Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/39846

Comparte esta pagina

Título : Control and geometric inverse problems for some linear and nonlinear partial differential systems
Autor : ARAÚJO, Raul Kazan da Cunha
Palabras clave : Análise; Equações diferenciais
Fecha de publicación : 22-feb-2021
Editorial : Universidade Federal de Pernambuco
Citación : ARAÚJO, Raul Kazan da Cunha. Control and geometric inverse problems for some linear and nonlinear partial differential systems. 2021. Tese (Doutorado em Matemática) – Universidade Federal de Pernambuco, Recife, 2021.
Resumen : In this Thesis we present results for control and geometric inverse problems associated with certain linear and non-linear PDEs. First, in Chapter 1 we perform a detailed analysis of the geometric inverse problem that consists to identify, from boundary measurements, an unknown obstacle to passage of a fluid governed by a system of linear elliptic equations. Then, by using the so-called local Carleman estimates, we get a uniqueness result, that is, we show that if two obstacles leading to the same boundary measurements are, necessarily, equals. Moreover, by applying some techniques of differentiation with respect to domains, we can obtain a stability result and then apply a reconstruction algorithm. In Chapter 2, we analyze the controllability properties of the so-called inviscid and viscous Burgers-𝛼 equations. More specifically, in the first part of the chapter we can get, by applying the so-called return method, time-reversibility and scale change arguments, a global exact controllability result for the inviscid Burgers-𝛼 system. Then, in the second part, we prove that the viscous Burgers-𝛼 equation is globally exactly controllable to constant trajectories following three steps: (1) We apply a smoothing effect result for parabolic PDEs; (2) We use a controllability result for the inviscid Burgers-𝛼 system to deduce an approximate controllability result for the viscous system; (3) We prove a local exact controllability result for regular time-dependent trajectories. In Chapter 3, we deal with a two-phase free-boundary problem associated with the heat equation. Then, by using a classical technique that reduces controllability to minimization of an appropriated functional, parabolic regularity and the Schauder Fixed-Point Theorem, we prove that it is possible to drive both temperatures and the interface to desired targets in an arbitrary small time, as long as the initial data are small enough in a suitable norm.
URI : https://repositorio.ufpe.br/handle/123456789/39846
Aparece en las colecciones: Teses de Doutorado - Matemática

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TESE Raul Kazan da Cunha Araújo.pdf1,87 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons