Please use this identifier to cite or link to this item:
https://repositorio.ufpe.br/handle/123456789/6284
Share on
Title: | A abordagem de cadastro duplo (Dual Frame): estimação assistida por modelos Lineares com aplicação em pesquisas agropecuárias |
Authors: | Fernandes Campos Coêlho, Hémilio |
Keywords: | Classificação; Análise Discriminante Linear |
Issue Date: | 2007 |
Publisher: | Universidade Federal de Pernambuco |
Citation: | Fernandes Campos Coêlho, Hémilio; Ferraz, Cristiano. A abordagem de cadastro duplo (Dual Frame): estimação assistida por modelos Lineares com aplicação em pesquisas agropecuárias. 2007. Dissertação (Mestrado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2007. |
Abstract: | Desde que tecnologia da informação tornou-se essencial para muitas atividades da vida moderna e grandes conjuntos de dados surgiram junto com ela, mineração de dados tornou-se uma das mais importantes áreas de pesquisa na ciência estatística. Apesar de existirem muitos campos relacionados a mineração de dados, a tarefa de classificação ainda figura como uma das mais comuns na literatura estatística. Esta dissertação faz uma revisão de dois métodos clássicos de classificação, análise discriminante linear e quadrática, e um método não-paramétrico, a análise discriminante de núcleo. Experimentos de simulação e conjuntos de dados reais são utilizados para avaliar e comparar os três métodos de classificação. Também apresenta algumas contribuições relacionadas aos métodos boosting e bootstrap no contexto de classificação. A primeira contribuição trata-se de uma nova formulação para o método boosting em análise discriminante linear. Os resultados numéricos mostram que esta nova formulação tem desempenho similar à formulação usual. Entretanto, a nova formulação do método boosting é conceitualmente mais adequada. Dois métodos bootstrap para problemas de classificação são introduzidos e avaliados. O primeiro método bootstrap é utilizado para obter uma fronteira de classificação. O conceito de fronteira de classificação pode ser entendido como uma região onde é difícil alocar uma observação para uma das populações existentes. O segundo método bootstrap é um intervalo de confiança para a taxa de erro de classificação. Intervalos de confiança podem ser utilizados para comparar dois ou mais métodos de classificação na estrutura de inferência |
URI: | https://repositorio.ufpe.br/handle/123456789/6284 |
Appears in Collections: | Dissertações de Mestrado - Estatística |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
arquivo7185_1.pdf | 1,41 MB | Adobe PDF | ![]() View/Open |
This item is protected by original copyright |
This item is licensed under a Creative Commons License