Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.ufpe.br/handle/123456789/45964
Comparte esta pagina
Título : | AStar : a modeling language for document-oriented geospatial data warehouses |
Autor : | FERRO, Márcio Robério da Costa |
Palabras clave : | Banco de dados; Data warehouse geoespacial; Bancos de dados orientados a documentos; Esquema lógico; DSML |
Fecha de publicación : | 18-feb-2022 |
Editorial : | Universidade Federal de Pernambuco |
Citación : | FERRO, Márcio Robério da Costa. AStar: a modeling language for document-oriented geospatial data warehouses. 2022. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022. |
Resumen : | A Geospatial Data Warehouse (GDW) is an extension of a traditional Data Warehouse that includes geospatial data in the decision-making processes. Several studies have proposed the use of document-oriented databases in a GDW as an alternative to relational databases. This is due to the ability of non-relational databases to scale horizontally, allowing for the storage and processing of large volumes of data. In this context, modeling the manner in which facts and dimensions are structured is important in order to understand, maintain, and evolve the Document-oriented GDW (DGDW) through visual analysis. However, to the best of our knowledge, there are no modeling languages that support the design of facts and dimensions as referenced or embedded documents, partitioned into one or more collections. To overcome this lack, we propose Aggregate Star (AStar), a Domain-Specific Modeling Language for designing DGDW logical schemas. AStar is defined from a concrete syntax (graphical notation), an abstract syntax (metamodel), and static semantics (well-formedness rules). In order to describe the semantics of the concepts defined in AStar, translational semantics map the graphical notation to the metamodel and the respective code, to define the schema in MongoDB (using JSON Schema). We evaluate the graphical notation using Physics of Notations (PoN), which provides a set of principles for designing cognitively effective visual notations. This evaluation revealed that AStar is in accordance with eight of the nine PoN Principles, an adequate level of cognitive effectiveness. As a proof of concept, the metamodel and well-formedness rules were implemented in a prototype of Computer-Assisted Software Engineering tool, called AStarCASE. In its current version, AStarCASE can be used to design DGDW logical schemas and to generate their corresponding code in the form of JSON Schemas. Furthermore, we present a guideline that shows how to design schemas that have facts, conventional dimensions, and geospatial dimensions related as referenced or embedded documents, and partitioned into one or more collections. The guidelines also present good practices to achieve low data volume and low query runtime in a DGDW. |
URI : | https://repositorio.ufpe.br/handle/123456789/45964 |
Aparece en las colecciones: | Teses de Doutorado - Ciência da Computação |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
TESE Márcio Robério da Costa Ferro.pdf | 10,31 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons