Please use this identifier to cite or link to this item:
https://repositorio.ufpe.br/handle/123456789/55998
Share on
Title: | Previsão do tempo de vida restante para rolamentos utilizando um modelo de rede neural convolucional. |
Authors: | SANTANA, Marcos Vinicius Lira |
Keywords: | Redes Neurais Convolucionais; Manutenção; Rolamentos |
Issue Date: | 12-Mar-2024 |
Citation: | SANTANA, Marcos. Previsão do tempo de vida restante para rolamentos utilizando um modelo de rede neural convolucional. 2024. Trabalho de Conclusão de Curso (Engenharia de Produção) – Universidade Federal de Pernambuco, Caruaru, 2024. |
Abstract: | Em ambientes industriais, a eficiência operacional e a manutenção proativa são pilares essenciais para garantir a produtividade e a confiabilidade dos equipamentos. No âmbito desse contexto, a previsão do Remaining Useful Life (RUL), ou vida útil restante, de componentes como rolamentos industriais desempenha um papel fundamental. Ao antecipar o momento ideal para substituição ou reparo desses componentes, as empresas podem evitar falhas inesperadas, reduzir custos de manutenção e maximizar a disponibilidade operacional dos equipamentos. Este trabalho de conclusão de curso concentra-se em desenvolver e avaliar um modelo de previsão do RUL para rolamentos industriais, utilizando uma abordagem baseada em Deep Learning, mais especificamente uma Rede Neural Convolucional (CNN). A escolha por uma abordagem de Deep Learning se justifica pela sua capacidade de extrair padrões complexos e não-lineares a partir de grandes volumes de dados, o que pode levar a previsões mais precisas e confiáveis. A metodologia adotada neste estudo abrangeu desde a coleta de dados reais de rolamentos até o processamento, seleção de variáveis relevantes, implementação e treinamento da CNN. O objetivo principal é prever o RUL para possibilitar a otimização dos processos de manutenção e maximizar a disponibilidade dos equipamentos. Isto é demonstrado através da eficácia e métricas de avaliação do desempenho dos modelos treinados. Os resultados obtidos demonstram a eficácia da abordagem proposta. O modelo de previsão do RUL para os rolamentos industriais alcançou um Mean Absolute Percentage Error (MAPE) de 53%, indicando uma precisão notável na estimativa do tempo de vida útil restante. Em comparação com um estudo anterior (LI, 2019), que previa um MAPE de 62,3% para o mesmo tipo de rolamento e condições. Espera-se que os resultados experimentais deste estudo evidenciem a eficácia da abordagem proposta, comparando-os com referências da literatura. A validação do modelo em cenários reais de operação de rolamentos industriais será fundamental para demonstrar sua utilidade e potencial aplicabilidade em contextos industriais. |
URI: | https://repositorio.ufpe.br/handle/123456789/55998 |
Appears in Collections: | TCC- Engenharia de Produção - Bacharelado |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TCC_MARCOS_VINICIUS_LIRA_SANTANA.pdf | 825,15 kB | Adobe PDF | ![]() View/Open |
This item is protected by original copyright |
This item is licensed under a Creative Commons License