Use este identificador para citar ou linkar para este item:
https://repositorio.ufpe.br/handle/123456789/6061
Compartilhe esta página
Título: | Modelagem e Inferência em Regressão Beta |
Autor(es): | Mariano Bayer, Fábio |
Palavras-chave: | AIC; Ajustes para pequenas amostras; Bootstrap; Correção de Bartlett; Critérios de seleção de modelos; Dispersão variável; Regressão beta; Teste da razão de verossimilhanças |
Data do documento: | 31-Jan-2011 |
Editor: | Universidade Federal de Pernambuco |
Citação: | Mariano Bayer, Fábio; Cribari Neto, Francisco. Modelagem e Inferência em Regressão Beta. 2011. Tese (Doutorado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2011. |
Abstract: | Esta tese aborda aspectos de modelagem e inferência em regressão beta, mais especificamente melhoramentos do teste de razão da verossimilhanças e proposição e investigação de critérios de seleção de modelos. O modelo de regressão beta foi proposto por Ferrari e Cribari-Neto [2004. Beta regression for modeling rates and proportions. J. Appl. Statist. 31, 799 815] para modelar variáveis contínuas no intervalo (0;1), como taxas e proporções. No primeiro capítulo, abordamos o problema de inferência em pequenas amostras. Focamos no melhoramento do teste da razão de verossimilhanças. Consideramos correções de segunda ordem para a estatística da razão de verossimilhanças em regressão beta em duas abordagens. Determinamos, por meio de uma abordagem matricial, o fator de correção de Bartlett e também uma correção de Bartlett Bootstrap. Comparamos os testes baseados nas estatísticas corrigidas com o teste da razão de verossimilhanças usual e com o teste que utiliza o ajuste de Skovgaard, que já está proposto na literatura. Os resultados numéricos evidenciam que as correções de Bartlett são mais acuradas do que a estatística não corrigida e do que o ajuste de Skovgaard. No segundo e terceiro capítulos, expandimos o modelo de regressão beta proposto por Ferrari e Cribari-Neto, considerando um modelo que assume que o parâmetro de dispersão, assim como o parâmetro de média, varia ao longo das observações e pode ser modelado por meio de uma estrutura de regressão. Com isso, surge o problema da seleção de variáveis, tanto para a estrutura da média quanto para a da dispersão. Esse assunto é tratado em dois capítulos independentes e auto-contidos, porém, ambos relacionados. No Capítulo 2 propomos critérios de seleção para modelos com dispersão variável e investigamos, por meio de simulação de Monte Carlo, os desempenhos destes e de outros critérios de seleção em amostras de tamanho finito. Percebemos que o processo de seleção conjunta de regressores para a média e para a dispersão não é uma boa prática e propomos um esquema de seleção em duas etapas. A seleção de modelos com o esquema proposto, além de requerer um menor custo computacional, apresentou melhor desempenho do que o método usual de seleção. Dentre os critérios investigados encontra-se o critério de informação de Akaike (AIC). O AIC é, sem dúvida, o critério mais conhecido e aplicado em diferentes classes de modelos. Baseados no AIC diversos critérios têm sido propostos, dentre eles o SIC, o HQ e o AICc. Com o objetivo de estimar o valor esperado da log-verossimilhança, que é uma medida de discrepância entre o modelo verdadeiro e o modelo candidato estimado, Akaike obtém o AIC como uma correção assintótica para a log-verossimilhança esperada. No entanto, em pequenas amostras, ou quando o número de parâmetros do modelo é grande relativamente ao tamanho amostral, o AIC se torna viesado e tende a selecionar modelos com alta dimensionalidade. Ao considerarmos uma estrutura de regressão também para o parâmetro de dispersão introduzimos um maior número de parâmetros a serem estimados no modelo. Isso pode diminuir o desempenho dos critérios de seleção quando o tamanho amostral é pequeno ou moderado. Para contornar esse problema propomos no Capítulo 3 novos critérios de seleção para serem usados em pequenas amostras, denominados bootstrap likelihood quasi-CV (BQCV) e sua modificação 632QCV. Comparamos os desempenhos dos critérios propostos, do AIC e de suas diversas variações que utilizam log-verossimilhança bootstrap por meio de um extensivo estudo de simulação. Os resultados numéricos evidenciam o bom desempenho dos critérios propostos |
URI: | https://repositorio.ufpe.br/handle/123456789/6061 |
Aparece nas coleções: | Teses de Doutorado - Estatística |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
arquivo6698_1.pdf | 1,04 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este arquivo é protegido por direitos autorais |
Este item está licenciada sob uma Licença Creative Commons