Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.ufpe.br/handle/123456789/45390
Comparte esta pagina
Título : | Machine learning applications in communication systems decoding |
Autor : | CAMPELLO, Rafael Mendes |
Palabras clave : | Engenharia elétrica; Aprendizagem de máquina; Aprendizagem profunda; Comunicação; Caótica; Códigos corretores de erro; Acesso múltiplo não-ortogonal |
Fecha de publicación : | 11-feb-2022 |
Editorial : | Universidade Federal de Pernambuco |
Citación : | CAMPELLO, Rafael Mendes. Machine learning applications in communication systems decoding. 2022. Dissertação (Mestrado em Engenharia Elétrica) – Universidade Federal de Pernambuco, Recife, 2022. |
Resumen : | The usage of machine learning (ML) techniques in different academic and professional fields confirms its theoretical and practical utility. The communications field is no exception. In fact, models that learn from data were already in use prior to the recent advancement in the ML field. This research investigates different kinds of usage that can be done with ML models in three different problems, seeking to show their high flexibility and to present alternative ways of obtaining classical results which employ well established algorithms, or even outperform them in some scenarios. The first problem discusses the so-called Markov-Gaussian channels and compares an ML model with the already common hidden Markov models approach. The second problem deals with non-orthogonal multiple access transmissions and compares an ML model with the usually employed decoding algorithm. The third presents a chaos-based communication system and compares the maximum likelihood decoding to a neural network-based one. |
URI : | https://repositorio.ufpe.br/handle/123456789/45390 |
Aparece en las colecciones: | Dissertações de Mestrado - Engenharia Elétrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
DISSERTAÇÃO Rafael Mendes Campello.pdf | 3,18 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons