Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/17300

Comparte esta pagina

Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorCYSNEIROS, Francisco José de Azevêdo-
dc.contributor.authorSOUTO MAIOR, Vinícius Quintas-
dc.date.accessioned2016-07-08T18:09:27Z-
dc.date.available2016-07-08T18:09:27Z-
dc.date.issued2016-02-26-
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/17300-
dc.description.abstractNossa abordagem é direcionada a variáveis aleatórias simétricas observadas ao longo do tempo. Nesse sentido, avaliamos os procedimentos de estimação e discutimos o uso da metodologia de diagnóstico sob o enfoque de influência local para classe de modelos autorregressivos de médias móveis simétrico, SYMARMA. Modelos sazonais também são abordados neste trabalho. A estimação dos parâmetros do modelo SYMARMA é feita através da maximização do logaritmo da função de verossimilhança condicional utilizando o algoritmo escore de Fisher. Apresentamos um estudo de robustez baseado na função de influência para avaliar a qualidade do procedimento de estimação. Além disso, conduzimos um estudo de simulação para avaliar a consistência e normalidade assintótica do estimador de máxima verossimilhança condicional. Derivamos expressões mais simples para as funções escore e a matriz informação de Fisher. Desenvolvemos medidas de diagnóstico sob o enfoque de influência local baseado nas medidas de curvatura de Cook (1986), inclinação de Billor e Loynes (1993) e curvatura de Lesaffre e Verbeke (1998). Derivamos, através de simulações, marcas de referência (limiares) para determinar se uma observação é influente. Aplicações de dados reais foram abordadas neste trabalho.pt_BR
dc.description.sponsorshipCAPESpt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectEstatística matemáticapt_BR
dc.subjectProbabilidadespt_BR
dc.subjectSéries temporaispt_BR
dc.titleModelos dinâmicos para dados temporais sob distribuição simétrica condicional: estimação e diagnósticopt_BR
dc.typedoctoralThesispt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.leveldoutoradopt_BR
dc.publisher.programPrograma de Pos Graduacao em Estatisticapt_BR
dc.description.abstractxOur approach is applied to symmetric random variables on over time. In this sense, we develop estimation procedures and discuss the use of local influence diagnostic methodology to class of the autoregressive and moving average symmetric models, SYMARMA. Sazonal models also are considered. The Fisher scoring algorithm is used to find the estimations of parameters SYMARMA model maximizing the logarithm of the conditional likelihood function. We present an robustness study based on influence function to assess the quality of the estimation procedure and we conduct simulation studies to evaluate the consistency and asymptotic normality of the conditional maximum likelihood estimator. We derive simpler expressions for the score function and Fisher information matrix. In order to assess local influence we develop diagnostic measures based on Cook’s curvature (1986), slope of Billor and Loynes (1993) and curvature of Lesaffre and Verbeke (1998). We evaluate benchmarks by simulation to identify influential observations. Application are used to illustrate of the proposed methodology.pt_BR
Aparece en las colecciones: Teses de Doutorado - Estatística

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TESE - VINICIUS Q SOUTO MAIOR.pdf9.1 MBAdobe PDFVista previa
View/Open


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons