Skip navigation
Please use this identifier to cite or link to this item: https://repositorio.ufpe.br/handle/123456789/64118

Share on

Full metadata record
DC FieldValueLanguage
dc.contributor.advisorNEVES, Rodrigo José Gondim-
dc.contributor.authorBEZERRA, Lenin Alexandre de Almeida-
dc.date.accessioned2025-07-07T13:43:33Z-
dc.date.available2025-07-07T13:43:33Z-
dc.date.issued2024-12-13-
dc.identifier.citationBEZERRA, Lenin Alexandre de Almeida. Hilbert functions and Lefschetz properties for Artinian Gorenstein algebras. 2024. Tese (Doutorado em Matemática) – Universidade Federal de Pernambuco, Recife, 2024.pt_BR
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/64118-
dc.description.abstractThis work is divided into two parts. In the first one, we studied minimal Hilbert functions for Artinian Gorenstein algebras, we conjecture that for certain algebras the Hilbert vector is always minimal, and prove this conjecture for a particular case. In the second part, we studied the Lefschetz locus for Artinian Gorenstein algebras with Hilbert vector (1, N + 1, N + 1, 1).pt_BR
dc.language.isoengpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/pt_BR
dc.subjectHilbert functionspt_BR
dc.subjectLefschetz propertiespt_BR
dc.subjectArtinian Gorenstein algebrapt_BR
dc.titleHilbert functions and Lefschetz properties for Artinian Gorenstein algebraspt_BR
dc.typedoctoralThesispt_BR
dc.contributor.authorLatteshttp://lattes.cnpq.br/0507982414680253pt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.leveldoutoradopt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/7835619149066999pt_BR
dc.publisher.programPrograma de Pos Graduacao em Matematicapt_BR
dc.description.abstractxIndisponível.pt_BR
Appears in Collections:Teses de Doutorado - Matemática

Files in This Item:
File Description SizeFormat 
TESE Lenin Alexandre de Almeida Bezerra.pdf652.59 kBAdobe PDFThumbnail
View/Open


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons