Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/6061

Compartilhe esta página

Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorCribari Neto, Francisco pt_BR
dc.contributor.authorMariano Bayer, Fábiopt_BR
dc.date.accessioned2014-06-12T18:01:37Z-
dc.date.available2014-06-12T18:01:37Z-
dc.date.issued2011-01-31pt_BR
dc.identifier.citationMariano Bayer, Fábio; Cribari Neto, Francisco. Modelagem e Inferência em Regressão Beta. 2011. Tese (Doutorado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2011.pt_BR
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/6061-
dc.description.abstractEsta tese aborda aspectos de modelagem e inferência em regressão beta, mais especificamente melhoramentos do teste de razão da verossimilhanças e proposição e investigação de critérios de seleção de modelos. O modelo de regressão beta foi proposto por Ferrari e Cribari-Neto [2004. Beta regression for modeling rates and proportions. J. Appl. Statist. 31, 799 815] para modelar variáveis contínuas no intervalo (0;1), como taxas e proporções. No primeiro capítulo, abordamos o problema de inferência em pequenas amostras. Focamos no melhoramento do teste da razão de verossimilhanças. Consideramos correções de segunda ordem para a estatística da razão de verossimilhanças em regressão beta em duas abordagens. Determinamos, por meio de uma abordagem matricial, o fator de correção de Bartlett e também uma correção de Bartlett Bootstrap. Comparamos os testes baseados nas estatísticas corrigidas com o teste da razão de verossimilhanças usual e com o teste que utiliza o ajuste de Skovgaard, que já está proposto na literatura. Os resultados numéricos evidenciam que as correções de Bartlett são mais acuradas do que a estatística não corrigida e do que o ajuste de Skovgaard. No segundo e terceiro capítulos, expandimos o modelo de regressão beta proposto por Ferrari e Cribari-Neto, considerando um modelo que assume que o parâmetro de dispersão, assim como o parâmetro de média, varia ao longo das observações e pode ser modelado por meio de uma estrutura de regressão. Com isso, surge o problema da seleção de variáveis, tanto para a estrutura da média quanto para a da dispersão. Esse assunto é tratado em dois capítulos independentes e auto-contidos, porém, ambos relacionados. No Capítulo 2 propomos critérios de seleção para modelos com dispersão variável e investigamos, por meio de simulação de Monte Carlo, os desempenhos destes e de outros critérios de seleção em amostras de tamanho finito. Percebemos que o processo de seleção conjunta de regressores para a média e para a dispersão não é uma boa prática e propomos um esquema de seleção em duas etapas. A seleção de modelos com o esquema proposto, além de requerer um menor custo computacional, apresentou melhor desempenho do que o método usual de seleção. Dentre os critérios investigados encontra-se o critério de informação de Akaike (AIC). O AIC é, sem dúvida, o critério mais conhecido e aplicado em diferentes classes de modelos. Baseados no AIC diversos critérios têm sido propostos, dentre eles o SIC, o HQ e o AICc. Com o objetivo de estimar o valor esperado da log-verossimilhança, que é uma medida de discrepância entre o modelo verdadeiro e o modelo candidato estimado, Akaike obtém o AIC como uma correção assintótica para a log-verossimilhança esperada. No entanto, em pequenas amostras, ou quando o número de parâmetros do modelo é grande relativamente ao tamanho amostral, o AIC se torna viesado e tende a selecionar modelos com alta dimensionalidade. Ao considerarmos uma estrutura de regressão também para o parâmetro de dispersão introduzimos um maior número de parâmetros a serem estimados no modelo. Isso pode diminuir o desempenho dos critérios de seleção quando o tamanho amostral é pequeno ou moderado. Para contornar esse problema propomos no Capítulo 3 novos critérios de seleção para serem usados em pequenas amostras, denominados bootstrap likelihood quasi-CV (BQCV) e sua modificação 632QCV. Comparamos os desempenhos dos critérios propostos, do AIC e de suas diversas variações que utilizam log-verossimilhança bootstrap por meio de um extensivo estudo de simulação. Os resultados numéricos evidenciam o bom desempenho dos critérios propostospt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superiorpt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectAICpt_BR
dc.subjectAjustes para pequenas amostraspt_BR
dc.subjectBootstrappt_BR
dc.subjectCorreção de Bartlettpt_BR
dc.subjectCritérios de seleção de modelospt_BR
dc.subjectDispersão variávelpt_BR
dc.subjectRegressão betapt_BR
dc.subjectTeste da razão de verossimilhançaspt_BR
dc.titleModelagem e Inferência em Regressão Betapt_BR
dc.typedoctoralThesispt_BR
Aparece nas coleções:Teses de Doutorado - Estatística

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
arquivo6698_1.pdf1,04 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons