Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/39131

Comparte esta pagina

Título : Essays on the unit Burr XII distribution : regression and time series models
Autor : RIBEIRO, Tatiane Fontana
Palabras clave : Estatística Aplicada; Aprendizado estatístico; Distribuições de probabilidade no intervalo unitário; Regressão beta
Fecha de publicación : 28-oct-2020
Editorial : Universidade Federal de Pernambuco
Citación : RIBEIRO, Tatiane Fontana. Essays on the unit Burr XII distribution: regression and time series models. 2020. Dissertação (Mestrado em Estatística) - Universidade Federal de Pernambuco, Recife, 2020.
Resumen : There is an interest in modeling bounded random variables to the standard unit interval in many practical situations, such as rates, proportions, and indexes. We propose two new probability distributions to deal with the uncertainty involved by variables of this type and develop its associated regression models. Both distributions are based on a transformation of the Burr XII random variable. We also introduce a new dynamic model for time series data with support in the interval ¹0 1º. This dissertation is composed of three main and independent chapters. In the first, we define the unit Burr XII (UBXII) distribution and its quantile regression model. Some of its mathematical and statistical properties are investigated. In the second, the reflexive UBXII distribution is obtained, and the regression model is proposed. The maximum likelihood (ML) method is considered for parameters estimation of both regression models. In the third, we propose the dynamic class of models: UBXII autoregressive moving average (UBXII-ARMA) for time series taking values in the unit interval. The conditional ML method is used to estimate and construct asymptotic confidence intervals of the parameters that index the UBXII-ARMA model. Closed-form expressions for the conditional score vector are derived. Furthermore, Monte Carlo simulation studies, diagnostic analysis tools, model selection criteria, and applications to the real data are presented and discussed for the three proposed models.
URI : https://repositorio.ufpe.br/handle/123456789/39131
Aparece en las colecciones: Dissertações de Mestrado - Estatística

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
DISSERTAÇÃO Tatiane Fontana Ribeiro.pdf1,07 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons