Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/54678

Compartilhe esta página

Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorCYSNEIROS, Francisco José de Azevêdo-
dc.contributor.authorCAMASCA OLIVARI, Rommy-
dc.date.accessioned2024-01-22T18:59:53Z-
dc.date.available2024-01-22T18:59:53Z-
dc.date.issued2023-02-14-
dc.identifier.citationCAMASCA OLIVARI, Rommy. Modelos não lineares de efeitos mistos para dados censurados com erros elípticos autorregressivos. 2023. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2023.pt_BR
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/54678-
dc.description.abstractOs modelos de efeitos mistos são ferramentas frequentemente utilizadas para o estudo de dados longitudinais. No entanto, devido à possível complexidade deste tipo de dados, torna-se atrativo o desenvolvimento de extensões destes modelos com suposições mais flexíveis com a finalidade de melhorar o ajuste dos dados. Neste contexto, propomos uma extensão mais flexível dos modelos de efeitos mistos com respostas censuradas e erros normais autorregressivos de ordem p. Para isso, atribuímos inicialmente a classe de distribuição elíptica às componentes aleatórias do modelo. Esta família de distribuições nos permitirá trabalhar com conjuntos de dados com caudas mais leves ou mais pesadas que a normal, possibilitando uma melhor acomodação de observações extremas e uma menor sensibilidade à presença de observações atípicas. Dessa forma, um algoritmo do tipo EM foi desenvolvido para obter as estimativas de máxima verossimilhança e os erros padrão dessas estimativas utilizando a matriz de informação empírica. Por outro lado, nos últimos anos, há um interesse crescente em métodos estatísticos para a análise de dados longitudinais com efeitos espaciais. Nesse contexto, propomos uma segunda extensão do modelo proposto inicialmente, incluindo dependência espacial na distribuição do efeito aleatóreo. Para avaliar a qualidade do ajuste e as premissas dos modelos propostos foram utilizados os resíduos martingais e medidas de diagnóstico com base na abordagem de influência global e local. Apresentamos estudos de simulação sob diferentes cenários para avaliar as propriedades assintóticas dos estimadores e o desempenho dessa classe de modelos na presença de observações atípicas. Finalmente, foram analisados exemplos práticos com dados reais.pt_BR
dc.description.sponsorshipFACEPEpt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsembargoedAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectEstatística Aplicadapt_BR
dc.subjectDados censuradospt_BR
dc.subjectDistribuição elípticapt_BR
dc.subjectErros autoregressivospt_BR
dc.subjectAlgoritmo EMpt_BR
dc.subjectMedidas de diagnósticopt_BR
dc.titleModelos não lineares de efeitos mistos para dados censurados com erros elípticos autorregressivospt_BR
dc.typedoctoralThesispt_BR
dc.contributor.advisor-coGARAY, Aldo Medina-
dc.contributor.authorLatteshttp://lattes.cnpq.br/3971746603022796pt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.leveldoutoradopt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/1313497098151734pt_BR
dc.publisher.programPrograma de Pos Graduacao em Estatisticapt_BR
dc.description.abstractxMixed effects models are frequently used tools for studying longitudinal data. However, due to the possible complexity of this type of data, it is attractive to develop extensions of these models with more flexible assumptions aimed at improving the fit of the data. In this context, we propose a more flexible extension of mixed effects models with censored responses and autoregressive normal errors of order p. For this, we initially assign the elliptical distribution class to the random components of the model. This family of distributions will allow us to work with datasets with lighter or heavier tails than normal, allowing a less sensitive fit to the presence of atypical observations. Thus, an EM-type algorithm was developed to obtain the maximum likelihood estimates and the standard errors of these estimates using the empirical information matrix. On the other hand, in the last few years, there has been a growing interest in statistical methods for analyzing longitudinal data with spatial effects. In this context, we propose a second extension of the initially proposed model, including spatial dependence in the distribution of the random effect. To assess the goodness of fit and assumptions of the proposed models, martingale residuals and diagnostic measures were used based on the global and local influence approach. We present simulation studies under different scenarios to evaluate the asymptotic properties of the estimators and the performance of this class of models in the presence of outliers. Finally, practical examples with real data were analyzed.pt_BR
dc.contributor.advisor-coLatteshttp://lattes.cnpq.br/6628260142102150pt_BR
Aparece nas coleções:Teses de Doutorado - Estatística

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
TESE Rommy Camasca Olivari.pdf
  Item embargado até 2025-12-28
4,05 MBAdobe PDFVisualizar/Abrir    Item embargado


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons