Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.ufpe.br/handle/123456789/51666
Comparte esta pagina
Título : | Improving mobile robot navigation through odometry optimization using particle swarm optimization at kinematics model |
Autor : | SANTOS, Lucas Henrique Cavalcanti |
Palabras clave : | Engenharia da computação; Odometria; Navegação autônoma; Cinemática; Robôs móveis; PSO |
Fecha de publicación : | 14-mar-2023 |
Editorial : | Universidade Federal de Pernambuco |
Citación : | SANTOS, Lucas Henrique Cavalcanti. Improving mobile robot navigation through odometry optimization using particle swarm optimization at kinematics model. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023. |
Resumen : | Autonomous navigation is crucial for mobile robots to move and interact with their surroundings. This requires the integration of intelligence, perception, and control in the robots. The first step in modelling the movement of robots is to create a kinematic model that explains how actuators influence their movement. The wheel velocity and the kinematic model are used to calculate the robot’s velocity and then the path traveled by integrating velocity over time, known as odometry. Odometry is the foundation of robotics navigation, but due to systematic errors in the kinematic model, it may have translation and rotation errors that accumulate over time. This study introduces a method to improve odometry accuracy using Particle Swarm Optimization (PSO). The method employs wheel velocity data and an inertial sensor to optimize the robot’s kinematic model. The technique involves experiments with the robot to record its velocity and position and to simulate the traveled path using the kinematic model. The simulation is evaluated using root-mean-square error compared to the ground-truth positions. The PSO method optimizes the kinematic parameters by minimizing the error between the simulation and the ground-truth positions. The proposed optimization technic improved odometry by 75%, from a mean squared error of 0.37 to 0.09. The result showed that the final position of a 6-meter path had an error of less than 5 cm, while previous methods achieved a minimum error of 10 cm. The optimization allows robots to navigate with greater autonomy without external information or additional sensors and is also efficient for low-power embedded computers. |
URI : | https://repositorio.ufpe.br/handle/123456789/51666 |
Aparece en las colecciones: | Dissertações de Mestrado - Ciência da Computação |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
DISSERTAÇÃO Lucas Henrique Cavalcanti Santos.pdf | 15,44 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons