Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/43661

Compartilhe esta página

Título: Visual tools to identify influential observations in spatial data
Autor(es): OLIVEIRA, Isabel Soares Diniz de
Palavras-chave: Estatística Aplicada; Análise de dados funcionais; Dados espaciais influentes; Semivariograma
Data do documento: 28-Out-2021
Editor: Universidade Federal de Pernambuco
Citação: OLIVEIRA, Isabel Soares Diniz de. Visual tools to identify influential observations in spatial data. 2021. Dissertação (Mestrado em Estatística) - Universidade Federal de Pernambuco, Recife, 2021.
Abstract: We adapted the hair-plot, proposed by Genton and Ruiz-Gazen (2010), to identify and vi- sualize influential observations in spatial data. Three graphic tools were created: the bihair-plot, the principal components hair-plot and functional hair-plot. The first tool depict trajectories of the values of a spatial semivariance estimator when adding a perturbation to each observation of a vector of spatial data observed considering two lags. The second describes trajectories of the principal components of a spatial semivariance estimator values for all lags when each observation of data is perturbed, making it possible to identify influential observations in spa- tial data containing as much information as possible from the data set. The third is obtained from the values of the trace-semivariogram estimator when the data receive a disturbance. The estimators considered in the study were the sample semivariogram for univariate case, sample cross-semivariogram for bivariate case and sample trace-semivariogram for functional data. Another method used to obtain the cross-semivariogram was Minimum Volume Ellipsoid, which is more sensitive to outliers. Based on this, we observed that it is not possible to detect influential observations. We defined the quadratic form of the estimators and the influence function, in order to understand their behavior and properties. Finally, we make an application with these tools in the pollution data for the univariate case, complementing the results shown in Genton and Ruiz-Gazen (2010), the meuse data from the sp package for the bivariate case and average temperatures from the geofd package for the functional case.
URI: https://repositorio.ufpe.br/handle/123456789/43661
Aparece nas coleções:Dissertações de Mestrado - Estatística

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DISSERTAÇÃO Isabel Soares Diniz de Oliveira.pdf1,57 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons