Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/40940

Comparte esta pagina

Título : Improving the computation of the τVI Painlevé function using the quadrature method for the fredholm determinant
Autor : ANTONIO JUNIOR, Ériton Araujo
Palabras clave : Painlevé VI; Determinante de Fredholm; Problema de Riemann-Hilbert; Problema de parâmetro acessório
Fecha de publicación : 31-mar-2020
Editorial : Universidade Federal de Pernambuco
Citación : ANTONIO JÚNIOR, Ériton Araujo. Improving the computation of the τVI Painlevé function using the quadrature method for the fredholm determinant. 2020. Dissertação (Mestrado em Física) - Universidade Federal de Pernambuco, Recife, 2020.
Resumen : The Painlevé transcendent functions are important tools in theoretical physics, they appear in a variety of physical systems going from quantum integrable systems to random matrix theory. The accessory parameter problem for ODEs, which has connections to black hole scattering problem, can be solved by using the connection between the Painlevé VI transcendent with isomonodromic deformations of a linear ordinary differential equation. In this case, the isomonodromic V I function plays a major role, and finding its roots is equivalent to solving the accessory parameter problem. The V I function can be expressed as a function of a Fredholm determinant. In this dissertation, we will discuss the two main different methods of calculation of the V I in the Fredholm determinant form. We will also present how to construct codes for both methods and analyze them in order to understand which one is the most numerically efficient to find the roots of the V I function.
URI : https://repositorio.ufpe.br/handle/123456789/40940
Aparece en las colecciones: Dissertações de Mestrado - Física

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
DISSERTAÇÃO Ériton Araujo Antonio Júnior.pdf2,01 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons