Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/60234

Compartilhe esta página

Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorCOSTA, José Ângelo Peixoto da-
dc.contributor.authorPACHECO, Yargo Joseph Duran-
dc.date.accessioned2025-02-04T15:24:11Z-
dc.date.available2025-02-04T15:24:11Z-
dc.date.issued2024-10-17-
dc.identifier.citationPACHECO, Yargo Joseph Duran. Rain erosion fatigue life prediction model for wind turbine coatings: a case study for an offshore wind farm in Northeastern Brazil. 2024. Dissertação (Mestrado em Engenharia Mecânica) – Universidade Federal de Pernambuco, Recife, 2024.pt_BR
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/60234-
dc.description.abstractLeading edge erosion by impacting rain droplets and dust particles has a substantial impact on the aerodynamic characteristics and power output of a wind turbine. With the increasing interest in offshore wind farms, with notably higher maintenance costs and greater susceptibility to leading edge erosion, predicting when the coating/protective system will start failing will be crucial for maintenance planning and keeping the power output of the wind turbine at the highest level. Computational models for rain erosion prediction in wind turbine blades are noted in the literature as a promising way to predict the erosion onset of a particular coating under specific environmental conditions. In the present study, a computational model for rain erosion prediction of the leading edge of wind turbine blades has been developed, taking into consideration the turbine power characteristics, coating material features, and raindrop size distribution, which was later combined with an empirically validated finite element analysis. The model was later employed in a case study for a prospective offshore wind farm located off the Northeastern Brazilian coast. First, numerical simulations of rain droplet impacts were conducted in Ansys Explicit Dynamics and validated against real-life experimental results. Then, the offshore wind farm area’s wind and rainfall information were collected from actual satellite observations and climate reanalysis data. Simulations for several droplet diameters, from 0.5 up to 4 mm, impacting an epoxy coating were made, considering the wind turbine’s average operating condition. The impact loads were then used as inputs for a fatigue life prediction model developed in the Python programming language. A sensitivity analysis was performed and shows that the model’s accuracy has a large sensitivity to input data. The resulting impact stress and fatigue damage data were physically consistent. The erosion onset estimates were coherent for most droplet diameters, ranging from 0.46 up to 4.43 years of operating time and consistent with the values found in similar erosion models in the literature. Considering the average rain intensity in the area and its average droplet diameter, the estimated erosion onset is also in agreement with real-life observations in wind turbine blade coatings.pt_BR
dc.language.isoengpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectErosão pluvial do bordo de ataquept_BR
dc.subjectModelo de predição da vida em fadigapt_BR
dc.subjectDinâmica explícitapt_BR
dc.subjectPás de turbinas eólicaspt_BR
dc.titleRain erosion fatigue life prediction model for wind turbine coatings : a case study for an offshore wind farm in Northeastern Brazilpt_BR
dc.typemasterThesispt_BR
dc.contributor.advisor-coMENEZES, Frederico Duarte de-
dc.contributor.authorLatteshttp://lattes.cnpq.br/9873806526101495pt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.levelmestradopt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/8239712503695923pt_BR
dc.publisher.programPrograma de Pos Graduacao em Engenharia Mecanicapt_BR
dc.description.abstractxA erosão do bordo de ataque pelo impacto de gotículas de chuva e partículas de poeira tem um impacto significativo nas características aerodinâmicas e na potência gerada por uma turbina eólica. Com o crescente interesse em parques eólicos offshore, com custos de manutenção notavelmente mais altos e maior suscetibilidade à erosão do bordo de ataque, prever quando o revestimento/sistema de proteção começará a falhar será crucial para o planejamento da manutenção e conservação da potência da turbina eólica no mais alto nível. Modelos computacionais para predição da erosão por chuva de pás eólicas são apontados na literatura como uma forma promissora de predição da vida útil de um determinado revestimento sob condições ambientais específicas. No presente estudo, um modelo computacional para predição de erosão pluvial em pás eólicas foi gerado levando em consideração as características de potência da turbina, as características do material de revestimento, e a distribuição do tamanho das gotas de chuva, que foram então combinada com uma análise de elementos finitos validada empiricamente. O modelo foi então empregado em um estudo de caso para um parque eólico offshore prospectivo localizado na costa do Nordeste brasileiro. Primeiramente, simulações numéricas de impactos de gotículas de chuva foram conduzidas no Ansys Explicit Dynamics e validadas contra resultados de experimentos laboratoriais. Então, os dados anemométricos e de precipitação reais da área do parque eólico foram coletados de bancos de dados de observações por satélite e reanálise climática. Simulações de gotas de diâmetros, de 0,5 a 4 mm, impactando um revestimento epóxi foram realizadas considerando as condições médias de operação da turbina eólica. As cargas dos impactos simulados foram então utilizadas como entradas para um modelo de predição de vida em fadiga programado em linguagem Python. Uma análise de sensitividade foi realizada, e demonstra que a acurácia do modelo possui uma elevada sensibilidade aos dados de fadiga de entrada. As tensões de impacto e os dados de dano de fadiga resultantes apresentaram-se fisicamente consistentes. As estimativas de vida de erosão foram coerentes para a maioria dos diâmetros de gota simulados; indo de 0,46 a 4,43 anos de tempo em operação, e consistentes com os valores apresentados por modelos de erosão semelhantes na literatura. Considerando a intensidade de chuva média da área e seu diâmetro médio de gota, a estimativa de vida de erosão permanece congruente com as observações de campo para o início da erosão em revestimentos de pás eólicas.pt_BR
dc.contributor.advisor-coLatteshttp://lattes.cnpq.br/4005471052834081pt_BR
Aparece nas coleções:Dissertações de Mestrado - Engenharia Mecânica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DISSERTAÇÃO Yargo Joseph Duran Pacheco.pdf4,77 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons