |
dc.rights | openAccess | pt_BR |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Brazil | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/br/ | * |
dc.subject | Caixa Econômica | pt_BR |
dc.subject | Bancos – Serviços ao cliente | pt_BR |
dc.subject | Teoria das filas | pt_BR |
dc.subject | Métodos de simulação | pt_BR |
dc.subject | Eficiência | pt_BR |
dc.title | Avaliação quantitativa da dinâmica de atendimento na Caixa Econômica Federal : reformulação das filas nos setores Caixa, Gov-Social e Expresso antes e durante a pandemia | pt_BR |
dc.type | masterThesis | pt_BR |
dc.contributor.advisor-co | BARBOSA, Flávia | - |
dc.contributor.authorLattes | http://lattes.cnpq.br/4674471506632564 | pt_BR |
dc.publisher.initials | UFPE | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.degree.level | mestrado | pt_BR |
dc.contributor.advisorLattes | http://lattes.cnpq.br/4815452948320665 | pt_BR |
dc.publisher.program | Programa de Pos Graduacao em Engenharia de Producao / CAA | pt_BR |
dc.description.abstractx | The Brazilian banking sector has been the target of complaints due to long queues. Within the scope of Caixa Econômica Federal (CEF), this problem was accentuated with Decree No. 10,316 that regulates Emergency Aid to reduce the economic impacts derived from SARS- CoV-2 (COVID-19). The decree imputed the amounts of subsidies for people at risk and decided that only the CEF would be in charge of the registration, and the transfer of the amounts to the population, causing a massive demand from the CEF bodies, forming large queues. The present research aims to improve the waiting times of queues in three sectors in a CEF bank branch. For this, queuing theory calculations were used using them in Python® and scenarios with hiring configurations were plotted, and later, a Data Envelopment Analysis was performed in RStudio® by the output-oriented Free Disposal Hull (FDH) method of these scenarios. The inputs used were the number of simulated attendants in the Express, Gov-Social and Caixa sectors, sectors that are the main gateway for registering and receiving funds for promotion and social development and, therefore, absorb the greatest demands. of people. For the output, the average simulated waiting times were considered. The total Decision Making Unit (DMUs) plotted was 197, with 120 belonging to the 2019 group and 77 belonging to the 2020 group. The first group, which was the 2019 group, only 9 DMUs were efficient and in the year 2020 7 of the 77 units proved to be efficient. In addition, a month-to-month ranking was carried out to observe which scenario, even if not efficient, stood out. The results obtained were that the Express sector needed to hire more labor than the other sectors. In 2019, the best allocation was to hire two employees for the Caixa sector, two for the Gov-Social sector and three for the Express sector. With regard to the year 2020, the recommended hires were one server for the Caixa sector and five employees for the Express sector. Finally, the study identified challenges related to the exponential demand caused by the COVID-19 pandemic. It was found that, despite the maximum hiring capacity presented by the specialist linked to the operation of the services in an optimized way by the two models and simulations used, some months of 2020 the number of servers was still below the need to meet the demand. | pt_BR |
dc.contributor.advisor-coLattes | http://lattes.cnpq.br/6624078272434102 | pt_BR |
Aparece nas coleções: | Dissertações de Mestrado - Engenharia de Produção / CAA |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
DISSERTAÇÃO Naialy Patrícia Rodrigues.pdf | 1,71 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este arquivo é protegido por direitos autorais |
Este item está licenciada sob uma Licença Creative Commons