Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/45390

Comparte esta pagina

Título : Machine learning applications in communication systems decoding
Autor : CAMPELLO, Rafael Mendes
Palabras clave : Engenharia elétrica; Aprendizagem de máquina; Aprendizagem profunda; Comunicação; Caótica; Códigos corretores de erro; Acesso múltiplo não-ortogonal
Fecha de publicación : 11-feb-2022
Editorial : Universidade Federal de Pernambuco
Citación : CAMPELLO, Rafael Mendes. Machine learning applications in communication systems decoding. 2022. Dissertação (Mestrado em Engenharia Elétrica) – Universidade Federal de Pernambuco, Recife, 2022.
Resumen : The usage of machine learning (ML) techniques in different academic and professional fields confirms its theoretical and practical utility. The communications field is no exception. In fact, models that learn from data were already in use prior to the recent advancement in the ML field. This research investigates different kinds of usage that can be done with ML models in three different problems, seeking to show their high flexibility and to present alternative ways of obtaining classical results which employ well established algorithms, or even outperform them in some scenarios. The first problem discusses the so-called Markov-Gaussian channels and compares an ML model with the already common hidden Markov models approach. The second problem deals with non-orthogonal multiple access transmissions and compares an ML model with the usually employed decoding algorithm. The third presents a chaos-based communication system and compares the maximum likelihood decoding to a neural network-based one.
URI : https://repositorio.ufpe.br/handle/123456789/45390
Aparece en las colecciones: Dissertações de Mestrado - Engenharia Elétrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
DISSERTAÇÃO Rafael Mendes Campello.pdf3,18 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons