Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/49411

Comparte esta pagina

Título : Um modelo de suporte para conformidade de data lake com a LGPD
Autor : MACIEL, Vitória Maria da Silva
Palabras clave : Banco de dados; Rastreabilidade; Metadados
Fecha de publicación : 10-mar-2022
Editorial : Universidade Federal de Pernambuco
Citación : MACIEL, Vitória Maria da Silva. Um modelo de suporte para conformidade de data lake com a LGPD. 2022. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.
Resumen : Na era do Big Data, um grande volume de dados estruturados, semi-estruturados, e principalmente não estruturados é gerado muito mais rápido por tecnologias digitais e sistemas de informação. Neste contexto, Data Lakes surgiram como uma alternativa aos tradicionais Data Warehouses, tornando-se uma das soluções de Big Data mais utilizadas para análise e gerenciamento distribuído de grande volumes de dados. A ideia principal do Data Lake é ingerir dados brutos e processá-los durante seu uso, caracterizando a abordagem schema on-read. Durante seu ciclo de vida em um Data Lake, um dado pode passar por inúmeras transformações, levando a questões de rastreabilidade. Com a Lei Geral de Proteção de Dados Pessoais - LGPD em vigor, as organizações precisam ter ao seu dispor, além das mudanças ocorridas nos dados, informações sobre quem modificou, onde modificou e as dependências geradas. Visando atender esse problema, alguns modelos de metadados foram propostos na literatura. No entanto, nenhum deles foca em apresentar metadados que descrevam o ciclo de vida dos dados. Sendo assim, essa dissertação propõe um Modelo de Suporte para Conformidade de Data Lake com a LGPD (Data Lake Compliance Model - DLCM), que tem como objetivo descrever os conjuntos de dados no Data Lake e os tratamentos aplicados sobre eles. Para isso, o DLCM subdivide-se em duas partes: A primeira reúne todos os elementos de metadados necessários para atendimento de uma solicitação de acesso aos dados, enquanto que a segunda parte, é composta pelo agrupamento desses metadados por categorias, onde cada categoria possui um modelo associado. Os resultados obtidos a partir da avaliação do DLCM mostraram a relevância da solução proposta no contexto de Data Lakes.
URI : https://repositorio.ufpe.br/handle/123456789/49411
Aparece en las colecciones: Dissertações de Mestrado - Ciência da Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
DISSERTAÇÃO Vitória Maria da Silva Maciel.pdf3,07 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons