Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/62106

Comparte esta pagina

Título : Control and stabilization for the Benjamin-Bona-Mahony equation on the one-dimensional torus, 2025
Autor : OLIVEIRA, Matheus Luiz da Silva
Palabras clave : Benjamin–Bona–Mahony equation; unique continuation property; exact con- trollability; stabilization; moving point control; Korteweg–de Vries equation
Fecha de publicación : 19-feb-2025
Editorial : Universidade Federal de Pernambuco
Citación : OLIVEIRA, Matheus Luiz da Silva. Control and stabilization for the Benjamin-Bona-Mahony equation on the one-dimensional torus, 2025. 2025. Dissertação (Mestrado em Matemática) – Universidade Federal de Pernambuco, Recife, 2025.
Resumen : In the work Unique continuation property and control for the Benjamin–Bona–Mahony equation on a periodic domain, Journal of Differential Equations, (254), no. 1, 2013 by Lionel Rosier and Bing-Yu Zhang, the authors studied the Benjamin-Bona-Mahony (BBM) equation, a fundamental model for the propagation of long waves with small amplitude in nonlinear dispersive systems, on the one-dimensional torus T = R/(2πZ). First, the authors showed that the initial-value problem associated with the BBM equation is globally well-posed in Hs (T), for s ⩾ 0. Moreover, the mapping associating the solution to a given initial data is smooth and the solution is analytic in time. Subsequently, they establish a unique continuation property (UCP) for small data in H1 (T) with nonnegative zero means. This result is further extended to certain BBM-like equations, including the equal width wave equation and the KdV-BBM equation, where, for the latter, some Carleman estimates are derived. Applications to stabilization are developed, showing that semiglobal exponential stabilization can be achieved in Hs (T) for any s ⩾ 1 when an internal control acting on a moving interval is applied. Furthermore, they prove that the BBM equation with a moving control is locally exactly controllable in Hs (T) for s ⩾ 0 and globally exactly controllable in Hs (T) for s ⩾ 1 over sufficiently large times, depending on the Hs -norms of the initial and terminal states. The results of this article are explored in detail in this master’s thesis.
URI : https://repositorio.ufpe.br/handle/123456789/62106
Aparece en las colecciones: Dissertações de Mestrado - Matemática

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
DISSERTAÇÃO Matheus Luiz da Silva Oliveira.pdf1,07 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons