Use este identificador para citar ou linkar para este item:
https://repositorio.ufpe.br/handle/123456789/6288
Compartilhe esta página
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.advisor | José Amorim do Amaral, Getúlio | pt_BR |
dc.contributor.author | Rodrigo Portela Ferreira, Marcelo | pt_BR |
dc.date.accessioned | 2014-06-12T18:03:40Z | - |
dc.date.available | 2014-06-12T18:03:40Z | - |
dc.date.issued | 2007 | pt_BR |
dc.identifier.citation | Rodrigo Portela Ferreira, Marcelo; José Amorim do Amaral, Getúlio. Análise discriminante clássica e de núcleo: avaliação e algumas contribuições relativas aos métodos Boosting e Bootstrap. 2007. Dissertação (Mestrado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2007. | pt_BR |
dc.identifier.uri | https://repositorio.ufpe.br/handle/123456789/6288 | - |
dc.description.abstract | Desde que tecnologia da informação tornou-se essencial para muitas atividades da vida moderna e grandes conjuntos de dados surgiram junto com ela, mineração de dados tornou-se uma das mais importantes áreas de pesquisa na ciência estatística. Apesar de existirem muitos campos relacionados a mineração de dados, a tarefa de classificação ainda figura como uma das mais comuns na literatura estatística. Esta dissertação faz uma revisão de dois métodos clássicos de classificação, análise discriminante linear e quadrática, e um método não-paramétrico, a análise discriminante de núcleo. Experimentos de simulação e conjuntos de dados reais são utilizados para avaliar e comparar os três métodos de classificação. Também apresenta algumas contribuições relacionadas aos métodos boosting e bootstrap no contexto de classificação. A primeira contribuição trata-se de uma nova formulação para o método boosting em análise discriminante linear. Os resultados numéricos mostram que esta nova formulação tem desempenho similar à formulação usual. Entretanto, a nova formulação do método boosting é conceitualmente mais adequada. Dois métodos bootstrap para problemas de classificação são introduzidos e avaliados. O primeiro método bootstrap é utilizado para obter uma fronteira de classificação. O conceito de fronteira de classificação pode ser entendido como uma região onde é difícil alocar uma observação para uma das populações existentes. O segundo método bootstrap é um intervalo de confiança para a taxa de erro de classificação. Intervalos de confiança podem ser utilizados para comparar dois ou mais métodos de classificação na estrutura de inferência | pt_BR |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | pt_BR |
dc.language.iso | por | pt_BR |
dc.publisher | Universidade Federal de Pernambuco | pt_BR |
dc.rights | openAccess | pt_BR |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Brazil | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/br/ | * |
dc.subject | Análise Discriminante Linea | pt_BR |
dc.subject | Classificação | pt_BR |
dc.title | Análise discriminante clássica e de núcleo: avaliação e algumas contribuições relativas aos métodos Boosting e Bootstrap | pt_BR |
dc.type | masterThesis | pt_BR |
Aparece nas coleções: | Dissertações de Mestrado - Estatística |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
arquivo7186_1.pdf | 1,83 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este arquivo é protegido por direitos autorais |
Este item está licenciada sob uma Licença Creative Commons