Use este identificador para citar ou linkar para este item:
https://repositorio.ufpe.br/handle/123456789/40940
Compartilhe esta página
Título: | Improving the computation of the τVI Painlevé function using the quadrature method for the fredholm determinant |
Autor(es): | ANTONIO JUNIOR, Ériton Araujo |
Palavras-chave: | Painlevé VI; Determinante de Fredholm; Problema de Riemann-Hilbert; Problema de parâmetro acessório |
Data do documento: | 31-Mar-2020 |
Editor: | Universidade Federal de Pernambuco |
Citação: | ANTONIO JÚNIOR, Ériton Araujo. Improving the computation of the τVI Painlevé function using the quadrature method for the fredholm determinant. 2020. Dissertação (Mestrado em Física) - Universidade Federal de Pernambuco, Recife, 2020. |
Abstract: | The Painlevé transcendent functions are important tools in theoretical physics, they appear in a variety of physical systems going from quantum integrable systems to random matrix theory. The accessory parameter problem for ODEs, which has connections to black hole scattering problem, can be solved by using the connection between the Painlevé VI transcendent with isomonodromic deformations of a linear ordinary differential equation. In this case, the isomonodromic V I function plays a major role, and finding its roots is equivalent to solving the accessory parameter problem. The V I function can be expressed as a function of a Fredholm determinant. In this dissertation, we will discuss the two main different methods of calculation of the V I in the Fredholm determinant form. We will also present how to construct codes for both methods and analyze them in order to understand which one is the most numerically efficient to find the roots of the V I function. |
URI: | https://repositorio.ufpe.br/handle/123456789/40940 |
Aparece nas coleções: | Dissertações de Mestrado - Física |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
DISSERTAÇÃO Ériton Araujo Antonio Júnior.pdf | 2,01 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este arquivo é protegido por direitos autorais |
Este item está licenciada sob uma Licença Creative Commons